Membrane Fatty Acid Composition and Saturation Leve Tolerance and Postâ€Drought Rehydration in Kentucky

Crop Science 51, 273-281 DOI: 10.2135/cropsci2010.06.0368

Citation Report

#	Article	IF	CITATIONS
1	Growth and Physiological Recovery of Kentucky Bluegrass from Drought Stress as Affected by a Synthetic Cytokinin 6â€Benzylaminopurine. Crop Science, 2012, 52, 2332-2340.	1.8	13
2	Proteins and Metabolites Regulated by Trinexapac-ethyl in Relation to Drought Tolerance in Kentucky Bluegrass. Journal of Plant Growth Regulation, 2012, 31, 25-37.	5.1	20
3	Photosynthetic enzyme activities and gene expression associated with drought tolerance and post-drought recovery in Kentucky bluegrass. Environmental and Experimental Botany, 2013, 89, 28-35.	4.2	59
4	Transgenic poplar "NL895―expressing CpFATB gene shows enhanced tolerance to drought stress. Acta Physiologiae Plantarum, 2013, 35, 603-613.	2.1	10
5	Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 2014, 65, 1637-1649.	4.8	16
6	Research Advances in Mechanisms of Turfgrass Tolerance to Abiotic Stresses: From Physiology to Molecular Biology. Critical Reviews in Plant Sciences, 2014, 33, 141-189.	5.7	162
7	Impact of UV-B on drought- or cadmium-induced changes in the fatty acid composition of membrane lipid fractions in wheat. Ecotoxicology and Environmental Safety, 2014, 108, 129-134.	6.0	22
8	Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to drought stress. BMC Plant Biology, 2015, 15, 17.	3.6	59
9	¹ H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress. Environmental Science & Technology, 2016, 50, 2000-2010.	10.0	194
10	Integrating High-Resolution and Solid-State Magic Angle Spinning NMR Spectroscopy and a Transcriptomic Analysis of Soybean Tissues in Response to Water Deficiency. Phytochemical Analysis, 2017, 28, 529-540.	2.4	6
11	Transcript profiling of native Korean grapevine species Vitis flexuosa exposed to dehydration and rehydration treatment. Horticulture Environment and Biotechnology, 2017, 58, 66-77.	2.1	2
12	Metabolomics analysis of TiO 2 nanoparticles induced toxicological effects on rice (Oryza sativa L.). Environmental Pollution, 2017, 230, 302-310.	7.5	146
13	Environmental alterations in biofuel generating molecules in <i>Zilla spinosa</i> . Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2017, 72, 77-91.	1.4	1
14	Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether. Environmental Pollution, 2018, 237, 308-317.	7.5	41
15	Enhanced stolon growth and metabolic adjustment in creeping bentgrass with elevated CO2 concentration. Environmental and Experimental Botany, 2018, 155, 87-97.	4.2	19
16	Ethephon Seed Treatment Impacts on Drought Tolerance of Kentucky Bluegrass Seedlings. HortTechnology, 2018, 28, 319-326.	0.9	12
17	Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). Science of the Total Environment, 2019, 646, 212-219.	8.0	78
18	Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology, 2019, 39, 1149-1158.	3.1	91

CITATION REPORT

#	Article	IF	CITATIONS
19	Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 2019, 9, 19250.	3.3	147
20	Kentucky Bluegrass Performance Under Chronic Drought Stress. Crop, Forage and Turfgrass Management, 2019, 5, 180089.	0.6	6
21	Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO2] and water deficit. Plant Science, 2019, 280, 283-296.	3.6	17
22	Influence of Seed Priming on Seed Yield, Oil Content and Fatty Acid Composition of Safflower (Carthamus tinctorius L.) Grown Under Water Deficit. International Journal of Plant Production, 2020, 14, 245-258.	2.2	24
23	Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicology and Environmental Safety, 2020, 205, 111152.	6.0	56
24	Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE, 2020, 15, e0236424.	2.5	28
25	Desiccation Mitigates Heat Stress in the Resurrection Fern, Pleopeltis polypodioides. Frontiers in Plant Science, 2020, 11, 597731.	3.6	8
26	Influence of Cutting Date on Phenotypic Variation in Fatty Acid Concentrations of Perennial Ryegrass Genotypes from a Breeding Population. Agronomy, 2020, 10, 1517.	3.0	1
27	Drought priming-induced heat tolerance: Metabolic pathways and molecular mechanisms. , 2020, , 149-160.		6
28	Chromium Bioaccumulation and Its Impacts on Plants: An Overview. Plants, 2020, 9, 100.	3.5	257
29	Variation of seed oil content, oil yield, and fatty acids profile in Iranian Nigella sativa L. landraces. Industrial Crops and Products, 2020, 149, 112367.	5.2	12
30	Analysis of physiological and metabolite response of <i>Celosia argentea</i> to copper stress. Plant Biology, 2021, 23, 391-399.	3.8	11
31	A Review on Kentucky Bluegrass Responses and Tolerance to Drought Stress. , 0, , .		2
32	Epichloe endophyte infection improved drought and heat tolerance of tall fescue through altered antioxidant enzyme activity. European Journal of Horticultural Science, 2017, 82, 90-97.	0.7	20
33	Genotypic Variation in Fatty Acid Composition and Unsaturation Levels in Bermudagrass Associated with Leaf Dehydration Tolerance. Journal of the American Society for Horticultural Science, 2011, 136, 35-40.	1.0	42
34	Antioxidant Enzyme Activities and Gene Expression Patterns in Leaves of Kentucky Bluegrass in Response to Drought and Post-drought Recovery. Journal of the American Society for Horticultural Science, 2011, 136, 247-255.	1.0	92
35	Metabolic Responses of Hybrid Bermudagrass to Short-term and Long-term Drought Stress. Journal of the American Society for Horticultural Science, 2012, 137, 411-420.	1.0	45
36	Changes in Carbohydrate Metabolism in Two Kentucky Bluegrass Cultivars during Drought Stress and Recovery. Journal of the American Society for Horticultural Science, 2013, 138, 24-30.	1.0	22

