<i>Colloquium</i>: Heat flow and thermoelectricity in a

Reviews of Modern Physics 83, 131-155

DOI: 10.1103/revmodphys.83.131

Citation Report

#	Article	IF	CITATIONS
1	Multiterminal single-molecule–graphene-nanoribbon junctions with the thermoelectric figure of merit optimized via evanescent mode transport and gate voltage. Physical Review B, 2011, 84, .	1,1	69
2	A Nanoscale Standard for the Seebeck Coefficient. Nano Letters, 2011, 11, 4679-4681.	4.5	22
3	Molecular dynamics study of the thermopower of Ag, Au, and Pt nanocontacts. Physical Review B, $2011, 84, .$	1.1	41
4	Chiral heat transport in driven quantum Hall and quantum spin Hall edge states. Physical Review B, 2011, 84, .	1.1	12
5	Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system. Physical Review B, 2011, 84, .	1.1	28
6	Atomic-Scale Field-Effect Transistor as a Thermoelectric Power Generator and Self-Powered Device. Journal of Physical Chemistry C, 2011, 115, 14988-14996.	1.5	16
7	Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System. Japanese Journal of Applied Physics, 2011, 50, 105003.	0.8	1
8	Controlling the transmission line shape of molecular t-stubs and potential thermoelectric applications. Journal of Chemical Physics, 2011, 135, 154109.	1.2	60
9	Thermoelectric properties of finite graphene antidot lattices. Physical Review B, 2011, 84, .	1.1	132
10	Quantum effects in thermal conduction: Nonequilibrium quantum discord and entanglement. Physical Review A, 2011, 84, .	1.0	38
11	Holey topological thermoelectrics. Applied Physics Letters, 2011, 99, .	1.5	58
12	Thermally manipulated pure spin current in a spin-orbit mesoscopic interferometer. Europhysics Letters, 2011, 95, 57009.	0.7	6
13	Phonon-assisted transport through suspended carbon nanotube quantum dots. Physical Review B, 2011, 84, .	1.1	21
14	Creation of stable molecular junctions with a custom-designed scanning tunneling microscope. Nanotechnology, 2011, 22, 485703.	1.3	25
15	Optimized hierarchical equations of motion theory for Drude dissipation and efficient implementation to nonlinear spectroscopies. Journal of Chemical Physics, 2011, 135, 164107.	1.2	54
16	Electronic heat transport across a molecular wire: Power spectrum of heat fluctuations. Physical Review B, 2011, 84, .	1.1	22
17	Enhanced thermopower under a time-dependent gate voltage. Physical Review B, 2011, 83, .	1.1	56
18	Plasmons in nanoscale metal junctions: optical rectification and thermometry. , 2011, , .		2

#	ARTICLE	IF	CITATIONS
19	On van der Waals friction between half-spaces at low temperature. Journal of Physics Condensed Matter, 2011, 23, 355004.	0.7	15
20	Robust linear dependence of thermal conductance on radial strain in carbon nanotubes. New Journal of Physics, 2012, 14, 013053.	1.2	18
21	Lineshape of the thermopower of quantum dots. New Journal of Physics, 2012, 14, 033041.	1.2	60
22	Modeling of charge transport through thiophene nanowire. , 2012, , .		1
23	Spin thermopower in interacting quantum dots. Physical Review B, 2012, 85, .	1.1	78
24	Tailoring thermopower of single-molecular junctions by temperature-induced surface reconstruction. Applied Physics Letters, 2012, 101, 243103.	1.5	12
25	Ballistic thermal transport contributed by the in-plane waves in a quantum wire modulated with an acoustic nanocavity. Journal of Applied Physics, 2012, 112, 124315.	1.1	1
26	Current-induced atomic dynamics, instabilities, and Raman signals: Quasiclassical Langevin equation approach. Physical Review B, 2012, 85, .	1.1	94
27	Thermal conduction and interface effects in nanoscale Fermi-Pasta-Ulam conductors. Physical Review E, 2012, 86, 031107.	0.8	15
28	Phase-controlled superconducting heat-flux quantum modulator. Applied Physics Letters, 2012, 101, .	1.5	46
29	Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons. Physical Review B, 2012, 85, .	1.1	47
30	VAN DER WAALS FRICTION: A HAMILTONIAN TEST-BED. International Journal of Modern Physics A, 2012, 27, 1260002.	0.5	4
31	Thermoelectricity and heat balance in a metal/dot/metal junction. International Journal of Nanotechnology, 2012, 9, 355.	0.1	4
32	Nonlocal tunnel magnetoresistance and thermal rectification effect in a nanoscale three-terminal junction. Journal of Physics Condensed Matter, 2012, 24, 495304.	0.7	0
33	Physics at the FQMT'11 conference. Physica Scripta, 2012, T151, 014001.	1.2	1
34	Phonon interference and anharmonicity effects in nanoconstrictions., 2012,,.		0
35	VAN DER WAALS FRICTION: A HAMILTONIAN TEST-BED. International Journal of Modern Physics Conference Series, 2012, 14, 16-26.	0.7	2
36	Unsymmetrical hot electron heating in quasi-ballistic nanocontacts. Scientific Reports, 2012, 2, 217.	1.6	26

#	Article	IF	CITATIONS
37	Intertube Thermal Resistance in Double-Wall Carbon Nanotube. , 2012, , .		0
38	I-V characteristics of single and clustered ligand stabilized cobalt nanoparticles on highly oriented pyrolytic graphite obtained with conducting atomic force microscopy under ambient conditions. Journal of Applied Physics, 2012, 112, .	1.1	1
39	Heat exchange mediated by a quantum system. Physical Review E, 2012, 86, 021116.	0.8	18
40	Plasmonics: Heat transfer between metal nanoparticles and supporting nanolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 113-118.	1.3	12
41	Thermoelectric effect in a graphene sheet connected to ferromagnetic leads. Journal of Applied Physics, 2012, 112, 073712.	1.1	7
42	<i>Ab initio</i> study of the thermopower of biphenyl-based single-molecule junctions. Physical Review B, 2012, 86, .	1.1	43
43	Quantum transport efficiency and Fourier's law. Physical Review E, 2012, 86, 061118.	0.8	70
44	The Josephson heat interferometer. Nature, 2012, 492, 401-405.	13.7	183
45	Quantum interference heats up. Nature, 2012, 492, 358-359.	13.7	8
46	Generalization of thermodynamic potentials including information. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6337-6346.	1.2	2
47	Thermoelectric effects of a laterally coupled double-quantum-dot structure. European Physical Journal B, 2012, 85, 1.	0.6	5
48	Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Physical Review B, 2012, 85, .	1.1	177
49	Phonon transport in Si nanowires with elastically dissimilar barriers. Applied Physics Letters, 2012, 100, 113110.	1.5	4
50	Thermoelectric efficiency of topological insulators in a magnetic field. Journal of Applied Physics, 2012, 111, 07E319.	1.1	14
51	Kondo physics and orbital degeneracy interact to boost thermoelectrics on the nanoscale. Physical Review B, 2012, 86, .	1.1	39
52	Defining the effective temperature of a quantum driven system from current-current correlation functions. European Physical Journal B, 2012, 85, 1.	0.6	14
53	Thermoelectric effect in an Aharonov-Bohm ring with an embedded quantum dot. Nanoscale Research Letters, 2012, 7, 157.	3.1	11
54	Effects of interdot hopping and Coulomb blockade on the thermoelectric properties of serially coupled quantum dots. Nanoscale Research Letters, 2012, 7, 257.	3.1	11

#	Article	IF	CITATIONS
55	Thermal transport in nanostructures. AIP Advances, 2012, 2, .	0.6	138
56	Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions. Physical Review B, 2012, 85, .	1.1	69
57	Strain dependence of the heat transport properties of graphene nanoribbons. Nanotechnology, 2012, 23, 495702.	1.3	23
58	Effect of electron–vibration interactions on the thermoelectric efficiency of molecular junctions. Nanotechnology, 2012, 23, 275401.	1.3	16
59	Influence of electron-phonon interaction on the thermoelectric properties of a serially coupled double quantum dot system. Journal of Applied Physics, 2012, 112, 103719.	1.1	19
60	Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction. Nanoscale Research Letters, 2012, 7, 670.	3.1	2
61	Vibrational excitation of a molecule by a resonance current. Journal of Experimental and Theoretical Physics, 2012, 115, 759-768.	0.2	4
62	Refrigeration effect in a single-level quantum dot with thermal bias. Applied Physics Letters, 2012, 100, 233106.	1.5	40
63	Spin-dependent thermoelectric transport in HgTe/CdTe quantum wells. Physical Review B, 2012, 86, .	1.1	31
64	Single Molecule Electronics and Devices. Sensors, 2012, 12, 7259-7298.	2.1	122
65	Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions. Nano Letters, 2012, 12, 354-358.	4.5	251
66	Microwave-mediated heat transport in a quantum dot attached to leads. Journal of Physics Condensed Matter, 2012, 24, 145301.	0.7	20
67	Large spin figure of merit in a double quantum dot coupled to noncollinear ferromagnetic electrodes. Journal of Physics Condensed Matter, 2012, 24, 265301.	0.7	31
68	Enhanced spin figure of merit in a Rashba quantum dot ring connected to ferromagnetic leads. Journal of Applied Physics, 2012, 111, .	1.1	16
69	Spin-dependent Seebeck effect in non-local spin valve devices. Applied Physics Letters, 2012, 100, .	1.5	54
70	Mechanical Break Junctions: Enormous Information in a Nanoscale Package. ACS Nano, 2012, 6, 2871-2876.	7.3	21
71	Spin caloritronics. Nature Materials, 2012, 11, 391-399.	13.3	1,490
72	<i>Colloquium</i> : Phononics: Manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 2012, 84, 1045-1066.	16.4	1,106

#	Article	IF	Citations
73	Heat current limiter and constant heat current source. Physical Review E, 2012, 85, 061112.	0.8	18
74	Thermally driven ballistic rectifier. Physical Review B, 2012, 85, .	1.1	30
75	First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes. Journal of Computational Electronics, 2012, 11, 78-92.	1.3	57
76	Thermoelectric effects in a double quantum dot system weakly coupled to ferromagnetic leads. Solid State Communications, 2012, 152, 914-918.	0.9	15
77	Thermoelectric effects through weakly coupled double quantum dots. Physica B: Condensed Matter, 2012, 407, 765-769.	1.3	15
78	Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device. Chinese Physics B, 2013, 22, 057306.	0.7	3
79	Out-of-equilibrium one-dimensional disordered dipole chain. Physical Review E, 2013, 88, 012118.	0.8	3
80	On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology, 2013, 24, 255201.	1.3	90
81	A molecular dynamics and finite elements study of nanoscale thermal contact conductance. International Journal of Heat and Mass Transfer, 2013, 59, 384-392.	2.5	11
82	Length-Dependent Thermopower of Highly Conducting Au–C Bonded Single Molecule Junctions. Nano Letters, 2013, 13, 2889-2894.	4.5	125
83	Size effects in long-term quasistatic heat transport. Physical Review E, 2013, 87, 062118.	0.8	6
84	Molecular refrigerator and thermoelectric phenomena under conditions of tunnel-resonance conductance. Nanotechnologies in Russia, 2013, 8, 46-53.	0.7	0
85	Ballistic thermal transport in a cylindrical quantum structure modulated with double quantum dots. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1705-1711.	2.0	1
86	Spintronics in a magnetic quantum dot. Journal of Applied Physics, 2013, 114, 073707.	1.1	3
87	Forty years of molecular electronics: Nonâ€equilibrium heat and charge transport at the nanoscale. Physica Status Solidi (B): Basic Research, 2013, 250, 2249-2266.	0.7	84
88	Quantitatively accurate calculations of conductance and thermopower of molecular junctions. Physica Status Solidi (B): Basic Research, 2013, 250, 2394-2402.	0.7	22
89	Oscillatory and sign-alternating behaviors of the Seebeck coefficients in carbon monatomic junctions. Physical Review B, 2013, 88, .	1.1	6
90	Photon–phonon -assisted thermoelectric effects in the molecular devices. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 48, 36-41.	1.3	11

