Characterization of the sources and processes of organi York city with a high-resolution time-of-flight aerosol r

Atmospheric Chemistry and Physics 11, 1581-1602 DOI: 10.5194/acp-11-1581-2011

Citation Report

#	Article	IF	CITATIONS
1	Characterization and Source Apportionment of Water-Soluble Organic Matter in Atmospheric Fine Particles (PM _{2.5}) with High-Resolution Aerosol Mass Spectrometry and GC–MS. Environmental Science & Technology, 2011, 45, 4854-4861.	10.0	114
2	Characterization of Solvent-Extractable Organics in Urban Aerosols Based on Mass Spectrum Analysis and Hygroscopic Growth Measurement. Environmental Science & Technology, 2011, 45, 9168-9174.	10.0	38
3	Organic nitrogen in the atmosphere — Where does it come from? A review of sources and methods. Atmospheric Research, 2011, 102, 30-48.	4.1	210
4	Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain. Atmospheric Chemistry and Physics, 2011, 11, 12067-12084.	4.9	157
5	The 2005 Study of Organic Aerosols at Riverside (SOAR-1): instrumental intercomparisons and fine particle composition. Atmospheric Chemistry and Physics, 2011, 11, 12387-12420.	4.9	129
6	Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2011, 11, 12499-12515.	4.9	44
7	Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. Atmospheric Chemistry and Physics, 2011, 11, 12579-12599.	4.9	81
8	A case study of aerosol processing and evolution in summer in New York City. Atmospheric Chemistry and Physics, 2011, 11, 12737-12750.	4.9	49
9	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	4.9	493
10	The sensitivity of secondary organic aerosol (SOA) component partitioning to the predictions of component properties – Part 3: Investigation of condensed compounds generated by a near-explicit model of VOC oxidation. Atmospheric Chemistry and Physics, 2011, 11, 13145-13159.	4.9	20
11	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	3.7	764
13	Three-dimensional factorization of size-resolved organic aerosol mass spectra from Mexico City. Atmospheric Measurement Techniques, 2012, 5, 195-224.	3.1	39
14	Pollution Gradients and Chemical Characterization ofÂParticulateÂMatter from Vehicular Traffic near Major Roadways: Results from the 2009 Queens College Air Quality Study in NYC. Aerosol Science and Technology, 2012, 46, 1201-1218.	3.1	102
15	Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES. Atmospheric Chemistry and Physics, 2012, 12, 8131-8156.	4.9	146
16	Chemical characterization of springtime submicrometer aerosol in Po Valley, Italy. Atmospheric Chemistry and Physics, 2012, 12, 8401-8421.	4.9	101
17	Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements. Atmospheric Chemistry and Physics, 2012, 12, 8537-8551.	4.9	112
18	Identification and quantification of organic aerosol from cooking and other sources in Barcelona using aerosol mass spectrometer data. Atmospheric Chemistry and Physics, 2012, 12, 1649-1665.	4.9	449
19	Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2012, 12, 2215-2227.	4.9	55

#	Article	IF	CITATIONS
20	A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2012, 12, 2189-2203.	4.9	32
21	Urban organic aerosols measured by single particle mass spectrometry in the megacity of London. Atmospheric Chemistry and Physics, 2012, 12, 4127-4142.	4.9	49
22	Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmospheric Chemistry and Physics, 2012, 12, 4897-4907.	4.9	143
23	Summertime formaldehyde observations in New York City: Ambient levels, sources and its contribution to HOx radicals. Journal of Geophysical Research, 2012, 117, .	3.3	44
24	Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 9702.	2.8	38
25	Within-city contrasts in PM composition and sources and their relationship with nitrogen oxides. Journal of Environmental Monitoring, 2012, 14, 2718.	2.1	15
26	Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes. Environmental Science & Technology, 2012, 46, 8773-8781.	10.0	178
27	Primary and secondary organic aerosols in Fresno, California during wintertime: Results from high resolution aerosol mass spectrometry. Journal of Geophysical Research, 2012, 117, .	3.3	133
28	Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield. Journal of Geophysical Research, 2012, 117, .	3.3	72
29	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	1.5	84
30	Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor. Atmospheric Environment, 2012, 51, 250-259.	4.1	296
31	Fine and coarse PM composition and sources in rural and urban sites in Switzerland: Local or regional pollution?. Science of the Total Environment, 2012, 427-428, 191-202.	8.0	103
32	In situ measurement of PM1 organic aerosol in Beijing winter using a high-resolution aerosol mass spectrometer. Science Bulletin, 2012, 57, 819-826.	1.7	36
33	Anthropogenic sources of aerosol particles in a football stadium: Real-time characterization of emissions from cigarette smoking, cooking, hand flares, and color smoke bombs by high-resolution aerosol mass spectrometry. Atmospheric Environment, 2013, 77, 1043-1051.	4.1	25
34	NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines. Atmospheric Environment, 2013, 72, 105-112.	4.1	44
35	Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 2013, 71, 260-294.	4.1	397
36	Physical and chemical characterization of ambient aerosol by HRâ€ToFâ€AMS at a suburban site in Hong Kong during springtime 2011. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8625-8639.	3.3	56
37	The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. Journal of Geophysical Research D: Atmospheres, 2013, 118, 5830-5866.	3.3	199

