CITATION REPORT List of articles citing

Planckearly results. I. The Planck mission

DOI: 10.1051/0004-6361/201116464 Astronomy and Astrophysics, 2011, 536, A1.

Source: https://exaly.com/paper-pdf/50657096/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
364	Planckearly results. XXI. Properties of the interstellar medium in the Galactic plane. <i>Astronomy and Astrophysics</i> , 2011 , 536, A21	5.1	113
363	Planckearly results. XVIII. The power spectrum of cosmic infrared background anisotropies. <i>Astronomy and Astrophysics</i> , 2011 , 536, A18	5.1	161
362	Planckearly results. XIII. Statistical properties of extragalactic radio sources in thePlanckEarly Release Compact Source Catalogue. <i>Astronomy and Astrophysics</i> , 2011 , 536, A13	5.1	97
361	Planckearly results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds. <i>Astronomy and Astrophysics</i> , 2011 , 536, A17	5.1	114
3 60	Planckearly results. XII. Cluster Sunyaev-Zeldovich optical scaling relations. <i>Astronomy and Astrophysics</i> , 2011 , 536, A12	5.1	95
359	Planckearly results. II. The thermal performance of Planck. Astronomy and Astrophysics, 2011, 536, A2	5.1	78
358	Planckearly results. XX. New light on anomalous microwave emission from spinning dust grains. <i>Astronomy and Astrophysics</i> , 2011 , 536, A20	5.1	144
357	Planckearly results. XXV. Thermal dust in nearby molecular clouds. <i>Astronomy and Astrophysics</i> , 2011 , 536, A25	5.1	172
356	Planckearly results. XXII. The submillimetre properties of a sample of Galactic cold clumps. <i>Astronomy and Astrophysics</i> , 2011 , 536, A22	5.1	82
355	Planckearly results. VI. The High Frequency Instrument data processing. <i>Astronomy and Astrophysics</i> , 2011 , 536, A6	5.1	112
354	Planckearly results. XXIII. The first all-sky survey of Galactic cold clumps. <i>Astronomy and Astrophysics</i> , 2011 , 536, A23	5.1	138
353	Planckearly results. V. The Low Frequency Instrument data processing. <i>Astronomy and Astrophysics</i> , 2011 , 536, A5	5.1	73
352	High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources. <i>Astronomy and Astrophysics</i> , 2011 , 533, A57	5.1	73
351	Planckearly results. XVI. ThePlanckview of nearby galaxies. <i>Astronomy and Astrophysics</i> , 2011 , 536, A16	5.1	70
350	Planckearly results. VII. The Early Release Compact Source Catalogue. <i>Astronomy and Astrophysics</i> , 2011 , 536, A7	5.1	209
349	Planckearly results. XIX. All-sky temperature and dust optical depth fromPlanckand IRAS. Constraints on the Bark gasDn our Galaxy. <i>Astronomy and Astrophysics</i> , 2011 , 536, A19	5.1	269
348	Planckearly results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo. <i>Astronomy and Astrophysics</i> , 2011 , 536, A24	5.1	157

(2012-2011)

347	Planckearly results. X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters. <i>Astronomy and Astrophysics</i> , 2011 , 536, A10	5.1	121	
346	Planckearly results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations. <i>Astronomy and Astrophysics</i> , 2011 , 536, A11	5.1	165	
345	Planckearly results. XIV. ERCSC validation and extreme radio sources. <i>Astronomy and Astrophysics</i> , 2011 , 536, A14	5.1	56	
344	Planckearly results. IV. First assessment of the High Frequency Instrument in-flight performance. <i>Astronomy and Astrophysics</i> , 2011 , 536, A4	5.1	121	
343	Planckearly results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample. <i>Astronomy and Astrophysics</i> , 2011 , 536, A8	5.1	304	
342	Planckearly results. XXVI. Detection withPlanckand confirmation byXMM-Newtonof PLCK[G266.6]7.3, an exceptionally X-ray luminous and massive galaxy cluster atz[-1. Astronomy and Astrophysics, 2011, 536, A26	5.1	66	
341	Planckearly results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources. <i>Astronomy and Astrophysics</i> , 2011 , 536, A15	5.1	86	
340	Planckearly results. I. ThePlanckmission. <i>Astronomy and Astrophysics</i> , 2011 , 536, A1	5.1	337	
339	Filaments and ridges in Vela© revealed byHerschel: from low-mass to high-mass star-forming sites. <i>Astronomy and Astrophysics</i> , 2011 , 533, A94	5.1	170	
338	Planckearly results. III. First assessment of the Low Frequency Instrument in-flight performance. <i>Astronomy and Astrophysics</i> , 2011 , 536, A3	5.1	103	
337	Integrated Sachs-Wolfe tomography with orthogonal polynomials. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2589-2598	4.3	4	
336	The contribution of star-forming galaxies to fluctuations in the cosmic background light. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2674-2687	4.3	7	
335	Structure formation constraints on Sommerfeld-enhanced dark matter annihilation. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 009-009	6.4	5	
334	The sensitivity of BAO dark energy constraints to general isocurvature perturbations. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 021-021	6.4	6	
333	Inflationary perturbation theory is geometrical optics in phase space. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 010-010	6.4	42	
332	Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 018-018	6.4	4	
331	Robust constraint on cosmic textures from the cosmic microwave background. 2012 , 108, 241301		10	
330	Reheating in three-form inflation. 2012 , 86,		20	

