Estimation of the Leakage through a Labyrinth Gland

Proceedings / Institution of Mechanical Engineers 141, 283-288

DOI: 10.1243/pime_proc_1939_141_037_02

Citation Report

#	Article	IF	CITATIONS
1	Leakage of Air through Labyrinth Glands of Staggered Type. Proceedings / Institution of Mechanical Engineers, 1952, 166, 180-195.	0.0	30
2	Aeroelastic vibrations in labyrinth seals. Strength of Materials, 1973, 5, 798-802.	0.5	0
3	Design optimization and testing of a pump wear ring labyrinth seal. , 1988, , .		0
4	Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method. International Journal of Rotating Machinery, 2004, 10, 365-371.	0.8	25
6	Experimental and Numerical Investigation of a Gas Compressor Windback Seal. Journal of Tribology, 2007, 129, 129-134.	1.9	0
7	Labyrinth Seal Leakage Tests: Tooth Profile, Tooth Thickness, and Eccentricity Effects. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	1.1	38
8	Effect of Tooth Height, Tooth Width and Shaft Diameter on Carry-Over Coefficient of Labyrinth Seals. , 2009, , .		1
9	Labyrinth Seal Discharge Coefficient for Rectangular Cavities. , 2009, , .		1
10	Impact of Frequency Dependence of Gas Labyrinth Seal Rotordynamic Coefficients on Centrifugal Compressor Stability. , 2010, , .		3
11	Experimental Investigation on Leakage Loss and Heat Transfer in a Straight Through Labyrinth Seal. , 2011, , .		17
12	Seals. , 2014, , 565-624.		2
13	Shroud leakage flow models and a multi-dimensional coupling CFD (computational fluid dynamics) method for shrouded turbines. Energy, 2016, 103, 410-429.	8.8	20
14	Numerical Investigations for Leakage and Windage Heating in Straight-Through Labyrinth Seals. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	7
15	Effect of Rub-Grooves on Leakage and Windage Heating in Straight-Through Labyrinth Seals. Journal of Tribology, 2016, 138, .	1.9	8
16	Performance Analysis of Labyrinth Seals Using Analytical Methods and Numerical Techniques. , 2017, , .		0
17	Experimental Research and CFD Calculations Based Investigations Into Gas Flow in a Short Segment of a Heavily Worn Straight Through Labyrinth Seal. Polish Maritime Research, 2017, 24, 83-88.	1.9	5
18	Dynamic Characteristics of Rotor-Bearing System with a Labyrinth Seal. Key Engineering Materials, 0, 739, 169-181.	0.4	3
19	Demonstration of a Dynamic Clearance Seal in a Rotating Test Facility. , 2017, , .		0

#	Article	IF	CITATIONS
20	Effect of energy equation in one control-volume bulk-flow model for the prediction of labyrinth seal dynamic coefficients. Mechanical Systems and Signal Processing, 2018, 98, 594-612.	8.0	29
21	Labyrinth Seals. , 0, , 237-257.		0
22	Experimental and Numerical Study of Critical Flow Model Development for Supercritical CO2 Power Cycle Application. , 2018, , .		0
23	Design and Analysis of CFD Experiments for the Development of Bulk-Flow Model for Staggered Labyrinth Seal. International Journal of Rotating Machinery, 2018, 2018, 1-16.	0.8	5
24	Numerical Investigation on the Effects of Structural Parameters of Labyrinth Cavity on Sealing Performance. Mathematical Problems in Engineering, 2018, 2018, 1-12.	1.1	6
25	Numerical Investigation on Windback Seals Used in Aero Engines. Aerospace, 2018, 5, 12.	2.2	6
26	Leakage reduction by optimisation of the straight–through labyrinth seal with a honeycomb and alternative land configurations. International Journal of Heat and Mass Transfer, 2018, 126, 725-739.	4.8	29
27	Numerical and Experimental Investigation of the Sealing Effect of a Specific Labyrinth Seal Structure. Mathematical Problems in Engineering, 2019, 2019, 1-14.	1.1	3
28	Leakage Characteristic Identification of Labyrinth Seals on Reciprocating Piston through Transient Simulations. Mathematical Problems in Engineering, 2019, 2019, 1-12.	1.1	1
29	Performance Analysis of Labyrinth Seals Using Analytical Methods and Numerical Techniques. , 2019, , .		0
30	Study of critical flow for supercritical CO2 seal. International Journal of Heat and Mass Transfer, 2019, 138, 85-95.	4.8	17
31	Leakage flow analysis in the gas turbine shroud gap. Aircraft Engineering and Aerospace Technology, 2019, 91, 1077-1085.	1.2	8
32	Gas labyrinth seals: On the effect of clearance and operating conditions on wall friction factors – A CFD investigation. Tribology International, 2019, 131, 363-376.	5.9	26
33	Seals. , 2019, , 657-717.		1
34	Theoretical modeling for leakage characteristics of two-phase flow in the cryogenic labyrinth seal. International Journal of Heat and Mass Transfer, 2020, 159, 120151.	4.8	9
35	Experimental and Numerical Analysis of the Gas Flow in the Axisymmetric Radial Clearance. Energies, 2020, 13, 5794.	3.1	9
36	Transient modelling and simulation of gas turbine secondary air system. Applied Thermal Engineering, 2020, 170, 115038.	6.0	13
37	Optimizing the Geometric Parameters of a Straight-Through Labyrinth Seal to Minimize the Leakage Flow Rate and the Discharge Coefficient. Energies, 2021, 14, 705.	3.1	6

