<i>Bacillus thuringiensis</i>: a century of research, dev applications

Plant Biotechnology Journal 9, 283-300 DOI: 10.1111/j.1467-7652.2011.00595.x

Citation Report

#	Article	IF	CITATIONS
1	Stability in the Composition Equivalence of Grain from Insect-Protected Maize and Seed from Glyphosate-Tolerant Soybean to Conventional Counterparts over Multiple Seasons, Locations, and Breeding Germplasms. Journal of Agricultural and Food Chemistry, 2011, 59, 8822-8828.	2,4	26
2	Efficacy of genetically modified Bt toxins against insects with different genetic mechanisms of resistance. Nature Biotechnology, 2011, 29, 1128-1131.	9.4	127
3	Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA Journal, 2011, 9, 2428.	0.9	10
4	Dismay with GM maize. EMBO Reports, 2011, 12, 996-999.	2.0	2
5	Scientific Opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA Journal, 2011, 9, .	0.9	19
6	Exploiting natural variation to identify insectâ€resistance genes. Plant Biotechnology Journal, 2011, 9, 819-825.	4.1	95
7	Complete Genome Sequence of Bacillus thuringiensis subsp. chinensis Strain CT-43. Journal of Bacteriology, 2011, 193, 3407-3408.	1.0	68
8	Susceptibility to the Cry1F Toxin of Field Populations of Sesamia nonagrioides (Lepidoptera: Noctuidae) in Mediterranean Maize Cultivation Regions. Journal of Economic Entomology, 2012, 105, 214-221.	0.8	6
9	Susceptibility and Selectivity of <1>Cnaphalocrocis medinalis 1 (Lepidoptera: Pyralidae) to Different Cry Toxins. Journal of Economic Entomology, 2012, 105, 2122-2128.	0.8	11
10	Use and Efficacy of Bt Compared to Less Environmentally Safe Alternatives. , 2012, , 87-92.		0
11	Bt Crops: Past and Future. , 2012, , 283-304.		16
12	Genetically Modified Bacillus thuringiensis Biopesticides. , 2012, , 231-258.		1
13	Multimodal Protein Constructs for Herbivore Insect Control. Toxins, 2012, 4, 455-475.	1.5	27
14	Regulation of Genetically Engineered Microorganisms Under FIFRA, FFDCA and TSCA. , 2012, , 57-94.		24
15	Proteomic Analysis of Bacillus thuringiensis at Different Growth Phases by Using an Automated Online Two-Dimensional Liquid Chromatography-Tandem Mass Spectrometry Strategy. Applied and Environmental Microbiology, 2012, 78, 5270-5279.	1.4	28
16	Weak Transcription of the <i>cry1Ac</i> Gene in Nonsporulating Bacillus thuringiensis Cells. Applied and Environmental Microbiology, 2012, 78, 6466-6474.	1.4	38
17	Bt-maize event MONÂ88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Research, 2012, 21, 1191-1214.	1.3	42
18	Isolation, cloning, and overexpression of vip3Aa gene isolated from a local <i>Bacillus thuringiensis</i> . Biocontrol Science and Technology, 2012, 22, 11-21.	0.5	22

#	Article	IF	CITATIONS
19	Toxicity of Bacillus thuringiensis Cry proteins to Helicoverpa armigera (Lepidoptera: Noctuidae) in South Africa. Journal of Invertebrate Pathology, 2012, 109, 110-116.	1.5	25
20	Early detection of field-evolved resistance to Bt cotton in China: Cotton bollworm and pink bollworm. Journal of Invertebrate Pathology, 2012, 110, 301-306.	1.5	67
21	Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, 2012, 111, 1-12.	1.5	329
22	Functional significance of membrane associated proteolysis in the toxicity of Bacillus thuringiensis Cry3Aa toxin against Colorado potato beetle. Toxicon, 2012, 60, 1063-1071.	0.8	3
23	Delaying Corn Rootworm Resistance to Bt Corn. Journal of Economic Entomology, 2012, 105, 767-776.	0.8	97
24	Similar Genetic Basis of Resistance to Bt Toxin Cry1Ac in Boll-Selected and Diet-Selected Strains of Pink Bollworm. PLoS ONE, 2012, 7, e35658.	1.1	51
25	Greenhouse-Selected Resistance to Cry3Bb1-Producing Corn in Three Western Corn Rootworm Populations. PLoS ONE, 2012, 7, e51055.	1.1	47
26	Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm. PLoS ONE, 2012, 7, e53418.	1.1	61
27	Cell-Penetrating Recombinant Peptides for Potential Use in Agricultural Pest Control Applications. Pharmaceuticals, 2012, 5, 1054-1063.	1.7	11
28	Bacterial pore-forming proteins as anthelmintics. Invertebrate Neuroscience, 2012, 12, 37-41.	1.8	19
29	Protein Engineering of Bacillus thuringiensis δ-Endotoxins. , 2012, , 93-113.		0
30	Diverse genetic basis of field-evolved resistance to Bt cotton in cotton bollworm from China. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10275-10280.	3.3	158
31	Neural effects of insecticides in the honey bee. Apidologie, 2012, 43, 348-370.	0.9	152
32	Bacillus thuringiensis isolates from Korean forest environments. Journal of Asia-Pacific Entomology, 2012, 15, 237-239.	0.4	3
33	Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49, 974-985.	1.9	206
34	Comparative proteomic analysis revealed metabolic changes and the translational regulation of Cry protein synthesis in Bacillus thuringiensis. Journal of Proteomics, 2012, 75, 1235-1246.	1.2	17
35	Evolution of <i>Bacillus thuringiensis</i> Cry toxins insecticidal activity. Microbial Biotechnology, 2013, 6, 17-26.	2.0	231
36	Can the world afford to ignore biotechnology solutions that address food insecurity?. Plant Molecular Biology, 2013, 83, 5-19.	2.0	19

#	Article	IF	CITATIONS
37	Microbial control of the cotton leafworm Spodoptera littoralis (Boisd.) by Egyptian Bacillus thuringiensis isolates. Folia Microbiologica, 2013, 58, 155-162.	1.1	7
38	Aerobic Solid-State Fermentation. , 2013, , 141-197.		1
39	Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations. Transgenic Research, 2013, 22, 269-299.	1.3	46
40	Toxicity studies for indigenous Bacillus thuringiensis isolates from Malang city, East Java on Aedes aegypti larvae. Asian Pacific Journal of Tropical Biomedicine, 2013, 3, 111-117.	0.5	3
41	Oral insecticidal activity of plantâ€associated pseudomonads. Environmental Microbiology, 2013, 15, 751-763.	1.8	80
42	Efficient Production of Bacillus thuringiensis Cry1AMod Toxins under Regulation of <i>cry3Aa</i> Promoter and Single Cysteine Mutations in the Protoxin Region. Applied and Environmental Microbiology, 2013, 79, 6969-6973.	1.4	7
43	Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to Bacillus thuringiensis Cry3Aa toxicity. Pesticide Biochemistry and Physiology, 2013, 107, 299-308.	1.6	24
44	Expression of Cry1Aa in cassava improves its insect resistance against Helicoverpa armigera. Plant Molecular Biology, 2013, 83, 131-141.	2.0	9
45	The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes and Nutrition, 2013, 8, 29-41.	1.2	122
46	Plant genetic engineering and agricultural biotechnology 1983–2013. Trends in Biotechnology, 2013, 31, 125-127.	4.9	39
47	DNA-based screening for an intracellular cadherin mutation conferring non-recessive Cry1Ac resistance in field populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2013, 107, 148-152.	1.6	22
48	Long-term survival of <i>Bacillus thuringiensis</i> subsp. <i>kurstaki</i> in a field trial. Canadian Journal of Microbiology, 2013, 59, 34-38.	0.8	16
49	The application of GMOs in agriculture and in food production for a better nutrition: two different scientific points of view. Genes and Nutrition, 2013, 8, 255-270.	1.2	75
50	Cloning and characterization of a novel cry8Ab1 gene from Bacillus thuringiensis strain B-JJX with specific toxicity to scarabaeid (Coleoptera: Scarabaeidae) larvae. Microbiological Research, 2013, 168, 512-517.	2.5	19
51	Plant Pathogen Interactions: Crop Improvement Under Adverse Conditions. , 2013, , 433-459.		2
52	Aflatoxin Biosynthesis: Current Frontiers. Annual Review of Food Science and Technology, 2013, 4, 293-311.	5.1	158
53	The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 2013, 37, 699-735.	3.9	1,853
54	Cloning, Characterization, and Expression of a New cry1Ab Gene from DOR Bt-1, an Indigenous Isolate of Bacillus thuringiensis. Molecular Biotechnology, 2013, 54, 795-802.	1.3	6

ARTICLE IF CITATIONS Purification and characterization of <i>Bacillus thuringiensis</i> vegetative insecticidal toxin 1.0 12 55 protein(s). Letters in Applied Microbiology, 2013, 57, 310-316. Aphicidal efficacy of scorpion- and spider-derived neurotoxins. Toxicon, 2013, 70, 114-122. 0.8 19 Insect resistance to Bt crops: lessons from the first billion acres. Nature Biotechnology, 2013, 31, 57 9.4 810 510-521. High-Throughput Identification of Promoters and Screening of Highly Active Promoter-5â€²-UTR DNA 58 Region with Different Characteristics from Bacillus thuringiensis. PLoS ONE, 2013, 8, e62960. Expression Profile and Regulation of Spore and Parasporal Crystal Formation-Associated Genes in 59 1.8 51 <i>Bacillus thuringiensis (i). Journal of Proteome Research, 2013, 12, 5487-5501. Insect-Derived Chitinases. Advances in Biochemical Engineering/Biotechnology, 2013, 136, 19-50. Complete Genome Sequence of Bacillus thuringiensis subsp. <i>thuringiensis</i> Strain IS5056, an 61 0.8 38 Isolate Highly Toxic to <i>Trichoplusia ni</i>. Genome Announcements, 2013, 1, e0010813. Bacillus thuringiensis-derived Cry5B Has Potent Anthelmintic Activity against Ascaris suum. PLoS 1.3 Neglected Tropical Diseases, 2013, 7, e2263. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Frontiers 63 1.7 158 in Plant Science, 2013, 4, 287. Transcriptional Regulation and Characteristics of a Novel <i>N</i> -Acetylmuramoyl- <scp>l</scp> -Alanine Amidase Gene Involved in Bacillus thuringiensis Mother Cell Lysis. Journal of Bacteriology, 64 1.0 2013, 195, 2887-2897. Complete Genome Sequence of Bacillus thuringiensis subsp. <i>kurstaki</i> Strain HD73. Genome 65 0.8 47 Announcements, 2013, 1, e0008013. Dominant resistance to <scp>B</scp>t cotton and minor crossâ€resistance to <scp>B</scp>t toxin <scp>C</scp>ry2Ab in cotton bollworm from <scp>C</scp>hina. Evolutionary Applications, 2013, 6, 1.5 58 1222-1235. Retargeting of the <i>Bacillus thuringiensis</i> toxin Cyt2Aa against hemipteran insect pests. 67 3.3 90 Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8465-8470. The Metabolic Regulation of Sporulation and Parasporal Crystal Formation in Bacillus thuringiensis Revealed by Transcriptomics and Proteomics. Molecular and Cellular Proteomics, 2013, 12, 1363-1376. 2.5 109 A Spodoptera exigua Cadherin Serves as a Putative Receptor for Bacillus thuringiensis Cry1Ca Toxin and Shows Differential Enhancement of Cry1Ca and Cry1Ac Toxicity. Applied and Environmental 69 53 1.4 Microbiology, 2013, 79, 5576-5583. Scientific Opinion on an application from Pioneer Hi-Bred International and Dow AgroSciences LLC (EFSA-GMO-NL-2005-23) for placing on the market of genetically modified maize 59122 for food and feed uses, import, processing and cultivation under Regulatio. EFSA Journal, 2013, 11, 3135. Resistance to Bt Corn by Western Corn Rootworm (Coleoptera: Chrysomelidae) in the U.S. Corn Belt. 71 0.9 60 Journal of Integrated Pest Management, 2013, 4, 1-6. An extensive characterization study of different Bacillus thuringiensis strains collected from the Nashville Tennessee area. African Journal of Biotechnology, 2013, 12, 4827-4835.