_

#	Article	IF	CITATIONS
38	Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discussions, 2013, 165, 181.	3.2	46
39	Aerosol mass spectrometric analysis of the chemical composition of non-refractory PM1 samples from school environments in Brisbane, Australia. Science of the Total Environment, 2013, 458-460, 81-89.	8.0	12
40	Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 2013, 20, 8092-8131.	5.3	710
42	The cycling of organic nitrogen through the atmosphere. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130115.	4.0	119
44	Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China. Atmospheric Chemistry and Physics, 2013, 13, 10095-10112.	4.9	145
45	Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution. Atmospheric Chemistry and Physics, 2013, 13, 933-959.	4.9	101
46	Biogenic and biomass burning organic aerosol in a boreal forest at Hyytiä़PFinland, during HUMPPA-COPEC 2010. Atmospheric Chemistry and Physics, 2013, 13, 12233-12256.	4.9	53
47	A new source of oxygenated organic aerosol and oligomers. Atmospheric Chemistry and Physics, 2013, 13, 2989-3002.	4.9	17
48	Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 2013, 13, 4577-4592.	4.9	507
49	Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris. Atmospheric Chemistry and Physics, 2013, 13, 961-981.	4.9	391
50	Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign. Journal of Geophysical Research D: Atmospheres, 2013, 118, 9233-9257.	3.3	231
51	Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1950-1963.	3.3	142
52	Vertically resolved chemical characteristics and sources of submicron aerosols measured on a Tall Tower in a suburban area near Denver, Colorado in winter. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,591.	3.3	18
53	SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmospheric Measurement Techniques, 2013, 6, 3649-3661.	3.1	433
54	Measurement of Monocyclic Aromatic Amines in an Urban Air. Environment and Pollution, 2014, 3, .	0.2	0
55	Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia. Atmospheric Measurement Techniques, 2014, 7, 1929-1941.	3.1	70
56	Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmospheric Chemistry and Physics, 2014, 14, 2887-2903.	4.9	280
57	Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmospheric Environment, 2014, 96, 359-369.	4.1	75

#	Article	IF	CITATIONS
58	A novel model evaluation approach focusing on local and advected contributions to urban PM _{2.5} levels – application to Paris, France. Geoscientific Model Development, 2014, 7, 1483-1505.	3.6	33
59	Source apportionment and location by selective wind sampling and Positive Matrix Factorization. Environmental Science and Pollution Research, 2014, 21, 11634-11648.	5.3	11
60	Toward Understanding Amines and Their Degradation Products from Postcombustion CO ₂ Capture Processes with Aerosol Mass Spectrometry. Environmental Science & Technology, 2014, 48, 5066-5075.	10.0	52
61	Wintertime Aerosol Chemistry in Sub-Arctic Urban Air. Aerosol Science and Technology, 2014, 48, 313-323.	3.1	26
62	Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 259-273.	3.3	16
63	Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4380-4398.	3.3	581
64	Diurnal cycle of fossil and nonfossil carbon using radiocarbon analyses during CalNex. Journal of Geophysical Research D: Atmospheres, 2014, 119, 6818-6835.	3.3	82
65	First measurements of source apportionment of organic aerosols in the Southern Hemisphere. Environmental Pollution, 2014, 184, 81-88.	7.5	15
66	Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2014, 14, 12593-12611.	4.9	132
67	Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime. Atmospheric Chemistry and Physics, 2014, 14, 10061-10084.	4.9	171
68	Chemical composition, main sources and temporal variability of PM ₁ aerosols in southern African grassland. Atmospheric Chemistry and Physics, 2014, 14, 1909-1927.	4.9	81
69	Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra. Atmospheric Chemistry and Physics, 2014, 14, 8017-8042.	4.9	16
70	Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.	4.9	308
71	Seasonal cycles of waterâ€soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1440-1454.	3.3	53
72	Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12708-12722.	3.3	91
73	Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 2015, 15, 5773-5801.	4.9	139
74	Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors. Atmospheric Chemistry and Physics, 2015, 15, 2139-2158.	4.9	40
75	A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics, 2015, 15, 2775-2790.	4.9	266

#	Article	IF	CITATIONS
76	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. Atmospheric Chemistry and Physics, 2015, 15, 6351-6366.	4.9	46
77	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	4.9	641
78	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	4.9	92
79	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. Atmospheric Chemistry and Physics, 2015, 15, 11327-11340.	4.9	23
80	Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit. Atmospheric Chemistry and Physics, 2015, 15, 12879-12895.	4.9	100
81	Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics, 2015, 15, 1331-1349.	4.9	116
82	Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation. Atmospheric Chemistry and Physics, 2015, 15, 13569-13584.	4.9	90
83	Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study. Atmospheric Chemistry and Physics, 2015, 15, 13681-13698.	4.9	117
84	Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean. Atmospheric Chemistry and Physics, 2015, 15, 11355-11371.	4.9	68
85	Sources and fluxes of organic nitrogen in precipitation over the southern East Sea/Sea of Japan. Atmospheric Chemistry and Physics, 2015, 15, 2761-2774.	4.9	19
86	Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2015, 15, 37-53.	4.9	108
87	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	3.1	118
88	Organic PM Emissions from Vehicles: Composition, O/C Ratio, and Dependence on PM Concentration. Aerosol Science and Technology, 2015, 49, 86-97.	3.1	44
90	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	4.9	736
91	Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Advances in Atmospheric Sciences, 2015, 32, 877-888.	4.3	29
92	Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer. Atmospheric Environment, 2015, 120, 297-306.	4.1	53
101	Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer. Atmospheric Chemistry and Physics, 2016, 16, 14937-14957.	4.9	83
102	Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2508-2521.	3.3	93

