Laser cooling of a nanomechanical oscillator into its qua

Nature 478, 89-92 DOI: 10.1038/nature10461

Citation Report

#	Article	IF	CITATIONS
8	A PROBLEM OF FLACHSMEYER AND TERPE. Russian Mathematical Surveys, 1979, 34, 182-182.	0.2	0
9	Layered synchronization in star configuration of chaotic systems. Europhysics Letters, 2004, 67, 921-927.	0.7	6
10	Dissipative Optomechanics in a Michelson-Sagnac Interferometer. Physical Review Letters, 2011, 107, 213604.	2.9	122
11	Probing mechanical quantum coherence with an ultracold-atom meter. Physical Review A, 2011, 84, .	1.0	3
12	A chip-scale integrated cavity-electro-optomechanics platform. Optics Express, 2011, 19, 24905.	1.7	93
13	The gentle cooling touch of light. Nature, 2011, 478, 47-48.	13.7	4
14	Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotechnology, 2011, 6, 726-732.	15.6	216
15	Mechanical memory sees the light. Nature Nanotechnology, 2011, 6, 690-691.	15.6	13
16	An Introduction to Quantum Optomechanics. Acta Physica Slovaca, 2011, 61, .	1.4	56
17	Entangling Macroscopic Diamonds at Room Temperature. Science, 2011, 334, 1253-1256.	6.0	299
18	Licht macht Druck. Physik in Unserer Zeit, 2011, 42, 276-284.	0.0	1
19	Quantum entanglement and teleportation in pulsed cavity optomechanics. Physical Review A, 2011, 84, .	1.0	199
20	High-Q optomechanical GaAs nanomembranes. Applied Physics Letters, 2011, 99, 243102.	1.5	29
21	Shuttle transport for single electrons. Nature Nanotechnology, 2011, 6, 691-692.	15.6	2
23	Quantum optomechanics with a high-frequency dilational mode in thin dielectric membranes. New Journal of Physics, 2012, 14, 085016.	1.2	14
24	Driven optomechanical systems for mechanical entanglement distribution. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 154010.	0.6	9
25	Optomechanical quantum-state transfer beyond one-to-one interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 185503.	0.6	1
26	Cryogenic optomechanics with a Si ₃ N ₄ membrane and classical laser noise. New Journal of Physics, 2012, 14, 115018.	1.2	41

ιτλτιώνι Ρερώ

#	Article	IF	CITATIONS
27	Cavity optomechanics with Si ₃ N ₄ membranes at cryogenic temperatures. New Journal of Physics, 2012, 14, 115021.	1.2	55
28	Phonon number measurements using single photon opto-mechanics. New Journal of Physics, 2012, 14, 085017.	1.2	38
29	Tomographic readout of an opto-mechanical interferometer. New Journal of Physics, 2012, 14, 095018.	1.2	5
30	Ultrahigh- <i>Q</i> mechanical oscillators through optical trapping. New Journal of Physics, 2012, 14, 045002.	1.2	49
31	Continuous mode cooling and phonon routers for phononic quantum networks. New Journal of Physics, 2012, 14, 115004.	1.2	143
32	Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations. New Journal of Physics, 2012, 14, 115025.	1.2	10
33	Coupling carbon nanotube mechanics to a superconducting circuit. Scientific Reports, 2012, 2, 599.	1.6	52
34	Exciton-assisted optomechanics with suspended carbon nanotubes. New Journal of Physics, 2012, 14, 115003.	1.2	26
35	Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator. New Journal of Physics, 2012, 14, 113040.	1.2	40
36	Using dark modes for high-fidelity optomechanical quantum state transfer. New Journal of Physics, 2012, 14, 105010.	1.2	89
37	Experimental signatures of the quantum–classical transition in a nanomechanical oscillator modeled as a damped-driven double-well problem. Physica Scripta, 2012, T151, 014055.	1.2	6
38	Dynamical scattering models in optomechanics: going beyond the â€~coupled cavities' model. New Journal of Physics, 2012, 14, 095027.	1.2	13
39	A microelectromechanically controlled cavity optomechanical sensing system. New Journal of Physics, 2012, 14, 075015.	1.2	66
40	Wavelength-sized Optomechanical Disk Resonator Embedded in a Sunflower Circular Photonic Crystal. , 2012, , .		1
41	Tuning the spontaneous light emission in phoxonic cavities. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2567.	0.9	13
42	Optically pumped coherent mechanical oscillators: the laser rate equation theory and experimental verification. New Journal of Physics, 2012, 14, 105022.	1.2	14
43	Dissipation mechanisms in thermomechanically driven silicon nitride nanostrings. Applied Physics Letters, 2012, 100, 173111.	1.5	20
44	There is plenty of room at the bottom to approach sub-femtometer vibrometry. , 2012, , .		1

CITATION REPORT ARTICLE IF CITATIONS Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison. 1.7 16 Optics Express, 2012, 20, 26486. Suppression of extraneous thermal noise in cavity optomechanics. Optics Express, 2012, 20, 3586. 1.7 GaAs-based air-slot photonic crystal nanocavity for optomechanical oscillators. Optics Express, 2012, 1.7 9 20, 5204. Optomechanically induced non-reciprocity in microring resonators. Optics Express, 2012, 20, 7672. 226 Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy. Optics 1.7 59 Express, 2012, 20, 18268. a-SiO_x<Er> active photonic crystal resonator membrane fabricated by focused Ga^+ ion beam. Optics Express, 2012, 20, 18772. 1.7 Enhanced optomechanical interaction in coupled microresonators. Optics Express, 2012, 20, 20790. 1.7 14 Slot-mode-coupled optomechanical crystals. Optics Express, 2012, 20, 24394. 1.7 An electromechanical membrane resonator. Applied Physics Letters, 2012, 101, 063102. 1.5 38 High sensitivity SQUID-detection and feedback-cooling of an ultrasoft microcantilever. Applied 1.5 Physics Letters, 2012, 101, . Damping of optomechanical disks resonators vibrating in air. Applied Physics Letters, 2012, 100, 242105. 10 1.5 High-<i>Q</i> silicon optomechanical microdisk resonators at gigahertz frequencies. Applied Physics 1.5 Letters, 2012, 100, . Optically Driven Quantum Dots as Source of Coherent Cavity Phonons: A Proposal for a Phonon Laser 2.9 78 Scheme. Physical Review Letters, 2012, 109, 054301. Quantum Magnetomechanics with Levitating Superconducting Microspheres. Physical Review Letters, 2012, 109, 147205. Enhancement of Mechanical<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi></mml:math>Factors by Optical Trapping. Physical Review Letters, 2.9 57 2012, 108, 214302. Probing the charge of a quantum dot with a nanomechanical resonator. Physical Review B, 2012, 86, . 49

 61
 Macroscopic runnenng of a Memorale in all Optomechanical Souble-Weil Potential. Physical Review 2.9
 56

 62
 Nonlinearity-induced limitations on cooling in optomechanical systems. Physical Review A, 2012, 86, .
 1.0
 5

Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential. Physical Review

#

45

47

49

51

53

54

55

57

		Citation R	EPORT	
#	Article		IF	CITATIONS
63	Entanglement control in hybrid optomechanical systems. Physical Review A, 2012, 86,		1.0	52
64	Improving the optomechanical entanglement and cooling by photothermal force. Phys 2012, 85, .	ical Review A,	1.0	8
65	Generation of mechanical squeezing via magnetic dipoles on cantilevers. Physical Revi	ew A, 2012, 85, .	1.0	12
66	Optomechanical cooling of levitated spheres with doubly resonant fields. Physical Revi	ew A, 2012, 85, .	1.0	40
67	Observation of Quantum Motion of a Nanomechanical Resonator. Physical Review Let 033602.	ters, 2012, 108,	2.9	334
68	Feedback cooling of cantilever motion using a quantum point contact transducer. App Letters, 2012, 101, 133104.	lied Physics	1.5	10
69	Tuneable electromechanical comb generation. Applied Physics Letters, 2012, 100, .		1.5	17
70	Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating. Jo Applied Physics, 2012, 111, .	urnal of	1.1	13
71	Breakdown of the Classical Description of a Local System. Physical Review Letters, 201	.2, 108, 233601.	2.9	8
72	Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millik temperature. Applied Physics Letters, 2012, 100, .	elvin	1.5	73
73	Optomechanical Quantum Information Processing with Photons and Phonons. Physica Letters, 2012, 109, 013603.	al Review	2.9	374
74	Nanophotonic detection of side-coupled nanomechanical cantilevers. Applied Physics 1 100, .	Letters, 2012,	1.5	24
75	Optomechanical photoabsorption spectroscopy of exciton states in GaAs. Applied Phy 101, 082107.	sics Letters, 2012,	1.5	10
76	Sharp Tunneling Peaks in a Parametric Oscillator: Quantum Resonances Missing in the Approximation. Physical Review Letters, 2012, 109, 090401.	Rotating Wave	2.9	15
77	The stress of light cools vibration. Nature Physics, 2012, 8, 180-181.		6.5	4
78	Hot electrons but cool vibrations. Nature Physics, 2012, 8, 110-111.		6.5	2
79	Optomechanical circuits for nanomechanical continuous variable quantum state proce Journal of Physics, 2012, 14, 125005.	essing. New	1.2	130
80	Dynamics of a nanoscale rotor driven by single-electron tunneling. Europhysics Letters 68004.	, 2012, 98,	0.7	16

#	ARTICLE	IF	CITATIONS
81	Optomechanical sideband cooling of a thin membrane within a cavity. New Journal of Physics, 2012, 14, 095015.	1.2	49
82	Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature. Nature Communications, 2012, 3, 728.	5.8	71
83	Cavity optomechanics with low-noise crystalline mirrors. , 2012, , .		32
84	Electromechanically Induced GHz Rate Optical Frequency Modulation in Silicon. IEEE Photonics Journal, 2012, 4, 1474-1483.	1.0	11
85	Photonic crystal paddle nanocavities for optomechanical torsion sensing. , 2012, , .		2
86	Coherent phonons as a new element of quantum computing and devices. Journal of Physics: Conference Series, 2012, 398, 012011.	0.3	5
87	A versatile scheme for read-out and actuation of nanomechanical motion using silica microspheres. , 2012, , .		0
88	Optomechanical Dark Mode. Science, 2012, 338, 1609-1613.	6.0	365
89	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	2.9	461
90	Ultralow-dissipation micro-oscillator for quantum optomechanics. Physical Review A, 2012, 86, .	1.0	21
91	Probing optical transitions. Nature Photonics, 2012, 6, 721-722.	15.6	0
92	A future without long memories?. Nature Photonics, 2012, 6, 722-724.	15.6	2
93	Giant laser gyroscope detects Earth's wobble. Nature Photonics, 2012, 6, 12-12.	15.6	4
94	Coherent optical wavelength conversion via cavity optomechanics. Nature Communications, 2012, 3, 1196.	5.8	380
95	Zero point energy and zero point oscillations: how they are detected experimentally. Physics-Uspekhi, 2012, 55, 796-807.	0.8	14
96	Light scattering in an optomechanical cavity coupled to a single atom. Physical Review A, 2012, 86, .	1.0	29
97	Quantum optomechanics beyond linearization. Physical Review A, 2012, 85, .	1.0	48
98	Strong Coupling and Long-Range Collective Interactions in Optomechanical Arrays. Physical Review Letters, 2012, 109, 223601.	2.9	199

		CITATION R	EPORT	
#	Article		IF	CITATIONS
99	Quantum Signatures of the Optomechanical Instability. Physical Review Letters, 2012, 1	.09, 253601.	2.9	103
100	Optically mediated nonlinear quantum optomechanics. Physical Review A, 2012, 86, .		1.0	41
101	Backaction limits on self-sustained optomechanical oscillations. Physical Review A, 2012	2, 86, .	1.0	34
102	Precision measurement of electrical charge with optomechanically induced transparence Review A, 2012, 86, .	y. Physical	1.0	203
103	High quality factor single-crystal diamond mechanical resonators. Applied Physics Letter	s, 2012, 101, .	1.5	123
104	Quantum optomechanics with a mixture of ultracold atoms. Physical Review A, 2012, 8	ō, .	1.0	7
105	Electromechanically induced absorption in a circuit nano-electromechanical system. Nev Physics, 2012, 14, 123037.	v Journal of	1.2	60
106	Multimode circuit optomechanics near the quantum limit. Nature Communications, 201	.2, 3, 987.	5.8	193
107	Macroscopic quantum resonators (MAQRO). Experimental Astronomy, 2012, 34, 123-1	64.	1.6	74
108	Multipartite optomechanical entanglement from competing nonlinearities. Physical Rev	ew A, 2012, 86,	1.0	40
109	Adiabatic State Conversion and Pulse Transmission in Optomechanical Systems. Physica Letters, 2012, 108, 153604.	ıl Review	2.9	260
110	Opto- and electro-mechanical entanglement improved by modulation. New Journal of Ph 075014.	ysics, 2012, 14,	1.2	56
111	Quantum optomechanics. Physics Today, 2012, 65, 29-35.		0.3	504
112	Quantum-state transfer between a Bose-Einstein condensate and an optomechanical m Review A, 2012, 86, .	irror. Physical	1.0	50
113	Reservoir engineering and dynamical phase transitions in optomechanical arrays. Physic 2012, 86, .	al Review A,	1.0	81
114	Quantum optomechanics of a multimode system coupled via a photothermal and a radi force. Physical Review A, 2012, 86, .	ation pressure	1.0	14
115	Photon-phonon entanglement in coupled optomechanical arrays. Physical Review A, 202	12, 86, .	1.0	66
116	Multichannel cavity optomechanics for all-optical amplification of radio frequency signa Communications, 2012, 3, 1091.	ls. Nature	5.8	46

