Influence of four major plant traits on average height, le productivity, and biomass density in singleâ€species fo

Journal of Ecology 99, 148-164 DOI: 10.1111/j.1365-2745.2010.01735.x

Citation Report

#	Article	IF	CITATIONS
1	Climatic constraints on traitâ€based forest assembly. Journal of Ecology, 2011, 99, 1489-1499.	1.9	103
2	Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 222-235.	1.8	75
3	Modeling carbon allocation in trees: a search for principles. Tree Physiology, 2012, 32, 648-666.	1.4	236
4	Effects of disturbance intensity on species and functional diversity in a tropical forest. Journal of Ecology, 2012, 100, 1453-1463.	1.9	138
5	Functional traits explain light and size response of growth rates in tropical tree species. Ecology, 2012, 93, 2626-2636.	1.5	145
6	Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytologist, 2012, 193, 409-419.	3.5	41
7	Light interception efficiency explained by two simple variables: a test using a diversity of small―to mediumâ€sized woody plants. New Phytologist, 2012, 193, 397-408.	3.5	96
8	How fundamental plant functional trait relationships scaleâ€up to tradeâ€offs and synergies in ecosystem services. Journal of Ecology, 2012, 100, 128-140.	1.9	266
9	Tropical forests and global change: filling knowledge gaps. Trends in Plant Science, 2013, 18, 413-419.	4.3	130
10	Controls on Provisioning Services and Forest Productivity. , 2013, , 129-149.		3
11	Biological constraints on water transport in the soil–plant–atmosphere system. Advances in Water Resources, 2013, 51, 292-304.	1.7	110
12	Plant functional diversity and carbon storage – an empirical test in semiâ€arid forest ecosystems. Journal of Ecology, 2013, 101, 18-28.	1.9	273
14	Competition for Water and Light in Closed-Canopy Forests: A Tractable Model of Carbon Allocation with Implications for Carbon Sinks. American Naturalist, 2013, 181, 314-330.	1.0	87
16	GAPPARD: a computationally efficient method of approximating gap-scale disturbance in vegetation models. Geoscientific Model Development, 2013, 6, 1517-1542.	1.3	10
17	Leaf traits within communities: Context may affect the mapping of traits to function. Ecology, 2013, 94, 1893-1897.	1.5	94
18	The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 2013, 10, 4137-4177.	1.3	162
19	Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth. Biogeosciences, 2014, 11, 6711-6724.	1.3	42
20	The worldâ€wide â€~fast–slow' plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102, 275-301.	1.9	2,379

#	Article	IF	CITATIONS
21	A fully traits-based approach to modeling global vegetation distribution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13733-13738.	3.3	187
22	Ecological and evolutionary lability of plant traits affecting carbon and nutrient cycling. Journal of Ecology, 2014, 102, 302-314.	1.9	47
23	Application of a computationally efficient method to approximate gap model results with a probabilistic approach. Geoscientific Model Development, 2014, 7, 1543-1571.	1.3	8
24	Toward quantitative understanding on microbial community structure and functioning: a modeling-centered approach using degradation of marine oil spills as example. Frontiers in Microbiology, 2014, 5, 125.	1.5	46
25	Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). Geoscientific Model Development, 2014, 7, 1251-1269.	1.3	87
26	Growing biodiverse carbonâ€rich forests. Global Change Biology, 2014, 20, 382-393.	4.2	49
27	Determinants of maximum tree height in <i>Eucalyptus</i> species along a rainfall gradient in Victoria, Australia. Ecology, 2014, 95, 2991-3007.	1.5	97
28	Tradeoffs and scaling of functional traits in <i>Sphagnum</i> as drivers of carbon cycling in peatlands. Oikos, 2014, 123, 817-828.	1.2	45
29	Life-history implications of the allometric scaling of growth. Journal of Theoretical Biology, 2014, 359, 199-207.	0.8	38
30	Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 2015, 5, 5521-5538.	0.8	84
31	REVIEW: Predictive ecology in a changing world. Journal of Applied Ecology, 2015, 52, 1293-1310.	1.9	237
32	Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geoscientific Model Development, 2015, 8, 3593-3619.	1.3	192
34	Taking a closer look: disentangling effects of functional diversity on ecosystem functions with a trait-based model across hierarchy and time. Royal Society Open Science, 2015, 2, 140541.	1.1	19
35	Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos, 2015, 124, 469-476.	1.2	70
36	Grass strategies and grassland community responses to environmental drivers: a review. Agronomy for Sustainable Development, 2015, 35, 1297-1318.	2.2	52
37	Does functional trait diversity predict aboveâ€ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 2015, 103, 191-201.	1.9	265
38	Leaf mass per area, not total leaf area, drives differences in aboveâ€ground biomass distribution among woody plant functional types. New Phytologist, 2016, 212, 368-376.	3.5	30
39	Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?. Plant, Cell and Environment, 2016, 39, 709-725.	2.8	164

