Genotypes and Toxin Gene Profiles of Staphylococcus a

PLoS ONE 6, e28276 DOI: 10.1371/journal.pone.0028276

Citation Report

#	Article	IF	Citations
1	Design, expression, and characterization of a novel targeted plectasin against methicillin-resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 2013, 97, 3991-4002.	1.7	34
2	Superantigen gene profiles, genetic relatedness and biological activity of exosecretions of <i>Staphylococcus aureus</i> isolates obtained from milk of cows with clinical mastitis. Microbiology and Immunology, 2013, 57, 674-683.	0.7	5
3	Biofilm formation and dispersal of Staphylococcus aureus under the influence of oxacillin. Microbial Pathogenesis, 2013, 61-62, 66-72.	1.3	49
4	<i>Staphylococcus aureus</i> Clinical Isolates: Antibiotic Susceptibility, Molecular Characteristics, and Ability to Form Biofilm. BioMed Research International, 2013, 2013, 1-11.	0.9	38
5	<i>Staphylococcus aureus spa</i> type t267, clonal ancestor of bovine subclinical mastitis in India. Journal of Applied Microbiology, 2013, 114, 1604-1615.	1.4	39
6	Molecular typing and cytotoxicity testing of Staphylococcus aureus isolated from milk, meat and clinical sources. African Journal of Microbiology Research, 2014, 8, 1282-1291.	0.4	0
7	A High-Throughput, Precipitating Colorimetric Sandwich ELISA Microarray for Shiga Toxins. Toxins, 2014, 6, 1855-1872.	1.5	11
8	Comparative analysis of the virulence characteristics of epidemic methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) strains isolated from Chinese children: ST59 MRSA highly expresses core gene-encoded toxin. Apmis, 2014, 122, 101-114.	0.9	31
9	Molecular Epidemiological Characteristics and Clonal Genetic Diversity of Staphylococcus aureus with Different Origins in China. Foodborne Pathogens and Disease, 2014, 11, 503-510.	0.8	13
10	Phenotypic and Genotypic Antimicrobial Resistance Traits of Foodborne <i>Staphylococcus aureus</i> Isolates from Shanghai. Journal of Food Science, 2014, 79, M635-42.	1.5	21
11	Prevalence of exfoliative toxin A and B genes in Staphylococcus aureus isolated from clinical specimens. Journal of Infection and Public Health, 2014, 7, 177-185.	1.9	19
12	Prevalence of enterotoxins and toxin gene profiles of <i>Staphylococcus aureus</i> isolates recovered from a bakery involved in a second staphylococcal food poisoning occurrence. Journal of Applied Microbiology, 2014, 117, 866-875.	1.4	20
13	Improvement of Strain Discrimination by Combination of Superantigen Profiles, PFGE, and RAPD for <i>Staphylococcus aureus</i> Isolates from Clinical Samples and Food-Poisoning Cases. Foodborne Pathogens and Disease, 2014, 11, 468-477.	0.8	8
14	Detection and Measurement of Staphylococcal Enterotoxin-Like K (SEI-K) Secretion by Staphylococcus aureus Clinical Isolates. Journal of Clinical Microbiology, 2014, 52, 2536-2543.	1.8	22
15	Multilocus Sequence Typing Scheme versus Pulsed-Field Gel Electrophoresis for Typing Mycobacterium abscessus Isolates. Journal of Clinical Microbiology, 2014, 52, 2881-2891.	1.8	16
16	High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus. Applied Microbiology and Biotechnology, 2014, 98, 681-694.	1.7	82
17	Investigating prevalence of pathogenic genes (ETA and TSST-1) in Staphylococcus aureus isolated from different wards of the hospitals by PCR method. International Journal of Scientific World, 2015, 3, 239-243.	3.0	0
18	In vitro and inÂvivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus. Applied Microbiology and Biotechnology, 2015, 99, 6255-6266.	1.7	28

