Towards Intelligent Environments: An Augmented Real Operated with a See-Through Head-Mount Display

Frontiers in Neuroscience 5, 60 DOI: 10.3389/fnins.2011.00060

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Effect of the Green/Blue Flicker Matrix for P300-Based Brain–Computer Interface: An EEG–fMRI Study. Frontiers in Neurology, 2012, 3, 113.	2.4	27
2	A Non-Adhesive Solid-Gel Electrode for a Non-Invasive Brain–Machine Interface. Frontiers in Neurology, 2012, 3, 114.	2.4	39
3	Superman-like X-ray vision: Towards brain-computer interfaces for medical augmented reality. , 2012, , .		25
4	A BMI-based occupational therapy assist suit: asynchronous control by SSVEP. Frontiers in Neuroscience, 2013, 7, 172.	2.8	64
5	Coherent Activity in Bilateral Parieto-Occipital Cortices during P300-BCI Operation. Frontiers in Neurology, 2014, 5, 74.	2.4	12
6	Rapid P300 brain-computer interface communication with a head-mounted display. Frontiers in Neuroscience, 2015, 9, 207.	2.8	47
7	Practical Noninvasive Brain–Machine Interface System for Communication and Control. , 2015, , 15-31.		1
8	A Prototype SSVEP Based Real Time BCI Gaming System. Computational Intelligence and Neuroscience, 2016, 2016, 1-15.	1.7	78
9	Toward Parallel Consciousness: Classifying User State to Improve Augmentation Relevance. , 2017, , .		1
10	BrainChat - A Collaborative Augmented Reality Brain Interface for Message Communication. , 2017, , .		6
11	Mixing augmented reality and EEG technology to create an unique learning tool for construction process. , 2017, , .		5
12	A Systematic Review of 10 Years of Augmented Reality Usability Studies: 2005 to 2014. Frontiers in Robotics and Al, 2018, 5, 37.	3.2	261
13	An online top-down SSVEP-BMI for augmented reality. , 2019, , .		6
14	Using Eye Tracked Virtual Reality to Classify Understanding of Vocabulary in Recall Tasks. , 2019, , .		12
15	Augmented Reality Interface for Smart Home Control using SSVEP-BCI and Eye Gaze. , 2019, , .		27
16	Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain–Computer Interface. IEEE Access, 2019, 7, 163604-163614.	4.2	40
17	An SSVEP-BCI in Augmented Reality. , 2019, 2019, 5548-5551.		5
18	Towards BCI-Based Interfaces for Augmented Reality: Feasibility, Design and Evaluation. IEEE Transactions on Visualization and Computer Graphics, 2020, 26, 1608-1621.	4.4	78

#	Article	IF	CITATIONS
19	An online SSVEP-BCI system in an optical see-through augmented reality environment. Journal of Neural Engineering, 2020, 17, 016066.	3.5	61
20	Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 3140-3147.	4.9	58
21	Brain-Computer Interface-Based Humanoid Control: A Review. Sensors, 2020, 20, 3620.	3.8	63
22	Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface. , 2020, , .		16
23	A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Computers in Biology and Medicine, 2020, 118, 103618.	7.0	17
24	SSVEP Stimulus Layout Effect on Accuracy of Brain-Computer Interfaces in Augmented Reality Glasses. IEEE Access, 2020, 8, 5990-5998.	4.2	28
25	An Augmented-Reality fNIRS-Based Brain-Computer Interface: A Proof-of-Concept Study. Frontiers in Neuroscience, 2020, 14, 346.	2.8	17
26	Content Augmentation in Virtual Reality with Cognitive-Conflict-Based Brain-Computer Interface. , 2021, , 1-22.		0
27	The effect of video distraction on a visual P300 BCI. , 2021, , .		0
28	Using Brain Activity Patterns to Differentiate Real and Virtual Attended Targets during Augmented Reality Scenarios. Information (Switzerland), 2021, 12, 226.	2.9	4
29	P300 Brain–Computer Interface-Based Drone Control in Virtual and Augmented Reality. Sensors, 2021, 21, 5765.	3.8	20
30	Brain–Computer Interfaces: Neurorehabilitation of Voluntary Movement after Stroke and Spinal Cord Injury. Synthesis Lectures on Assistive Rehabilitative and Health-Preserving Technologies, 2021, 10, i-133.	0.2	0
31	A Pilot Study using Covert Visuospatial Attention as an EEG-based Brain Computer Interface to Enhance AR Interaction. , 2021, , .		2
32	Attention-Aware Brain Computer Interface to Avoid Distractions in Augmented Reality. , 2020, , .		26
33	Optimization of Selecting using Brain Computer Interface in Mixed-reality. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 1153-1158.	0.2	0
35	Research on the Application of Augmented Reality in SSVEP-BCI. , 2020, , .		6
36	The Effect of Spatial Reference on Visual Attention and Workload during Viewpoint Guidance in Augmented Reality. , 2020, , .		7
37	A CNN-based multi-target fast classification method for AR-SSVEP. Computers in Biology and Medicine, 2022, 141, 105042.	7.0	17