ARTICLE IF CITATIONS # Diminishing Returns from Increased Percent Bt Cotton: The Case of Pink Bollworm. PLoS ONE, 2013, 8, 73 1.1 7 e68573. Efficacy of Genetically Modified Bt Toxins Alone and in Combinations Against Pink Bollworm Resistant to Cry1Ac and Cry2Ab. PLoS ONE, 2013, 8, e80496. 74 1.1 49 75 siRNA Machinery in Whitefly (Bemisia tabaci). PLoS ONE, 2013, 8, e83692. 1.1 36 How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency? Sustainability, 2013, 5, 3722-3743. Alternative Splicing and Highly Variable Cadherin Transcripts Associated with Field-Evolved 77 1.1 128 Resistance of Pink Bollworm to Bt Cotton in India. PLoS ONE, 2014, 9, e97900. Bt-Cry3Aa transgene expression reduces insect damage and improves growth in field-grown hybrid poplar. Canadian Journal of Forest Research, 2014, 44, 28-35. 0.8 Evaluation of Cytotoxic and Antimicrobial Effects of Two<i>Bt</i>Cry Proteins on a GMO Safety 79 0.9 7 Perspective. BioMed Research International, 2014, 2014, 1-14. Arthropod Abundance and Diversity in Transgenic Bt Soybean. Environmental Entomology, 2014, 43, 1124-1134. Draft Genome Sequence of Highly Nematicidal Bacillus thuringiensis DB27. Genome Announcements, 81 0.8 9 2014, 2, . No Direct Effects of Two Transgenic Bt Rice Lines, T1C-19 and T2A-1, on the Arthropod Communities. Environmental Entomology, 2014, 43, 1453-1463. The basis for rootstock resilient to <i>Capnodis</i> species: screening for genes encoding 83 1.7 10 <i>ì</i>à€endotoxins from <i>Bacillus thuringiensis</i>. Pest Management Science, 2014, 70, 1283-1290. Structure of the fullâ€length insecticidal protein <scp>C</scp>ry1<scp>A</scp>c reveals intriguing details of toxin packaging into <i>in vivo</i> formed crystals. Protein Science, 2014, 23, 1491-1497. 3.1 Detection and Mechanisms of Resistance Evolved in Insects to Cry Toxins from Bacillus thuringiensis. 85 1.1 94 Advances in Insect Physiology, 2014, 47, 297-342. Discovery and Development of Insect-Resistant Crops Using Genes from Bacillus thuringiensis. Advances in Insect Physiology, 2014, 47, 177-247. 1.1 ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. 87 1.7 144 BMC Biology, 2014, 12, 46. Toxicology of Pesticides., 2014, , . Uniform Orientation of Biotinylated Nanobody as an Affinity Binder for Detection of Bacillus 89 1.523 thuringiensis (Bt) Cry1Ac Toxin. Toxins, 2014, 6, 3208-3222. Quorum Sensing in Bacillus thuringiensis Is Required for Completion of a Full Infectious Cycle in the 1.5 Insect. Toxins, 2014, 6, 2239-2255.

#	Article	IF	Citations
91	Bt Toxin Modification for Enhanced Efficacy. Toxins, 2014, 6, 3005-3027.	1.5	61
92	Regulation of cry Gene Expression in Bacillus thuringiensis. Toxins, 2014, 6, 2194-2209.	1.5	77
93	An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 2014, 34, 77-88.	5.1	281
94	Breeding for Disease and Insect-Pest Resistance. , 2014, , 401-417.		Ο
95	Delivery of intrahemocoelic peptides for insect pest management. Trends in Biotechnology, 2014, 32, 91-98.	4.9	30
96	Persistence of the spores of B. thuringiensis subsp. kurstaki from Foray bioinsecticide in gleysol soil and on leaves. Science of the Total Environment, 2014, 472, 296-301.	3.9	3
97	A two-generation reproduction study with transgenic Bt rice TT51 in Wistar rats. Food and Chemical Toxicology, 2014, 65, 312-320.	1.8	27
98	Isolation and Characterization of Three New Promoters from Gossypium hirsutum that Show High Activity in Reproductive Tissues. Plant Molecular Biology Reporter, 2014, 32, 630-643.	1.0	12
99	Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal, 2014, 12, 367-377.	4.1	73
100	Genome Sequence of the Acrystalliferous Bacillus thuringiensis Serovar Israelensis Strain 4Q7, Widely Used as a Recombination Host. Genome Announcements, 2014, 2, .	0.8	10
101	Transgenic tomato line expressing modified Bacillus thuringiensis cry1Ab gene showing complete resistance to two lepidopteran pests. SpringerPlus, 2014, 3, 84.	1.2	35
102	Bacillus thuringiensis subsp. kurstaki HD1 as a factory to synthesize alkali-labile ChiA74â^†sp chitinase inclusions, Cry crystals and spores for applied use. Microbial Cell Factories, 2014, 13, 15.	1.9	16
103	Characterization of eight Bacillus thuringiensis isolates originated from fecal samples of Fuzhou Zoo and Fuzhou Panda Center. Journal of Asia-Pacific Entomology, 2014, 17, 395-397.	0.4	3
104	ABC Transporters and Their Role in Protecting Insects from Pesticides and Their Metabolites. Advances in Insect Physiology, 2014, , 1-72.	1.1	82
105	Isolation and characterization of a new Bacillus thuringiensis strain Lip harboring a new cry1Aa gene highly toxic to Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. Archives of Microbiology, 2014, 196, 435-444.	1.0	18
106	Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids. Nature Biotechnology, 2014, 32, 102-105.	9.4	66
107	Identification of a mosquitocidal toxin from Bacillus thuringiensis using mass spectrometry. World Journal of Microbiology and Biotechnology, 2014, 30, 3273-3277.	1.7	6
108	A CADHERINâ€LIKE PROTEIN FROM THE BEET ARMYWORM <i>Spodoptera exigua</i> (LEPIDOPTERA:) Tj ETQq1 58-71.	1 0.78431 0.6	4 rgBT /Over 16

#	Article	IF	CITATIONS
109	Evaluation of the synergistic activities of Bacillus thuringiensis Cry proteins against Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology, 2014, 121, 7-13.	1.5	25
110	Aerobic Cr(VI) Reduction by an Indigenous Soil Isolate Bacillus thuringiensis BRC-ZYR2. Pedosphere, 2014, 24, 652-661.	2.1	8
111	Up-regulated death-associated LIM-only protein contributes to fitness costs of Bacillus thuringiensis Cry1Ac resistance in Helicoverpa armigera. Journal of Insect Physiology, 2014, 60, 145-152.	0.9	3
112	Crystalline protein profiling and cry gene detection in Bacillus thuringiensis strains isolated during epizootics in Cydia pomonella L Biological Letters, 2014, 51, 83-92.	0.6	2
114	Dual mode of action of Bt proteins: protoxin efficacy against resistant insects. Scientific Reports, 2015, 5, 15107.	1.6	59
115	PC, a Novel Oral Insecticidal Toxin from Bacillus bombysepticus Involved in Host Lethality via APN and BtR-175. Scientific Reports, 2015, 5, 11101.	1.6	8
116	Multi-Toxin Resistance Enables Pink Bollworm Survival on Pyramided Bt Cotton. Scientific Reports, 2015, 5, 16554.	1.6	43
117	Proteomic analysis of the influence of Cu2+ on the crystal protein production of Bacillus thuringiensis X022. Microbial Cell Factories, 2015, 14, 153.	1.9	14
118	Comparative performance of modified full-length and truncated Bacillus thuringiensis-cry1Ac genes in transgenic tomato. SpringerPlus, 2015, 4, 203.	1.2	9
120	<i>Bacillus thuringiensis</i> subsp. <i>israelensis</i> producing endochitinase ChiA74Δsp inclusions and its improved activity against <i>Aedes aegypti</i> . Journal of Applied Microbiology, 2015, 119, 1692-1699.	1.4	19
121	Industrial Production of Bacillus Thuringiensis Based Bio-Insecticide: Which Way Forward?. Journal of Biofertilizers & Biopesticides, 2015, 06, .	0.8	1
122	ABCs of Insect Resistance to Bt. PLoS Genetics, 2015, 11, e1005646.	1.5	67
123	Binding and Oligomerization of Modified and Native Bt Toxins in Resistant and Susceptible Pink Bollworm. PLoS ONE, 2015, 10, e0144086.	1.1	19
124	Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports, 2015, 5, 8784.	1.6	99
125	Pen and Pal Are Nucleotide-Sugar Dehydratases That Convert UDP-GlcNAc to UDP-6-Deoxy-d-GlcNAc-5,6-ene and Then to UDP-4-Keto-6-deoxy-l-AltNAc for CMP-Pseudaminic Acid Synthesis in Bacillus thuringiensis*. Journal of Biological Chemistry, 2015, 290, 691-704.	1.6	22
126	Basic mechanism of pore-forming toxins. , 2015, , 605-626.		0
127	Toxins as tools. , 2015, , 1045-1071.		1
128	Safe use of Cry genes in genetically modified crops. Environmental Chemistry Letters, 2015, 13, 239-249.	8.3	27

#	Article	IF	CITATIONS
129	Non-Bt Soil Microbe-Derived Insecticidal Proteins. Soil Biology, 2015, , 89-121.	0.6	0
130	Effects ofBacillus thuringiensissubsp.kurstakiHD1 spore-crystal mixture on the adults of egg parasitoidTrichogramma evanescens(Hymenoptera: Trichogrammatidae). Biotechnology and Biotechnological Equipment, 2015, 29, 653-658.	0.5	6
131	The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.). Journal of Invertebrate Pathology, 2015, 126, 21-30.	1.5	34
132	Approaches to Translational Plant Science. Advances in Agronomy, 2015, , 305-335.	2.4	1
133	A 90-day subchronic feeding study of genetically modified rice expressing Cry1Ab protein in Sprague–Dawley rats. Transgenic Research, 2015, 24, 295-308.	1.3	16
134	Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Journal of Invertebrate Pathology, 2015, 130, 72-81.	1.5	25
135	Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes. Journal of Biotechnology, 2015, 210, 17-18.	1.9	8
136	Food safety assessment of Cry8Ka5 mutant protein using Cry1Ac as a control Bt protein. Food and Chemical Toxicology, 2015, 81, 81-91.	1.8	14
137	Detection of Toxin Proteins from Bacillus thuringiensis Strain 4.0718 by Strategy of 2D-LC–MS/MS. Current Microbiology, 2015, 70, 457-463.	1.0	7
138	Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Scientific Reports, 2015, 5, 7714.	1.6	67
139	Chloroplast localization of Cry1Ac and Cry2A protein- an alternative way of insect control in cotton. Biological Research, 2015, 48, 14.	1.5	25
140	The Management of Helicoverpa Species by Entomopathogenic Nematodes. Soil Biology, 2015, , 289-314.	0.6	1
141	The Efficacy of Bacillus thuringiensis spp. galleriae Against Rice Water Weevil (Coleoptera:) Tj ETQq0 0 0 rgBT /O 2015, 108, 45-52.	verlock 10 0.8	9 Tf 50 267 To 9
142	Molecular Mechanisms of Nematode-Nematophagous Microbe Interactions: Basis for Biological Control of Plant-Parasitic Nematodes. Annual Review of Phytopathology, 2015, 53, 67-95.	3.5	199
143	Complete genome sequence of Bacillus thuringiensis tenebrionis 4AA1, a typical strain with toxicity to Coleopteran insects. Journal of Biotechnology, 2015, 204, 15-16.	1.9	5
144	Effects of a diet containing genetically modified rice expressing theCry1Ab/1Acprotein (Bacillus) Tj ETQq1 1 0.78	4314 rgB1 0.9	[gverlock]
145	Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants. Bioengineered, 2015, 6, 323-327.	1.4	4
146	Quantitative Analysis of Fitness Costs Associated with the Development of Resistance to the Bt Toxin Cry1Ac in Helicoverpa armigera. Scientific Reports, 2015, 4, 5629.	1.6	34