#	Article	IF	Citations
91	Quantum Limit of Heat Flow Across a Single Electronic Channel. Science, 2013, 342, 601-604.	6.0	220
92	Parameter Space Compression Underlies Emergent Theories and Predictive Models. Science, 2013, 342, 604-607.	6.0	209
93	Transport Properties of Molecular Junctions. Springer Tracts in Modern Physics, 2013, , .	0.1	22
94	The effect of fluctuations, thermal and otherwise, on the temperature dependence of thermopower in aromatic chain single-molecule junctions. Journal of Chemical Physics, 2013, 138, 114706.	1.2	11
95	Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes. Journal of Computational Electronics, 2013, 12, 685-691.	1.3	7
96	Thermal spin current through a double quantum dot molecular junction in the Coulomb blockade regime. Journal of Applied Physics, 2013, 114, 144309.	1.1	10
97	Fluctuated atom-sized junctions in a liquid environment. Journal of Applied Physics, 2013, 113, 024303.	1.1	4
98	Conservation Laws and Thermodynamic Efficiencies. Physical Review Letters, 2013, 110, 070604.	2.9	29
99	Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1373-1377.	0.9	1
100	Spin-bias-induced thermal rectification in a quantum dot structure. Solid State Communications, 2013, 161, 29-33.	0.9	1
101	Enhancement of ballistic thermal conductance in three dimensional double stub structures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 988-992.	0.9	1
102	Thermoelectricity in atom-sized junctions at room temperatures. Scientific Reports, 2013, 3, 3326.	1.6	42
103	Thermoelectric Transport Across Nanoscale Polymer–Semiconductor–Polymer Junctions. Journal of Physical Chemistry C, 2013, 117, 24716-24725.	1.5	16
104	Heat, molecular vibrations, and adiabatic driving in nonâ€equilibrium transport through interacting quantum dots. Physica Status Solidi (B): Basic Research, 2013, 250, 2315-2329.	0.7	32
105	Interaction effects in electric transport through self-assembled molecular monolayers. Physical Review B, 2013, 87, .	1.1	7
106	Photon-assisted thermoelectric properties of noncollinear spin valves. Physical Review B, 2013, 87, .	1.1	38
107	Towards a dynamical approach to the calculation of the figure of merit of thermoelectric nanoscale devices. Physical Chemistry Chemical Physics, 2013, 15, 1758-1765.	1.3	26
108	Thermoelectric effects in a quantum dot coupled to ferromagnetic leads and subject to microwave fields. Journal of Applied Physics, 2013, 113, 143709.	1.1	10

#	Article	IF	Citations
109	Engineering the Thermopower of C ₆₀ Molecular Junctions. Nano Letters, 2013, 13, 2141-2145.	4.5	156
110	Phase-tunable colossal magnetothermal resistance in ferromagnetic Josephson valves. Applied Physics Letters, 2013, 102, 132603.	1.5	20
111	Pure spin current in a double quantum dot device generated by thermal bias. Journal of Applied Physics, 2013, 113, .	1.1	18
112	Thermal conductivity of silicon nanowires: From fundamentals to phononic engineering. Physica Status Solidi - Rapid Research Letters, 2013, 7, 754-766.	1.2	59
113	Single-molecule junctions beyond electronic transport. Nature Nanotechnology, 2013, 8, 399-410.	15.6	725
114	Spin thermoelectric effects in Rashba quantum dots system. Solid State Communications, 2013, 159, 98-101.	0.9	4
115	Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces. Physical Review B, $2013,87,\ldots$	1.1	52
116	Probing Maxwell's Demon with a Nanoscale Thermometer. ACS Nano, 2013, 7, 4429-4440.	7.3	34
117	Tunable thermal switching via DNA-based nano-devices. Nanotechnology, 2013, 24, 095704.	1.3	23
118	Heat dissipation in atomic-scale junctions. Nature, 2013, 498, 209-212.	13.7	219
119	Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law. Physical Review B, 2013, 88, .	1.1	74
120	Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Physical Review E, 2013, 88, 012128.	0.8	38
121	Controlling and Measuring Quantum Transport of Heat in Trapped-Ion Crystals. Physical Review Letters, 2013, 111, 040601.	2.9	90
122	Non-magnetic doping induced a high spin-filter efficiency and large spin Seebeck effect in zigzag graphene nanoribbons. Journal of Materials Chemistry C, 2013, 1, 8046.	2.7	44
123	Thermally induced spin transport in two-dimensional ferromagnetic gapped graphene. Europhysics Letters, 2013, 101, 57008.	0.7	5
124	Electrical and Thermoelectrical Transport Properties of Dirac Fermions through a Quantum Dot. Journal of the Physical Society of Japan, 2013, 82, 083703.	0.7	7
125	Dissipative time-dependent quantum transport theory. Journal of Chemical Physics, 2013, 138, 164121.	1.2	25
126	Dynamical coupling and negative differential resistance from interactions across the molecule-electrode interface in molecular junctions. Journal of Chemical Physics, 2013, 139, 154710.	1.2	10

#	ARTICLE	IF	CITATIONS
127	Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations. Journal of Chemical Physics, 2013, 139, 184307.	1.2	35
128	Single-electron transistor strongly coupled to vibrations: counting statistics and fluctuation theorem. New Journal of Physics, 2013, 15, 033032.	1.2	42
129	Possible origin of thermoelectric response fluctuations in single-molecule junctions. New Journal of Physics, 2013, 15, 105004.	1.2	17
130	Heat Transport between Heat Reservoirs Mediated by Quantum Systems. Materials Research Society Symposia Proceedings, 2013, 1543, 43-48.	0.1	0
131	Electric-current–induced heat generation in a quantum dot coupled to a normal and a superconducting lead. Europhysics Letters, 2013, 101, 47008.	0.7	19
132	Thermoelectric transport through a quantum dot with a magnetic impurity. Chinese Physics B, 2013, 22, 117303.	0.7	5
133	Perfect thermal spin filter and pure spin thermoelectric generator based on a laterally coupled double quantum-dot array. Europhysics Letters, 2013, 103, 57011.	0.7	14
134	Strongly correlated thermoelectric transport beyond linear response. Physical Review B, 2013, 88, .	1.1	15
135	Efficiency of three-terminal thermoelectric transport under broken time-reversal symmetry. Physical Review B, 2013, 87, .	1.1	61
136	Phonon interference effects in molecular junctions. Journal of Chemical Physics, 2013, 139, 244101.	1.2	32
137	Phase-dependent heat transport through magnetic Josephson tunnel junctions. Physical Review B, 2013, 88, .	1.1	18
138	Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions. Applied Physics Letters, 2013, 103, .	1.5	42
139	Ballistic thermoelectric properties in boron nitride nanoribbons. Journal of Applied Physics, 2013, 114, 144311.	1.1	17
140	Fully balanced heat interferometer. Applied Physics Letters, 2013, 102, .	1.5	25
141	Impact of Fano and Breit-Wigner resonances in the thermoelectric properties of nanoscale junctions. Physical Review B, 2013, 88, .	1.1	35
142	Efficient phase-tunable Josephson thermal rectifier. Applied Physics Letters, 2013, 102, 182602.	1.5	62
143	Nonlinear thermoelectric transport: A class of nanodevices for high efficiency and large power output. Physical Review B, 2013, 88, .	1.1	48
144	Coherent diffraction of thermal currents in Josephson tunnel junctions. Physical Review B, 2013, 88, .	1.1	24

#	Article	IF	Citations
145	Elastic and inelastic scattering at low temperature in low-dimensional phononic structures. Physical Review B, 2013, 87 , .	1.1	3
146	Power spectrum of electronic heat current fluctuations. Physica Status Solidi (B): Basic Research, 2013, 250, 2355-2364.	0.7	9
147	Effect of assisted hopping on thermopower in an interacting quantum dot. New Journal of Physics, 2014, 16, 055001.	1.2	16
148	External magnetic field on the thermoelectric and thermospin effect in a quantum dot. Physica Scripta, 2014, 89, 085701.	1.2	5
149	Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution. Journal of Chemical Physics, 2014, 141, 194101.	1.2	28
150	Surface-State Enhancement of Tunneling Thermopower on the Ag(111) Surface. ACS Nano, 2014, 8, 12110-12119.	7.3	9
151	Enhanced spin Seebeck effect in a germanene p-n junction. Journal of Applied Physics, 2014, 116, .	1.1	9
152	Thermoelectric efficiency in momentum-conserving systems. New Journal of Physics, 2014, 16, 015014.	1.2	23
153	Ballistic thermoelectric transport in structured nanowires. New Journal of Physics, 2014, 16, 065018.	1.2	20
154	A normal metal tunnel-junction heat diode. Applied Physics Letters, 2014, 104, .	1.5	42
155	Time-resolved optical measurement of thermal transport by surface plasmon polaritons in thin metal stripes. Applied Physics Letters, 2014, 105, 191119.	1.5	6
156	Designing $\langle i \rangle \ddot{l} \in \langle i \rangle$ -stacked molecular structures to control heat transport through molecular junctions. Applied Physics Letters, 2014, 105, .	1.5	32
157	Spin-dependent beating patterns in thermoelectric properties: Filtering the carriers of the heat flux in a Kondo adatom system. Physical Review B, 2014, 90, .	1.1	0
158	Conditions for requiring nonlinear thermoelectric transport theory in nanodevices. Physical Review B, 2014, 90, .	1.1	30
159	Ballistic thermal transport in a cylindrical semiconductor nanowire modulated with bridge contacts. Journal of Applied Physics, 2014, 116, 144304.	1.1	6
160	Ballistic thermal conductance by phonons through superlattice quantum-waveguides. Journal of Applied Physics, 2014, 115, .	1.1	19
161	Frequency response of a thermal diode. Physical Review E, 2014, 89, 012119.	0.8	5
162	Nonadiabatic effect on the quantum heat flux control. Physical Review E, 2014, 89, 052108.	0.8	22

#	Article	IF	CITATIONS
163	Thermopower of few-electron quantum dots with Kondo correlations. Physical Review B, 2014, 90, .	1.1	35
164	Electron-vibration effects on the thermoelectric efficiency of molecular junctions. Physical Review B, 2014, 90, .	1.1	24
165	Thermoelectrical detection of Majorana states. Physical Review B, 2014, 89, .	1.1	67
166	Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime. European Physical Journal B, 2014, 87, 1.	0.6	19
167	Spin-resolved Fano resonances induced large spin Seebeck effects in graphene-carbon-chain junctions. Applied Physics Letters, 2014, 104, 242412.	1.5	29
168	Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots. Physical Review B, 2014, 90, .	1.1	60
169	Thermoelectric Phenomena in a Quantum Dot Attached to Ferromagnetic Leads in Kondo Regime. Communications in Theoretical Physics, 2014, 62, 417-422.	1.1	1
170	Redox control of thermopower and figure of merit in phase-coherent molecular wires. Nanotechnology, 2014, 25, 205402.	1.3	30
171	Time-Dependent Thermopower Effect in an Interacting Quantum Dot. International Journal of Thermophysics, 2014, 35, 136-144.	1.0	12
172	Seebeck Effect at the Atomic Scale. Physical Review Letters, 2014, 112, 136601.	2.9	32
173	Nanoscale thermal transport. II. 2003–2012. Applied Physics Reviews, 2014, 1, 011305.	5.5	1,277
174	Detailed mapping of intramolecular energy transfer in field-effect single-molecule nanoelectronic devices. Journal of the Iranian Chemical Society, 2014, 11, 1513-1532.	1.2	2
175	Optical and Transport Properties of Metals. , 2014, , 483-528.		8
176	Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems. Physical Review B, 2014, 89, .	1.1	54
177	Shot noise and thermopower in aromatic molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 62, 15-20.	1.3	12
178	Anisotropic spin-dependent thermopower and current in ferromagnetic graphene junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 73-76.	0.9	5
179	Colossal enhancement in thermoelectric effect in a laterally coupled double-quantum-dot chain by the Coulomb interactions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1392-1395.	0.9	3
180	Density-Functional Theory of Thermoelectric Phenomena. Physical Review Letters, 2014, 112, 196401.	2.9	24