#	Article	IF	CITATIONS
19	Methicillin-Resistant Staphylococcus aureus Grown on Vancomycin-Supplemented Screening Agar Displays Enhanced Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2015, 59, 7906-7910.	1.4	13
20	Staphylococcus aureus harbouring egc cluster coding for non-classical enterotoxins, involved in a food poisoning outbreak, Romania, 2012 / Staphylococcus aureus purtÄftor de gene codante pentru enterotoxine non-clasice (cluster egc), implicat într-un focar de toxiinfecÅ£ie alimentarÄf, România, 2012. Romanian lournal of Laboratory Medicine. 2015. 23. 285-294.	0.1	2
21	Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. Journal of Antibiotics, 2015, 68, 98-105.	1.0	30
22	Genetic diversity and virulence potential of Staphylococcus aureus isolates from raw and processed food commodities in Shanghai. International Journal of Food Microbiology, 2015, 195, 1-8.	2.1	80
23	Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colombia Medica, 2016, , 15-20.	0.7	7
24	Toxin gene profile and antibiotic resistance of Staphylococcus aureus isolated from clinical and food samples in Egypt. African Journal of Microbiology Research, 2016, 10, 428-437.	0.4	8
25	Distribution of tsst-1 and mecA Genes in Staphylococcus aureus Isolated From Clinical Specimens. Jundishapur Journal of Microbiology, 2016, 9, e29057.	0.2	16
26	Molecular characterization of <i>Staphylococcus aureus</i> isolates from skin and soft tissue infections samples and healthy carriers in the Central Slovenia region. Apmis, 2016, 124, 309-318.	0.9	6
27	Population structure and antimicrobial profile of Staphylococcus aureus strains associated with bovine mastitis in China. Microbial Pathogenesis, 2016, 97, 103-109.	1.3	37
28	Genotypic and phenotypic analysis of clinical isolates of Staphylococcus aureus revealed production patterns and hemolytic potentials unlinked to gene profiles and source. BMC Microbiology, 2016, 16, 13.	1.3	23
29	PCR detection of staphylococcal enterotoxin genes and exfoliative toxin genes in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains from raw human breast milk. Clinical Nutrition Experimental, 2017, 14, 26-35.	2.0	9
30	Biofilm formation and antibiotic resistance pattern of dominant <i>Staphylococcus aureus</i> clonal lineages in China. Journal of Food Safety, 2017, 37, e12304.	1.1	13
31	Antimicrobial resistance and prevalence of CvfB, SEK and SEQ genes among Staphylococcus aureus isolates from paediatric patients with bloodstream infections. Experimental and Therapeutic Medicine, 2017, 14, 5143-5148.	0.8	4
32	Identification of Variable Traits among the Methicillin Resistant and Sensitive Coagulase Negative Staphylococci in Milk Samples from Mastitic Cows in India. Frontiers in Microbiology, 2017, 8, 1446.	1.5	37
33	Exotoxin diversity of Staphylococcus aureus isolated from milk of cows with subclinical mastitis in Central Russia. Journal of Dairy Science, 2018, 101, 4325-4331.	1.4	29
34	Molecular characteristics of antimicrobial resistance and virulence determinants of <i>Staphylococcus aureus</i> isolates derived from clinical infection and food. Journal of Clinical Laboratory Analysis, 2018, 32, e22456.	0.9	17
35	Molecular characterisation of Staphylococcus aureus from some artisanal Brazilian dairies. International Dairy Journal, 2018, 85, 247-253.	1.5	27
36	Multilocus Sequence Typing and Virulence-Associated Gene Profile Analysis of Staphylococcus aureus Isolates From Retail Ready-to-Eat Food in China. Frontiers in Microbiology, 2018, 9, 197.	1.5	26