#	Article	IF	CITATIONS
117	Enhancing quantum effects via periodic modulations in optomechanical systems. Physical Review A, 2012, 86, .	1.0	96
118	Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 2012, 488, 476-480.	13.7	307
119	Electrically Driven Photonic Crystal Nanocavity Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1700-1710.	1.9	23
120	Nanomechanical characterization of chemical interaction between gold nanoparticles and chemical functional groups. Nanoscale Research Letters, 2012, 7, 608.	3.1	25
121	Nonlinear mechanics with suspended nanomembranes. Europhysics Letters, 2012, 100, 68005.	0.7	31
122	Optomechanics with Silicon Nanowires by Harnessing Confined Electromagnetic Modes. Nano Letters, 2012, 12, 932-937.	4.5	40
123	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	6.5	79
124	Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 2012, 482, 63-67.	13.7	747
125	Cavity QED with atomic mirrors. New Journal of Physics, 2012, 14, 063003.	1.2	205
126	Steady-state negative Wigner functions of nonlinear nanomechanical oscillators. New Journal of Physics, 2012, 14, 023042.	1.2	77
127	Putting mechanics into circuit quantum electrodynamics. Comptes Rendus Physique, 2012, 13, 470-479.	0.3	7
128	Quantum dynamics of a mechanical resonator driven by a cavity. Comptes Rendus Physique, 2012, 13, 440-453.	0.3	16
129	Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2955-2961.	0.9	3
130	Carbon's superconducting footprint. Nature Physics, 2012, 8, 111-112.	6.5	12
131	Photonic neural networks. Nature Physics, 2012, 8, 257-259.	6.5	128
132	Phonons in diamond crystals. Nature Photonics, 2012, 6, 10-12.	15.6	6
133	Quantum dynamics of the damped harmonic oscillator. New Journal of Physics, 2012, 14, 083043.	1.2	24
134	Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 2012, 101, 081115.	1.5	269

	Сітат	ion Report	
#	Article	IF	CITATIONS
135	A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Optics Express, 2012, 20, 10106.	1.7	5
136	The quantum trajectory approach to quantum feedback control of an oscillator revisited. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 5338-5353.	1.6	32
137	Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Letters, 2012, 12, 4681-4686.	4.5	166
138	Pulsed Laser Cooling for Cavity Optomechanical Resonators. Physical Review Letters, 2012, 108, 153601.	2.9	94
139	To see a SAW. Nature Physics, 2012, 8, 256-257.	6.5	3
140	Observation of spontaneous Brillouin cooling. Nature Physics, 2012, 8, 203-207.	6.5	193
141	Photon and acoustic phonon coupling in phoxonic crystals. Proceedings of SPIE, 2012, , .	0.8	2
142	Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System. Physical Review Letters, 2012, 109, 063601.	2.9	245
143	Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Physical Review Letters, 2012, 108, 153603.	2.9	376
144	Seeing the "Quantum―in Quantum Zero-Point Fluctuations. Physics Magazine, 2012, 5, .	0.1	2
145	Terahertz Emitters, Detectors and Sensors: Current Status and Future Prospects. , 0, , .		2
146	Probing Planck-scale physics with quantum optics. Nature Physics, 2012, 8, 393-397.	6.5	473
147	Phonon-cavity electromechanics. Nature Physics, 2012, 8, 387-392.	6.5	127
148	Optomechanical Superpositions via Nested Interferometry. Physical Review Letters, 2012, 109, 023601.	2.9	99
149	Nonadiabatic Dynamics of Two Strongly Coupled Nanomechanical Resonator Modes. Physical Review Letters, 2012, 109, 037205.	2.9	100
150	Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit. Science, 2012, 335, 1603-1606.	6.0	326
151	Role Reversal in a Bose-Condensed Optomechanical System. Physical Review Letters, 2012, 108, 240405.	2.9	19
152	Cooling in the single-photon strong-coupling regime of cavity optomechanics. Physical Review A, 2012, 85, .	1.0	51

#	Article	IF	Citations
153	Task-optimized control of open quantum systems. Physical Review A, 2012, 85, .	1.0	21
154	Generation of Fock states and qubits in periodically pulsed nonlinear oscillators. Physical Review A, 2012, 85, .	1.0	42
155	Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Physical Review A, 2012, 85, .	1.0	30
156	Master-equation approach to optomechanics with arbitrary dielectrics. Physical Review A, 2012, 86, .	1.0	40
157	Sensitivity and performance of cavity optomechanical field sensors. Photonic Sensors, 2012, 2, 259-270.	2.5	28
158	Phase-space behavior and conditional dynamics of an optomechanical system. Physical Review A, 2013, 88, .	1.0	1
159	Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Physical Review A, 2013, 88, .	1.0	62
160	Nonclassicality of optomechanical devices in experimentally realistic operating regimes. Physical Review A, 2013, 88, .	1.0	19
161	Dissipative optomechanical coupling between a single-wall carbon nanotube and a high- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>microcavity. Physical Review A, 2013, 88, .</mml:math 	1.0	20
162	Nonlinear Interaction Effects in a Strongly Driven Optomechanical Cavity. Physical Review Letters, 2013, 111, 053602.	2.9	124
163	Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime. Physical Review Letters, 2013, 111, 053603.	2.9	141
164	Coherent control of a classical nanomechanical two-level system. Nature Physics, 2013, 9, 485-488.	6.5	149
165	Optical bistability with a repulsive optical force in coupled silicon photonic crystal membranes. Applied Physics Letters, 2013, 103, .	1.5	14
166	Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary. Reviews of Modern Physics, 2013, 85, 1083-1102.	16.4	415
167	Minimal universal quantum heat machine. Physical Review E, 2013, 87, 012140.	0.8	134
168	On-chip cavity quantum phonodynamics with an acceptor qubit in silicon. Physical Review B, 2013, 88, .	1.1	44
169	Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Physical Review A, 2013, 88, .	1.0	68
170	Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Communications, 2013, 4, 2374.	5.8	251

#	Article	IF	CITATIONS
171	Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Nature Communications, 2013, 4, 2295.	5.8	132
172	Parametric Down-Conversion and Polariton Pair Generation in Optomechanical Systems. Physical Review Letters, 2013, 111, 083601.	2.9	69
173	Optomechanics assisted by a qubit: From dissipative state preparation to many-partite systems. Physical Review A, 2013, 88, .	1.0	29
174	Suppression of quantum-radiation-pressure noise in an optical spring. Physical Review A, 2013, 88, .	1.0	15
175	Mechanical switch for state transfer in dual-cavity optomechanical systems. Physical Review A, 2013, 88, .	1.0	8
176	Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems. Physical Review A, 2013, 88, .	1.0	65
177	Limiting effects of geometrical and optical nonlinearities on the squeezing in optomechanics. Physica B: Condensed Matter, 2013, 422, 72-77.	1.3	8
178	The properties of Stokes and anti-Stokes processes in a double-cavity optomechanical system. Optics Communications, 2013, 308, 265-269.	1.0	4
179	Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat. Review of Scientific Instruments, 2013, 84, 043108.	0.6	18
180	Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Communications, 2013, 4, 1944.	5.8	269
181	Quantum Mechanics Tackles Mechanics. Science, 2013, 342, 702-703.	6.0	2
182	Sound and heat revolutions in phononics. Nature, 2013, 503, 209-217.	13.7	963
183	Scattering-Free Optical Levitation of a Cavity Mirror. Physical Review Letters, 2013, 111, 183001.	2.9	39
184	Bistability and chaos at low levels of quanta. Physical Review E, 2013, 88, 022910.	0.8	13
185	Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500, 185-189.	13.7	458
186	Photon-photon interactions in a largely detuned optomechanical cavity. Physical Review A, 2013, 88, .	1.0	38
187	Entanglement of movable mirrors in a correlated emission laser via cascade-driven coherence. Physical Review A, 2013, 88, .	1.0	21
188	Classical and semiclassical studies of nonlinear nano-optomechanical oscillators. European Physical Journal D, 2013, 67, 1.	0.6	7

#	Article	IF	CITATIONS
189	Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Physical Review A, 2013, 88, .	1.0	195
190	Nanomechanical coupling between microwave and optical photons. Nature Physics, 2013, 9, 712-716.	6.5	485
191	All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes. Physical Review X, 2013, 3, .	2.8	54
192	Nonlinearity-assisted frequency stabilization for nanowire array membrane oscillator. , 2013, , .		1
193	OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES. International Journal of Modern Physics B, 2013, 27, 1330018.	1.0	131
194	Controlling Photons in a Box and Exploring the Quantum to Classical Boundary (Nobel Lecture). Angewandte Chemie - International Edition, 2013, 52, 10158-10178.	7.2	30
195	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	0.6	195
196	Mapping out tractor beams: topological angular momentum and reduced axial flux; gradient versus non-conservative forces. , 2013, , .		0
197	Strong-coupling effects in dissipatively coupled optomechanical systems. New Journal of Physics, 2013, 15, 045017.	1.2	61
198	Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Physical Review A, 2013, 88, .	1.0	49
199	Engineering of nonclassical motional states in optomechanical systems. Physical Review A, 2013, 88, .	1.0	44
200	Controlling photons in mesoscopic systems: Precision measurements in frequency combs and optomechanics. , 2013, , .		0
201	Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes. New Journal of Physics, 2013, 15, 015019.	1.2	23
202	Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Physics, 2013, 9, 71-73.	6.5	102
203	Narrow Low-Frequency Spectrum and Heat Management by Thermocrystals. Physical Review Letters, 2013, 110, 025902.	2.9	182
204	Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature, 2013, 494, 211-215.	13.7	230
205	Observation of Radiation Pressure Shot Noise on a Macroscopic Object. Science, 2013, 339, 801-804.	6.0	334
206	On the spectrum of radiation pressure driven optomechanical oscillator and its application in sensing. Optics Communications, 2013, 294, 338-343.	1.0	15

#	Article	IF	CITATIONS
207	Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Physical Review A, 2013, 88, .	1.0	32
208	Optomechanical and photothermal interactions in suspended photonic crystal membranes. Optics Express, 2013, 21, 7258.	1.7	32
209	Quantum dynamics of a nano-rod under compression. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1047-1051.	0.9	4
210	A general procedure for thermomechanical calibration of nano/micro-mechanical resonators. Annals of Physics, 2013, 339, 181-207.	1.0	121
211	Optomechanical light storage in a silica microresonator. Physical Review A, 2013, 87, .	1.0	78
212	Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 2013, 495, 210-214.	13.7	358
213	Coupled second-quantized oscillators. American Journal of Physics, 2013, 81, 267-273.	0.3	6
214	Phonon Lasing in an Electromechanical Resonator. Physical Review Letters, 2013, 110, 127202.	2.9	127
215	Quantum Information Processing with Nanomechanical Qubits. Physical Review Letters, 2013, 110, 120503.	2.9	122
216	Escape time characterization of pendular Fabry-Perot. Europhysics Letters, 2013, 101, 20005.	0.7	11
217	Cooling a charged mechanical resonator with time-dependent bias gate voltages. Journal of Physics Condensed Matter, 2013, 25, 142201.	0.7	13
218	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, .	1.0	32
218 219	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, . Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, .	1.0	32 35
218 219 220	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, . Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, . Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, .	1.0 1.0 1.0	32 35 60
218 219 220 221	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, . Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, . Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, . Full photon statistics of a light beam transmitted through an optomechanical system. Physical Review A, 2013, 87, .	1.0 1.0 1.0 1.0	 32 35 60 72
218 219 220 221 222	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, . Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, . Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, . Full photon statistics of a light beam transmitted through an optomechanical system. Physical Review A, 2013, 87, . Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, .	1.0 1.0 1.0 1.0	 32 35 60 72 146
218 219 220 221 222 222	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, . Selectable linear or quadratic coupling in an optomechanical system. Physical Review A, 2013, 87, . Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, . Full photon statistics of a light beam transmitted through an optomechanical system. Physical Review A, 2013, 87, . Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, . Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Physical Review A, 2013, 87, .	1.0 1.0 1.0 1.0 1.0 1.0	 32 35 60 72 146 151

#	Article	IF	CITATIONS
225	Optical Readout of the Quantum Collective Motion of an Array of Atomic Ensembles. Physical Review Letters, 2013, 110, 153001.	2.9	31
226	Achieving steady-state entanglement of remote micromechanical oscillators by cascaded cavity coupling. Physical Review A, 2013, 87, .	1.0	44
227	Quantum mechanical study of a generic quadratically coupled optomechanical system. Physical Review A, 2013, 87, .	1.0	33
228	Macroscopic Quantum Mechanics in a Classical Spacetime. Physical Review Letters, 2013, 110, 170401.	2.9	100
229	Cavity piezooptomechanics: Piezoelectrically excited, optically transduced optomechanical resonators. Applied Physics Letters, 2013, 102, 021110.	1.5	40
230	Oscillator-field model of moving mirrors in quantum optomechanics. Physical Review A, 2013, 87, .	1.0	21
231	Diamond-integrated optomechanical circuits. Nature Communications, 2013, 4, 1690.	5.8	75
232	A short walk through quantum optomechanics. Annalen Der Physik, 2013, 525, 215-233.	0.9	349
233	Enhancing non-classicality in mechanical systems. New Journal of Physics, 2013, 15, 033023.	1.2	17
234	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale. , 2013, , .		2
234 235	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale. , 2013, , . Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, .	1.0	2
234 235 236	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale. , 2013, , . Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, . Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207.	1.0	2 12 11
234 235 236 237	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale. , 2013, , . Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, . Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207. A Silicon Electromechanical Photodetector. Nano Letters, 2013, 13, 2760-2765.	1.0 2.9 4.5	2 12 11 16
234 235 236 237 238	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale., 2013, , . Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, . Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207. A Silicon Electromechanical Photodetector. Nano Letters, 2013, 13, 2760-2765. Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603.	1.0 2.9 4.5 2.9	2 12 11 16 134
234 235 236 237 238 239	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale., 2013, ,. Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, . Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207. A Silicon Electromechanical Photodetector. Nano Letters, 2013, 13, 2760-2765. Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603. Gain-tunable optomechanical cooling in a laser cavity. Physical Review A, 2013, 87, .	1.0 2.9 4.5 2.9 1.0	2 12 11 16 134 14
234 235 236 237 238 239	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale., 2013, , . Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, . Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207. A Silicon Electromechanical Photodetector. Nano Letters, 2013, 13, 2760-2765. Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603. Gain-tunable optomechanical cooling in a laser cavity. Physical Review A, 2013, 87, . Reservoir-Engineered Entanglement in Optomechanical Systems. Physical Review Letters, 2013, 110, 233601.	1.0 2.9 4.5 2.9 1.0 2.9	2 12 11 16 134 14 346
 234 235 236 237 238 239 240 241 	Phoxonic crystals: tailoring the light-sound interaction at the nanoscale., 2013,, Resonances in dissipative optomechanics with nanoparticles: Sorting, speed rectification, and transverse cooling. Physical Review A, 2013, 87, Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207. A Silicon Electromechanical Photodetector. Nano Letters, 2013, 13, 2760-2765. Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603. Gain-tunable optomechanical cooling in a laser cavity. Physical Review A, 2013, 87, . Reservoir-Engineered Entanglement in Optomechanical Systems. Physical Review Letters, 2013, 110, 253601. Ultra Low Power Consumption for Self-Oscillating Nanoelectromechanical Systems Constructed by Contacting Two Nanowires. Nano Letters, 2013, 13, 1451-1456.	1.0 2.9 4.5 2.9 1.0 2.9 4.5	2 12 11 16 134 14 346

