Massive mortality of aspen following severe drought ale Canadian boreal forest

Global Change Biology 17, 2084-2094 DOI: 10.1111/j.1365-2486.2010.02357.x

Citation Report

#	Article	IF	CITATIONS
1	A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 2011, 1, 467-471.	8.1	653
2	Strategies for Reforestation under Uncertain Future Climates: Guidelines for Alberta, Canada. PLoS ONE, 2011, 6, e22977.	1.1	58
3	Drought and dead trees. Nature Climate Change, 2011, 1, 444-445.	8.1	22
4	Browning boreal forests of western North America. Environmental Research Letters, 2011, 6, 041003.	2.2	34
5	Characterization and Summary of the 1999–2005 Canadian Prairie Drought. Atmosphere - Ocean, 2011, 49, 421-452.	0.6	59
6	Infestation and Hydraulic Consequences of Induced Carbon Starvation. Plant Physiology, 2012, 159, 1866-1874.	2.3	65
7	Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 2012, 20, 109-121.	2.1	94
8	The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 233-237.	3.3	539
9	The Interplay of Plant and Animal Disease in a Changing Landscape: The Role of Sudden Aspen Decline in Moderating Sin Nombre Virus Prevalence in Natural Deer Mouse Populations. EcoHealth, 2012, 9, 205-216.	0.9	11
10	Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity. Tree Physiology, 2012, 32, 146-160.	1.4	26
11	Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2423-2427.	3.3	225
12	North American vegetation model for landâ€use planning in a changing climate: a solution to large classification problems. Ecological Applications, 2012, 22, 119-141.	1.8	200
13	Managing drought-induced mortality in Pinus radiata plantations under climate change conditions: A local approach using digital camera data. Forest Ecology and Management, 2012, 265, 94-101.	1.4	33
14	Quantifying the effects of climate change and harvesting on carbon dynamics of boreal aspen and jack pine forests using the TRIPLEX-Management model. Forest Ecology and Management, 2012, 281, 152-162.	1.4	26
15	Effects of Widespread Droughtâ€Induced Aspen Mortality on Understory Plants. Conservation Biology, 2012, 26, 1082-1090.	2.4	42
16	Widespread Triploidy in Western North American Aspen (Populus tremuloides). PLoS ONE, 2012, 7, e48406.	1.1	72
17	Changes in growth of pristine boreal North American forests from 1950 to 2005 driven by landscape demographics and species traits. Biogeosciences, 2012, 9, 2523-2536.	1.3	47
18	Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees - Structure and Function, 2012, 26, 653-661.	0.9	104

#	Article	IF	CITATIONS
19	Effects of biotic disturbances on forest carbon cycling in the <scp>U</scp> nited <scp>S</scp> tates and <scp>C</scp> anada. Global Change Biology, 2012, 18, 7-34.	4.2	418
20	Large droughtâ€induced aboveground live biomass losses in southern <scp>R</scp> ocky <scp>M</scp> ountain aspen forests. Global Change Biology, 2012, 18, 1016-1027.	4.2	93
21	Homogenization in forest performance across an environmental gradient – The interplay between rainfall and topographic aspect. Forest Ecology and Management, 2013, 310, 256-266.	1.4	16
22	Susceptibility of Salix monticola to Cytospora canker under increased temperatures and decreased water levels. Forest Ecology and Management, 2013, 305, 223-228.	1.4	12
23	Feature: Improving our knowledge of droughtâ€induced forest mortality through experiments, observations, and modeling. New Phytologist, 2013, 200, 289-293.	3.5	113
24	Carbon in Canada's boreal forest — A synthesis. Environmental Reviews, 2013, 21, 260-292.	2.1	230
25	Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology, 2013, 27, 1424-1435.	1.7	145
26	A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agricultural and Forest Meteorology, 2013, 178-179, 173-182.	1.9	91
27	Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environmental Reviews, 2013, 21, 322-365.	2.1	414
28	The influence of water availability and defoliation on extrafloral nectar secretion in quaking aspen (<i>Populus tremuloides</i>). Botany, 2013, 91, 761-767.	0.5	13
29	Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 2013, 3, 30-36.	8.1	1,018
30	Recent declines of Populus tremuloides in North America linked to climate. Forest Ecology and Management, 2013, 299, 35-51.	1.4	213
31	Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecological Applications, 2013, 23, 1735-1742.	1.8	265
32	The role of facilitation and competition in the development and resilience of aspen forests. Forest Ecology and Management, 2013, 299, 91-99.	1.4	29
33	Long-term impact of a leaf miner outbreak on the performance of quaking aspen. Canadian Journal of Forest Research, 2013, 43, 563-569.	0.8	15
34	Climatic niche, ecological genetics, and impact of climate change on eastern white pine (Pinus strobus) Tj ETQq1	1 0.7843 1.4	14 ₄ rgBT /Ov
35	Drought characteristics' role in widespread aspen forest mortality across Colorado, <scp>USA</scp> . Global Change Biology, 2013, 19, 1526-1537.	4.2	98
36	Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest dieâ€off and portends increased future risk. Global Change Biology, 2013, 19, 1188-1196.	4.2	307