#	Article	IF	CITATIONS
103	Submicron aerosols during the Beijing Asia–Pacific Economic Cooperation conference in 2014. Atmospheric Environment, 2016, 124, 224-231.	4.1	42
104	Influences of upwind emission sources and atmospheric processing on aerosol chemistry and properties at a rural location in the Northeastern U.S Journal of Geophysical Research D: Atmospheres, 2016, 121, 6049-6065.	3.3	35
105	The ambient aerosol characterization during the prescribed bushfire season in Brisbane 2013. Science of the Total Environment, 2016, 560-561, 225-232.	8.0	8
106	Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1955-1977.	3.3	259
107	Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements. Atmospheric Chemistry and Physics, 2016, 16, 7117-7134.	4.9	31
108	Primary and secondary aerosols in Beijing in winter: sources, variations and processes. Atmospheric Chemistry and Physics, 2016, 16, 8309-8329.	4.9	288
109	New insights into PM _{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 3207-3225.	4.9	300
110	Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns. Atmospheric Chemistry and Physics, 2016, 16, 3727-3741.	4.9	34
111	Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS. Atmospheric Chemistry and Physics, 2016, 16, 4081-4100.	4.9	95
112	Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California. Atmospheric Chemistry and Physics, 2016, 16, 5427-5451.	4.9	80
113	Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands. Atmospheric Chemistry and Physics, 2016, 16, 8831-8847.	4.9	38
114	Global combustion sources of organic aerosols: model comparison with 84ÂAMS factor-analysis data sets. Atmospheric Chemistry and Physics, 2016, 16, 8939-8962.	4.9	51
115	Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2016, 16, 9109-9127.	4.9	96
116	Variation in global chemical composition of PM _{2.5} : emerging results from SPARTAN. Atmospheric Chemistry and Physics, 2016, 16, 9629-9653.	4.9	123
117	Characterization of submicron aerosols at a suburban site in central China. Atmospheric Environment, 2016, 131, 115-123.	4.1	37
118	Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem. Atmospheric Research, 2016, 170, 41-51.	4.1	3
119	Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 2016, 89-90, 212-221.	10.0	287
120	Fine particles sampled at an urban background site and an industrialized coastal site in Northern France — Part 1: Seasonal variations and chemical characterization. Science of the Total Environment, 2017, 578, 203-218.	8.0	22

#	Article	IF	CITATIONS
121	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	4.1	203
122	Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS). Environmental Science & Technology, 2017, 51, 5026-5034.	10.0	86
123	Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry. Environmental Pollution, 2017, 222, 567-582.	7.5	30
124	Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India. Atmospheric Environment, 2017, 158, 148-159.	4.1	30
125	Aerosol characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other techniques. Environmental Pollution, 2017, 225, 74-85.	7.5	82
126	Contribution of bacteria-like particles to PM2.5 aerosol in urban and rural environments. Atmospheric Environment, 2017, 160, 97-106.	4.1	15
127	Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China. Environmental Science & amp; Technology, 2017, 51, 762-770.	10.0	179
128	Real-Time Characterization of Aerosol Particle Composition During Winter High-Pollution Events in China. , 2017, , 221-244.		0
129	Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX. Journal of the Air and Waste Management Association, 2017, 67, 854-872.	1.9	14
130	Effects of NO x on the molecular composition of secondary organic aerosol formed by the ozonolysis and photooxidation of $\hat{1}$ +-pinene. Atmospheric Environment, 2017, 166, 263-275.	4.1	19
131	Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014–2015 using the aerosol chemical speciation monitor (ACSM). Atmospheric Environment, 2017, 167, 389-402.	4.1	26
132	Seasonal Characterization of Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2017, 1, 673-682.	2.7	42
133	Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using aÂhigh-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2017, 17, 2009-2033.	4.9	50
134	Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics, 2017, 17, 6853-6864.	4.9	53
135	Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China. Atmospheric Chemistry and Physics, 2017, 17, 10245-10258.	4.9	51
136	Characterization of fresh and aged organic aerosol emissions fromÂmeat charbroiling. Atmospheric Chemistry and Physics, 2017, 17, 7143-7155.	4.9	58
137	Diurnal and day-to-day characteristics of ambient particle mass size distributions from HR-ToF-AMS measurements at an urban site and a suburban site in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 13605-13624.	4.9	5
138	Field characterization of the PM _{2.5} Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fineÂparticles in eastern China. Atmospheric Chemistry and Physics, 2017, 17, 14501-14517.	4.9	58