#	Article	IF	CITATIONS
147	Nanobody-based electrochemical immunoassay for Bacillus thuringiensis Cry1Ab toxin by detecting the enzymatic formation of polyaniline. Mikrochimica Acta, 2015, 182, 2451-2459.	2.5	17
148	Genome Sequence of Bacillus thuringiensis Strain Btm27, an Egyptian Isolate Highly Toxic to Cotton Leafworm. Genome Announcements, 2015, 3, .	0.8	2
149	Bacillus thuringiensis impacts on primary and secondary baculovirus transmission dynamics in Lepidoptera. Journal of Invertebrate Pathology, 2015, 132, 171-181.	1.5	13
150	Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nature Biotechnology, 2015, 33, 169-174.	9.4	167
151	Endospores, Sporulation and Germination. , 2015, , 163-178.		5
152	Scorpion peptide LqhIT2 activates phenylpropanoid pathways via jasmonate to increase rice resistance to rice leafrollers. Plant Science, 2015, 230, 1-11.	1.7	19
153	Mis-splicing of the ABCC2 gene linked with Bt toxin resistance in Helicoverpa armigera. Scientific Reports, 2014, 4, 6184.	1.6	136
154	Fitness costs of reproductive capacity and ovarian development in a <i>Bt</i> â€resistant strain of the cotton bollworm <i>Helicoverpa armigera</i> (Hübner) (Lepidoptera: Noctuidae). Pest Management Science, 2015, 71, 870-877.	1.7	17
155	Division of labour and terminal differentiation in a novel <i>Bacillus thuringiensis</i> strain. ISME Journal, 2015, 9, 286-296.	4.4	26
156	Polyamidoamine functionalized CdTeSe quantum dots for sensitive detection of Cry1Ab protein in vitro and in vivo. Sensors and Actuators B: Chemical, 2015, 206, 8-13.	4.0	12
157	Molecules and Methods for the Control of Biotic Stress Especially the Insect Pests $\hat{a} \in$ " Present Scenario and Future Perspective. , 0, , .		0
158	RNAi $\hat{a} \in$ " Implications in Entomological Research and Pest Control. , 0, , .		5
159	Genetically Modified Food Worldwide IP Challenges. , 2016, , .		1
160	Tillage Reduces Survival of Grape Berry Moth (Lepidoptera: Tortricidae), via Burial Rather Than Mechanical Injury. Environmental Entomology, 2016, 46, nvw149.	0.7	4
161	Distribution and Metabolism of Bt-Cry1Ac Toxin in Tissues and Organs of the Cotton Bollworm, Helicoverpa armigera. Toxins, 2016, 8, 212.	1.5	11
162	A P-Glycoprotein Is Linked to Resistance to the Bacillus thuringiensis Cry3Aa Toxin in a Leaf Beetle. Toxins, 2016, 8, 362.	1.5	50
163	Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment. Frontiers in Microbiology, 2016, 7, 792.	1.5	9
164	Isolation and Characterization of Gut Bacterial Proteases Involved in Inducing Pathogenicity of Bacillus thuringiensis Toxin in Cotton Bollworm, Helicoverpa armigera. Frontiers in Microbiology, 2016, 7, 1567.	1.5	20

#	Article	IF	CITATIONS
165	Activation of Bt Protoxin Cry1Ac in Resistant and Susceptible Cotton Bollworm. PLoS ONE, 2016, 11, e0156560.	1.1	23
166	Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect. PLoS Pathogens, 2016, 12, e1005450.	2.1	45
167	The synergic and antagonistic activity of <scp>C</scp> ry1Ab and <scp>C</scp> ry2 <scp>A</scp> a proteins against lepidopteran pests. Journal of Applied Entomology, 2016, 140, 223-227.	0.8	8
168	Genetically modified (GM) crops: milestones and new advances in crop improvement. Theoretical and Applied Genetics, 2016, 129, 1639-1655.	1.8	123
169	Functional proteomics-aided selection of protease inhibitors for herbivore insect control. Scientific Reports, 2016, 6, 38827.	1.6	17
170	APN1 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Scientific Reports, 2016, 6, 19179.	1.6	24
171	Insect-Pests in Dryland Agriculture and their Integrated Management. , 2016, , 143-186.		0
172	New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. Journal of Pest Science, 2016, 89, 295-311.	1.9	76
173	Molecular Cloning, Expression, and Identification ofBreGenes Involved in Glycosphingolipids Synthesis inHelicoverpa armigera(Lepidoptera: Noctuidae). Journal of Economic Entomology, 2016, 109, 1415-1423.	0.8	2
174	Adult Exposure to Bt Toxin Cry1Ac Reduces Life Span and Reproduction of Resistant and Susceptible Pink Bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 2016, 109, 1357-1363.	0.8	1
175	Development and Characterization of MIR604 Resistance in a Western Corn Rootworm Population (Coleoptera: Chrysomelidae). Environmental Entomology, 2016, 45, 526-536.	0.7	6
176	Use of Redundant Exclusion PCR To Identify a Novel Bacillus thuringiensis Cry8 Toxin Gene from Pooled Genomic DNA. Applied and Environmental Microbiology, 2016, 82, 3808-3815.	1.4	2
177	Expression of an insecticidal fern protein in cotton protects against whitefly. Nature Biotechnology, 2016, 34, 1046-1051.	9.4	99
178	The <i>Spodoptera exigua</i> (Lepidoptera: Noctuidae) ABCC2 Mediates Cry1Ac Cytotoxicity and, in Conjunction with Cadherin, Contributes to Enhance Cry1Ca Toxicity in Sf9 Cells. Journal of Economic Entomology, 2016, 109, 2281-2289.	0.8	21
179	Selection and application of broad-specificity human domain antibody for simultaneous detection of Bt Cry toxins. Analytical Biochemistry, 2016, 512, 70-77.	1.1	10
180	A selective insecticidal protein from <i>Pseudomonas</i> for controlling corn rootworms. Science, 2016, 354, 634-637.	6.0	74
182	Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations. Molecular Ecology, 2016, 25, 6124-6142.	2.0	60
183	Do genetically modified plants affect adversely on soil microbial communities?. Agriculture, Ecosystems and Environment, 2016, 235, 289-305.	2.5	64

	CITATION	Report	
#	Article	IF	CITATIONS
184	Reproductive Cost Associated With Juvenile Hormone in Bt-Resistant Strains of <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Journal of Economic Entomology, 2016, 109, 2534-2542.	0.8	13
185	Changes in Midgut Gene Expression Following <i>Bacillus thuringiensis</i> (Bacillales: Bacillaceae) Infection in <i>Monochamus alternatus</i> (Coleoptera: Cerambycidae). Florida Entomologist, 2016, 99, 60-66.	0.2	6
186	Potential for oilseed rape resistance in pollen beetle control. Arthropod-Plant Interactions, 2016, 10, 463-475.	0.5	14
187	Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. Journal of Invertebrate Pathology, 2016, 135, 60-62.	1.5	5
188	Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2016, 132, 108-117.	1.6	27
189	Promoter isolation and characterization of GhAO-like1, a Gossypium hirsutum gene similar to multicopper oxidases that is highly expressed in reproductive organs. Genome, 2016, 59, 23-36.	0.9	4
190	Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 329-350.	2.9	233
191	Molecular and insecticidal characterization of Vip3A protein producing <i>Bacillus thuringiensis</i> strains toxic against <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Canadian Journal of Microbiology, 2016, 62, 179-190.	0.8	11
192	Genetic and Biochemical Characterization of a Gene Operon for trans-Aconitic Acid, a Novel Nematicide from Bacillus thuringiensis. Journal of Biological Chemistry, 2017, 292, 3517-3530.	1.6	36
193	Identification of Aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta. Peptides, 2017, 98, 93-98.	1.2	15
194	Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects. Applied Microbiology and Biotechnology, 2017, 101, 1795-1803.	1.7	4
195	Modeling the evolution of insect resistance to one- and two-toxin Bt-crops in spatially heterogeneous environments. Ecological Modelling, 2017, 347, 72-84.	1.2	5
196	Genome Sequences of Bacillus thuringiensis Serovar kurstaki Strain BP865 and B. thuringiensis Serovar aizawai Strain HD-133. Genome Announcements, 2017, 5, .	0.8	6
197	The exposure of honey bees (Apis mellifera ; Hymenoptera: Apidae) to pesticides: Room for improvement in research. Science of the Total Environment, 2017, 587-588, 423-438.	3.9	50
198	Characterization of biosurfactants as insecticidal metabolites produced by <i>Bacillus subtilis</i> Y9. Entomological Research, 2017, 47, 55-59.	0.6	34
199	Construction of an Immunized Rabbit Phage Display Library for Selecting High Activity against <i>Bacillus thuringiensis</i> Cry1F Toxin Single-Chain Antibodies. Journal of Agricultural and Food Chemistry, 2017, 65, 6016-6022.	2.4	19
200	Intra- and extracellular domains of the Helicoverpa armigera cadherin mediate Cry1Ac cytotoxicity. Insect Biochemistry and Molecular Biology, 2017, 86, 41-49.	1.2	20
201	Effects of Site-Mutations Within the 22ÂkDa No-Core Fragment of the Vip3Aa11 Insecticidal Toxin of Bacillus thuringiensis. Current Microbiology, 2017, 74, 655-659.	1.0	12