CITATION REPORT

#	Article	IF	CITATIONS
40	Disturbance, complexity, and succession of net ecosystem production in North America's temperate deciduous forests. Ecosphere, 2016, 7, e01375.	1.0	60
41	Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agriculture, Ecosystems and Environment, 2016, 231, 122-132.	2.5	51
42	Landâ€use intensification effects on functional properties in tropical plant communities. Ecological Applications, 2016, 26, 174-189.	1.8	33
43	On the link between functional traits and growth rate: metaâ€analysis shows effects change with plant size, as predicted. Journal of Ecology, 2016, 104, 1488-1503.	1.9	132
44	plant: A package for modelling forest trait ecology and evolution. Methods in Ecology and Evolution, 2016, 7, 136-146.	2.2	26
45	Asymmetric competition causes multimodal size distributions in spatially structured populations. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152404.	1.2	3
46	The expression of light-related leaf functional traits depends on the location of individual leaves within the crown of isolatedOlea europaeatrees. Annals of Botany, 2016, 117, 643-651.	1.4	13
47	Towards a traitâ€based ecology of wetland vegetation. Journal of Ecology, 2017, 105, 1623-1635.	1.9	109
48	On the performance of four methods for the numerical solution of ecologically realistic sizeâ€structured population models. Methods in Ecology and Evolution, 2017, 8, 948-956.	2.2	5
49	Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecology and Evolution, 2017, 7, 1605-1615.	0.8	56
50	Competition for light in forest population dynamics: From computer simulator to mathematical model. Journal of Theoretical Biology, 2017, 419, 290-304.	0.8	14
51	Multitrait successional forest dynamics enable diverse competitive coexistence. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2719-E2728.	3.3	98
52	Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology, 2017, 105, 1775-1790.	1.9	133
53	Intraspecific trait variation can weaken interspecific trait correlations when assessing the wholeâ€plant economic spectrum. Ecology and Evolution, 2017, 7, 8936-8949.	0.8	44
54	Quantifying the role of wood density in explaining interspecific variation in growth of tropical trees. Global Ecology and Biogeography, 2017, 26, 1078-1087.	2.7	18
55	An individualâ€based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs, 2017, 87, 632-664.	2.4	40
56	Trait variation and integration across scales: is the leaf economic spectrum present at local scales?. Ecography, 2017, 40, 685-697.	2.1	165
57	Both canopy and understory traits act as response–effect traits in fireâ€managed forests. Ecosphere, 2017, 8, e02036.	1.0	6

CITATION REPORT

#	Article	IF	CITATIONS
58	Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. Forest Ecology and Management, 2018, 417, 90-102.	1.4	32
59	Latitudinal Variation in Plant Functional Types. Geobotany Studies, 2018, , 21-57.	0.2	3
60	Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology, 2018, 99, 1610-1620.	1.5	29
61	Multidimensional trait space informed by a mechanistic model of tree growth and carbon allocation. Ecosphere, 2018, 9, e02060.	1.0	4
62	Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest. Functional Ecology, 2018, 32, 461-474.	1.7	90
63	Serviceberry biotypes in North Dakota: new woody edible ornamental trials. Acta Horticulturae, 2018, , 53-58.	0.1	0
64	Latitudinal effects on crown shape evolution. Ecology and Evolution, 2018, 8, 8149-8158.	0.8	6
65	How functional traits influence plant growth and shade tolerance across the life cycle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6789-E6798.	3.3	90
66	Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology, 2019, 107, 190-202.	1.9	51
67	Trait-based modelling in ecology: A review of two decades of research. Ecological Modelling, 2019, 407, 108703.	1.2	73
68	Plant performance response to eight different types of symbiosis. New Phytologist, 2019, 222, 526-542.	3.5	26
69	Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB PLANTS, 2019, 11, plz024.	1.2	21
70	Dynamic Simulation of the Crown Net Photosynthetic Rate for Young Larix olgensis Henry Trees. Forests, 2019, 10, 321.	0.9	6
71	A whole-plant functional scheme predicting the early growth of tropical tree species: evidence from 15 tree species in Central Africa. Trees - Structure and Function, 2019, 33, 491-505.	0.9	7
72	Scaling functional traits to ecosystem processes: Towards a mechanistic understanding in peat mosses. Journal of Ecology, 2019, 107, 843-859.	1.9	21
73	Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. Ecological Research, 2020, 35, 947-966.	0.7	5
74	Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. Journal of Ecology, 2021, 109, 1331-1343.	1.9	5
75	A tree's quest for light—optimal height and diameter growth under a shading canopy. Tree Physiology, 2021, 41, 1-11.	1.4	11

#	Article	IF	CITATIONS
76	Dynamic simulation of the multilayer crown net photosynthetic rate and determination of the functional crown for larch (Larix olgensis) trees. New Forests, 2021, 52, 1011-1035.	0.7	5
77	Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest. Science of the Total Environment, 2021, 766, 144234.	3.9	9
78	Functional Traits Are Good Predictors of Tree Species Abundance Across 101 Subtropical Forest Species in China. Frontiers in Plant Science, 2021, 12, 541577.	1.7	5
79	Emergent Shapes of Trait-Based Competition Functions from Resource-Based Models: A Gaussian Is Not Normal in Plant Communities. American Naturalist, 2021, 198, 253-267.	1.0	7
80	Response of community diversity and productivity to canopy gap disturbance in subtropical forests. Forest Ecology and Management, 2021, 502, 119740.	1.4	12
81	Radiation-Use Efficiency Under Different Climatic Conditions. , 2019, , 51-109.		7
83	Re-estimating the changes and ranges of forest biomass carbon in China during the past 40 years. Forest Ecosystems, 2019, 6, .	1.3	12
84	Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels. PLoS ONE, 2013, 8, e77372.	1.1	53
88	Leaf trait patterns of monsoon evergreen broad-leaved forest in relation to growth form. African Journal of Agricultural Research Vol Pp, 2012, 7, .	0.2	1
94	Biochemical traits enhance the trait concept in <i>Sphagnum</i> ecology. Oikos, 2022, 2022, .	1.2	5
95	Allometric Relationships for Predicting Aboveground Biomass, Sapwood, and Leaf Area of Two-Needle Piñon Pine (<i>Pinus edulis</i>) Amid Open-Grown Conditions in Central New Mexico. Forest Science, 0, , .	0.5	2
96	New Framework for Evaluating Ecosystem Quality in Nature Reserves based on Ideal References and Key Indicators. Journal of Resources and Ecology, 2022, 13, .	0.2	0
97	Assessment of ecosystem quality in nature reserves based on ideal references and key indicators: A case study of Erguna, Hui River, and Xilin Gol National Nature Reserves. Journal of Natural Resources, 2022, 37, 1735.	0.4	0
98	Tree height effects on vascular anatomy of upper-canopy twigs across a wide range of tropical rainforest species. Journal of Tropical Ecology, 0, , 1-10.	0.5	0
99	Do Tree Size and Tree Shade Tolerance Affect the Photosynthetic Capacity of Broad-Leaved Tree Species?. Plants, 2023, 12, 523.	1.6	1
100	Plant functional traits: mountainous soil function and ecosystem services. , 2023, , 347-373.		0

CITATION REPORT