#	Article	IF	CITATIONS
243	Mechanical resonators for storage and transfer of electrical and optical quantum states. Physical Review A, 2013, 87, .	1.0	64
244	Robust Photon Entanglement via Quantum Interference in Optomechanical Interfaces. Physical Review Letters, 2013, 110, 233602.	2.9	200
245	Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling. Physical Review B, 2013, 88, .	1.1	18
246	Nanoscale optomechanical sensors: Split-beam photonic crystal nanocavities. , 2013, , .		Ο
247	Coupling a small torsional oscillator to large optical angular momentum. Journal of Modern Optics, 2013, 60, 382-386.	0.6	23
248	Optomechanically Induced Transparency in the Nonlinear Quantum Regime. Physical Review Letters, 2013, 111, 133601.	2.9	182
249	Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. Journal of Optics (United Kingdom), 2013, 15, 025704.	1.0	47
250	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	0.7	104
251	Quantum degenerate Fermi gas entanglement in optomechanics. European Physical Journal D, 2013, 67, 1.	0.6	13
252	Multimode strong-coupling quantum optomechanics. Physical Review A, 2013, 88, .	1.0	47
253	Entangled mechanical cat states via conditional single photon optomechanics. New Journal of Physics, 2013, 15, 093007.	1.2	57
254	Observation of electromagnetically induced transparency in evanescent fields. Optics Express, 2013, 21, 6880.	1.7	14
255	Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction. Optics Express, 2013, 21, 11227.	1.7	44
256	Electromagnetically induced transparency and slow light in two-mode optomechanics. Optics Express, 2013, 21, 12165.	1.7	86
257	Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities. Optics Express, 2013, 21, 18398.	1.7	21
258	Waveguide coupled air-slot photonic crystal nanocavity for optomechanics. Optics Express, 2013, 21, 21961.	1.7	11
259	Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Optics Express, 2013, 21, 29695.	1.7	29
260	Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 1898.	0.9	21

#	Article	IF	CITATIONS
261	Quantized phonon modes in loaded polymer films. Journal of Applied Physics, 2013, 113, 033516.	1.1	2
262	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	1.2	45
263	Laser noise in cavity-optomechanical cooling and thermometry. New Journal of Physics, 2013, 15, 035007.	1.2	76
264	Multi-phonon relaxation and generation of quantum states in a nonlinear mechanical oscillator. New Journal of Physics, 2013, 15, 053041.	1.2	10
265	Antibunching photons in a cavity coupled to an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 035502.	0.6	91
266	Solid-state quantum optics with quantum dots in photonic nanostructures. Nanophotonics, 2013, 2, 39-55.	2.9	20
267	The effect of Landau–Zener dynamics on phonon lasing. New Journal of Physics, 2013, 15, 123022.	1.2	28
268	Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics. Physical Review Letters, 2013, 110, 153606.	2.9	203
269	Quantum State Orthogonalization and a Toolset for Quantum Optomechanical Phonon Control. Physical Review Letters, 2013, 110, 010504.	2.9	67
270	Optomechanical generation of a photonic Bose-Einstein condensate. Physical Review A, 2013, 88, .	1.0	13
271	Tunable Coupling to a Mechanical Oscillator Circuit Using a Coherent Feedback Network. Physical Review X, 2013, 3, .	2.8	40
272	Time-Continuous Bell Measurements. Physical Review Letters, 2013, 111, 170404.	2.9	24
273	Dark states of a moving mirror in the single-photon strong-coupling regime. Physical Review A, 2013, 87, .	1.0	29
274	Strong Optomechanical Squeezing of Light. Physical Review X, 2013, 3, .	2.8	266
275	Arbitrarily large steady-state bosonic squeezing via dissipation. Physical Review A, 2013, 88, .	1.0	193
276	Measurement of coupled cavities' optomechanical coupling coefficient using a nanoelectromechanical actuator. Applied Physics Letters, 2013, 102, .	1.5	18
277	Feedback and harmonic locking of slot-type optomechanical oscillators to external low-noise reference clocks. Applied Physics Letters, 2013, 102, .	1.5	10
278	Multi-mode parametric coupling in an electromechanical resonator. Applied Physics Letters, 2013, 103, .	1.5	32

ITATION P

#	Article	IF	Citations
279	Ground-state properties of a Bose-Einstein condensate in an optomechanical cavity. Physical Review A, 2013, 88, .	1.0	12
280	Shot-Noise-Limited Monitoring and Phase Locking of the Motion of a Single Trapped Ion. Physical Review Letters, 2013, 110, 133602.	2.9	12
281	Immersing carbon nanotubes in cold atomic gases. Physical Review A, 2013, 88, .	1.0	6
282	Anomalous dynamic backaction in interferometers. Physical Review A, 2013, 88, .	1.0	35
283	Quantum Many-Body Dynamics in Optomechanical Arrays. Physical Review Letters, 2013, 111, 073603.	2.9	246
284	Optical readout of coupling between a nanomembrane and an LC circuit at room temperature. , 2013, , .		0
285	Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield. Applied Physics Letters, 2013, 103, .	1.5	34
286	Controlling photons in a box and exploring the quantum to classical boundary. Annalen Der Physik, 2013, 525, 753-776.	0.9	16
287	Collectively enhanced optomechanical coupling in periodic arrays of scatterers. Physical Review A, 2013, 88, .	1.0	45
288	Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Physical Review Letters, 2013, 110, 120501.	2.9	147
289	Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics. Physical Review A, 2013, 88, .	1.0	79
290	Toward engineered quantum many-body phonon systems. Physical Review B, 2013, 88, .	1.1	8
291	Equivalence between an optomechanical system and a Kerr medium. Physical Review A, 2013, 88, .	1.0	96
292	Sensing and optomechanics using whispering gallery microbubble resonators. , 2013, , .		2
293	High- <i>Q</i> silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid. Applied Physics Letters, 2013, 103, .	1.5	22
294	Phase conjugation in quantum optomechanics. Physical Review A, 2013, 88, .	1.0	10
295	Nonclassical mechanical states in an optomechanical micromaser analog. Physical Review A, 2013, 88, .	1.0	43
296	Recent progress and perspectives of extremely low loss acoustic cavities: From frequency sources to artificial atoms. , 2013, , .		0

#	Article	IF	CITATIONS
297	High-sensitivity monitoring of nanomechanical motion using optical heterodyne detection. , 2013, , .		0
298	Nonlinear optical effects of ultrahigh-Q silicon photonic nanocavities immersed in superfluid helium. Scientific Reports, 2013, 3, 1436.	1.6	26
299	Cavity cooling of an optically levitated submicron particle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14180-14185.	3.3	264
300	Über die Kontrolle von Photonen im Kasten und die Erforschung des Übergangs von der Quanten―zur klassischen Welt (Nobelâ€Aufsatz). Angewandte Chemie, 2013, 125, 10344-10366.	1.6	Ο
301	No-go theorem for ground state cooling given initial system-thermal bath factorization. Scientific Reports, 2013, 3, 1824.	1.6	23
302	Hybrid atom-membrane optomechanics. EPJ Web of Conferences, 2013, 57, 03006.	0.1	2
303	Dynamical back-action at 5.5 GHz in a corrugated optomechanical beam. AIP Advances, 2014, 4, .	0.6	18
305	Classical non-Gaussian state preparation through squeezing in an optoelectromechanical resonator. Physical Review A, 2014, 90, .	1.0	26
306	Dynamical localization of matter waves in optomechanics. Laser Physics, 2014, 24, 115503.	0.6	12
307	Strong coupling of an optomechanical system to an anomalously dispersive atomic medium. Laser Physics Letters, 2014, 11, 126003.	0.6	4
308	Quantum correlations of quadratic optomechanical oscillator. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2390.	0.9	24
309	Reflectivity and transmissivity of a cavity coupled to a nanoparticle. International Journal of Quantum Information, 2014, 12, 1450025.	0.6	0
310	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064
311	Synchronizing a single-electron shuttle to an external drive. New Journal of Physics, 2014, 16, 043009.	1.2	6
312	Investigation on Planck scale physics by the AURIGA gravitational bar detector. New Journal of Physics, 2014, 16, 085012.	1.2	23
313	Optomechanical Crystal Devices. , 2014, , 195-231.		6
314	Nonclassical States of Light and Mechanics. , 2014, , 25-56.		8
315	Brillouin Optomechanics. , 2014, , 157-168.		0

#	Article	IF	CITATIONS
316	Coherent control and feedback cooling in a remotely coupled hybrid atom–optomechanical system. New Journal of Physics, 2014, 16, 083036.	1.2	32
317	Detection of weak forces based on noise-activated switching in bistable optomechanical systems. Physical Review A, 2014, 90, .	1.0	16
318	Phonon-induced dynamic resonance energy transfer. New Journal of Physics, 2014, 16, 053018.	1.2	12
319	Damping and non-linearity of a levitating magnet in rotation above a superconductor. New Journal of Physics, 2014, 16, 075011.	1.2	13
320	Problems with the Newton–Schrödinger equations. New Journal of Physics, 2014, 16, 085007.	1.2	77
321	Two-Atom Collisions and the Loading of Atoms in Microtraps. Entropy, 2014, 16, 582-606.	1.1	5
322	Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature. , 2014, , .		2
323	Multi-Ghz Bullseye Optomechanical Cavity. , 2014, , .		0
324	Brillouin scattering in silica microwires. , 2014, , .		0
325	A phononic bandgap shield for high- <i>Q</i> membrane microresonators. Applied Physics Letters, 2014, 104, .	1.5	71
326	Light-to-matter entanglement transfer in optomechanics. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2821.	0.9	86
327	Aerostatically tunable optomechanical oscillators. Optics Express, 2014, 22, 1267.	1.7	36
328	Modeling of optomechanical coupling in a phoxonic crystal cavity in diamond. Optics Express, 2014, 22, 12410.	1.7	32
329	Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. Optics	1.5	33
	Express, 2014, 22, 13773.	1.7	00
330	Express, 2014, 22, 13773. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 2014, 22, 14072.	1.7	77
330 331	 Express, 2014, 22, 13773. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 2014, 22, 14072. High-frequency acousto-optic effects in Bragg reflectors. Optics Express, 2014, 22, 15218. 	1.7	77
330 331 332	 Express, 2014, 22, 13773. Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 2014, 22, 14072. High-frequency acousto-optic effects in Bragg reflectors. Optics Express, 2014, 22, 15218. Breakdown of the linear acousto-optic interaction regime in phoxonic cavities. Optics Express, 2014, 22, 31595. 	1.7 1.7 1.7 1.7	77 4 23

#	ARTICLE	IF	CITATIONS
334	Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction. Physical Review A, 2014, 90, .	1.0	32
335	Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 2014, 116, 093506.	1.1	5
336	Single-photon time-dependent spectra in quantum optomechanics. Physical Review A, 2014, 90, .	1.0	25
337	Silicon optomechanical crystal resonator at millikelvin temperatures. Physical Review A, 2014, 90, .	1.0	89
338	Prospect of detecting single-photon-force effects in cavity optomechanics. Physical Review A, 2014, 89, .	1.0	10
339	Formation and manipulation of optomechanical chaos via a bichromatic driving. Physical Review A, 2014, 90, .	1.0	42
340	Enhancing Optomechanical Coupling via the Josephson Effect. Physical Review Letters, 2014, 112, .	2.9	101
341	Quantum-Limited Amplification and Parametric Instability in the Reversed Dissipation Regime of Cavity Optomechanics. Physical Review Letters, 2014, 113, 023604.	2.9	58
342	Cavity optomechanics in gallium phosphide microdisks. Applied Physics Letters, 2014, 104, .	1.5	40
343	Si 3 N 4 optomechanical crystals in the resolved-sideband regime. Applied Physics Letters, 2014, 104, .	1.5	35
344	Dissipation in Ultrahigh Quality Factor SiN Membrane Resonators. Physical Review Letters, 2014, 112, 127201.	2.9	84
345	Entangled-state generation and Bell inequality violations in nanomechanical resonators. Physical Review B, 2014, 90, .	1.1	32
346	Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime. Physical Review X, 2014, 4, .	2.8	51
347	High-Q silica zipper cavity for optical radiation pressure driven MOMS switch. AIP Advances, 2014, 4, 077137.	0.6	2
348	Oscillator tunneling dynamics in the Rabi model. Physical Review B, 2014, 89, .	1.1	26
349	Spectra of mechanical cavity modes in distributed Bragg reflector based vertical GaAs resonators. Physical Review B, 2014, 90, .	1.1	12
350	Design of single-mode waveguides for enhanced light-sound interaction in honeycomb-lattice silicon slabs. Journal of Applied Physics, 2014, 115, .	1.1	25
351	Detection of weak stochastic forces in a parametrically stabilized micro-optomechanical system. Physical Review A, 2014, 89, .	1.0	28