#	Article	IF	CITATIONS
37	Tracking suitable habitat for tree populations under climate change in western North America. Climatic Change, 2013, 117, 289-303.	1.7	131
38	Climate change and fire effects on a prairie–woodland ecotone: projecting species range shifts with a dynamic global vegetation model. Ecology and Evolution, 2013, 3, 5076-5097.	0.8	41
39	Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiology, 2013, 33, 672-683.	1.4	406
40	Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings. New Phytologist, 2013, 198, 139-148.	3.5	98
41	Frost hardiness vs. growth performance in trembling aspen: an experimental test of assisted migration. Journal of Applied Ecology, 2013, 50, 939-949.	1.9	73
42	Projected Future Changes in Vegetation in Western North America in the Twenty-First Century. Journal of Climate, 2013, 26, 3671-3687.	1.2	81
43	Consequences of climate change for biotic disturbances in North American forests. Ecological Monographs, 2013, 83, 441-470.	2.4	351
44	Observations from old forests underestimate climate change effects on tree mortality. Nature Communications, 2013, 4, 1655.	5.8	97
45	Simple models of the role of forests and wood products in greenhouse gas mitigation. Australian Forestry, 2013, 76, 50-57.	0.3	5
46	Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 2013, 111, 287-297.	0.5	213
47	Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model. Biogeosciences, 2013, 10, 8233-8252.	1.3	12
48	Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 2014, 11, 2793-2808.	1.3	46
49	Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chronicle, 2014, 90, 678-691.	0.5	68
50	The legacy of episodic climatic events in shaping temperate, broadleaf forests. Ecological Monographs, 2014, 84, 599-620.	2.4	140
51	Influence of water deficit on the molecular responses of Pinus contorta x Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera. Tree Physiology, 2014, 34, 1220-1239.	1.4	25
52	Recent advance of forest–grassland ecotones in southwestern Yukon. Canadian Journal of Forest Research, 2014, 44, 509-520.	0.8	15
53	Defoliation triggered by climate induced effects in Spanish ICP Forests monitoring plots. Forest Ecology and Management, 2014, 331, 245-255.	1.4	28

#	Article	IF	CITATIONS
55	Loss of whole-tree hydraulic conductance during severe drought and multi-year forest die-off. Oecologia, 2014, 175, 11-23.	0.9	69
56	Tree mortality in response to climate change induced drought across Beijing, China. Climatic Change, 2014, 124, 179-190.	1.7	35
57	The effect of sudden aspen decline on understory microclimate and vegetation in southwestern Colorado. Canadian Journal of Forest Research, 2014, 44, 914-921.	0.8	2
58	Unusual forest growth decline in boreal North America covaries with the retreat of Arctic sea ice. Global Change Biology, 2014, 20, 851-866.	4.2	77
59	Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130194.	1.8	73
60	Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. Annals of Botany, 2014, 114, 1-16.	1.4	240
61	Simulating impacts of water stress on woody biomass in the southern boreal region of western Canada using a dynamic vegetation model. Agricultural and Forest Meteorology, 2014, 198-199, 142-154.	1.9	14
62	A geneticsâ€based Universal Community Transfer Function for predicting the impacts of climate change on future communities. Functional Ecology, 2014, 28, 65-74.	1.7	27
63	Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees. Trees - Structure and Function, 2014, 28, 1035-1051.	0.9	20
64	Stand composition, proximity to overstory trees and gradients of soil moisture influence patterns of subalpine fir seedling emergence and survival. Plant and Soil, 2014, 381, 61-70.	1.8	12
65	Site factors contribute to aspen decline and stand vulnerability following a forest tent caterpillar outbreak in the Canadian Clay Belt. Forest Ecology and Management, 2014, 323, 126-137.	1.4	10
66	Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems. Remote Sensing of Environment, 2014, 154, 322-337.	4.6	107
67	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
68	Vegetation, land surface brightness, and temperature dynamics after aspen forest dieâ€off. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1297-1308.	1.3	9
69	Long-term changes in tree basal area across the boreal zone, Canada. Ecoscience, 2014, 21, 232-241.	0.6	5
70	Vulnerability of timber supply to projected changes in fire regime in Canada's managed forests. Canadian Journal of Forest Research, 2015, 45, 1439-1447.	0.8	61
71	The effects of genetic diversity, climate and defoliation events on trembling aspen growth performance across Canada. Tree Genetics and Genomes, 2015, 11, 1.	0.6	14
72	<i>Populus tremuloides</i> stands continue to deteriorate after drought-incited sudden aspen decline. Canadian Journal of Forest Research, 2015, 45, 1768-1774.	0.8	12

#	Article	IF	CITATIONS
73	The changing water cycle: the Boreal Plains ecozone of Western Canada. Wiley Interdisciplinary Reviews: Water, 2015, 2, 505-521.	2.8	63
74	Climate changeâ€associated tree mortality increases without decreasing water availability. Ecology Letters, 2015, 18, 1207-1215.	3.0	73
75	Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests. Global Change Biology, 2015, 21, 3675-3684.	4.2	122
76	Short―and longâ€ŧerm efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecological Applications, 2015, 25, 1083-1098.	1.8	72
77	Remote sensing of interannual boreal forest NDVI in relation to climatic conditions in interior Alaska. Environmental Research Letters, 2015, 10, 125016.	2.2	20
78	Forest resilience and tipping points at different spatioâ€ŧemporal scales: approaches and challenges. Journal of Ecology, 2015, 103, 5-15.	1.9	224
79	The Hydraulic Architecture of Populus. , 2015, , 103-131.		11
80	Droughtâ€induced xylem cavitation and hydraulic deterioration: risk factors for urban trees under climate change?. New Phytologist, 2015, 205, 1106-1116.	3.5	111
81	The high vulnerability of Quercus robur to droughtÂat its southern margin paves the way for Quercus ilex. Plant Ecology, 2015, 216, 177-187.	0.7	53
82	Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought. Tree Physiology, 2015, 35, 172-184.	1.4	50
83	Effects of harvesting and drought on CO ₂ and H ₂ O fluxes in an aspen-dominated western boreal plain forest: early chronosequence recovery. Canadian Journal of Forest Research, 2015, 45, 87-100.	0.8	30
84	Droughtâ€related tree mortality: addressing the gaps in understanding and prediction. New Phytologist, 2015, 207, 28-33.	3.5	111
85	Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research, 2015, 45, 838-855.	0.8	78
86	Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4009-4014.	3.3	170
87	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	4.2	683
88	Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in westâ€central Canada. Global Change Biology, 2015, 21, 1968-1979.	4.2	20
89	If forest dynamics in Canada's west are driven mainly by competition, why did they change? Half-century evidence says: Climate change. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4340-E4340.	3.3	19
90	What determines tree mortality in dry environments? a multi-perspective approach. , 2015, 25, 1054-1071.		43