#	Article	IF	CITATIONS
181	Heat dissipation and its relation to thermopower in single-molecule junctions. New Journal of Physics, 2014, 16, 015004.	1.2	88
182	Spin-dependent thermoelectric effect in polaronic Kondo transport through a Rashba quantum dot coupled with ferromagnetic leads. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1854-1866.	0.9	8
183	Spin thermopower in interacting Rashba dots. European Physical Journal B, 2014, 87, 1.	0.6	1
184	Thermoelectric efficiency of three-terminal quantum thermal machines. New Journal of Physics, 2014, 16, 085001.	1.2	84
185	Thermoelectricity at the gate. Nature Nanotechnology, 2014, 9, 876-877.	15.6	16
186	Spin-dependent thermoelectronic transport of a single molecule magnet Mn(dmit)2. Journal of Chemical Physics, 2014, 140, 204707.	1.2	13
187	Investigation of transient heat current from first principles using complex absorbing potential. Physical Review B, 2014, 90, .	1.1	12
188	Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir. Chinese Physics Letters, 2014, 31, 080501.	1.3	3
189	Energy and particle currents in a driven integrable system. Physical Review B, 2014, 90, .	1.1	4
190	Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. Nanoscale, 2014, 6, 8235-8241.	2.8	33
191	Cooling effect of thermal bias on a current-carrying nanodevice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3393-3396.	0.9	0
192	Thermospin diode effect based on a quantum dot system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3638-3641.	0.9	4
193	State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions. Journal of Chemical Theory and Computation, 2014, 10, 2927-2941.	2.3	56
194	Luttinger-field approach to thermoelectric transport in nanoscale conductors. Physical Review B, 2014, 90, .	1.1	35
195	Transport Through Self-Assembled Monolayer Molecular Junctions: Role of In-Plane Dephasing. Journal of Physical Chemistry C, 2014, 118, 21119-21127.	1.5	37
196	Vacancy Effects on Electric and Thermoelectric Properties of Zigzag Silicene Nanoribbons. Journal of Physical Chemistry C, 2014, 118, 21339-21346.	1.5	41
197	Conductance and Thermopower of Dirac Fermions under the Kondo Effect. , 2014, , .		1
198	All-electrical control of thermal-spin current in a parallel double quantum dot tunneling junction. Physica Status Solidi (B): Basic Research, 2014, 251, 1558-1564.	0.7	0

#	Article	IF	CITATIONS
199	Thermoelectric effects in molecular quantum dots with contacts. Physical Review B, 2014, 89, .	1.1	21
200	Thermal spin filtering, thermal spin switching and negative-differential-resistance in thermal spin currents in zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2014, 16, 17493-17498.	1.3	21
201	Role of phonon drag and carrier diffusion in thermoelectric power of polycrystalline La0.97Na0.03MnO3 manganites. Journal of Advanced Ceramics, 2014, 3, 224-229.	8.9	3
202	Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons. Nanoscale, 2014, 6, 11121-11129.	2.8	46
203	Electron systems out of equilibrium: Nonequilibrium Green's function approach. International Journal of Modern Physics B, 2014, 28, 1430013.	1.0	20
204	Spin-dependent thermoelectric effects in transport through a nanoscopic junction involving a spin impurity. Physical Review B, 2014, 89, .	1.1	20
205	The effect of dephasing on the thermoelectric efficiency of molecular junctions. Journal of Physics Condensed Matter, 2014, 26, 275303.	0.7	14
206	Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot. Journal of Applied Physics, 2014, 115, .	1.1	8
207	Valley and spin thermoelectric transport in ferromagnetic silicene junctions. Applied Physics Letters, 2014, 104, .	1.5	47
208	Reconfigurable Long-Range Phonon Dynamics in Optomechanical Arrays. Physical Review Letters, 2014, 112, 133604.	2.9	66
209	Optimal rectification in the ultrastrong coupling regime. Physical Review E, 2014, 89, 062109.	0.8	73
210	Optical manipulation of parallel thermoelectric effect in a nanoscale three-terminal junction. Superlattices and Microstructures, 2014, 71, 190-202.	1.4	1
211	Optimal performance and entropy generation transition from micro to nanoscaled thermoelectric layers. International Journal of Heat and Mass Transfer, 2014, 71, 724-731.	2.5	13
213	Organic Semiconductors and Polymers. , 2015, , 295-330.		0
214	Thermoelectric transport through a quantum nanoelectromechanical system and its backaction. Physical Review B, 2015, 91, .	1.1	18
215	Local temperatures of strongly-correlated quantum dots out of equilibrium. Physical Review B, 2015, 91, .	1.1	29
216	Dynamics of quantal heating in electron systems with discrete spectra. Physical Review B, 2015, 91, .	1.1	2
217	Separation of heat and charge currents for boosted thermoelectric conversion. Physical Review B, 2015, 91, .	1.1	45

#	Article	IF	CITATIONS
218	Interference-induced thermoelectric switching and heat rectification in quantum Hall junctions. Physical Review B, 2015, 92, .	1.1	46
219	Time-dependent heat flow in interacting quantum conductors. Physical Review B, 2015, 92, .	1.1	12
220	Thermoelectric performance of strongly correlated quantum impurity models. Physical Review B, 2015, 92, .	1.1	10
221	Thermoelectricity in tunneling nanostructures. Physical Review B, 2015, 92, .	1.1	20
222	Full statistics of energy conservation in two-time measurement protocols. Physical Review E, 2015, 92, 032115.	0.8	6
223	Nonequilibrium steady states of ideal bosonic and fermionic quantum gases. Physical Review E, 2015, 92, 062119.	0.8	29
224	Modeling the quasistatic energy transport between nanoparticles. Physical Review E, 2015, 92, 062138.	0.8	1
225	Unified Picture for the Colossal Thermopower Compound <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow< td=""><td>nml:mn>2</td><td><!--</td--></td></mpl:mrow<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nml:mn>2	</td
226	Phonon thermoelectric transistors and rectifiers. Physical Review B, 2015, 92, .	1.1	83
227	Thermoelectricity of interacting particles: A numerical approach. Physical Review E, 2015, 92, 032139.	0.8	12
228	High thermopower of mechanically stretched single-molecule junctions. Scientific Reports, 2015, 5, 11519.	1.6	45
229	Enhancement of thermospin effect in germanene based normal/ferromagnetic stub/normal junction. Journal of Applied Physics, 2015, 118, 195101.	1.1	1
230	The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots. Journal of Chemical Physics, 2015, 142, 244310.	1.2	20
231	A variational approach for dissipative quantum transport in a wide parameter space. Journal of Chemical Physics, 2015, 143, 104112.	1.2	4
232	Boosting thermoelectric efficiency using time-dependent control. Scientific Reports, 2015, 5, 14870.	1.6	32
233	Electronic heat current rectification in hybrid superconducting devices. AIP Advances, 2015, 5, .	0.6	20
234	Crossover behavior of the thermal conductance and Kramers' transition rate theory. Scientific Reports, 2015, 5, 17506.	1.6	28
235	Geometry Effects on the Phonon-Drag Contribution to Thermopower in a Coupled-Quantum-Well System at Low Temperature. Journal of Low Temperature Physics, 2015, 181, 160-170.	0.6	2

#	Article	IF	Citations
236	Material properties dependent on the thermal transport in a cylindrical nanowire. Chinese Physics B, 2015, 24, 126302.	0.7	1
237	Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System. Materials, 2015, 8, 3854-3863.	1.3	0
238	Energetics of an rf SQUID Coupled to Two Thermal Reservoirs. PLoS ONE, 2015, 10, e0143912.	1.1	1
239	Magnetic thermal switch for heat management at the nanoscale. Physical Review B, 2015, 91, .	1.1	24
240	Quantum Bounds on Heat Transport Through Nanojunctions. Physical Review Letters, 2015, 114, 220401.	2.9	29
241	Nonlinear Thermoelectricity in Disordered Nanowires. Physical Review Applied, 2015, 3, .	1.5	11
242	Effect of magnetic anisotropy on spin-dependent thermoelectric effects in nanoscopic systems. Physical Review B, 2015, 91, .	1.1	12
243	Spin-crossover molecule based thermoelectric junction. Applied Physics Letters, 2015, 106, .	1.5	21
244	Surface enhanced Raman scattering of a single molecular junction. Physical Chemistry Chemical Physics, 2015, 17, 21254-21260.	1.3	18
245	Tunable half-metallic properties and spin Seebeck effects in zigzag-edged graphene nanoribbons adsorbed with V atom or V-benzene compound. Organic Electronics, 2015, 24, 80-88.	1.4	8
246	Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene. Physical Review B, 2015, 91, .	1.1	60
247	Thermoelectric effect in the Kondo dot side-coupled to a Majorana mode. European Physical Journal B, 2015, 88, 1.	0.6	11
248	Applications of the generalized Langevin equation: Towards a realistic description of the baths. Physical Review B, 2015, 91, .	1.1	21
249	Thermospin effects in a quantum dot connected to normal leads. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 443-447.	0.9	4
250	Enhanced heat rectification effect in a quantum dot connected to ferromagnetic leads. Journal of Magnetism and Magnetic Materials, 2015, 384, 52-57.	1.0	2
251	Quantum Thermopower of Metallic Atomic-Size Contacts at Room Temperature. Nano Letters, 2015, 15, 1006-1011.	4.5	39
252	Spin and charge Nernst effect in a four-terminal quantum dot ring. Journal of Physics Condensed Matter, 2015, 27, 075302.	0.7	7
253	Heat transport between two pure-dephasing reservoirs. Physical Review E, 2015, 91, 012143.	0.8	22

#	Article	IF	CITATIONS
254	Nanoscale temperature mapping in operating microelectronic devices. Science, 2015, 347, 629-632.	6.0	253
255	A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance. Journal of Physics Condensed Matter, 2015, 27, 083001.	0.7	73
256	Heat generation by spin-polarized current in a quantum-dot spin battery. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 613-618.	0.9	7
257	The inelastic spin Seebeck effects in a controllable Aharonov–Bohm interferometer based on a molecular quantum dot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 435-442.	0.9	7
258	Half-metallic properties, single-spin negative differential resistance, and large single-spin Seebeck effects induced by chemical doping in zigzag-edged graphene nanoribbons. Journal of Chemical Physics, 2015, 142, 024706.	1.2	32
259	Ballistic thermal transport by phonons in three dimensional periodic nanostructures. Journal of Physics Condensed Matter, 2015, 27, 095303.	0.7	6
260	Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotechnology, 2015, 10, 303-307.	15.6	178
261	Enhanced spin thermoelectric effects in BN-embedded zigzag graphene nanoribbons. Chemical Physics Letters, 2015, 625, 14-19.	1.2	14
262	Tunable quantum temperature oscillations in graphene nanostructures. Physical Review B, 2015, 91, .	1.1	19
263	Enhanced noise at high bias in atomic-scale Au break junctions. Scientific Reports, 2014, 4, 4221.	1.6	30
264	Thermoelectric properties of Coulomb-blockaded fractional quantum Hall islands. Nuclear Physics B, 2015, 894, 284-306.	0.9	3
265	Quantum tight-binding chains with dissipative coupling. New Journal of Physics, 2015, 17, 043065.	1.2	12
266	Enhanced Thermoelectric Performance of Hybrid Nanoparticle–Single-Molecule Junctions. Physical Review Applied, 2015, 3, .	1.5	30
267	Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics. Journal of Chemical Physics, 2015, 142, 164101.	1.2	15
268	Heat generation by spin-polarized current in a quantum dot connected to spin battery and ferromagnetic lead. Chinese Physics B, 2015, 24, 057302.	0.7	0
269	Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals. Nano Letters, 2015, 15, 5229-5234.	4.5	55
270	Thermal and thermoelectric response from Keldysh formalism with application to gapped Dirac fermions. Chinese Physics B, 2015, 24, 047401.	0.7	0
271	Extraordinary Exciton Conductance Induced by Strong Coupling. Physical Review Letters, 2015, 114, 196402.	2.9	263