#	Article	IF	CITATIONS
202	Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Reports, 2017, 36, 1037-1051.	2.8	41
203	Low-Dose Effects: Nonmonotonic Responses for the Toxicity of a <i>Bacillus thuringiensis</i> Biocide to <i>Daphnia magna</i> . Environmental Science & Technology, 2017, 51, 1679-1686.	4.6	36
204	New insights on the role of alkaline phosphatase 2 from Spodoptera exigua (Hübner) in the action mechanism of Bt toxin Cry2Aa. Journal of Insect Physiology, 2017, 98, 101-107.	0.9	17
205	Preparation of high stable core/shell magnetic nanoparticles and application in Bacillus thuringiensis Cry1Ac proteins detection. Sensors and Actuators B: Chemical, 2017, 241, 758-764.	4.0	13
206	Breeding for Insect Resistance in Cotton: Advances and Future Perspectives. , 2017, , 265-288.		1
207	Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 2017, 35, 926-935.	9.4	456
208	Selection and characterization of <i>Bacillus thuringiensis</i> strains from northwestern Himalayas toxic against <i>Helicoverpa armigera</i> . MicrobiologyOpen, 2017, 6, e00484.	1.2	19
209	ABCC2 is associated with Bacillus thuringiensis Cry1Ac toxin oligomerization and membrane insertion in diamondback moth. Scientific Reports, 2017, 7, 2386.	1.6	49
210	Transgenic cotton coexpressing Vip3A and Cry1Ac has a broad insecticidal spectrum against lepidopteran pests. Journal of Invertebrate Pathology, 2017, 149, 59-65.	1.5	28
211	Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Research, 2017, 26, 763-774.	1.3	13
212	Complete Genome Sequence of Bacillus thuringiensis Serovar rongseni Reference Strain SCG04-02, a Strain Toxic to <i>Plutella xylostella</i> . Genome Announcements, 2017, 5, .	0.8	2
213	Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato. Plant Cell, Tissue and Organ Culture, 2017, 131, 65-73.	1.2	25
214	Improved catalytic and antifungal activities of <i>Bacillus thuringiensis</i> cells with surface display of Chi9602l"SP. Journal of Applied Microbiology, 2017, 122, 106-118.	1.4	13
215	Selection and Characterization of Bacillus thuringiensis (Berliner) (Eubacteriales: Bacillaceae) Strains for Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae) Control. Neotropical Entomology, 2017, 46, 86-92.	0.5	4
216	Safety considerations derived from Cry34Ab1/Cry35Ab1 structure and function. Journal of Invertebrate Pathology, 2017, 142, 27-33.	1.5	13
217	Bacterial associates of Hyalesthes obsoletus (Hemiptera: Cixiidae), the insect vector of bois noir disease, with a focus on cultivable bacteria. Research in Microbiology, 2017, 168, 94-101.	1.0	19
218	Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1le toxin based nanobody from a phage display library. Analytical Biochemistry, 2017, 518, 53-59.	1.1	18
219	Differential Pathogenicity of Metarhizium Blastospores and Conidia Against Larvae of Three Mosquito Species. Journal of Medical Entomology, 2017, 54, 696-704.	0.9	34

#	Article	IF	CITATIONS
220	Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield. International Journal of Molecular Sciences, 2017, 18, 1874.	1.8	17
221	Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis?. Toxins, 2017, 9, 39.	1.5	25
222	Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins, 2017, 9, 135.	1.5	40
223	Insect-Resistant Plants. , 2017, , 47-74.		6
224	Comparisons of Transcriptional Profiles of Gut Genes between Cry1Ab-Resistant and Susceptible Strains of Ostrinia nubilalis Revealed Genes Possibly Related to the Adaptation of Resistant Larvae to Transgenic Cry1Ab Corn. International Journal of Molecular Sciences, 2017, 18, 301.	1.8	10
225	Analysis of abrB Expression during the Infectious Cycle of Bacillus thuringiensis Reveals Population Heterogeneity. Frontiers in Microbiology, 2017, 8, 2471.	1.5	9
226	Importance of Microorganisms to Macroorganisms Invasions. Advances in Ecological Research, 2017, 57, 99-146.	1.4	40
227	Microbial Control of Arthropod Pests of Orchards in Temperate Climates. , 2017, , 253-267.		16
228	Microbial Control of Sugarcane Insect Pests. , 2017, , 299-312.		0
229	Complete Genome sequence of the nematicidal Bacillus thuringiensis MYBT18246. Standards in Genomic Sciences, 2017, 12, 48.	1.5	10
230	Soil incubation studies with Cry1Ac protein indicate no adverse effect of Bt crops on soil microbial communities. Ecotoxicology and Environmental Safety, 2018, 152, 33-41.	2.9	21
231	Resistance to Bacillus thuringiensis linked with a cadherin transmembrane mutation affecting cellular trafficking in pink bollworm from China. Insect Biochemistry and Molecular Biology, 2018, 94, 28-35.	1.2	37
232	Molecular characterization of Cry1D-133 toxin from Bacillus thuringiensis strain HD133 and its toxicity against Spodoptera littoralis. International Journal of Biological Macromolecules, 2018, 112, 1-6.	3.6	3
233	Novel Cell Wall Hydrolase CwlC from Bacillus thuringiensis Is Essential for Mother Cell Lysis. Applied and Environmental Microbiology, 2018, 84, .	1.4	19
234	Yield Losses in Transgenic Cry1Ab and Non-Bt Corn as Assessed Using a Crop-Life-Table Approach. Journal of Economic Entomology, 2018, 111, 218-226.	0.8	7
235	Epistasis confers resistance to Bt toxin Cry1Ac in the cotton bollworm. Evolutionary Applications, 2018, 11, 809-819.	1.5	13
236	Cell lines as models for the study of Cry toxins from Bacillus thuringiensis. Insect Biochemistry and Molecular Biology, 2018, 93, 66-78.	1.2	15
237	An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta, 2018, 179, 646-651.	2.9	21

#	Article	IF	CITATIONS
238	Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis. International Journal of Biological Macromolecules, 2018, 111, 822-831.	3.6	14
239	<i>Sip1Ab</i> gene from a native <i>Bacillus thuringiensis</i> strain QZL38 and its insecticidal activity against <i>Colaphellus bowringi</i> Baly. Biocontrol Science and Technology, 2018, 28, 459-467.	0.5	12
240	Insecticidal activity of Bacillus thuringiensis crystals and thymol mixtures. Industrial Crops and Products, 2018, 117, 272-277.	2.5	3
241	The full-length Cry1Ac protoxin without proteolytic activation exhibits toxicity against insect cell line CF-203. Journal of Invertebrate Pathology, 2018, 152, 25-29.	1.5	8
242	Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines. Insect Science, 2018, 25, 655-666.	1.5	16
243	Diversity of Bacillus thuringiensis Isolates Native to Uttarakhand Himalayas, India and Their Bioefficacy Against Selected Insect Pests. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2018, 88, 1489-1498.	0.4	0
244	Effects of antibiotics on biological activity of Cry1Ac in Bt-susceptible and Bt-resistant Helicoverpa armigera strains. Journal of Invertebrate Pathology, 2018, 151, 197-200.	1.5	6
245	Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. International Journal of Biological Macromolecules, 2018, 107, 920-928.	3.6	10
246	<i>Dyella</i> -Like Bacterium Isolated from an Insect as a Potential Biocontrol Agent Against Grapevine Yellows. Phytopathology, 2018, 108, 336-341.	1.1	21
247	Nematicidal Activity of Cry1Ea11 from <i>Bacillus thuringiensis</i> BRC-XQ12 Against the Pine Wood Nematode (<i>Bursaphelenchus xylophilus</i>). Phytopathology, 2018, 108, 44-51.	1.1	24
248	Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Revista Brasileira De Entomologia, 2018, 62, 5-12.	0.1	20
249	Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Applied and Environmental Microbiology, 2018, 84, .	1.4	27
250	A selective insecticidal protein from <i>Pseudomonas mosselii</i> for corn rootworm control. Plant Biotechnology Journal, 2018, 16, 649-659.	4.1	33
252	Aphicidal Activity of Surfactants Produced by Bacillus atrophaeus L193. Frontiers in Microbiology, 2018, 9, 3114.	1.5	28
253	Glyphosate is lethal and Cry toxins alter the development of the stingless bee Melipona quadrifasciata. Environmental Pollution, 2018, 243, 1854-1860.	3.7	51
254	The C-terminal protoxin region of Bacillus thuringiensis Cry1Ab toxin has a functional role in binding to GPI-anchored receptors in the insect midgut. Journal of Biological Chemistry, 2018, 293, 20263-20272.	1.6	31
255	Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to Bacillus thuringiensis isolates: preliminary study. Parasitology Research, 2018, 117, 3897-3902.	0.6	5
256	ABC transporter mis-splicing associated with resistance to Bt toxin Cry2Ab in laboratory- and field-selected pink bollworm. Scientific Reports, 2018, 8, 13531.	1.6	66

#	Article	IF	CITATIONS
257	Safety of the Bacillus thuringiensis-derived Cry1A.105 protein: Evidence that domain exchange preserves mode of action and safety. Regulatory Toxicology and Pharmacology, 2018, 99, 50-60.	1.3	15
258	Spodoptera albula susceptibility to Bacillus thuringiensis-based biopesticides. Journal of Invertebrate Pathology, 2018, 157, 147-149.	1.5	3
259	Spodoptera frugiperda (J. E. Smith) Aminopeptidase N1 Is a Functional Receptor of the Bacillus thuringiensis Cry1Ca Toxin. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
260	Bt Jute Expressing Fused δ-Endotoxin Cry1Ab/Ac for Resistance to Lepidopteran Pests. Frontiers in Plant Science, 2017, 8, 2188.	1.7	23
261	Bacteria and archaea as the sources of traits for enhanced plant phenotypes. Biotechnology Advances, 2018, 36, 1900-1916.	6.0	12
262	Helix α-3 inter-molecular salt bridges and conformational changes are essential for toxicity of Bacillus thuringiensis 3D-Cry toxin family. Scientific Reports, 2018, 8, 10331.	1.6	13
263	Specific Binding Protein ABCC1 Is Associated With Cry2Ab Toxicity in Helicoverpa armigera. Frontiers in Physiology, 2018, 9, 745.	1.3	23
264	Engineering Insect Resistance in Tomato by Transgenic Approaches. , 2018, , 237-252.		0
265	Silencing of HaAce1 gene by host-delivered artificial microRNA disrupts growth and development of Helicoverpa armigera. PLoS ONE, 2018, 13, e0194150.	1.1	33
266	Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera. Scientific Reports, 2018, 8, 8820.	1.6	37
267	Protein crystallization in living cells. Biological Chemistry, 2018, 399, 751-772.	1.2	55
268	Selection of reliable reference genes for gene expression studies in Caenorhabditis elegans exposed to crystals (Cry1Ia36) protein of Bacillus thuringiensis. Molecular Biology Reports, 2019, 46, 5767-5776.	1.0	1
269	Mutation of ABC transporter ABCA2 confers resistance to Bt toxin Cry2Ab in Trichoplusia ni. Insect Biochemistry and Molecular Biology, 2019, 112, 103209.	1.2	38
270	Global Patterns of Resistance to Bt Crops Highlighting Pink Bollworm in the United States, China, and India. Journal of Economic Entomology, 2019, 112, 2513-2523.	0.8	139
271	Knockout of the HaREase Gene Improves the Stability of dsRNA and Increases the Sensitivity of Helicoverpa armigera to Bacillus thuringiensis Toxin. Frontiers in Physiology, 2019, 10, 1368.	1.3	14
272	Solubility enhancement of Cry2Aa crystal through carboxy-terminal extension and synergism between the chimeric protein and Cry1Ac. Applied Microbiology and Biotechnology, 2019, 103, 2243-2250.	1.7	0
273	Structural approaches for the DNA binding motifs prediction in Bacillus thuringiensis sigma-E transcription factor (ÏfETF). Journal of Molecular Modeling, 2019, 25, 301.	0.8	1
274	Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. Reference Series in Phytochemistry, 2019, , 1-28.	0.2	3