329	Probability distribution for non-Gaussianity estimators constructed from the CMB trispectrum. 2012 , 86,		5
328	Optimizing observational strategy for future fgas constraints. 2012 , 86,		
327	Morphology of high-multiplicity events in heavy ion collisions. 2012, 86,		11
326	OPTICAL TIO AND VO BAND EMISSION IN TWO EMBEDDED PROTOSTARS: IRAS 04369+2539 AND IRAS 05451+0037. <i>Astronomical Journal</i> , 2012 , 143, 37	4.9	17
325	The Impact of Polarized Extragalactic Radio Sources on the Detection of CMB Anisotropies in Polarization. 2012 , 2012, 1-17		30
324	ASPITZER-MIPS SEARCH FOR DUST IN COMPACT HIGH-VELOCITY H I CLOUDS. <i>Astronomical Journal</i> , 2012 , 143, 82	4.9	5
323	Conformal invariance, dark energy, and CMB non-gaussianity. <i>Journal of Cosmology and Astroparticle Physics</i> , 2012 , 2012, 024-024	6.4	72
322	A COMPREHENSIVE VIEW OF A STRONGLY LENSEDPLANCK-ASSOCIATED SUBMILLIMETER GALAXY. <i>Astrophysical Journal</i> , 2012 , 753, 134	4.7	82
321	SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz. <i>Astrophysical Journal</i> , 2012 , 760, 145	4.7	72
320	Fast calculation of the Fisher matrix for cosmic microwave background experiments. <i>Astronomy and Astrophysics</i> , 2012 , 540, L6	5.1	8
319	SimultaneousPlanck,Swift, andFermiobservations of X-ray andFray selected blazars. <i>Astronomy and Astrophysics</i> , 2012 , 541, A160	5.1	145
318	HIGH SPECTRAL RESOLUTION MEASUREMENT OF THE SUNYAEVZEL'DOVICH EFFECT NULL WITH Z-Spec. <i>Astrophysical Journal</i> , 2012 , 749, 114	4.7	30
317	Detection and characterization of a 500 to dust emissivity excess in the Galactic plane using Herschel/Hi-GAL observations. <i>Astronomy and Astrophysics</i> , 2012 , 537, A113	5.1	26
316	CONSTRAINTS ON SCALAR AND TENSOR PERTURBATIONS IN PHENOMENOLOGICAL AND TWO-FIELD INFLATION MODELS: BAYESIAN EVIDENCES FOR PRIMORDIAL ISOCURVATURE AND TENSOR MODES. <i>Astrophysical Journal</i> , 2012 , 753, 151	4.7	23
315	THE ATACAMA COSMOLOGY TELESCOPE: HIGH-RESOLUTION SUNYAEV-ZEL'DOVICH ARRAY OBSERVATIONS OF ACT SZE-SELECTED CLUSTERS FROM THE EQUATORIAL STRIP. <i>Astrophysical Journal</i> , 2012 , 751, 12	4.7	23
314	Spherical 3D isotropic wavelets. <i>Astronomy and Astrophysics</i> , 2012 , 540, A92	5.1	21
313	THEYSZ-YXSCALING RELATION AS DETERMINED FROMPLANCKANDCHANDRA. <i>Astrophysical Journal</i> , 2012 , 760, 67	4.7	25
312	Gravitational lensing simulations - I. Covariance matrices and halo catalogues. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 1262-1279	4.3	48

(2012-2012)

311	A new, precise measurement of the primordial abundance of deuterium. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 2477-2486	4.3	112
310	Simulating Sunyaev-Zel'dovich intensity maps of giant active galactic nucleus cocoons. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 425, 1753-1762	4.3	8
309	Euler-Heisenberg Lagrangian and photon circular polarization. 2012, 100, 17006		24
308	The magnitude of the non-adiabatic pressure in the cosmic fluid. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 1411-1415	4.3	9
307	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate atz= 0.57 from anisotropic clustering. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 426, 2719-2737	4.3	306
306	Predicting the number of giant arcs expected in the next-generation wide-field surveys from space. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 427, 3134-3144	4.3	13
305	CMB polarization impact on cosmological constraints. 2012 , 86,		5
304	Constraints on coupled dark energy using CMB data from WMAP and South Pole Telescope. 2012 , 86,		51
303	Model independent early expansion history and dark energy. 2012 , 86,		6
302	Probability of slowroll inflation in the multiverse. 2012 , 86,		15
301	Planckintermediate results. Astronomy and Astrophysics, 2012, 543, A102	5.1	48
300	Star Formation in the Milky Way and Nearby Galaxies. 2012 , 50, 531-608		1531
299	THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM. <i>Astrophysical Journal</i> , 2012 , 749, 90	4.7	86
298	BAYESIAN NOISE ESTIMATION FOR NON-IDEAL COSMIC MICROWAVE BACKGROUND EXPERIMENTS. <i>Astrophysical Journal, Supplement Series</i> , 2012 , 199, 15	8	3
297	THE SUBMILLIMETER AND MILLIMETER EXCESS OF THE SMALL MAGELLANIC CLOUD: MAGNETIC DIPOLE EMISSION FROM MAGNETIC NANOPARTICLES?. <i>Astrophysical Journal</i> , 2012 , 757, 103	4.7	64
296	MEASURING THE REDSHIFT DEPENDENCE OF THE COSMIC MICROWAVE BACKGROUND MONOPOLE TEMPERATURE WITH PLANCK DATA. <i>Astrophysical Journal</i> , 2012 , 757, 144	4.7	14
295	EXPLORING THE RELATION BETWEEN (SUB-)MILLIMETER RADIATION AND FRAY EMISSION IN BLAZARS WITHPLANCKANDFERMI. <i>Astrophysical Journal</i> , 2012 , 754, 23	4.7	24
294	Low-resolution spectroscopy of the Sunyaev-Zeldovich effect and estimates of cluster parameters. Astronomy and Astrophysics, 2012, 538, A86	5.1	22

293	ThePlanckSZ Cluster Catalog: expected X-ray properties. Astronomy and Astrophysics, 2012, 544, A40	5.1	4
292	Future of Space Astronomy: A global Road Map for the next decades. 2012 , 50, 1-55		8
291	Cosmological implications from the full shape of the large-scale power spectrum of the SDSS DR7 luminous red galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 421, 2656-2681	4.3	20
290	The XMM Cluster Survey: predicted overlap with the Planck Cluster Catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 422, 1007-1013	4.3	4
289	A simple empirically motivated template for the thermal Sunyaev-Zeldovich effect. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 423, 2492-2497	4.3	24
288	Impact on the tensor-to-scalar ratio of incorrect Galactic foreground modelling. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 1914-1924	4.3	17
287	Stacking catalogue sources in WMAP data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2012 , 424, 3028-3036	4.3	2
286	The Atacama Cosmology Telescope: likelihood for small-scale CMB data. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 025-025	6.4	104
285	Outskirts of Galaxy Clusters. 2013 , 177, 195-245		89
284	Radio observations of Planck clusters. 2013 , 334, 338-341		1
283	Gaussian Random Fields in Cosmostatistics. 2013 , 87-105		1
282	Dark radiation and interacting scenarios. 2013 , 87,		30
281	Effective perfect fluids in cosmology. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 001-0	0 6.4	27
280	Discovery potential of xenon-based neutrinoless double beta decay experiments in light of small angular scale CMB observations. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 043-043	6.4	6
279	VLA/JVLA monitoring of bright northern radio sources. <i>Astronomy and Astrophysics</i> , 2013 , 549, A133	5.1	6
278	Exploring the origin of the fine structures in the CMB temperature angular power spectrum. 2013 , 87,		1
277	. 2013 , 61, 117-124		6
276	Potential of EBL and cosmology studies with the Cherenkov Telescope Array. 2013 , 43, 241-251		9

(2013-2013)

