The Many Substrates of Presenilin/ \hat{I}^3 -Secretase

Journal of Alzheimer's Disease 25, 3-28 DOI: 10.3233/jad-2011-101065

Citation Report

#	Article	IF	CITATIONS
1	Dissociation between the Processivity and Total Activity of Î ³ -Secretase: Implications for the Mechanism of Alzheimer's Disease-Causing Presenilin Mutations. Biochemistry, 2011, 50, 9023-9035.	1.2	110
2	Key Enzymes and Proteins in Amyloid-Beta Production and Clearance. , 0, , .		1
3	Substrate Sequence Influences Î ³ -Secretase Modulator Activity, Role of the Transmembrane Domain of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2011, 286, 39794-39803.	1.6	31
4	The Cytosolic Domain of Protein-tyrosine Kinase 7 (PTK7), Generated from Sequential Cleavage by a Disintegrin and Metalloprotease 17 (ADAM17) and Î ³ -Secretase, Enhances Cell Proliferation and Migration in Colon Cancer Cells. Journal of Biological Chemistry, 2012, 287, 25001-25009.	1.6	56
5	Is the Amyloid Hypothesis of Alzheimer's disease therapeutically relevant?. Biochemical Journal, 2012, 446, 165-177.	1.7	89
7	γ-Secretase as a Target for Alzheimer's Disease. Advances in Pharmacology, 2012, 64, 127-153.	1.2	61
8	Instigation of Notch signaling in the pathogenesis of Kaposi's sarcoma-associated herpesvirus and other human tumor viruses. Future Microbiology, 2012, 7, 1191-1205.	1.0	10
9	First and Second Generation Î ³ -Secretase Modulators (GSMs) Modulate Amyloid-Î ² (AÎ ²) Peptide Production through Different Mechanisms. Journal of Biological Chemistry, 2012, 287, 11810-11819.	1.6	67
10	Conditional Deletion of Notch1 and Notch2 Genes in Excitatory Neurons of Postnatal Forebrain Does Not Cause Neurodegeneration or Reduction of Notch mRNAs and Proteins. Journal of Biological Chemistry, 2012, 287, 20356-20368.	1.6	28
11	Canonical and Non-Canonical Notch Signaling in CD4+ T Cells. Current Topics in Microbiology and Immunology, 2012, 360, 99-114.	0.7	42
12	Notch Signaling during Oogenesis in <i>Drosophila melanogaster</i> . Genetics Research International, 2012, 2012, 1-10.	2.0	25
13	Role of RanBP9 on amyloidogenic processing of APP and synaptic protein levels in the mouse brain. FASEB Journal, 2012, 26, 2072-2083.	0.2	30
14	Alzheimer's Disease: Presenilin 2-Sparing γ-Secretase Inhibition Is a Tolerable Aβ Peptide-Lowering Strategy. Journal of Neuroscience, 2012, 32, 17297-17305.	1.7	43
15	Advances in the identification of γ-secretase inhibitors for the treatment of Alzheimer's disease. Expert Opinion on Drug Discovery, 2012, 7, 19-37.	2.5	45
16	Discoveries in Down syndrome. Progress in Brain Research, 2012, 197, 199-221.	0.9	24
17	Loss of RBPj in Postnatal Excitatory Neurons Does Not Cause Neurodegeneration or Memory Impairments in Aged Mice. PLoS ONE, 2012, 7, e48180.	1.1	22
18	Molecular Pathways of Notch Signaling in Vascular Smooth Muscle Cells. Frontiers in Physiology, 2012, 3, 81.	1.3	82
19	The physiology of the βâ€amyloid precursor protein intracellular domain AICD. Journal of Neurochemistry, 2012, 120, 109-124.	2.1	130

#	Article	IF	CITATIONS
20	γ‣ecretase inhibitors and modulators for Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 89-98.	2.1	119
21	Nuclear signalling by membrane protein intracellular domains: The AICD enigma. Cellular Signalling, 2012, 24, 402-409.	1.7	71
22	Development of clickable active site-directed photoaffinity probes for Î ³ -secretase. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2997-3000.	1.0	27
23	Design and synthesis of dihydrobenzofuran amides as orally bioavailable, centrally active γ-secretase modulators. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2906-2911.	1.0	29
24	Activation of the Î ³ -secretase complex and presence of Î ³ -secretase-activating protein may contribute to Aβ42 production in sporadic inclusion-body myositis muscle fibers. Neurobiology of Disease, 2012, 48, 141-149.	2.1	11
25	The Development of an in vivo γ-Secretase Assay using Zebrafish Embryos. Journal of Alzheimer's Disease, 2013, 36, 521-534.	1.2	11
26	Striking reduction of amyloid plaque burden in an Alzheimer's mouse model after chronic administration of carmustine. BMC Medicine, 2013, 11, 81.	2.3	40
27	Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1163-1174.	2.2	29
28	Notch signaling and its emerging role in autoimmunity. Frontiers in Biology, 2013, 8, 279-294.	0.7	4
29	Biological function of Presenilin and its role in AD pathogenesis. Translational Neurodegeneration, 2013, 2, 15.	3.6	68
30	Radiation-Induced Notch Signaling in Breast Cancer Stem Cells. International Journal of Radiation Oncology Biology Physics, 2013, 87, 609-618.	0.4	55
31	A fast growing spectrum of biological functions of Î ³ -secretase in development and disease. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2815-2827.	1.4	120
32	Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation. Journal of Biological Chemistry, 2013, 288, 35222-35236.	1.6	12
33	Proteases: Structure and Function. , 2013, , .		31
34	Transcriptional regulation and its misregulation in Alzheimer's disease. Molecular Brain, 2013, 6, 44.	1.3	55
35	Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model. Alzheimer's Research and Therapy, 2013, 5, 51.	3.0	45
36	Lysosomal Membrane Proteins and Their Central Role in Physiology. Traffic, 2013, 14, 739-748.	1.3	175
37	Orally bioavailable and brain-penetrant pyridazine and pyridine-derived γ-secretase modulators reduced amyloidogenic Al² peptides inÂvivo. Neuropharmacology, 2013, 70, 278-286.	2.0	10