		CITATION R	EPORT	
#	Article		IF	CITATIONS
91	Forest resilience, tipping points and global change processes. Journal of Ecology, 2015, 1	03, 1-4.	1.9	70
92	Global forest area disturbance from fire, insect pests, diseases and severe weather event Ecology and Management, 2015, 352, 78-88.	s. Forest	1.4	185
93	Approaches to Modeling Landscape-Scale Drought-Induced Forest Mortality. , 2015, , 45	-71.		4
94	Ecological niche modeling under climate change to select shrubs for ecological restoration Central Mexico. Ecological Engineering, 2015, 74, 302-309.	on in	1.6	52
95	Projecting boreal bird responses to climate change: the signal exceeds the noise. Ecologi Applications, 2015, 25, 52-69.	cal	1.8	80
98	Leaf size serves as a proxy for xylem vulnerability to cavitation in plantation trees. Plant, Environment, 2016, 39, 272-281.	Cell and	2.8	24
99	<i>Eucalyptus</i> forest shows low structural resistance and resilience to climate chang drought. Journal of Vegetation Science, 2016, 27, 493-503.	₂â€ŧype	1.1	43
100	Forest biogeochemistry in response to drought. Global Change Biology, 2016, 22, 2318-	2328.	4.2	133
101	Moving beyond bioclimatic envelope models: integrating upland forest and peatland pro predict ecosystem transitions under climate change in the western Canadian boreal plair Ecohydrology, 2016, 9, 899-908.	cesses to I.	1.1	32
102	Remote sensing of forest pest damage: a review and lessons learned from a Canadian pe Canadian Entomologist, 2016, 148, S296-S356.	rspective.	0.4	95
103	Quantifying drought-induced tree mortality in the open canopy woodlands of central Tex Sensing of Environment, 2016, 181, 54-64.	as. Remote	4.6	43
104	Adaptation of lodgepole pine and interior spruce to climate: implications for reforestatio warming world. Evolutionary Applications, 2016, 9, 409-419.	n in a	1.5	52
105	Droughtâ€induced xylem pit membrane damage in aspen and balsam poplar. Plant, Cell a 2016, 39, 2210-2220.	and Environment,	2.8	37
106	Influence of droughts on <i>Nothofagus pumilio</i> forest decline across northern Patag Argentina. Ecosphere, 2016, 7, e01390.	çonia,	1.0	42
107	An economic comparison of risk handling measures against Hylobius abietis and Heterob annosum in the Landes de Gascogne Forest. Annals of Forest Science, 2016, 73, 777-78.		0.8	5
108	Developing management strategies for tree improvement programs under climate chang gained from long-term field trials with lodgepole pine. Forest Ecology and Management, 128-138.		1.4	24
109	Increasing summer net CO ₂ uptake in high n ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NI Atmospheric Chemistry and Physics, 2016, 16, 9047-9066.		1.9	33
110	Climate change risk management in tree improvement programs: selection and moveme Tree Genetics and Genomes, 2016, 12, 1.	nt of genotypes.	0.6	31

ARTICLE IF CITATIONS # Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, 111 1.6 124 fires, insects, and droughts. Global and Planetary Change, 2016, 143, 66-80. Integration of Landsat time series and field plots for forest productivity estimates in decision support 1.4 models. Forest Ecology and Management, 2016, 376, 284-297. A multipleâ€scale assessment of longâ€term aspen persistence and elevational range shifts in the 113 2.4 18 Colorado Front Range. Ecological Monographs, 2016, 86, 244-260. Enhanced seasonal CO ₂ exchange caused by amplified plant productivity in northern 114 319 ecosystems. Science, 2016, 351, 696-699. Spatial climate-dependent growth response of boreal mixedwood forest in western Canada. Global 115 1.6 22 and Planetary Change, 2016, 139, 141-150. Interactions between macroclimate, microclimate, and anthropogenic disturbance affect the distribution of aspen near its northern edge in Quebec: Implications for climate change related range expansions. Forest Ecology and Management, 2016, 368, 194-206. 1.4 Spatial and temporal trends of drought effects in a heterogeneous semi-arid forest ecosystem. Forest 117 1.4 88 Ecology and Management, 2016, 365, 137-151. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity 118 2.1 146 of temperate and boreal trees to climate change. Environmental Reviews, 2016, 24, 164-186. Sources of bias and variability in long-term Landsat time series over Canadian boreal forests. Remote 119 4.6 48 Sensing of Environment, 2016, 177, 206-219. Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and 1.4 Management, 2016, 362, 241-250. A synthesis of tree functional traits related to droughtâ€induced mortality in forests across climatic 121 1.9 148 zones. Journal of Applied Ecology, 2017, 54, 1669-1686. Drought causes reduced growth of trembling aspen in western Canada. Global Change Biology, 2017, 4.2 23, 2887-2902. Recent climatic drying leads to ageâ€independent growth reductions of white spruce stands in western 123 4.2 93 Canada. Global Change Biology, 2017, 23, 5297-5308. Potential influence of wildfire in modulating climate-induced forest redistribution in a central Rocky 124 1.6 14 Mountain landscape. Ecological Processes, 2017, 6, . Biotic disturbances in Northern Hemisphere forests – a synthesis of recent data, uncertainties and 125 140 2.7 implications for forest monitoring and modelling. Global Ecology and Biogeography, 2017, 26, 533-552. Drought explains variation in the radial growth of white spruce in western Canada. Agricultural and 43 Forest Meteorology, 2017, 233, 133-142. Rapid 21st century climate change projected to shift composition and growth of Canada's Acadian 127 1.4 71 Forest Region. Forest Ecology and Management, 2017, 405, 284-294. Age structure and trends in annual stem increment of Larix sibirica in two neighboring Mongolian forest–steppe regions differing in land use history. Trees - Structure and Function, 2017, 31, 1973-1986.