275	AN IMPRINT OF MOLECULAR CLOUD MAGNETIZATION IN THE MORPHOLOGY OF THE DUST POLARIZED EMISSION. <i>Astrophysical Journal</i> , 2013 , 774, 128	4.7	132	
274	Measuring primordial gravitational waves from CMBBEhodes in cosmologies with generalized expansion histories. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 024-024	6.4	5	
273	Non-linear evolution of the cosmic neutrino background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 019-019	6.4	56	
272	Resonant non-Gaussianity with equilateral properties. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 040-040	6.4	4	
271	SPIDER: probing the early Universe with a suborbital polarimeter. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 047-047	6.4	52	
270	Is the Jeffreys' scale a reliable tool for Bayesian model comparison in cosmology?. <i>Journal of Cosmology and Astroparticle Physics</i> , 2013 , 2013, 036-036	6.4	65	
269	The local luminosity function of star-forming galaxies derived from the Planck Early Release Compact Source Catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 1309-1323	4.3	27	
268	Serendipitous detection of an overdensity of Herschel-SPIRE 250 th sources south of MRC 138 26?. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 436, 2505-2514	4.3	11	
267	Non-Gaussianity and Minkowski functionals: forecasts for Planck. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 429, 2104-2126	4.3	46	
266	THE PLANCK MISSION: RECENT RESULTS, COSMOLOGICAL AND FUNDAMENTAL PHYSICS PERSPECTIVES. <i>International Journal of Modern Physics D</i> , 2013 , 22, 1330029	2.2		
265	Comparing polarized synchrotron and thermal dust emission in the Galactic plane. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 431, 683-694	4.3	26	
264	A BAYESIAN METHOD FOR THE ANALYSIS OF THE DUST EMISSION IN THE FAR-INFRARED AND SUBMILLIMETER. <i>Astrophysical Journal</i> , 2013 , 772, 56	4.7	19	
263	DISCOVERY OF A GIANT RADIO HALO IN A NEWPLANCKGALAXY CLUSTER PLCKG171.9個0.7. <i>Astrophysical Journal</i> , 2013 , 766, 18	4.7	17	
262	CROSS-CORRELATIONS AS A COSMOLOGICAL CARBON MONOXIDE DETECTOR. <i>Astrophysical Journal</i> , 2013 , 768, 15	4.7	50	
261	GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE. <i>Astrophysical Journal</i> , 2013 , 777, 172	4.7	2	
260	The observable thermal and kinetic Sunyaev Zel Zel Zel Zel I ovich effect in merging galaxy clusters. <i>Monthly Notices of the Royal Astronomical Society</i> , 2013 , 432, 3508-3519	4.3	7	
259	Clusters of galaxies in the Planck survey. 2013 , 334, 430-436		1	
258	Higgs-lepton inflation in the supersymmetric minimal seesaw model. 2013 , 87,		7	

257	Cluster probes of dark energy clustering. 2013 , 88,		11
256	Clusters of galaxies and variation of the fine structure constant. 2013 , 87,		21
255	Hierarchical Bayesian detection algorithm for early-universe relics in the cosmic microwave background. 2013 , 88,		15
254	Detection and characterisation of the first Planck high-z candidates. 2013 , 334, 449-452		1
253	HerMES: COSMIC INFRARED BACKGROUND ANISOTROPIES AND THE CLUSTERING OF DUSTY STAR-FORMING GALAXIES. <i>Astrophysical Journal</i> , 2013 , 772, 77	4.7	105
252	In-flight calibration and verification of the Planck-LFI instrument. 2013 , 8, T07001-T07001		3
251	Planckintermediate results. Astronomy and Astrophysics, 2013, 557, A52	5.1	117
250	Plancklintermediate results. XII: Diffuse Galactic components in the Gould Belt system. <i>Astronomy and Astrophysics</i> , 2013 , 557, A53	5.1	17
249	Efficient Wiener filtering without preconditioning. Astronomy and Astrophysics, 2013, 549, A111	5.1	54
248	TOPoS. Astronomy and Astrophysics, 2013 , 560, A71	5.1	43
247	The 2.3 GHz continuum survey of the GEM project. Astronomy and Astrophysics, 2013, 556, A1	5.1	8
246	Planckintermediate results. Astronomy and Astrophysics, 2013 , 554, A140	5.1	80
245	MILCA, a modified internal linear combination algorithm to extract astrophysical emissions from multifrequency sky maps. <i>Astronomy and Astrophysics</i> , 2013 , 558, A118	5.1	91
244	Long-term variability of extragalactic radio sources in thePlanckEarly Release Compact Source Catalogue. <i>Astronomy and Astrophysics</i> , 2013 , 553, A107	5.1	24
243	Optimal bispectrum estimator and simulations of the CMB lensing-integrated Sachs Wolfe non-Gaussian signal. <i>Astronomy and Astrophysics</i> , 2013 , 555, A82	5.1	9
242	Planckintermediate results. <i>Astronomy and Astrophysics</i> , 2013 , 550, A128	5.1	20
241	Planckintermediate results. Astronomy and Astrophysics, 2013, 550, A131	5.1	236
240	Fermi-LAT andSuzakuobservations of the radio galaxy Centaurus B. <i>Astronomy and Astrophysics</i> , 2013 , 550, A66	5.1	17

239	Herschel-ATLAS:Plancksources in the phase 1 fields. Astronomy and Astrophysics, 2013, 549, A31	5.1	22
238	Planckintermediate results. Astronomy and Astrophysics, 2013, 554, A139	5.1	89
237	The pre-launchPlanckSky Model: a model of sky emission at submillimetre to centimetre wavelengths. <i>Astronomy and Astrophysics</i> , 2013 , 553, A96	5.1	129
236	Planckintermediate results. Astronomy and Astrophysics, 2013, 550, A129	5.1	57
235	Planckintermediate results. Astronomy and Astrophysics, 2013, 550, A132	5.1	13
234	Planckintermediate results. Astronomy and Astrophysics, 2013, 550, A133	5.1	46
233	Planckintermediate results. Astronomy and Astrophysics, 2013, 550, A134	5.1	74
232	Planck2013 results. XIV. Zodiacal emission. Astronomy and Astrophysics, 2014, 571, A14	5.1	82
231	Planck2013 results. VI. High Frequency Instrument data processing. <i>Astronomy and Astrophysics</i> , 2014 , 571, A6	5.1	94
230	Planck2013 results. X. HFI energetic particle effects: characterization, removal, and simulation. <i>Astronomy and Astrophysics</i> , 2014 , 571, A10	5.1	62
229	Planck2013 results. V. LFI calibration. <i>Astronomy and Astrophysics</i> , 2014 , 571, A5	5.1	61
228	Planckintermediate results. XV. A study of anomalous microwave emission in Galactic clouds. <i>Astronomy and Astrophysics</i> , 2014 , 565, A103	5.1	56
227	Young stellar object candidates toward the Orion region selected from GALEX. <i>Astronomy and Astrophysics</i> , 2014 , 572, A89	5.1	6
226	Radiogamma-ray connection and spectral evolution in 4CI+49.22 (S4 1150+49): the Fermi, Swift and Planck view. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 4316-4334	4.3	19
225	The contribution of CHONS particles to the diffuse high-Galactic-latitude IR emission. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 2396-2405	4.3	4
224	PACS photometry of the Herschel Reference Survey [far-infrared/submillimetre colours as tracers of dust properties in nearby galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 440, 942-	-95è	80
223	Some optical properties of graphite from IR to millimetric wavelengths. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 443, 2974-2982	4.3	18
222	Empirical modelling of the BLASTPol achromatic half-wave plate for precision submillimetre polarimetry. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 437, 2772-2789	4.3	19