#	Article	IF	CITATIONS
37	Growth and Physiological Factors Involved in Interspecific Variations in Drought Tolerance and Postdrought Recovery in Warm- and Cool-season Turfgrass Species. Journal of the American Society for Horticultural Science, 2015, 140, 459-465.	1.0	5
38	Metabolomic Response of Early-Stage Wheat (Triticum aestivum) to Surfactant-Aided Foliar Application of Copper Hydroxide and Molybdenum Trioxide Nanoparticles. Nanomaterials, 2021, 11, 3073.	4.1	10
39	Metabolomics Response to Drought Stress in Argania Spinosa L. Skeels Ecotypes. SSRN Electronic Journal, 0, , .	0.4	0
40	Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS ONE, 2021, 16, e0261472.	2.5	7
42	Progress and Challenges in China Turfgrass Abiotic Stress Resistance Research. Frontiers in Plant Science, 0, 13, .	3.6	5
43	3-Oxoacyl acyl carrier protein reductase overexpression reveals its unprecedented roles in biofuel production and high-temperature tolerance in diatom. Fuel, 2022, 325, 124844.	6.4	8
44	The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Frontiers in Plant Science, 0, 13, .	3.6	12
45	Characterization of a new chlorimuron-ethyl-degrading strain Cedecea sp. LAM2020 and biodegradation pathway revealed by multiomics analysis. Journal of Hazardous Materials, 2023, 443, 130197.	12.4	5
46	Lipidomic Profiling of Argania spinosa L. (Skeels) Following Drought Stress. Applied Biochemistry and Biotechnology, 2023, 195, 1781-1799.	2.9	3
47	The intensity of the cluster drop affects the bioactive compounds and fatty acid composition in hazelnuts. Grasas Y Aceites, 2023, 74, e487.	0.9	7
48	The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. Frontiers in Plant Science, 0, 14, .	3.6	4
49	Exogenous abscisic acid (ABA) and jasmonate (JA) promote metabolic regulation in JacarandÃi-Pardo (Machaerium villosum Vog.) seedlings under PEG-induced water deficit. Plant Stress, 2023, 9, 100174.	5.5	2
50	Physiological and metabolomic responses of the ethylene insensitive squash mutant etr2b to drought. Plant Science, 2023, 336, 111853.	3.6	2
51	Transcriptome Analysis of Native Kentucky Bluegrass (Poa pratensis L.) in Response to Osmotic Stress. Plants, 2023, 12, 3971.	3.5	1
52	Potential of UVâ€B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. Plant, Cell and Environment, 0, , .	5.7	0
53	Altered fatty acid composition confers improved drought acclimation in maize. Plant Physiology and Biochemistry, 2024, 206, 108274.	5.8	1
54	Chromium Dynamics in the Soil-Plant Continuum. Environmental Science and Engineering, 2023, , 167-189.	0.2	0
55	Tomato plant growth promotion and drought tolerance conferred by three arbuscular mycorrhizal fungi is mediated by lipid metabolism. Plant Physiology and Biochemistry, 2024, 208, 108478.	5.8	0

#	Article	IF	CITATIONS
56	Differential drought tolerance among dichondra (Dichondra repens) genotypes in relation to alterations in chlorophyll metabolism, osmotic adjustment, and accumulation of organic metabolites. Protoplasma, 0, , .	2.1	0
57	Comparative differences in maintaining membrane fluidity and remodeling cell wall between Glycine soja and Glycine max leaves under drought. Plant Physiology and Biochemistry, 2024, 209, 108545.	5.8	Ο

CITATION REPORT