Recessive RYR1 mutations cause unusual congenital my internalization and large areas of myofibrillar disorgani

Neuropathology and Applied Neurobiology 37, 271-284 DOI: 10.1111/j.1365-2990.2010.01149.x

Citation Report

#	Article	IF	CITATIONS
1	Identical de novo Mutation in the Type 1 Ryanodine Receptor Gene Associated with Fatal, Stress-induced Malignant Hyperthermia in Two Unrelated Families. Anesthesiology, 2011, 115, 938-945.	1.3	83
2	Core Myopathies. Seminars in Pediatric Neurology, 2011, 18, 239-249.	1.0	120
3	Centronuclear Myopathies. Seminars in Pediatric Neurology, 2011, 18, 250-256.	1.0	84
4	T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skeletal Muscle, 2011, 1, 26.	1.9	143
5	Clinical utility gene card for: Multi-minicore disease. European Journal of Human Genetics, 2012, 20, 5-5.	1.4	2
6	Samaritan myopathy, an ultimately benign congenital myopathy, is caused by a RYR1 mutation. Acta Neuropathologica, 2012, 124, 575-581.	3.9	22
7	Dominant Mutation of CCDC78 in a Unique Congenital Myopathy with Prominent Internal Nuclei and Atypical Cores. American Journal of Human Genetics, 2012, 91, 365-371.	2.6	84
8	Mapping domains and mutations on the skeletal muscle ryanodine receptor channel. Trends in Molecular Medicine, 2012, 18, 644-657.	3.5	47
9	Clinical utility gene card for: Centronuclear and myotubular myopathies. European Journal of Human Genetics, 2012, 20, 1101-1101.	1.4	28
10	Centronuclear Myopathy in Labrador Retrievers: A Recent Founder Mutation in the PTPLA Gene Has Rapidly Disseminated Worldwide. PLoS ONE, 2012, 7, e46408.	1.1	21
11	Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Human Mutation, 2012, 33, 981-988.	1.1	145
12	Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Human Mutation, 2012, 33, 949-959.	1.1	115
13	Congenital Myopathies: An Update. Current Neurology and Neuroscience Reports, 2012, 12, 165-174.	2.0	106
14	Swimming into prominence: the zebrafish as a valuable tool for studying human myopathies and muscular dystrophies. FEBS Journal, 2013, 280, 4187-4197.	2.2	63
15	Congenital (Structural) Myopathies. , 2013, , 1-51.		0
16	Congenital myopathy with focal loss of cross-striations revisited. Neuromuscular Disorders, 2013, 23, 160-164.	0.3	1
17	Muscle diseases with prominent joint contractures: Main entities and diagnostic strategy. Revue Neurologique, 2013, 169, 546-563.	0.6	13
18	198th ENMC International Workshop: 7th Workshop on Centronuclear (Myotubular) myopathies, 31st May – 2nd June 2013, Naarden, The Netherlands. Neuromuscular Disorders, 2013, 23, 1033-1043.	0.3	14

	CITATION N	LEPORT	
#	ARTICLE	IF	Citations
19	Adult centronuclear myopathies: A hospital-based study. Revue Neurologique, 2013, 169, 625-631.	0.6	7
20	Congenital myopathies. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 113, 1321-1336.	1.0	61
21	Core myopathies and malignant hyperthermia susceptibility: a review. Paediatric Anaesthesia, 2013, 23, 834-841.	0.6	48
22	Genotype-phenotype correlations in recessive RYR1-related myopathies. Orphanet Journal of Rare Diseases, 2013, 8, 117.	1.2	99
23	The neuronal endopeptidase ECEL1 is associated with a distinct form of recessive distal arthrogryposis. Human Molecular Genetics, 2013, 22, 1483-1492.	1.4	66
24	Expanding the MTM1 mutational spectrum: novel variants including the first multi-exonic duplication and development of a locus-specific database. European Journal of Human Genetics, 2013, 21, 540-549.	1.4	29
25	Severe congenital <i>RYR1</i> -associated myopathy. Neurology, 2013, 80, 1584-1589.	1.5	91
26	<i>RYR1</i> Mutations as a Cause of Ophthalmoplegia, Facial Weakness, and Malignant Hyperthermia. JAMA Ophthalmology, 2013, 131, 1532.	1.4	26
27	An Integrated Diagnosis Strategy for Congenital Myopathies. PLoS ONE, 2013, 8, e67527.	1.1	53
28	Pathogenic Mechanisms in Centronuclear Myopathies. Frontiers in Aging Neuroscience, 2014, 6, 339.	1.7	89
29	Congenital (Structural) Myopathies. , 2014, , .		2
30	Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. Human Molecular Genetics, 2014, 23, 3566-3578.	1.4	28
31	G.P.48. Neuromuscular Disorders, 2014, 24, 809.	0.3	0
32	SPEG Interacts with Myotubularin, and Its Deficiency Causes Centronuclear Myopathy with Dilated Cardiomyopathy. American Journal of Human Genetics, 2014, 95, 218-226.	2.6	143
33	Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS. Neurology: Genetics, 2015, 1, e14.	0.9	48
34	Malignant hyperthermia: a review. Orphanet Journal of Rare Diseases, 2015, 10, 93.	1.2	392
35	<i><scp>RYR</scp>1</i> â€related myopathies: a wide spectrum of phenotypes throughout life. European Journal of Neurology, 2015, 22, 1094-1112.	1.7	111
36	DNM2 mutations in a cohort of sporadic patients with centronuclear myopathy. Genetics and Molecular Biology, 2015, 38, 147-151.	0.6	11

CITATION REPORT

#	Article	IF	CITATIONS
37	Epigenetic changes as a common trigger of muscle weakness in congenital myopathies. Human Molecular Genetics, 2015, 24, 4636-4647.	1.4	44
38	A novel missense mutation of RYR1 in familial idiopathic hyper CK-emia. Journal of the Neurological Sciences, 2015, 356, 142-147.	0.3	8
39	Compound RYR1 heterozygosity resulting in a complex phenotype of malignant hyperthermia susceptibility and a core myopathy. Neuromuscular Disorders, 2015, 25, 567-576.	0.3	28
40	A novel dynamin-2 gene mutation associated with a late-onset centronuclear myopathy with necklace fibres. Neuromuscular Disorders, 2015, 25, 345-348.	0.3	15
41	Congenital and Other Structural Myopathies. , 2015, , 499-537.		3
42	Anesthetic considerations in myofibrillar myopathy. Paediatric Anaesthesia, 2015, 25, 231-238.	0.6	2
43	Next generation sequencing reveals ryanodine receptor 1 mutations in a Chinese central core disease cohort. Muscle and Nerve, 2016, 54, 432-438.	1.0	3
44	Congenital myopathies: not only a paediatric topic. Current Opinion in Neurology, 2016, 29, 642-650.	1.8	37
45	Review of RyR1 pathway and associated pathomechanisms. Acta Neuropathologica Communications, 2016, 4, 121.	2.4	66
46	Intra-familial variability associated with recessive RYR1 mutation diagnosed prenatally by exome sequencing. Prenatal Diagnosis, 2016, 36, 1020-1026.	1.1	13
47	Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. DMM Disease Models and Mechanisms, 2016, 9, 347-359.	1.2	29
48	Gene Discovery in Congenital Myopathy. Pancreatic Islet Biology, 2016, , 39-83.	0.1	0
49	Common and variable clinical, histological, and imaging findings of recessive RYR1-related centronuclear myopathy patients. Neuromuscular Disorders, 2017, 27, 975-985.	0.3	34
50	Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathologica, 2017, 133, 517-533.	3.9	97
51	Progressive Structural Defects in Canine Centronuclear Myopathy Indicate a Role for HACD1 in Maintaining Skeletal Muscle Membrane Systems. American Journal of Pathology, 2017, 187, 441-456.	1.9	13
52	<i>RYR1</i> causing distal myopathy. Molecular Genetics & amp; Genomic Medicine, 2017, 5, 800-804.	0.6	14
53	Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues. Acta Neuropathologica, 2017, 134, 889-904.	3.9	42
54	New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Seminars in Cell and Developmental Biology, 2017, 64, 160-170.	2.3	24

#	Article	IF	Citations
55	Congenital myopathies: clinical phenotypes and new diagnostic tools. Italian Journal of Pediatrics, 2017, 43, 101.	1.0	80
56	SPEG-deficient skeletal muscles exhibit abnormal triad and defective calcium handling. Human Molecular Genetics, 2018, 27, 1608-1617.	1.4	22
58	Hereditary Myopathies. , 0, , .		8
59	Ryanodine Receptor 1-Related Myopathies: Diagnostic and Therapeutic Approaches. Neurotherapeutics, 2018, 15, 885-899.	2.1	81
60	Characterization and genetic diagnosis of centronuclear myopathies in seven Chinese patients. Neurological Sciences, 2018, 39, 2043-2051.	0.9	1
61	Loss of Sarcomeric Scaffolding as a Common Baseline Histopathologic Lesion in Titin-Related Myopathies. Journal of Neuropathology and Experimental Neurology, 2018, 77, 1101-1114.	0.9	22
62	A Rare Case of Severe Congenital RYR1-Associated Myopathy. Case Reports in Genetics, 2018, 2018, 1-7.	0.1	6
63	Correlation of phenotype with genotype and protein structure in RYR1-related disorders. Journal of Neurology, 2018, 265, 2506-2524.	1.8	29
64	Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opinion on Orphan Drugs, 2018, 6, 375-384.	0.5	0
65	Centronuclear myopathies under attack: A plethora of therapeutic targets. Journal of Neuromuscular Diseases, 2018, 5, 387-406.	1.1	34
66	6-minute walk test as a measure of disease progression and fatigability in a cohort of individuals with RYR1-related myopathies. Orphanet Journal of Rare Diseases, 2018, 13, 105.	1.2	19
67	Bayesian modeling to predict malignant hyperthermia susceptibility and pathogenicity of <i>RYR1</i> , <i>CACNA1S</i> and <i>STAC3</i> variants. Pharmacogenomics, 2019, 20, 989-1003.	0.6	1
68	Update on the Genetics of Congenital Myopathies. Seminars in Pediatric Neurology, 2019, 29, 12-22.	1.0	22
69	Diagnosis of â€~possible' mitochondrial disease: an existential crisis. Journal of Medical Genetics, 2019, 56, 123-130.	1.5	42
70	RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BioMed Research International, 2019, 2019, 1-13.	0.9	7
71	Mouse model of severe recessive RYR1-related myopathy. Human Molecular Genetics, 2019, 28, 3024-3036.	1.4	22
72	An unusual ryanodine receptor 1 (RYR1) phenotype. Neurology, 2019, 92, e1600-e1609.	1.5	16
73	The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. Journal of Neurology, 2019, 266, 876-887.	1.8	26

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
74	Novel <i>SPEG</i> mutations in congenital myopathies: Genotype–phenotype correlations. Muscle and Nerve, 2019, 59, 357-362.	1.0	17
75	â€~Dusty core disease' (DuCD): expanding morphological spectrum of RYR1 recessive myopathies. Acta Neuropathologica Communications, 2019, 7, 3.	2.4	31
76	Novel SPEG variant cause centronuclear myopathy in China. Journal of Clinical Laboratory Analysis, 2020, 34, e23054.	0.9	13
77	Pathogenic Mutations and Putative Phenotype-Affecting Variants in Polish Myofibrillar Myopathy Patients. Journal of Clinical Medicine, 2021, 10, 914.	1.0	6
78	Ryanodine Receptor 1-Related Myopathies: Quantification of Intramuscular Fatty Infiltration from T1-Weighted MRI. Journal of Neuromuscular Diseases, 2021, 8, 657-668.	1.1	4
79	Marked Facial Weakness, Ptosis, and Hanging Jaw: A Case with RYR1-Related Congenital Centronuclear Myopathy. Journal of Pediatric Genetics, 2023, 12, 318-324.	0.3	0
80	Nonanesthetic Malignant Hyperthermia. Anesthesiology, 2011, 115, 915-917.	1.3	24
81	A rare case of centronuclear myopathy with DNM2 mutation: genotype phenotype correlation. Autopsy and Case Reports, 2017, 7, 43-48.	0.2	4
82	Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. International Journal of Molecular Sciences, 2021, 22, 11377.	1.8	21
86	An 8-year-old boy with delayed motor milestones and proximal leg muscle weakness. , 2020, , 269-274.		0
87	A 6-Week-Old Boy with Neonatal Hypotonia and Feeding and Respiratory Difficulties. , 2020, , 283-288.		0
88	Malignant Hyperthermia. Missouri Medicine, 2019, 116, 154-159.	0.3	6
89	BIN1 modulation inÂvivo rescues dynamin-related myopathy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
90	Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors. ELife, 2022, 11, .	2.8	7
91	Recessive RYR1-related centronuclear myopathy with congenital chylothorax in a Japanese male child. Medicine, Case Reports and Study Protocols, 2021, 2, e0190.	0.0	0
93	Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. Journal of General Physiology, 2022, 154, .	0.9	3
94	Gene Panel Sequencing Identifies a Novel RYR1 p.Ser2300Pro Variant as Candidate for Malignant Hyperthermia with Multi-Minicore Myopathy. Genes, 2022, 13, 1726.	1.0	1
95	Prenatal diagnosis identifies compound heterozygous variants in RYR1 that causes ultrasound abnormalities in a fetus. BMC Medical Genomics, 2022, 15, .	0.7	0

ARTICLE

IF CITATIONS