221	How does pressure gravitate? Cosmological constant problem confronts observational cosmology. Journal of Cosmology and Astroparticle Physics, 2014 , 2014, 049-049	6.4	5
220	Herschel Multitiered Extragalactic Survey: clusters of dusty galaxies uncovered by Herschel? and Planck Monthly Notices of the Royal Astronomical Society, 2014 , 439, 1193-1211	4.3	56
219	The Planck mission and its optical system. 2014 ,		1
218	CO COMPONENT ESTIMATION BASED ON THE INDEPENDENT COMPONENT ANALYSIS. Astrophysical Journal, 2014 , 780, 13	4.7	6
217	HERSCHELFAR-INFRARED PHOTOMETRY OF THESWIFTBURST ALERT TELESCOPE ACTIVE GALACTIC NUCLEI SAMPLE OF THE LOCAL UNIVERSE. I. PACS OBSERVATIONS. <i>Astrophysical Journal</i> , 2014 , 794, 152	4.7	36
216	Scientific Workflow Management For Whom?. 2014,		3
215	ASYMMETRY AND NON-RANDOM ORIENTATION OF THE INFLIGHT EFFECTIVE BEAM PATTERN IN THEWMAPDATA. <i>Astrophysical Journal</i> , 2014 , 785, 117	4.7	
214	Dependence of the cosmic microwave background lensing power spectrum on the matter density. <i>Monthly Notices of the Royal Astronomical Society</i> , 2014 , 445, 2941-2945	4.3	18
213	NONLINEAR EVOLUTION OF DARK MATTER SUBHALOS AND APPLICATIONS TO WARM DARK MATTER. <i>Astrophysical Journal</i> , 2014 , 792, 24	4.7	34
212	The most compact bright radio-loud AGNII A new target sample selected for the space VLBI. 2014 , 352, 825-832		3
211	THE INFRARED SEARCH FOR EXTRATERRESTRIAL CIVILIZATIONS WITH LARGE ENERGY SUPPLIES. I. BACKGROUND AND JUSTIFICATION. <i>Astrophysical Journal</i> , 2014 , 792, 26	4.7	67
210	A MAP OF DUST REDDENING TO 4.5 kpc FROM Pan-STARRS1. Astrophysical Journal, 2014 , 789, 15	4.7	76
209	Planck2013 results. I. Overview of products and scientific results. <i>Astronomy and Astrophysics</i> , 2014 , 571, A1	5.1	756
208	TheHerschelVirgo Cluster Survey. Astronomy and Astrophysics, 2014, 562, A106	5.1	6
207	Planckintermediate results. XIV. Dust emission at millimetre wavelengths in the Galactic plane. <i>Astronomy and Astrophysics</i> , 2014 , 564, A45	5.1	45
206	Herschel-Planckdust optical-depth and column-density maps. <i>Astronomy and Astrophysics</i> , 2014 , 566, A45	5.1	120
205	Planck2013 results. VII. HFI time response and beams. <i>Astronomy and Astrophysics</i> , 2014 , 571, A7	5.1	76
204	Planck2013 results. XVIII. The gravitational lensing-infrared background correlation. <i>Astronomy and Astrophysics</i> , 2014 , 571, A18	5.1	99

(2015-2014)

203	Planck2013 results. II. Low Frequency Instrument data processing. <i>Astronomy and Astrophysics</i> , 2014 , 571, A2	5.1	62
202	Planckintermediate results. Astronomy and Astrophysics, 2014 , 561, A97	5.1	72
201	Optimal estimator for the amplitude of the bispectrum from infrared clustered sources. <i>Astronomy and Astrophysics</i> , 2014 , 569, A51	5.1	3
200	Small scale clustering of late forming dark matter. 2015 , 92,		11
199	VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. <i>Astrophysical Journal</i> , 2015 , 811, 118	4.7	25
198	Polarization measurement analysis. Astronomy and Astrophysics, 2015, 574, A136	5.1	38
197	Planckintermediate results. Astronomy and Astrophysics, 2015 , 582, A30	5.1	52
196	RESOLVING THE MERGING PLANCK CLUSTER PLCK G147.3-16.6 WITH GISMO. 2015 , 808, L6		2
195	Limits on the fluctuating part ofy-type distortion monopole from Planck and SPT results. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 013-013	6.4	13
194	The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis. 2015 , 15, 19124-39		3
193	Planckintermediate results. XX. Comparison of polarized thermal emission from Galactic dust with simulations of MHD turbulence. <i>Astronomy and Astrophysics</i> , 2015 , 576, A105	5.1	100
192	Planckintermediate results. XVIII. The millimetre and sub-millimetre emission from planetary nebulae. <i>Astronomy and Astrophysics</i> , 2015 , 573, A6	5.1	12
191	Planckintermediate results. Astronomy and Astrophysics, 2015, 580, A13	5.1	28
190	Planckintermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization. <i>Astronomy and Astrophysics</i> , 2015 , 576, A107	5.1	105
189	Planckintermediate results. Astronomy and Astrophysics, 2015, 582, A28	5.1	25
188	Joint analysis of BICEP2/keck array and Planck Data. 2015 , 114, 101301		691
187	New light on Galactic post-asymptotic giant branch stars []. First distance catalogue. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 1673-1691	4.3	31
186	redMaPPerIIII. A detailed comparison of the Planck 2013 and SDSS DR8 redMaPPer cluster catalogues. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 450, 592-605	4.3	58