		CITATION REPORT		
#	Article		IF	CITATIONS
129	Topographic, edaphic, and vegetative controls on plantâ \in available water. Ecohydrology, 201	7, 10, e1897.	1.1	19
130	Water balance, surface conductance and water use efficiency of two young hybrid-poplar pla in Canada's aspen parkland. Agricultural and Forest Meteorology, 2017, 246, 256-271.	intations	1.9	14
131	Low-Hanging DendroDynamic Fruits Regarding Disturbance in Temperate, Mesic Forests. Ecc Studies, 2017, , 97-134.	logical	0.4	4
132	Forest Decline in Northern Patagonia: The Role of Climatic Variability. Ecological Studies, 201 325-342.	7, ,	0.4	6
133	Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Global Change Biology, 2017, 23, 5120-5135.		4.2	34
134	Tree size thresholds produce biased estimates of forest biomass dynamics. Forest Ecology ar Management, 2017, 400, 468-474.	nd .	1.4	32
135	Building a Better Soil for Upland Surface Mine Reclamation in Northern Alberta: Admixing Pea Subsoil and Peat Biochar in a Greenhouse Study with Aspen. Canadian Journal of Soil Science		0.5	4
136	Climate change impacts on forest landscapes along the Canadian southern boreal forest tran zone. Landscape Ecology, 2017, 32, 1415-1431.	isition	1.9	133
137	Persistent and pervasive compositional shifts of western boreal forest plots in Canada. Globa Change Biology, 2017, 23, 857-866.	.1	4.2	41
138	Plant hydraulics improves and topography mediates prediction of aspen mortality in southwe <scp>USA</scp> . New Phytologist, 2017, 213, 113-127.	estern	3.5	77
139	Relationships between individualâ€tree mortality and waterâ€balance variables indicate posi water stressâ€induced tree mortality across North America. Global Change Biology, 2017, 23		4.2	100
140	Effects of climate on maximum size-density relationships in Western Canadian trembling asp Forest Ecology and Management, 2017, 406, 281-289.	en stands.	1.4	19
141	Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality. PLc 2017, 12, e0169770.	S ONE,	1.1	35
142	Variation in the diversity-productivity relationship in young forests of the eastern United Stat ONE, 2017, 12, e0187106.	tes. PLoS	1.1	5
143	Climate change-associated trends in biomass dynamics are consistent across soil drainage cl western boreal forests of Canada. Forest Ecosystems, 2017, 4, .	asses in	1.3	4
144	Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences, 2511-527.	2017, 14,	1.3	22
145	Effects of Boreal Well Site Reclamation Practices on Long-Term Planted Spruce and Deciduou Regeneration. Forests, 2017, 8, 201.	us Tree	0.9	8
146	Management strategies for black spruce (Picea mariana (Mill.) B.S.P.) in the face of climate c climatic niche, clines, climatypes, and seed transfer. Forestry, 2017, 90, 594-610.	hange:	1.2	8

#	Article	IF	CITATIONS
147	Global patterns of extreme drought-induced loss in land primary production: Identifying ecological extremes from rain-use efficiency. Science of the Total Environment, 2018, 628-629, 611-620.	3.9	69
148	Tree vulnerability to climate change: improving exposureâ€based assessments using traits as indicators of sensitivity. Ecosphere, 2018, 9, e02108.	1.0	61
149	Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data. Global Change Biology, 2018, 24, 2284-2304.	4.2	81
150	Assessment of ecosystems: A system for rigorous and rapid mapping of floodplain forest condition for Australia's most important river. Land Degradation and Development, 2018, 29, 127-137.	1.8	20
151	Interspecific variation in growth responses to tree size, competition and climate of western Canadian boreal mixed forests. Science of the Total Environment, 2018, 631-632, 1070-1078.	3.9	33
152	Current and projected cumulative impacts of fire, drought, and insects on timber volumes across Canada. Ecological Applications, 2018, 28, 1245-1259.	1.8	56
153	Climate change impacts on boreal forest timber supply. Forest Policy and Economics, 2018, 92, 11-21.	1.5	57
154	Climate Change May Trigger Broad Shifts in North America's Pacific Coastal Rainforests. , 2018, , 233-244.		3
155	Survival and growth of residual trees in a variable retention harvest experiment in a boreal mixedwood forest. Forest Ecology and Management, 2018, 411, 187-194.	1.4	15
156	Contrasting drivers and trends of coniferous and deciduous tree growth in interior Alaska. Ecology, 2018, 99, 1284-1295.	1.5	38
157	Drought timing influences the legacy of tree growth recovery. Global Change Biology, 2018, 24, 3546-3559.	4.2	165
158	Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews, 2018, 93, 439-456.	4.7	137
159	Differential declines in Alaskan boreal forest vitality related to climate and competition. Global Change Biology, 2018, 24, 1097-1107.	4.2	37
160	Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. Global Change Biology, 2018, 24, 655-667.	4.2	51
161	Potential impacts of climate change on the habitat of boreal woodland caribou. Ecosphere, 2018, 9, e02472.	1.0	39
162	Wildfireâ€mediated vegetation change in boreal forests of Alberta, Canada. Ecosphere, 2018, 9, e02156.	1.0	104
163	Lagged mortality among tree species four years after an exceptional drought in east Texas. Ecosphere, 2018, 9, e02455.	1.0	25
164	Warming hiatus and evergreen conifers in Altay-Sayan Region, Siberia. Journal of Mountain Science, 2018, 15, 2579-2589.	0.8	11