#	Article	IF	CITATIONS
38	On use of randomized response technique for estimating sensitive subpopulation total. Communications in Statistics - Theory and Methods, 0, , 1-14.	1.0	0
39	Development of a Digital Twin for Well Integrity Management in Underground Gas Storage Fields. , 2021, , .		3
41	Calculation of Labyrinth Seals in the Secondary Air System of Aircraft Engine. The Open Mechanical Engineering Journal, 2014, 8, 424-430.	0.3	1
42	Analysis of the Gas Flow in a Labyrinth Seal of Variable Pitch. Journal of Applied Fluid Mechanics, 2019, 12, 921-930.	0.2	15
43	Universal Method for Determination of Leakage in Labyrinth Seal. Journal of Applied Fluid Mechanics, 2020, 13, 935-943.	0.2	5
45	Performance Analysis of Labyrinth Seals Using Analytical Methods and Numerical Techniques. , 2018, , .		0
46	Gas Labyrinth Seals: Improved Prediction of Leakage in Gas Labyrinth Seals Using an Updated Kinetic Energy Carry-Over Coefficient. Journal of Engineering for Gas Turbines and Power, 2020, 142, .	1.1	6
47	Evaluation of Existing Models Based on Experiments of Supercritical Carbon Dioxide Flows through Labyrinth Seal. Nuclear Science and Technology, 2020, 08, 193-202.	0.0	0
48	Novel Method of the Seal Aerodynamic Design to Reduce Leakage by Matching the Seal Geometry to Flow Conditions. Energies, 2021, 14, 7880.	3.1	3
49	Structural design and analysis of an anisotropic, bi-axially morphing skin concept. Aerospace Science and Technology, 2022, 120, 107292.	4.8	6
50	Gas Labyrinth Seals: Improved Prediction of Leakage in Gas Labyrinth Seals Using an Updated Kinetic Energy Carry-Over Coefficient. , 2020, , .		0
51	Effective Clearance and Differential Gapping Impact on Seal Flutter Modeling and Validation. Journal of Turbomachinery, 2022, 144, .	1.7	3
52	Large Eddy Simulation of Leakage Flow in a Stepped Labyrinth Seal. Processes, 2021, 9, 2179.	2.8	4
53	Turbulence dissipation of leakage flow in supercritical CO2 labyrinth seals. Progress in Nuclear Energy, 2022, 151, 104336.	2.9	8
54	Optimizing the Geometric Parameters of a Stepped Labyrinth Seal to Minimize the Discharge Coefficient. Processes, 2022, 10, 2019.	2.8	3
55	NON-LINEAR FLUTTER ANALYSIS OF LABYRINTH SEALS. Journal of Turbomachinery, 0, , 1-12.	1.7	2
56	Experimental Assessment of Correlative Approaches for the Prediction of Leakage Flow through Labyrinth Seals. Applied Sciences (Switzerland), 2023, 13, 6863.	2.5	0
57	Effects of geometric parameters of a staggered labyrinth seal on leakage flow. Journal of Mechanical Science and Technology, 2023, 37, 2959-2968.	1.5	2

#	Article	IF	CITATIONS
58	Numerical Investigation on Flow Characteristics of Supercritical CO ₂ Labyrinth Seals. Nuclear Science and Technology, 2023, 11, 305-315.	0.0	0
59	Technical benefits of the subcritical inlet condition for high-speed CO2 centrifugal compressor in the advanced power-generation cycle. Energy, 2023, 284, 128733.	8.8	1
60	Thermo-economic analysis of regenerative supercritical CO2 Brayton cycle considering turbomachinery leakage flow. Energy, 2024, 290, 130098.	8.8	0

CITATION REPORT