185	The power spectrum and bispectrum of SDSS DR11 BOSS galaxies III. Cosmological interpretation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 1914-1921	4.3	38
184	The thermal design, characterization, and performance of the Spider long-duration balloon cryostat. 2015 , 72, 65-76		12
183	Herschel-ATLAS: the surprising diversity of dust-selected galaxies in the local submillimetre Universe. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 452, 397-430	4.3	43
182	A 24 th POINT SOURCE CATALOG OF THE GALACTIC PLANE FROMSPITZER/MIPSGAL. <i>Astronomical Journal</i> , 2015 , 149, 64	4.9	91
181	NEW RADIO OBSERVATIONS OF ANOMALOUS MICROWAVE EMISSION IN THE H II REGION RCW175. <i>Astrophysical Journal</i> , 2015 , 801, 111	4.7	18
180	NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION E RIDANUS SUPERBUBBLE. Astrophysical Journal, 2015 , 808, 111	4.7	44
179	Robustness of cosmic neutrino background detection in the cosmic microwave background. <i>Journal of Cosmology and Astroparticle Physics</i> , 2015 , 2015, 036-036	6.4	18
178	NEAR-INFRARED EXTINCTION DUE TO COOL SUPERNOVA DUST IN CASSIOPEIA A. <i>Astrophysical Journal</i> , 2015 , 808, 98	4.7	11
177	CARMA observations of massive Planck-discovered cluster candidates at zl 10.5 associated with WISE overdensities: strategy, observations and validation. <i>Monthly Notices of the Royal Astronomical Society</i> , 2015 , 447, 902-926	4.3	3
176	Neutrino physics after Planck. 2015 , 265-266, 52-55		
175	MULTI-WAVELENGTH LENS RECONSTRUCTION OF APLANCKANDHERSCHEL-DETECTED STAR-BURSTING GALAXY. <i>Astrophysical Journal</i> , 2016 , 829, 21	4.7	8
174	High significance detection of the tSZ effect relativistic corrections. <i>Astronomy and Astrophysics</i> , 2016 , 596, A61	5.1	13
173	Quasar host environments: The view fromPlanck. Astronomy and Astrophysics, 2016, 588, A61	5.1	17
172	Planckintermediate results. <i>Astronomy and Astrophysics</i> , 2016 , 586, A134	5.1	40
171	Planck2015 results. Astronomy and Astrophysics, 2016 , 594, A24	5.1	416
170	Structure and stability in TMC-1: Analysis of NH3molecular line andHerschelcontinuum data. <i>Astronomy and Astrophysics</i> , 2016 , 590, A75	5.1	27
169	Hi-GAL, theHerschelinfrared Galactic Plane Survey: photometric maps and compact source catalogues. <i>Astronomy and Astrophysics</i> , 2016 , 591, A149	5.1	149
168	Multi-wavelength characterisation ofz~ 2 clustered, dusty star-forming galaxies discovered byPlanck. <i>Astronomy and Astrophysics</i> , 2016 , 585, A54	5.1	16

(2016-2016)

167	An alternative validation strategy for thePlanckcluster catalogue andy-distortion maps. <i>Astronomy and Astrophysics</i> , 2016 , 592, A48	5.1	12
166	THE CARNEGIE-CHICAGO HUBBLE PROGRAM. I. AN INDEPENDENT APPROACH TO THE EXTRAGALACTIC DISTANCE SCALE USING ONLY POPULATION II DISTANCE INDICATORS. <i>Astrophysical Journal</i> , 2016 , 832, 210	4.7	74
165	A passive terahertz video camera based on lumped element kinetic inductance detectors. 2016 , 87, 033	105	25
164	Planck2015 results. Astronomy and Astrophysics, 2016 , 594, A1	5.1	596
163	Giant lobes of Centaurus A as seen in radio and Pray images obtained with the Fermi-LAT and Plancks at ellites. <i>Astronomy and Astrophysics</i> , 2016 , 595, A29	5.1	15
162	Planckintermediate results. Astronomy and Astrophysics, 2016 , 586, A137	5.1	21
161	Gravitational-Wave Cosmology across 29 Decades in Frequency. 2016 , 6,		82
160	DENSE GAS IN MOLECULAR CORES ASSOCIATED WITHPLANCKGALACTIC COLD CLUMPS. Astrophysical Journal, 2016, 820, 37	4.7	15
159	The future of primordial features with large-scale structure surveys. <i>Journal of Cosmology and Astroparticle Physics</i> , 2016 , 2016, 014-014	6.4	40
158	Forecasting performance of CMB experiments in the presence of complex foreground contaminations. 2016 , 94,		25
157	Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 463, 655-669	4.3	51
156	SILC: a newPlanckinternal linear combination CMB temperature map using directional wavelets. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 460, 3014-3028	4.3	12
155	An empirical determination of the dust mass absorption coefficient, 2 , using the Herschel Reference Survey. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 459, 1646-1658	4.3	33
154	ThePlanckATCA Co-eval Observations project: analysis of radio source properties between 5 and 217 GHz. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 3249-3262	4.3	15
153	The bandmergedPlanckEarly Release Compact Source Catalogue: probing sub-structure in the molecular gas at high Galactic latitude. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 3619-3632	4.3	3
152	Probing star formation in the dense environments of $z \sim 1$ lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 455, 1629-1646	4.3	13
151	Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 458, 2032-2050	4.3	49
150	Updated measurements of the dark matter halo masses of obscured quasars with improvedWISEandPlanckdata. <i>Monthly Notices of the Royal Astronomical Society</i> , 2016 , 456, 924-942	4.3	26

149	VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS. <i>Astrophysical Journal</i> , 2017 , 834, 63	4.7	10
148	Optimal scan strategies for future CMB satellite experiments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 466, 425-442	4.3	13
147	The dust mass in Cassiopeia A from a spatially resolvedHerschelanalysis. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 465, 3309-3342	4.3	93
146	Electro-optic correlator for large-format microwave interferometry: Up-conversion and correlation stages performance analysis. 2017 , 88, 044702		2
145	The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies. <i>Astronomy and Astrophysics</i> , 2017 , 599, A98	5.1	89
144	H i, CO, and Dust in the Perseus Cloud. <i>Astrophysical Journal</i> , 2017 , 838, 132	4.7	25
143	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. 2017 , 118, 121101		137
142	Polarimetry at millimeter wavelengths with the NIKA camera: calibration and performance. <i>Astronomy and Astrophysics</i> , 2017 , 599, A34	5.1	20
141	An introduction to the Planck mission. 2017 , 58, 331-348		
140	Dark matter distribution in X-ray luminous galaxy clusters with Emergent Gravity. 2017 , 470, L29-L33		13
139	Bandpass mismatch error for satellite CMB experiments I: estimating the spurious signal. <i>Journal of Cosmology and Astroparticle Physics</i> , 2017 , 2017, 015-015	6.4	9
139		6.4 5.1	
	Cosmology and Astroparticle Physics, 2017, 2017, 015-015 The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS.	,	9
138	Cosmology and Astroparticle Physics, 2017, 2017, 015-015 The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS. Astronomy and Astrophysics, 2017, 602, A77 The role of XMM-Newton for present and next-generation Sunyaevileldovich experiments. 2017,	,	9 47
138	Cosmology and Astroparticle Physics, 2017, 2017, 015-015 The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS. Astronomy and Astrophysics, 2017, 602, A77 The role of XMM-Newton for present and next-generation SunyaevZeldovich experiments. 2017, 338, 305-310 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: towards a computationally efficient analysis without informative priors. Monthly Notices of the	5.1	9 47
138 137 136	The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS. Astronomy and Astrophysics, 2017, 602, A77 The role of XMM-Newton for present and next-generation Sunyaev deldovich experiments. 2017, 338, 305-310 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: towards a computationally efficient analysis without informative priors. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4116-4133 Effect of the non-thermal Sunyaev del'dovich effect on the temperature determination of galaxy	5.1 4.3	9 47 1
138 137 136 135	The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS. Astronomy and Astrophysics, 2017, 602, A77 The role of XMM-Newton for present and next-generation Sunyaev eldovich experiments. 2017, 338, 305-310 The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: towards a computationally efficient analysis without informative priors. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4116-4133 Effect of the non-thermal Sunyaev eld'dovich effect on the temperature determination of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4644-4648 The Herschel ATLAS Data Release 2, Paper I. Submillimeter and Far-infrared Images of the South and North Galactic Poles: The Largest Herschel Survey of the Extragalactic Sky. Astrophysical	5.1 4.3	9 47 1 10

131	Planck intermediate results. Astronomy and Astrophysics, 2017, 607, A122	5.1	17
130	CARMA observations of massivePlanck-discovered cluster candidates atz? 0.5 associated withWISEoverdensities: breaking the sizeflux degeneracy. <i>Monthly Notices of the Royal Astronomical Society</i> , 2017 , 464, 2378-2395	4.3	2
129	Gas Contents of Galaxy Groups from Thermal Sunyaev Deldovich Effects. <i>Astrophysical Journal</i> , 2018 , 854, 181	4.7	22
128	The HP2 Survey. Astronomy and Astrophysics, 2018 , 620, A24	5.1	6
127	Weak lensing light-cones in modified gravity simulations with and without massive neutrinos. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 2813-2828	4.3	25
126	Magnetic fields in star-forming systems (I): idealized synthetic signatures of dust polarization and Zeeman splitting in filaments. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 481, 2507-2522	4.3	19
125	DustPedia: Multiwavelength photometry and imagery of 875 nearby galaxies in 42 ultraviolet-microwave bands. <i>Astronomy and Astrophysics</i> , 2018 , 609, A37	5.1	52
124	Morphological estimators on Sunyaev Z el'dovich maps of MUSIC clusters of galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 477, 139-152	4.3	16
123	Clustering the Orion B giant molecular cloud based on its molecular emission. <i>Astronomy and Astrophysics</i> , 2018 , 610,	5.1	17
122	The dense cores and filamentary structure of the molecular cloud in Corona Australis: Herschel SPIRE and PACS observations from the Herschel Gould Belt Survey. <i>Astronomy and Astrophysics</i> , 2018 , 615, A125	5.1	21
121	Candidate high-z protoclusters among the Planck compact sources, as revealed by Herschel PIRE. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 476, 3336-3359	4.3	20
120	Planck observations of M33. Monthly Notices of the Royal Astronomical Society, 2018, 477, 4968-4980	4.3	5
119	Gas and galaxies in filaments between clusters of galaxies. Astronomy and Astrophysics, 2018, 609, A49	5.1	29
118	The supernova-regulated ISM. Astronomy and Astrophysics, 2018, 614, A101	5.1	7
117	First Sunyaev Zeldovich mapping with the NIKA2 camera: Implication of cluster substructures for the pressure profile and mass estimate. <i>Astronomy and Astrophysics</i> , 2018 , 615, A112	5.1	31
116	Optimizing signal recycling for detecting a stochastic gravitational-wave background. 2018 , 35, 125002		1
115	Transition Edge Sensors and Kinetic Inductance Detectors in Astronomical Instruments. 2018 , 130, 0820	001	13
114	Most Frequent Value Statistics and the Hubble Constant. 2018 , 130, 084502		17

113	The TOP-SCOPE Survey of PGCCs: PMO and SCUBA-2 Observations of 64 PGCCs in the Second Galactic Quadrant. <i>Astrophysical Journal, Supplement Series</i> , 2018 , 236, 49	8	10
112	The curious case of II Lup: a complex morphology revealed with SAM/NACO and ALMA. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 1006-1021	4.3	5
111	The empirical Gaia G-band extinction coefficient. Astronomy and Astrophysics, 2018, 614, A19	5.1	31
110	Exploring the thermal energy contents of the intergalactic mediumwith the Sunyaev Z eldovich effect. <i>Monthly Notices of the Royal Astronomical Society</i> , 2018 , 480, 4017-4024	4.3	7
109	Balloon-borne Cosmic Microwave Background experiments. 2019 , 209, 01046		6
108	Bandpass mismatch error for satellite CMB experiments II: correcting for the spurious signal. Journal of Cosmology and Astroparticle Physics, 2019 , 2019, 043-043	6.4	2
107	Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. 2019 , 100,		27
106	Recent results and perspectives on cosmic backgrounds from radio to far-infrared. <i>International Journal of Modern Physics D</i> , 2019 , 28, 1930021	2.2	
105	Ultra-bright CO and $[{rm{C}},{rm{I}}]$ Emission in a Lensed z = 2.04 Submillimeter Galaxy with Extreme Molecular Gas Properties. <i>Astronomical Journal</i> , 2019 , 158, 34	4.9	19
104	Kinetic Inductance Detectors for the OLIMPO experiment: in-flight operation and performance. Journal of Cosmology and Astroparticle Physics, 2019 , 2019, 003-003	6.4	13
103	Analysis of Fermi-LAT observations, UHECRs and neutrinos from the radio galaxy Centaurus B. <i>Journal of Cosmology and Astroparticle Physics</i> , 2019 , 2019, 023-023	6.4	2
102	Constraints on the redshift evolution of astrophysical feedback with Sunyaev-Zellovich effect cross-correlations. 2019 , 100,		15
101	Investigation of the origin of the anomalous microwave emission in Lambda Orionis. 2019,		3
100	Dust properties and star formation of approximately a thousand local galaxies. <i>Astronomy and Astrophysics</i> , 2019 , 631, A38	5.1	10
99	Impact of the mean pressure profile of galaxy clusters on the cosmological constraints from the Planck tSZ power spectrum. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 784-796	4.3	13
98	Dark Energy Survey year 1 results: the relationship between mass and light around cosmic voids. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 490, 3573-3587	4.3	13
97	Nobeyama 45 m mapping observations toward Orion A. II. Classification of cloud structures and variation of the 13CO/C18O abundance ratio due to far-UV radiation. 2019 , 71,		12
96	Initial conditions of the Universe: A sign of the sine mode. 2019 , 99,		2

(2020-2019)