#	Article	IF	CITATIONS
272	Optimal thermoelectric figure of merit of Si/Ge core-shell nanowires. Nano Research, 2015, 8, 2611-2619.	5.8	19
273	Thermodynamics of the polaron master equation at finite bias. Journal of Chemical Physics, 2015, 142, 134106.	1.2	16
274	Negative differential conductance in molecular junctions: an overview of experiment and theory. Journal of Physics Condensed Matter, 2015, 27, 263202.	0.7	67
275	Layered thermal metamaterials for the directing and harvesting of conductive heat. AIP Advances, 2015, 5, .	0.6	33
276	Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale, 2015, 7, 8793-8802.	2.8	66
277	Length-dependent thermopower determination of amine-terminated oligophenyl single molecular junctions formed with Ag electrodes. Journal of the Korean Physical Society, 2015, 66, 602-606.	0.3	15
278	Can the Seebeck Coefficient Identify Quantum Interference in Molecular Conduction?. Journal of Physical Chemistry C, 2015, 119, 12097-12108.	1.5	23
279	Controllable Thermal Rectification Realized in Binary Phase Change Composites. Scientific Reports, 2015, 5, 8884.	1.6	49
280	Strain effects on thermoelectric properties of two-dimensional materials. Mechanics of Materials, 2015, 91, 382-398.	1.7	137
281	Classical van der Waals heat flow between oscillators and between half-spaces. Journal of Physics Condensed Matter, 2015, 27, 214005.	0.7	7
282	Tunability of acoustic phonon transmission and thermal conductance in three dimensional quasi-periodically stubbed waveguides. Journal of Applied Physics, 2015, 117, .	1.1	13
283	Thermometry and thermal management of carbon nanotube circuits. Journal of Applied Physics, 2015, 117, .	1.1	9
284	Efficiency fluctuations in quantum thermoelectric devices. Physical Review B, 2015, 91, .	1.1	53
285	Time-Dependent Thermal Transport Theory. Physical Review Letters, 2015, 115, 056801.	2.9	18
286	Effects of electron-phonon interaction on thermal and electrical transport through molecular nano-conductors. AIP Advances, 2015, 5, 053204.	0.6	25
287	Interplay between electron–electron and electron–vibration interactions on the thermoelectric properties of molecular junctions. New Journal of Physics, 2015, 17, 083050.	1.2	11
288	Mechanical Tuning of Thermal Transport in a Molecular Junction. Journal of Physical Chemistry C, 2015, 119, 24636-24642.	1.5	49
289	Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. Journal of Physics Condensed Matter, 2015, 27, 295302.	0.7	7

#	Article	IF	CITATIONS
290	Spin Seebeck Power Conversion. IEEE Transactions on Magnetics, 2015, 51, 1-14.	1.2	50
291	Quantum heat transport of a two-qubit system: Interplay between system-bath coherence and qubit-qubit coherence. Journal of Chemical Physics, 2015, 143, 064107.	1.2	51
292	Scattering theory of thermocurrent in quantum dots and molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 213-219.	1.3	4
293	Unravelling the Dependence of Hydrogen Oxidation Kinetics on the Size of Pt Nanoparticles by in Operando Nanoplasmonic Temperature Sensing. Nano Letters, 2015, 15, 574-580.	4.5	15
294	Ultrahigh spin thermopower and pure spin current in a single-molecule magnet. Scientific Reports, 2014, 4, 4128.	1.6	12
295	A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials. Scientific Reports, 2014, 4, 5085.	1.6	91
296	Thermo-voltage measurements of atomic contacts at low temperature. Beilstein Journal of Nanotechnology, 2016, 7, 767-775.	1.5	7
297	Seeking large thermoelectric effects in MgO-based tunnel junctions. New Journal of Physics, 2016, 18, 063028.	1.2	6
298	Charge and heat transport in soft nanosystems in the presence of time-dependent perturbations. Beilstein Journal of Nanotechnology, 2016, 7, 439-464.	1.5	4
300	Thermoelectric transport through a T-shaped DQD connected to ferromagnetic and superconducting electrodes. AIP Advances, 2016, 6, .	0.6	5
301	Spin filtering and thermopower in star-coupled quantum dot devices. Physical Review B, 2016, 94, .	1.1	9
302	Thermodynamic meaning of local temperature of nonequilibrium open quantum systems. Physical Review B, 2016, 94, .	1.1	15
303	Thermopower of molecular junctions: Tunneling to hopping crossover in DNA. Journal of Chemical Physics, 2016, 145, 224702.	1.2	20
304	Thermally driven transverse transports and magnetic dynamics on a topological surface capped with a ferromagnet strip. Journal of Applied Physics, 2016, 119, .	1.1	3
305	Communication: Length-dependent thermopower of single-molecule junctions. Journal of Chemical Physics, 2016, 145, 221101.	1.2	6
306	Single-molecule electronics: Cooling individual vibrational modes by the tunneling current. Journal of Chemical Physics, 2016, 144, 114310.	1.2	13
307	Near-Field Heat Flow Between Two Quantum Oscillators. Journal of Statistical Physics, 2016, 165, 1153-1180.	0.5	10
308	Thermoelectric properties of phosphorene at the nanoscale. Journal of Materials Research, 2016, 31, 3179-3186.	1.2	23

#	ARTICLE	IF	CITATIONS
309	Spin and charge thermopower effects in the ferromagnetic graphene junction. Journal of Applied Physics, $2016,120,.$	1.1	7
310	Spin-dependent thermoelectric effect and spin battery mechanism in triple quantum dots with Rashba spin–orbital interaction. Chinese Physics B, 2016, 25, 117307.	0.7	2
311	Large Tunable Thermophase in Superconductor – Quantum Dot – Superconductor Josephson Junctions. Scientific Reports, 2016, 6, 35116.	1.6	10
312	Vibrational Heat Transport in Molecular Junctions. Annual Review of Physical Chemistry, 2016, 67, 185-209.	4.8	96
313	Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes. Nanoscale, 2016, 8, 13168-13173.	2.8	12
314	Ballistic thermal transport properties at low temperatures inÂsemiconductor nanowires-based heterojunctions. Modern Physics Letters B, 2016, 30, 1650134.	1.0	1
315	Seebeck effect in molecular junctions. Journal of Physics Condensed Matter, 2016, 28, 183002.	0.7	40
316	Thermoelectric transport through a zigzag like chain: Influence of the chain length, the interdot tunneling and the intradot Coulomb interaction. Physica B: Condensed Matter, 2016, 493, 1-6.	1.3	6
317	From Thermal Rectifiers to Thermoelectric Devices. Lecture Notes in Physics, 2016, , 365-407.	0.3	12
318	Nonlinear phenomena in quantum thermoelectrics and heat. Comptes Rendus Physique, 2016, 17, 1060-1071.	0.3	55
319	Nonlinear thermoelectric transport in single-molecule junctions: the effect of electron–phonon interactions. Journal of Physics Condensed Matter, 2016, 28, 295301.	0.7	4
320	Thermoelectric properties of fullerene-based junctions: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 28117-28124.	1.3	4
321	Thermal control and generation of charge currents in coupled quantum dots. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 582-590.	0.8	4
322	Thermoelectric properties of nanocarbons: Atomistic modeling. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 591-602.	0.8	4
323	Quantum transport of energy in controlled synthetic quantum magnets. New Journal of Physics, 2016, 18, 083006.	1.2	8
324	Confining interparticle potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3480-3484.	0.9	4
325	Density functional theory of the Seebeck coefficient in the Coulomb blockade regime. Physical Review B, 2016, 94, .	1.1	14
326	Nonequilibrium spin-polarized thermal transport in ferromagnetic–quantum dot–metal system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3553-3558.	0.9	5

#	ARTICLE	IF	CITATIONS
328	Temperature-driven transient charge and heat currents in nanoscale conductors. Physical Review B, 2016, 93, .	1.1	21
329	Nonequilibrium processes from generalized Langevin equations: Realistic nanoscale systems connected to two thermal baths. Physical Review B, 2016, 93, .	1.1	14
330	Anderson-Holstein model in two flavors of the noncrossing approximation. Physical Review B, 2016, 93, .	1.1	33
331	Phononic heat transport in the transient regime: An analytic solution. Physical Review B, 2016, 93, .	1.1	24
332	Plasticity of single-atom Pb junctions. Physical Review B, 2016, 93, .	1.1	15
333	Local and nonlocal thermopower in three-terminal nanostructures. Physical Review B, 2016, 93, .	1.1	18
334	Electron transfer across a thermal gradient. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9421-9429.	3.3	50
335	Thermoelectric efficiency of molecular junctions. Journal of Physics Condensed Matter, 2016, 28, 373001.	0.7	17
336	Negative differential thermal conductance and heat amplification in superconducting hybrid devices. Physical Review B, 2016, 93, .	1.1	49
337	Electron and phonon drag in thermoelectric transport through coherent molecular conductors. Physical Review B, 2016, 93, .	1.1	24
338	Giant thermoelectric figure of merit in a noninteracting quantum dot system with massless Dirac fermions. Physical Review B, 2016, 94, .	1.1	1
339	Graphene thermal flux transistor. Nanoscale, 2016, 8, 19314-19325.	2.8	10
340	Fluctuation-Dissipation Relations Far from Equilibrium. Physical Review Letters, 2016, 117, 180601.	2.9	32
341	Transmission function and thermal conductivity of Si phononic crystals. Modelling and Simulation in Materials Science and Engineering, 2016, 24, 075010.	0.8	0
342	An atomic symmetry-controlled thermal switch. Scientific Reports, 2016, 6, 31161.	1.6	12
343	Thermoelectric transport through Majorana bound states and violation of Wiedemann-Franz law. Physical Review B, 2016, 94, .	1.1	27
344	Direct electronic measurement of Peltier cooling and heating in graphene. Nature Communications, 2016, 7, 11525.	5.8	39
345	Thermoelectric effects in topological crystalline insulators. Physical Review B, 2016, 94, .	1.1	11