CITATION REPORT

#	Article	lF	CITATIONS
37	Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus. Frontiers in Microbiology, 2018, 9, 598.	1.5	26
38	The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct Genomic Arrangements That Delineate Genomic Virulence Factor Signatures. Frontiers in Microbiology, 2018, 9, 1082.	1.5	26
39	Prevalence and Characterization of Staphylococcus aureus Cultured From Raw Milk Taken From Dairy Cows With Mastitis in Beijing, China. Frontiers in Microbiology, 2018, 9, 1123.	1.5	88
40	Leukotoxin and pyrogenic toxin Superantigen gene backgrounds in bloodstream and wound Staphylococcus aureus isolates from eastern region of China. BMC Infectious Diseases, 2018, 18, 395.	1.3	23
41	Molecular and Phenotypic Characteristics ofEscherichia coliIsolates from Farmed Minks in Zhucheng, China. BioMed Research International, 2019, 2019, 1-12.	0.9	20
42	Characterisation ofStaphylococcus aureusisolated from rabbits in Fujian, China. Epidemiology and Infection, 2019, 147, e256.	1.0	9
43	Candida albicans and Staphylococcus aureus Pathogenicity and Polymicrobial Interactions: Lessons beyond Koch's Postulates. Journal of Fungi (Basel, Switzerland), 2019, 5, 81.	1.5	48
44	A Comprehensive Multilocus Sequence Typing Scheme for Identification and Genotyping of <i>Staphylococcus </i> Strains. Foodborne Pathogens and Disease, 2019, 16, 331-338.	0.8	4
45	Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) in bulk tank milk, livestock and dairy-farm personnel in north-central and north-eastern Greece: Prevalence, characterization and genetic relatedness. Food Microbiology, 2019, 84, 103249.	2.1	42
46	Genotypes, Enterotoxin Gene Profiles, and Antimicrobial Resistance of Staphylococcus aureus Associated with Foodborne Outbreaks in Hangzhou, China. Toxins, 2019, 11, 307.	1.5	23
47	Characterization of the clonal profile of methicillin resistant Staphylococcus aureus isolated from patients with early post-operative orthopedic implant based infections. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 8.	1.7	22
48	Antimicrobial resistance, virulence gene profile and molecular typing of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, northwest China. Journal of Global Antimicrobial Resistance, 2019, 16, 98-104.	0.9	31
49	Molecular Characterization of Enterotoxigenic <i>Staphylococcus aureus</i> Isolated from Raw Cow Milk in Poland. Foodborne Pathogens and Disease, 2019, 16, 114-118.	0.8	7
50	Contemporary systematic review and meta-analysis of exfoliative toxin-producing Staphylococcus aureus strains isolated from patients in Iran. Reviews in Medical Microbiology, 2020, 31, 1-10.	0.4	8
51	Prevalence and distribution of resistance and enterotoxins/enterotoxin-like genes in different clinical isolates of coagulase-negative Staphylococcus. European Journal of Medical Research, 2020, 25, 48.	0.9	13
52	Prevalence and Characterization ofStreptococcus pyogenesClinical Isolates from Different Hospitals and Clinics in Mansoura. International Journal of Microbiology, 2020, 2020, 1-11.	0.9	9
53	Staphylococcus aureus – Dairy. , 2020, , .		0
55	Characterization of Staphylococcus aureus ST3320 clone causing fatal respiratory infection in rabbits. World Rabbit Science, 2021, 29, 99.	0.1	Ο