#	Article	IF	CITATIONS
275	In-planta expression of insecticidal proteins provides protection against lepidopteran insects. Scientific Reports, 2019, 9, 6745.	1.6	15
276	High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. International Journal of Biological Macromolecules, 2019, 137, 562-567.	3.6	6
277	Fall Armyworm (FAW; Lepidoptera: Noctuidae): Moth Oviposition and Crop Protection. , 2019, , 93-116.		1
278	Acquirement of CRY8DB Transgenic Tall Fescue (Festuca arundinacea Schreb.) by Agrobacterium tumefaciens to Develop Resistance Against Pentodon idiota Herbest Molecular Biotechnology, 2019, 61, 528-540.	1.3	2
279	Bacillus thuringiensis Spores and Vegetative Bacteria: Infection Capacity and Role of the Virulence Regulon PlcR Following Intrahaemocoel Injection of Galleria mellonella. Insects, 2019, 10, 129.	1.0	10
280	Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Scientific Reports, 2019, 9, 6667.	1.6	39
281	Isolation of an acid producing Bacillus sp. EEEL02: Potential for bauxite residue neutralization. Journal of Central South University, 2019, 26, 343-352.	1.2	22
282	Insecticidal activity of mixtures of <scp><i>Bacillus thuringiensis</i></scp> crystals with plant oils of <i>Sinapis alba</i> and <scp><i>Azadirachta indica</i></scp> . Annals of Applied Biology, 2019, 174, 364-371.	1.3	11
283	Bt insecticidal efficacy variation and agronomic regulation in Bt cotton. Journal of Cotton Research, 2019, 2, .	1.0	9
284	Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research and Innovation, 2019, 3, 27-41.	0.3	14
285	Insect Hsp90 Chaperone Assists Bacillus thuringiensis Cry Toxicity by Enhancing Protoxin Binding to the Receptor and by Protecting Protoxin from Gut Protease Degradation. MBio, 2019, 10, .	1.8	12
286	Biological alternatives to pesticides to control wireworms (Coleoptera: Elateridae). Agri Gene, 2019, 11, 100080.	1.9	7
287	How European Union accession and implementation of obligatory integrated pest management influenced forest protection against harmful insects: A case study from Poland. Forest Ecology and Management, 2019, 433, 146-152.	1.4	18
288	Overview of Biotechnology-Derived Herbicide Tolerance and Insect Resistance Traits in Plant Agriculture. Methods in Molecular Biology, 2019, 1864, 313-342.	0.4	19
289	Proteomics as a tool for tapping potential of entomopathogens as microbial insecticides. Archives of Insect Biochemistry and Physiology, 2019, 100, e21520.	0.6	3
290	The immobilization mechanism of U(VI) induced by Bacillus thuringiensis 016 and the effects of coexisting ions. Biochemical Engineering Journal, 2019, 144, 57-63.	1.8	17
291	Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Scientific Reports, 2019, 9, 199.	1.6	17
292	Chromosomal deletions mediated by CRISPR/Cas9 in <i>Helicoverpa armigera</i> . Insect Science, 2019, 26, 1029-1036.	1.5	14

#	Article	IF	CITATIONS
293	Microbial biopesticides for invertebrate pests and their markets in the United States. Journal of Invertebrate Pathology, 2019, 165, 13-21.	1.5	148
294	Knockout of three aminopeptidase N genes does not affect susceptibility of <i>Helicoverpa armigera</i> larvae to <i>Bacillus thuringiensis</i> Cry1A and Cry2A toxins. Insect Science, 2020, 27, 440-448.	1.5	12
295	Reduced cadherin expression associated with resistance to Bt toxin Cry1Ac in pink bollworm. Pest Management Science, 2020, 76, 67-74.	1.7	15
296	Bt resistance alleles in field populations of pink bollworm from China: Similarities with the United States and decreased frequency from 2012 to 2015. Pest Management Science, 2020, 76, 527-533.	1.7	12
297	Characterization, cloning, expression and bioassay of vip3 gene isolated from an Egyptian Bacillus thuringiensis against whiteflies. Saudi Journal of Biological Sciences, 2020, 27, 1363-1367.	1.8	10
298	Comprehensive analysis of Cry1Ac protoxin activation mediated by midgut proteases in susceptible and resistant Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2020, 163, 23-30.	1.6	17
299	Knockdown of cadherin genes decreases susceptibility of Chilo suppressalis larvae to Bacillus thuringiensis produced Crystal toxins. Insect Molecular Biology, 2020, 29, 301-308.	1.0	5
300	Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly. Protein Science, 2020, 29, 824-829.	3.1	27
301	Genome of Bacillus sp. strain QHF158 provides insights into its parasporal inclusions encoded by the S-layer gene. Brazilian Journal of Microbiology, 2020, 51, 1145-1150.	0.8	2
302	Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera:) Tj ETQq1 1 0.78431	4 rgBT /Ov 2.9	erlock 10 Tf 5
303	MicroRNA-998–3p contributes to Cry1Ac-resistance by targeting ABCC2 in lepidopteran insects. Insect Biochemistry and Molecular Biology, 2020, 117, 103283.	1.2	34
304	The future is now: revolution of RNA-mediated gene silencing in plant protection against insect pests and diseases. Plant Biotechnology Reports, 2020, 14, 643-662.	0.9	2
305	Molecular Mechanisms of the Interactions Between Nematodes and Nematophagous Microorganisms. Progress in Biological Control, 2020, , 421-441.	0.5	0
306	Cadherin repeat 5 mutation associated with Bt resistance in a field-derived strain of pink bollworm. Scientific Reports, 2020, 10, 16840.	1.6	8
307	Microorganisms and Biological Pest Control: An Analysis Based on a Bibliometric Review. Agronomy, 2020, 10, 1808.	1.3	12
308	Low Mismatch Rate between Double-Stranded RNA and Target mRNA Does Not Affect RNA Interference Efficiency in Colorado Potato Beetle. Insects, 2020, 11, 449.	1.0	9
309	Bt, Not a Threat to Propylea japonica. Frontiers in Physiology, 2020, 11, 758.	1.3	8
310	The Tripartite Interaction of Host Immunity–Bacillus thuringiensis Infection–Gut Microbiota. Toxins, 2020, 12, 514	1.5	28

#	Article	IF	CITATIONS
311	The Challenges of Microbial Control of Mosquito-Borne Diseases Due to the Gut Microbiome. Frontiers in Genetics, 2020, 11, 504354.	1.1	6
312	Synergistic selection of a Helicoverpa armigera cadherin fragment with Cry1Ac in different cells and insects. International Journal of Biological Macromolecules, 2020, 164, 3667-3675.	3.6	3
313	Cry1Ac Protoxin and Its Activated Toxin from <i>Bacillus thuringiensis</i> Act Differentially during the Pathogenic Process. Journal of Agricultural and Food Chemistry, 2020, 68, 5816-5824.	2.4	5
314	Shared and Independent Genetic Basis of Resistance to Bt Toxin Cry2Ab in Two Strains of Pink Bollworm. Scientific Reports, 2020, 10, 7988.	1.6	13
315	MAPK-dependent hormonal signaling plasticity contributes to overcoming Bacillus thuringiensis toxin action in an insect host. Nature Communications, 2020, 11, 3003.	5.8	78
316	Barcoded microbial system for high-resolution object provenance. Science, 2020, 368, 1135-1140.	6.0	27
317	Follow the barcoded microbes. Science, 2020, 368, 1058-1059.	6.0	1
318	Functional redundancy of two ABC transporter proteins in mediating toxicity of Bacillus thuringiensisÂto cotton bollworm. PLoS Pathogens, 2020, 16, e1008427.	2.1	55
319	Possible Insecticidal Mechanism of Cry41-Related Toxin against <i>Myzus persicae</i> by Enhancing Cathepsin B Activity. Journal of Agricultural and Food Chemistry, 2020, 68, 4607-4615.	2.4	10
320	pH influences the profiles of midgut extracts in Cnaphalocrocis medinalis (Guenée) and its degradation of activated Cry toxins. Journal of Integrative Agriculture, 2020, 19, 775-784.	1.7	4
321	Applications of Bacillus subtilis Spores in Biotechnology and Advanced Materials. Applied and Environmental Microbiology, 2020, 86, .	1.4	41
322	Genetic Engineering and Editing of Plants: An Analysis of New and Persisting Questions. Annual Review of Plant Biology, 2020, 71, 659-687.	8.6	40
323	Bacillus thuringiensis novel toxin Epp is toxic to mosquitoes and prodenia litura larvae. Brazilian Journal of Microbiology, 2020, 51, 437-445.	0.8	2
324	No More Tears: Mining Sequencing Data for Novel Bt Cry Toxins with CryProcessor. Toxins, 2020, 12, 204.	1.5	19
325	Like Parents, Like Offspring? Susceptibility to Bt Toxins, Development on Dual-Gene Bt Cotton, and Parental Effect of Cry1Ac on a Nontarget Lepidopteran Pest. Journal of Economic Entomology, 2020, 113, 1234-1242.	0.8	13
326	Infection of cotton bollworm by Helicoverpa armigera iflavirus decreases larval fitness. Journal of Invertebrate Pathology, 2020, 173, 107384.	1.5	8
327	Does cotton bollworm show cross-resistance to the Bacillus thuringiensis toxins Cry1Ac and Cry2Ab? A mini review. Journal of Arid Land, 2020, 12, 349-356.	0.9	2
328	Genetic Modification as a Control Mechanism to Plant Pest Attack. , 2020, , 203-208.		1

#	Article	IF	CITATIONS
329	Emerging nanobiotechnology in agriculture for the management of pesticide residues. Journal of Hazardous Materials, 2021, 401, 123369.	6.5	90
330	Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics, 2021, 113, 736-747.	1.3	30
331	Role of Recombinant DNA Technology in Biofertilizer Production. , 2021, , 143-163.		0
332	Microbial Biofertilizers and Biopesticides: Nature's Assets Fostering Sustainable Agriculture. Environmental and Microbial Biotechnology, 2021, , 39-69.	0.4	8
333	Current scenario of <scp>RNAi</scp> â€based hemipteran control. Pest Management Science, 2021, 77, 2188-2196.	1.7	39
334	A major forest insect pest, the pine weevil <scp><i>Hylobius abietis</i></scp> , is more susceptible to Diptera―than Coleopteraâ€targeted <scp><i>Bacillus thuringiensis</i></scp> strains. Pest Management Science, 2021, 77, 1303-1315.	1.7	5
335	Bacillus thuringiensis as a Biofertilizer and Plant Growth Promoter. , 2021, , 251-265.		4
336	Novel-iridoviral kinase induces mortality and reduces performance of green peach aphids (Myzus) Tj ETQq1 1 0.7	784314 rg 0.9	BT /Overlock
337	First-Generation Transgenic Cotton Crops. , 2021, , 229-255.		2
338	Expression of a gene for an MLX56 defense protein derived from mulberry latex confers strong resistance against a broad range of insect pests on transgenic tomato lines. PLoS ONE, 2021, 16, e0239958.	1.1	7
339	Larvicidal activities of local Bacillus thuringiensis isolates and toxins from nematode bacterial symbionts against the Rift Valley fever vector, Aedes caspius (Diptera: Culicidae). African Zoology, 2021, 56, 65-75.	0.2	1
340	Enhanced hydrolysis of β â€cypermethrin caused by deletions in the glycinâ€rich region of carboxylesterase 001G from Helicoverpa armigera. Pest Management Science, 2021, 77, 2129-2141.	1.7	2
341	Safety assessment of genetically modified rice expressing Cry1Ab protein in Sprague–Dawley rats. Scientific Reports, 2021, 11, 1126.	1.6	3
342	Concentration–Mortality Response of Mexican Populations Fall Armyworm (Lepidoptera: Noctuidae) to Commercial Formulations of <i>Bacillus Thuringiensis</i> . Journal of Entomological Science, 2021, 56, 70-83.	0.2	2
343	β-carotene and Bacillus thuringiensis insecticidal protein differentially modulate feeding behaviour, mortality and physiology of European corn borer (Ostrinia nubilalis). PLoS ONE, 2021, 16, e0246696.	1.1	4
344	Fostering ignorance to maintain public support: New Zealand's 2002–2004 urban aerial pesticide spraying operation over Auckland. Environmental Sociology, 2021, 7, 382-392.	1.7	3
345	Identification of a Novel Brevibacillus laterosporus Strain With Insecticidal Activity Against Aedes albopictus Larvae. Frontiers in Microbiology, 2021, 12, 624014.	1.5	12
346	Efficacy of polydimethylsiloxane against Culex pipiens (Diptera: Culicidae). Environmental Science and Pollution Research, 2021, 28, 39614-39624.	2.7	1