#	Article	IF	CITATIONS
346	Dynamical signatures of molecular symmetries in nonequilibrium quantum transport. Scientific Reports, 2016, 6, 28027.	1.6	43
347	Boosting spin-caloritronic effects by attractive correlations in molecular junctions. Scientific Reports, 2016, 6, 19236.	1.6	9
348	Mapping the Transmission Functions of Single-Molecule Junctions. Nano Letters, 2016, 16, 3949-3954.	4.5	58
349	Thermopower measurements in molecular junctions. Chemical Society Reviews, 2016, 45, 4285-4306.	18.7	126
350	Molecular-Scale Electronics: From Concept to Function. Chemical Reviews, 2016, 116, 4318-4440.	23.0	1,014
351	Thermoelectric efficiency in the linear transport regime. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 626-634.	0.8	2
352	Spin-State Switching of Manganese Porphyrin by Conformational Modification. Journal of Physical Chemistry C, 2016, 120, 3625-3634.	1.5	15
353	Thermoelectric ZT enhanced by asymmetric configuration in single-molecule-magnet junctions. Journal Physics D: Applied Physics, 2016, 49, 045002.	1.3	5
354	Thermoelectric effects in triple quantum dots coupled to a normal and a superconducting leads. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 958-964.	0.9	17
355	Conversion efficiency of an energy harvester based on resonant tunneling through quantum dots with heat leakage. Nanotechnology, 2017, 28, 095403.	1.3	6
356	Implementation of transmission functions for an optimized three-terminal quantum dot heat engine. Journal of Physics Condensed Matter, 2017, 29, 085303.	0.7	5
357	Electron transfer at thermally heterogeneous molecule-metal interfaces. Journal of Chemical Physics, 2017, 146, .	1.2	31
358	Quantized thermal transport in single-atom junctions. Science, 2017, 355, 1192-1195.	6.0	165
359	Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower. Scientific Reports, 2017, 7, 44276.	1.6	9
360	Thermoelectric unipolar spin battery in a suspended carbon nanotube. Journal of Physics Condensed Matter, 2017, 29, 165302.	0.7	1
361	Thermal transport contributed by the torsional phonons in cylindrical nanowires: Role of evanescent modes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1498-1503.	0.9	0
362	Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics. Physical Review A, 2017, 95, .	1.0	61
363	Excitation injector in an atomic chain: Long-range transport and efficiency amplification. Physical Review A, 2017, 95, .	1.0	10

#	Article	IF	CITATIONS
364	Hierarchical equations of motion method applied to nonequilibrium heat transport in model molecular junctions: Transient heat current and high-order moments of the current operator. Physical Review B, 2017, 95, .	1.1	38
365	Thermal properties of two-dimensional materials. Chinese Physics B, 2017, 26, 034401.	0.7	63
366	Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs. Physical Review E, 2017, 95, 012137.	0.8	17
367	Enhancement of thermoelectric properties in benzene molecule junction by the magnetic flux. Journal of Applied Physics, 2017, 121, .	1.1	6
368	Enhancement of the thermoelectric figure of merit in a ferromagnet–quantum dot–superconductor device due to intradot spin-flip scattering and ac field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2404-2411.	0.9	2
369	Nanowire-based thermoelectrics. Nanotechnology, 2017, 28, 282001.	1.3	23
370	Length-dependent Seebeck effect in single-molecule junctions beyond linear response regime. Journal of Chemical Physics, $2017, 146, \ldots$	1.2	5
371	Entropy production in photovoltaic-thermoelectric nanodevices from the non-equilibrium Green's function formalism. Journal of Physics Condensed Matter, 2017, 29, 175301.	0.7	9
372	Photothermoelectric Effects and Large Photovoltages in Plasmonic Au Nanowires with Nanogaps. Journal of Physical Chemistry Letters, 2017, 8, 1739-1744.	2.1	37
373	Perspective: Thermal and thermoelectric transport in molecular junctions. Journal of Chemical Physics, 2017, 146, .	1.2	144
374	Spin thermoelectric effects in organic single-molecule devices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1738-1744.	0.9	8
375	Converting heat into directed transport on a tilted lattice. Physical Review E, 2017, 95, 030102.	0.8	6
376	Controlling energy flux into a spatially correlated environment via quantum coherence. European Physical Journal D, 2017, 71, 1.	0.6	1
377	Functional theories of thermoelectric phenomena. Journal of Physics Condensed Matter, 2017, 29, 063001.	0.7	15
378	Thermopower and dynamical Coulomb blockade in nonclassical environments. Physical Review B, 2017, 96, .	1.1	4
379	Strain-induced thermoelectric performance enhancement of monolayer ZrSe ₂ . RSC Advances, 2017, 7, 47243-47250.	1.7	70
380	Towards phase-coherent caloritronics in superconducting circuits. Nature Nanotechnology, 2017, 12, 944-952.	15.6	98
381	Thermal conductance of cylindrical semiconductor nanowires modulated with phonon cavity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3659-3663.	0.9	0

#	Article	IF	Citations
382	Route towards the optimization at given power of thermoelectric heat engines with broken time-reversal symmetry. Physical Review E, 2017, 96, 022133.	0.8	4
383	Phononic heat transport in nanomechanical structures: steady-state and pumping. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 435202.	0.7	8
384	Thermoelectric properties of a strongly correlated layer. Physical Review B, 2017, 96, .	1.1	5
385	Effective temperature in nonequilibrium state with heat flux using discrete variable model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2893-2897.	0.9	10
386	Energy transfer in the nonequilibrium spin-boson model: From weak to strong coupling. Physical Review E, 2017, 96, 012135.	0.8	31
387	Suppressing phonon transport in nanowires: A simple model for phonon–surface-roughness interaction. Physical Review B, 2017, 96, .	1.1	4
388	Thermal Conductance of a Single-Electron Transistor. Physical Review Letters, 2017, 119, 077701.	2.9	66
389	Heating and thermoelectric transport in a molecular junction. European Physical Journal B, 2017, 90, 1.	0.6	2
390	Charge Transport and Entropy Production Rate in Magnetically Active Molecular Dimer. Journal of Physical Chemistry C, 2017, 121, 27357-27368.	1.5	7
391	Spin and Charge Caloritronics in Bilayer Graphene Flakes with Magnetic Contacts. Physical Review Applied, 2017, 8, .	1.5	17
392	Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Physics Reports, 2017, 694, 1-124.	10.3	470
393	Dynamical Coulomb blockade of thermal transport. Physical Review B, 2017, 95, .	1.1	20
394	Thermoelectric properties of two-dimensional transition metal dichalcogenides. Journal of Materials Chemistry C, 2017, 5, 7684-7698.	2.7	204
395	Electrothermal Transistor Effect and Cyclic Electronic Currents in Multithermal Charge Transfer Networks. Physical Review Letters, 2017, 118, 207201.	2.9	24
396	Controlling heat and particle currents in nanodevices by quantum observation. Npj Quantum Materials, 2017, 2, .	1.8	14
397	Minimal motor for powering particle motion from spin imbalance. Physical Review E, 2017, 95, 062143.	0.8	7
398	Real-space nano-imaging of hot electron dynamics. , 2017, , .		0
399	Thermally driven spin-Seebeck transport in chiral dsDNA-based molecular devices. Journal of Applied Physics, 2018, 123, .	1.1	5

#	Article	IF	CITATIONS
400	Enhancement of the thermoelectric efficiency in a T-shaped quantum dot system in the linear and nonlinear regimes. Journal of Applied Physics, $2018,123,.$	1.1	5
401	Thermoelectric efficiency enhanced in a quantum dot with polarization leads, spin-flip and external magnetic field. European Physical Journal B, 2018, 91, 1.	0.6	2
402	Universality of phonon transport in nanowires dominated by surface roughness. Physical Review B, 2018, 97, .	1.1	3
403	Thermal Spin Generator Based on a Germanene Nanoribbon Subjected to Local Noncollinear Exchange Fields. Physical Review Applied, 2018, 9, .	1.5	15
404	Tuning of heat and charge transport by Majorana fermions. Scientific Reports, 2018, 8, 2790.	1.6	24
405	Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux. Physical Review E, 2018, 97, 022122.	0.8	20
406	Spin and Charge Nernst Effects in Four-Terminal Ferromagnetic Graphene. Spin, 2018, 08, 1840001.	0.6	2
407	Perspective: Theory of quantum transport in molecular junctions. Journal of Chemical Physics, 2018, 148, 030901.	1.2	137
408	Thermally induced charge current through long molecules. Journal of Chemical Physics, 2018, 148, 024303.	1.2	6
409	Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Physical Review E, 2018, 97, 022111.	0.8	23
410	Influence of a ZnO layer on Seebeck coefficients in asymmetric double-barrier tunnel junctions. Materials Science in Semiconductor Processing, 2018, 74, 255-260.	1.9	4
411	Peltier cooling in molecular junctions. Nature Nanotechnology, 2018, 13, 122-127.	15.6	120
412	Phonon-driven electron scattering and magnetothermoelectric effect in two-dimensional tin selenide. Journal of Physics Condensed Matter, 2018, 30, 055301.	0.7	7
413	Imaging of nonlocal hot-electron energy dissipation via shot noise. Science, 2018, 360, 775-778.	6.0	85
414	Topological quantization of energy transport in micromechanical and nanomechanical lattices. Physical Review B, 2018, 97, .	1.1	20
415	Thermoelectricity in single-molecule devices. Materials Science and Technology, 2018, 34, 1275-1286.	0.8	7
416	Effects of the Spin Heat Accumulation on the Heat Generation in a Quantum Dot Coupled to Leads. Journal of Low Temperature Physics, 2018, 190, 67-77.	0.6	0
417	Thermoelectric transport properties in graphene connected molecular junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 96, 1-5.	1.3	10

#	Article	IF	Citations
418	Experimental study of thermoelectricity in carbon nanotubes and graphene., 2018, , 187-247.		0
419	Optimal performance at arbitrary power of minimally nonlinear irreversible thermoelectric generators with broken time-reversal symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 20-26.	0.9	2
420	Photon-Selective Spin-Dependent Transport Through a Quantum Dot Driven by Electrical and Thermal Biases. International Journal of Theoretical Physics, 2018, 57, 562-569.	0.5	4
421	Steady state current fluctuations and dynamical control in a nonequilibrium single-site Bose–Hubbard system. Physica A: Statistical Mechanics and Its Applications, 2018, 492, 1399-1407.	1.2	1
422	Quantum Thermodynamics of Nanoscale Thermoelectrics and Electronic Devices. Fundamental Theories of Physics, 2018, , 175-206.	0.1	2
423	Advances in Molecular Electronics: A Brief Review. Engineering, 2018, 4, 760-771.	3.2	65
424	Nanothermometry of electrons and phonons. , 2018, , .		0
425	Thermoelectric Properties of 2,7-Dipyridylfluorene Derivatives in Single-Molecule Junctions. Journal of Physical Chemistry C, 2018, 122, 27198-27204.	1.5	33
426	Anomalous Nernst effect on a magnetically doped topological insulator surface: A Green's function approach. Physical Review B, 2018, 98, .	1.1	5
428	Control of thermal conduction and rectification in a model of complex networks with two asymmetric parts. Physical Review E, 2018, 98, .	0.8	13
429	Graphene thermoelectric transducers. , 2018, , 125-185.		0
430	Thermoelectric efficiency in three-terminal graphene nano-junctions. Journal of Chemical Physics, 2018, 149, 114103.	1.2	4
431	Magnetic-State Controlled Molecular Vibrational Dynamics at Buried Molecular–Metal Interfaces. Journal of Physical Chemistry C, 2018, 122, 26499-26505.	1.5	2
433	Laser-induced thermoelectric effects in electrically biased nanoscale constrictions. Nanophotonics, 2018, 7, 1917-1927.	2.9	10
434	Effect of degree correlation on the thermal transport in complex networks. Nonlinear Dynamics, 2018, 94, 3067-3075.	2.7	5
435	Enhancement of charge and spin Seebeck effect in triple quantum dots coupling to ferromagnetic and superconducting electrodes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 3220-3229.	0.9	6
436	Thermally Driven Out-of-Equilibrium Two-Impurity Kondo System. Physical Review Letters, 2018, 121, 096801.	2.9	8
437	Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction. Physical Chemistry Chemical Physics, 2018, 20, 15736-15745.	1.3	16