#	Article	IF	CITATIONS
38	Epidermal growth factor regulates NIKS keratinocyte proliferation through Notch signaling. Journal of Surgical Research, 2013, 185, 6-11.	0.8	12
39	BACE1 and presenilin/γâ€secretase regulate proteolytic processing of KCNE1 and 2, auxiliary subunits of voltageâ€gated potassium channels. FASEB Journal, 2013, 27, 2458-2467.	0.2	40
40	Effect of Helical Conformation and Side Chain Structure on Î ³ -Secretase Inhibition by β-Peptide Foldamers: Insight into Substrate Recognition. Journal of Medicinal Chemistry, 2013, 56, 1443-1454.	2.9	24
41	Ubiquilin-1 Modulates γ-Secretase-Mediated ε-Site Cleavage in Neuronal Cells. Biochemistry, 2013, 52, 3899-3912.	1.2	14
42	Uscovery of (<i>R</i>)-4-Cyclopropyl-7,8-difluoro-5-(4-(trifluoromethyl)phenylsulfonyl)-4,5-dihydro-1 <i>H</i> -pyrazolo[4,3- <i (ELND006) and (<i>R</i>)-4-Cyclopropyl-8-fluoro-5-(6-(trifluoromethyl)pyridin-3-ylsulfonyl)-4,5-dihydro-2<i>H</i>-pyrazolo[4,3-< (ELND007): Metabolically Stable Î³-Secretase Inhibitors that Selectively Inhibit the Production of</i 	>c]qu i>c]qu	inoline 1100line
43	Ámyloid-β over Notch. Journal of Medicinal Chemistry, 2013, 56, 526Í-5274. Development and Mechanism of γ-Secretase Modulators for Alzheimer's Disease. Biochemistry, 2013, 52, 3197-3216.	1.2	158
44	Î ³ -Secretase inhibitors and modulators. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2898-2907.	1.4	238
45	Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. Journal of Experimental Medicine, 2013, 210, 1311-1329.	4.2	67
46	Molecular Differences and Similarities between Alzheimer's Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. Biochemistry Insights, 2013, 6, BCI.S13025.	3.3	48
47	Highly efficient production of the Alzheimer's γâ€Secretase integral membrane protease complex by a multiâ€gene stable integration approach. Biotechnology and Bioengineering, 2013, 110, 1995-2005.	1.7	26
48	Presenilin 2 influences miR146 level and activity in microglia. Journal of Neurochemistry, 2013, 127, 592-599.	2.1	60
49	The Role of γ-Secretase Activating Protein (CSAP) and Imatinib in the Regulation of γ-Secretase Activity and Amyloid-β Generation. Journal of Biological Chemistry, 2013, 288, 2521-2531.	1.6	42
50	A Receptor-Specific Function for Notch2 in Mediating Vascular Smooth Muscle Cell Growth Arrest Through Cyclin-dependent Kinase Inhibitor 1B. Circulation Research, 2013, 113, 975-985.	2.0	39
51	Î ³ -Secretase Modulator (GSM) Photoaffinity Probes Reveal Distinct Allosteric Binding Sites on Presenilin. Journal of Biological Chemistry, 2013, 288, 9710-9720.	1.6	93
52	A New Sandwich Immunoassay for Detection of the α-Secretase Cleaved, Soluble Amyloid-β Protein Precursor in Cerebrospinal Fluid and Serum. Journal of Alzheimer's Disease, 2013, 37, 667-678.	1.2	9
53	Effects of the Î ³ -secretase inhibitor semagacestat on hippocampal neuronal network oscillation. Frontiers in Pharmacology, 2013, 4, 72.	1.6	10
54	Identification and Preclinical Pharmacology of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">1³</mml:mi </mml:mrow>-Secretase Modulator BMS-869780. International Journal of Alzheimer's Disease, 2014, 2014, 1-22.</mml:math 	1.1	12
55	GSI promotes vincristine-induced apoptosis by enhancing multi-polar spindle formation. Cell Cycle, 2014, 13, 157-166.	1.3	7

#	Article	IF	CITATIONS
56	Long-term depression-inducing stimuli promote cleavage of the synaptic adhesion molecule NGL-3 through NMDA receptors, matrix metalloproteinases and presenilin/l³-secretase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130158.	1.8	29
57	Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity. Cell Communication and Signaling, 2014, 12, 63.	2.7	40
58	A Synthetic Antibody Fragment Targeting Nicastrin Affects Assembly and Trafficking of Î ³ -Secretase. Journal of Biological Chemistry, 2014, 289, 34851-34861.	1.6	6
59	BACE1 Inhibitors: Attractive Therapeutics for Alzheimer's Disease. , 2014, , 518-546.		0
60	Successful therapies for Alzheimerââ,¬â"¢s disease: why so many in animal models and none in humans?. Frontiers in Pharmacology, 2014, 5, 146.	1.6	138
61	Unlocking truths of γ-secretase in Alzheimer's disease: what is the translational potential?. Future Neurology, 2014, 9, 419-429.	0.9	12
62	The E280A Presenilin Mutation Reduces Voltage-Gated Sodium Channel Levels in Neuronal Cells. Neurodegenerative Diseases, 2014, 13, 64-68.	0.8	3
63	Function and Dysfunction of Presenilin. Neurodegenerative Diseases, 2014, 13, 61-63.	0.8	32
64	Vesicular Trafficking of Incoming Human Papillomavirus 16 to the Golgi Apparatus and Endoplasmic Reticulum Requires I ³ -Secretase Activity. MBio, 2014, 5, e01777-14.	1.8	74
65	Gamma-secretase subunits associate in intracellular membrane compartments in Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 3015-3027.	2.4	21
66	[³ H]‣685,458 Binding Sites are Abundant in Multiple Peripheral Organs in Rats: Implications for Safety Assessment of Putative γ‧ecretase Targeting Drugs. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 518-526.	1.2	3
67	UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport. Journal of Neuroscience, 2014, 34, 3320-3339.	1.7	37
68	Dictyostelium, a microbial model for brain disease. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1413-1432.	1.1	25
69	Presenilin-1 Regulates the Expression of p62 to Govern p62-dependent Tau Degradation. Molecular Neurobiology, 2014, 49, 10-27.	1.9	11
70	Insights into the physiological function of the βâ€amyloid precursor protein: beyond Alzheimer's disease. Journal of Neurochemistry, 2014, 129, 756-769.	2.1	202
71	Engineering of Midbrain Organoids Containing Long-Lived Dopaminergic Neurons. Stem Cells and Development, 2014, 23, 1535-1547.	1.1	95
72	Design, Synthesis, and Pharmacological Evaluation of a Novel Series of Pyridopyrazine-1,6-dione γ-Secretase Modulators. Journal of Medicinal Chemistry, 2014, 57, 1046-1062.	2.9	25
73	Alzheimer Presenilin-1 Mutations Dramatically Reduce Trimming of Long Amyloid β-Peptides (Aβ) by γ-Secretase to Increase 42-to-40-Residue Aβ. Journal of Biological Chemistry, 2014, 289, 31_043-31052.	1.6	121

#	Article	IF	CITATIONS
74	Inactivation of brain Cofilin-1 by age, Alzheimer's disease and Î ³ -secretase. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 2500-2509.	1.8	50
75	Shedding of glycanâ€modifying enzymes by signal peptide peptidaseâ€like 3 (<scp>SPPL</scp> 3) regulates cellular Nâ€glycosylation. EMBO Journal, 2014, 33, 2890-2905.	3.5	81
76	Submersion and Hypoxia Inhibit Ciliated Cell Differentiation in a Notch-Dependent Manner. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 516-525.	1.4	68
77	Nuclear Translocation Uncovers the Amyloid Peptide Aβ42 as a Regulator of Gene Transcription*. Journal of Biological Chemistry, 2014, 289, 20182-20191.	1.6	65
78	The 4 Notch receptors play distinct and antagonistic roles in the proliferation and hepatocytic differentiation of liver progenitors. FASEB Journal, 2014, 28, 603-614.	0.2	34
79	Crystal structure of the γ-secretase component nicastrin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13349-13354.	3.3	59
80	Podoplanin is a substrate of presenilin-1/γ-secretase. International Journal of Biochemistry and Cell Biology, 2014, 46, 68-75.	1.2	18
81	Regulated Proteolysis of NOTCH2 and NOTCH3 Receptors by ADAM10 and Presenilins. Molecular and Cellular Biology, 2014, 34, 2822-2832.	1.1	72
82	The γ-secretase complex: from structure to function. Frontiers in Cellular Neuroscience, 2014, 8, 427.	1.8	123
83	Pharmacological targeting of the β-amyloid precursor protein intracellular domain. Scientific Reports, 2014, 4, 4618.	1.6	19
84	Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Research and Therapy, 2015, 17, 126.	1.6	18
85	Complex regulation of γ-secretase: from obligatory to modulatory subunits. Frontiers in Aging Neuroscience, 2014, 6, 342.	1.7	51
86	The Notch Signaling Regulates CD105 Expression, Osteogenic Differentiation and Immunomodulation of Human Umbilical Cord Mesenchymal Stem Cells. PLoS ONE, 2015, 10, e0118168.	1.1	28
87	A γ-Secretase Inhibitor, but Not a γ-Secretase Modulator, Induced Defects in BDNF Axonal Trafficking and Signaling: Evidence for a Role for APP. PLoS ONE, 2015, 10, e0118379.	1.1	37
88	Twenty Years of Presenilins—Important Proteins in Health and Disease. Molecular Medicine, 2015, 21, S41-S48.	1.9	5
89	γ-Secretase Inhibitors and Modulators Induce Distinct Conformational Changes in the Active Sites of γ-Secretase and Signal Peptide Peptidase. ACS Chemical Biology, 2015, 10, 1925-1931.	1.6	14
90	Chemical Modulators of Protein Misfolding, Neurodegeneration and Tau. , 2015, , 1-23.		1
91	γ-Secretase modulators reduce endogenous amyloid β ₄₂ levels in human neural progenitor cells without altering neuronal differentiation. FASEB Journal, 2015, 29, 3335-3341.	0.2	10

#	ARTICLE	IF	CITATIONS
92	Gamma-secretase-independent role for cadherin-11 in neurotrophin receptor p75 (p75NTR) mediated glioblastoma cell migration. Molecular and Cellular Neurosciences, 2015, 69, 41-53.	1.0	19
93	Emerging roles of the Î ³ -secretase-notch axis in inflammation. , 2015, 147, 80-90.		24
94	Metabolic Regulation of the Ultradian Oscillator Hes1 by Reactive Oxygen Species. Journal of Molecular Biology, 2015, 427, 1887-1902.	2.0	11
95	Differential roles of Aβ processing in hypoxia-induced axonal damage. Neurobiology of Disease, 2015, 77, 94-105.	2.1	5
96	Catalytic Properties of Intramembrane Aspartyl Protease Substrate Hydrolysis Evaluated Using a FRET Peptide Cleavage Assay. ACS Chemical Biology, 2015, 10, 2166-2174.	1.6	13
97	Design of Pyridopyrazine-1,6-dione γ-Secretase Modulators that Align Potency, MDR Efflux Ratio, and Metabolic Stability. ACS Medicinal Chemistry Letters, 2015, 6, 596-601.	1.3	30
98	Intramembrane Proteolysis of Î ² -Amyloid Precursor Protein by Î ³ -Secretase Is an Unusually Slow Process. Biophysical Journal, 2015, 108, 1229-1237.	0.2	77
99	Human brain proteins showing neuronâ€specific interactions with γâ€secretase. FEBS Journal, 2015, 282, 2587-2599.	2.2	17
100	Cellular Functions of the Amyloid Precursor Protein from Development to Dementia. Developmental Cell, 2015, 32, 502-515.	3.1	191
101	The adipocyte differentiation protein APMAP is an endogenous suppressor of AÎ ² production in the brain. Human Molecular Genetics, 2015, 24, 371-382.	1.4	28
102	Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics. Trends in Biochemical Sciences, 2015, 40, 318-327.	3.7	102
103	A Cellâ€Based Assay Reveals Nuclear Translocation of Intracellular Domains Released by <scp>SPPL</scp> Proteases. Traffic, 2015, 16, 871-892.	1.3	23
104	The membrane anchor of the transcriptional activator SREBP is characterized by intrinsic conformational flexibility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12390-12395.	3.3	14
105	Cellular FLICE-like Inhibitory Protein (c-FLIP) and PS1-associated Protein (PSAP) Mediate Presenilin 1-induced Î ³ -Secretase-dependent and -independent Apoptosis, Respectively. Journal of Biological Chemistry, 2015, 290, 18269-18280.	1.6	14
106	Homodimerization Protects the Amyloid Precursor Protein C99 Fragment from Cleavage by Î ³ -Secretase. Biochemistry, 2015, 54, 6149-6152.	1.2	43
107	The Intracellular Domain of the Frazzled/DCC Receptor Is a Transcription Factor Required for Commissural Axon Guidance. Neuron, 2015, 87, 751-763.	3.8	44
108	TRPC6 specifically interacts with APP to inhibit its cleavage by Î ³ -secretase and reduce AÎ ² production. Nature Communications, 2015, 6, 8876.	5.8	60
109	Combining an amyloidâ€beta (Aβ) cleaving enzyme inhibitor with a γâ€secretase modulator results in an additive reduction of Aβ production. FEBS Journal, 2015, 282, 65-73.	2.2	18

#	Article	IF	CITATIONS
110	The Notch intracellular domain represses CRE-dependent transcription. Cellular Signalling, 2015, 27, 621-629.	1.7	25
111	Cell Polarity and Neurogenesis in Embryonic Stem Cell-Derived Neural Rosettes. Stem Cells and Development, 2015, 24, 1022-1033.	1.1	27
112	Non-Catalytic Roles of Presenilin Throughout Evolution. Journal of Alzheimer's Disease, 2016, 52, 1177-1187.	1.2	26
113	Loss of presenilin function is associated with a selective gain of APP function. ELife, 2016, 5, .	2.8	25
114	The amyloid-beta forming tripeptide cleavage mechanism of \hat{I}^3 -secretase. ELife, 2016, 5, .	2.8	140
115	The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein. Frontiers in Molecular Neuroscience, 2016, 9, 149.	1.4	40
116	Substrate recruitment of γâ€secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping. EMBO Journal, 2016, 35, 1628-1643.	3.5	104
117	Integration of transcriptomic and genomic data suggests candidate mechanisms for APOE4-mediated pathogenic action in Alzheimer's disease. Scientific Reports, 2016, 6, 32583.	1.6	19
118	Aspartic Proteases of Alzheimerâ \in ^{IM} s Disease: Î ² - and Î ³ -Secretases. , 2016, , 661-669.		0
119	Structure of the transmembrane domain of human nicastrin-a component of Î ³ -secretase. Scientific Reports, 2016, 6, 19522.	1.6	11
120	Evidence For and Against a Pathogenic Role of Reduced γ-Secretase Activity in Familial Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 52, 781-799.	1.2	44
121	The Life of Pi Star: Exploring the Exciting and Forbidden Worlds of the Benzophenone Photophore. Chemical Reviews, 2016, 116, 15284-15398.	23.0	170
122	Shedding of neurexin 3Î ² ectodomain by ADAM10 releases a soluble fragment that affects the development of newborn neurons. Scientific Reports, 2016, 6, 39310.	1.6	16
123	Familial Presenilin Mutations and Sporadic Alzheimer's Disease Pathology: Is the Assumption of Biochemical Equivalence Justified?. Journal of Alzheimer's Disease, 2016, 50, 645-658.	1.2	16
124	Presenilin 1 and Presenilin 2 Target γ-Secretase Complexes to Distinct Cellular Compartments. Journal of Biological Chemistry, 2016, 291, 12821-12837.	1.6	52
125	Intramembrane proteolysis within lysosomes. Ageing Research Reviews, 2016, 32, 51-64.	5.0	14
126	Physiological and pathological roles of the γ-secretase complex. Brain Research Bulletin, 2016, 126, 199-206.	1.4	43
127	A Greek Tragedy: The Growing Complexity of Alzheimer Amyloid Precursor Protein Proteolysis. Journal of Biological Chemistry, 2016, 291, 19235-19244.	1.6	151

#	Article	IF	CITATIONS
128	Aβ42 oligomers modulate β-secretase through an XBP-1s-dependent pathway involving HRD1. Scientific Reports, 2016, 6, 37436.	1.6	19
129	Transmembrane Substrate Determinants for γ-Secretase Processing of APP CTFβ. Biochemistry, 2016, 55, 5675-5688.	1.2	40
130	Preservation of cell-survival mechanisms by the presenilin-1 K239N mutation may cause its milder clinical phenotype. Neurobiology of Aging, 2016, 46, 169-179.	1.5	5
131	Specific combinations of presenilins and Aph1s affect the substrate specificity and activity of Î ³ -secretase. Biochemical and Biophysical Research Communications, 2016, 478, 1751-1757.	1.0	18
132	Alzheimer's disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio. Cell Discovery, 2016, 2, 16026.	3.1	70
133	Therapeutic Targeting of Al²42. , 2016, , 77-96.		0
134	\hat{I}^3 -Secretase Inhibitors: From Chemical Probes to Drug Development. , 2016, , 63-76.		3
135	Robust Translation of Â-Secretase Modulator Pharmacology across Preclinical Species and Human Subjects. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 125-137.	1.3	22
136	Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity. Molecular Metabolism, 2016, 5, 113-121.	3.0	17
137	Pharmacological properties of a novel and potent γ-secretase modulator as a therapeutic option for the treatment of Alzheimer's disease. Brain Research, 2016, 1633, 73-86.	1.1	15
138	APP Receptor? To Be or Not To Be. Trends in Pharmacological Sciences, 2016, 37, 390-411.	4.0	107
139	Basic Theory of Pharmacology for Alzheimer's Disease. , 2016, , 1-25.		Ο
140	Nicastrin functions to sterically hinder γ-secretase–substrate interactions driven by substrate transmembrane domain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E509-18.	3.3	122
141	Suppressor Mutations for Presenilin 1 Familial Alzheimer Disease Mutants Modulate Î ³ -Secretase Activities. Journal of Biological Chemistry, 2016, 291, 435-446.	1.6	16
142	Proteolytic Processing of Neuregulin 1 Type III by Three Intramembrane-cleaving Proteases. Journal of Biological Chemistry, 2016, 291, 318-333.	1.6	42
143	Beyond \hat{I}^3 -secretase activity: The multifunctional nature of presenilins in cell signalling pathways. Cellular Signalling, 2016, 28, 1-11.	1.7	112
144	Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 2016, 68, 127-138.	1.5	357
145	A systematic review and critical evaluation of reported pathogenic sequence variants in hidradenitis suppurativa. British Journal of Dermatology, 2017, 177, 987-998.	1.4	67

#	Article	IF	Citations
146	αâ€Mangostin decreases βâ€amyloid peptides production via modulation of amyloidogenic pathway. CNS Neuroscience and Therapeutics, 2017, 23, 526-534.	1.9	26
147	Defining the minimum substrate and charge recognition model of gamma-secretase. Acta Pharmacologica Sinica, 2017, 38, 1412-1424.	2.8	21
148	Pharmacological and Toxicological Properties of the Potent Oral <i>î³</i> -Secretase Modulator BPN-15606. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 31-44.	1.3	36
149	Alzheimer's Disease II. Topics in Medicinal Chemistry, 2017, , .	0.4	2
150	Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2169-2182.	1.9	24
151	γ-Secretase Modulators as Aβ42-Lowering Pharmacological Agents to Treat Alzheimer's Disease. Topics in Medicinal Chemistry, 2017, , 87-118.	0.4	6
152	Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease. Progress in Neurobiology, 2017, 156, 189-213.	2.8	54
153	ADAM10 and Î ³ -secretase regulate sensory regeneration in the avian vestibular organs. Developmental Biology, 2017, 428, 39-51.	0.9	11
154	Latest emerging functions of SPP/SPPL intramembrane proteases. European Journal of Cell Biology, 2017, 96, 372-382.	1.6	37
155	Gamma secretase inhibitors: a patent review (2013 - 2015). Expert Opinion on Therapeutic Patents, 2017, 27, 851-866.	2.4	19
156	High-efficient production and biophysical characterisation of nicastrin and its interaction with APPC100. Scientific Reports, 2017, 7, 44297.	1.6	6
157	Substrate processing in intramembrane proteolysis by γ-secretase – the role of protein dynamics. Biological Chemistry, 2017, 398, 441-453.	1.2	40
158	Hypoxia/ischemia activate processing of Amyloid Precursor Protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 2017, 140, 536-549.	2.1	154
159	Voltage-Gated Sodium Channel β Subunits and Their Related Diseases. Handbook of Experimental Pharmacology, 2017, 246, 423-450.	0.9	56
160	Gamma Secretase Inhibition by BMS-906024 Enhances Efficacy of Paclitaxel in Lung Adenocarcinoma. Molecular Cancer Therapeutics, 2017, 16, 2759-2769.	1.9	50
161	γ‣ecretase in microglia – implications for neurodegeneration and neuroinflammation. Journal of Neurochemistry, 2017, 143, 445-454.	2.1	15
162	Specificity of presenilinâ€1―and presenilinâ€2â€dependent γâ€secretases towards substrate processing. Journa of Cellular and Molecular Medicine, 2018, 22, 823-833.	1.6	23
163	Sequence variants in hidradenitis suppurativa: in search of the pathogenic mechanisms. British Journal of Dermatology, 2017, 177, 895-896.	1.4	0

#	Article	IF	CITATIONS
164	γ‣ecretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Molecular Medicine, 2017, 9, 950-966.	3.3	123
165	Dimerization of the transmembrane domain of amyloid precursor protein is determined by residues around the γ-secretase cleavage sites. Journal of Biological Chemistry, 2017, 292, 15826-15837.	1.6	26
166	Brain endothelial cells induce astrocytic expression of the glutamate transporter <scp>GLT</scp> â€1 by a Notchâ€dependent mechanism. Journal of Neurochemistry, 2017, 143, 489-506.	2.1	27
167	Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells. Stem Cell Reports, 2017, 9, 1948-1960.	2.3	20
168	ER-associated degradation regulates Alzheimer's amyloid pathology and memory function by modulating γ-secretase activity. Nature Communications, 2017, 8, 1472.	5.8	50
169	Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. Journal of Alzheimer's Disease, 2017, 61, 1-15.	1.2	17
170	Amyloid precursor protein processing and bioenergetics. Brain Research Bulletin, 2017, 133, 71-79.	1.4	143
171	Influence of solubilization and AD-mutations on stability and structure of human presenilins. Scientific Reports, 2017, 7, 17970.	1.6	3
172	Amyloid \hat{I}^2 Hypothesis in the Development of Therapeutic Agents for Alzheimerâ \in ^M s Disease. , 2017, , 109-143.		5
173	Analyzing Amyloid-β Peptide Modulation Profiles and Binding Sites of γ-Secretase Modulators. Methods in Enzymology, 2017, 584, 157-183.	0.4	5
174	Molecular Mechanisms of Synaptic Plasticity and Memory andÂTheir Dysfunction in Alzheimer's Disease â~†. , 2017, , 65-135.		1
175	Unwinding of the Substrate Transmembrane Helix inÂlntramembrane Proteolysis. Biophysical Journal, 2018, 114, 1579-1589.	0.2	20
176	Quantitative Measurement of γ-Secretase-mediated Amyloid Precursor Protein and Notch Cleavage in Cell-based Luciferase Reporter Assay Platforms. Journal of Visualized Experiments, 2018, , .	0.2	1
177	p81., 2018,, 3766-3766.		0
178	PAR-2., 2018,, 3785-3785.		0
179	PCS Phosphatase. , 2018, , 3803-3803.		0
180	PIPBP. , 2018, , 4023-4023.		0
181	POSTN., 2018,, 4111-4111.		0

#	Article	IF	CITATIONS
182	Protein I. , 2018, , 4216-4216.		0
183	PU.1., 2018, , 4323-4323.		0
184	PVALB (Parvalbumin). , 2018, , 4323-4323.		0
185	PTPe (RPTPe and Cyt-PTPe). , 2018, , 4287-4294.		0
186	Both positional and chemical variables control in vitro proteolytic cleavage of a presenilin ortholog. Journal of Biological Chemistry, 2018, 293, 4653-4663.	1.6	14
187	Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood, 2018, 131, 1712-1719.	0.6	14
188	γâ€Secretase Inhibition Induces Muscle Hypertrophy in a Notchâ€Independent Mechanism. Proteomics, 2018, 18, 1700423.	1.3	6
189	Functional Analysis of Proteins Involved in Neurodegeneration Using the Model Organism Dictyostelium. , 2018, , 491-518.		1
190	Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Molecular Neurobiology, 2018, 55, 2275-2284.	1.9	24
191	Making the final cut: pathogenic amyloid-β peptide generation by γ-secretase. Cell Stress, 2018, 2, 292-310.	1.4	100
192	Present and Future Therapies for Alzheimerâ \in Ms Disease. , 2018, , .		0
193	Inhibition of the Neuronal Calcium Sensor DREAM Modulates Presenilin-2 Endoproteolysis. Frontiers in Molecular Neuroscience, 2018, 11, 449.	1.4	12
194	Advances in developing novel therapeutic strategies for Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 64.	4.4	189
195	Presenilin 1 Regulates NF-κB Activation via Association with Breakpoint Cluster Region and Casein Kinase II. Journal of Immunology, 2018, 201, 2256-2263.	0.4	18
196	Efficient production of a mature and functional gamma secretase protease. Scientific Reports, 2018, 8, 12834.	1.6	5
197	Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO Journal, 2018, 37,	3.5	211
198	Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease. PLoS ONE, 2018, 13, e0200077.	1.1	13
199	The intracellular domain of the leptin receptor prevents mitochondrial depolarization and mitophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1312-1325.	1.9	7

#	Article	IF	CITATIONS
200	Presenilin gene function and Notch signaling feedback regulation in the developing mouse lens. Differentiation, 2018, 102, 40-52.	1.0	9
201	Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 372.	1.4	48
202	Coupled Transmembrane Substrate Docking and Helical Unwinding in Intramembrane Proteolysis of Amyloid Precursor Protein. Scientific Reports, 2018, 8, 12411.	1.6	14
203	Rethinking Gamma-secretase Inhibitors for Treatment of Non–small-Cell Lung Cancer: Is Notch the Target?. Clinical Cancer Research, 2018, 24, 6136-6141.	3.2	28
204	Presenilin1 regulates Th1 and Th17 effector responses but is not required for experimental autoimmune encephalomyelitis. PLoS ONE, 2018, 13, e0200752.	1.1	4
205	Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 99-145.	0.9	23
206	Discovery of Cellular Roles of Intramembrane Proteases. ACS Chemical Biology, 2019, 14, 2372-2388.	1.6	22
207	Disruption of NOTCH signaling by a small molecule inhibitor of the transcription factor RBPJ. Scientific Reports, 2019, 9, 10811.	1.6	40
208	Amyloid precursor protein processing in human neurons with an allelic series of the PSEN1 intron 4 deletion mutation and total presenilin-1 knockout. Brain Communications, 2019, 1, fcz024.	1.5	13
209	Dual Bioorthogonal Labeling of the Amyloid-β Protein Precursor Facilitates Simultaneous Visualization of the Protein and Its Cleavage Products. Journal of Alzheimer's Disease, 2019, 72, 537-548.	1.2	13
210	Effect of Caffeine and Other Methylxanthines on AÎ ² -Homeostasis in SH-SY5Y Cells. Biomolecules, 2019, 9, 689.	1.8	20
211	Affinity proteomics identifies novel functional modules related to adhesion GPCRs. Annals of the New York Academy of Sciences, 2019, 1456, 144-167.	1.8	11
212	Calcilytic NPS 2143 Reduces Amyloid Secretion and Increases sAβPPα Release from PSEN1 Mutant iPSC-Derived Neurons. Journal of Alzheimer's Disease, 2019, 72, 885-899.	1.2	6
213	Designed Helical Peptides as Functional Probes for Î ³ -Secretase. Biochemistry, 2019, 58, 4398-4407.	1.2	4
214	Intramembrane proteolysis at a glance: from signalling to protein degradation. Journal of Cell Science, 2019, 132, .	1.2	47
215	Pharmacological inhibition of Notch signaling regresses pre-established abdominal aortic aneurysm. Scientific Reports, 2019, 9, 13458.	1.6	22
216	Emerging Alternative Proteinases in APP Metabolism and Alzheimer's Disease Pathogenesis: A Focus on MT1-MMP and MT5-MMP. Frontiers in Aging Neuroscience, 2019, 11, 244.	1.7	46
217	Î ³ -Secretase Studied by Atomistic Molecular Dynamics Simulations: Global Dynamics, Enzyme Activation, Water Distribution and Lipid Binding. Frontiers in Chemistry, 2018, 6, 640.	1.8	29

#	Article	IF	Citations
218	The intracellular domain of CX3CL1 regulates adult neurogenesis and Alzheimer's amyloid pathology. Journal of Experimental Medicine, 2019, 216, 1891-1903.	4.2	30
219	Modulating Hinge Flexibility in the APP Transmembrane Domain Alters γ-Secretase Cleavage. Biophysical Journal, 2019, 116, 2103-2120.	0.2	34
220	Structure and Function of the \hat{I}^3 -Secretase Complex. Biochemistry, 2019, 58, 2953-2966.	1.2	78
221	Extracellular interface between APP and Nicastrin regulates Aβ length and response to γâ€secretase modulators. EMBO Journal, 2019, 38, .	3.5	45
222	An Integrated Approach to Unravel Hidradenitis Suppurativa Etiopathogenesis. Frontiers in Immunology, 2019, 10, 892.	2.2	53
223	Jagged1 protein processing in the developing mammalian lens. Biology Open, 2019, 8, .	0.6	10
224	Reactions at Biomembrane Interfaces. Chemical Reviews, 2019, 119, 6162-6183.	23.0	29
225	Presenilins and Î ³ -Secretase in Membrane Proteostasis. Cells, 2019, 8, 209.	1.8	45
226	Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochemical Journal, 2019, 476, 1173-1189.	1.7	32
227	Toward the Characterization of DAPT Interactions with $\hat{I}^3 \hat{a} \in S$ ecretase. ChemMedChem, 2019, 14, 1005-1010.	1.6	16
228	APH-1A Component of Î ³ -Secretase Forms an Internal Water and Ion-Containing Cavity. ACS Chemical Neuroscience, 2019, 10, 2931-2938.	1.7	7
229	Increased H-Bond Stability Relates to Altered ε-Cleavage Efficiency and Aβ Levels in the I45T Familial Alzheimer's Disease Mutant of APP. Scientific Reports, 2019, 9, 5321.	1.6	20
230	Homozygosity for the A431E mutation in PSEN1 presenting with a relatively aggressive phenotype. Neuroscience Letters, 2019, 699, 195-198.	1.0	8
231	Identification and Preclinical Evaluation of the Bicyclic Pyrimidine Î ³ -Secretase Modulator BMS-932481. ACS Medicinal Chemistry Letters, 2019, 10, 312-317.	1.3	13
232	Proteases Upregulation in Sporadic Alzheimer's Disease Brain. Journal of Alzheimer's Disease, 2019, 68, 931-938.	1.2	12
233	γ-Secretase and its modulators: Twenty years and beyond. Neuroscience Letters, 2019, 701, 162-169.	1.0	46
234	NGP 555, a γâ€secretase modulator, shows a beneficial shift in the ratio of amyloid biomarkers in human cerebrospinal fluid at safe doses. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 458-467.	1.8	3
235	Gamma-secretase-dependent signaling of receptor tyrosine kinases. Oncogene, 2019, 38, 151-163.	2.6	46

#	Article	IF	CITATIONS
236	γâ€secretase inhibitor <scp>DAPT</scp> mitigates cisplatinâ€induced acute kidney injury by suppressing Notch1 signaling. Journal of Cellular and Molecular Medicine, 2019, 23, 260-270.	1.6	16
237	Characterization of the \hat{I}^3 -secretase subunit interactome in Arabidopsis thaliana. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	1
238	A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. Journal of Cell Biology, 2019, 218, 644-663.	2.3	57
239	Multidisciplinary approaches for targeting the secretase protein family as a therapeutic route for Alzheimer's disease. Medicinal Research Reviews, 2019, 39, 1730-1778.	5.0	14
240	Synthesis of Pyridopyrazine-1,6-dione γ-Secretase Modulators via Selective 4-Methylimidazole <i>N</i> ¹ -Buchwald Arylation. Journal of Organic Chemistry, 2019, 84, 4921-4925.	1.7	3
241	Specific mutations in presenilin 1 cause conformational changes in Î ³ -secretase to modulate amyloid Î ² trimming. Journal of Biochemistry, 2019, 165, 37-46.	0.9	11
242	Dysfunctional γ-Secretase in Familial Alzheimer's Disease. Neurochemical Research, 2019, 44, 5-11.	1.6	26
243	Identification of a Panâ€Gammaâ€Secretase Inhibitor Response Signature for Notchâ€Driven Cholangiocarcinoma. Hepatology, 2020, 71, 196-213.	3.6	29
244	RIP at the Synapse and the Role of Intracellular Domains in Neurons. NeuroMolecular Medicine, 2020, 22, 1-24.	1.8	5
245	Mouse brain proteomics establishes MDGA1 and CACHD1 as in vivo substrates of the Alzheimer protease BACE1. FASEB Journal, 2020, 34, 2465-2482.	0.2	16
246	Targeting Notch Trafficking and Processing in Cancers. Cells, 2020, 9, 2212.	1.8	10
247	Presenilin 1 Regulates Membrane Homeostatic Pathways that are Dysregulated in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 77, 961-977.	1.2	15
248	How Mutations Perturb $\hat{1}^3$ -Secretase Active Site Studied by Free Energy Simulations. ACS Chemical Neuroscience, 2020, 11, 3321-3332.	1.7	14
249	Aetiology and pathogenesis of hidradenitis suppurativa. British Journal of Dermatology, 2020, 183, 999-1010.	1.4	93
250	Presenilin1 familial Alzheimer disease mutants inactivate EFNB1- and BDNF-dependent neuroprotection against excitotoxicity by affecting neuroprotective complexes of N-methyl-d-aspartate receptor. Brain Communications, 2020, 2, fcaa100.	1.5	6
251	Transcriptome analysis indicates dominant effects on ribosome and mitochondrial function of a premature termination codon mutation in the zebrafish gene psen2. PLoS ONE, 2020, 15, e0232559.	1.1	11
252	Visualization of PS/Î ³ -Secretase Activity in Living Cells. IScience, 2020, 23, 101139.	1.9	8
253	Stepwise Design of Î ³ -Secretase Modulators with an Advanced Profile by Judicious Coordinated Structural Replacements and an Unconventional Phenyl Ring Bioisostere. Journal of Medicinal Chemistry, 2020, 63, 8534-8553.	2.9	11

#	Article	IF	CITATIONS
254	Early-Onset Familial Alzheimer Disease Variant PSEN2 N1411 Heterozygosity is Associated with Altered Microglia Phenotype. Journal of Alzheimer's Disease, 2020, 77, 675-688.	1.2	18
255	Sodium channel β1 subunits are post-translationally modified by tyrosine phosphorylation, S-palmitoylation, and regulated intramembrane proteolysis. Journal of Biological Chemistry, 2020, 295, 10380-10393.	1.6	14
256	Presenilin 1 phosphorylation regulates amyloid-Î ² degradation by microglia. Molecular Psychiatry, 2021, 26, 5620-5635.	4.1	17
257	Amyloid Beta Secreted during Consolidation Prevents Memory Malleability. Current Biology, 2020, 30, 1934-1940.e4.	1.8	13
258	Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 137.	1.4	73
259	Bring it back, bring it back, don't take it away from me – the sorting receptor RER1. Journal of Cell Science, 2020, 133, .	1.2	14
260	Recent developments of small molecule Î ³ -secretase modulators for Alzheimer's disease. RSC Medicinal Chemistry, 2020, 11, 1003-1022.	1.7	31
261	Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Molecular Pharmacology, 2020, 98, 559-576.	1.0	59
262	Î ³ -Secretase Modulatory Proteins: The Guiding Hand Behind the Running Scissors. Frontiers in Aging Neuroscience, 2020, 12, 614690.	1.7	12
263	Signaling Functions of Intramembrane Aspartyl-Proteases. Frontiers in Cardiovascular Medicine, 2020, 7, 591787.	1.1	13
264	A Novel NIR-FRET Biosensor for Reporting PS/ \hat{I}^3 -Secretase Activity in Live Cells. Sensors, 2020, 20, 5980.	2.1	8
265	Mechanisms of neurodegeneration — Insights from familial Alzheimer's disease. Seminars in Cell and Developmental Biology, 2020, 105, 75-85.	2.3	35
266	Î ³ -Secretase modulators exhibit selectivity for modulation of APP cleavage but inverse Î ³ -secretase modulators do not. Alzheimer's Research and Therapy, 2020, 12, 61.	3.0	6
267	Î ³ -Secretase Partitioning into Lipid Bilayers Remodels Membrane Microdomains after Direct Insertion. Langmuir, 2020, 36, 6569-6579.	1.6	4
268	Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. Journal of Medicinal Chemistry, 2020, 63, 10705-10725.	2.9	42
269	The impact of capsaicinoids on APP processing in Alzheimer's disease in SH-SY5Y cells. Scientific Reports, 2020, 10, 9164.	1.6	7
270	A Novel Flow Cytometric Assay to Identify Inhibitors of RBPJ-DNA Interactions. SLAS Discovery, 2020, 25, 895-905.	1.4	3
271	Oncolytic HSV–Infected Glioma Cells Activate NOTCH in Adjacent Tumor Cells Sensitizing Tumors to Gamma Secretase Inhibition. Clinical Cancer Research, 2020, 26, 2381-2392.	3.2	23

#	Article	IF	CITATIONS
272	Contribution of the Presenilins in the cell biology, structure and function of Î ³ -secretase. Seminars in Cell and Developmental Biology, 2020, 105, 12-26.	2.3	46
273	Hidradenitis suppurativa. Nature Reviews Disease Primers, 2020, 6, 18.	18.1	286
274	Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules, 2020, 10, 370.	1.8	36
275	Pharmacological disruption of the Notch transcription factor complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16292-16301.	3.3	64
276	Top Notch Targeting Strategies in Cancer: A Detailed Overview of Recent Insights and Current Perspectives. Cells, 2020, 9, 1503.	1.8	92
277	The substrate repertoire of γ-secretase/presenilin. Seminars in Cell and Developmental Biology, 2020, 105, 27-42.	2.3	115
278	Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 1327.	1.8	10
279	A novel nicastrin mutation in a threeâ€generation Dutch family with hidradenitis suppurativa: a search for functional significance. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2353-2361.	1.3	16
280	Physiological functions of SPP/SPPL intramembrane proteases. Cellular and Molecular Life Sciences, 2020, 77, 2959-2979.	2.4	26
281	Unraveling the complexity of Î ³ -secretase. Seminars in Cell and Developmental Biology, 2020, 105, 3-11.	2.3	33
282	Genetic Dissection of Hypertrophic Cardiomyopathy with Myocardial RNA-Seq. International Journal of Molecular Sciences, 2020, 21, 3040.	1.8	26
283	\hat{I}^3 -Secretase inhibitors and modulators: Mechanistic insights into the function and regulation of \hat{I}^3 -Secretase. Seminars in Cell and Developmental Biology, 2020, 105, 43-53.	2.3	19
284	Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nature Reviews Drug Discovery, 2020, 19, 447-462.	21.5	73
285	Substrate recruitment by Î ³ -secretase. Seminars in Cell and Developmental Biology, 2020, 105, 54-63.	2.3	13
286	Discovery of RO7185876, a Highly Potent γ-Secretase Modulator (GSM) as a Potential Treatment for Alzheimer's Disease. ACS Medicinal Chemistry Letters, 2020, 11, 1257-1268.	1.3	13
287	Successive cleavage of Î ² -amyloid precursor protein by Î ³ -secretase. Seminars in Cell and Developmental Biology, 2020, 105, 64-74.	2.3	29
288	Knock-in rats with homozygous PSEN1 Alzheimer mutation are viable and show selective γ-secretase activity loss causing low AĨ²40/42 and high Aβ43. Journal of Biological Chemistry, 2020, 295, 7442-7451.	1.6	21
290	Functions of amyloid precursor protein in metabolic diseases. Metabolism: Clinical and Experimental, 2021, 115, 154454.	1.5	38

#	Article	IF	CITATIONS
291	Gamma Secretase Inhibitors in Cancer: A Current Perspective on Clinical Performance. Oncologist, 2021, 26, e608-e621.	1.9	62
292	Computational prediction and molecular mechanism of γ-secretase modulators. European Journal of Pharmaceutical Sciences, 2021, 157, 105626.	1.9	6
293	Membrane dynamics of γâ€secretase with the anterior pharynxâ€defective 1B subunit. Journal of Cellular Biochemistry, 2021, 122, 69-85.	1.2	10
294	γ-secretase inhibitors, DAPT and RO4929097, promote the migration of Human Glioma Cells via Smad5-downregulated E-cadherin Expression. International Journal of Medical Sciences, 2021, 18, 2551-2560.	1.1	4
295	Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease. IScience, 2021, 24, 101924.	1.9	13
296	Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer's Disease. Molecules, 2021, 26, 388.	1.7	15
297	Amyloidogenic and anti-amyloidogenic properties of presenilin 1. Advances in Pharmacology, 2021, 90, 239-251.	1.2	4
298	Is Î ³ -secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99?. Journal of Biological Chemistry, 2021, 296, 100489.	1.6	32
299	Hydrophilic loop 1 of Presenilin-1 and the APP GxxxG transmembrane motif regulate Î ³ -secretase function in generating Alzheimer-causing AÎ ² peptides. Journal of Biological Chemistry, 2021, 296, 100393.	1.6	22
300	Flexible and Accurate Substrate Processing with Distinct Presenilin/γ-Secretases in Human Cortical Neurons. ENeuro, 2021, 8, ENEURO.0500-20.2021.	0.9	10
301	Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews, 2021, 121, 2545-2647.	23.0	406
302	Sodium channel β1 subunits participate in regulated intramembrane proteolysis-excitation coupling. JCI Insight, 2021, 6, .	2.3	15
303	Alzheimer Disease Clinical Trials Targeting Amyloid. Neurologist, 2021, 26, 52-61.	0.4	19
304	Pharmacological Disruption of the Notch1 Transcriptional Complex Inhibits Tumor Growth by Selectively Targeting Cancer Stem Cells. Cancer Research, 2021, 81, 3347-3357.	0.4	15
305	Limited Substrate Specificity of PS/γ-Secretase Is Supported by Novel Multiplexed FRET Analysis in Live Cells. Biosensors, 2021, 11, 169.	2.3	3
307	Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. Molecules, 2021, 26, 2897.	1.7	15
308	Angiotensin converting enzyme 2 is a novel target of the Î ³ -secretase complex. Scientific Reports, 2021, 11, 9803.	1.6	13
309	Exploring the Role of Monoamine Oxidase Activity in Aging and Alzheimer's Disease. Current Pharmaceutical Design, 2021, 27, 4017-4029.	0.9	10

#	Article	IF	CITATIONS
310	Assembly of γ-secretase occurs through stable dimers after exit from the endoplasmic reticulum. Journal of Cell Biology, 2021, 220, .	2.3	5
311	Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Frontiers in Oncology, 2021, 11, 689131.	1.3	6
312	Characterizing the Chemical Space of \hat{I}^3 -Secretase Inhibitors and Modulators. ACS Chemical Neuroscience, 2021, 12, 2765-2775.	1.7	5
313	Role of cholesterol in substrate recognition by \$\$gamma\$\$-secretase. Scientific Reports, 2021, 11, 15213.	1.6	4
314	GSI Treatment Preserves Protein Synthesis in C2C12 Myotubes. Cells, 2021, 10, 1786.	1.8	1
315	Precise regulation of presenilin expression is required for sea urchin early development. Journal of Cell Science, 2021, 134, .	1.2	2
316	Notch Signalling in Breast Development and Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 692173.	1.8	42
317	Mutations in γ-secretase subunit–encoding PSENEN gene alone may not be sufficient for the development of acne inversa. Journal of Dermatological Science, 2021, 103, 73-81.	1.0	3
318	Metabolic syndrome and hidradenitis suppurativa: epidemiological, molecular, and therapeutic aspects. International Journal of Dermatology, 2022, 61, 1175-1186.	0.5	16
319	Imaging of Cancer Î ³ -Secretase Activity Using an Inhibitor-Based PET Probe. Clinical Cancer Research, 2021, 27, 6145-6155.	3.2	8
320	Carboxy-terminal fragment of amyloid precursor protein mediates lipid droplet accumulation upon γ-secretase inhibition. Biochemical and Biophysical Research Communications, 2021, 570, 137-142.	1.0	3
321	Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Frontiers in Neuroscience, 2020, 14, 586108.	1.4	6
322	Spastic paraplegia preceding PSEN1 â€related familial Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12186.	1.2	7
323	Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Reports, 2021, 34, 108615.	2.9	53
324	Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2021, 1287, 201-222.	0.8	17
325	Liver-selective Î ³ -secretase inhibition ameliorates diet-induced hepatic steatosis, dyslipidemia and atherosclerosis. Biochemical and Biophysical Research Communications, 2020, 527, 979-984.	1.0	7
326	The dynamics of Î ³ -secretase and its substrates. Seminars in Cell and Developmental Biology, 2020, 105, 86-101.	2.3	19
330	Î ³ -Secretase Components as Predictors of Breast Cancer Outcome. PLoS ONE, 2013, 8, e79249.	1.1	13

#	Article	IF	CITATIONS
331	Increased Î ³ -Secretase Activity in Idiopathic Normal Pressure Hydrocephalus Patients with Î ² -Amyloid Pathology. PLoS ONE, 2014, 9, e93717.	1.1	12
332	Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors. PLoS ONE, 2015, 10, e0128619.	1.1	15
333	Comparison of molecular functions of lactoferrin and amyloid precursor protein support their functional roles in the innate immune system and links with infection in Alzheimer's disease risk. Inflammation and Cell Signaling, 0, , .	1.6	1
334	γâ€Secretase cleavage of the Alzheimer risk factor <scp>TREM</scp> 2 is determined by its intrinsic structural dynamics. EMBO Journal, 2020, 39, e104247.	3.5	16
335	Alzheimer's disease as a systems network disorder: chronic stress/dyshomeostasis, innate immunity, and genetics. Aging, 2020, 12, 17815-17844.	1.4	9
336	Characterization of a new B-ALL cell line with constitutional defect of the Notch signaling pathway. Oncotarget, 2018, 9, 18341-18350.	0.8	9
337	The expression of presenilin 1 enhances carcinogenesis and metastasis in gastric cancer. Oncotarget, 2016, 7, 10650-10662.	0.8	29
338	Key Peptides and Proteins in Alzheimer's Disease. Current Protein and Peptide Science, 2019, 20, 577-599.	0.7	30
339	Amyloid Beta Hypothesis in Alzheimer's Disease: Major Culprits and Recent Therapeutic Strategies. Current Drug Targets, 2020, 21, 148-166.	1.0	14
340	Recent Studies on Design and Development of Drugs Against Alzheimer's Disease (AD) Based on Inhibition of BACE-1 and Other AD-causative Agents. Current Topics in Medicinal Chemistry, 2020, 20, 1195-1213.	1.0	10
341	Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Science Alliance, 2020, 3, e201900521.	1.3	9
342	Presenilins Interactome in Alzheimerâ \in Ms Disease and Pathological Ageing. , 0, , .		1
343	Super-resolution microscopy reveals majorly mono- and dimeric presenilin $1/\hat{I}^3$ -secretase at the cell surface. ELife, 2020, 9, .	2.8	22
344	Structural Study of Membrane Glycoprotein-Precursor of β-Amyloid and Proteins Involved in Its Proteolysis. Crystallography Reports, 2021, 66, 737-750.	0.1	1
345	Proteases in the Nervous System. , 2013, , 319-371.		4
346	Presenilin. , 2016, , 1-9.		0
348	Presenilin., 2018,, 4130-4138.		0
351	Notch Signaling: From Neurogenesis to Neurodegeneration. , 2019, , 185-221.		0

ARTICLE IF CITATIONS Novel Notch signaling inhibitor NSIâ€1 suppresses nuclear translocation of the Notch intracellular 352 1.8 2 domain. International Journal of Molecular Medicine, 2019, 44, 1574-1584. Alzheimer Hastalığı ile İliÅŸkilendirilen APH1A Genindeki Zararlı SNP'lerin In Silico Yöntemler ile 0.1 Belirlenmesi. Journal of Natural and Applied Sciences, 2019, 23, 472-480. he amyloid hypothesis of Alzheimer's disease: past and present, hopes and disappointments. 355 0.2 5 Nevrologiya, Neiropsikhiatriya, Psikhosomatika, 2019, 11, 4-10. Effect of 42 amino acid long amyloid-Î² peptides on Arabidopsis plants. Journal of Plant Biotechnology, 0.1 2020, 47, 283-288. Selective expression of the neurexin substrate for presenilin in the adult forebrain causes deficits in 358 2.0 3 associative memory and presynaptic plasticity. Experimental Neurology, 2022, 347, 113896. Subjects harboring presenilin familial Alzheimer's disease mutations exhibit diverse white matter 0.1 biochemistry alterations. American Journal of Neurodegenerative Disease, 2013, 2, 187-207. ER-stress in Alzheimer's disease: turning the scale?. American Journal of Neurodegenerative Disease, 361 0.1 39 2013, 2, 247-65. Notch signaling in mammalian hair cell regeneration. Trends in Developmental Biology, 2013, 7, 73-89. 1.0 Neuropathological and biochemical assessments of an Alzheimer's disease patient treated with the 363 0.1 8 \hat{I}^3 -secretase inhibitor semagacestat. American Journal of Neurodegenerative Disease, 2014, 3, 115-33. Presenilin/ \hat{I}^3 -Secretase Activity Is Located in Acidic Compartments of Live Neurons. Journal of 364 1.7 Neuroscience, 2022, 42, 145-154. An insight into Alzheimer's disease and its on-setting novel genes. Egyptian Journal of Neurology, 365 4 0.4 Psychiatry and Neurosurgery, 2021, 57, . Genome-Wide Association Study Identifies Two Common Loci Associated with Pigment Dispersion Syndrome/Pigmentary Glaucomá and Implicates Myopia in its Development. Ophthalmology, 2022, 129, 366 2.5 626-636. Simple But Efficacious Enrichment of Integral Membrane Proteins and Their Interactions for In-Depth 367 2.5 20 Membrane Proteomics. Molecular and Cellular Proteomics, 2022, 21, 100206. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in 368 2.4 APP processing. Cellular and Molecular Life Sciences, 2022, 79, 101. Knockdown of Amyloid Precursor Protein: Biological Consequences and Clinical Opportunities. 369 10 1.4 Frontiers in Neuroscience, 2022, 16, 835645. Cerebrospinal fluid tau levels are associated with abnormal neuronal plasticity markers in 370 4.4 Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 27. Identification of the $A^{2}37/42$ peptide ratio in CSF as an improved A^{2} biomarker for Alzheimer's disease. 371 0.4 21 Alzheimer's and Dementia, 2023, 19, 79-96. Modulation of amyloid precursor protein cleavage by Î³-secretase activating protein through phase separation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, 372 3.3 e2122292119.

#	Article	IF	CITATIONS
373	A Novel NCSTN Mutation in a Three-Generation Chinese Family with Hidradenitis Suppurative. Journal of Healthcare Engineering, 2022, 2022, 1-8.	1.1	1
374	Î ³ -secretase inhibitor disturbs the morphological development of differentiating neurons through affecting Notch/miR-342-5p. Neuroscience Letters, 2022, 778, 136603.	1.0	3
375	Insulin gene expression and functional activity of insulin signaling pathway in Alzheimer's disease. Fundamental and Clinical Medicine, 2021, 6, 8-21.	0.1	0
376	Evaluation of Virtual Screening Strategies for the Identification of Î ³ -Secretase Inhibitors and Modulators. Molecules, 2022, 27, 176.	1.7	3
377	γâ€Secretase modulators show selectivity for γâ€secretase–mediated amyloid precursor protein intramembrane processing. Journal of Cellular and Molecular Medicine, 2022, 26, 880-892.	1.6	4
378	The Potential of Gamma Secretase as a Therapeutic Target for Cardiac Diseases. Journal of Personalized Medicine, 2021, 11, 1294.	1.1	4
379	Î ³ -Secretase structure and activity are modified by alterations in its membrane localization and ambient environment. Journal of Biochemistry, 2022, 171, 253-256.	0.9	2
380	Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell, 2022, 185, 1431-1443.e16.	13.5	70
390	Autosomal dominant and sporadic late onset Alzheimer's disease share a common <i>in vivo</i> pathophysiology. Brain, 2022, 145, 3594-3607.	3.7	20
391	Holistic health record for Hidradenitis suppurativa patients. Scientific Reports, 2022, 12, 8415.	1.6	5
392	Caspaseâ€4/11 is critical for angiogenesis by repressing Notch1 signalling via inhibiting γâ€secretase activity. British Journal of Pharmacology, 2022, 179, 4809-4828.	2.7	5
393	Alzheimer diseases. , 2023, , 313-336.		3
394	Identification and targeting of a <scp>HES1â€YAP1â€CDKN1C</scp> functional interaction in fusionâ€negative rhabdomyosarcoma. Molecular Oncology, 2022, 16, 3587-3605.	2.1	2
395	Crenigacestat (LY3039478) inhibits osteogenic differentiation of human valve interstitial cells from patients with aortic valve calcification in vitro. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	6
396	Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacological Reviews, 2022, 74, 1030-1050.	7.1	1
397	Covalent fragment inhibits intramembrane proteolysis. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0
398	Molecular basis for isoform-selective inhibition of presenilin-1 by MRK-560. Nature Communications, 2022, 13, .	5.8	9

#	Article	IF	CITATIONS
400	Aspartic Proteases of Alzheimer's Disease: \hat{I}^2 - and \hat{I}^3 Secretases. , 2016, , 950-959.		0
401	Short-chain fatty acids ameliorate necrotizing enterocolitis-like intestinal injury through enhancing Notch1-mediated single immunoglobulin interleukin-1-related receptor, toll-interacting protein, and A20 induction. American Journal of Physiology - Renal Physiology, 2023, 324, G24-G37.	1.6	8
402	The role of Hedgehog and Notch signaling pathway in cancer. Molecular Biomedicine, 2022, 3, .	1.7	11
403	Elucidating the Protonation State of the γ-Secretase Catalytic Dyad. ACS Chemical Neuroscience, 2023, 14, 261-269.	1.7	8
404	The transcriptomic landscape of neurons carrying PSEN1 mutations reveals changes in extracellular matrix components and non-coding gene expression. Neurobiology of Disease, 2023, 178, 105980.	2.1	6
405	Amyloid ‑´Î² pathology in Alzheimer's disease: A nano delivery approach. Vibrational Spectroscopy, 2023, 126, 103510.	1.2	3
406	Gamma secretase activity modulates BMP-7-induced dendritic growth in primary rat sympathetic neurons. Autonomic Neuroscience: Basic and Clinical, 2023, 247, 103085.	1.4	0
407	Notch Signaling in Acute Inflammation and Sepsis. International Journal of Molecular Sciences, 2023, 24, 3458.	1.8	12
408	Characterization of spastic paraplegia in a family with a novel <i>PSEN1</i> mutation. Brain Communications, 2023, 5, .	1.5	1
409	A novel chemical attack on Notch-mediated transcription by targeting the NACK ATPase. Molecular Therapy - Oncolytics, 2023, 28, 307-320.	2.0	1
410	Endosome and Lysosome Membrane Properties Functionally Link to Î ³ -Secretase in Live/Intact Cells. Sensors, 2023, 23, 2651.	2.1	0
411	The human RAP1 and GFAPÉ> proteins increase γ-secretase activity in a yeast model system. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	2
412	A network of Notch-dependent and -independent her genes controls neural stem and progenitor cells in the zebrafish thalamic proliferation zone. Development (Cambridge), 2023, 150, .	1.2	4
413	Deciphering mechanisms of action of ACE inhibitors in neurodegeneration using Drosophila models of Alzheimer's disease. Frontiers in Neuroscience, 0, 17, .	1.4	3
418	Ignorance or Conspiracy? Or Just an Amyloid Firewall that Blocks Alternative Ideas?. , 2023, , 185-226.		0
436	Genome-wide CRISPR/Cas9 screen identifies regulators of BCMA expression on multiple myeloma cells. Blood Cancer Journal, 2024, 14, .	2.8	0