Cellular Interplay between Cardiomyocytes and Nonmy

International Journal of Inflammation 2011, 1-13 DOI: 10.4061/2011/535241

Citation Report

#	Article	IF	CITATIONS
1	c-Myc Is Required for Proper Coronary Vascular Formation via Cell- and Gene-Specific Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1308-1319.	1.1	8
2	Importance of Myocyte-Nonmyocyte Interactions in Cardiac Development and Disease. Circulation Research, 2012, 110, 1023-1034.	2.0	119
3	The Dynamic Role of Cardiac Fibroblasts in Development and Disease. Journal of Cardiovascular Translational Research, 2012, 5, 739-748.	1.1	40
4	Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature. Journal of Cardiovascular Translational Research, 2012, 5, 783-793.	1.1	17
5	Insulin Resistance and Heart Failure. Heart Failure Clinics, 2012, 8, 609-617.	1.0	166
6	FGF2 modulates cardiac remodeling in an isoform- and sex-specific manner. Physiological Reports, 2013, 1, .	0.7	9
7	Adult Cardiac Expression of the Activating Transcription Factor 3, ATF3, Promotes Ventricular Hypertrophy. PLoS ONE, 2013, 8, e68396.	1.1	36
8	Cardiac Fibroblasts and Arrhythmogenesis. , 2014, , 297-308.		0
9	Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1â€mediated gene expression <i>in vivo</i> . Cell Biochemistry and Function, 2014, 32, 39-50.	1.4	36
10	Dynamic cell–cell and cell–ECM interactions in the heart. Journal of Molecular and Cellular Cardiology, 2014, 70, 19-26.	0.9	82
11	Regulatory RNAs andÂparacrine networks in the heart. Cardiovascular Research, 2014, 102, 290-301.	1.8	60
12	Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development. Nature Communications, 2014, 5, 3603.	5.8	133
13	Origin, development, and differentiation of cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 2014, 70, 2-8.	0.9	112
14	Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. Journal of Biomedical Science, 2015, 22, 53.	2.6	51
15	Intercellular communication lessons in heart failure. European Journal of Heart Failure, 2015, 17, 1091-1103.	2.9	47
16	Increased cardiac remodeling in cardiac-specific Flt-1 receptor knockout mice with pressure overload. Cell and Tissue Research, 2015, 362, 389-398.	1.5	9
17	Actual position of interleukin(IL)-33 in atherosclerosis and heart failure: Great Expectations or En attendant Godot?. Perfusion (United Kingdom), 2015, 30, 356-374.	0.5	5
18	ATF3-dependent cross-talk between cardiomyocytes and macrophages promotes cardiac maladaptive remodeling. International Journal of Cardiology, 2015, 198, 232-240.	0.8	33

ITATION REDO

#	Article	IF	CITATIONS
19	Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovascular Research, 2015, 107, 420-430.	1.8	37
20	The mammalian target of rapamycin modulates the immunoproteasome system in the heart. Journal of Molecular and Cellular Cardiology, 2015, 86, 158-167.	0.9	25
21	Nicorandil enhances the efficacy of mesenchymal stem cell therapy in isoproterenol-induced heart failure in rats. Biochemical Pharmacology, 2015, 98, 403-411.	2.0	32
22	N-Acetyl Cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovascular Disorders, 2015, 15, 84.	0.7	38
23	Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis. Medical Science Monitor Basic Research, 2016, 22, 75-79.	2.6	132
24	Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images. Scientific Reports, 2016, 6, 23431.	1.6	13
25	Targeted Ablation of Periostin-Expressing Activated Fibroblasts Prevents Adverse Cardiac Remodeling in Mice. Circulation Research, 2016, 118, 1906-1917.	2.0	196
26	mTOR, cardiomyocytes and inflammation in cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1894-1903.	1.9	89
27	Cardiac Fibrosis. Circulation Research, 2016, 118, 1021-1040.	2.0	1,136
28	Phosphodiesterase type 5 inhibitors: back and forward from cardiac indications. Journal of Endocrinological Investigation, 2016, 39, 143-151.	1.8	26
29	Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 2017, 55, 120-130.	4.1	81
30	Evaluation of MYBPC3 trans -Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes. Molecular Therapy - Nucleic Acids, 2017, 7, 475-486.	2.3	74
31	Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nature Communications, 2017, 8, 15518.	5.8	23
32	MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol. Circulation Research, 2017, 120, 835-847.	2.0	55
33	Transplantation of stromal-derived factor \hat{l}_{\pm} and basic fibroblast growth factor primed insulin-producing cells reverses hyperglycaemia in diabetic rats. Growth Factors, 2017, 35, 88-99.	0.5	3
34	Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells International, 2017, 2017, 1-20.	1.2	39
35	Pathophysiology and therapeutic potential of cardiac fibrosis. Inflammation and Regeneration, 2017, 37, 13.	1.5	52
36	Insulin Signaling in Cardiac Health and Disease. , 2017, , 317-346.		1