#	Article	IF	CITATIONS
56	Occurrence, distribution and pattern analysis of methicillin resistant (MRSA) and methicillin sensitive (MSSA) Staphylococcus aureus on fomites in public facilities. Pathogens and Global Health, 2021, 115, 377-391.	1.0	5
57	Association of some virulence genes in Methicillin resistant and Methicillin sensitive Staphylococcus aureus infections isolated in community with special emphasis on pvl/mecA genes profiles in Alexandria, Egypt. Gene Reports, 2021, 25, 101334.	0.4	1
58	Pulsed-Field Gel Electrophoresis Typing of Staphylococcus aureus Isolates. Methods in Molecular Biology, 2014, 1085, 103-111.	0.4	10
60	Association of tsst-1 and pvl with mecA Genes among Clinical Staphylococcus aureus Isolates from a Tertiary Care Hospital. Journal of Pure and Applied Microbiology, 2019, 13, 855-864.	0.3	6
61	Characterisation of Staphylococcus aureus strain causing severe respiratory disease in rabbits. World Rabbit Science, 2019, 27, 41.	0.1	4
62	Isolation of Methicillin-Resistant Staphylococcus aureus Strains Producing Enterotoxins A, K and Q From Chicken Meat in Isfahan, Iran, 2014. Archives of Clinical Infectious Diseases, 2016, 11, .	0.1	4
63	Characterization of Virulence Factors and Prophage Profiles of Methicillin-Resistant Staphylococcus aureus Strains Isolated from a Referral Hospital in Tehran, Iran. Archives of Clinical Infectious Diseases, 2018, 13, .	0.1	6
64	Prevalence of seg, seh and sei Genes among Clinical and Nasal Staphylococcus aureus Isolates in Palestine. British Microbiology Research Journal, 2013, 3, 139-149.	0.2	12
65	Frecuencia de genes que codifican factores de virulencia en Staphylococcus aureus aislados de niños que concurrieron al Hospital General Pediátrico Niños de Acosta Ñú, durante el año 2010. Memorias Del Instituto De Investigaciones En Ciencias De La Salud, 2015, 13, 58-66.	0.0	4
66	Strain Discrimination of Staphylococcus aureus Using Superantigen Profiles. Methods in Molecular Biology, 2016, 1396, 35-49.	0.4	0
67	Partial Sequencing of 16S rRNA Gene of Selected Staphylococcus aureus Isolates and its Antibiotic Resistance. Media Peternakan, 2016, 39, 67-74.	0.3	1
69	Pulsed-Field Gel Electrophoresis Typing of Staphylococcus aureus Strains. Methods in Molecular Biology, 2020, 2069, 79-88.	0.4	4
70	Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colombia Medica, 2016, 47, 15-20.	0.7	8
71	Prevalence of enterotoxin genes (SEA to SEE) and antibacterial resistant pattern of Staphylococcus aureus isolated from clinical specimens in Assiut city of Egypt. Egyptian Journal of Medical Human Genetics, 2021, 22, .	0.5	2
72	Role of Bioaerosols on the Short-Distance Transmission of Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) in a Chicken Farm Environment. Antibiotics, 2022, 11, 81.	1.5	3
73	Molecular epidemiological and pharmaceutical studies of methicillin-resistant Staphylococcus aureus isolated at hospitals in Kure City, Japan. Access Microbiology, 2022, 4, 000319.	0.2	1
74	The alarming coincidence of toxin genes with staphylococcal cassette Chromosome mec (SCCmec) in clinical MRSA isolates. Saudi Journal of Biological Sciences, 2022, , .	1.8	4
75	Shared signatures and divergence in skin microbiomes of children with atopic dermatitis and their caregivers. Journal of Allergy and Clinical Immunology, 2022, 150, 894-908.	1.5	14

CITATION REPORT

#	Article	IF	CITATIONS
76	Investigation of Toxin Profiles of Methicillin Resistant and Sensitive Staphylococcus aureus Strains Isolated from Various Clinical Specimens. Duzce Universitesi Tip Fakültesi Dergisi, 0, , .	0.3	0
77	Clonal Diversity and Epidemiological Characteristics of ST239-MRSA Strains. Frontiers in Cellular and Infection Microbiology, 2022, 12, 782045.	1.8	25
94	Genomic analysis, antibiotic resistance, and virulence of Staphylococcus aureus from food and food outbreaks: A potential public concern. International Journal of Food Microbiology, 2022, 377, 109825.	2.1	11