#	ARTICLE	IF	CITATIONS
352	Electromagnetically-induced-transparency control of single-atom motion in an optical cavity. Physical Review A, 2014, 89, .	1.0	32
353	Two-Mode Thermal-Noise Squeezing in an Electromechanical Resonator. Physical Review Letters, 2014, 113, 167203.	2.9	67
354	Multistability of a Josephson parametric amplifier coupled to a mechanical resonator. Physical Review B, 2014, 90, .	1.1	3
355	Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Physical Review A, 2014, 90, .	1.0	11
356	Dissipative and Dispersive Optomechanics in a Nanocavity Torque Sensor. Physical Review X, 2014, 4, .	2.8	104
357	Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Physical Review A, 2014, 90, .	1.0	149
358	Heralded Preparation and Readout of Entangled Phonons in a Photonic Crystal Cavity. Physical Review Letters, 2014, 113, 143603.	2.9	35
359	Dynamic stabilization of an optomechanical oscillator. Physical Review A, 2014, 90, .	1.0	8
360	Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105.	5.5	192
361	Polariton path to fully resonant dispersive coupling in optomechanical resonators. Physical Review B, 2014, 90, .	1.1	22
362	Eliminating anchor loss in optomechanical resonators using elastic wave interference. Applied Physics Letters, 2014, 105, .	1.5	18
363	Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Physical Review A, 2014, 90, .	1.0	32
364	Optimal efficiency of a noisy quantum heat engine. Physical Review E, 2014, 90, 012119.	0.8	27
365	Quantum networking of microwave photons using optical fibers. Physical Review A, 2014, 90, .	1.0	19
366	Observation and Interpretation of Motional Sideband Asymmetry in a Quantum Electromechanical Device. Physical Review X, 2014, 4, .	2.8	68
367	Noncanonical statistics of a finite quantum system with non-negligible system-bath coupling. Physical Review E, 2014, 90, 062125.	0.8	16
368	Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms. Applied Physics Letters, 2014, 105, 181121.	1.5	10
369	Optically mediated spatial localization of collective modes of two coupled cantilevers for high sensitivity optomechanical transducer. Applied Physics Letters, 2014, 105, 014108.	1.5	24

	CITATION REPORT	
Article	IF	CITATIONS
Generation of non-classical states of mirror motion in the single-photon strong-coupling regime Optics Express, 2014, 22, 18254.	e. 1.7	11
Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state monitoring its decoherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 045502.	e and , 47, 0.6	28
Cavity Optomechanics with Whispering-Gallery-Mode Microresonators. , 2014, , 121-148.		6
Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 413-440.	3, 2.9	82
Superconducting nano-mechanical diamond resonators. Carbon, 2014, 72, 100-105.	5.4	26
Quantum dynamics of two-optical modes and a single mechanical mode optomechanical syste Selective energy exchange. Optics Communications, 2014, 310, 204-211.	m: 1.0	3
Ultrasensitive Gas-Phase Chemical Sensing Based on Functionalized Photonic Crystal Nanobea Cavities. ACS Nano, 2014, 8, 522-527.	m 7.3	69
Testing the limits of quantum mechanical superpositions. Nature Physics, 2014, 10, 271-277.	6.5	283
Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotechnology, 2014, 9, 358-364.	15.6	151
Revisiting the Bragg reflector to illustrate modern developments in optics. American Journal of Physics, 2014, 82, 206-213.	0.3	8
Bidirectional and efficient conversion between microwave and optical light. Nature Physics, 20 321-326.	14, 10, 6.5	648
Two-Dimensional Phononic-Photonic Band Gap Optomechanical Crystal Cavity. Physical Review Letters, 2014, 112, 153603.	y 2.9	186
Characterization of Optomechanical RF frequency Mixing/Down-Conversion and its Application Photonic RF Receivers. Journal of Lightwave Technology, 2014, 32, 309-317.	ו in 2.7	11
Design of Silica Encapsulated High-Q Photonic Crystal Nanobeam Cavity. Journal of Lightwave Technology, 2014, 32, 952-958.	2.7	30
Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. Journ the Optical Society of America B: Optical Physics, 2014, 31, 1087.	nal of 0.9	44

386	Coherence properties of coupled optomechanical cavities. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1232.	0.9	6
387	Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities. Nano Letters, 2014, 14, 2854-2860.	4.5	146

Master equation for photon mediated phonon–atom coupled system. International Journal of Modern Physics B, 2014, 28, 1450123.

#

370

372

374

376

378

379

380

382

384

#	Article	IF	CITATIONS
388	A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime. New Journal of Physics, 2014, 16, 055008.	1.2	59
389	Nonlinear nanomechanical resonators for quantum optoelectromechanics. Physical Review A, 2014, 89, .	1.0	45
390	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .	1.0	38
391	Squeezing a Thermal Mechanical Oscillator by Stabilized Parametric Effect on the Optical Spring. Physical Review Letters, 2014, 112, 023601.	2.9	51
392	Single-Polariton Optomechanics. Physical Review Letters, 2014, 112, 013601.	2.9	123
393	Optical racetrack resonator transduction of nanomechanical cantilevers. Nanotechnology, 2014, 25, 055202.	1.3	18
394	Nanomechanical readout of a single spin. Physical Review B, 2014, 89, .	1.1	8
395	Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Physical Review A, 2014, 89, .	1.0	137
396	Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nature Physics, 2014, 10, 151-156.	6.5	120
397	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	1.0	58
398	Hybrid optomechanical cooling by atomic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î></mml:mi>systems. Physical Review A, 2014, 90, .</mml:math 	1.0	45
399	Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nature Nanotechnology, 2014, 9, 920-926.	15.6	77
400	Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Physical Review A, 2014, 89, .	1.0	101
401	Enhanced interaction between a mechanical oscillator and two coupled resonant electrical circuits. Review of Scientific Instruments, 2014, 85, 085005.	0.6	2
402	Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator. Physical Review Letters, 2014, 113, 020503.	2.9	251
403	Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime. Annals of Physics, 2014, 349, 43-54.	1.0	36
404	Optomechanical-like coupling between superconducting resonators. Physical Review A, 2014, 90, .	1.0	66
405	Noise estimate of pendular Fabry-Perot through reflectivity change. , 2014, , .		1

#	Article	IF	CITATIONS
406	Macroscopic Optomechanics from Displaced Single-Photon Entanglement. Physical Review Letters, 2014, 112, .	2.9	61
407	General-dyne unravelling of a thermal master equation. Russian Journal of Mathematical Physics, 2014, 21, 329-336.	0.4	14
408	Gravitational decoherence, alternative quantum theories and semiclassical gravity. Journal of Physics: Conference Series, 2014, 504, 012021.	0.3	19
409	Controlling photons in a box and exploring the quantum to classical boundary. International Journal of Modern Physics A, 2014, 29, 1430026.	0.5	2
410	Circuit optomechanics: concepts and materials. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1889-1898.	1.7	3
411	Modification of Akhieser mechanism in Si nanomembranes and thermal conductivity dependence of the <i>Q</i> -factor of high frequency nanoresonators. Semiconductor Science and Technology, 2014, 29, 124010.	1.0	15
412	Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. Physical Review A, 2014, 89, .	1.0	15
413	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	1.0	27
414	Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Physical Review A, 2014, 90, .	1.0	76
415	Photon propagation in a one-dimensional optomechanical lattice. Physical Review A, 2014, 89, .	1.0	36
416	Nanotube mechanical resonators with quality factors of up to 5 million. Nature Nanotechnology, 2014, 9, 1007-1011.	15.6	190
417	Capacitive coupling of two transmission line resonators mediated by the phonon number of a nanoelectromechanical oscillator. Physical Review A, 2014, 90, .	1.0	4
418	Radio-Wave Oscillations of Molecular-Chain Resonators. Physical Review Letters, 2014, 112, 117201.	2.9	14
419	Opto-nanomechanics strongly coupled to a Rydberg superatom: coherent versus incoherent dynamics. New Journal of Physics, 2014, 16, 063042.	1.2	37
420	Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Physical Review A, 2014, 90, .	1.0	169
421	Theory of an optomechanical quantum heat engine. Physical Review A, 2014, 90, .	1.0	47
422	Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotechnology, 2014, 9, 820-824.	15.6	217
423	A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5, 4452.	5.8	138

\mathbf{C}	TAT	ON	DEDC	NDT.
	IAI	UN	KEPU	жт

#	Article	IF	CITATIONS
424	Spectrometric reconstruction of mechanical-motional states in optomechanics. Physical Review A, 2014, 90, .	1.0	16
425	State transfer and entanglement of two mechanical oscillators in coupled cavity optomechanical system. Journal of Modern Optics, 2014, 61, 1180-1186.	0.6	14
426	Quantum trajectories and open many-body quantum systems. Advances in Physics, 2014, 63, 77-149.	35.9	477
427	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="script">PT </mml:mi </mml:mrow> </mml:math> -Symmetric Phonon Laser. Physical Review Letters, 2014, 113, 053604.	2.9	502
428	Optomechanical Micro-Macro Entanglement. Physical Review Letters, 2014, 112, .	2.9	69
429	Teleportation-induced entanglement of two nanomechanical oscillators coupled to a topological superconductor. Physical Review B, 2014, 89, .	1.1	7
430	A PhoXonic crystal: Photonic and phononic bandgaps in a 1D optomechanical crystal. , 2014, , .		0
431	Exponential localization of moving end mirror in optomechanics. Journal of Modern Optics, 2014, 61, 1318-1323.	0.6	18
432	Multimode laser cooling and ultra-high sensitivity force sensing with nanowires. Nature Communications, 2014, 5, 4663.	5.8	18
433	Free-space cavity optomechanics in a cryogenic environment. Applied Physics Letters, 2014, 104, 044102.	1.5	13
434	Design of silicon micro-resonators with low mechanical and optical losses for quantum optics experiments. Microsystem Technologies, 2014, 20, 907-917.	1.2	8
435	Lasing from active optomechanical resonators. Nature Communications, 2014, 5, 4038.	5.8	37
436	Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire. Nano Letters, 2014, 14, 4454-4460.	4.5	94
437	Triply resonant cavity electro-optomechanics at X-band. New Journal of Physics, 2014, 16, 063060.	1.2	16
438	Dissipative optomechanical squeezing of light. New Journal of Physics, 2014, 16, 063058.	1.2	64
439	Dynamic range of atomically thin vibrating nanomechanical resonators. Applied Physics Letters, 2014, 104, .	1.5	33
440	Quantum Optomechanical Heat Engine. Physical Review Letters, 2014, 112, 150602.	2.9	196
441	Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics. Physical Review Letters, 2014, 112, 143602.	2.9	109

		LFORT	
#	Article	IF	CITATIONS
442	Graphene Optomechanics Realized at Microwave Frequencies. Physical Review Letters, 2014, 113, 027404.	2.9	78
443	Modification on static responses of a nano-oscillator by quadratic optomechanical couplings. Science China: Physics, Mechanics and Astronomy, 2014, 57, 880-886.	2.0	14
444	Optical switching of optomechanically induced transparency and normal mode splitting in a double-cavity system. European Physical Journal D, 2014, 68, 1.	0.6	15
445	Robustness of continuous-variable entanglement via geometrical nonlinearity. Physical Review A, 2014, 90, .	1.0	11
446	Phonon waveguides for electromechanical circuits. Nature Nanotechnology, 2014, 9, 520-524.	15.6	118
447	Quantum transducer in circuit optomechanics. Solid State Communications, 2014, 198, 61-65.	0.9	7
448	High-Q optomechanical circuits made from polished nanocrystalline diamond thin films. Diamond and Related Materials, 2014, 44, 49-53.	1.8	10
449	Multidimensional optical trapping of a mirror. Physical Review D, 2014, 89, .	1.6	3
450	Deterministic quantum superpositions and Fock states of mechanical oscillators via quantum interference in single-photon cavity optomechanics. Physical Review A, 2014, 89, .	1.0	17
451	Probing Macroscopic Realism via Ramsey Correlation Measurements. Physical Review Letters, 2014, 112, 190402.	2.9	70
452	Nonlinear optomechanics in the stationary regime. Physical Review A, 2014, 89, .	1.0	58
453	High-Q silica zipper cavity with strong opto-mechanical coupling for optical radiation pressure driven directional switching. , 2014, , .		1
454	Circuit electromechanics with a non-metallized nanobeam. Applied Physics Letters, 2014, 105, .	1.5	5
455	"Snowflake Crystal―Traps Light and Sound. Physics Magazine, 2014, 7, .	0.1	0
456	Nano-scale optical actuation based on coupled one-dimensional photonic crystal cavities. , 2014, , .		0
457	Classical dynamics of a moving mirror due to radiation pressure. Journal of Physics: Conference Series, 2014, 512, 012005.	0.3	0
458	Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics. Optica, 2015, 2, 994.	4.8	28
459	Generation of cluster states in optomechanical quantum systems. Physical Review A, 2015, 92, .	1.0	41

	Сітатіоі	n Report	
Article		IF	Citations
Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters. Op 2015, 23, 30970.	otics Express,	1.7	28
Nanowire Architecture for Fast Electronic Devices. , 2015, , 175-220.			0
Enhanced optomechanical levitation of minimally supported dielectrics. Physical Review	м A, 2015, 91, .	1.0	10
Experimental exploration of the optomechanical attractor diagram and its dynamics. P A, 2015, 92, .	hysical Review	1.0	13
Mechanical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:m mathvariant="script">PT</mml:m </mml:math> symmetry in coupled optomechanical Review A, 2015, 92, .	ii systems. Physical	1.0	120
Limitations of a measurement-assisted optomechanical route to quantum macroscopic superposition states. Physical Review A, 2015, 92, .	city of	1.0	7
Continuous-variable entanglement mediated by a thermal oscillator. Physical Review A	, 2015, 92, .	1.0	4
Tunable photon blockade in a hybrid system consisting of an optomechanical device co two-level system. Physical Review A, 2015, 92, .	oupled to a	1.0	130

464	Mechanical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> symmetry in coupled optomechanical systems. Physical Review A, 2015, 92, .	1.0	120
465	Limitations of a measurement-assisted optomechanical route to quantum macroscopicity of superposition states. Physical Review A, 2015, 92, .	1.0	7
466	Continuous-variable entanglement mediated by a thermal oscillator. Physical Review A, 2015, 92, .	1.0	4
467	Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system. Physical Review A, 2015, 92, .	1.0	130
468	Noise suppression of on-chip mechanical resonators by chaotic coherent feedback. Physical Review A, 2015, 92, .	1.0	9
469	Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system. Physical Review A, 2015, 92, .	1.0	20
470	Optomechanically induced transparency and absorption in hybridized optomechanical systems. Physical Review A, 2015, 92, .	1.0	68
471	Remote macroscopic entanglement on a photonic crystal architecture. Physical Review A, 2015, 92, .	1.0	11
472	Suppression of Rabi oscillations in hybrid optomechanical systems. Physical Review A, 2015, 92, .	1.0	15
473	Multifrequency perturbations in matter-wave interferometry. Physical Review A, 2015, 92, .	1.0	8
474	Surface-plasmon-polariton–assisted dissipative backaction cooling and amplification. Physical Review A, 2015, 92, .	1.0	1
475	Hybrid Quantum Device Based on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>N</mml:mi><mml:mi>V</mml:mi></mml:math> Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities. Physical Review Applied, 2015, 4	1.5	71
476	Sensing Nanoparticles with a Cantilever-Based Scannable Optical Cavity of Low Finesse and Sub- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>î»</mml:mi>3</mml:msup></mml:math> Volume. Physical Review Applied, 2015, 4, .	1.5	41
477	Coherent manipulation of a Majorana qubit by a mechanical resonator. Physical Review B, 2015, 92, .	1.1	13

#

460

	Сітатіо	n Report	
#	Article	IF	Citations
478	Optomechanical response of a nonlinear mechanical resonator. Physical Review B, 2015, 92, .	1.1	8
479	Thermomechanical Two-Mode Squeezing in an Ultrahigh- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi>Membrane Resonator. Physical Review Letters, 2015, 115. 017202.</mml:math 	2.9	49
480	Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters, 2015, 115, 243601.	2.9	306
481	Cool and Heavy. Physics Magazine, 2015, 8, .	0.1	1
482	Frequency response of the Loschmidt echo decay in an open driven nonlinear oscillator. Europhysics Letters, 2015, 112, 30006.	0.7	0
483	Sub-Poissonian phonon lasing in three-mode optomechanics. Physical Review A, 2015, 91, .	1.0	24
484	Resonant interaction of trapped cold atoms with a magnetic cantilever tip. Physical Review A, 2015, 91, .	1.0	7
485	Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Physical Review A, 2015, 92, .	1.0	78
486	Low-Loss Optomechanical Oscillator for Quantum-Optics Experiments. Physical Review Applied, 2015, 3,	1.5	11
487	Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Physical Review B, 2015, 92, .	1.1	103
488	Confinement of gigahertz sound and light in Tamm plasmon resonators. Physical Review B, 2015, 92, .	1.1	9
489	Nonlinear Radiation Pressure Dynamics in an Optomechanical Crystal. Physical Review Letters, 2015, 115, 233601.	2.9	60
490	Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object. Physical Review X, 2015, 5, 041037.	2.8	204
491	Single-Crystal Diamond Nanobeam Waveguide Optomechanics. Physical Review X, 2015, 5, .	2.8	60
493	Work extraction from heat-powered quantized optomechanical setups. Scientific Reports, 2015, 5, 7809.	1.6	62
494	Dynamical backaction cooling with free electrons. Nature Communications, 2015, 6, 8104.	5.8	23
495	Circuit electromechanics with single photon strong coupling. Applied Physics Letters, 2015, 107, 023102.	1.5	18
496	Net on-chip Brillouin gain based on suspended silicon nanowires. New Journal of Physics, 2015, 17, 115005.	1.2	59

#	Article	IF	Citations
497	Strong optomechanical interactions in a sliced photonic crystal nanobeam. Scientific Reports, 2015, 5, 15974.	1.6	53
498	Strong Optomechanical Coupling in Nanobeam Cavities based on Hetero Optomechanical Crystals. Scientific Reports, 2015, 5, 15964.	1.6	29
499	Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering. Scientific Reports, 2015, 5, 12346.	1.6	11
500	Design and experimental demonstration of optomechanical paddle nanocavities. Applied Physics Letters, 2015, 107, 231107.	1.5	3
501	Time-varying metasurfaces and Lorentz non-reciprocity. Optical Materials Express, 2015, 5, 2459.	1.6	258
502	Targeting the immune system: a new horizon of cancer therapies. National Science Review, 2015, 2, 10-12.	4.6	2
503	Optical wavelength conversion via optomechanical coupling in a silica resonator. Annalen Der Physik, 2015, 527, 100-106.	0.9	33
504	Squeezingâ€enhanced measurement sensitivity in a cavity optomechanical system. Annalen Der Physik, 2015, 527, 107-114.	0.9	11
505	Dynamical backâ€action effects in low loss optomechanical oscillators. Annalen Der Physik, 2015, 527, 89-99.	0.9	4
506	Temperature measurement and phonon number statistics of a nanoelectromechanical resonator. New Journal of Physics, 2015, 17, 093010.	1.2	1
507	Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2385-2399.	0.8	47
508	Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms. Atoms, 2015, 3, 450-473.	0.7	2
509	An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset. Scientific Reports, 2014, 4, 6842.	1.6	46
510	A proposal for the experimental detection of CSL induced random walk. Scientific Reports, 2015, 5, 7664.	1.6	25
511	Sensitivity of optical mass sensor enhanced by optomechanical coupling. Applied Physics Letters, 2015, 106, .	1.5	38
512	Experimental evidence for Abraham pressure of light. New Journal of Physics, 2015, 17, 053035.	1.2	41
513	Controllable optical response in hybrid opto-electromechanical systems. Chinese Physics B, 2015, 24, 054206.	0.7	6
514	Time-resolved phase-space tomography of an optomechanical cavity. Physical Review A, 2015, 91,	1.0	6

#	Article	IF	Citations
515	Coherent-feedback-induced controllable optical bistability and photon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 105501.	0.6	12
516	Control of coherent information via on-chip photonic–phononic emitter–receivers. Nature Communications, 2015, 6, 6427.	5.8	128
517	Optomechanical Dirac physics. New Journal of Physics, 2015, 17, 023025.	1.2	35
518	Rocking at the nanoscale. Nature Nanotechnology, 2015, 10, 489-490.	15.6	0
519	A 10-GHz film-thickness-mode cavity optomechanical resonator. Applied Physics Letters, 2015, 106, .	1.5	21
520	Quantum state transfer between remote nanomechanical qubits. European Physical Journal D, 2015, 69, 1.	0.6	2
521	Optical Nonreciprocity in Asymmetric Optomechanical Couplers. Scientific Reports, 2015, 5, 8657.	1.6	51
522	Exciton-Polariton Gas as a Nonequilibrium Coolant. Physical Review Letters, 2015, 114, 186403.	2.9	25
523	Si <inline-formula><tex-math>\$_{f 3}\$</tex-math></inline-formula> N <inline-formula> <tex-math>\$_{f 4}\$</tex-math></inline-formula> Nanobeam Optomechanical Crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 61-71.	1.9	19
524	Large parametric amplification in an optomechanical system. Physica Scripta, 2015, T165, 014003.	1.2	2
525	Suspended photonic waveguide devices. Applied Optics, 2015, 54, F164.	2.1	18
526	Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter. Journal of Experimental and Theoretical Physics, 2015, 121, 793-798.	0.2	2
527	Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion. Physical Review X, 2015, 5, .	2.8	84
528	Rotation of two trapped microparticles in vacuum: observation of optically mediated parametric resonances. Optics Letters, 2015, 40, 4751.	1.7	24
529	Topological Phases of Sound and Light. Physical Review X, 2015, 5, .	2.8	244
530	Detection of genuine tripartite entanglement and steering in hybrid optomechanics. Optics Express, 2015, 23, 30104.	1.7	14
531	Quantum control gate in cavity optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 015502.	0.6	14
532	Route to Chaos in Optomechanics. Physical Review Letters, 2015, 114, 013601.	2.9	104

#	Article	IF	CITATIONS
533	Quantum nonlinear optics near optomechanical instabilities. Physical Review A, 2015, 91, .	1.0	31
534	Optical Lattice Model Toward Nonreciprocal Invisibility Cloaking. IEEE Journal of Quantum Electronics, 2015, 51, 1-10.	1.0	9
535	Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-13.	2.0	97
536	Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	20
537	Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photonics, 2015, 9, 199-203.	15.6	283
538	Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states. Physical Review A, 2015, 91, .	1.0	4
539	Optomechanically induced transparency associated with steady-state entanglement. Physical Review A, 2015, 91, .	1.0	23
540	Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Physical Review A, 2015, 91, .	1.0	165
541	Observation of Generalized Optomechanical Coupling and Cooling on Cavity Resonance. Physical Review Letters, 2015, 114, 043601.	2.9	89
542	Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .	1.0	24
543	Cascaded optical transparency in multimode-cavity optomechanical systems. Nature Communications, 2015, 6, 5850.	5.8	111
544	Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Optics (United Kingdom), 2015, 17, 045001.	1.0	31
545	Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Physical Review Letters, 2015, 114, 093602.	2.9	268
546	Towards optomechanical quantum state reconstruction of mechanical motion. Annalen Der Physik, 2015, 527, 15-26.	0.9	46
547	Manipulating a micro-cantilever between its optomechanical bistable states in a lever-based Fabry-Pérot cavity. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-5.	2.0	4
548	Optomechanically-induced transparency in parity-time-symmetric microresonators. Scientific Reports, 2015, 5, 9663.	1.6	261
549	Optomechanically induced transparency in the presence of an external time-harmonic-driving force. Scientific Reports, 2015, 5, 11278.	1.6	58
550	Einstein-Podolsky-Rosen–entangled motion of two massive objects. Physical Review A, 2015, 92, . 	1.0	32

#	Article	IF	CITATIONS
551	Nonlinear optical response of cavity optomechanical system with second-order coupling. Applied Optics, 2015, 54, 4623.	0.9	25
552	Quantum walks on a circle with optomechanical systems. Quantum Information Processing, 2015, 14, 3595-3611.	1.0	13
553	Macroscopic quantum oscillator based on a flux qubit. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2001-2006.	0.9	3
554	Asymmetric response function of the transduction spectrum for a microsphere pendulum. Proceedings of SPIE, 2015, , .	0.8	0
555	All-Optical Nanomechanical Heat Engine. Physical Review Letters, 2015, 114, 183602.	2.9	105
556	Entanglement of two movable mirrors with a single photon superposition state. Physica Scripta, 2015, 90, 074015.	1.2	8
557	Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Physical Review A, 2015, 91, .	1.0	91
558	Cold atoms as a coolant for levitated optomechanical systems. Physical Review A, 2015, 91, .	1.0	25
559	Macroscopic optomechanical superposition via periodic qubit flipping. Physical Review A, 2015, 91, .	1.0	27
560	Strong Single-Photon Coupling in Superconducting Quantum Magnetomechanics. Physical Review Letters, 2015, 114, 143602.	2.9	23
561	Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator. Review of Scientific Instruments, 2015, 86, 013107.	0.6	15
562	Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Physical Review A, 2015, 91, .	1.0	49
563	Cavity Cooling a Single Charged Levitated Nanosphere. Physical Review Letters, 2015, 114, 123602.	2.9	228
564	Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics. Physical Review A, 2015, 91, .	1.0	31
565	Heat transport in harmonic oscillator systems with thermal baths: application to optomechanical arrays. New Journal of Physics, 2015, 17, 055013.	1.2	39
566	Optomechanical laser cooling with mechanical modulations. Physical Review A, 2015, 91, .	1.0	28
567	Probing deformed commutators with macroscopic harmonic oscillators. Nature Communications, 2015, 6, 7503.	5.8	116
568	Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nature Physics, 2015, 11, 635-639.	6.5	83

#	Article	IF	CITATIONS
569	Circuit analog of quadratic optomechanics. Physical Review A, 2015, 91, .	1.0	53
570	Efficient sympathetic motional-ground-state cooling of a molecular ion. Physical Review A, 2015, 91, .	1.0	42
571	Robust entanglement with a thermal mechanical oscillator. Physical Review A, 2015, 91, .	1.0	11
572	Observation of three-mode parametric instability. Physical Review A, 2015, 91, .	1.0	19
573	Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions. Physical Review A, 2015, 91, .	1.0	23
574	Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics. Scientific Reports, 2015, 5, 10612.	1.6	28
575	Large distance continuous variable communication with concatenated swaps. Physica Scripta, 2015, 90, 074055.	1.2	16
576	Squeezing of mechanical motion via qubit-assisted control. New Journal of Physics, 2015, 17, 013034.	1.2	9
577	Quantum coherence in ultrastrong optomechanics. Physical Review A, 2015, 91, .	1.0	52
578	Fourier synthesis of radiofrequency nanomechanical pulses with different shapes. Nature Nanotechnology, 2015, 10, 512-516.	15.6	65
579	Transforming the optical landscape. Science, 2015, 348, 521-524.	6.0	101
580	Nanophotonics: Shrinking light-based technology. Science, 2015, 348, 516-521.	6.0	463
581	Hybrid opto-mechanical systems with nitrogen-vacancy centers. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-12.	2.0	48
582	Entanglement concentration with strong projective measurement in an optomechanical system. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	25
583	Fast cooling in dispersively and dissipatively coupled optomechanics. Scientific Reports, 2015, 5, 7745.	1.6	5
584	Phonon counting and intensity interferometry of a nanomechanical resonator. Nature, 2015, 520, 522-525.	13.7	163
585	Cavity optomechanics mediated by a quantum two-level system. Nature Communications, 2015, 6, 6981.	5.8	173
586	Effect of laser phase noise on the fidelity of optomechanical quantum memory. Physical Review A, 2015, 91, .	1.0	6

#	Article	IF	CITATIONS
587	Entanglement-enhanced time-continuous quantum control in optomechanics. Physical Review A, 2015, 91, .	1.0	44
588	Multimode optomechanical dynamics in a cavity with avoided crossings. Nature Communications, 2015, 6, 6232.	5.8	64
589	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	5.8	65
590	Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Optics Express, 2015, 23, 3196.	1.7	52
591	Quantum dynamics in a tiered non-Markovian environment. New Journal of Physics, 2015, 17, 023063.	1.2	11
592	Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement. Nature Physics, 2015, 11, 389-392.	6.5	92
593	Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3866-3873.	3.3	568
594	Interconversion of photon-phonon in a silica optomechanical microresonator. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	4
595	Equations of a moving mirror and the electromagnetic field. Physica Scripta, 2015, 90, 068011.	1.2	4
596	Optical driven electromechanical transistor based on tunneling effect. Optics Letters, 2015, 40, 1798.	1.7	7
597	Quantum optomechanical piston engines powered by heat. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 175501.	0.6	47
598	Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements. New Journal of Physics, 2015, 17, 073019.	1.2	31
599	Optomechanical interfaces for hybrid quantum networks. National Science Review, 2015, 2, 510-519.	4.6	48
600	Optical side-band cooling of a low frequency optomechanical system. Optics Express, 2015, 23, 8014.	1.7	23
601	Design of a femtogram scale double-slot photonic crystal optomechanical cavity. Optics Express, 2015, 23, 23167.	1.7	4
602	Tuning of nanocavity optomechanical coupling using a near-field fiber probe. Optica, 2015, 2, 491.	4.8	29
603	Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz. Optica, 2015, 2, 826.	4.8	72
604	Wavelength-division multiplexing of nano-optomechanical doubly clamped beam systems. Optics Letters, 2015, 40, 1948.	1.7	8

#	Article	IF	CITATIONS
605	Engineering optomechanical normal modes for single-phonon transfer and entanglement preparation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 588.	0.9	7
606	Electronically controlled plasmonic switch using a nanomechanical oscillator and metallic nanoparticle hybrid system. Laser Physics Letters, 2015, 12, 105202.	0.6	1
607	Piezoelectric actuation of aluminum nitride contour mode optomechanical resonators. Optics Express, 2015, 23, 15477.	1.7	18
608	Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots. Optics Express, 2015, 23, 21306.	1.7	6
609	Nonlinear optomechanical paddle nanocavities. Optica, 2015, 2, 271.	4.8	35
610	Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2015, 2, 635.	4.8	131
611	Macroscopic mechanical systems are entering the quantum world. National Science Review, 2015, 2, 9-10.	4.6	5
612	Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures. Nature Communications, 2015, 6, 8478.	5.8	24
613	Observation of high-Q optomechanical modes in the mounted silica microspheres. Photonics Research, 2015, 3, 243.	3.4	17
614	Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature, 2015, 524, 325-329.	13.7	245
615	Quantitative measurement of radiation pressure on a microcantilever in ambient environment. Applied Physics Letters, 2015, 106, 091107.	1.5	36
616	Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection. Applied Physics Letters, 2015, 106, .	1.5	5
617	Edge waves and resonances in two-dimensional phononic crystal plates. Journal of Applied Physics, 2015, 117, 174504.	1.1	8
618	Optomechanical coupling in phoxonic–plasmonic slab cavities with periodic metal strips. Journal of Applied Physics, 2015, 117, 173105.	1.1	11
619	Dynamics and transmissivity of optomechanical system in squeezed environment. International Journal of Modern Physics B, 2015, 29, 1550201.	1.0	2
620	Progress towards quantum state transfer between microwave and optical light using an electro-optomechanical resonator. , 2015, , .		0
621	Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature Communications, 2015, 6, 8491.	5.8	74
622	Multimode phononic correlations in a nondegenerate parametric amplifier. New Journal of Physics, 2015, 17, 063018.	1.2	5

		CITATION REPORT		
#	Article		IF	Citations
623	Low loss optomechanical cavities based on silicon oscillator. Proceedings of SPIE, 201	5, , .	0.8	0
624	Real-time emission spectrum of a hybrid atom-optomechanical cavity. Journal of the O America B: Optical Physics, 2015, 32, 1604.	ptical Society of	0.9	16
625	Theoretical scheme for the realization of the sphere-coherent motional states in an ato optomechanical cavity. Journal of the Optical Society of America B: Optical Physics, 20	om-assisted 115, 32, 1360.	0.9	4
626	Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nat 2015, 9, 653-657.	ure Photonics,	15.6	119
627	Frozen motion. Nature Physics, 2015, 11, 710-711.		6.5	0
628	Observation of non-Markovian micromechanical Brownian motion. Nature Communica 7606.	ations, 2015, 6,	5.8	141
629	Nonlinear optomechanical paddle nanocavities. , 2015, , .			0
630	Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity. Phys 2015, 5, .	ical Review X,	2.8	72
631	Optoelectromechanical transducer: Reversible conversion between microwave and op Annalen Der Physik, 2015, 527, 1-14.	tical photons.	0.9	77
632	Classification of macroscopic quantum effects. Optics Communications, 2015, 337, 2	2-26.	1.0	17
633	Resolvent method on the single-photon optomechanical cooling. Optics Communicati 28-31.	ons, 2015, 341,	1.0	6
634	Classical and fluctuationâ€induced electromagnetic interactions in micronâ€scale syst bonding, antibonding, and Casimir forces. Annalen Der Physik, 2015, 527, 45-80.	tems: designer	0.9	45
635	Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic syster Nanotechnology, 2015, 10, 55-59.	n. Nature	15.6	105
636	Normal-mode splitting and output-field squeezing in a Kerr-down conversion optomec Journal of Modern Optics, 2015, 62, 114-124.	hanical system.	0.6	16
637	Generation and detection of gigahertz acoustic oscillations in thin membranes. Ultrase 109-115.	onics, 2015, 56,	2.1	14
638	More nonlocality with less entanglement in a tripartite atomâ€optomechanical system Physik, 2015, 527, 147-155.	1. Annalen Der	0.9	29
639	An Optomechanical Elevator: Transport of a Bloch Oscillating Bose–Einstein Conder down an Optical Lattice by Cavity Sideband Amplification and Cooling. Atoms, 2016, 4	isate up and 1, 2.	0.7	5
640	Optomechanical oscillator pumped and probed by optically two isolated photonic crys systems. Optics Express, 2016, 24, 28039.	tal cavity	1.7	4
		ITATION REP	PORT	
-----	--	-------------	------	-----------
#	Article		IF	CITATIONS
641	Single-crystal diamond low-dissipation cavity optomechanics. Optica, 2016, 3, 963.		4.8	67
642	Optical bistability and dynamics in an optomechanical system with a two-level atom. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2099.		0.9	29
643	Quantum and classical control of single photon states via a mechanical resonator. New Journal of Physics, 2016, 18, 063023.		1.2	2
644	A quantum optomechanical interface beyond the resolved sideband limit. New Journal of Physics, 20 18, 053030.	16,	1.2	36
645	Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photonics, 2016, 10, 600-605.		15.6	42
646	Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems. Chinese Physics B, 2016, 25, 054204.		0.7	7
647	Diamond optomechanical crystals. Optica, 2016, 3, 1404.		4.8	125
648	Classical dynamical gauge fields in optomechanics. New Journal of Physics, 2016, 18, 113029.		1.2	30
649	Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104.		1.3	9
650	Optomechanics with a polarization nondegenerate cavity. Physical Review A, 2016, 94, .		1.0	8
651	Pulsed quantum interaction between two distant mechanical oscillators. Physical Review A, 2016, 94	4, .	1.0	12
652	Light storage and cavity supermodes in two coupled optomechanical cavities. Physical Review A, 20 94, .	16,	1.0	11
653	Proposal for a quantum delayed-choice experiment with a spin-mechanical setup. Physical Review A, 2016, 94, .		1.0	4
654	Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nature Communications, 2016, 7, 13662.		5.8	282
655	Approaching the standard quantum limit of mechanical torque sensing. Nature Communications, 20 7, 13165.	116,	5.8	56
656	Theoretical framework for thin film superfluid optomechanics: towards the quantum regime. New Journal of Physics, 2016, 18, 123025.		1.2	21
657	When do perturbative approaches accurately capture the dynamics of complex quantum systems?. Scientific Reports, 2016, 6, 28204.		1.6	20
658	Cooling the mechanical motion of a tapered optical fiber and a microsphere-cantilever using whispering gallery modes. Proceedings of SPIE, 2016, , .		0.8	0

~		~	
(11		1JED(דסר
\sim	IAL	NLP	ואכ

#	Article	IF	CITATIONS
659	Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg's microscope. Journal of Optics (United Kingdom), 2016, 18, 084004.	1.0	13
660	Quantum measurements in gravitational-wave detectors. Physics-Uspekhi, 2016, 59, 968-996.	0.8	5
661	Force sensitivity of multilayer graphene optomechanical devices. Nature Communications, 2016, 7, 12496.	5.8	118
662	Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nature Communications, 2016, 7, 11338.	5.8	124
663	Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode. Scientific Reports, 2016, 6, 31489.	1.6	8
664	Efficient cooling of quantized vibrations using a four-level configuration. Physical Review A, 2016, 94, .	1.0	7
665	Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New Journal of Physics, 2016, 18, 083034.	1.2	91
666	Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. Scientific Reports, 2016, 6, 35381.	1.6	16
667	Engineering single-phonon number states of a mechanical oscillator via photon subtraction. Physical Review A, 2016, 94, .	1.0	11
668	Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Physical Review A, 2016, 94, .	1.0	7
669	Quantum Optomechanics. Progress in Optics, 2016, 61, 113-236.	0.4	17
670	Evolution of a quantum harmonic oscillator coupled to a minimal thermal environment. Physica A: Statistical Mechanics and Its Applications, 2016, 459, 78-85.	1.2	6
671	Thermalization and Bose–Einstein condensation of a photon gas in a multimode hybrid atom-membrane optomechanical microcavity. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1242.	0.9	6
672	Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system. Optics Communications, 2016, 376, 21-25.	1.0	1
673	Macroscopic Quantum Resonators (MAQRO): 2015 update. EPJ Quantum Technology, 2016, 3, .	2.9	77
674	Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photonics, 2016, 10, 399-405.	15.6	185
675	Optimal control of the power adiabatic stroke of an optomechanical heat engine. Physical Review E, 2016, 94, 022141.	0.8	13
676	Acoustic confinement in superlattice cavities. Physical Review A, 2016, 94, .	1.0	12

#	Article	IF	CITATIONS
677	Prospects of charged-oscillator quantum-state generation with Rydberg atoms. Physical Review A, 2016, 94, .	1.0	3
678	Heterodyne photodetection measurements on cavity optomechanical systems: Interpretation of sideband asymmetry and limits to a classical explanation. Physical Review A, 2016, 94, .	1.0	16
679	Evolution of an electromagnetic field in the presence of a mobile membrane. Physical Review A, 2016, 94, .	1.0	0
680	Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system. Journal of Optics (United Kingdom), 2016, 18, 104003.	1.0	8
681	Cooling Mechanical Oscillators by Coherent Control. Physical Review Letters, 2016, 117, 163601.	2.9	37
682	Cooling and manipulation of nanoparticles in high vacuum. Proceedings of SPIE, 2016, , .	0.8	6
683	Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond. Physical Review Applied, 2016, 6, .	1.5	68
684	Strong quantum squeezing near the pull-in instability of a nonlinear beam. Physical Review A, 2016, 94,	1.0	5
685	Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform. Physical Review Applied, 2016, 6, .	1.5	16
686	Quantum simulation of the Anderson Hamiltonian with an array of coupled nanoresonators: delocalization and thermalization effects. EPJ Quantum Technology, 2016, 3, .	2.9	7
687	Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband regime via a dissipatively coupled oscillator. Physical Review A, 2016, 94, .	1.0	10
688	Realization of quantum information processing in quantum star network constituted by superconducting hybrid systems. Physica A: Statistical Mechanics and Its Applications, 2016, 463, 427-436.	1.2	2
689	Design of tunable GHz-frequency optomechanical crystal resonators. Optics Express, 2016, 24, 11407.	1.7	17
690	Editorial: Hybridizing Quantum Physics and Engineering. Physical Review Letters, 2016, 117, 100001.	2.9	14
691	Optical pulling using evanescent mode in sub-wavelength channels. Optics Express, 2016, 24, 18436.	1.7	30
692	Heralded Control of Mechanical Motion by Single Spins. Physical Review Letters, 2016, 117, 077203.	2.9	26
693	Laser cooling of a high-temperature oscillator by a three-level system. Physical Review B, 2016, 94, .	1.1	7
694	Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Physical Review A, 2016, 94, .	1.0	37

		CITATION REPORT	
#	Article	IF	Citations
695	Slow light and slow acoustic phonons in optophononic resonators. Physical Review B, 2016, 94, .	1.1	4
696	An electromechanical Ising Hamiltonian. Science Advances, 2016, 2, e1600236.	4.7	73
697	Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities. Scientific Reports, 2016, 6, 19065.	1.6	15
698	Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3 loop-gap cavity. New Journal of Physics, 2016, 18, 103036.	8D 1.2	36
699	Decoherence by coupling to internal vibrational modes. Physical Review A, 2016, 94, .	1.0	3
700	Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics. Physical Review Letters, 2016, 117, 123603.	2.9	53
702	Nonlinear dynamics and cavity cooling of levitated nanoparticles. Proceedings of SPIE, 2016, , .	0.8	3
703	Trampolines Sense a Disturbance in the Force. Physics Magazine, 2016, 9, .	0.1	2
704	Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechan Journal of Optics (United Kingdom), 2016, 18, 084001.	nics. 1.0	25
705	Generalized analysis of quantum noise and dynamic backaction in signal-recycled Michelson-type la interferometers. Physical Review A, 2016, 94, .	ser 1.0	8
706	Solid-state-based analog of optomechanics. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1492.	0.9	9
707	Triple optomechanical induced transparency in a two-cavity system. Chinese Physics B, 2016, 25, 0	54203. 0.7	10
708	Tunable multiphonon blockade in coupled nanomechanical resonators. Physical Review A, 2016, 93	,. 1.0	83
709	Ultrastrong optomechanics incorporating the dynamical Casimir effect. Physical Review A, 2016, 93	8,. 1.0	22
710	Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Physical Review A, 2016, 93, .	1.0	103
711	Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016,	93, . 1.0	21
712	Nonclassical non-Gaussian state of a mechanical resonator via selectively incoherent damping in a three-mode optomechanical system. Physical Review A, 2016, 93, .	1.0	3
713	Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators. Physical Review A, 2016, 93, .	1.0	12

#	Article	IF	Citations
714	Optimizing the output-photon entanglement in multimode optomechanical systems. Physical Review A, 2016, 93, .	1.0	29
715	Ground-state cooling of micromechanical oscillators in the unresolved-sideband regime induced by a quantum well. Physical Review A, 2016, 93, .	1.0	27
716	Phonon Josephson junction with nanomechanical resonators. Physical Review A, 2016, 93, .	1.0	19
717	Generation of macroscopic SchrĶdinger-cat states in qubit-oscillator systems. Physical Review A, 2016, 93, .	1.0	48
718	Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir. Physical Review A, 2016, 93, .	1.0	35
719	Strong mechanical squeezing and its detection. Physical Review A, 2016, 93, .	1.0	119
720	Optically defined mechanical geometry. Physical Review A, 2016, 93, .	1.0	7
721	Unifying Brillouin scattering and cavity optomechanics. Physical Review A, 2016, 93, .	1.0	50
722	Quantum state transfer in optomechanical arrays. Physical Review A, 2016, 93, .	1.0	39
723	Noise and dynamics in forward Brillouin interactions. Physical Review A, 2016, 93, .	1.0	32
724	Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Physical Review A, 2016, 93, .	1.0	54
725	Surface acoustic wave resonators in the quantum regime. Physical Review B, 2016, 93, .	1.1	68
726	Quantum model for entropic springs. Physical Review B, 2016, 93, .	1.1	2
727	Quartz-superconductor quantum electromechanical system. Physical Review B, 2016, 93, .	1.1	9
728	Proposal for an Optomechanical Bell Test. Physical Review Letters, 2016, 116, 070405.	2.9	32
729	Proposal to Test Bell's Inequality in Electromechanics. Physical Review Letters, 2016, 116, 070406.	2.9	18
730	Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers. Physical Review Letters, 2016, 116, 090402.	2.9	85
731	Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. Physical Review Letters, 2016, 116, 147202.	2.9	240

#	Article	IF	Citations
732	Macroscopic Quantum Superposition in Cavity Optomechanics. Physical Review Letters, 2016, 116, 163602.	2.9	139
733	Deterministic Single-Phonon Source Triggered by a Single Photon. Physical Review Letters, 2016, 116, 234301.	2.9	15
734	Direct Measurement of Photon Recoil from a Levitated Nanoparticle. Physical Review Letters, 2016, 116, 243601.	2.9	239
735	Microphotonic Forces from Superfluid Flow. Physical Review X, 2016, 6, .	2.8	13
736	Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Physical Review A, 2016, 93, .	1.0	29
737	Observation of optomechanical coupling in a microbottle resonator. Laser and Photonics Reviews, 2016, 10, 603-611.	4.4	32
738	Optomechanics and thermometry of cryogenic silica microresonators. Physical Review A, 2016, 93, .	1.0	15
739	Response of a mechanical oscillator in an optomechanical cavity driven by a finite-bandwidth squeezed vacuum excitation. Physical Review A, 2016, 93, .	1.0	8
740	Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems. Physical Review A, 2016, 93, .	1.0	24
741	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microca for Heisenberg-Limited Displacement Sensing, Physical Review Applied, 2016, 5, .</mml:math 	vity ⁵	48
742	Dynamical Two-Mode Squeezing of Thermal Fluctuations in a Cavity Optomechanical System. Physical Review Letters, 2016, 116, 103601.	2.9	57
743	Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution. Physical Review Letters, 2016, 116, 183602.	2.9	33
744	Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes. Physical Review Letters, 2016, 117, 015502.	2.9	127
745	Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics. Physical Review X, 2016, 6,	2.8	119
746	Large Cavity-Optomechanical Coupling with Graphene at Infrared and Terahertz Frequencies. ACS Photonics, 2016, 3, 2353-2361.	3.2	9
747	Chip-scale cavity optomechanics in lithium niobate. Scientific Reports, 2016, 6, 36920.	1.6	38
748	Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination. Scientific Reports, 2016, 6, 35583.	1.6	7
749	Brillouin scattering self-cancellation. Nature Communications, 2016, 7, 11759.	5.8	85

#	ARTICLE	IF	Citations
750	Detecting macroscopic quantum coherence with a cavity optomechanical system. Physical Review A, 2016, 94, .	1.0	40
751	A simple and tunable switch between slow- and fast-light in two signal modes with an optomechanical system. Laser Physics Letters, 2016, 13, 125301.	0.6	11
752	Extended Bose-Hubbard model with pair hopping induced by a quadratically coupled optomechanical system. Physical Review A, 2016, 94, .	1.0	3
753	Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Science Advances, 2016, 2, e1600485.	4.7	31
754	Piezo-optomechanical circuits. , 2016, , .		0
755	Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator. Nature Communications, 2016, 7, 12694.	5.8	28
756	Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics. Scientific Reports, 2016, 6, 22651.	1.6	42
757	Sympathetic laser cooling of graphene with Casimir-Polder forces. Physical Review A, 2016, 94, .	1.0	5
758	Parametric amplification of light in a cavity with a moving dielectric membrane: Landau-Zener problem for the Maxwell field. Physical Review A, 2016, 94, .	1.0	3
759	Ultrasensitive mass sensing method based on slow light in cavity optomechanics. Applied Physics Express, 2016, 9, 052205.	1.1	3
760	Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Scientific Reports, 2016, 6, 28830.	1.6	36
761	Proposal for Laser Cooling of Complex Polyatomic Molecules. ChemPhysChem, 2016, 17, 3641-3648.	1.0	82
762	Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. Physical Review Letters, 2016, 117, 173602.	2.9	119
763	Preparation of vibrational quantum states in nanomechanical graphene resonator. Laser Physics, 2016, 26, 115204.	0.6	5
764	Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment. Scientific Reports, 2016, 6, 23678.	1.6	31
765	Classical analog of Stückelberg interferometry in a two-coupled-cantilever–based optomechanical system. Physical Review A, 2016, 94, .	1.0	18
766	Quality-Factor Enhancement of Nanoelectromechanical Systems by Capacitive Driving Beyond Resonance. Physical Review Applied, 2016, 6, .	1.5	5
767	Heat control in opto-mechanical system using quantum non-classicality. AIP Conference Proceedings, 2016, , .	0.3	0

	Сітаті	on Report	
#	Article	IF	CITATIONS
768	An electromechanical displacement transducer. Applied Physics Express, 2016, 9, 086701.	1.1	2
769	Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate. Scientific Reports, 2016, 6, 37134.	1.6	5
770	Radiation pressure force from optical cycling on a polyatomic molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 134002.	0.6	28
771	Split-sideband spectroscopy in slowly modulated optomechanics. New Journal of Physics, 2016, 18, 113021.	1.2	19
772	Damped vacuum states of light. Journal of Optics (United Kingdom), 2016, 18, 095201.	1.0	4
773	Nested trampoline resonators for optomechanics. Applied Physics Letters, 2016, 108, .	1.5	19
774	Transduction. , 2016, , 115-147.		0
775	Preparation of a nonlinear coherent state of the mechanical resonator in an optomechanical microcavity. Optics Express, 2016, 24, 13590.	1.7	13
776	Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Optics Express, 2016, 24, 13850.	1.7	13
777	Fundamentals of Nanomechanical Resonators. , 2016, , .		129
778	Controllable optical bistability in a hybrid optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1335.	0.9	43
779	Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751.	15.6	139
780	Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496.	15.6	161
781	Optomechanics based on angular momentum exchange between light and matter. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 153001.	0.6	39
782	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	0.6	149
783	Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530, 313-316.	13.7	348
785	Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere. Optics Letters, 2016, 41, 1249.	1.7	31
786	Second-order sideband effects mediated by microwave in hybrid electro-optomechanical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 798-802.	0.9	30

#	Article	IF	CITATIONS
787	Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. Physical Review Letters, 2016, 116, 063601.	2.9	183
789	All-mechanical quantum noise cancellation for accelerometry: broadband with momentum measurements, narrow band without. Journal of Optics (United Kingdom), 2016, 18, 034002.	1.0	3
790	Evolution of photonic metasurfaces: from static to dynamic. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 501.	0.9	68
791	Dual photonic–phononic nanocavities for tailoring the acousto-optic interaction. Microelectronic Engineering, 2016, 159, 80-83.	1.1	0
792	Electrically Controlled Quantum Memories With a Cavity and Electro-Mechanical System. IEEE Journal of Quantum Electronics, 2016, 52, 1-6.	1.0	7
793	Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Science Bulletin, 2016, 61, 163-171.	4.3	109
794	Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nature Communications, 2016, 7, 10218.	5.8	56
795	Squeezing of output field in a two-mechanical-mode optomechanical system with a nonlinear medium. Optik, 2016, 127, 1714-1719.	1.4	2
796	Temporal Dynamics and Nonclassical Photon Statistics of Quadratically Coupled Optomechanical Systems. International Journal of Theoretical Physics, 2016, 55, 287-301.	0.5	12
797	Position and mode dependent optical detection back-action in cantilever beam resonators. Journal of Micromechanics and Microengineering, 2017, 27, 035006.	1.5	3
798	Sideband cooling beyond the quantum backaction limit with squeezed light. Nature, 2017, 541, 191-195.	13.7	196
799	Thermometry of levitated nanoparticles in a hybrid electro-optical trap. Journal of Optics (United) Tj ETQq1 1 0.7	84314 rgB 1.0	T Overlock
800	Theoretical realization and application of parity-time-symmetric oscillators in a quantum regime. Physical Review A, 2017, 95, .	1.0	28
801	Self-sustained photothermal oscillations in high-finesse Fabry-Perot microcavities. Physical Review A, 2017, 95, .	1.0	16
802	Observation of optomechanical buckling transitions. Nature Communications, 2017, 8, 14481.	5.8	26
803	Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits. Physical Review Applied, 2017, 7, .	1.5	43
804	Circuit Optomechanics with Diamond Integrated Optical Devices. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 213-221.	0.2	0
805	Universal continuous-variable quantum computation without cooling. Physical Review A, 2017, 95, .	1.0	9

	Сіт.	ation Report	
#	Article	IF	CITATIONS
806	Observation of thermal fluctuations in a superfluid optomechanical system. , 2017, , .		0
807	Effective Mass Sensing Using Optomechanically Induced Transparency in Microresonator System. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	12
808	Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction. Nature Communications, 2017, 8, 14358.	5.8	47
809	Quantum synchronization of chaotic oscillator behaviors among coupled BEC–optomechanical systems. Quantum Information Processing, 2017, 16, 1.	1.0	10
810	Optomechanical systems close to the conservative limit. Physical Review A, 2017, 95, .	1.0	5
811	Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679, 1-60.	10.3	181
812	Topical review: spins and mechanics in diamond. Journal of Optics (United Kingdom), 2017, 19, 03300	l. 1.0	126
813	Single laser modulated drive and detection of a nano-optomechanical cantilever. AIP Advances, 2017, 7	, 0.6	7
814	A millikelvin all-fiber cavity optomechanical apparatus for merging with ultra-cold atoms in a hybrid quantum system. Review of Scientific Instruments, 2017, 88, 023115.	0.6	14
815	Mechanical dissipation in MoRe superconducting metal drums. Applied Physics Letters, 2017, 110, 083	103. 1.5	2
816	Integrated On-Chip Nano-Optomechanical Systems. International Journal of High Speed Electronics and Systems, 2017, 26, 1740005.	0.3	4
817	Coherent coupling between an optomechanical membrane and an interacting photon Bose–Einstein condensate. Journal of Modern Optics, 2017, 64, 1725-1738.	0.6	2
818	Photon-phonon-photon transfer in optomechanics. Scientific Reports, 2017, 7, 46764.	1.6	13
819	Damping in a superconducting mechanical resonator. Europhysics Letters, 2017, 117, 57008.	0.7	3
821	Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems. Quantum Information Processing, 2017, 16, 1.	1.0	16
822	Controllable optomechanically induced transparency in coupled optomechanical systems. European Physical Journal D, 2017, 71, 1.	0.6	19
823	Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	10
824	Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Scientific Reports, 2017, 7, 2545.	1.6	36

#	Article	IF	CITATIONS
825	Optomechanical damping of a nanomembrane inside an optical ring cavity. New Journal of Physics, 2017, 19, 013038.	1.2	4
826	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D, 2017, 71, 1.	0.6	16
827	Microwave Frequency Graphene Optomechanics. Coherent Propagation Properties and Nonlinear Responses. Journal of Russian Laser Research, 2017, 38, 276-284.	0.3	1
828	Brillouin Optomechanics in Coupled Silicon Microcavities. Scientific Reports, 2017, 7, 43423.	1.6	19
829	Shape tailoring to enhance and tune the properties of graphene nanomechanical resonators. 2D Materials, 2017, 4, 025101.	2.0	19
830	Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires. Nano Letters, 2017, 17, 3995-4002.	4.5	11
831	Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator. Nanotechnology, 2017, 28, 255203.	1.3	1
832	Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light. Chinese Physics B, 2017, 26, 060303.	0.7	1
833	Integrated On-Chip Nano-Optomechanical Systems. Selected Topics in Electornics and Systems, 2017, , 119-140.	0.2	0
834	Direction-dependent elastic properties and phononic behavior of PMMA/BaTiO3 nanocomposite thin films. Journal of Chemical Physics, 2017, 146, 203325.	1.2	6
835	Thermal Brillouin noise observed in silicon optomechanical waveguide. Journal of Optics (United) Tj ETQq0 0 0 rgl	3T_/Overlo 1.0	ck,10 Tf 50 3
836	Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems. Physical Review Letters, 2017, 118, 133603.	2.9	31
837	Optomechanical coupling in the Anderson-localization regime. Physical Review B, 2017, 95, .	1.1	14
838	Mass sensor based on split-nanobeam optomechanical oscillator. Proceedings of SPIE, 2017, , .	0.8	1
839	Using reservoir-engineering to convert a coherent signal in optomechanics with small optomechanical cooperativity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1629-1633.	0.9	1
840	Engineering dissipation with phononic spectral hole burning. Nature Materials, 2017, 16, 315-321.	13.3	7
841	Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Physical Review A, 2017, 95, .	1.0	20
842	Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe. Contemporary Physics, 2017, 58, 119-139	0.8	15

#	Article	IF	CITATIONS
843	Coherent Optical Propagation Properties Based on a Generalized Multi-Mode Optomechanical System. International Journal of Theoretical Physics, 2017, 56, 948-956.	0.5	1
844	Distant entanglement enhanced in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetric optomechanics. Physical Review A, 2017, 96, .</mml:mi </mml:math 	1.0	26
845	Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light: Science and Applications, 2017, 6, e17039-e17039.	7.7	441
846	Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Scientific Reports, 2017, 7, 14116.	1.6	14
847	Quantum coherence, radiance, and resistance of gravitational systems. Physical Review D, 2017, 96, .	1.6	9
848	A proposed method to measure weak magnetic field based on a hybrid optomechanical system. Scientific Reports, 2017, 7, 12521.	1.6	38
849	Optomechanics with a position-modulated Kerr-type nonlinear coupling. Physical Review A, 2017, 96, .	1.0	17
850	Engineering Phonon Leakage in Nanomechanical Resonators. Physical Review Applied, 2017, 8, .	1.5	20
851	Circuit quantum acoustodynamics with surface acoustic waves. Nature Communications, 2017, 8, 975.	5.8	178
852	In search of multipath interference using large molecules. Science Advances, 2017, 3, e1602478.	4.7	26
853	Optical bistability and four-wave mixing in a hybrid optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3289-3294.	0.9	17
854	Functionalizing Fe adatoms on Cu(001) as a nanoelectromechanical system. New Journal of Physics, 2017, 19, 073016.	1.2	3
855	Faithful conversion of propagating quantum information to mechanical motion. Nature Physics, 2017, 13, 1163-1167.	6.5	92
856	Generation of the superposition of mesoscopic states of a nanomechanical resonator by a single two-level system. Physical Review A, 2017, 96, .	1.0	4
857	Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science, 2017, 358, 203-206.	6.0	190
858	Enhancing Sideband Cooling by Feedback-Controlled Light. Physical Review Letters, 2017, 119, 123603.	2.9	61
859	Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Physical Review A, 2017, 95, .	1.0	24
860	Optical wave evolution due to interaction with elastic wave in a phoxonic crystal slab waveguide. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	7

ARTICLE IF CITATIONS # Shot-noise-dominant regime for ellipsoidal nanoparticles in a linearly polarized beam. Physical Review 861 1.0 16 A, 2017, 95, . Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis. Physical Review 38 Letters, 2017, 119, 023601. 863 Quantum state atomic force microscopy. Physical Review A, 2017, 95, . 1.0 10 Editorial for special issue on nano-optomechanics. Journal of Optics (United Kingdom), 2017, 19, 864 080401. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited 865 1.0 15 atomic ensemble. Optics Communications, 2017, 403, 97-102. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms. 1.0 Physical Review A, 2017, 96, . Simulation of an optomechanical quantum memory in the nonlinear regime. Physical Review A, 2017, 96, 867 1.0 12 Decoherence as a way to measure extremely soft collisions with dark matter. Physical Review D, 2017, 29 1.6 96,. 869 Optomechanically induced transparency of x-rays via optical control. Scientific Reports, 2017, 7, 321. 1.6 18 A low-frequency chip-scale optomechanical oscillator with 58 kHz mechanical stiffening and more 870 1.6 than 100th-order stable harmonics. Scientific Reports, 2017, 7, 4383. Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity. Physical 871 1.0 65 Review A, 2017, 96, . Dynamically induced robust phonon transport and chiral cooling in an optomechanical system. 5.8 28 Nature Communications, 2017, 8, 205. Enhanced photothermal cooling of nanowires. Quantum Science and Technology, 2017, 2, 034005. 873 2.6 0 Enhancement of three-mode optomechanical interaction by feedback-controlled light. Quantum 874 2.6 Science and Technology, 2017, 2, 034014. Adiabatic transfer of energy fluctuations between membranes inside an optical cavity. Physical Review 875 1.0 7 A, 2017, 96, . Mode conversion enables optical pulling force in photonic crystal waveguides. Applied Physics 36 Letters, 2017, 111, . Arbitrary multimode Gaussian operations on mechanical cluster states. Physical Review A, 2017, 96, . 877 1.0 7 Energy-localization-enhanced ground-state cooling of a mechanical resonator from room 878 temperature in optomechanics using a gain cavity. Physical Review A, 2017, 96, .

#	Article	IF	CITATIONS
879	Einstein-Podolsky-Rosen steering and Bell nonlocality of two macroscopic mechanical oscillators in optomechanical systems. Physical Review A, 2017, 96, .	1.0	11
880	Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble. Scientific Reports, 2017, 7, 17258.	1.6	11
881	Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback. Physical Review A, 2017, 96, .	1.0	16
882	Effect of an auxiliary mode on bipartite entanglement in a dissipative three-mode optomechanical system. European Physical Journal D, 2017, 71, 1.	0.6	2
883	Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations. Physical Review A, 2017, 96, .	1.0	8
884	Characterization of coherent population-trapped states in a circuit-QED <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="normal">ĥ system. Physical Review A, 2017, 96, .</mml:mi </mml:math 	1.0	4
885	Optomechanical terahertz detection with single meta-atom resonator. Nature Communications, 2017, 8, 1578.	5.8	44
886	Nanomechanical resonators based on adiabatic periodicity-breaking in a superlattice. Applied Physics Letters, 2017, 111, 173107.	1.5	7
887	Enhanced output entanglement with reservoir engineering. Physical Review A, 2017, 96, .	1.0	28
888	Thermodynamic limits for optomechanical systems with conservative potentials. Physical Review B, 2017, 96, .	1.1	0
889	Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Physical Review A, 2017, 96, .	1.0	48
890	Shelving-style QND phonon-number detection in quantum optomechanics. New Journal of Physics, 2017, 19, 033014.	1.2	8
891	Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback. Nature Communications, 2017, 8, 15886.	5.8	25
892	Reconfigurable chaos in electro-optomechanical system with negative Duffing resonators. Scientific Reports, 2017, 7, 4822.	1.6	9
893	Nonreciprocal quantum-state conversion between microwave and optical photons. Physical Review A, 2017, 96, .	1.0	57
894	Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry. Scientific Reports, 2017, 7, 2491.	1.6	17
895	Strong and tunable couplings in flux-mediated optomechanics. Physical Review B, 2017, 96, .	1.1	23
896	Antibunching in an optomechanical oscillator. Physical Review A, 2017, 95, .	1.0	27

#	Article	IF	CITATIONS
897	Cooling a Harmonic Oscillator by Optomechanical Modification of Its Bath. Physical Review Letters, 2017, 118, 223602.	2.9	22
898	Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nature Communications, 2017, 8, ncomms16024.	5.8	92
899	Synchronization of an optomechanical system to an external drive. Physical Review A, 2017, 95, .	1.0	34
900	Radiation Pressure Cooling as a Quantum Dynamical Process. Physical Review Letters, 2017, 118, 233604.	2.9	45
901	Micropillar Resonators for Optomechanics in the Extremely High 19–95-GHz Frequency Range. Physical Review Letters, 2017, 118, 263901.	2.9	63
902	Nonlinear effects in modulated quantum optomechanics. Physical Review A, 2017, 95, .	1.0	59
903	Controlling the net charge on a nanoparticle optically levitated in vacuum. Physical Review A, 2017, 95,	1.0	69
904	Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nature Nanotechnology, 2017, 12, 127-131.	15.6	60
905	Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics. Optics Communications, 2017, 382, 73-79.	1.0	10
906	Financial states of world financial and commodities markets around sovereign debt crisis. Journal of the Korean Physical Society, 2017, 71, 733-739.	0.3	2
907	Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor. Nature Communications, 2017, 8, 1355.	5.8	23
908	Hybrid Interference Induced Flat Band Localization in Bipartite Optomechanical Lattices. Scientific Reports, 2017, 7, 15188.	1.6	4
909	Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New Journal of Physics, 2017, 19, 103014.	1.2	12
910	Investigation of thermomechanical motion in a nanomechanical resonator based on optical intensity mapping. Journal of the Korean Physical Society, 2017, 71, 684-691.	0.3	0
911	Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator. Review of Scientific Instruments, 2017, 88, 123709.	0.6	21
912	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	1.2	28
913	Acoustic Waveguide Eigenmode Solver Based on a Staggered-Grid Finite-Difference Method. Scientific Reports, 2017, 7, 17509.	1.6	3
914	Entangling distant solid-state spins via thermal phonons. Physical Review B, 2017, 96, .	1.1	10

		CITATION R	EPORT	
#	Article		IF	CITATIONS
915	Quantum noise spectra for periodically driven cavity optomechanics. Physical Review A	, 2017, 96, .	1.0	9
916	Observation and Measures of Robust Correlations for Continuous Variable System. Cor in Theoretical Physics, 2017, 68, 661.	nmunications	1.1	4
917	Dynamical and quantum effects of collective dissipation in optomechanical systems. No Physics, 2017, 19, 113007.	ew Journal of	1.2	17
918	Two dimensional optomechanical crystals for quantum optomechanics. , 2017, , .			Ο
919	Coherent versus measurement-based feedback for controlling a single qubit. Quantum Technology, 2017, 2, 025001.	Science and	2.6	9
920	Hybrid optomechanical systems as transducers for quantum information. , 2017, , .			0
921	Generation of Schrödinger cat state in circuit QED. , 2017, , .			0
922	Optomechanical coupling between AFM cantilever and semiconductor laser. IOP Confe Materials Science and Engineering, 2017, 256, 012002.	rence Series:	0.3	0
923	Graphene hybrid optomechanical plateform for probing interplay between internal and degree of freedom. , 2017, , .	macroscopic		0
924	Levitated optomechanics: introduction. Journal of the Optical Society of America B: Op 2017, 34, LO1.	tical Physics,	0.9	23
925	Hybrid confinement of optical and mechanical modes in a bullseye optomechanical reso Express, 2017, 25, 508.	onator. Optics	1.7	22
926	Role of optical density of states in Brillouin optomechanical cooling. Optics Express, 20	17, 25, 776.	1.7	9
927	High-order corrections on the laser cooling limit in the Lamb-Dicke regime. Optics Expre 1314.	ess, 2017, 25,	1.7	3
928	Broadband tuning of the optical and mechanical modes in hollow bottle-like microresor Express, 2017, 25, 4046.	nators. Optics	1.7	26
929	High-efficiency acousto-optic coupling in phoxonic resonator based on silicon fishbone cavity. Optics Express, 2017, 25, 6076.	nanobeam	1.7	19
930	Local modulation of double optomechanically induced transparency and amplification. Express, 2017, 25, 9697.	Optics	1.7	35
931	Optical levitation of a mirror for reaching the standard quantum limit. Optics Express, 2	2017, 25, 13799.	1.7	15
932	Controllable photon and phonon localization in optomechanical Lieb lattices. Optics Ex 17364.	press, 2017, 25,	1.7	17

#	Article	IF	CITATIONS
933	Simulating Z_2 topological insulators via a one-dimensional cavity optomechanical cells array. Optics Express, 2017, 25, 17948.	1.7	17
934	Magnetometry via spin-mechanical coupling in levitated optomechanics. Optics Express, 2017, 25, 19568.	1.7	22
935	Fiber taper characterization by optical backscattering reflectometry. Optics Express, 2017, 25, 22312.	1.7	21
936	Optomechanical properties of GaAs/AlAs micropillar resonators operating in the 18 GHz range. