21st century climate change threatens mountain flora u

Global Change Biology 17, 2330-2341 DOI: 10.1111/j.1365-2486.2010.02393.x

Citation Report

#	Article	IF	CITATIONS
1	Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters, 2011, 14, 1236-1245.	3.0	214
2	Predicting the biodiversity response to climate change: challenges and advances. Systematics and Biodiversity, 2011, 9, 307-317.	0.5	16
3	Distribution of Doronicum clusii and D. stiriacum (Asteraceae) in the Alps and Carpathians. Biologia (Poland), 2011, 66, 977-987.	0.8	2
4	Four Decades of Plant Community Change in the Alpine Tundra of Southwest Yukon, Canada. Ambio, 2011, 40, 660-671.	2.8	33
5	Using historical plant surveys to track biodiversity on mountain summits. Plant Ecology and Diversity, 2011, 4, 415-425.	1.0	72
6	Climate warming could shift the timing of seed germination in alpine plants. Annals of Botany, 2012, 110, 155-164.	1.4	131
7	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
8	How to understand species' niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography, 2012, 39, 2146-2162.	1.4	249
9	Short-term variation in species richness across an altitudinal gradient of alpine summits. Biodiversity and Conservation, 2012, 21, 3157-3186.	1.2	16
10	Horizontal cliffs: mountaintop mining and climate change. Biodiversity and Conservation, 2012, 21, 3731-3734.	1.2	6
11	Geomorphic Determinants of Species Composition of Alpine Tundra, Glacier National Park, U.S.A Arctic, Antarctic, and Alpine Research, 2012, 44, 197-209.	0.4	29
12	Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity and Conservation, 2012, 21, 2913-2926.	1.2	70
13	Effects of management regimes and extreme climatic events on plant population viability in Eryngium alpinum. Biological Conservation, 2012, 147, 99-106.	1.9	14
14	Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of <i><scp>Q</scp>uercus pubescens</i> in <scp>F</scp> rance. Global Change Biology, 2012, 18, 2648-2660.	4.2	106
15	Climatic niche evolution and species diversification in the <scp>C</scp> ape flora, <scp>S</scp> outh <scp>A</scp> frica. Journal of Biogeography, 2012, 39, 2201-2211.	1.4	65
16	A gradient analytic perspective on distribution modelling. Sommerfeltia, 2012, 35, 1-165.	1.0	59
17	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	1.0	650
18	Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2012, 2, 111-115.	8.1	941

#	Article	IF	CITATIONS
19	Integrating species distribution models (SDMs) and phylogeography for two species of Alpine <i>Primula</i> . Ecology and Evolution, 2012, 2, 1260-1277.	0.8	40
20	Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 2012, 336, 353-355.	6.0	732
21	Profiteers of environmental change in the Swiss Alps: increase of thermophilous and generalist plants in wetland ecosystems within the last 10Âyears. Alpine Botany, 2012, 122, 45-56.	1.1	17
22	Impacts of climate change on plant diseases—opinions and trends. European Journal of Plant Pathology, 2012, 133, 295-313.	0.8	236
23	Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 2012, 39, 162-176.	1.4	132
24	Noâ€enalog climates and shifting realized niches during the late quaternary: implications for 21stâ€century predictions by species distribution models. Global Change Biology, 2012, 18, 1698-1713.	4.2	243
25	Species vulnerability to climate change: impacts on spatial conservation priorities and species representation. Global Change Biology, 2012, 18, 2335-2348.	4.2	111
26	Uncertainty in predictions of range dynamics: black grouse climbing the Swiss Alps. Ecography, 2012, 35, 590-603.	2.1	57
27	Forecasting changes in population genetic structure of alpine plants in response to global warming. Molecular Ecology, 2012, 21, 2354-2368.	2.0	127
28	Predicting present and future intraâ€specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 2012, 15, 649-657.	3.0	79
29	Postâ€glacial migration lag restricts range filling of plants in the European Alps. Global Ecology and Biogeography, 2012, 21, 829-840.	2.7	91
30	Invasive species distribution models – how violating the equilibrium assumption can create new insights. Clobal Ecology and Biogeography, 2012, 21, 1126-1136.	2.7	294
31	Postâ€fire regeneration in alpine heathland: Does fire severity matter?. Austral Ecology, 2013, 38, 199-207.	0.7	26
32	The ice age ecologist: testing methods for reserve prioritization during the last global warming. Global Ecology and Biogeography, 2013, 22, 289-301.	2.7	47
33	Past and future demographic dynamics of alpine species: limited genetic consequences despite dramatic range contraction in a plant from the <scp>S</scp> panish <scp>S</scp> ierra <scp>N</scp> evada. Molecular Ecology, 2013, 22, 4177-4195.	2.0	26
34	The relationship between soil water storage capacity and plant species diversity in high alpine vegetation. Plant Ecology and Diversity, 2013, 6, 457-466.	1.0	30
35	Taking into account farmers' decision making to map fine-scale land management adaptation to climate and socio-economic scenarios. Landscape and Urban Planning, 2013, 119, 147-157.	3.4	51
36	Drastic reduction in the potential habitats for alpine and subalpine vegetation in the Pyrenees due to twenty-first-century climate change. Regional Environmental Change, 2013, 13, 1157-1169.	1.4	8

#	Article	IF	CITATIONS
37	Combining ensemble modeling and remote sensing for mapping individual tree species at high spatial resolution. Forest Ecology and Management, 2013, 310, 64-73.	1.4	78
38	Under pressure: how a <scp>M</scp> editerranean highâ€mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Functional Ecology, 2013, 27, 1295-1303.	1.7	49
39	Subordinate plant species enhance community resistance against drought in semiâ€natural grasslands. Journal of Ecology, 2013, 101, 763-773.	1.9	131
40	Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions?. Ecosphere, 2013, 4, 1-18.	1.0	78
41	Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia, 2013, 171, 271-282.	0.9	79
42	Do different sheep breeds show equal responses to climate fluctuations?. Basic and Applied Ecology, 2013, 14, 137-145.	1.2	12
43	The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 2013, 22, 52-63.	2.7	121
44	Thermal niches are more conserved at cold than warm limits in arcticâ€alpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	2.7	60
45	Improving the prediction of plant species distribution and community composition by adding edaphic to topoâ€climatic variables. Journal of Vegetation Science, 2013, 24, 593-606.	1.1	145
46	An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biological Conservation, 2013, 158, 401-409.	1.9	33
47	Choice of study area and predictors affect habitat suitability projections, but not the performance of species distribution models of stream biota. Ecological Modelling, 2013, 257, 1-10.	1.2	49
48	Modelling distribution in <scp>E</scp> uropean stream macroinvertebrates under future climates. Global Change Biology, 2013, 19, 752-762.	4.2	159
49	A probabilistic approach to nicheâ€based community models for spatial forecasts of assemblage properties and their uncertainties. Journal of Biogeography, 2013, 40, 1939-1946.	1.4	20
50	Working toward integrated models of alpine plant distribution. Alpine Botany, 2013, 123, 41-53.	1.1	31
51	Positive effects of an extremely hot summer on propagule rain in upper alpine to subnival habitats of the Central Eastern Alps. Plant Ecology and Diversity, 2013, 6, 467-474.	1.0	6
52	A 2°C warmer world is not safe for ecosystem services in the <scp>E</scp> uropean <scp>A</scp> lps. Global Change Biology, 2013, 19, 1827-1840.	4.2	132
53	Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited. Ecology and Evolution, 2013, 3, 3307-3319.	0.8	102
54	How extreme summer weather may limit control of <i>Festuca paniculata</i> by mowing in subalpine grasslands. Plant Ecology and Diversity, 2013, 6, 393-404.	1.0	15

		CITATION REPORT	
#	Article	IF	CITATIONS
55	Plant functional strategies and environmental constraints in Mediterranean high mountain grasslands in central Spain. Plant Ecology and Diversity, 2013, 6, 435-446.	1.0	26
56	Experimental warming and long-term vegetation dynamics in an alpine heathland. Australian Journa of Botany, 2013, 61, 36.	0.3	41
57	Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Speci PLoS ONE, 2013, 8, e65462.	es. 1.1	24
58	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	5
59	Provenance Trials in Alpine Range $\hat{a} \in$ "Review and Perspectives for Applications in Climate Change.	, 0, , .	7
60	A New Tool for Exploring Climate Change Induced Range Shifts of Conifer Species in China. PLoS O 2014, 9, e98643.	NE, 1.1	4
61	Plant Phenotypic Plasticity in Response to Environmental Factors. Advances in Botany, 2014, 2014	, 1-17. 3.4	345
62	Alpine Cold Vegetation Response to Climate Change in the Western Nyainqentanglha Range in 1972–2009. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	7
63	Mountain vegetation at risk: Current perspectives and research reeds. Plant Biosystems, 2014, 148 35-41.	, 0.8	13
64	Current vegetation changes in an alpine late snowbed community in the south-eastern Alps (N-Italy Alpine Botany, 2014, 124, 105-113.). 1.1	34
65	Is U.S. climatic diversity well represented within the existing federal protection network?. Ecologica Applications, 2014, 24, 1898-1907.	1.8	14
66	Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrestrial Birds: Implications under Global Climate Change. PLoS ONE, 2014, 9, e98361.	1.1	38
67	Arctic-Alpine Plants Decline over Two Decades in Glacier National Park, Montana, U.S.A Arctic, Antarctic, and Alpine Research, 2014, 46, 327-332.	0.4	17
68	Decline of dry grassland specialists in <scp>M</scp> editerranean highâ€mountain communities influenced by recent climate warming. Journal of Vegetation Science, 2014, 25, 1394-1404.	1.1	35
69	Accounting for tree line shift, glacier retreat and primary succession in mountain plant distribution models. Diversity and Distributions, 2014, 20, 1379-1391.	1.9	24
70	Forest Vegetation Dynamics Along an Altitudinal Gradient in Relation to the Climate Change in Southern Transbaikalia, Russia. Achievements in the Life Sciences, 2014, 8, 23-28.	1.3	6
71	Alpine vegetation along multiple environmental gradients and possible consequences of climate change. Alpine Botany, 2014, 124, 155-164.	1.1	23
72	Plant population differentiation and climate change: responses of grassland species along an elevational gradient. Global Change Biology, 2014, 20, 441-455.	4.2	89

#	Article	IF	CITATIONS
73	Assessing changes in species distribution from sequential large-scale forest inventories. Annals of Forest Science, 2014, 71, 161-171.	0.8	19
74	Temporal variation in microbial and plant biomass during summer in a Mediterranean high-mountain dry grassland. Plant and Soil, 2014, 374, 803-813.	1.8	9
75	Biomass-modulated fire dynamics during the Last Glacial–Interglacial Transition at the Central Pyrenees (Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 402, 113-124.	1.0	58
76	Rust fungi and global change. New Phytologist, 2014, 201, 770-780.	3.5	123
77	Are Calanus spp. shifting poleward in the North Atlantic? A habitat modelling approach. ICES Journal of Marine Science, 2014, 71, 241-253.	1.2	83
78	Mountain forest growth response to climate change in the Northern Limestone Alps. Trees - Structure and Function, 2014, 28, 819-829.	0.9	99
79	Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 2014, 20, 1538-1549.	4.2	56
80	Topoâ€elimatic microrefugia explain the persistence of a rare endemic plant in the Alps during the last 21 millennia. Global Change Biology, 2014, 20, 2286-2300.	4.2	85
81	Assessing the impacts of climatic change on mountain water resources. Science of the Total Environment, 2014, 493, 1129-1137.	3.9	146
82	Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 2014, 169, 89-98.	1.9	19
83	Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Climate Change Responses, 2014, 1, .	2.6	44
84	Current and future latitudinal gradients in stream macroinvertebrate richness across North America. Freshwater Science, 2014, 33, 1136-1147.	0.9	20
85	Climate change and elevational range shifts: evidence from dung beetles in two <scp>E</scp> uropean mountain ranges. Global Ecology and Biogeography, 2014, 23, 646-657.	2.7	106
86	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	2.7	110
87	Assessing species vulnerability to climate and land use change: the case of the Swiss breeding birds. Diversity and Distributions, 2014, 20, 708-719.	1.9	66
88	Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines. Photosynthetica, 2014, 52, 386-396.	0.9	12
89	Summer rainfall variability in European Mediterranean mountains from the sixteenth to the twentieth century reconstructed from tree rings. International Journal of Biometeorology, 2014, 58, 1627-1639.	1.3	14
90	Establishing a baseline of plant diversity and endemism on a neotropical mountain summit for future comparative studies assessing upward migration: an approach from biogeography and nature conservation. Systematics and Biodiversity, 2014, 12, 292-314.	0.5	21

#	Article	IF	CITATIONS
91	Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones. Oecologia, 2014, 174, 1425-1435.	0.9	21
92	Ecological responses of plant species and communities to climate warming: upward shift or range filling processes?. Climatic Change, 2014, 123, 201-214.	1.7	71
93	Precipitation and winter temperature predict longâ€ŧerm rangeâ€scale abundance changes in Western North American birds. Global Change Biology, 2014, 20, 3351-3364.	4.2	78
94	Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecological Modelling, 2014, 288, 166-177.	1.2	89
95	Some like it hot and some like it cold, but not too much: plant responses to climate extremes. Plant Ecology, 2014, 215, 677-688.	0.7	64
96	How accurately can minimum temperatures at the cold limits of tree species be extrapolated from weather station data?. Agricultural and Forest Meteorology, 2014, 184, 257-266.	1.9	46
97	Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography, 2014, 37, 1254-1266.	2.1	52
98	What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 2014, 15, 305-315.	1.2	95
99	Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 2015, 6, 245-265.	2.7	137
100	Pastoral suitability driven by future climate change along the Apennines. Italian Journal of Agronomy, 2015, 10, 109.	0.4	10
101	Experimental evidence that predator range expansion modifies alpine stream community structure. Freshwater Science, 2015, 34, 66-80.	0.9	21
102	Predicting microscale shifts in the distribution of the butterfly <i>Plebejus argus</i> at the northern edge of its range. Ecography, 2015, 38, 998-1005.	2.1	12
103	The consequences of multiple resource shifts on the productivity and composition of alpine tundra communities: inferences from a long-term snow and nutrient manipulation experiment. Plant Ecology and Diversity, 2015, 8, 751-761.	1.0	11
104	From cold to warm-stage refugia for boreo-alpine plants in southern European and Mediterranean mountains: the last chance to survive or an opportunity for speciation?. Biodiversity, 2015, 16, 247-261.	0.5	44
105	Rate of resistance evolution and polymorphism in long- and short-lived hosts. Evolution; International Journal of Organic Evolution, 2015, 69, 551-560.	1.1	14
106	Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biological Invasions, 2015, 17, 1407-1423.	1.2	42
107	Bumblebees, climate and glaciers across the Tibetan plateau (Apidae: <i>Bombus</i> Latreille). Systematics and Biodiversity, 2015, 13, 164-181.	0.5	26
108	Social structure varies with elevation in an Alpine ant. Molecular Ecology, 2015, 24, 498-507.	2.0	30

#	Article	IF	CITATIONS
109	From current distinctiveness to future homogenization of the world's freshwater fish faunas. Diversity and Distributions, 2015, 21, 223-235.	1.9	32
110	Validation of and comparison between a semidistributed rainfall–runoff hydrological model (PREVAH) and a spatially distributed snowâ€evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology, 2015, 8, 1181-1193.	1.1	5
111	Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Climatic Change, 2015, 132, 601-613.	1.7	81
112	Conservation of threatened habitat types under future climate change – Lessons from plant-distribution models and current extinction trends in southern Germany. Journal for Nature Conservation, 2015, 27, 18-25.	0.8	19
113	Climate warming could increase recruitment success in glacier foreland plants. Annals of Botany, 2015, 116, mcv101.	1.4	46
114	Evaluating the combined effects of climate and landâ€use change on tree species distributions. Journal of Applied Ecology, 2015, 52, 902-912.	1.9	73
115	Accelerating extinction risk from climate change. Science, 2015, 348, 571-573.	6.0	1,561
116	Indirect effects of global change accumulate to alter plant diversity but not ecosystem function in alpine tundra. Journal of Ecology, 2015, 103, 351-360.	1.9	32
117	The category of mountain as source of legitimacy for national parks. Environmental Science and Policy, 2015, 49, 57-65.	2.4	7
118	Vegetation change at high elevation: scale dependence and interactive effects on Niwot Ridge. Plant Ecology and Diversity, 2015, 8, 713-725.	1.0	40
119	The silent extinction: climate change and the potential hybridization-mediated extinction of endemic high-mountain plants. Biodiversity and Conservation, 2015, 24, 1843-1857.	1.2	73
120	Stability of alpine vegetation over 50 years in central Norway. Folia Geobotanica, 2015, 50, 39-48.	0.4	6
121	Small differences in seasonal and thermal niches influence elevational limits of native and invasive Balsams. Biological Conservation, 2015, 191, 682-691.	1.9	12
122	Baselines to Detect Population Stability of the Threatened Alpine Plant <i>Packera franciscana</i> (Asteraceae). Western North American Naturalist, 2015, 75, 70-77.	0.2	2
123	Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution. Ecological Modelling, 2015, 313, 127-136.	1.2	23
124	Temperature and drought drive differences in germination responses between congeneric species along altitudinal gradients. Plant Ecology, 2015, 216, 1297-1309.	0.7	27
125	Age-specific survival and annual variation in survival of female chamois differ between populations. Oecologia, 2015, 179, 1091-1098.	0.9	17
126	Long-term response of plant communities to herbivore exclusion at high elevation grasslands. Biodiversity and Conservation, 2015, 24, 3033-3047.	1.2	18

#	Article	IF	CITATIONS
127	Both altitude and vegetation affect temperature sensitivity of soil organic matter decomposition in Mediterranean high mountain soils. Geoderma, 2015, 237-238, 1-8.	2.3	75
128	Contrasting Population Dynamics in the Boreo-AlpineSilene acaulis(Caryophyllaceae) at Its Southern Distribution Limit. Annales Botanici Fennici, 2016, 53, 193-204.	0.0	6
129	The plant endemism in the Maritime and Ligurian Alps. Biogeographia, 2016, 31, .	0.3	4
130	Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator. PLoS ONE, 2016, 11, e0148295.	1.1	37
131	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
132	Simulated shifts in trophic niche breadth modulate range loss of alpine butterflies under climate change. Ecography, 2016, 39, 796-804.	2.1	21
133	Differential plasticity of size and mass to environmental change in a hibernating mammal. Global Change Biology, 2016, 22, 3286-3303.	4.2	20
134	Will climate change increase the risk of plant invasions into mountains?. Ecological Applications, 2016, 26, 530-544.	1.8	103
135	Soil moisture mediates alpine life form and community productivity responses to warming. Ecology, 2016, 97, 1553-1563.	1.5	79
136	Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecology and Evolution, 2016, 6, 6969-6982.	0.8	60
137	Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 2016, 22, 110-120.	4.2	161
138	Elevational Dependence of Air Temperature Variability and Trends in British Columbia's Cariboo Mountains, 1950–2010. Atmosphere - Ocean, 2016, 54, 153-170.	0.6	15
139	Institutional impacts on the resilience of mountain grasslands: an analysis based on three European case studies. Land Use Policy, 2016, 52, 382-391.	2.5	65
140	Late-glacial and Holocene evolution as a driver of diversity and complexity of the northeastern North American alpine landscapes: a synthesis. Canadian Journal of Earth Sciences, 2016, 53, 494-505.	0.6	7
141	Anticipating extinctions of glacial relict populations in mountain refugia. Biological Conservation, 2016, 201, 243-251.	1.9	34
142	The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology, 2016, 11, 40-59.	1.3	34
143	Soil and altitude drive diversity and functioning of Brazilian <i>Páramos</i> (campo de altitude). Journal of Plant Ecology, 0, , rtw088.	1.2	13
144	Recent changes in alpine vegetation differ among plant communities. Journal of Vegetation Science, 2016, 27, 1177-1186.	1.1	20

#	Article	IF	CITATIONS
145	Environmental gradients and grassland trait variation: Insight into the effects of climate change. Acta Oecologica, 2016, 76, 47-60.	0.5	16
146	Goodâ€bye to tropical alpine plant giants under warmer climates? Loss of range and genetic diversity in <i>Lobelia rhynchopetalum</i> . Ecology and Evolution, 2016, 6, 8931-8941.	0.8	93

Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies) Tj ETQq0 0 0.0 mBT /Overlock 10 Tf 0.725

148	Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. European Journal of Forest Research, 2016, 135, 1011-1023.	1.1	43
149	Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecological Modelling, 2016, 342, 135-146.	1.2	90
150	Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biological Journal of the Linnean Society, 2016, 119, 528-559.	0.7	111
151	Hybridization as a threat in climate relict Nuphar pumila (Nymphaeaceae). Biodiversity and Conservation, 2016, 25, 1863-1877.	1.2	15
152	Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years. AoB PLANTS, 2016, 8, .	1.2	67
153	Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. Journal of Vegetation Science, 2016, 27, 387-399.	1.1	37
154	Simulated heat waves affected alpine grassland only in combination with drought. New Phytologist, 2016, 209, 531-541.	3.5	154
155	Stable isotope ratios in alpine rock ptarmigan and black grouse sampled along a precipitation gradient. Basic and Applied Ecology, 2016, 17, 648-658.	1.2	1
156	How will climate change affect wildland fire severity in the western US?. Environmental Research Letters, 2016, 11, 035002.	2.2	111
157	Knowing the past to forecast the future: a case study on a relictual, endemic species of the SW Alps, Berardia subacaulis. Regional Environmental Change, 2016, 16, 1035-1045.	1.4	7
158	A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 2016, 141, 227-238.	1.5	1,081
159	A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Systems and Environment, 2016, 2, 1.	1.9	94
160	Potential impacts of climate and landscape fragmentation changes on plant distributions: Coupling multi-temporal satellite imagery with GIS-based cellular automata model. Ecological Informatics, 2016, 32, 145-155.	2.3	38
161	Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecological Engineering, 2016, 89, 14-23.	1.6	43
162	Short-term signals of climate change in Italian summit vegetation: observations at two GLORIA sites. Plant Biosystems, 2016, 150, 227-235.	0.8	35

#	Article	IF	CITATIONS
163	Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 2016, 46, 437-443.	0.8	13
164	Climatic warming strengthens a positive feedback between alpine shrubs and fire. Global Change Biology, 2017, 23, 3249-3258.	4.2	39
165	Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought. Journal of Ecology, 2017, 105, 958-967.	1.9	101
166	Spatiotemporal heterogeneity of larch budmoth outbreaks in the French Alps over the last 500 years. Canadian Journal of Forest Research, 2017, 47, 667-680.	0.8	21
167	Resistance of plant–plant networks to biodiversity loss and secondary extinctions following simulated environmental changes. Functional Ecology, 2017, 31, 1145-1152.	1.7	46
168	How Do Cold-Adapted Plants Respond to Climatic Cycles? Interglacial Expansion Explains Current Distribution and Genomic Diversity in Primula farinosa L Systematic Biology, 2017, 66, 715-736.	2.7	26
169	Will climate change increase hybridization risk between potential plant invaders and their congeners in Europe?. Diversity and Distributions, 2017, 23, 934-943.	1.9	19
170	Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. Annals of Botany, 2017, 119, 301-309.	1.4	51
171	Paleoenvironmental change in tropical Africa during the Holocene based on a record from Lake Kifuruka, western Uganda. Journal of Quaternary Science, 2017, 32, 1099-1111.	1.1	8
172	The High Mountain Conservation in a Changing World. Advances in Global Change Research, 2017, , 3-36.	1.6	13
173	Morpho-environmental characterization of the genus <i>Dianthus</i> L. in the Iberian Peninsula: environmental trends for <i>D. pungens</i> group under climate change scenarios. Botany Letters, 2017, 164, 209-227.	0.7	2
174	Glacial survival in and recent long-distance dispersal to the Iberian Mountains: the phylogeographic history of Artemisia umbelliformis (Asteraceae). Botanical Journal of the Linnean Society, 2017, 183, 587-599.	0.8	7
175	At the intersection of cultural and natural heritage: Distribution and conservation of the type localities of Italian endemic vascular plants. Biological Conservation, 2017, 214, 109-118.	1.9	46
176	Opportunities for research on mountain biodiversity under global change. Current Opinion in Environmental Sustainability, 2017, 29, 40-47.	3.1	60
177	Responses of lichen communities to 18 years of natural and experimental warming. Annals of Botany, 2017, 120, 159-170.	1.4	35
178	Vegetation shifts, human impact and peat bog development in Bassa Nera pond (Central Pyrenees) during the last millennium. Holocene, 2017, 27, 553-565.	0.9	17
179	Selecting predictors to maximize the transferability of species distribution models: lessons from crossâ€continental plant invasions. Global Ecology and Biogeography, 2017, 26, 275-287.	2.7	175
180	Relations of Alpine Plant Communities across Environmental Gradients: Multilevel versus Multiscale Analyses. Annals of the American Association of Geographers, 2017, 107, 41-53.	1.5	11

#	Article	IF	CITATIONS
181	Large climate change, large effect? Vegetation changes over the past century in the European High Arctic. Applied Vegetation Science, 2017, 20, 204-214.	0.9	16
182	The determinants of seed germination in an alpine/subalpine community on the Eastern Qinghai-Tibetan Plateau. Ecological Engineering, 2017, 98, 114-122.	1.6	11
183	Future ecosystem services from European mountain forests under climate change. Journal of Applied Ecology, 2017, 54, 389-401.	1.9	147
184	Fineâ€grain, largeâ€domain climate models based on climate station and comprehensive topographic information improve microrefugia detection. Ecography, 2017, 40, 1003-1013.	2.1	90
185	The economics of land use reveals a selection bias in tree species distribution models. Global Ecology and Biogeography, 2017, 26, 65-77.	2.7	15
186	Fineâ€scale spatiotemporal dynamics of fungal fruiting: prevalence, amplitude, range and continuity. Ecography, 2017, 40, 947-959.	2.1	14
187	Environmental change in the equatorial Andes: Linking climate, land use, and land cover transformations. Remote Sensing Applications: Society and Environment, 2017, 8, 291-303.	0.8	28
188	Mounting a Fundamental Defence of the Plant Kingdom. , 0, , 1-22.		1
189	Potential Responses of Vascular Plants from the Pristine "Lost World―of the Neotropical Guayana Highlands to Global Warming: Review and New Perspectives. Frontiers in Plant Science, 2017, 8, 81.	1.7	7
190	Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 2017, 6, 288.	1.4	119
191	Microrefugia, Climate Change, and Conservation of Cedrus atlantica in the Rif Mountains, Morocco. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	45
192	Ecology of Alpine Macrofungi - Combining Historical with Recent Data. Frontiers in Microbiology, 2017, 8, 2066.	1.5	25
193	ECOLOGICAL CHARACTERISTICS AND SUITABILITY EVALUATION OF FRITILLARIA CIRRHOSA D. DON BASED ON MAXENT MODEL. Tropical Journal of Obstetrics and Gynaecology, 2017, 15, 158.	0.3	0
194	Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models. PLoS ONE, 2017, 12, e0175978.	1.1	20
195	Growthâ€competitionâ€herbivore resistance tradeâ€offs and the responses of alpine plant communities to climate change. Functional Ecology, 2018, 32, 1693-1703.	1.7	24
196	A review and metaâ€analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis, 2018, 160, 489-515.	1.0	117
197	Impact of geography on adaptation of Phyllanthus amarus seeds. 3 Biotech, 2018, 8, 217.	1.1	4
198	The potential impact of invasive woody oil plants on protected areas in China under future climate conditions. Scientific Reports, 2018, 8, 1041.	1.6	13

#	Article	IF	Citations
199	Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts. Plant Ecology, 2018, 219, 261-276.	0.7	16
200	Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 2018, 624, 1429-1442.	3.9	169
201	Optimization of forest sampling strategies for woody plant species distribution modelling at the landscape scale. Forest Ecology and Management, 2018, 410, 104-113.	1.4	14
202	Plant species composition shifts in the Tatra Mts as a response to environmental change: a resurvey study after 90 years. Folia Geobotanica, 2018, 53, 333-348.	0.4	25
203	Analogâ€based fire regime and vegetation shifts in mountainous regions of the western US. Ecography, 2018, 41, 910-921.	2.1	39
204	Environmental stress effects on reproduction and sexual dimorphism in the gynodioecious species Silene acaulis. Environmental and Experimental Botany, 2018, 146, 27-33.	2.0	3
205	Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 2018, 106, 948-959.	1.9	49
206	Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr – A rare arctic-alpine species in the Tatra Mts. Science of the Total Environment, 2018, 618, 1628-1637.	3.9	27
207	How does climate change affect regeneration of Mediterranean highâ€mountain plants? An integration and synthesis of current knowledge. Plant Biology, 2018, 20, 50-62.	1.8	35
208	Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology, 2018, 24, e289-e302.	4.2	54
209	Forecasting range shifts of a coldâ€adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience?. Ecography, 2018, 41, 1357-1369.	2.1	28
210	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	4.2	279
211	Enough space in a warmer world? Microhabitat diversity and smallâ€scale distribution of alpine plants on mountain summits. Diversity and Distributions, 2018, 24, 252-261.	1.9	49
212	Digital longâ€ŧerm topoclimate surfaces of the Pyrenees mountain range for the period 1950–2012. Geoscience Data Journal, 2018, 5, 50-62.	1.8	9
213	Distributional pattern of Sardinian orchids under a climate change scenario. Community Ecology, 2018, 19, 223-232.	0.5	17
214	Long-Term Changes in the Composition, Ecology, and Structure of Pinus mugo Scrubs in the Apennines (Italy). Diversity, 2018, 10, 70.	0.7	13
215	Topographic heterogeneity explains patterns of vegetation response to climate change (1972–2008) across a mountain landscape, Niwot Ridge, Colorado. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	31
216	Transgenerational and Within-Generation Plasticity in Response to Climate Change: Insights from a Manipulative Field Experiment across an Elevational Gradient. American Naturalist, 2018, 192, 698-714.	1.0	39

#	Article	IF	CITATIONS
217	Patterns of root colonization by arbuscular mycorrhizal fungi and dark septate endophytes across a mostly-unvegetated, high-elevation landscape. Fungal Ecology, 2018, 36, 63-74.	0.7	55
218	Future perspectives of run-of-the-river hydropower and the impact of glaciers' shrinkage: The case of Italian Alps. Applied Energy, 2018, 231, 699-713.	5.1	29
219	Climate and land use change impacts on Mediterranean high-mountain vegetation in the Apennines since the 1950s. Plant Ecology and Diversity, 2018, 11, 85-96.	1.0	31
220	Climate change leads to accelerated transformation of highâ€elevation vegetation in the central Alps. New Phytologist, 2018, 220, 447-459.	3.5	143
221	Taxonomic and functional facets of the resilience to management of mown subalpine grasslands. Applied Vegetation Science, 2018, 21, 636-646.	0.9	6
222	Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming. Chinese Geographical Science, 2018, 28, 665-679.	1.2	13
223	The highest vascular plants on Earth. Alpine Botany, 2018, 128, 97-106.	1.1	18
224	Relationships between ecological niche and expected shifts in elevation and latitude due to climate change in South American temperate forest plants. Journal of Biogeography, 2018, 45, 2272-2287.	1.4	17
225	Inferring diversity patterns along an elevation gradient from stacked SDMs: A case study on Mesoamerican ferns. Global Ecology and Conservation, 2018, 16, e00433.	1.0	14
226	Anthropogenic marine debris over beaches: Spectral characterization for remote sensing applications. Remote Sensing of Environment, 2018, 217, 309-322.	4.6	62
227	The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae). Journal of Systematics and Evolution, 2018, 56, 449-465.	1.6	31
228	Continentalâ€scale macrofungal assemblage patterns correlate with climate, soil carbon and nitrogen deposition. Journal of Biogeography, 2018, 45, 1942-1953.	1.4	35
229	Joint effects of weather and interspecific competition on foraging behavior and survival of a mountain herbivore. Environmental Epigenetics, 2019, 65, 165-175.	0.9	18
230	Highlighting declines of coldâ€demanding plant species in lowlands under climate warming. Ecography, 2019, 42, 36-44.	2.1	17
231	Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan's northern Alps. BMC Ecology, 2019, 19, 23.	3.0	21
232	Quantifying Impacts of National-Scale Afforestation on Carbon Budgets in South Korea from 1961 to 2014. Forests, 2019, 10, 579.	0.9	13
233	Temporal transferability of marine distribution models: The role of algorithm selection. Ecological Indicators, 2019, 106, 105499.	2.6	9
234	Protecting endemic seed plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology, 2019, 12, 962-971.	1.2	21

			-
#	ARTICLE On the frequency of northern and mountain genetic variants of widespread species: essential	IF	CITATIONS
235	biodiversity information in a warmer world. Botanical Journal of the Linnean Society, 2019, 191, 440-474.	0.8	19
236	Impacts of 21stâ€century climate change on montane habitat in the Madrean Sky Island Archipelago. Diversity and Distributions, 2019, 25, 1625-1638.	1.9	24
237	Climate change shifts natural selection and the adaptive potential of the perennial forb <i>Boechera stricta</i> in the Rocky Mountains. Evolution; International Journal of Organic Evolution, 2019, 73, 2247-2262.	1.1	30
238	Global warming threatens conservation status of alpine EU habitat types in the European Eastern Alps. Regional Environmental Change, 2019, 19, 2411-2421.	1.4	17
239	Divergent selection and genetic structure of Sideritis scardica populations from southern Balkan Peninsula as revealed by AFLP fingerprinting. Scientific Reports, 2019, 9, 12767.	1.6	21
240	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	5.8	63
241	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	0.8	48
242	Plant–soil feedbacks of forest understorey plants transplanted in nonlocal soils along a latitudinal gradient. Plant Biology, 2019, 21, 677-687.	1.8	7
243	Transferability and the effect of colour calibration during multi-image classification of Arctic vegetation change. Polar Biology, 2019, 42, 1227-1239.	0.5	6
244	Pantepui and global warming. , 2019, , 403-417.		3
245	Evaluating climatic threats to habitat types based on co-occurrence patterns of characteristic species. Basic and Applied Ecology, 2019, 38, 23-35.	1.2	4
246	Loss of suitable climatic areas for Araucaria forests over time. Plant Ecology and Diversity, 2019, 12, 115-126.	1.0	14
247	Mountain plant communities: Uncertain sentinels?. Progress in Physical Geography, 2019, 43, 521-543.	1.4	39
248	Patterns of Endemism in Turkey, the Meeting Point of Three Global Biodiversity Hotspots, Based on Three Diverse Families of Vascular Plants. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	38
249	The response of English yew (Taxus baccata L.) to climate change in the Caspian Hyrcanian Mixed Forest ecoregion. Regional Environmental Change, 2019, 19, 1495-1506.	1.4	26
250	Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AoB PLANTS, 2019, 11, plz016.	1.2	71
251	Changes in habitat selection patterns of the gray partridge <i>Perdix perdix</i> in relation to agricultural landscape dynamics over the past two decades. Ecology and Evolution, 2019, 9, 5236-5247.	0.8	13
252	Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.	1.9	38

ARTICLE IF CITATIONS # Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to 253 1.8 30 the Himalaya-Hengduan Mountains. Plant Diversity, 2019, 41, 26-32. Increases in thermophilus plants in an arid alpine community in response to experimental warming. 254 0.4 Arctic, Antarctic, and Alpine Research, 2019, 51, 201-214. Persistence of arctic-alpine flora during 24,000 years of environmental change in the Polar Urals. 255 1.6 41 Scientific Reports, 2019, 9, 19613. Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Regional Environmental Change, 2019, 19, 2711-2728. Topography explains the distribution of genetic diversity in one of the most fragile European 257 1.9 15 hotspots. Diversity and Distributions, 2019, 25, 74-89. Effects of snow pack reduction and drought on litter decomposition in subalpine grassland communities. Plant and Soil, 2019, 435, 225-238. 1.8 Assessing the vulnerability of Oak (Quercus) forest ecosystems under projected climate and land use 259 1.2 29 land cover changes in Western Himalaya. Biodiversity and Conservation, 2019, 28, 2275-2294. Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical 260 1.2 treeline species in Himalayas. Biodiversity and Conservation, 2019, 28, 2345-2370. An uncertain future for the endemic Galliformes of the Caucasus. Science of the Total Environment, 261 3.9 22 2019, 651, 725-735. Tracking the long-term dynamics of plant diversity in Northeast Spain with a network of volunteers 1.4 and rangers. Regional Environmental Change, 2019, 19, 391-401. Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of 263 1.8 67 Sciences, 2020, 1469, 26-37. Rocky habitats as microclimatic refuges for biodiversity. A close-up thermal approach. Environmental 264 2.0 and Éxperimental Botany, 2020, 170, 103886. A late Holocene record of human impacts on tropical environments from non-pollen palynomorphs, 265 1.0 4 Albertine Rift, western Uganda. Quaternary Research, 2020, 93, 172-186. Soil alters seedling establishment responses to climate. Ecology Letters, 2020, 23, 140-148. A comparison of macroecological and stacked species distribution models to predict future global 267 32 1.4 terrestrial vertebrate richness. Journal of Biogeography, 2020, 47, 114-129. Disentangling observer error and climate change effects in longâ€term monitoring of alpine plant 1.1 species composition and cover. Journal of Vegetation Science, 2020, 31, 14-25. Modelling the potential impacts of climate change on the distribution of ichthyoplankton in the 269 1.9 27 Yangtze Estuary, China. Diversity and Distributions, 2020, 26, 126-137. Climate change disrupts local adaptation and favours upslope migration. Ecology Letters, 2020, 23, 270 181-192.

#	Article	IF	CITATIONS
271	Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolutionary Applications, 2020, 13, 161-175.	1.5	37
272	Response of Orthoptera assemblages to environmental change in a low-mountain range differs among grassland types. Journal of Environmental Management, 2020, 256, 109919.	3.8	23
273	Dieback and expansions: species-specific responses during 20Âyears of amplified warming in the high Alps. Alpine Botany, 2020, 130, 1-11.	1.1	24
274	Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecological Indicators, 2020, 111, 105997.	2.6	40
275	Evidence for phosphorus limitation in high-elevation unvegetated soils, Niwot Ridge, Colorado. Biogeochemistry, 2020, 147, 1-13.	1.7	9
276	Protected areas as potential refugia for biodiversity under climatic change. Biological Conservation, 2020, 241, 108258.	1.9	37
277	Study on Taiwania cryptomerioides under climate change: MaxEnt modeling for predicting the potential geographical distribution. Global Ecology and Conservation, 2020, 24, e01313.	1.0	23
278	The major factors influencing distribution of three species of Dendrobium: Analysis of potential ecologically suitable distributions. Journal of Applied Research on Medicinal and Aromatic Plants, 2020, 19, 100275.	0.9	3
279	Alpine Tundra Contraction under Future Warming Scenarios in Europe. Atmosphere, 2020, 11, 698.	1.0	8
280	Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of the Total Environment, 2020, 748, 141344.	3.9	100
281	Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Regional Environmental Change, 2020, 20, 1.	1.4	19
282	Reduced stomatal frequency with rising elevation for Kobresia royleana on the Tibetan Plateau. Global Ecology and Conservation, 2020, 24, e01326.	1.0	2
283	Greater topoclimatic control of above―versus belowâ€ground communities. Global Change Biology, 2020, 26, 6715-6728.	4.2	11
284	Climate change threatens micro-endemic amphibians of an important South American high-altitude center of endemism. Amphibia - Reptilia, 2020, 41, 233-243.	0.1	14
285	Population and communityâ€level compositional patterns shape the realized niche of the rare arcticâ€alpine species <i>Carex lachenalii</i> Schkuhr. Nordic Journal of Botany, 2020, 38, .	0.2	0
286	Evaluation of phenotypic diversity of the endangered orchid (Orchis mascula): Emphasizing on breeding, conservation and development. South African Journal of Botany, 2020, 132, 304-315.	1.2	6
287	Habitat availability disproportionally amplifies climate change risks for lowland compared to alpine species. Global Ecology and Conservation, 2020, 23, e01113.	1.0	14
288	Long-term altitudinal change in bird richness in a Mediterranean mountain range: habitat shifts explain the trends. Regional Environmental Change, 2020, 20, 1.	1.4	5

#	Article	IF	CITATIONS
289	Predicted distributions of avian specialists: A framework for conservation of endangered forests under future climates. Diversity and Distributions, 2020, 26, 652-667.	1.9	18
290	Effects of Temperature Rise on Multi-Taxa Distributions in Mountain Ecosystems. Diversity, 2020, 12, 210.	0.7	11
291	Does weighting presence records improve the performance of species distribution models? A test using fish larval stages in the Yangtze Estuary. Science of the Total Environment, 2020, 741, 140393.	3.9	16
292	Risk and Uncertainty of Losing Suitable Habitat Areas Under Climate Change Scenarios: A Case Study for 109 Gymnosperm Species in China. Environmental Management, 2020, 65, 517-533.	1.2	10
293	Alpine plant community diversity in species–area relations at fine scale. Arctic, Antarctic, and Alpine Research, 2020, 52, 41-46.	0.4	6
294	Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya. Frontiers in Plant Science, 2020, 11, 421.	1.7	53
295	Potential risks of <scp><i>Tithonia diversifolia</i></scp> in Yunnan Province under climate change. Ecological Research, 2021, 36, 129-144.	0.7	7
296	Assisted species migration and hybridization to conserve coldâ€adapted plants under climate change. Conservation Biology, 2021, 35, 559-566.	2.4	15
297	Culturable root endophyte communities are shaped by both warming and plant host identity in the Rocky Mountains, USA. Fungal Ecology, 2021, 49, 101002.	0.7	5
298	Patterns of genetic variation in European plant species depend on altitude. Diversity and Distributions, 2021, 27, 157-163.	1.9	13
299	Extreme growth reaction of larch (Larix decidua Mill.) from the Polish Sudetes and Carpathians: spatial distribution and climate impact. Trees - Structure and Function, 2021, 35, 211-229.	0.9	5
300	The Consequences of Glacier Retreat Are Uneven Between Plant Species. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	29
301	Global change at high elevation. , 2021, , 451-483.		1
302	Endemic Juniperus Montane Species Facing Extinction Risk under Climate Change in Southwest China: Integrative Approach for Conservation Assessment and Prioritization. Biology, 2021, 10, 63.	1.3	4
303	Changement climatique et biosphère. Comptes Rendus - Geoscience, 2020, 352, 339-354.	0.4	1
304	Altitudinal Vascular Plant Richness and Climate Change in the Alpine Zone of the Lefka Ori, Crete. Diversity, 2021, 13, 22.	0.7	13
305	Continentalâ€scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography, 2021, 44, 640-652.	2.1	16
306	Phenological Analysis of Sub-Alpine Forest on Jeju Island, South Korea, Using Data Fusion of Landsat and MODIS Products. Forests, 2021, 12, 286.	0.9	5

#	Article	IF	CITATIONS
307	Contrasting response of native and nonâ€native plants to disturbance and herbivory in mountain environments. Journal of Biogeography, 2021, 48, 1594-1605.	1.4	14
308	Unusually large upward shifts in coldâ€adapted, montane mammals as temperature warms. Ecology, 2021, 102, e03300.	1.5	11
310	Climate Change Affects Vegetation Differently on Siliceous and Calcareous Summits of the European Alps. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
311	Potential changes in the distribution of Delphinium bolosii and related taxa of the series Fissa from the Iberian Peninsula under future climate change scenarios. Nature Conservation, 0, 43, 147-166.	0.0	1
312	Effects of climate change on ecosystem services and their components in southern hills and northern grasslands in China. Environmental Science and Pollution Research, 2021, 28, 44916-44935.	2.7	4
313	Is New Always Better? Frontiers in Global Climate Datasets for Modeling Treeline Species in the Himalayas. Atmosphere, 2021, 12, 543.	1.0	30
314	Standâ€scale climate change impacts on forests over large areas: transient responses and projection uncertainties. Ecological Applications, 2021, 31, e02313.	1.8	19
315	Discovery of cryptic plant diversity on the rooftops of the Alps. Scientific Reports, 2021, 11, 11128.	1.6	12
316	Warming threatens habitat suitability and breeding occupancy of rearâ€edge alpine bird specialists. Ecography, 2021, 44, 1191-1204.	2.1	18
317	Climate Change, Ecosystem Processes and Biological Diversity Responses in High Elevation Communities. Climate, 2021, 9, 87.	1.2	14
318	How effective are the protected areas to preserve endangered plant species in a climate change scenario? The case of three Iberian endemics. Plant Biosystems, 0, , 1-14.	0.8	1
319	Cautions in weighting individual ecological niche models in ensemble forecasting. Ecological Modelling, 2021, 448, 109502.	1.2	8
320	Evolutionary origins and species delineation of the two Pyrenean endemics Campanula jaubertiana and C. andorrana (Campanulaceae): evidence for transverse alpine speciation. Alpine Botany, 2022, 132, 51-64.	1.1	4
321	Climateâ€driven elevational variation in range sizes of vascular plants in the central Himalayas: A supporting case for Rapoport's rule. Ecology and Evolution, 2021, 11, 9385-9395.	0.8	4
322	Surviving in southern refugia: the case of Veronica aragonensis, a rare endemic from the Iberian Peninsula. Alpine Botany, 2021, 131, 161-175.	1.1	4
323	Plant speciation in the face of recurrent climate changes in the Alps. Alpine Botany, 2022, 132, 21-28.	1.1	16
324	Climate change impacts on the Alpine, Continental and Mediterranean grassland systems of Italy: A review. Italian Journal of Agronomy, 2021, 16, .	0.4	8
325	Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. Global Change Biology, 2021, 27, 5070-5083.	4.2	9

ARTICLE IF CITATIONS # Drought effects on montane grasslands nullify benefits of advanced flowering phenology due to 326 1.0 7 warming. Ecosphere, 2021, 12, e03661. Accelerating Mountain Forest Dynamics in the Alps. Ecosystems, 2022, 25, 603-617. 327 1.6 Expansion of phanerophytes above the timberline in the Western Carpathians. Biologia (Poland), 2021, 328 0.8 5 76, 1991-2003. Conservation of aquatic insects in Neotropical regions: A gap analysis using potential distributions 0.9 of diving beetles in Cuba. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2714-2725. Drought stress triggers differential survival and functional trait responses in the establishment of 330 2 1.8 Arnica montana seedlings. Plant Biology, 2021, 23, 1086-1096. Phytosociology of the vegetation communities of the Stelvio Pass area. Journal of Maps, 0, , 1-9. 1.0 Long-term vegetation change in the Western Tien-Shan Mountain pastures, Central Asia, driven by a combination of changing precipitation patterns and grazing pressure. Science of the Total Environment, 2021, 781, 146720. 332 3.9 9 Determination of intraspecific variation in seed weight, leaf functional traits, and sapling size of 333 <i>Betula ermanii</i> using a common garden experiment. Journal of Forest Research, 2021, 26, 419-426. Neither historical climate nor contemporary range fully explain the extant patterns of molecular 334 7 1.4 diversity in marine species. Journal of Biogeography, 2021, 48, 2629-2644. Integrating demography and distribution modeling for the iconic Leontopodium alpinum Colm. in the 0.8 Romanian Carpathians. Ecology and Evolution, 2021, 11, 12322-12334. Large―and smallâ€scale geographic structures affecting genetic patterns across populations of an 336 0.8 5 Alpine butterfly. Ecology and Evolution, 2021, 11, 14697-14714. Influence of anthropocene climate change on biodiversity loss in different ecosystems., 2021, , 63-78. 337 Study on rare and endangered plants under climate: maxent modeling for identifying hot spots in 338 0.9 5 northwest China. Cerne, 0, 27, . Non-equilibrium in Alpine Plant Assemblages: Shifts in Europe's Summit Floras. Advances in Global 1.6 28 Change Research, 2017, , 285-303. Trade-offs in High Mountain Conservation. Advances in Global Change Research, 2017, , 37-59. 340 1.6 4 Ecosystem Health and Dynamics: An Indicator of Global Climate Change., 2020, , 1-32. 341 Causes and consequences of variation in snow incidence on the high mountains of Tasmania, 342 0.3 13 1983–2013. Australian Journal of Botany, 2017, 65, 214. A socioâ€ecological model for predicting impacts of landâ€use and climate <u>change on regional plant</u> 344 4.2 diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.

#	Article	IF	CITATIONS
345	Climateâ€driven range shifts reduce persistence of competitors in a perennial plant community. Global Change Biology, 2021, 27, 1890-1903.	4.2	18
346	Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants. PLoS ONE, 2011, 6, e21537.	1.1	33
347	Do Stacked Species Distribution Models Reflect Altitudinal Diversity Patterns?. PLoS ONE, 2012, 7, e32586.	1.1	72
348	Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record. PLoS ONE, 2012, 7, e44370.	1.1	105
349	Estimating How Inflated or Obscured Effects of Climate Affect Forecasted Species Distribution. PLoS ONE, 2013, 8, e53646.	1.1	30
350	Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude. PLoS ONE, 2014, 9, e82490.	1.1	86
351	Projected Range Contractions of European Protected Oceanic Montane Plant Communities: Focus on Climate Change Impacts Is Essential for Their Future Conservation. PLoS ONE, 2014, 9, e95147.	1.1	27
352	Plastic Responses to Elevated Temperature in Low and High Elevation Populations of Three Grassland Species. PLoS ONE, 2014, 9, e98677.	1.1	31
353	Modelization of the Current and Future Habitat Suitability of Rhododendron ferrugineum Using Potential Snow Accumulation. PLoS ONE, 2016, 11, e0147324.	1.1	26
354	Climate and air pollution impacts on habitat suitability of Austrian forest ecosystems. PLoS ONE, 2017, 12, e0184194.	1.1	13
355	Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change. PLoS ONE, 2017, 12, e0187714.	1.1	31
356	MORPHOLOGICAL AND REPRODUCTIVE TRAIT-VARIABILITY OF A FOOD DECEPTIVE ORCHID, CEPHALANTHERA RUBRA ALONG DIFFERENT ALTITUDES. Applied Ecology and Environmental Research, 2019, 17, .	0.2	4
357	Changes in Snowbed Vegetation in the Western Carpathians Under Changing Climatic Conditions and Land Use in the Last Decades. Ekologia, 2019, 38, 318-335.	0.2	5
358	Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Climate Research, 2012, 53, 157-167.	0.4	29
359	Projected loss of active blanket bogs in Ireland. Climate Research, 2014, 59, 103-115.	0.4	9
360	Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Climate Research, 2014, 60, 119-132.	0.4	62
361	Environmental stress in Parnassius apollo reflected through wing geometric morphometrics in a historical collection with a possible connection to habitat degradation. Nature Conservation, 0, 38, 79-99.	0.0	3
362	Distribución espacial y análisis ambiental de la flora alpina en los Pirineos. Pirineos, 0, 172, 027.	0.6	2

#	Article	IF	CITATIONS
364	Mudanças climáticas e prioridades para a conservação da biodiversidade - Climate change and priorities for biodiversity conservation. Revista De Biologia Neotropical / Journal of Neotropical Biology, 2015, 11, 47.	0.1	4
365	Climate change and its influence on plant species and terrestrial habitats. International Journal of Geobotanical Research, 2012, 2, 13-19.	0.1	2
366	Vulnerability assessments of mountain forest ecosystems: A global synthesis. Trees, Forests and People, 2021, 6, 100156.	0.8	8
367	Mountain plants in peril. Nature Climate Change, 0, , .	8.1	0
368	An Agenda for Austrian Biodiversity Research at the Long-Term Ecosystem Research Network (LTER). , 0,		0
369	A permanent field laboratory in the Pollino National Park: vegetation dynamics in mountain herbaceous communities. L Italia Forestale E Montana, 2014, , 125-133.	0.0	2
370	Les alpages sentinelles. Revue De Geographie Alpine, 2014, , .	0.1	4
372	La biodiversité des étages alpin et subalpin des Montagnes des Carpates et leur potentiel de valorisation. VertigO: La Revue Electronique En Sciences De L'environnement, 2017, , .	0.0	0
373	ANTIMICROBIAL AND ANTICANCER ACTIVITIES OF EXTRACTS FROM URGINEA MARITIMA FRUITS. Tropical Journal of Obstetrics and Gynaecology, 2017, 15, 74.	0.3	1
374	La Sal Daisy,Erigeron mancus,Density and Associated Species from Treeline Ecotone and Alpine Habitats. Western North American Naturalist, 2018, 78, 184-194.	0.2	1
376	FenologÃa de los ecosistemas de alta montaña en AndalucÃa: Análisis de la tendencia estacional del SAVI (2000-2019). Pirineos, 0, 175, 055.	0.6	0
378	Spatial heterogeneity of tree diversity response to climate warming in montane forests. Ecology and Evolution, 2021, 11, 931-941.	0.8	2
379	The Worldâ \in ™s Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.2	3
380	The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Global Change Biology, 2022, 28, 1103-1118.	4.2	9
381	Ecological assessment and environmental niche modelling of Himalayan rhubarb (Rheum webbianum) Tj ETQqO O	0_rgBT /O	verlock 10 Tr
382	Habitat distribution modeling of endangered medicinal plant Picrorhiza kurroa (Royle ex Benth) under climate change scenarios in Uttarakhand Himalaya, India. Ecological Informatics, 2022, 68, 101550.	2.3	12
383	Climate warming may increase the frequency of cold-adapted haplotypes in alpine plants. Nature Climate Change, 2022, 12, 77-82.	8.1	12
384	GIS-based multicriteria decision analysis for settlement areas: a case study in Canik. Environmental Science and Pollution Research, 2022, 29, 35746-35759.	2.7	3

#	Article	IF	CITATIONS
385	Vegetation Ecology of Debris-Covered Glaciers (DCGs)—Site Conditions, Vegetation Patterns and Implications for DCGs Serving as Quaternary Cold- and Warm-Stage Plant Refugia. Diversity, 2022, 14, 114.	0.7	5
386	Which sustainability objectives are difficult to achieve? The mid-term evaluation of predicted scenarios in remote mountain agricultural landscapes in Slovakia. Land Use Policy, 2022, 115, 106020.	2.5	8
387	Preserving life on Earth. , 2022, , 503-602.		0
388	Effect of climate change on plant regeneration from seeds in the arctic and alpine biome. , 2022, , 3-18.		2
389	Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 2022, 110, 860-875.	1.9	21
390	Different Distribution Patterns of Hoverflies (Diptera: Syrphidae) and Bees (Hymenoptera: Anthophila) Along Altitudinal Gradients in Dolomiti Bellunesi National Park (Italy). Insects, 2022, 13, 293.	1.0	3
391	Modeling of Valeriana wallichii Habitat Suitability and Niche Dynamics in the Himalayan Region under Anticipated Climate Change. Biology, 2022, 11, 498.	1.3	13
392	Co-production of climate change vulnerability assessment : A case study of the Indian Lesser Himalayan region, Darjeeling. Journal of Integrative Environmental Sciences, 2022, 19, 39-64.	1.0	3
393	Characteristics of <i>Picea neoveitchii</i> tree growth in mountain areas of central China: insights from isotopic compositions and satellite-derived indices. Isotopes in Environmental and Health Studies, 2022, 58, 121-140.	0.5	1
394	Lack of genetic structure suggests high connectivity of Parnassius phoebus between nearby valleys in the Alps. Alpine Entomology, 0, 6, 1-6.	0.2	2
395	The danger and indeterminacy of forfeiting perching space of bryophytes from climate shift: a case study for 115 species in China. Environmental Monitoring and Assessment, 2022, 194, 233.	1.3	2
396	Global geographical range and population size of the habitat specialist <i>Codonoblepharon forsteri</i> (Dicks.) Goffinet in a changing climate. Journal of Bryology, 2022, 44, 35-50.	0.4	3
397	Living at the limit in the Pyrenees: Peripheral and endemic plants are rare but underrepresented in protection lists. Diversity and Distributions, 0, , .	1.9	1
398	Climate change may cause distribution area loss for tree species in southern China. Forest Ecology and Management, 2022, 511, 120134.	1.4	6
399	Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations. Sustainability, 2021, 13, 13778.	1.6	7
400	Comparing Elevational Patterns of Taxonomic, Phylogenetic, and Functional Diversity of Woody Plants Reveal the Asymmetry of Community Assembly Mechanisms on a Mountain in the Hengduan Mountains Region. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
404	Leaves of neotropical savanna tree species are more heat-tolerant than leaves of semi-deciduous forest species. Theoretical and Experimental Plant Physiology, 2022, 34, 227.	1.1	0
405	Local and seasonal climate change and its influence on the hydrological cycle in a mountainous forested catchment. Journal of Hydrology, 2022, 610, 127914.	2.3	11

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
406	Mesoscale refugia for European alpine grasslands based on climatic envelopes. Alpine B	3otany, 0, , .	1.1	1
408	Riding the elevator to extinction: Disjunct arctic-alpine plants of open habitats decline competitive neighbours expand. Biological Conservation, 2022, 272, 109620.	as their more	1.9	8
409	Study protocol: International joint research project â€~climate change resilience of Indi socioecological systems' (RISE). PLoS ONE, 2022, 17, e0271792.	igenous	1.1	0
410	Functional trait space and redundancy of plant communities decrease toward cold tem high altitudes in Southwest China. Science China Life Sciences, 2023, 66, 376-384.	iperature at	2.3	3
411	Accounting for niche truncation to improve spatial and temporal predictions of species Frontiers in Ecology and Evolution, 0, 10, .	s distributions.	1.1	18
412	Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum the Himalaya under projected climate change. Scientific Reports, 2022, 12, .	webbianum in	1.6	14
413	Warmer and Poorer: The Fate of Alpine Calcareous Grasslands in Central Apennines (Ita 2022, 14, 695.	aly). Diversity,	0.7	5
414	Large-scale diachronic surveys of the composition and dynamics of plant communities snowbeds. Plant Ecology, 0, , .	in Pyrenean	0.7	0
415	Calibrating ecological indicator values and niche width for a Mediterranean flora. Plant 2023, 157, 301-311.	Biosystems,	0.8	6
416	Mapping the potential for offshore aquaculture of salmonids in the Yellow Sea. Marine and Technology, 2022, 4, 329-342.	Life Science	1.8	13
417	Ecological lags govern the pace and outcome of plant community responses to 21stâ€ change. Ecology Letters, 2022, 25, 2156-2166.	century climate	3.0	4
418	Responses of alpine summit vegetation under climate change in the transition zone be subtropical and tropical humid environment. Scientific Reports, 2022, 12, .	tween	1.6	2
419	Ecological niche models applied to post-megafire vegetation restoration in the context change. Science of the Total Environment, 2023, 855, 158858.	: of climate	3.9	5
420	Spatial and temporal patterns of upland vegetation over the last 200 years in the north Example from the BassiÃ''s valley, AriÃ''ge, France. Quaternary Science Reviews, 2022, 2		1.4	2
421	Intermediate snowpack melt-out dates guarantee the highest seasonal grasslands gree Pyrenees. Scientific Reports, 2022, 12, .	rning in the	1.6	2
422	Genetic variation of Cerastium alpinum L. from Babia Góra, a critically endangered spe Journal of Applied Genetics, 0, , .	ecies in Poland.	1.0	2
423	Protected area network insufficiently represents climatic niches of endemic plants in a Biodiversity Hotspot. Biological Conservation, 2022, 275, 109768.	Global	1.9	4
424	ة»¿Potential climatic and elevational range shifts in the Italian narrow endemic Bellevali (Asparagaceae) under climate change scenarios. Nature Conservation, 0, 50, 145-157.		0.0	1

CITATI	 D	_
	REDU	ID T
CITAT	ICLF U	

#	Article	IF	CITATIONS
425	Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Communications Biology, 2022, 5, .	2.0	3
426	Elevational shift of endangered European yew under climate change in Hyrcanian mountain forests: Rethinking conservation-restoration strategies and management. Forest Ecology and Management, 2023, 529, 120693.	1.4	11
427	The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain. Plants, 2022, 11, 3193.	1.6	7
428	Habitat suitability, range dynamics, and threat assessment of Swertia petiolata D. Don: a Himalayan endemic medicinally important plant under climate change. Environmental Monitoring and Assessment, 2023, 195, .	1.3	4
429	Nature-based solutions for climate change adaptation are not located where they are most needed across the Alps. Regional Environmental Change, 2023, 23, .	1.4	6
430	Climatic and Non-Climatic Drivers of Plant Diversity along an Altitudinal Gradient in the Taihang Mountains of Northern China. Diversity, 2023, 15, 66.	0.7	3
431	Uncertainties in the adaptation of alpine pastures to climate change based on remote sensing products and modelling. Journal of Environmental Management, 2023, 336, 117575.	3.8	2
432	Comparative assessment of habitat suitability and niche overlap of three medicinal and melliferous Satureja L. species (Lamiaceae) from the eastern Adriatic region: Exploring potential for cultivation. Ecological Informatics, 2023, 76, 102066.	2.3	2
434	Area, environmental heterogeneity, scale and the conservation of alpine diversity. Journal of Biogeography, 2023, 50, 743-754.	1.4	2
435	Will natura 2000 european network of protected areas support conservation of Southwestern Alps endemic flora under future climate?. Biodiversity and Conservation, 2023, 32, 1353-1367.	1.2	1
436	Impacts of Climate Change on Plants with Special Reference to the Himalayan Region. , 2023, , 237-251.		0
437	Is Fluctuating Asymmetry a Sufficient Indicator of Stress Level in Two Lizard Species (Zootoca vivipara) Tj ETQq1 I	0.78431 1.1	4 rgBT /Ove
438	Meta-analysis of the impact of future climate change on the area of woody plant habitats in China. Frontiers in Plant Science, 0, 14, .	1.7	0
441	Main ecological and environmental factors affecting forage yield and quality in alpine summer pastures (<scp>NWâ€Italy</scp> , Gran Paradiso National Park). Grass and Forage Science, 0, , .	1.2	3
443	Habitat Suitability and Niche Modelling for Conservation and Restoration of Aconitum heterophyllum Wall. in Temperate Himalayan Forest Ecosystem. , 2023, , 227-247.		0