#	Article	IF	CITATIONS
139	Evaluation of traffic exhaust contributions to ambient carbonaceous submicron particulate matter in an urban roadside environment in Hong Kong. Atmospheric Chemistry and Physics, 2017, 17, 15121-15135.	4.9	16
140	Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 2573-2592.	4.9	86
141	The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 2017, 17, 3145-3163.	4.9	87
142	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	4.9	23
143	Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260†m in Beijing. Atmospheric Chemistry and Physics, 2017, 17, 3215-3232.	4.9	90
144	Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils. Atmospheric Chemistry and Physics, 2017, 17, 7333-7344.	4.9	59
151	The ion trap aerosol mass spectrometer: field intercomparison with the ToF-AMS and the capability of differentiating organic compound classes via MS-MS. Atmospheric Measurement Techniques, 2017, 10, 1623-1637.	3.1	2
152	Study on precipitated phases, dislocations and hardness in the HAZ of friction stir welded joint of 2024 aluminum alloy. Metallic Materials, 2017, 55, 357-361.	0.3	2
153	Characteristics and sources of aerosol pollution at a polluted rural site southwest in Beijing, China. Science of the Total Environment, 2018, 626, 519-527.	8.0	32
154	Nitric Acid–Amine Chemistry in the Gas Phase and at the Air–Water Interface. Journal of the American Chemical Society, 2018, 140, 6456-6466.	13.7	51
155	Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment. Environmental Science & amp; Technology, 2018, 52, 5308-5318.	10.0	76
156	Chemical speciation, including polycyclic aromatic hydrocarbons (PAHs), and toxicity of particles emitted from meat cooking operations. Science of the Total Environment, 2018, 633, 1429-1436.	8.0	46
157	Insights into the formation of secondary organic carbon in the summertime in urban Shanghai. Journal of Environmental Sciences, 2018, 72, 118-132.	6.1	27
158	The effects of isoprene and NO _{<i>x</i>} on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water. Atmospheric Chemistry and Physics, 2018, 18, 1171-1184.	4.9	18
159	Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China. Atmospheric Chemistry and Physics, 2018, 18, 1729-1743.	4.9	38
160	Characterization and source apportionment of organic aerosol at 260 m on aÂmeteorological tower in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 3951-3968.	4.9	27
161	Development of an on-line measurement system for water-soluble organic matter in PM 2.5 and its application in China. Journal of Environmental Sciences, 2018, 69, 33-40.	6.1	6
162	Particulate matter emissions and gaseous air toxic pollutants from commercial meat cooking operations. Journal of Environmental Sciences, 2018, 65, 162-170.	6.1	41

#	Article	IF	CITATIONS
163	Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou. Environmental Pollution, 2018, 232, 42-54.	7.5	35
164	Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol. Atmospheric Environment, 2018, 176, 103-109.	4.1	13
165	Significant Production of Secondary Organic Aerosol from Emissions of Heated Cooking Oils. Environmental Science and Technology Letters, 2018, 5, 32-37.	8.7	69
166	The impacts of regional shipping emissions on the chemical characteristics of coastal submicron aerosols near Houston, TX. Atmospheric Chemistry and Physics, 2018, 18, 14217-14241.	4.9	16
167	Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15601-15622.	4.9	34
168	High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 16325-16344.	4.9	46
169	Source apportionment of the organic aerosol over the Atlantic Ocean from 53° N to 53° S: significant contributions from marine emissions and long-range transport. Atmospheric Chemistry and Physics, 2018, 18, 18043-18062.	4.9	32
170	Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. Atmosphere, 2018, 9, 452.	2.3	37
173	Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta: influences of thermodynamics and N ₂ O ₅ hydrolysis. Atmospheric Chemistry and Physics, 2018, 18, 17177-17190.	4.9	46
174	Primary and secondary organic aerosol from heated cooking oil emissions. Atmospheric Chemistry and Physics, 2018, 18, 11363-11374.	4.9	35
176	Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 7149-7168.	4.9	105
180	Restaurant Impacts on Outdoor Air Quality: Elevated Organic Aerosol Mass from Restaurant Cooking with Neighborhood-Scale Plume Extents. Environmental Science & Technology, 2018, 52, 9285-9294.	10.0	61
181	Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China. Atmospheric Chemistry and Physics, 2018, 18, 8469-8489.	4.9	110
182	Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7771-7796.	3.3	71
184	ORACLE 2-DÂ(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model. Geoscientific Model Development, 2018, 11, 3369-3389.	3.6	24
185	Volatility Distribution and Evaporation Rates of Organic Aerosol from Cooking Oils and their Evolution upon Heterogeneous Oxidation. ACS Earth and Space Chemistry, 2019, 3, 1717-1728.	2.7	19
187	A Black Carbonâ€Tracer Method for Estimating Cooking Organic Aerosol From Aerosol Mass Spectrometer Measurements. Geophysical Research Letters, 2019, 46, 8474-8483.	4.0	16
189	A novel approach for simple statistical analysis of high-resolution mass spectra. Atmospheric Measurement Techniques, 2019, 12, 3761-3776.	3.1	24

#	Article	IF	CITATIONS
190	Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 7897-7911.	4.9	21
191	Detailed Measurements of Submicron Particles from an Independence Day Fireworks Event in Albany, New York Using HR-ToF-AMS. ACS Earth and Space Chemistry, 2019, 3, 1451-1459.	2.7	10
192	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	3.3	56
193	Characterization of Size-Resolved Hygroscopicity of Black Carbon-Containing Particle in Urban Environment. Environmental Science & amp; Technology, 2019, 53, 14212-14221.	10.0	27
194	Seasonal differences in formation processes of oxidized organic aerosol near Houston, TX. Atmospheric Chemistry and Physics, 2019, 19, 9641-9661.	4.9	24
196	Effects of Molecular-Level Compositional Variability in Organic Aerosol on Phase State and Thermodynamic Mixing Behavior. Environmental Science & Technology, 2019, 53, 13009-13018.	10.0	22
197	Elucidating the molecular mechanisms of Criegee-amine chemistry in the gas phase andÂaqueous surface environments. Chemical Science, 2019, 10, 743-751.	7.4	26
198	Fireworks: A major source of inorganic and organic aerosols during Christmas and New Year in Mexico city. Atmospheric Environment: X, 2019, 2, 100013.	1.4	23
199	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	4.9	57
201	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	3.3	28
202	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometerÂ(EESI-TOF-MS) – PartÂ1: Biogenic influences and day–night chemistry in summer. Atmospheric Chemistry and Physics, 2019, 19, 14825-14848.	4.9	38
203	Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmospheric Chemistry and Physics, 2019, 19, 14755-14776.	4.9	49
204	Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From Highâ€Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1132-1147.	3.3	155
205	Vertical Characterization and Source Apportionment of Water-Soluble Organic Aerosol with High-resolution Aerosol Mass Spectrometry in Beijing, China. ACS Earth and Space Chemistry, 2019, 3, 273-284.	2.7	28
206	Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric Environment, 2019, 198, 55-69.	4.1	128
207	Urban Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic Aerosol Contributions from Volatile Emissions of Emerging Importance. Environmental Science & Technology, 2020, 54, 714-725.	10.0	44
208	Substantial brown carbon emissions from wintertime residential wood burning over France. Science of the Total Environment, 2020, 743, 140752.	8.0	41
209	Chemical characterization and source identification of submicron aerosols from a year-long real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor. Atmospheric Research, 2020, 246, 105154.	4.1	18

#	Article	IF	CITATIONS
211	Estimation of aerosol liquid water from optical scattering instruments using ambient and dried sample streams. Atmospheric Environment, 2020, 239, 117787.	4.1	5
212	Indoor aerosol water content and phase state in U.S. residences: impacts of relative humidity, aerosol mass and composition, and mechanical system operation. Environmental Sciences: Processes and Impacts, 2020, 22, 2031-2057.	3.5	20
213	Chemical composition and sources of submicron aerosol in a coastal city of China: Results from the 2017 BRICS summit study. Science of the Total Environment, 2020, 741, 140470.	8.0	7
214	In Situ Measurements of Molecular Markers Facilitate Understanding of Dynamic Sources of Atmospheric Organic Aerosols. Environmental Science & Technology, 2020, 54, 11058-11069.	10.0	14
216	Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere, 2020, 258, 127310.	8.2	16
217	Removal of particulate matter from pork belly grilling gas using an orifice wet scrubber. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2020, 55, 1125-1130.	1.7	5
218	Sub micron aerosol variability and its ageing process at a high altitude site in India: Impact of meteorological conditions. Environmental Pollution, 2020, 265, 115019.	7.5	13
219	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	3.1	33
220	Mass spectral characterization of primary emissions and implications in source apportionment of organic aerosol. Atmospheric Measurement Techniques, 2020, 13, 3205-3219.	3.1	27
221	Characterization of carbonaceous aerosols in Singapore: insight from black carbon fragments and trace metal ions detected by a soot particle aerosol mass spectrometer. Atmospheric Chemistry and Physics, 2020, 20, 5977-5993.	4.9	32
222	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	3.5	57
223	Particle number size distributions and new particle formation events over the northern Indian Ocean during continental outflow. Atmospheric Environment, 2020, 238, 117719.	4.1	22
224	High secondary formation of nitrogen-containing organics (NOCs) and its possible link to oxidized organics and ammonium. Atmospheric Chemistry and Physics, 2020, 20, 1469-1481.	4.9	28
225	Impact of air transport and secondary formation on haze pollution in the Yangtze River Delta: In situ online observations in Shanghai and Nanjing. Atmospheric Environment, 2020, 225, 117350.	4.1	35
226	Chemical Differences Between PM ₁ and PM _{2.5} in Highly Polluted Environment and Implications in Air Pollution Studies. Geophysical Research Letters, 2020, 47, e2019GL086288.	4.0	72
227	Evaluation of Aldehydes, Polycyclic Aromatic Hydrocarbons, and PM _{2.5} Levels in Food Trucks: A Pilot Study. Workplace Health and Safety, 2020, 68, 443-451.	1.4	3
228	Online Chemical Characterization and Source Identification of Summer and Winter Aerosols in MÄfgurele, Romania. Atmosphere, 2020, 11, 385.	2.3	6
229	Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions. Atmospheric Chemistry and Physics, 2020, 20, 2877-2890.	4.9	23

#	Article	IF	CITATIONS
230	In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport. Chemosphere, 2021, 262, 127745.	8.2	17
231	Fluorescence characteristics of water-soluble organic carbon in atmospheric aerosolâ~†. Environmental Pollution, 2021, 268, 115906.	7.5	49
232	Secondary Organic Aerosol from Typical Chinese Domestic Cooking Emissions. Environmental Science and Technology Letters, 2021, 8, 24-31.	8.7	35
233	Characteristics, evolution, and potential source regions of submicron aerosol in Beijing, China. Atmospheric Environment, 2021, 246, 118061.	4.1	6
234	Long Island enhanced aerosol event during 2018 LISTOS: Association with heatwave and marine influences. Environmental Pollution, 2021, 270, 116299.	7.5	8
235	Classification and source analysis of low-altitude aerosols in Beijing using fluorescence–Mie polarization lidar. Optics Communications, 2021, 479, 126417.	2.1	6
236	A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data. Atmospheric Measurement Techniques, 2021, 14, 923-943.	3.1	50
237	Long-term trends in local and transported PM2.5 pollution in New York City. Atmospheric Environment, 2021, 248, 118238.	4.1	15
238	Distinctive Sources Govern Organic Aerosol Fractions with Different Degrees of Oxygenation in the Urban Atmosphere. Environmental Science & amp; Technology, 2021, 55, 4494-4503.	10.0	10
239	Characterization of secondary organic aerosol from heated-cooking-oil emissions: evolution in composition and volatility. Atmospheric Chemistry and Physics, 2021, 21, 5137-5149.	4.9	16
240	A Large Impact of Cooking Organic Aerosol (COA) on Particle Hygroscopicity and CCN Activity in Urban Atmosphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033628.	3.3	4
241	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmospheric Environment, 2021, 252, 118298.	4.1	13
242	Impacts of primary emissions and secondary aerosol formation on air pollution in an urban area of China during the COVID-19 lockdown. Environment International, 2021, 150, 106426.	10.0	54
243	Physical and chemical properties of urban aerosols in São Paulo, Brazil: links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics, 2021, 21, 8761-8773.	4.9	7
244	Quantification of solid fuel combustion and aqueous chemistry contributions to secondary organic aerosol during wintertime haze events in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 9859-9886.	4.9	20
245	Seasonal analysis of submicron aerosol in Old Delhi using high-resolution aerosol mass spectrometry: chemical characterisation, source apportionment and new marker identification. Atmospheric Chemistry and Physics, 2021, 21, 10133-10158.	4.9	15
246	Fingerprinting and emission rates of particulate organic compounds from typical restaurants in Portugal. Science of the Total Environment, 2021, 778, 146090.	8.0	17
247	Insights into aqueous-phase and photochemical formation of secondary organic aerosol in the winter of Beijing. Atmospheric Environment, 2021, 259, 118535.	4.1	21

#	Article	IF	CITATIONS
248	Realâ€Time Characterization of Aerosol Compositions, Sources, and Aging Processes in Guangzhou During PRIDEâ€GBA 2018 Campaign. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035114.	3.3	25
249	Comparative analysis of the chemical characteristics and sources of fine atmospheric particulate matter (PM2.5) at two sites in Changzhou, China. Atmospheric Pollution Research, 2021, 12, 101124.	3.8	12
251	Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in different O3 formation regimes. Atmospheric Environment, 2021, 261, 118603.	4.1	8
252	Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environmental Advances, 2021, 5, 100101.	4.8	11
253	Simulation of the cooking organic aerosol concentration variability in an urban area. Atmospheric Environment, 2021, 265, 118710.	4.1	10
254	Primary emissions and secondary production of organic aerosols from heated animal fats. Science of the Total Environment, 2021, 794, 148638.	8.0	2
255	Characterization of submicron aerosol particles in winter at Albany, New York. Journal of Environmental Sciences, 2022, 111, 118-129.	6.1	2
256	Characterization and source identification of submicron aerosol during serious haze pollution periods in Beijing. Journal of Environmental Sciences, 2022, 112, 25-37.	6.1	11
257	Impacts of secondary aerosol formation and long range transport on severe haze during the winter of 2017 in the Seoul metropolitan area. Science of the Total Environment, 2022, 804, 149984.	8.0	10
258	Composition and supply of inorganic and organic nitrogen species in dry and wet atmospheric deposition: Use of organic nitrogen composition to calculate the Ocean's external nitrogen flux from the atmosphere. Continental Shelf Research, 2021, 213, 104316.	1.8	9
259	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. Issues in Environmental Science and Technology, 2016, , 35-71.	0.4	5
260	Chemical and Source Characterization of Submicron Particles at Residential and Traffic Sites in the Helsinki Metropolitan Area, Finland. Aerosol and Air Quality Research, 2015, 15, 1213-1226.	2.1	29
261	Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9101-9114.	4.9	34
262	Robust observational constraint of uncertain aerosol processes and emissions in a climate model and the effect on aerosol radiative forcing. Atmospheric Chemistry and Physics, 2020, 20, 9491-9524.	4.9	22
296	A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula I. Characteristics of PM Concentration and Chemical Components. Journal of Korean Society for Atmospheric Environment, 2016, 32, 469-484.	1.1	11
297	A Study on Chemical Characteristics of Aerosol Composition at West Inflow Regions in the Korean Peninsula II. Characteristics of Inorganic Aerosol Acidity and Organic Aerosol Oxidation. Journal of Korean Society for Atmospheric Environment, 2016, 32, 485-500.	1.1	10
298	Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area. Journal of Korean Society for Atmospheric Environment, 2018, 34, 430-446.	1.1	12
299	Relationship between Cholesterol and Oxidative Potential from Meat Cooking. Journal of Korean Society for Atmospheric Environment, 2018, 34, 639-650.	1.1	7

#	Article	IF	CITATIONS
300	Mass spectral characterization of secondary organic aerosol from urban cooking and vehicular sources. Atmospheric Chemistry and Physics, 2021, 21, 15065-15079.	4.9	16
301	Formation and evolution of secondary organic aerosols derived from urban-lifestyle sources: vehicle exhaust and cooking emissions. Atmospheric Chemistry and Physics, 2021, 21, 15221-15237.	4.9	9
302	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	10.0	21
303	Levetiracetum Induced Angioedema without Prior Reaction to Phenytoin. Eastern Journal of Psychiatry, 2021, 19, 33-35.	0.0	0
311	A new method for air quality observation based on ultraviolet laser. , 2019, , .		0
312	Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM2.5. Environmental Pollution, 2022, 292, 118417.	7.5	11
313	Quantifying ambient concentrations of primary and secondary organic aerosol in central Los Angeles using an integrated approach coupling source apportionment with regression analysis. Atmospheric Environment, 2022, 268, 118807.	4.1	7
314	Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China. Environmental Pollution, 2022, 292, 118266.	7.5	5
315	Characterization of temporal PM2.5, nitrate, and sulfate using deep learning techniques. Atmospheric Pollution Research, 2022, 13, 101260.	3.8	11
316	A machine learning model for predicting PM2.5 and nitrate concentrations based on long-term water-soluble inorganic salts datasets at a road site station. Chemosphere, 2022, 289, 133123.	8.2	12
317	Polycyclic aromatic hydrocarbons from cooking emissions. Science of the Total Environment, 2022, 818, 151700.	8.0	20
318	Chemical characteristics and sources of nitrogen-containing organic compounds at a regional site in the North China Plain during the transition period of autumn and winter. Science of the Total Environment, 2022, 812, 151451.	8.0	10
319	Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes. Environmental Science & Technology, 2021, 55, 15680-15693.	10.0	28
320	Source identification and characterization of organic nitrogen in atmospheric aerosols at a suburban site in China. Science of the Total Environment, 2022, 818, 151800.	8.0	3
321	Chemical characterization and sources of submicron aerosols in Lhasa on the Qinghai–Tibet Plateau: Insights from high-resolution mass spectrometry. Science of the Total Environment, 2022, 815, 152866.	8.0	7
322	Particulate matter in a motorcycle-dominated urban area: Source apportionment and cancer risk of lung deposited surface area (LDSA) concentrations. Journal of Hazardous Materials, 2022, 427, 128188.	12.4	13
323	Effects of the COVID-19 shutdown on spatial and temporal patterns of air pollution in New York City. Environmental Advances, 2022, 7, 100171.	4.8	7
324	Formation pathways of aldehydes from heated cooking oils. Environmental Sciences: Processes and Impacts, 2023, 25, 165-175.	3.5	8

#	Article	IF	CITATIONS
325	Aircraft Study of Secondary Aerosols in Longâ€Range Transported Air Masses From the North China Plain by a Mid‣atitude Cyclone. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
326	Modeling Study on Oil Particle Filtration Performance of a Composite Coalescing Filter. Frontiers in Energy Research, 2022, 10, .	2.3	1
327	Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel. Geoscientific Model Development, 2022, 15, 2673-2710.	3.6	13
328	Characterization of chemical and physical changes in atmospheric aerosols during fog processing at Baengnyeong Island, South Korea. Atmospheric Environment, 2022, 278, 119091.	4.1	2
329	The investigations on organic sources and inorganic formation processes and their implications on haze during late winter in Seoul, Korea. Environmental Research, 2022, 212, 113174.	7.5	5
330	Synergetic effects of NH ₃ and NO _{<i>x</i>} on the production and optical absorption of secondary organic aerosol formation from toluene photooxidation. Atmospheric Chemistry and Physics, 2021, 21, 17759-17773.	4.9	13
331	Evolution of source attributed organic aerosols and gases in a megacity of central China. Atmospheric Chemistry and Physics, 2022, 22, 6937-6951.	4.9	6
332	The Effect of Transportation and Wildfires on the Spatiotemporal Heterogeneity of PM _{2.5} Mass in the New York-New Jersey Metropolitan Statistical Area. Environmental Health Insights, 2022, 16, 117863022211040.	1.7	0
333	Gas- and Particle-Phase Amide Emissions from Cooking: Mechanisms and Air Quality Impacts. Environmental Science & Technology, 2022, 56, 7741-7750.	10.0	11
334	Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 2022, 22, 8073-8096.	4.9	7
335	Outdoor charcoal grilling: Particulate and gas-phase emissions, organic speciation and ecotoxicological assessment. Atmospheric Environment, 2022, 285, 119240.	4.1	6
336	Aqueous processing of water-soluble organic compounds in the eastern United States during winter. Environmental Sciences: Processes and Impacts, 2023, 25, 241-253.	3.5	1
338	Secondary organic aerosol formation at an urban background site on the coastline of South China: Precursors and aging processes. Environmental Pollution, 2022, 309, 119778.	7.5	2
339	Sources and processes of water-soluble and water-insoluble organic aerosol in cold season in Beijing, China. Atmospheric Chemistry and Physics, 2022, 22, 10409-10423.	4.9	4
340	Chemical characterization of sub-micron aerosols over the East Sea (Sea of Japan). Science of the Total Environment, 2023, 856, 159173.	8.0	3
341	Effect of Biomass Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative Potential of Fine Ambient Particulate Matter in Delhi, India. Environmental Science & Technology, 2022, 56, 14605-14616.	10.0	7
342	National Exposure Models for Source-Specific Primary Particulate Matter Concentrations Using Aerosol Mass Spectrometry Data. Environmental Science & Technology, 2022, 56, 14284-14295.	10.0	4
343	Source apportionment resolved by time of day for improved deconvolution of primary source contributions to air pollution. Atmospheric Measurement Techniques, 2022, 15, 6051-6074.	3.1	5

#	Article	IF	CITATIONS
344	Not all types of secondary organic aerosol mix: two phases observed when mixing different secondary organic aerosol types. Atmospheric Chemistry and Physics, 2022, 22, 13783-13796.	4.9	10
345	Secondary organic aerosol formation in China from urban-lifestyle sources: Vehicle exhaust and cooking emission. Science of the Total Environment, 2023, 857, 159340.	8.0	5
346	Spatio-temporal variation of C-PM2.5 (composition based PM2.5) sources using PMF*PMF (double-PMF) and single-combined PMF technique on real-time non-refractory, BC and elemental measurements during post-monsoon and winter at two sites in Delhi, India. Atmospheric Environment, 2023, 293, 119456.	4.1	3
347	The effect of the averaging period for PMF analysis of aerosol mass spectrometer measurements during offline applications. Atmospheric Measurement Techniques, 2022, 15, 6419-6431.	3.1	2
348	Insights from ozone and particulate matter pollution control in New York City applied to Beijing. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	4
349	From the HOMEChem frying pan to the outdoor atmosphere: chemical composition, volatility distributions and fate of cooking aerosol. Environmental Sciences: Processes and Impacts, 2023, 25, 314-325.	3.5	2
350	Seasonal Variation of Aerosol Composition and Sources of Water-Soluble Organic Carbon in an Eastern City of China. Atmosphere, 2022, 13, 1968.	2.3	0
351	Quantification of primary and secondary organic aerosol sources by combined factor analysis of extractive electrospray ionisation and aerosol mass spectrometer measurements (EESI-TOF and AMS). Atmospheric Measurement Techniques, 2022, 15, 7265-7291.	3.1	2
352	Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. Science of the Total Environment, 2023, 860, 160469.	8.0	1
353	Measurement report: Intensive biomass burning emissions and rapid nitrate formation drive severe haze formation in the Sichuan Basin, China – insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2023, 23, 1147-1167.	4.9	3
354	Current air quality monitoring methods. , 2023, , 13-103.		0
355	Insights into the compositional differences of PM1 and PM2.5 from aerosol mass spectrometer measurements in Beijing, China. Atmospheric Environment, 2023, 301, 119709.	4.1	1
356	Influences of meteorology on emission sources and physicochemical properties of particulate matter in Seoul, Korea during the heating period. Atmospheric Environment, 2023, 303, 119733.	4.1	3
357	Contrasting the characteristics, sources, and evolution of organic aerosols between summer and winter in a megacity of China. Science of the Total Environment, 2023, 877, 162937.	8.0	2
358	Estimation of Carbonaceous Aerosol Sources under Extremely Cold Weather Conditions in an Urban Environment. Atmosphere, 2023, 14, 310.	2.3	1
359	The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis. Atmospheric Measurement Techniques, 2023, 16, 1323-1341.	3.1	0
360	Insights into characteristics and formation mechanisms of secondary organic aerosols in the Guangzhou urban area. Atmospheric Chemistry and Physics, 2023, 23, 5119-5133.	4.9	5
361	Biomass burning and aqueous reactions drive the elevation of wintertime PM2.5 in the rural area of the Sichuan basin, China. Atmospheric Environment, 2023, 306, 119779.	4.1	3

#	Article	IF	CITATIONS
362	Emissions from ships' activities in the anchorage zone: A potential source of sub-micron aerosols in port areas. Journal of Hazardous Materials, 2023, 457, 131775.	12.4	0
363	Development and evaluation of an improved offline aerosol mass spectrometry technique. Atmospheric Measurement Techniques, 2023, 16, 2837-2850.	3.1	1
364	Concurrent photochemical whitening and darkening of ambient brown carbon. Atmospheric Chemistry and Physics, 2023, 23, 9439-9453.	4.9	0
365	Roles of Regional Transport and Vertical Mixing in Aerosol Pollution in Shanghai Over the COVIDâ€19 Lockdown Period Observed Above Urban Canopy. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	2
366	Methylsiloxanes from Vehicle Emissions Detected in Aerosol Particles. Environmental Science & Technology, 2023, 57, 14269-14279.	10.0	0
367	Short-term and repeated exposure to particulate matter sizes from Imperial Valley, California to induce inflammation and asthmatic-like symptoms in mice. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2023, 86, 909-927.	2.3	0
368	Cooking as an organic aerosol source leading to urban air quality degradation. Science of the Total Environment, 2024, 908, 168031.	8.0	0
369	Indoor PM _{2.5} concentrations in various retail stores in an urban city: Levels, sources and health risk assessment. Indoor and Built Environment, 2024, 33, 534-550.	2.8	0
370	Hyper-local to regional exposure contrast of source-resolved PM2.5 components across the contiguous United States: implications for health assessment. Journal of Exposure Science and Environmental Epidemiology, 0, , .	3.9	1
371	A searchable database and mass spectral comparison tool for the Aerosol Mass Spectrometer (AMS) and the Aerosol Chemical Speciation Monitor (ACSM). Atmospheric Measurement Techniques, 2023, 16, 6075-6095.	3.1	0
372	Response of organic aerosol in Beijing to emission reductions during the XXIV Olympic Winter Games. Science of the Total Environment, 2024, 914, 170033.	8.0	1
373	Enhancing characterization of organic nitrogen components in aerosols and droplets using high-resolution aerosol mass spectrometry. Atmospheric Measurement Techniques, 2024, 17, 423-439.	3.1	0
374	Increasing Contributions of Temperature-Dependent Oxygenated Organic Aerosol to Summertime Particulate Matter in New York City. , 2024, 1, 113-128.		0
375	A comparative study on the formation of nitrogen-containing organic compounds in cloud droplets and aerosol particles. Journal of Environmental Sciences, 0, 149, 456-464.	6.1	0
376	Quantitative assessment of nano-plastic aerosol particles emitted during machining of carbon fiber reinforced plastic. Journal of Hazardous Materials, 2024, 467, 133679.	12.4	0
377	Measurement report: Evaluation of the TOF-ACSM-CV for PM _{1.0} and PM _{2.5} measurements during the RITA-2021 field campaign. Atmospheric Chemistry and Physics, 2024, 24, 3405-3420.	4.9	0
378	A laboratory study of secondary organic aerosol formation in an oxidation flow reactor. Fuel, 2024, 367, 131491.	6.4	0