#	ARTICLE	IF	CITATIONS
347	Exploration of insecticidal potential of Cry protein purified from Bacillus thuringiensis VIID1. International Journal of Biological Macromolecules, 2021, 174, 362-369.	3.6	12
348	A review on biological interactions and management of the cotton bollworm, <i>Helicoverpa armigera</i> (Lepidoptera: Noctuidae). Journal of Applied Entomology, 2021, 145, 467-498.	0.8	37
349	Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Scientific Reports, 2021, 11, 5271.	1.6	6
350	Expression of the entomotoxic Cocculus hirsutus trypsin inhibitor (ChTI) gene in transgenic chickpea enhances its underlying resistance against the infestation of Helicoverpa armigera and Spodoptera litura. Plant Cell, Tissue and Organ Culture, 2021, 146, 41-56.	1.2	6
351	Distribution and toxicity of Bacillus thuringiensis (Berliner) strains from different crop rhizosphere in Indo-Gangetic plains against polyphagous lepidopteran pests. International Journal of Tropical Insect Science, 0, , 1.	0.4	3
352	Does refuge spillover affect arthropod food webs associated with Bt maize?. Pest Management Science, 2021, 77, 3088-3098.	1.7	7
353	Assessment of genetically modified soybean GMB151 for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSAâ€GMOâ€NLâ€2018â€153). EFSA Journal, 2021, 19, e06424.	0.9	3
354	Phylogeny of the Bacillus altitudinis Complex and Characterization of a Newly Isolated Strain with Antilisterial Activity. Journal of Food Protection, 2021, 84, 1321-1332.	0.8	1
355	Fused: a promising molecular target for an RNAi-based strategy to manage Bt resistance in Plutella xylostella (L.). Journal of Pest Science, 2022, 95, 101-114.	1.9	14
356	Entomopathogenic Fungi and Bacteria in a Veterinary Perspective. Biology, 2021, 10, 479.	1.3	12
357	CRISPR-mediated mutations in the ABC transporter gene ABCA2 confer pink bollworm resistance to Bt toxin Cry2Ab. Scientific Reports, 2021, 11, 10377.	1.6	23
358	Endophytic Bacillus Bacteria Living in Sugarcane Plant Tissues and Telchin licus licus Larvae (Drury) (Lepidoptera: Castniidae): The Symbiosis That May Open New Paths in the Biological Control. Frontiers in Microbiology, 2021, 12, 659965.	1.5	8
359	Evaluating Cross-Resistance to Cry and Vip Toxins in Four Strains of Helicoverpa armigera With Different Genetic Mechanisms of Resistance to Bt Toxin Cry1Ac. Frontiers in Microbiology, 2021, 12, 670402.	1.5	6
360	MAPK-Activated Transcription Factor PxJun Suppresses <i>PxABCB1</i> Expression and Confers Resistance to <i>Bacillus thuringiensis</i> Cry1Ac Toxin in <i>Plutella xylostella</i> (L.). Applied and Environmental Microbiology, 2021, 87, e0046621.	1.4	16
361	A Bacillus thuringiensis Cry protein controls soybean cyst nematode in transgenic soybean plants. Nature Communications, 2021, 12, 3380.	5.8	24
362	Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology, 2021, 175, 104837.	1.6	6
363	A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchemical Journal, 2021, 165, 106137.	2.3	9
364	Managing resistance evolution to transgenic Bt maize in corn borers in Spain. Critical Reviews in Biotechnology, 2021, , 1-19.	5.1	5

#	Article	IF	CITATIONS
365	ORFograph: search for novel insecticidal protein genes in genomic and metagenomic assembly graphs. Microbiome, 2021, 9, 149.	4.9	3
366	Can (We Make) Bacillus thuringiensis Crystallize More Than Its Toxins?. Toxins, 2021, 13, 441.	1.5	1
367	A cis-Acting Mutation in the PxABCG1 Promoter Is Associated with Cry1Ac Resistance in Plutella xylostella (L.). International Journal of Molecular Sciences, 2021, 22, 6106.	1.8	11
368	BtToxin_Digger: a comprehensive and high-throughput pipeline for mining toxin protein genes from <i>Bacillus thuringiensis</i> . Bioinformatics, 2021, 38, 250-251.	1.8	15
369	O gênero Bacillus aplicado ao controle biológico de doenças de plantas. Research, Society and Development, 2021, 10, e18110917817.	0.0	0
370	Do bio-insecticides affect only insect species? Behavior, regeneration, and sexual reproduction of a non-target freshwater planarian. Environmental Science and Pollution Research, 2022, 29, 10665-10674.	2.7	7
371	Cadherin Protein Is Involved in the Action of Bacillus thuringiensis Cry1Ac Toxin in Ostrinia furnacalis. Toxins, 2021, 13, 658.	1.5	10
372	Optimizing protein expression in heterologous system: Strategies and tools. Meta Gene, 2021, 29, 100899.	0.3	12
373	The regulation landscape of MAPK signaling cascade for thwarting Bacillus thuringiensis infection in an insect host. PLoS Pathogens, 2021, 17, e1009917.	2.1	37
374	Proteomic Analysis and Promoter Modification of Bacillus thuringiensis to Improve Insecticidal Vip3A Protein Production. Molecular Biotechnology, 2022, 64, 100-107.	1.3	1
375	Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the coâ€evolutionary battle. Pest Management Science, 2022, 78, 855-868.	1.7	8
376	Evaluation of the effect of transgenic Bt cotton on snails Bradybaena (Acusta) ravida and Bradybaena similaris (Ferussac). Ecotoxicology and Environmental Safety, 2021, 223, 112557.	2.9	1
377	Synergistic resistance of Helicoverpa armigera to Bt toxins linked to cadherin and ABC transporters mutations. Insect Biochemistry and Molecular Biology, 2021, 137, 103635.	1.2	13
378	MXene catalyzed Faraday cage-type electrochemiluminescence immunosensor for the detection of genetically modified crops. Sensors and Actuators B: Chemical, 2021, 346, 130549.	4.0	20
379	Evaluation of B. thuringiensis-based biopesticides in the primary production of fresh produce as a food safety hazard and risk. Food Control, 2021, 130, 108390.	2.8	14
380	Strategies for capturing Bacillus thuringiensis spores on surfaces of (001) GaAs-based biosensors. Talanta, 2022, 236, 122813.	2.9	4
382	Parasporal Crystal Toxins in Bacillus thuringiensis. , 2021, , 125-148.		1
384	Mass Production, Application and Market Development of Bacillus thuringiensis Biopesticides in China. , 2017, , 185-212.		2

#	Article	IF	CITATIONS
385	Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. Reference Series in Phytochemistry, 2020, , 925-952.	0.2	11
386	Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. Toxinology, 2018, , 15-27.	0.2	12
387	Mode of Action of Cry Toxins from Bacillus thuringiensis and Resistance Mechanisms. , 2016, , 1-13.		7
388	Scientific Research Related to Genetically Modified Trees. Forestry Sciences, 2014, , 525-548.	0.4	1
389	Regulatory Issues in Commercialization of Bacillus thuringiensis-Based Biopesticides. , 2016, , 69-80.		3
390	Plant Genetic Engineering and GM Crops: Merits and Demerits. , 2019, , 155-229.		4
391	Recent Trends in Plant- and Microbe-Based Biopesticide for Sustainable Crop Production and Environmental Security. Environmental and Microbial Biotechnology, 2021, , 1-37.	0.4	4
392	Successes and failures of transgenic Bt crops: global patterns of field-evolved resistance , 2015, , 1-14.		25
394	Bacillus and Other Aerobic Endospore-Forming Bacteria. , 0, , 441-461.		6
395	Evaluation of a Bacillus thuringiensis isolate-based formulation against the pod borer, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 2020, 30, .	0.8	7
396	Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein. PLoS Genetics, 2015, 11, e1005534.	1.5	155
397	Increased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China. PLoS ONE, 2012, 7, e29975.	1.1	84
398	The Halo Effect: Suppression of Pink Bollworm on Non-Bt Cotton by Bt Cotton in China. PLoS ONE, 2012, 7, e42004.	1.1	36
399	Enhanced Methanol Production in Plants Provides Broad Spectrum Insect Resistance. PLoS ONE, 2013, 8, e79664.	1.1	58
400	A Toxin-Binding Alkaline Phosphatase Fragment Synergizes Bt Toxin Cry1Ac against Susceptible and Resistant Helicoverpa armigera. PLoS ONE, 2015, 10, e0126288.	1.1	39
401	Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize. PLoS ONE, 2016, 11, e0156608.	1.1	35
402	Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. PLoS ONE, 2020, 15, e0228159.	1.1	11
403	The role and use of genetically engineered insect-resistant crops in integrated pest management systems. Burleigh Dodds Series in Agricultural Science, 2019, , 283-340.	0.1	4