CITATION REPORT

#	Article	IF	CITATIONS
38	A review on Virtual Reality and Augmented Reality use-cases of Brain Computer Interface based applications for smart cities. Microprocessors and Microsystems, 2022, 88, 104392.	2.8	47
39	Comparisons of Auditory, Audiovisual, and Visual Modalities in Feature Domain for Auditory Brain-Computer Interfaces. , 2021, , .		1
40	Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 85-95.	4.9	18
41	Integration of Augmented Reality and Brain-Computer Interface Technologies for Health Care Applications: Exploratory and Prototyping Study. JMIR Formative Research, 2022, 6, e18222.	1.4	5
44	The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP–BCI in augmented reality. Journal of Neural Engineering, 2022, 19, 036010.	3.5	14
45	Brain-computer interface combined with augment reality. , 2022, , .		0
46	Humanoid Robot Walking in Maze Controlled by SSVEP-BCI Based on Augmented Reality Stimulus. Frontiers in Human Neuroscience, 0, 16, .	2.0	9
47	Designing Functional Prototypes Combining BCI andÂAR forÂHome Automation. Lecture Notes in Computer Science, 2022, , 3-21.	1.3	2
48	Brain–Computer Interface Integrated With Augmented Reality for Human–Robot Interaction. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1702-1711.	3.8	15
49	Study on Robot Grasping System of SSVEP-BCI Based on Augmented Reality Stimulus. Tsinghua Science and Technology, 2023, 28, 322-329.	6.1	11
50	A separable convolutional neural network-based fast recognition method for AR-P300. Frontiers in Human Neuroscience, 0, 16, .	2.0	0
51	Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 2960-2969.	4.9	11
52	Design of auditory P300-based brain-computer interfaces with a single auditory channel and no visual support. Cognitive Neurodynamics, 0, , .	4.0	0
53	Optimization of Stimulus Color for SSVEP-Based Brain-Computer Interfaces in Mixed Reality. Communications in Computer and Information Science, 2023, , 183-191.	0.5	0
54	Augmented Reality for Building Maintenance and Operation. Springer Handbooks, 2023, , 495-532.	0.6	1
55	Content Augmentation in Virtual Reality with Cognitive-Conflict-Based Brain-Computer Interface. , 2023, , 1901-1922.		0
56	Head-mounted display augmented reality in manufacturing: A systematic review. Robotics and Computer-Integrated Manufacturing, 2023, 83, 102567.	9.9	8
57	Boosters of the metaverse: a review of augmented reality-based brain-computer interface. , 2024, 3, .		0

#	Article	IF	CITATIONS
58	A novel brain-controlled prosthetic hand method integrating AR-SSVEP augmentation, asynchronous control, and machine vision assistance. Heliyon, 2024, 10, e26521.	3.2	0