95	A Microwave Polarimeter Demonstrator for Astronomy with Near-Infra-Red Up-Conversion for Optical Correlation and Detection. 2019 , 19,		2
94	High Confidence Optical Confirmations among the High Signal-to-noise Planck Cluster Candidates. <i>Astrophysical Journal</i> , 2019 , 871, 188	4.7	5
93	Optical photometric variable stars towards Cygnus OB7. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 487, 1765-1776	4.3	2
92	Chemical abundances and radial velocities in the extremely metal-poor galaxy DDO 68. <i>Monthly Notices of the Royal Astronomical Society</i> , 2019 , 482, 3892-3914	4.3	15
91	C2H N = 1 \square 0 and N2H+ J = 1 \square 0 observations of Planck Galactic cold clumps. <i>Astronomy and Astrophysics</i> , 2019 , 622, A32	5.1	9
90	Spectral imaging of the thermal Sunyaev Zel Jovich effect in X-COP galaxy clusters: method and validation. <i>Astronomy and Astrophysics</i> , 2019 , 630, A121	5.1	3
89	Planck Far-infrared Detection of Hyper Suprime-Cam Protoclusters at z ~ 4: Hidden AGN and Star Formation Activity. <i>Astrophysical Journal</i> , 2019 , 887, 214	4.7	12
88	Metal Hydride Compressors with Gas-Gap Heat Switches: Concept, Development, Testing, and Space Flight Operation for the Planck Sorption Cryocoolers. 2019 , 7, 139		8
87	Dark Energy Survey Year 1 results: Methodology and projections for joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. 2019 , 99,		23
86	Stochastic gravitational wave backgrounds. 2019 , 82, 016903		83
85	Cosmological parameter analyses using transversal BAO data. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 497, 2133-2141	4.3	17
84	A new calibration method of sub-halo orbital evolution for semi-analytic models. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 498, 3902-3913	4.3	4
83	High-resolution, 3D radiative transfer modelling. Astronomy and Astrophysics, 2020, 637, A25	5.1	16
82	Spectroscopic QUasar Extractor and redshift (z) Estimator squeze []. Methodology. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 4931-4940	4.3	3
81	The CO-dark molecular gas mass in 30 Doradus. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 5279-5292	4.3	8
80	Modelling the spinning dust emission from LDN 1780. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 495, 1122-1135	4.3	4
79	Hydrostatic mass estimates of massive galaxy clusters: a study with varying hydrodynamics flavours and non-thermal pressure support. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 491, 1622-10	643	12
78	The dust and cold gas content of local star-forming galaxies. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 496, 2531-2541	4.3	2

77	GalWeight Application: A Publicly Available Catalog of Dynamical Parameters of 1800 Galaxy Clusters from SDSS-DR13, (GalWCat19). <i>Astrophysical Journal, Supplement Series</i> , 2020 , 246, 2	8	6
76	Particle Response of Antenna-Coupled TES Arrays: Results from SPIDER and the Laboratory. 2020 , 199, 1127-1136		1
75	Reproducing the Universe: a comparison between the EAGLE simulations and the nearby DustPedia galaxy sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 494, 2823-2838	4.3	16
74	Thermal Hydrogen Compression Based on Metal Hydride Materials. 2021 , 171-192		О
73	Compact steep-spectrum and peaked-spectrum radio sources. 2021 , 29, 1		46
72	Shocks and Molecules in Diffuse Interstellar Cloud Pairs. <i>Astrophysical Journal</i> , 2021 , 909, 71	4.7	О
71	Educational Design Framework for a Web-Based Interface to Visualise Authentic Cosmological B ig Data I In High School. 2021 , 30, 732-750		1
70	The Planck Submillimeter Properties of Galactic High-mass Star-forming Regions: Dust Temperatures, Luminosities, Masses, and Star Formation Efficiency. <i>Astrophysical Journal</i> , 2021 , 911, 69	4.7	
69	Properties of the ionized CGM and IGM: tests for galaxy formation models from the Sunyaev Zel	4.3	9
68	Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. 2021 , 103,		145
68 67		4.3	145 1
	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021 , 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. <i>Monthly Notices of</i>	4.3	
67	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021, 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. <i>Monthly Notices of the Royal Astronomical Society</i> , 2021, 506, 3986-3995		1
6 ₇	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021, 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3986-3995 Abell 1430: A merging cluster with exceptional diffuse radio emission. Astronomy and Astrophysics, CMB polarization analysis on circular scans. Journal of Cosmology and Astroparticle Physics, 2021,	5.1	0
66 65	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021, 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3986-3995 Abell 1430: A merging cluster with exceptional diffuse radio emission. Astronomy and Astrophysics, CMB polarization analysis on circular scans. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033 Herschel Photometric Observations of Little Things Dwarf Galaxies. Astronomical Journal, 2021,	5.1 6.4	1 0 0
66 65 64	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021, 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3986-3995 Abell 1430: A merging cluster with exceptional diffuse radio emission. Astronomy and Astrophysics, CMB polarization analysis on circular scans. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033 Herschel Photometric Observations of Little Things Dwarf Galaxies. Astronomical Journal, 2021, 162, 83 Spectroscopic observations of PHz G237.01+42.50: A galaxy protocluster at z=2.16 in the Cosmos	5.1 6.4 4.9	1 0 0
67 66 65 64 63	from two decades of spectroscopic surveys at the Apache Point Observatory. 2021, 103, Probing the spectral shape of dust emission with the DustPedia galaxy sample. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3986-3995 Abell 1430: A merging cluster with exceptional diffuse radio emission. Astronomy and Astrophysics, CMB polarization analysis on circular scans. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 033 Herschel Photometric Observations of Little Things Dwarf Galaxies. Astronomical Journal, 2021, 162, 83 Spectroscopic observations of PHz G237.01+42.50: A galaxy protocluster at z=2.16 in the Cosmos field. Astronomy and Astrophysics,	5.1 6.4 4.9 5.1	1 0 0

(2020-2012)

59	Expected constraints on the Galactic magnetic field usingPlanckdata. <i>Astronomy and Astrophysics</i> , 2012 , 540, A122	5.1	12
58	Planckearly results. IX.XMM-Newtonfollow-up for validation ofPlanckcluster candidates. <i>Astronomy and Astrophysics</i> , 2011 , 536, A9	5.1	119
57	An improved model of the Edgeworth-Kuiper debris disk. Astronomy and Astrophysics, 2012 , 540, A30	5.1	55
56	Likelihood, Fisher information, and systematics of cosmic microwave background experiments. <i>Astronomy and Astrophysics</i> , 2012 , 542, A60	5.1	9
55	Compressed convolution. Astronomy and Astrophysics, 2014, 561, A88	5.1	1
54	The XXL Survey. <i>Astronomy and Astrophysics</i> , 2016 , 592, A2	5.1	99
53	Bayesian power spectrum inference with foreground and target contamination treatment. <i>Astronomy and Astrophysics</i> , 2017 , 606, A37	5.1	12
52	Planck2018 results. <i>Astronomy and Astrophysics</i> , 2020 , 641, A2	5.1	38
51	Planck2018 results. Astronomy and Astrophysics, 2020 , 641, A1	5.1	316
50	C18O,13CO, and12CO abundances and excitation temperatures in the Orion B molecular cloud. <i>Astronomy and Astrophysics</i> , 2021 , 645, A26	5.1	4
49	Quantitative inference of the H2 column densities from 3 mm molecular emission: case study towards Orion B. <i>Astronomy and Astrophysics</i> , 2021 , 645, A27	5.1	3
48	Sensitivity of LEKID for space applications between 80 GHz and 600 GHz. <i>Astronomy and Astrophysics</i> , 2020 , 641, A179	5.1	2
47	Requirements for future CMB satellite missions: photometric and band-pass response calibration. <i>Journal of Cosmology and Astroparticle Physics</i> , 2020 , 2020, 030-030	6.4	4
46	Review: far-infrared instrumentation and technological development for the next decade. <i>Journal of Astronomical Telescopes, Instruments, and Systems</i> , 2019 , 5, 1	1.1	17
45	Cosmic Microwave Background Data Analysis. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, 2012,		1
44	Cosmological results from the Planck space mission and their comparison with data from the WMAP and BICEP2 experiments. <i>Uspekhi Fizicheskikh Nauk</i> , 2016 , 186, 3-46	0.5	6
43	Detection of Missing Baryons in Galaxy Groups with Kinetic SunyaevZeldovich Effect. <i>Astrophysical Journal</i> , 2020 , 889, 48	4.7	19
42	SZ Scaling Relations of Galaxy Groups and Clusters Near the North Ecliptic Pole. <i>Astrophysical Journal</i> , 2020 , 890, 156	4.7	6