#	Article	IF	CITATIONS
404	Isolation and Insecticidal Potential of Native Bacillus thuringiensis against Helicoverpa armigera and Spodoptera litura. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1330-1339.	0.0	4
405	The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Current Protein and Peptide Science, 2019, 20, 334-355.	0.7	4
406	Screening of vip1/vip2 binary toxin gene and its isolation and cloning from local Bacillus thuringiensis isolates. ScienceAsia, 2013, 39, 620.	0.2	14
407	Laboratory and field evaluation of two formulations of Bacillus thuringiensis M-H-14 against mosquito larvae in the Islamic Republic of Iran, 2012. Eastern Mediterranean Health Journal, 2014, 20, 229-235.	0.3	12
408	Modular Genetic Architecture of the Toxigenic Plasmid pIS56-63 Harboring cry1Ab21 in Bacillus thuringiensis subsp. thuringiensis strain IS5056. Polish Journal of Microbiology, 2014, 63, 147-156.	0.6	11
409	Independent and Synergistic Effects of Knocking out Two ABC Transporter Genes on Resistance to Bacillus thuringiensis Toxins Cry1Ac and Cry1Fa in Diamondback Moth. Toxins, 2021, 13, 9.	1.5	20
410	Fulminant phlegmonitis of the esophagus, stomach, and duodenum due to <i>Bacillus thuringiensis</i> . World Journal of Gastroenterology, 2015, 21, 3741.	1.4	7
411	Genetically Modified Crops: Insect Resistance. Biotechnology, 2012, 11, 119-126.	0.5	22
412	Bacillus thuringiensis: An Environment Friendly Microbial Control Agent. , 2012, 2, 36-51.		5
413	Bacillus-Based Biological Control of Plant Diseases. , 0, , .		91
413 414	Bacillus-Based Biological Control of Plant Diseases. , 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. PeerJ, 2019, 7, e7679.	0.9	91 1
413 414 415	Bacillus-Based Biological Control of Plant Diseases., 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. PeerJ, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis</i> HM7, isolated from manganese ore and its biosorption characteristics. PeerJ, 2020, 8, e8589.	0.9	91 1 15
413 414 415 416	Bacillus-Based Biological Control of Plant Diseases., 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. PeerJ, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis</i> HM7, isolated from manganese ore and its biosorption characteristics. PeerJ, 2020, 8, e8589. Neuropeptide F from endocrine cells in <i> Plutella xylostella</i> midgut modulatesÂfeeding and synergizes Cry1Ac action. Archives of Insect Biochemistry and Physiology, 2021, 108, e21845.	0.9 0.9 0.6	91 1 15 1
 413 414 415 416 417 	Bacillus-Based Biological Control of Plant Diseases., 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. Peerl, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis Bacirlus thuringiensis Neuropeptide F from endocrine cells in <i>Plutella xylostella</i> midgut modulatesÂfeeding and synergizes Cry1Ac action. Archives of Insect Biochemistry and Physiology, 2021, 108, e21845. Rhizosphere Microbiome Regulates the Crowth of Mustard under Organic Greenhouse Cultivation. Agriculture (Switzerland), 2021, 11, 987.</i>	0.9 0.9 0.6 1.4	91 1 15 1 2
 413 414 415 416 417 418 	Bacillus-Based Biological Control of Plant Diseases. , 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. Peerl, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis Neuropeptide F from endocrine cells in <i>Plutella xylostella Neuropeptide F from endocrine cells in <i>Plutella xylostella Rhizosphere Microbiome Regulates the Growth of Mustard under Organic Greenhouse Cultivation. Agriculture (Switzerland), 2021, 11, 987. Evidence of a shared binding site for <i>Bacillus thuringiensis Evidence of a shared binding site for <i>Cnaphalocrocis medinalis Anyo Cry2Aa Strains in <i>Cnaphalocrocis medinalis</i></i></i></i></i></i></i></i>	0.9 0.9 0.6 1.4	91 1 15 1 2 5
 413 414 415 416 417 418 419 	Bacillus-Based Biological Control of Plant Diseases. , 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. Peerl, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis</i> biosorption characteristics. Peerl, 2020, 8, e8589. Neuropeptide F from endocrine cells in <i>Plutella xylostella</i> mitgut modulatesÂfeeding and synergizes Cry1Ac action. Archives of Insect Biochemistry and Physiology, 2021, 108, e21845. Rhizosphere Microbiome Regulates the Growth of Mustard under Organic Greenhouse Cultivation. Agriculture (Switzerland), 2021, 11, 987. Evidence of a shared binding site for <i>Bacillus thuringiensis</i> cadherin. Insect Molecular Biology, 2022, 31, 101-114. Nanoparticle-loaded microcapsules providing effective UV protection for Cry1Ac. Journal of Microencapsulation, 2021, 38, 522-532.	0.9 0.9 0.6 1.4 1.0	91 1 15 1 2 5
 413 414 415 416 417 418 419 420 	Bacillus-Based Biological Control of Plant Diseases., 0, , . Arbuscular mycorrhizal fungi alter the food utilization, growth, development and reproduction of armyworm (Mythimna separata) fed on Bacillus thuringiensis maize. Peerl, 2019, 7, e7679. A high Mn(II)-tolerance strain, <i>Bacillus thuringiensis</i> HM7, isolated from manganese ore and its biosorption characteristics. Peerl, 2020, 8, e8589. Neuropeptide F from endocrine cells in <i>Plutella xylostella</i> midgut modulatesÂfeeding and synergizes Cry1Ac action. Archives of Insect Biochemistry and Physiology, 2021, 108, e21845. Rhizosphere Microbiome Regulates the Crowth of Mustard under Organic Greenhouse Cultivation. Agriculture (Switzerland), 2021, 11, 987. Evidence of a shared binding site for <i> Bacillus thuringiensis</i> cadherin. Insect Molecular Biology, 2022, 31, 101-114. Nanoparticle-loaded microcapsules providing effective UV protection for Cry1Ac. Journal of Microencapsulation, 2021, 38, 522-532. Characterization of CwlC, an autolysin, and its role in mother cell lysis of <i> Bacillus fluringiensis</i> cy22, 74, 92-102.	0.9 0.9 0.6 1.4 1.0 1.2	 91 1 15 2 5 4 4

#	Article	IF	CITATIONS
422	Encapsulation of Plant Biocontrol Bacteria with Alginate as a Main Polymer Material. International Journal of Molecular Sciences, 2021, 22, 11165.	1.8	94
423	Bacillus thuringiensis: An Environment Friendly Microbial Control Agent. Research Journal of Biological Sciences, 2011, 6, 615-626.	0.1	0
424	Draft Genome Sequence of <i>Bacillus thuringiensis</i> Strain S2160-1 with High Mosquitocidal Activity. Bt Research, 0, , .	0.0	0
425	Cadherin Characterization and Cytochrome Oxidase (COI) HRM Analysis in Different Geographical Populations of the Mediterranean Corn Borer, Sesamia nonagrioides. Journal of Agricultural Science, 2013, 6, .	0.1	0
426	Actividad biológica de <i>Bacillus thuringiensis</i> sobre la polilla guatemalteca de la papa, <i>Tecia solanivora</i> Povolny (Lepidoptera: Gelechiidae). Mutis, 2013, 3, 31-42.	0.1	3
427	Responses to Phytophagous Arthropods. Biotechnology in Agriculture and Forestry, 2014, , 237-248.	0.2	1
428	Cloning and expression of a novel cry gene that is potentially active against nematodes. African Journal of Microbiology Research, 2014, 8, 1017-1025.	0.4	1
429	Chapter 13: Bacillus Thuringiensis and Insect Pest Management. , 2016, , 331-370.		0
430	BIOASSAY OF EFFICACY OF FIVE ISOLATES OF BACILLUS THURINGIENSIS SSP. KURSTAKI AGAINST LARVAE OF THE SPOTTED BOLLWORM (ERIAS VITTELLA) ON OKRA [ABELMOSCHUS ESCULENTUS L. (MOENCH)]. Journal of Biological and Scientific Opinion, 2017, 4, 188-192.	0.1	0
431	A New Frontier for Biological Control against Plant Pathogenic Nematodes and Insect Pests I: By Microbes. Research in Plant Disease, 2017, 23, 114-149.	0.3	6
432	Biocontrol potential of Bacillus thuringiensis var. aizawai and Metarhizium anisopliae SPW isolate against insect pests of pechay and lettuce grown under protected and open field cultivation. Annals of Tropical Research, 2017, , 69-79.	0.1	0
433	Ocena wiedzy i postaw rolników na temat upraw genetycznie zmodyfikowanych organizmów. Roczniki Naukowe Ekonomii Rolnictwa I Rozwoju Obszarów Wiejskich, 2018, 105, 140-158.	0.2	1
434	War against old world bollworm, helicoverpa armigera (HUBNER): past, present and future. Progressive Agriculture, 2019, 19, 186.	0.1	0
435	Soil Microbes for Sustainable Agriculture. , 2019, , 339-382.		5
437	Differential proteolytic activation of the <i>Bacillus thuringiensis</i> Cry41Aa parasporin modulates its anticancer effect. Biochemical Journal, 2019, 476, 3805-3816.	1.7	1
438	GENETIC TRANSFORMATION OF PLANTS CONTAINING THE SYNTHETIC cry1Ab GENE ENCODING RESISTANCE TO LEPIDOPTERAN PESTS. Biotechnologia Acta, 2019, 12, 56-64.	0.3	0
439	Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Microbiology Spectrum, 2021, 9, e0060421.	1.2	1
440	Cellular Localization of Exogenous Cry1Ab/c and its Interaction with Plasma Membrane Ca2+-ATPase in Transgenic Rice. Frontiers in Bioengineering and Biotechnology, 2021, 9, 759016.	2.0	3

	CITATION REF	PORT	
#	Article	IF	CITATIONS
441	Genetically Modified (GM) Crops Harbouring Bacillus thuringiensis (BT) Gene(S) to Combat Biotic Stress Caused by Insect Pests. Environmental and Microbial Biotechnology, 2020, , 21-61.	0.4	3
442	Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva. Research in Plant Disease, 2020, 26, 210-221.	0.3	0
443	Inductive and synergistic interactions between plant allelochemical flavone and Bt toxin Cry1Ac in Helicoverpa armigera. Insect Science, 2021, 28, 1756-1765.	1.5	5
444	Insect resistance management in Bacillus thuringiensis cotton by MGPS (multiple genes pyramiding and) Tj ETQq1	1.0.7843 1.0	314 rgBT /⊖ 14
445	Pesticides Bring the War on Nature to the Chesapeake Bay. Estuaries of the World, 2020, , 199-217.	0.1	2
446	Environmental Analytical and Ecotoxicological Aspects of Bt Maize in the Pannonian Biogeographical Region of the European Union. Topics in Biodiversity and Conservation, 2020, , 149-172.	0.3	0
447	Temporal and Spatial Dynamics of Microbial Communities in a Genetically Modified Rice Ecosystem. , 2020, , 179-207.		0
449	Toxicity of Bacillus thuringiensis at different larval ages of Agrotis ipsilon (Lepidoptera: Noctuidae). Revista De Ciencias Agroveterinarias, 2020, 19, 118-121.	0.0	0
450	Whole Genome Sequencing Analysis of Bacillus thuringiensis GR007 Reveals Multiple Pesticidal Protein Genes. Frontiers in Microbiology, 2021, 12, 758314.	1.5	5
452	Bacillus thuringiensis based biopesticides for integrated crop management. , 2022, , 1-6.		3
453	Bacillus thuringiensis, a remarkable biopesticide. , 2022, , 117-131.		1
454	Bt Cry1Ac resistance in Trichoplusia ni is conferred by multi-gene mutations. Insect Biochemistry and Molecular Biology, 2022, 140, 103678.	1.2	10
455	Adoption of Bacillus thuringiensis-based biopesticides in agricultural systems and new approaches to improve their use in Brazil. Biological Control, 2022, 165, 104792.	1.4	19
456	Development of a high resolution melting method based on a novel molecular target for discrimination between Bacillus cereus and Bacillus thuringiensis. Food Research International, 2022, 151, 110845.	2.9	10
457	Dynamic monitoring of the impact of insect-resistant transgenic poplar field stands on arthropod communities. Forest Ecology and Management, 2022, 505, 119921.	1.4	3
458	Bacillus thuringiensis Proteins: Structure, Mechanism and Biological Control of Insect Pests. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 581-608.	0.6	3
460	MAP4K4 controlled transcription factor POUM1 regulates PxABCG1 expression influencing Cry1Ac resistance in Plutella xylostella (L.). Pesticide Biochemistry and Physiology, 2022, 182, 105053.	1.6	11
461	A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biology, 2022, 20, 33.	1.7	26

		ATION REPORT	
#	Article	IF	Citations
462	A deep learning model to detect novel pore-forming proteins. Scientific Reports, 2022, 12, 2013.	1.6	0
463	Important alien and potential native invasive insect pests of key fruit trees in Sub-Saharan Africa: advances in sustainable pre- and post-harvest management approaches. CABI Agriculture and Bioscience, 2022, 3, .	1.1	5
464	Potato resistance against insect herbivores. , 2022, , 277-296.		1
465	Production of Bacillus Thuringiensis Bioinsecticide Using Penicillium Fermentation Waste and Application in Agriculture. SSRN Electronic Journal, 0, , .	0.4	0
466	Role of Microbial Biopesticides as an Alternative to Insecticides in Integrated Pest Management of Cotton Pests. , 0, , .		0
467	Perspectives for integrated insect pest protection in oilseed rape breeding. Theoretical and Applied Genetics, 2022, 135, 3917-3946.	1.8	11
468	Targeting delta-endotoxin (Cry1Ac) of Bacillus thuringiensis to subcellular compartments increases the protein expression, stability, and biological activity. International Journal of Biological Macromolecules, 2022, 205, 185-192.	3.6	0
469	Photochemical effect of silver nanoparticles on flesh fly larval biological system. Acta Histochemica, 2022, 124, 151871.	0.9	7
470	Bio controlled efficacy of Bacillus thuringiensis cry protein protection against tomato fruit borer Helicoverpa armigera in a laboratory environment. Physiological and Molecular Plant Pathology, 2022, 119, 101827.	1.3	2
471	Genetic Modification Approaches for Parasporins Bacillus thuringiensis Proteins with Anticancer Activity. Molecules, 2021, 26, 7476.	1.7	1
472	Genome evolution in an agricultural pest following adoption of transgenic crops. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
473	The RNA Chaperone Protein Hfq Regulates the Characteristic Sporulation and Insecticidal Activity of Bacillus thuringiensis. Frontiers in Microbiology, 2022, 13, 884528.	1.5	0
483	Green Revolution to Gene Revolution: Technological Advances in Agriculture to Feed the World. Plants, 2022, 11, 1297.	1.6	10
484	The Effect of Silicon Dioxide Nanoparticles Combined with Entomopathogenic Bacteria or Fungus on the Survival of Colorado Potato Beetle and Cabbage Beetles. Nanomaterials, 2022, 12, 1558.	1.9	9
485	Bt Cry1Ab/2Ab toxins disrupt the structure of the gut bacterial community of Locusta migratoria through host immune responses. Ecotoxicology and Environmental Safety, 2022, 238, 113602.	2.9	6
486	Foliar application of clay-delivered RNA interference for whitefly control. Nature Plants, 2022, 8, 535-548.	4.7	65
487	Transcriptional Analysis of Cotton Bollworm Strains with Different Genetic Mechanisms of Resistance and Their Response to Bacillus thuringiensis Cry1Ac Toxin. Toxins, 2022, 14, 366.	1.5	2
488	Microbial spore genetic marker technology, a potential technology for traditional Chinese medicine traceability system. Chinese Medicine, 2022, 17, .	1.6	5

#	Article	IF	CITATIONS
489	Control of a sap-sucking insect pest by plastid-mediated RNA interference. Molecular Plant, 2022, 15, 1176-1191.	3.9	18
491	RNA Interference-Mediated Knockdown of Bombyx mori Haemocyte-Specific Cathepsin L (Cat L)-Like Cysteine Protease Gene Increases Bacillus thuringiensis kurstaki Toxicity and Reproduction in Insect Cadavers. Toxins, 2022, 14, 394.	1.5	8
492	Bacillus thuringiensis-Based Bioproduct: Characterization and Performance Against Spodoptera frugiperda Strains in Maize Under Different Environmental Temperatures. Neotropical Entomology, 2023, 52, 283-291.	0.5	1
493	Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae: Spilomelinae)'ten izole edilen cry1, cry3 ve cry4 genlerini içeren yerel Bacillus thuringiensis (Berliner, 1915) (Bacteria: Bacillaceae) bakterisine ait insektisidal aktivite. Turkiye Entomoloji Dergisi, 2022, 46, 227-237.	0.1	1
494	Invertebrate neurones, genomes, phenotypic and target-based screening: Their contributions to the search for new chemical leads and new molecular targets for the control of pests, parasites and disease vectors. Pesticide Biochemistry and Physiology, 2022, , 105175.	1.6	0
496	Three strategies of transgenic manipulation for crop improvement. Frontiers in Plant Science, 0, 13, .	1.7	5
497	Generation of Human Domain Antibody Fragments as Potential Insecticidal Agents against <i>Helicoverpa armigera</i> by Cadherin-Based Screening. Journal of Agricultural and Food Chemistry, 2022, 70, 11510-11519.	2.4	2
498	Mining versus <i>in vitro</i> evolution for the selection of novel microbial insecticidal proteins. Microbial Biotechnology, 2022, 15, 2518-2520.	2.0	2
499	Production of Bacillus thuringiensis biopesticide using penicillin fermentation waste matter and application in agriculture. , 2022, 2, 100012.		3
500	Microbe-Based Pesticides for Insect Pest Control and Their Management. , 2022, , 165-176.		1
502	Utilization of Agroindustrial by Product for Bioinsecticide Production. Springer Proceedings in Physics, 2022, , 507-515.	0.1	0
503	Effect of bacterial toxin identified from the <i>Bacillus subtilis</i> against the <i>Cnaphalocrocis medinalis</i> Guenée (Lepidoptera: Crambidae). Toxin Reviews, 2023, 42, 264-274.	1.5	4
504	Gene Pyramiding in Transgenic Plant Development: Approaches and Challenges. Journal of Plant Growth Regulation, 2023, 42, 6038-6056.	2.8	6
506	Knockout of ABC transporter gene ABCA2 confers resistance to Bt toxin Cry2Ab in Helicoverpa zea. Scientific Reports, 2022, 12, .	1.6	8
507	Commercial and Technological Aspects of Bacillus spp. PGPR. , 2022, , 277-288.		0
508	Rhizosphere Microbiome: Significance in Sustainable Crop Protection. Microorganisms for Sustainability, 2022, , 283-309.	0.4	1
509	Transgenics and Crop Improvement. , 2022, , 131-347.		0
510	The clock gene, period, influences migratory flight and reproduction of the oriental armyworm, <i>Mythimna separata</i> Â(Walker). Insect Science, 2023, 30, 650-660.	1.5	2

#	Article	IF	CITATIONS
511	RNA Interference of Phenoloxidases of the Fall Armyworm, Spodoptera frugiperda, Enhance Susceptibility to Bacillus thuringiensis Protein Vip3Aa19. Insects, 2022, 13, 1041.	1.0	1
512	Btâ€maize in neotropical arthropod food webs: communityâ€stress or lack thereof?. Entomologia Experimentalis Et Applicata, 2023, 171, 116-128.	0.7	3
513	Root-associated bacteria Bacillus albus and Bacillus proteolyticus promote the growth of peanut seedlings and protect them from the aflatoxigenic Aspergillus flavus CDP2. Biocatalysis and Agricultural Biotechnology, 2023, 47, 102582.	1.5	3
514	Transgenic Improvement for Biotic Resistance of Crops. International Journal of Molecular Sciences, 2022, 23, 14370.	1.8	2
515	Abundance, distribution, and expression of nematicidal crystal protein genes in Bacillus thuringiensis strains from diverse habitats. International Microbiology, 2023, 26, 295-308.	1.1	0
516	A major conformational change of Nâ€ŧerminal helices of <i>Bacillus thuringiensis</i> <scp>Cry1Ab</scp> insecticidal protein is necessary for membrane insertion and toxicity. FEBS Journal, 2023, 290, 2692-2705.	2.2	6
517	Genome-Wide Identification of Brassica napus PEN1-LIKE Genes and Their Expression Profiling in Insect-Susceptible and Resistant Cultivars. Current Issues in Molecular Biology, 2022, 44, 6385-6396.	1.0	0
518	Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on Microbiome. Microorganisms, 2023, 11, 224.	1.6	6
519	Silencing an aphid-specific gene SmDSR33 for aphid control through plant-mediated RNAi in wheat. Frontiers in Plant Science, 0, 13, .	1.7	3
520	Monitoring Insect Resistance to Bt Maize in the European Union: Update, Challenges, and Future Prospects. Journal of Economic Entomology, 2023, 116, 275-288.	0.8	9
521	Insecticidal activity of Bacillus thuringiensis strains isolated from tropical greenhouses towards Cydia pomonella and Spodoptera exigua larvae. BioControl, 2023, 68, 39-48.	0.9	1
522	The need of regulations for GM crops and products thereof. , 2023, , 15-30.		1
523	Processing Properties and Potency of Bacillus thuringiensis Cry Toxins in the Rice Leaffolder Cnaphalocrocis medinalis (Guenée). Toxins, 2023, 15, 275.	1.5	0
524	More than 10Âyears after commercialization, Vip3A-expressing MIR162 remains highly efficacious in controlling major Lepidopteran maize pests: laboratory resistance selection versus field reality. Pesticide Biochemistry and Physiology, 2023, 192, 105385.	1.6	6
525	A 90-day rodent feeding study with grain for genetically modified maize L4 conferring insect resistance and glyphosate tolerance. Food and Chemical Toxicology, 2023, 176, 113733.	1.8	2
528	Achieving And Maintaining Beer Quality. , 2013, , 278-321.		0
529	Biochemical limitations of Bacillus thuringiensis based biopesticides production in a wheat bran culture medium. Research in Microbiology, 2023, 174, 104043.	1.0	3
530	Managing Practical Resistance of Lepidopteran Pests to Bt Cotton in China. Insects, 2023, 14, 179.	1.0	4

#	Article	IF	CITATIONS
531	Chromosome-scale genome assembly of the pink bollworm, <i>Pectinophora gossypiella</i> , a global pest of cotton. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	2
532	A novel binary pesticidal protein from Chryseobacterium arthrosphaerae controls western corn rootworm by a different mode of action to existing commercial pesticidal proteins. PLoS ONE, 2023, 18, e0267220.	1.1	2
533	Molecular Genetic Basis of Lab- and Field-Selected Bt Resistance in Pink Bollworm. Insects, 2023, 14, 201.	1.0	12
534	Inheritance and Fitness Costs of Laboratory-Selected Resistance to Gpp34/Tpp35Ab1 Corn in Western Corn Rootworm (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 2023, 116, 565-573.	0.8	2
536	Root exudate concentrations of indole-3-acetic acid (IAA) and abscisic acid (ABA) affect maize rhizobacterial communities at specific developmental stages. FEMS Microbiology Ecology, 2023, 99, .	1.3	7
537	Genomic–proteomic analysis of a novel Bacillus thuringiensis strain: toxicity against two lepidopteran pests, abundance of Cry1Ac5 toxin, and presence of InhA1 virulence factor. Archives of Microbiology, 2023, 205, .	1.0	2
538	Response of the Pardosa astrigera bacterial community to Cry1B protein. Ecotoxicology and Environmental Safety, 2023, 256, 114855.	2.9	1
539	Biotechnological advances in Bacillus thuringiensis and its toxins: Recent updates. Reviews in Environmental Science and Biotechnology, 2023, 22, 319-348.	3.9	5
540	Insect chaperones Hsp70 and Hsp90 cooperatively enhance toxicity of Bacillus thuringiensis Cry1A toxins and counteract insect resistance. Frontiers in Immunology, 0, 14, .	2.2	2
555	Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Functional and Integrative Genomics, 2023, 23, .	1.4	0
557	Diversity of transgenes in sustainable management of insect pests. Transgenic Research, 0, , .	1.3	1
558	Bacillus secondary metabolites and their applications in agriculture. , 2024, , 239-258.		0
559	Mode of action of Bacillus thuringiensis Cry pesticidal proteins. Advances in Insect Physiology, 2023, , 55-92.	1.1	1
564	Beyond Bacillus thuringiensis: New insecticidal proteins with potential applications in agriculture. Advances in Insect Physiology, 2023, , 185-233.	1.1	1
565	Mechanisms and molecular genetics of insect resistance to insecticidal proteins from Bacillus thuringiensis. Advances in Insect Physiology, 2023, , .	1.1	0
581	Functional co-expression of LEA peptides: Providing an environment for efficient cellular recombinant protein expression. Methods in Microbiology, 2024, , 273-286.	0.4	0
582	Bacillus and Related Genera on Biocontrol of Insects and Nematodes. Microorganisms for Sustainability, 2024, , 151-164.	0.4	0
586	Microorganisms as biofactories of powerful agents against plant diseases. , 2024, , 1-15.		0

#	Article	IF	CITATIONS
589	Plant-Parasitic Nematodes and Microbe Interactions: A Biological Control Perspective. Sustainability in Plant and Crop Protection, 2024, , 89-126.	0.2	0
594	Plant Recombinant Gene Technology for Pest Control in the Twenty-First Century: From Simple Transgenesis to CRISPR/Cas. , 2024, , 17-72.		0