#	Article	IF	Citations
165	Projected drought effects on the demography of Ashe juniper populations inferred from remote measurements of tree canopies. Plant Ecology, 2018, 219, 1259-1267.	0.7	5
166	Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environmental Research Letters, 2018, 13, 095002.	2.2	58
167	A National Assessment of Wetland Status and Trends for Canada's Forested Ecosystems Using 33 Years of Earth Observation Satellite Data. Remote Sensing, 2018, 10, 1623.	1.8	42
168	An inconvenient truth about xylem resistance to embolism in the model species for refilling Laurus nobilis L. Annals of Forest Science, 2018, 75, 1.	0.8	53
169	Remote sensing of ecosystem trajectories as a proxy indicator for watershed water balance. Ecohydrology, 2018, 11, e1987.	1.1	12
170	When a tree falls: Controls on wood decay predict standing dead tree fall and new risks in changing forests. PLoS ONE, 2018, 13, e0196712.	1.1	33
171	Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544-571.	4.0	72
172	Electronic Commerce: Factors Involved in its Adoption from a Bibliometric Analysis. Journal of Theoretical and Applied Electronic Commerce Research, 2018, 13, 39-70.	3.1	53
173	Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest. Forests, 2018, 9, 151.	0.9	55
174	Boreal tree hydrodynamics: asynchronous, diverging, yet complementary. Tree Physiology, 2018, 38, 953-964.	1.4	46
175	Sustainability of culturally important teepee poles on Mescalero Apache Tribal Lands: Characteristics and climate change effects. Forest Ecology and Management, 2018, 430, 250-258.	1.4	13
176	Untangling methodological and scale considerations in growth and productivity trend estimates of Canada's forests. Environmental Research Letters, 2018, 13, 093001.	2.2	24
177	Drought and surfaceâ€level solar radiation predict the severity of outbreaks of a widespread defoliating insect. Ecosphere, 2018, 9, e02387.	1.0	13
178	Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest. PLoS ONE, 2018, 13, e0191645.	1.1	45
179	Functional xylem anatomy of aspen exhibits greater change due to insect defoliation than to drought. Tree Physiology, 2019, 39, 45-54.	1.4	14
180	Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling, 2019, 409, 108765.	1.2	39
181	Tree Ring Reconstructions of Stemwood Biomass Indicate Increases in the Growth Rate of Black Spruce Trees Across Boreal Forests of Canada. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2460-2480.	1.3	18
182	Adaptive limitations of white spruce populations to drought imply vulnerability to climate change in its western range. Evolutionary Applications, 2019, 12, 1850-1860.	1.5	25

		CITATION R	REPORT	
#	Article		IF	Citations
183	Density-dependent processes fluctuate over 50Âyears in an ecotone forest. Oecologia, 2019, 19	1, 909-918.	0.9	11
184	Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 2 39, 1855-1866.	2019,	1.4	23
185	Impacts of climate and insect herbivory on productivity and physiology of trembling aspen (Popu	ılus) Tj ETQq0 (0 0 rgBT /Ov 2.2	verlock 10 Tf 27
186	Northward migration of trembling aspen will increase growth but reduce resistance to drought-induced xylem cavitation. Botany, 2019, 97, 627-638.		0.5	9
187	Sudden Aspen Decline: A Review of Pattern and Process in a Changing Climate. Forests, 2019, 10	0,671.	0.9	18
188	Drought indices and indicators revisited. Arabian Journal of Geosciences, 2019, 12, 1.		0.6	106
189	Decline of an ecotone forest: 50 years of demography in the southern boreal forest. Ecosphere, 2 10, e02698.	2019,	1.0	17
190	Novel insights into the genetic diversity and clonal structure of natural trembling aspen (<i>Pop 1124-1137.</i>	ulus) Tj ETQq1	1 0.784314 1.4	rgBT /Overlo 6
191	Shrub persistence and increased grass mortality in response to drought in dryland systems. Glob Change Biology, 2019, 25, 3121-3135.	al	4.2	60
192	Relationships between tree survival, stand structure and age in trembling aspen dominated stan Forest Ecology and Management, 2019, 438, 114-122.	ds.	1.4	22
193	CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiratio Index. Canadian Water Resources Journal, 2019, 44, 90-107.	ึ่งท	0.5	48
194	One Century of Forest Monitoring Data in Switzerland Reveals Species- and Site-Specific Trends Climate-Induced Tree Mortality. Frontiers in Plant Science, 2019, 10, 307.	of	1.7	67
195	Background mortality drivers of European tree species: climate change matters. Proceedings of t Royal Society B: Biological Sciences, 2019, 286, 20190386.	:he	1.2	39
196	Water limitation can negate the effect of higher temperatures on forest carbon sequestration. European Journal of Forest Research, 2019, 138, 287-297.		1.1	24
197	Tree-Rings Reveal Accelerated Yellow-Cedar Decline with Changes to Winter Climate after 1980. Forests, 2019, 10, 1085.		0.9	15
198	Short-interval wildfire and drought overwhelm boreal forest resilience. Scientific Reports, 2019, 9 18796.	9,	1.6	131
199	Temperature induced shifts in leaf water relations and growth efficiency indicate climate change limit aspen growth in the Colorado Rockies. Environmental and Experimental Botany, 2019, 159		2.0	5
200	Understanding of water resilience in the Anthropocene. Journal of Hydrology X, 2019, 2, 100009).	0.8	89

#	Article	IF	CITATIONS
201	Hydraulic architecture and vulnerability to drought-induced embolism in southern boreal tree species of Inner Asia. Tree Physiology, 2019, 39, 463-473.	1.4	17
202	Longâ€ŧerm understory vegetation dynamics of mixed aspen forests in Rocky Mountain National Park, USA. Journal of Vegetation Science, 2019, 30, 121-133.	1.1	1
203	Atmospheric change as a driver of change in the Canadian boreal zone ¹ . Environmental Reviews, 2019, 27, 346-376.	2.1	18
204	Boreal tree growth exhibits decadalâ€scale ecological memory to drought and insect defoliation, but no negative response to their interaction. Journal of Ecology, 2019, 107, 1288-1301.	1.9	49
205	Tracking forest changes: Canadian Forest Service indicators of climate change. Climatic Change, 2020, 163, 1839-1853.	1.7	5
206	A review of environmental droughts: Increased risk under global warming?. Earth-Science Reviews, 2020, 201, 102953.	4.0	283
207	Pests, climate and competition effects on survival and growth of trembling aspen in western Canada. New Forests, 2020, 51, 175-190.	0.7	13
208	A global view of aspen: Conservation science for widespread keystone systems. Global Ecology and Conservation, 2020, 21, e00828.	1.0	44
209	Remote sensing of ploidy level in quaking aspen (<i>Populus tremuloides</i> Michx.). Journal of Ecology, 2020, 108, 175-188.	1.9	18
210	Limiting factors of aspen radial growth along a climatic and soil water budget gradient in south-western Siberia. Agricultural and Forest Meteorology, 2020, 282-283, 107870.	1.9	4
211	Boreal and Taiga Biome. , 2020, , 103-115.		3
212	Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sensing of Environment, 2020, 237, 111539.	4.6	23
213	The leaf miner Phyllocnistis populiella negatively impacts water relations in aspen. Tree Physiology, 2020, 40, 580-590.	1.4	6
214	Amorphous Silica Controls Water Storage Capacity and Phosphorus Mobility in Soils. Frontiers in Environmental Science, 2020, 8, .	1.5	30
215	Forest and woodland replacement patterns following drought-related mortality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29720-29729.	3.3	99
216	Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO ₂ seasonal amplification. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21079-21087.	3.3	27
217	Species, Climatypes, Climate Change, and Forest Health: A Conversion of Science to Practice for Inland Northwest (USA) Forests. Forests, 2020, 11, 1237.	0.9	5

#	Article	IF	CITATIONS
219	Visual and hydraulic techniques produce similar estimates of cavitation resistance in woody species. New Phytologist, 2020, 228, 884-897.	3.5	37
220	Mortality in Forested Ecosystems: Suggested Conceptual Advances. Forests, 2020, 11, 572.	0.9	9
221	Sustainability of Canada's forestry sector may be compromised by impending climate change. Forest Ecology and Management, 2020, 474, 118352.	1.4	26
222	Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance and Management, 2020, 15, 1.	1.4	93
223	Invasive species interact with climatic variability to reduce success of natives. Ecology, 2020, 101, e03022.	1.5	23
224	Projected effects of climate change on boreal bird community accentuated by anthropogenic disturbances in western boreal forest, Canada. Diversity and Distributions, 2020, 26, 668-682.	1.9	47
225	Drought effects on carbon dynamics of trees in a secondary Atlantic Forest. Forest Ecology and Management, 2020, 465, 118097.	1.4	13
226	Climate sensitive growth models for predicting diameter growth of western Canadian boreal tree species. Forestry, 2021, 94, 363-373.	1.2	6
227	An ecological approach to climate change-informed tree species selection for reforestation. Forest Ecology and Management, 2021, 481, 118705.	1.4	22
228	Local <i>was</i> best: sourcing tree seed for future climates. Canadian Journal of Forest Research, 2021, 51, 1432-1439.	0.8	6
229	Climate-Induced Global Forest Shifts due to Heatwave-Drought. Ecological Studies, 2021, , 155-186.	0.4	8
230	Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions. Ecological Studies, 2021, , 69-100.	0.4	8
231	Imaging Spectroscopy for Conservation Applications. Remote Sensing, 2021, 13, 292.	1.8	10
232	Effects of Thinning on Dynamics and Drought Resistance of Aspen-White Spruce Mixtures: Results From Two Study Sites in Saskatchewan. Frontiers in Forests and Global Change, 2021, 3, .	1.0	11
233	Presence of a dominant native shrub is associated with minor shifts in the function and composition of grassland communities in a northern savannah. AoB PLANTS, 2021, 13, plab011.	1.2	0
234	Mixed Regional Shifts in Conifer Productivity under 21st-Century Climate Projections in Canada's Northeastern Boreal Forest. Forests, 2021, 12, 248.	0.9	2
235	Application of a u-w method for the detection of boreal forest response to environmental changes in Canada. Journal of Forest Research, 2021, 26, 303-313.	0.7	1
236	Radial growth responses of two dominant conifers to climate in the Altai Mountains, Central Asia. Agricultural and Forest Meteorology, 2021, 298-299, 108297.	1.9	8

#	Article	IF	CITATIONS
237	Assessing the dual-mycorrhizal status of a widespread tree species as a model for studies on stand biogeochemistry. Mycorrhiza, 2021, 31, 313-324.	1.3	13
238	Widespread mortality of trembling aspen (Populus tremuloides) throughout interior Alaskan boreal forests resulting from a novel canker disease. PLoS ONE, 2021, 16, e0250078.	1.1	8
239	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	0.9	19
240	Living on the edge: A continentalâ€scale assessment of forest vulnerability to drought. Global Change Biology, 2021, 27, 3620-3641.	4.2	50
241	Historic declines in growth portend trembling aspen death during a contemporary leaf miner outbreak in Alaska. Ecosphere, 2021, 12, e03569.	1.0	10
242	Detection of droughtâ€induced blue oak mortality in the Sierra Nevada Mountains, California. Ecosphere, 2021, 12, e03558.	1.0	6
243	Assessing the influence of climate on the growth rate of boreal tree species in northeastern Canada through long-term permanent sample plot data sets. Canadian Journal of Forest Research, 2021, 51, 1039-1049.	0.8	4
244	Continent-wide synthesis of the long-term population dynamics of quaking aspen in the face of accelerating human impacts. Oecologia, 2021, 197, 25-42.	0.9	8
245	TRIPLEX-Mortality model for simulating drought-induced tree mortality in boreal forests: Model development and evaluation. Ecological Modelling, 2021, 455, 109652.	1.2	8
246	How to recognize different types of trees from quite a long way away: combining UAV and spaceborne imagery for stand-level tree species identification. Journal of Unmanned Vehicle Systems, 2021, 9, 166-181.	0.6	3
247	Wood quality trait associations with climate: Room for improvement in two northern commercial tree species?. Forest Ecology and Management, 2021, 497, 119492.	1.4	7
248	OBSOLETE: Climate Change May Trigger Broad Shifts in North America's Pacific Coastal Rainforests. , 2018, , .		3
249	Biogenic amorphous silica as main driver for plant available water in soils. Scientific Reports, 2020, 10, 2424.	1.6	62
250	Warming-Induced Decline of Picea crassifolia Growth in the Qilian Mountains in Recent Decades. PLoS ONE, 2015, 10, e0129959.	1.1	22
251	Spatial Configuration of Drought Disturbance and Forest Gap Creation across Environmental Gradients. PLoS ONE, 2016, 11, e0157154.	1.1	22
252	Estimación de la densidad de especies de conÃferas a partir de variables ambientales. Madera Bosques, 2016, 21, .	0.1	9
253	Assisted Migration Field Tests in Canada and Mexico: Lessons, Limitations, and Challenges. Forests, 2021, 12, 9.	0.9	42
257	Forest growth trends in Canada. Forestry Chronicle, 2019, 95, 183-195.	0.5	10

#	Article	IF	CITATIONS
258	Solar Photovoltaics. , 2021, , 60-71.		0
259	Policy Frameworks and Institutions for Decarbonisation: The Energy Sector as †̃Litmus Test'. , 2021, , 7-38.		0
260	Response of Northern Populations of Black Spruce and Jack Pine to Southward Seed Transfers: Implications for Climate Change. Atmosphere, 2021, 12, 1363.	1.0	3
262	Decarbonisation Strategies and Economic Opportunities in Australia. , 2021, , 203-236.		0
264	Hydropower. , 2021, , 125-138.		0
265	Transitioning to a Prosperous, Resilient and Carbon-Free Economy. , 2021, , .		1
266	Seedling Response to Simulated Browsing and Reduced Water Availability: Insights for Assisted Migration Plantations. Forests, 2021, 12, 1396.	0.9	4
270	Financing the Transition. , 2021, , 621-645.		0
272	Forests. , 2021, , 462-500.		0
274	Solar Thermal Energy. , 2021, , 72-104.		1
275	Improving the Governance of Governments. , 2021, , 591-620.		2
276	An invasive grass and litter impact tree encroachment into a native grassland. Applied Vegetation Science, 2021, 24, e12618.	0.9	1
277	Applications of a conceptual framework to assess climate controls of forest tree diseases. Forest Pathology, 2021, 51, .	0.5	4
278	Trade and Climate Change. , 2021, , 571-590.		1
282	Industry and Manufacturing. , 2021, , 408-438.		0
286	Buildings and Precincts. , 2021, , 301-337.		0
287	Sequential droughts: A silent trigger of boreal forest mortality. Global Change Biology, 2022, 28, 542-556.	4.2	32
288	Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale. Scientific Reports, 2021, 11, 20852.	1.6	13

ARTICLE IF CITATIONS One extreme fire weather event determines the extent and frequency of wildland fires. Environmental 289 2.2 7 Research Letters, 2021, 16, 114031. Land Use., 2021, , 441-461. 293 Social Movements for Change., 2021, , 646-667. 0 Decarbonisation Strategies and Economic Opportunities in Indonesia., 2021, , 237-268. 294 Mining, Metals, Oil and Gas., 2021, , 529-568. 295 0 The Hydrogen Economy., 2021, , 173-200. National Climate Change Adaptation Case Study: Early Adaptation to Climate Change through 297 1 Climate-Compatible Development and Adaptation Pathways., 2021, , 365-388. Urban Water., 2021, , 338-364. 298 299 Photon Dissipation Rates as an Indicator of Ecosystem Health., 2015, , 15-36. 1 THE METHOD FOR IDENTIFYING THE MOST VULNERABLE AREAS CAUSED BY EXOGENOUS PROCESSES UNDER 0.1 ARIDIFICATION/HUMIDIFICATION (BASED ON GIS AND RS). InterCarto InterGIS, 2017, 3, 93-104. Boreale WÃkeler und Moorgebiete., 2019, 117-181. 303 0 Assisted migration poleward rather than upward in elevation minimizes frost risks in plantations. 1.6 Climate Risk Management, 2021, 34, 100380. Carbon stocks differ among land-uses in agroforestry systems in western Canada. Agricultural and 306 1.9 12 Forest Meteorology, 2022, 313, 108756. Smartforests Canada: A Network of Monitoring Plots for Forest Management Under Environmental 0.4 Change. Managing Forest Ecosystems, 2022, , 521-543. A multi-scale dendroclimatological analysis of four common species in the southern Canadian boreal 308 1.0 4 forest. Dendrochronologia, 2022, 72, 125936. Modeling Fire Hazards for the Maintenance of Long-Term Forest Inventory Plots in Alberta, Canada. 309 SSRN Electronic Journal, 0, , . Relating the Growth Phenology and Biomass Allocation in Seedlings of 13 Acadian Tree Species With 310 1.0 2 Their Drought Tolerance. Frontiers in Forests and Global Change, 2022, 5, . Satellite observations document trends consistent with a boreal forest biome shift. Global Change 4.2 Biology, 2022, 28, 3275-3292.

#	Article	IF	CITATIONS
312	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	12.2	163
313	Wind and fire: Rapid shifts in tree community composition following multiple disturbances in the southern boreal forest. Ecosphere, 2022, 13, .	1.0	5
314	Modeling fire hazards for the maintenance of long-term forest inventory plots in Alberta, Canada. Forest Ecology and Management, 2022, 513, 120206.	1.4	1
317	Inorganic Nitrogen Enhances the Drought Tolerance of Evergreen Broad-Leaved Tree Species in the Short-Term, but May Aggravate Their Water Shortage in the Mid-Term. Frontiers in Plant Science, 2022, 13, 875293.	1.7	1
318	Considering regeneration failure in the context of changing climate and disturbance regimes in western North America. Canadian Journal of Forest Research, 2022, 52, 1281-1302.	0.8	9
319	Changes in the resilience of resprouting juvenile tree populations in temperate forests due to coupled severe drought and fire. Plant Ecology, 2022, 223, 907-923.	0.7	6
320	Identifying Western North American Tree Populations Vulnerable to Drought under Observed and Projected Climate Change. Climate, 2022, 10, 114.	1.2	1
321	Plant-soil feedbacks persist following tree death, reducing survival and growth of Populus tremuloides seedlings. Plant and Soil, 0, , .	1.8	3
322	Amorphous silica amendment to improve sandy soils' hydraulic properties for sustained plant root access under drying conditions. Frontiers in Environmental Science, 0, 10, .	1.5	8
323	Soil moisture–atmosphere feedback dominates land <scp>N₂O</scp> nitrification emissions and denitrification reduction. Global Change Biology, 2022, 28, 6404-6418.	4.2	12
324	Ungulate herbivores as drivers of aspen recruitment and understory composition throughout arid montane landscapes. Ecosphere, 2022, 13, .	1.0	2
325	A climate risk analysis of Earth's forests in the 21st century. Science, 2022, 377, 1099-1103.	6.0	48
326	Assisted migration is plausible for a boreal tree species under climate change: A quantitative and population genetics study of trembling aspen (<i>Populus tremuloides</i> Michx.) in western Canada. Ecology and Evolution, 2022, 12, .	0.8	5
327	Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses. Environmental Research Letters, 2022, 17, 113001.	2.2	12
328	Frost-Associated Defoliation in Populus tremuloides Causes Repeated Growth Reductions Over 185Âyears. Ecosystems, 2023, 26, 843-859.	1.6	5
329	East Texas forests show strong resilience to exceptional drought. Forestry, 2023, 96, 326-339.	1.2	1
330	Helical graphs to visualize the NDVI temporal variation of forest vegetation in an open source space. Ecological Informatics, 2023, 74, 101956.	2.3	3
331	Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	18

#	Article	IF	CITATIONS
332	Comparison of tree-growth drought legacies of three shelterbelt species in the Canadian Prairies. Agricultural and Forest Meteorology, 2023, 330, 109317.	1.9	4
333	Nutrient regime modulates drought response patterns of three temperate tree species. Science of the Total Environment, 2023, 868, 161601.	3.9	17
334	Effect of soil warming on growth and physiology of aspen seedlings from Alberta, Canada. Forestry Chronicle, 2023, 99, 67-79.	0.5	0
335	Natural Disturbances from the Perspective of Forest Ecosystem-Based Management. Advances in Global Change Research, 2023, , 89-121.	1.6	0
336	Current Symptoms of Climate Change in Boreal Forest Trees and Wildlife. Advances in Global Change Research, 2023, , 747-771.	1.6	1
337	Challenges for the Sustainable Management of the Boreal Forest Under Climate Change. Advances in Global Change Research, 2023, , 773-837.	1.6	10
338	A regional integrated assessment of the impacts of climate change and of the potential adaptation avenues for Quebec's forests. Canadian Journal of Forest Research, 2023, 53, 556-578.	0.8	3
339	Enhancing Resilience of Boreal Forests Through Management Under Global Change: a Review. Current Landscape Ecology Reports, 2023, 8, 103-118.	1.1	7
340	Vegetation browning: global drivers, impacts, and feedbacks. Trends in Plant Science, 2023, 28, 1014-1032.	4.3	5
350	Understanding climate change dynamics of tree species: implications for future forests. , 2024, , 151-175.		0

Boreal forests. , 2024, , 221-242.

0