41	The Dragonfly Wide Field Survey. I. Telescope, Survey Design, and Data Characterization. <i>Astrophysical Journal</i> , 2020 , 894, 119	4.7	17
40	Cross-correlation of Far-infrared Background Anisotropies and CMB Lensing from Herschel and Planck Satellites. <i>Astrophysical Journal</i> , 2020 , 901, 34	4.7	3
39	The Galactic Plane Infrared Polarization Survey (GPIPS): Data Release 4. <i>Astrophysical Journal, Supplement Series</i> , 2020 , 249, 23	8	6
38	Polarization measurements of the Cosmic Microwave Background. 2013, 617-627		
37	LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA. <i>Journal of the Korean Astronomical Society</i> , 2013 , 46, 75-91		
36	A Cryogenic FTS Translation Mechanism: Test-Bed Design and Anticipated Challenges. 2015 ,		
35	Instrumentation. Springer Theses, 2017 , 37-70	0.1	
34	The Quest for the Missing Dust. I. Restoring Large-scale Emission in Herschel Maps of Local Group Galaxies. <i>Astrophysical Journal</i> , 2021 , 921, 35	4.7	2
33	Seeing Relativity III. Journeying within the Kerr metric toward the negative gravity region. <i>International Journal of Modern Physics D</i> , 2020 , 29, 2050109	2.2	
32	Infall of galaxies onto groups. Astronomy and Astrophysics, 2020 , 642, A131	5.1	1
31	Baryon density extraction and isotropy analysis of cosmic microwave background using deep learning. <i>Machine Learning: Science and Technology</i> , 2020 , 1, 045012	5.1	1
30	The distances of 61 PGCCs in the second galactic quadrant. <i>Monthly Notices of the Royal Astronomical Society</i> , 2020 , 500, 3743-3749	4.3	1
29	Magnetic field structure of OMC-3 in the far infrared revealed by SOFIA/HAWC+. <i>Astronomy and Astrophysics</i> ,	5.1	O
28	CMB Experiments and Gravitational Waves. 2021 , 1-39		
27	A FAST survey of H I narrow-line self-absorptions in Planck Galactic cold clumps guided by HC3N. <i>Astronomy and Astrophysics</i> , 2022 , 658, A140	5.1	O
26	CMB/kSZ and Compton-y Maps from 2500 deg2 of SPT-SZ and Planck Survey Data. <i>Astrophysical Journal, Supplement Series</i> , 2022 , 258, 36	8	3
25	A GMRT Narrowband vs. Wideband Analysis of the ACTIL J0034.4+0225 Field Selected from the ACTPol Cluster Sample. <i>Galaxies</i> , 2021 , 9, 117	2	0
24	The Simons Observatory: Galactic Science Goals and Forecasts. <i>Astrophysical Journal</i> , 2022 , 929, 166	4.7	1

23	B-mode forecast of CMB-Bhfat. Monthly Notices of the Royal Astronomical Society,	4.3	0
22	Temperature Anisotropy of the CMBR and the Non-zero Cosmological Constant. <i>International Journal of Modern Physics D</i> ,	2.2	
21	CMB Experiments and GravitationalWaves. 2022 , 243-281		
20	Searching for giant planets in the outer Solar system with far-infrared all-sky surveys. 2022 , 515, 4828-	4837	
19	Dust, CO and [CI]: Cross-calibration of molecular gas mass tracers in metal-rich galaxies across cosmic time.		1
18	AGN feedback duty cycle in Planck SZ selected clusters using Chandra observations.		
17	Refinement of the Orbit of the Space Radio Telescope in the Millimetron (Spektr-M) Project. 2022 , 77, 524-534		О
16	From Clusters to Proto-Clusters: The Infrared Perspective on Environmental Galaxy Evolution. 2022 , 8, 554		O
15	Unveiling polarized emission from interstellar dust of the Large Magellanic Cloud with Planck.		0
14	Astronomy and Culture.		O
13	Astronomy and Culture. Latest Data Constraint of Some Parameterized Dark Energy Models. 2023, 40, 019801		0
13	Latest Data Constraint of Some Parameterized Dark Energy Models. 2023 , 40, 019801		0
13	Latest Data Constraint of Some Parameterized Dark Energy Models. 2023, 40, 019801 A First Look into the Nature of JWST/MIRI 7.7 fb Sources from SMACS 0723. 2022, 940, L24 Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I.		0
13 12 11	Latest Data Constraint of Some Parameterized Dark Energy Models. 2023, 40, 019801 A First Look into the Nature of JWST/MIRI 7.7 fb Sources from SMACS 0723. 2022, 940, L24 Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices. 2023, 107, Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III.		0
13 12 11	Latest Data Constraint of Some Parameterized Dark Energy Models. 2023, 40, 019801 A First Look into the Nature of JWST/MIRI 7.7 fb Sources from SMACS 0723. 2022, 940, L24 Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . I. Construction of CMB lensing maps and modeling choices. 2023, 107, Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . III. Combined cosmological constraints. 2023, 107,		0 0
13 12 11 10	Latest Data Constraint of Some Parameterized Dark Energy Models. 2023, 40, 019801 A First Look into the Nature of JWST/MIRI 7.7 fb Sources from SMACS 0723. 2022, 940, L24 Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. I. Construction of CMB lensing maps and modeling choices. 2023, 107, Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck. III. Combined cosmological constraints. 2023, 107, VISIONS: The VISTA Star Formation Atlas. I. Survey overview.		00000

5	Optimization of a Microwave Polarimeter for Astronomy with Optical Correlation and Detection. 2023 , 23, 2414	О
4	The Quest for the Missing Dust. II. Two Orders of Magnitude of Evolution in the Dust-to-gas Ratio Resolved within Local Group Galaxies. 2023 , 946, 42	O
3	Infrared Galaxies Detected by the Atacama Cosmology Telescope. 2023 , 265, 45	О
2	Gravothermal Solutions of SIDM Halos: Mapping from Constant to Velocity-dependent Cross Section. 2023 , 946, 47	O
1	Distances to Nearby Molecular Clouds Traced by Young Stars. 2023 , 265, 59	О