#	Article	IF	CITATIONS
438	Thermoelectric Charge and Spin Current Generation in Magnetic Single-Molecule Junctions: First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 12185-12192.	1.5	4
439	Remote heat dissipation in atom-sized contacts. Scientific Reports, 2018, 8, 7842.	1.6	3
440	Controlling Band Alignment in Molecular Junctions: Utilizing Two-Dimensional Transition-Metal Dichalcogenides as Electrodes for Thermoelectric Devices. Journal of Physical Chemistry C, 2018, 122, 14233-14239.	1.5	11
441	Geometrically induced broadening for phonon blocking at low temperatures. Physical Review B, 2018, 97, .	1.1	3
442	Thermal rectification with interacting electronic channels: Exploiting degeneracy, quantum superpositions, and interference. Physical Review B, 2018, 98, .	1.1	28
443	Enhancing thermoelectric properties through a three-terminal benzene molecule. Journal of Chemical Physics, 2018, 148, 174302.	1.2	6
444	Heat amplification and negative differential thermal conductance in a strongly coupled nonequilibrium spin-boson system. Physical Review A, 2018, 97, .	1.0	33
445	Time-dependent thermoelectric transport in nanosystems: Reflectionless Luttinger field approach. Physical Review B, 2018, 98, .	1.1	3
446	Thermodynamic Bound on Heat-to-Power Conversion. Physical Review Letters, 2018, 121, 080602.	2.9	24
447	Phase-dependent heat current of granular Josephson junction for different geometries. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2388-2393.	0.9	0
448	Fast quantitative optical detection of heat dissipation by surface plasmon polaritons. Nanoscale, 2018, 10, 11894-11900.	2.8	3
449	On simulation of local fluxes in molecular junctions. Journal of Chemical Physics, 2018, 148, 204103.	1.2	17
450	Thermoelectric efficiency of single-molecule junctions with long molecular linkers. Journal of Physics Condensed Matter, 2018, 30, 305301.	0.7	1
451	Performance optimization and parameter design of a benzene molecule heat engine. Physica A: Statistical Mechanics and Its Applications, 2019, 513, 798-807.	1.2	4
452	Exploration of Spin-Dependent Thermoelectricity in the Chiral Double-Stranded DNA Molecule Coupled to Ferromagnetic Leads. Physical Review Applied, 2019, 12, .	1.5	6
453	Thermal conductance of single-molecule junctions. Nature, 2019, 572, 628-633.	13.7	127
454	Delocalization and heat transport in multidimensional trapped ion systems. Physical Review E, 2019, 99, 062105.	0.8	5
455	New proposal for efficient energy conversion in a molecular junction with multiple loops. Chemical Physics Letters, 2019, 731, 136601.	1.2	5

#	Article	IF	CITATIONS
456	Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green's Function Techniques. Entropy, 2019, 21, 735.	1.1	12
457	Enhanced Spin Seebeck Efficiency in Closed Triple Quantum Dots Ring with Spin-Dependent Interdot Couplings. International Journal of Theoretical Physics, 2019, 58, 2757-2769.	0.5	3
458	Spin-valley filter effect and Seebeck effect in a silicene based antiferromagnetic/ferromagnetic junction. New Journal of Physics, 2019, 21, 093044.	1.2	19
459	Thermospin effects in a T-shaped spin valves with spin-flip scattering. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 125946.	0.9	0
460	Non-equilibrium phonon transport in surface-roughness dominated nanowires. Journal of Physics Communications, 2019, 3, 105010.	0.5	2
461	Local temperatures out of equilibrium. Physics Reports, 2019, 830, 1-66.	10.3	22
462	The Effective Hamiltonian Method in the Thermodynamics of Two Resonantly Interacting Quantum Oscillators. Journal of Experimental and Theoretical Physics, 2019, 129, 339-348.	0.2	9
463	Optimal efficiency and power, and their trade-off in three-terminal quantum thermoelectric engines with two output electric currents. Physical Review B, 2019, 100, .	1.1	12
464	Predictive Modeling of Corrosion in Al/Mg Dissimilar Joint. ChemEngineering, 2019, 3, 70.	1.0	2
465	Thermodynamic Uncertainty Relations from Exchange Fluctuation Theorems. Physical Review Letters, 2019, 123, 090604.	2.9	120
466	Heat current control in trapped Bose–Einstein Condensates. New Journal of Physics, 2019, 21, 083037.	1.2	5
467	Nonequilibrium heat transport in a molecular junction: A mixed quantum-classical approach. Journal of Chemical Physics, 2019, 151, 074112.	1.2	7
468	Photonic heat transport across a Josephson junction. Physical Review B, 2019, 100, .	1.1	13
469	On the Role of Local Many-Body Interactions on the Thermoelectric Properties of Fullerene Junctions. Entropy, 2019, 21, 754.	1.1	1
470	Thermosize voltage induced in a ballistic graphene nanoribbon junction. Journal of Applied Physics, 2019, 126, 104302.	1.1	2
471	Thermoelectricity in graphene nanoribbons: Structural effects of nanopores. Superlattices and Microstructures, 2019, 136, 106264.	1.4	8
472	Exact diagonal representation of normal mode energy, occupation number, and heat current for phonon-dominated thermal transport. Journal of Chemical Physics, 2019, 151, 104110.	1.2	0
473	Nonreciprocity and thermoelectric performance in a double-dot Aharonov–Bohm interferometer. Journal of Applied Physics, 2019, 126, 124305.	1.1	1

#	Article	IF	CITATIONS
474	Space-charge-induced Seebeck effect in solid dielectrics. Journal of Applied Physics, 2019, 126, .	1.1	2
475	Phononic heat transport in molecular junctions: Quantum effects and vibrational mismatch. Journal of Chemical Physics, 2019, 150, 024105.	1.2	26
476	Thermoelectric transport through interacting quantum dots in graphene. European Physical Journal: Special Topics, 2019, 227, 1969-1979.	1.2	4
477	Possible Routes for Efficient Thermoâ€Electric Energy Conversion in a Molecular Junction. ChemPhysChem, 2019, 20, 848-860.	1.0	12
478	Nonequilibrium fluctuations of a driven quantum heat engine via machine learning. Physical Review E, 2019, 99, 022104.	0.8	4
479	Can a helical molecule be an efficient functional element to meet the present requirement of thermoelectric efficiency?. Europhysics Letters, 2019, 126, 27003.	0.7	7
480	Experimental investigation of quantum interference in charge transport through molecular architectures. Journal of Materials Chemistry C, 2019, 7, 12790-12808.	2.7	40
481	Statistics of heat transport across a capacitively coupled double quantum dot circuit. Physical Review B, 2019, 99, .	1.1	8
482	Deducing Phonon Scattering from Normal Mode Excitations. Scientific Reports, 2019, 9, 7982.	1.6	4
483	Spin caloritronics in a chiral double-strand-DNA-based hybrid junction. Physical Review B, 2019, 99, .	1.1	8
484	Study of thermopower in a 1D lattice: Role of aperiodicity. AIP Conference Proceedings, 2019, , .	0.3	0
485	Phonon localization in nanowires dominated by surface roughness. Physical Review B, 2019, 99, .	1.1	4
486	Effective Fluctuation and Response Theory. Journal of Statistical Physics, 2019, 176, 94-168.	0.5	18
487	Local Energy Dissipation/Transition in Field Effect Molecular Nanoelectronic Systems: a Quantum Mechanical Methodology. Communications in Theoretical Physics, 2019, 71, 441.	1.1	5
488	Spin-dependent heat signatures of single-molecule spin dynamics. Physical Review B, 2019, 99, .	1.1	8
489	Thermoelectric Efficiency Enhanced by Fano Interference in a Quantum Anomalous Hall Insulator Quantum Dot. Physica Status Solidi (B): Basic Research, 2019, 256, 1800629.	0.7	0
490	Selective Transmission of Phonons in Molecular Junctions with Nanoscopic Thermal Baths. Journal of Physical Chemistry C, 2019, 123, 9680-9687.	1.5	7
491	Non-equilibrium dynamics: quantum systems and foundations of quantum mechanics. European Physical Journal: Special Topics, 2019, 227, 1837-1848.	1.2	4

#	Article	IF	Citations
492	Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems. Physical Review E, 2019, 99, 032114.	0.8	17
493	Orbitally driven giant thermal conductance associated with abnormal strain dependence in hydrogenated graphene-like borophene. Npj Computational Materials, 2019, 5, .	3.5	47
494	Quantum ring for thermoelectric power generation: Interplay between Aharonov-Bohm flux and disorder. AIP Conference Proceedings, 2019, , .	0.3	0
495	Size effects in energy transport between thermal contacts mediated by nanoparticles. Physical Review E, 2019, 99, 032141.	0.8	2
496	Nonlocal thermoelectricity in a Cooper-pair splitter. Physical Review B, 2019, 99, .	1.1	41
497	Geometry-induced local thermal current from cold to hot in a classical harmonic system. Physical Review E, 2019, 99, 022131.	0.8	5
498	Marcus Theory of Thermoelectricity in Molecular Junctions. Journal of Physical Chemistry C, 2019, 123, 4103-4108.	1.5	17
499	Smart energy coating for independent power generation in pavement and machine elements. IOP Conference Series: Materials Science and Engineering, 2019, 632, 012018.	0.3	3
500	Phonon transport in periodically and quasi-periodically modulated cylindrical nanowires. Journal of Physics Condensed Matter, 2019, 31, 505303.	0.7	0
501	Heat dissipation in quasi-ballistic single-atom contacts at room temperature. Scientific Reports, 2019, 9, 18677.	1.6	5
502	Simulation of temperature profile for the electron and the lattice systems in laterally structured layered conductors. Europhysics Letters, 2019, 128, 17001.	0.7	4
503	Steady-state density functional theory for thermoelectric effects. Physical Review B, 2019, 100, .	1.1	5
504	Spectral engineering and tunable thermoelectric behavior in a quasiperiodic ladder network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 570-577.	0.9	3
505	Odd-even phonon transport effects in strained carbon atomic chains bridging graphene nanoribbon electrodes. Carbon, 2019, 142, 107-114.	5.4	9
506	Thermoelectricity in B80-based single-molecule junctions: First-principles investigation. Frontiers of Physics, 2019, 14, 1.	2.4	4
507	Spin Seebeck Effect in a Multiple Quantum Dot Molecule with Spin-Dependent Interdot Coupling. Journal of Low Temperature Physics, 2019, 194, 235-245.	0.6	7
508	2D Boron Sheets: Structure, Growth, and Electronic and Thermal Transport Properties. Advanced Functional Materials, 2020, 30, 1904349.	7.8	124
509	Thermal and Thermoelectric Properties of Molecular Junctions. Advanced Functional Materials, 2020, 30, 1904534.	7.8	72

