Managementâ€Intensive Rotational Grazing Enhances Subhumid Coolâ€Season Pastures

Crop Science 51, 892-901 DOI: 10.2135/cropsci2010.04.0216

Citation Report

#	Article	IF	CITATIONS
1	Sowing Method Effects on Clover Establishment into Permanent Pasture. Agronomy Journal, 2012, 104, 1217-1222.	1.8	12
2	Subhumid pasture soil microbial communities affected by presence of grazing, but not grazing management. Applied Soil Ecology, 2012, 59, 20-28.	4.3	13
3	Leaf-level responses to ultraviolet-B radiation in Trifolium repens populations under defoliation pressure. Environmental and Experimental Botany, 2012, 78, 64-69.	4.2	8
4	Energy to Protein Ratio of Grass–Legume Binary Mixtures under Frequent Clipping. Agronomy Journal, 2013, 105, 482-492.	1.8	22
5	Spatial Arrangement of Forages Affects Grazing Behavior of Beef Heifers Continuously Stocked at Low Stocking Rate. Crop Science, 2014, 54, 1227-1237.	1.8	1
6	Virtual herding for flexible livestock management – a review. Rangeland Journal, 2014, 36, 205.	0.9	48
7	Livestock Management Strategy Affects Net Ecosystem Carbon Balance of Subhumid Pasture. Rangeland Ecology and Management, 2014, 67, 19-29.	2.3	28
8	Estimating water quality effects of conservation practices and grazing land use scenarios. Journal of Soils and Water Conservation, 2014, 69, 330-342.	1.6	24
9	Optimizing diet and pasture management to improve sustainability of U.S. beef production. Agricultural Systems, 2014, 130, 1-12.	6.1	20
10	Temperate grass response to extent and timing of grazing. Canadian Journal of Plant Science, 2014, 94, 827-833.	0.9	5
11	FORAGES AND PASTURES SYMPOSIUM: Improving efficiency of production in pasture- and range-based beef and dairy systems1. Journal of Animal Science, 2015, 93, 2609-2615.	0.5	18
12	Grazing in an Uncertain Environment: Modeling the Trade-Off between Production and Robustness. Agronomy Journal, 2015, 107, 257-264.	1.8	14
13	Nitrous oxide emissions from cool-season pastures under managed grazing. Nutrient Cycling in Agroecosystems, 2015, 101, 365-376.	2.2	21
14	Management flexibility of a grassland agroecosystem: A modeling approach based on viability theory. Agricultural Systems, 2015, 139, 76-81.	6.1	15
15	Land use and land cover in critical source areas on small dairy farms in the eastern United States. Journal of Soils and Water Conservation, 2015, 70, 257-266.	1.6	3
16	Effect of Summer Annual Forage and Type of Shade on Grazing Behavior of Beef Stocker Heifers. Journal of Agricultural Science, 2016, 8, 15.	0.2	1
17	Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agricultural Systems, 2018, 162, 249-258.	6.1	163
18	Feeding management of dairy cattle affect grassland dynamics in an alpine pasture. International Journal of Agricultural Sustainability, 2018, 16, 64-73.	3.5	6

#	Article	IF	CITATIONS
19	Effect of Increasing Species Diversity and Grazing Management on Pasture Productivity, Animal Performance, and Soil Carbon Sequestration of Re-Established Pasture in Canadian Prairie. Animals, 2019, 9, 127.	2.3	6
20	Are plant-soil dynamics different in pastures under organic management? A review. Agriculture, Ecosystems and Environment, 2019, 279, 53-57.	5.3	7
21	Grazing promotes plant functional diversity in alpine meadows on the Qinghai-Tibetan Plateau. Rangeland Journal, 2019, 41, 73.	0.9	13
22	Do Differences in Livestock Management Practices Influence Environmental Impacts?. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	10
23	Grazing promoted soil microbial functional genes for regulating C and N cycling in alpine meadow of the Qinghai-Tibetan Plateau. Agriculture, Ecosystems and Environment, 2020, 303, 107111.	5.3	21
24	Climate change mitigation as a co-benefit of regenerative ranching: insights from Australia and the United States. Interface Focus, 2020, 10, 20200027.	3.0	48
25	Soil nitrate leaching under grazed coolâ€season grass pastures of the North Central US. Journal of the Science of Food and Agriculture, 2020, 100, 5307-5312.	3.5	8
26	Light Interception and the Growth of Pastures under Ideal and Stressful Growing Conditions on the Allegheny Plateau. Plants, 2020, 9, 734.	3.5	6
27	Assessing the importance of plant, soil, and management factors affecting potential milk production on organic pastures using regression tree analysis. Agricultural Systems, 2020, 180, 102776.	6.1	9
28	Strategic Grazing in Beef-Pastures for Improved Soil Health and Reduced Runoff-Nitrate-A Step towards Sustainability. Sustainability, 2020, 12, 558.	3.2	16
29	Mob and rotational grazing influence pasture biomass, nutritive value, and species composition. Agronomy Journal, 2020, 112, 2866-2878.	1.8	7
30	Long-term effects of pasture management and fenced riparian buffers on soil organic carbon content and aggregation. Geoderma, 2021, 382, 114666.	5.1	11
31	Effects of rotational and continuous overgrazing on newly assimilated C allocation. Biology and Fertility of Soils, 2021, 57, 193-202.	4.3	19
32	Soil health changes following transition from an annual cropping to perennial managementâ€intensive grazing agroecosystem. , 2021, 4, e20181.		5
33	Understanding producers' perspectives on rotational grazing benefits across US Great Plains. Renewable Agriculture and Food Systems, 0, , 1-12.	1.8	6
34	Agricultural Landscape Transformation Needed to Meet Water Quality Goals in the Yahara River Watershed of Southern Wisconsin. Ecosystems, 2022, 25, 507-525.	3.4	5
35	Biomass Yield and Nutritive Value of Rye (Secale cereale L.) and Wheat (Triticum aestivum L.) Forages While Grazed by Cattle. Crops, 2021, 1, 42-53.	1.4	3
36	Effect of pasture management on bioactive compounds of Lolium multiflorum and Avena strigosa for dairy cows and its effect on milk quality. Agroecology and Sustainable Food Systems, 0, , 1-20.	1.9	6