CITATION REPORT

		CITATION REPORT		
#	Article		IF	Citations
37	Predictive Modeling of the Fluid Catalytic Cracking (FCC) Process. , 2018, , 183-302.			0
38	Mechanisms of Cardiac Repair and Regeneration. Circulation Research, 2018, 122, 1151-1	163.	2.0	136
39	Fibroblast growth factor 23 is induced by an activated renin–angiotensin–aldosteron cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and Nephrology Dialysis Transplantation, 2018, 33, 1722-1734.		0.4	78
40	Embryonary Mouse Cardiac Fibroblast Isolation. Methods in Molecular Biology, 2018, 175	2, 71-79.	0.4	4
41	Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in S Journal of Cellular Physiology, 2018, 233, 3330-3342.	SHR.	2.0	15
42	In vitro Effects of Nerve Growth Factor on Cardiac Fibroblasts Proliferation, Cell Cycle, Mig and Myofibroblast Transformation. Chinese Medical Journal, 2018, 131, 813-817.	gration,	0.9	2
43	Stress Coping Strategies in the Heart: An Integrated View. Frontiers in Cardiovascular Med 5, 168.	dicine, 2018,	1.1	17
44	Novel role for cardiac myocyte-derived β-2 microglobulin in mediating cardiac fibrosis. Cli Science, 2018, 132, 2117-2120.	nical	1.8	4
45	β-arrestin2 Affects Cardiac Progenitor Cell Survival through Cell Mobility and Tube Forma Severe Hypoxia. Korean Circulation Journal, 2018, 48, 296.	tion in	0.7	8
46	Immune Regulation of Tissue Repair and Regeneration via miRNAs—New Therapeutic Tai Bioengineering and Biotechnology, 2018, 6, 98.	rget. Frontiers in	2.0	21
47	Endothelial transcriptomics reveals activation of fibrosis-related pathways in hypertension Physiological Genomics, 2018, 50, 104-116.	l.	1.0	11
48	Reversible impairment of coronary flow reserve in acute myocarditis. Microcirculation, 202 e12491.	18, 25,	1.0	3
49	Protective effect and mechanism of rat recombinant S100 calcium‑binding protein A4 c stress injury of rat vascular endothelial cells. Oncology Letters, 2018, 16, 3614-3622.	on oxidative	0.8	5
50	Cardiomyogenesis Modeling Using Pluripotent Stem Cells: The Role of Microenvironmenta Frontiers in Cell and Developmental Biology, 2019, 7, 164.	al Signaling.	1.8	24
51	Endothelial cell modulation of cardiomyocyte gene expression. Experimental Cell Research 111565.	1, 2019, 383,	1.2	7
52	Long Noncoding RNA-Enriched Vesicles Secreted by Hypoxic Cardiomyocytes Drive Cardia Molecular Therapy - Nucleic Acids, 2019, 18, 363-374.	c Fibrosis.	2.3	83
53	Cardiac Hypertrophy. , 2019, , 63-86.			1
54	Modeling cardiac complexity: Advancements in myocardial models and analytical techniqu physiological investigation and therapeutic development <i>in vitro</i> . APL Bioengineeri 011501.	les for ng, 2019, 3,	3.3	11

#	Article	IF	CITATIONS
55	Crosstalk between cardiomyocytes and noncardiomyocytes is essential to prevent cardiomyocyte apoptosis induced by proteasome inhibition. Cell Death and Disease, 2020, 11, 783.	2.7	4
56	Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes. Biomedicine and Pharmacotherapy, 2020, 128, 110370.	2.5	10
57	Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Frontiers in Physiology, 2020, 11, 604.	1.3	5
58	Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy. Scientific Reports, 2020, 10, 6652.	1.6	11
59	Fibroblast involvement in cardiac remodeling and repair under ischemic conditions. Experimental and Therapeutic Medicine, 2021, 21, 269.	0.8	5
60	FGF23 and heart and vascular disease. , 2021, , 133-156.		0
61	Response and Effects of Cardiomyocyte Progenitors in the Infarcted Heart. , 2021, , 169-183.		0
62	PM2.5 inducing myocardial fibrosis mediated by Ang II/ERK1/2/TGF-β ₁ signaling pathway in mice model. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2021, 22, 147032032110037.	1.0	10
63	Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Frontiers in Cardiovascular Medicine, 2021, 8, 676267.	1.1	25
64	Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Failure Reviews, 2022, 27, 1413-1430.	1.7	24
65	Role of CyPA in cardiac hypertrophy and remodeling. Bioscience Reports, 2019, 39, .	1.1	21
66	Extracellular vesicles in cardiovascular disease: Biological functions and therapeutic implications. , 2022, 233, 108025.		50
67	Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. International Journal of Molecular Sciences, 2021, 22, 13000.	1.8	3
68	Non-coding RNAs in cardiac remodeling: diversity in composition and function. Current Opinion in Physiology, 2022, 26, 100534.	0.9	2
69	A New Hypothetical Concept in Metabolic Understanding of Cardiac Fibrosis: Glycolysis Combined with TGF-12 and KLF5 Signaling. International Journal of Molecular Sciences, 2022, 23, 4302.	1.8	5
76	Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway. International Journal of Molecular Sciences, 2022, 23, 11487.	1.8	1
77	RNAâ€seq profiling reveals different pathways between remodelled vessels and myocardium in Hypertrophic Cardiomyopathy. Microcirculation, 0, , .	1.0	2
78	Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metabolism Reviews, 2023, 55, 50-74.	1.5	2

CITATION REPORT

#	Article	IF	CITATIONS
79	Cardiac Mechanoperception and Mechanotransduction: Mechanisms of Stretch Sensing in Cardiomyocytes and Implications for Cardiomyopathy. Cardiac and Vascular Biology, 2023, , 1-35.	0.2	0