#	Article	IF	CITATIONS
510	Heat dissipation in two-terminal Benzene junction. Molecular Physics, 2020, 118, .	0.8	0
511	Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies. Advanced Functional Materials, 2020, 30, 1903873.	7.8	97
512	Non-equilibrium electronic transport through a quantum dot with strong Coulomb repulsion in the presence of a magnetic field. Journal of Physics Condensed Matter, 2020, 32, 165601.	0.7	2
513	Ordered motion of active colloids and effective temperature. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 123155.	1.2	7
514	Enhanced thermopower in covalent graphite–molecule contacts. Physical Chemistry Chemical Physics, 2020, 22, 1466-1474.	1.3	1
515	Multifunctional conjugated 1,6-heptadiynes and its derivatives stimulated molecular electronics: Future moletronics. European Polymer Journal, 2020, 124, 109467.	2.6	9
516	Stochastic simulation of nonequilibrium heat conduction in extended molecular junctions. Journal of Chemical Physics, 2020, 153, 144113.	1.2	11
517	Berry-phase-like effect of thermo-phonon transport in optomechanics. Physical Review A, 2020, 102, .	1.0	9
519	Quantifying nonequilibrium thermodynamic operations in a multiterminal mesoscopic system. Physical Review B, 2020, 102, .	1.1	19
520	Rectification in Nonequilibrium Parity Violating Metamaterials. Physical Review X, 2020, 10, .	2.8	7
521	Magnetic field effects on the thermoelectric properties of monolayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114361.	1.3	3
522	Single-Quantum-Dot Heat Valve. Physical Review Letters, 2020, 125, 237701.	2.9	25
523	Mechanical relations between conductive and radiative heat transfer. Physical Review B, 2020, 102, .	1.1	2
524	Optically manipulating thermodynamic performances of a quantum-dot heat engine. Superlattices and Microstructures, 2020, 145, 106625.	1.4	2
525	Fractal lattice as an efficient thermoelectric device. Journal of Physics: Conference Series, 2020, 1579, 012004.	0.3	1
526	Thermoelectric transport properties of ferromagnetic graphene with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>C</mml:mi><mml:mi>T</mml:mi>-invariant quantum spin Hall effect. Physical Review B, 2020, 102, .</mml:mrow></mml:math>	· <b maml:mr	ow 7> <!--</b-->mmlm
527	Thermoelectric properties of a double-dot system in serial configuration within the Coulomb blockade regime. Journal of Chemical Physics, 2020, 153, 124712.	1.2	9
530	Thermal conductance in single molecules and self-assembled monolayers: physicochemical insights, progress, and challenges. Journal of Materials Chemistry A, 2020, 8, 19746-19767.	5.2	30

#	ARTICLE	IF	CITATIONS
531	Steady-state quantum transport through an anharmonic oscillator strongly coupled to two heat reservoirs. Physical Review E, 2020, 102, 012155.	0.8	13
532	Brownian thermal transistors and refrigerators in mesoscopic systems. Physical Review B, 2020, 102, .	1.1	14
533	Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives. Nanoscale, 2020, 12, 18908-18917.	2.8	15
534	Channel-based algebraic limits to conductive heat transfer. Physical Review B, 2020, 102, .	1.1	2
535	Nonthermal vibrations in biased molecular junctions. Physical Review E, 2020, 102, 022127.	0.8	6
536	Excellent thermoelectric performance of open framework Si24 nanowires from density functional based tight-binding calculation. Journal of Applied Physics, 2020, 128, 215108.	1.1	1
537	Thermodynamic free-energy spectrum theory for open quantum systems. Journal of Chemical Physics, 2020, 153, 214115.	1.2	10
538	Noise effects in the nonlinear thermoelectricity of a Josephson junction. Applied Physics Letters, 2020, 117, .	1.5	9
539	Experimental Studies on the Dynamic Memcapacitance Modulation of the ReO3@ReS2 Composite Material-Based Diode. Nanomaterials, 2020, 10, 2103.	1.9	4
540	Local Atomic Heat Currents and Classical Interference in Single-Molecule Heat Conduction. Journal of Physical Chemistry Letters, 2020, 11, 4261-4268.	2.1	11
541	Optically controlled quantum thermal gate. Physical Review B, 2020, 101, .	1.1	19
542	Three-terminal interface as a thermoelectric generator beyond the Seebeck effect. Physical Review B, 2020, 101, .	1.1	7
543	Significantly enhanced thermoelectric performance of molecular junctions by the twist angle dependent phonon interference effect. Journal of Materials Chemistry A, 2020, 8, 11884-11891.	5.2	34
544	Kondo resonance assisted thermoelectric transport through strongly correlated quantum dots. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	3
545	Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. Nano Letters, 2020, 20, 6067-6075.	4.5	38
546	Spin-Dependent Thermoelectric Power of Nanoislands. Nano Letters, 2020, 20, 4910-4915.	4.5	6
547	Thermoshape effect for energy harvesting with nanostructures. Journal Physics D: Applied Physics, 2020, 53, 375501.	1.3	5
548	Time-dependent thermoelectric transport in mesoscopic systems under a quantum quench. Physical Review B, 2020, 101, .	1.1	3

#	Article	IF	Citations
549	Superconducting nonlinear thermoelectric heat engine. Physical Review B, 2020, 101, .	1.1	22
550	Equivalence of wave function matching and Green's functions methods for quantum transport: generalized Fisher–Lee relation. Journal of Physics Condensed Matter, 2020, 32, 355302.	0.7	5
551	Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model. Molecules, 2020, 25, 1185.	1.7	2
552	Spatial configurations and temperature profiles in nonequilibrium steady state of two-species trapped ion systems. Physical Review E, 2020, 101, 012129.	0.8	2
553	Energy, Work, Entropy, and Heat Balance in Marcus Molecular Junctions. Journal of Physical Chemistry B, 2020, 124, 2632-2642.	1.2	10
554	Nonlinear Thermoelectricity with Electron-Hole Symmetric Systems. Physical Review Letters, 2020, 124, 106801.	2.9	37
555	Quantum control of nonlinear thermoelectricity at the nanoscale. Physical Review B, 2020, 101, .	1.1	9
556	Phonon stability and phonon transport of graphene-like borophene. Nanotechnology, 2020, 31, 315709.	1.3	33
557	Ballistic thermal transport in asymmetric Y-branch three terminal junction. Results in Physics, 2020, 17, 102984.	2.0	0
558	Determining absolute Seebeck coefficients from relative thermopower measurements of thin films and nanostructures. Journal of Applied Physics, 2020, 127, .	1.1	13
559	Spin-resolved transport through a quantum dot driven by bias and temperature gradient. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 114030.	1.3	2
560	Design and optimization of a heat engine based on a porphyrin single-molecule junction with graphene electrodes. Physical Review B, 2020, 101, .	1.1	6
561	Unusual Transport Properties with Noncommutative System–Bath Coupling Operators. Journal of Physical Chemistry Letters, 2020, 11, 4080-4085.	2.1	13
562	Excellent thermoelectric performance in weak-coupling molecular junctions with electrode doping and electrochemical gating. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	51
563	Shortcuts to Adiabatic Pumping in Classical Stochastic Systems. Physical Review Letters, 2020, 124, 150603.	2.9	25
564	Large enhancement of thermoelectric effect by Majorana bound states coupled to a quantum dot. Journal of Applied Physics, 2020, 127, .	1.1	17
565	Favorable thermoelectric performance in a Rashba spin-orbit coupled ac-driven graphene nanoribbon. Carbon, 2021, 172, 302-307.	5.4	12
566	Thermodynamic uncertainty relations for bosonic Otto engines. Physical Review E, 2021, 103, 012111.	0.8	22

#	ARTICLE	IF	CITATIONS
567	Thermoelectric Effect in Graphene-Based Three-Terminal Junction. IEEE Nanotechnology Magazine, 2021, 20, 733-738.	1.1	3
568	Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Frontiers in Chemistry, 2020, 8, 600731.	1.8	8
569	A small heterocyclic molecule as a multistate transistor: a quantum many-body approach. Journal of Materials Chemistry C, 2021, 9, 10927-10934.	2.7	2
570	Matrix Product State Simulations of Non-Equilibrium Steady States and Transient Heat Flows in the Two-Bath Spin-Boson Model at Finite Temperatures. Entropy, 2021, 23, 77.	1.1	9
571	Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit–phonon hybrid system*. Chinese Physics B, 2021, 30, 030506.	0.7	6
572	Unconventional four-terminal thermoelectric transport due to inelastic transport: Cooling by transverse heat current, transverse thermoelectric effect, and Maxwell demon. Physical Review B, 2021, 103, .	1.1	12
573	A brief review of thermal transport in mesoscopic systems from nonequilibrium Green's function approach. Frontiers of Physics, 2021, 16, 1.	2.4	14
574	Transforming heat transfer with thermal metamaterials and devices. Nature Reviews Materials, 2021, 6, 488-507.	23.3	270
575	Spin polarization and heat generation matching in a quantum dot with magnetic background. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 393, 127168.	0.9	2
576	Quantum bath effects on nonequilibrium heat transport in model molecular junctions. Journal of Chemical Physics, 2021, 154, 094108.	1.2	9
577	Learning the best nanoscale heat engines through evolving network topology. Communications Physics, 2021, 4, .	2.0	4
578	Detecting Spin Heat Accumulation by Sign Reversion of Thermopower in a Quantum Dot Side-Coupled to Majorana Bound States. Journal of Low Temperature Physics, 2021, 203, 381-391.	0.6	4
579	Spin Seebeck effect of correlated magnetic molecules. Scientific Reports, 2021, 11, 9192.	1.6	5
580	Thermophonon flux in double-cavity optomechanics. Physical Review A, 2021, 103, .	1.0	8
581	Thermoelectric Transport in a Double-Quantum-Dot Coupled to Majorana Zero Modes. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 753-761.	0.1	1
582	Quantum versus classical transport of energy in coupled two-level systems. Physical Review A, 2021, 103, .	1.0	4
583	Temperature bias-driven diode effect in a semiconductor quantum dot. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 399, 127297.	0.9	3
584	Magnetic field-controlled spin-dependent thermoelectric current in a single-molecule magnet transistor. Journal of Physics Condensed Matter, 2021, 33, 235302.	0.7	0

#	Article	IF	CITATIONS
585	Photon-Assisted Seebeck Effect in a Quantum Dot Coupled to Majorana Zero Modes. Frontiers in Physics, 2021, 9, .	1.0	4
586	Interaction-Assisted Reversal of Thermopower with Ultracold Atoms. Physical Review X, 2021, 11, .	2.8	12
587	Heat Generation by Electrical Current in a Quantum Dot Hybridized to Majorana Nanowires. Frontiers in Physics, 2021, 9 , .	1.0	4
588	Nonlocal thermoelectric engines in hybrid topological Josephson junctions. Physical Review B, 2021, 103, .	1.1	10
589	Nonequilibrium open quantum systems with multiple bosonic and fermionic environments: A hierarchical equations of motion approach. Physical Review B, 2021, 103, .	1.1	15
590	Thermal induced spin-polarized current protected by spin-momentum locking in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ZrTe</mml:mi><mml:mn>5<td>mm\>k#m</td><td>nl:r2sub></td></mml:mn></mml:msub></mml:math>	mm\> k #m	nl:r 2 sub>
591	Spinâ€Polarization and Resonant States in Electronic Conduction through a Correlated Magnetic Layer. Physica Status Solidi (B): Basic Research, 0, , 2100157.	0.7	1
592	Energy rectification in active gyroscopic networks under time-periodic modulations. Physical Review E, 2021, 104, 014601.	0.8	2
593	Environment-dependent vibrational heat transport in molecular junctions: Rectification, quantum effects, vibrational mismatch. Physical Review E, 2021, 104, 014148.	0.8	2
594	Multilevel quantum thermodynamic swap engines. Physical Review A, 2021, 104, .	1.0	8
595	Non-Linear Thermoelectric Devices with Surface-Disordered Nanowires. Applied Nano, 2021, 2, 162-183.	0.9	0
596	Spin thermoelectric transport of co-salophene with borophene nanoribbon electrodes. Europhysics Letters, 0, , .	0.7	1
597	Anisotropic Hot-Electron Kinetics Revealed by Terahertz Fluctuation. ACS Photonics, 2021, 8, 2674-2682.	3.2	3
598	Flux dependent current rectification in geometrically symmetric interconnected triple-dot Aharanov-Bohm interferometer. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 133, 114786.	1.3	2
599	Thermoelectric effect in a single molecular junction with a vibrational mode. Journal of Physics Condensed Matter, 2021, 33, 475302.	0.7	0
600	Spin Seebeck Effect in a Hybridized Quantum-Dot/Majorana-Nanowire With Spin Heat Accumulation. Frontiers in Physics, 2021, 9, .	1.0	2
601	Control Thermal Conductivity of Semiconductor Nanowires: Phononics Engineering. Lecture Notes in Nanoscale Science and Technology, 2014, , 185-210.	0.4	1
602	Suppression of phonon transport in multiple Si/PtSi heterostructures. Journal of Applied Physics, 2015, 117, .	1.1	2

#	Article	IF	CITATIONS
603	Thermal conductance of structured silicon nanocrystals. Modelling and Simulation in Materials Science and Engineering, 2020, 28, 075004.	0.8	1
604	Violation of the Wiedemann-Franz law through reduction of thermal conductivity in gold thin films. Physical Review Materials, 2020, 4, .	0.9	15
605	Thermodynamics of precision in quantum nonequilibrium steady states. Physical Review Research, 2019, 1, .	1.3	104
606	Quasiperiodic quantum heat engines with a mobility edge. Physical Review Research, 2020, 2, .	1.3	23
607	Phase-tunable thermoelectricity in a Josephson junction. Physical Review Research, 2020, 2, .	1.3	20
608	Thermoelectric Effect in a Correlated Quantum Dot Side-Coupled to Majorana Bound States. Nanoscale Research Letters, 2020, 15, 79.	3.1	22
609	Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 186302.	0.2	19
610	Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System. Japanese Journal of Applied Physics, 2011, 50, 105003.	0.8	2
611	Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport. Chinese Physics Letters, 2021, 38, 088801.	1.3	8
612	Thermoelectric rectification in a graphene-based triangular ballistic rectifier (G-TBR). Journal of Computational Electronics, 2021, 20, 2308-2316.	1.3	5
613	Thermoelectric properties of a diamond ribbon subjected to a transverse magnetic field. Europhysics Letters, 0, , .	0.7	0
614	Nonlinear Thermoelectric Response of Quantum Dots: Renormalized Dual Fermions Out of Equilibrium. NATO Science for Peace and Security Series B: Physics and Biophysics, 2013, , 129-168.	0.2	0
615	Crossover to Quantized Thermal Conductance in Nanotubes and Nanowires. Open Journal of Composite Materials, 2013, 03, 48-54.	0.4	0
616	Nanoelectronic Applications of Molecular Junctions. Springer Tracts in Modern Physics, 2013, , 231-272.	0.1	0
617	Enhancement of Thermoelectric Effects in a Single Molecular Magnet due to Resonance Tunnelling. American Journal of Modern Physics, 2014, 3, 37.	0.1	0
618	Limite quantique du flux de chaleur. , 2014, , 16-19.	0.1	0
619	Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 077301.	0.2	1
620	Nanoscale Heat Conduction: Modeling Prospects. , 0, , 1-9.		1

#	ARTICLE	IF	CITATIONS
621	Spin and charge Nernst effect in a four-terminal double quantum dot system. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 097302.	0.2	1
622	Thermoelectric Effects in Spin Valves Based on Layered Magnetic Structures. Acta Physica Polonica A, 2017, 132, 124-128.	0.2	0
623	Effect of electrode position and cross section size on transport properties of molecular devices. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 213101.	0.2	1
624	Implementation of Peltier Cooling in Hermetically Sealed Electronic Packaging Unit for Sub-sea Vessel. Defence Science Journal, 2018, 68, 326.	0.5	0
625	Charge and heat current rectification by a double-dot system within the Coulomb blockade regime. Journal of Physics Condensed Matter, 2020, 32, 325302.	0.7	3
626	Long-distance heat transfer between molecular systems through a hybrid plasmonic-photonic nanoresonator. Journal of Optics (United Kingdom), 2021, 23, 015003.	1.0	1
627	Waiting time statistics in boundary-driven free fermion chains. Physical Review B, 2021, 104, .	1.1	4
628	New route to enhanced figure of merit at nano scale: effect of Aubry–Andre–Harper modulation. Journal Physics D: Applied Physics, 2022, 55, 085302.	1.3	5
629	High figure of merit in an ac driven graphene nanoribbon. Journal of Physics: Conference Series, 2020, 1579, 012005.	0.3	1
630	An ordered-disordered separated graphene nanoribbon: high thermoelectric performance. Journal Physics D: Applied Physics, 2021, 54, 025301.	1.3	5
631	Quantum Transport of Particles and Entropy. Entropy, 2021, 23, 1573.	1.1	5
632	Thermodynamic performance of a periodically driven harmonic oscillator correlated with the baths. Physical Review E, 2021, 104, 054118.	0.8	1
633	Charge density wave breakdown in a heterostructure with electron-phonon coupling. Physical Review B, 2021, 104, .	1.1	9
634	Multivariate Approach to Single-Molecule Thermopower and Electrical Conductance Measurements. Journal of Physical Chemistry C, 2021, 125, 26256-26262.	1.5	1
635	Quantum–Classical Correspondence Principle for Heat Distribution in Quantum Brownian Motion. Entropy, 2021, 23, 1602.	1.1	7
636	Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115105.	1.3	0
637	Distinguishing Thermal from Nonthermal ("Hotâ€) Carriers in Illuminated Molecular Junctions. Nano Letters, 2022, 22, 2127-2133.	4.5	10
638	Efficient bond-adaptive approach for finite-temperature open quantum dynamics using the one-site time-dependent variational principle for matrix product states. Physical Review B, 2021, 104, .	1.1	13

#	Article	IF	CITATIONS
639	Significantly Enhanced Thermoelectric Performance of Van Der Waals Interface Coupling Molecular Junction with Nitrogen-Doped Graphene Nanoribbon Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
640	Nonequilibrium Control of Thermal and Mechanical Changes in a Levitated System. Physical Review Letters, 2022, 128, 070601.	2.9	14
641	Nonequilibrium Green's function method for phonon heat transport in quantum system. Journal of Physics Condensed Matter, 2022, 34, 223001.	0.7	2
642	Large enhancement of thermoelectric effects in multiple quantum dots in a serial conï¬guration due to Coulomb interactions. Journal of Physics Condensed Matter, 2022, , .	0.7	0
643	Temperature-dependent thermal transport of single molecular junctions from semiclassical Langevin molecular dynamics. Physical Review B, 2021, 104, .	1.1	8
644	Theory of non-equilibrium †hot†carriers in direct band-gap semiconductors under continuous illumination. New Journal of Physics, 2022, 24, 053008.	1.2	6
645	Thermoelectric rectification in graphene based Y-junction., 2022, 167, 207242.		2
646	Controllable spin diode based on a semiconductor quantum dot. Japanese Journal of Applied Physics, 0, , .	0.8	3
647	Significantly enhanced thermoelectric performance of Van der Waals interface coupling molecular junction with nitrogen-doped graphene nanoribbon electrodes. Applied Surface Science, 2022, 597, 153722.	3.1	5
648	A many-body approach to transport in quantum systems: from the transient regime to the stationary state. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 273001.	0.7	12
649	The laws of thermodynamics for quantum dissipative systems: A quasi-equilibrium Helmholtz energy approach. Journal of Chemical Physics, 2022, 157, .	1.2	4
650	Geometry-based circulation of local thermal current in quantum harmonic and Bose-Hubbard systems. Physical Review E, 2022, 105, .	0.8	2
651	Thermoelectric Effects in Tunneling of Spin-Polarized Electrons in a Molecular Transistor. Journal of Low Temperature Physics, 0, , .	0.6	0
652	Introductory Chapter: Thermoelectricity – Recent Advances, New Perspectives, and Applications. , 0, , .		0
653	Enhancement of the thermoelectric performance in a nano junction by electron-phonon interaction effects. Solid State Communications, 2022, 353, 114874.	0.9	0
654	Fano effect in a thermally induced transport through a triple quantum dot within the Coulomb blockade regime. Physica B: Condensed Matter, 2022, 643, 414164.	1.3	0
655	Quantum hydrodynamics from local thermal pure states. Physical Review Research, 2022, 4, .	1.3	0
656	Analytical description of nanowires III: regular cross sections for wurtzite structures. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 665-677.	0.5	0

#	Article	IF	CITATIONS
657	Numerically "exact―simulations of a quantum Carnot cycle: Analysis using thermodynamic work diagrams. Journal of Chemical Physics, 2022, 157, .	1.2	7
658	Evaluation of the thermoelectric properties of a nanoscale device in the presence of an external electric field: Tight binding model. Materials Science in Semiconductor Processing, 2022, 151, 106996.	1.9	0
659	Thermoelectric transport properties of single quantum dot systems in the presence of Majorana states. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115503.	1.3	3
660	Role of inter-electrode coupling on thermoelectricity in an interferometric geometry: a new proposition. Journal of Physics Condensed Matter, 2022, 34, 475304.	0.7	1
661	Bipolar thermoelectric Josephson engine. Nature Nanotechnology, 2022, 17, 1084-1090.	15.6	20
662	Steady-state tunable entanglement thermal machine using quantum dots. Quantum Science and Technology, 2022, 7, 045034.	2.6	1
663	Joule Heating in Single-Molecule Point Contacts Studied by Tip-Enhanced Raman Spectroscopy. ACS Nano, 2022, 16, 16443-16451.	7.3	3
664	Simulation of the sensing mechanism in quantum dot gas sensor by quantum light harvesting approach. Frontiers in Chemistry, 0, 10, .	1.8	2
665	Heat transport and rectification via quantum statistical and coherence asymmetries. Physical Review E, 2022, 106, .	0.8	7
666	Enhanced thermoelectric efficiency in armchair silicene nanoribbons decorated by Mn. Journal of Physics and Chemistry of Solids, 2023, 174, 111167.	1.9	2
667	Thermal resonance in harmonically driven segmented Frenkel–Kontorova lattices with next-nearest-neighbor interactions. Journal of Statistical Mechanics: Theory and Experiment, 2022, 2022, 123205.	0.9	0
668	Nonequilibrium boundary-driven quantum systems: Models, methods, and properties. Reviews of Modern Physics, 2022, 94, .	16.4	42
669	Remarkable thermoelectric performance of carbon-based schwarzites. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	16
670	Thermoelectricity in a Quasiperiodic Lattice Beyond Nearestâ€Neighbor Electron Hopping. Annalen Der Physik, 0, , 2200326.	0.9	0
671	Dynamic heat and charge transports through double-quantum-dot-interferometer modulated by Majorana bound states and time-oscillating Aharonov-Bohm flux. Journal of Physics Condensed Matter, 2023, 35, 165303.	0.7	2
672	Bipolar Thermoelectricity in Bilayer-Graphene–Superconductor Tunnel Junctions. Physical Review Applied, 2023, 19, .	1.5	5
673	Nonequilibrium Seebeck effect and thermoelectric efficiency of Kondo-correlated molecular junctions. Physical Review B, 2023, 107, .	1.1	7
674	Hierarchical structure of fluctuation theorems for a driven system in contact with multiple heat reservoirs. Physical Review E, 2023, 107, .	0.8	3

#	Article	IF	CITATIONS
675	Non-Fourier heat transport in nanosystems. Rivista Del Nuovo Cimento, 2023, 46, 105-161.	2.0	11
676	A Strongly Correlated Quantum Dot Heat Engine with Optimal Performance: A Nonequilibrium Green's Function Approach. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	0
677	Spin dependent molecular junction with graphene electrodes as a thermoelectric nanodevice. Journal of Applied Physics, 2023, 133, 104301.	1.1	0
678	Photonic heat transport from weak to strong coupling. Physical Review B, 2023, 107, .	1.1	0
679	Thermodynamics of a continuously monitored double-quantum-dot heat engine in the repeated interactions framework. Physical Review E, 2023, 107 , .	0.8	0
680	Quantum Interference and Contact Effects in the Thermoelectric Performance of Anthracene-Based Molecules. Journal of Physical Chemistry C, 2023, 127, 7484-7491.	1.5	3
681	Negative differential thermal conductance by photonic transport in electronic circuits. Physical Review B, 2023, 107, .	1.1	1
704	Heat flow calculation through FM-DQDs-FM system: Strong coupling regime. AIP Conference Proceedings, 2024, , .	0.3	0