#	ARTICLE	IF	CITATIONS
37	Management intensive grazing on New England dairy farms enhances soil nitrogen stocks and elevates soil nitrous oxide emissions without increasing soil carbon. Agriculture, Ecosystems and Environment, 2021, 317, 107471.	5.3	11
38	Perennial Grasslands Are Essential for Long Term SOC Storage in the Mollisols of the North Central USA. , 2014, , 281-288.		8
39	Comparison of Beef Cattle Grazing Management Practices and their Effects on Runoff Water Quality in Louisiana. Global Journal of Agricultural Innovation Research & Development, 2015, 2, 1-15.	0.2	1
40	Long-Term Grazing Mediates Soil Organic Carbon Dynamics by Reorienting Enzyme Activities and Elemental Stoichiometry in Semi-arid Tropical Inceptisol. Journal of Soil Science and Plant Nutrition, 2022, 22, 1422-1433.	3.4	5
41	Grassland rehabilitation significantly increases soil carbon stocks by reducing net soil CO ₂ emissions. Soil Use and Management, 2022, 38, 1250-1265.	4.9	11
42	Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation. Agricultural and Environmental Letters, 2022, 7, .	1.2	12
43	Soil microbial community structure is unaltered by grazing intensity and plant species richness in a temperate grassland steppe in northern China. European Journal of Soil Biology, 2022, 110, 103404.	3.2	6
44	ASAS–NANP Symposium: Mathematical Modeling in Animal Nutrition: Opportunities and challenges of confined and extensive precision livestock production. Journal of Animal Science, 2022, 100, .	0.5	13
45	Reply to "Missing the grassland for the cows: Scaling grassâ€finished beef production entails tradeoffs—Comment on â€~Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation' ― Agricultural and Environmental Letters, 2022, 7, .	1.2	0
46	Missing the grassland for the cows: Scaling grassâ€finished beef production entails tradeoffs—Comment on "Grazed perennial grasslands can match current beef production while contributing to climate mitigation and adaptation― Agricultural and Environmental Letters, 2022, 7, .	1.2	2
47	Meat Analogues: An Assessment of Plant-Based Protein Options and the Parameters of Their Success – A Mini Review. Food and Life, 0, , .	0.5	0
48	Connecting soil health and water quality in agricultural landscapes. Journal of Environmental Quality, 2023, 52, 412-421.	2.0	2
49	Grazing of Reed Canarygrass (Phalaris arundinacea) in Restored Wet Meadows. Natural Areas Journal, 2022, 42, .	0.5	0
50	The Birds and the Bees: Producing Beef and Conservation Benefits on Working Grasslands. Agronomy, 2022, 12, 1934.	3.0	5
51	The Limits of Grass. , 2023, , 157-175.		0
52	Exploring Rotational Grazing and Crossbreeding as Options for Beef Production to Reduce GHG Emissions and Feed-Food Competition through Farm-Level Bio-Economic Modeling. Animals, 2023, 13, 1020.	2.3	0
53	Applied nucleation under high biodiversity silvopastoral system as an adaptive strategy against microclimate extremes in pasture areas. International Journal of Biometeorology, 2023, 67, 1199-1212.	3.0	2
54	What goes in and what comes out: a scoping review of regenerative agricultural practices. Agroecology and Sustainable Food Systems, 2024, 48, 124-158.	1.9	0

#	Article	IF	CITATIONS
55	Influence of Pasture Stocking Method on Surface Runoff and Nutrient Loss in the US Upper Midwest. Nitrogen, 2023, 4, 350-368.	1.3	0
56	Evaluation of cool-season perennial forage varieties as monocultures and legume–grass binary mixtures under intensive grazing. Canadian Journal of Animal Science, 0, , .	1.5	0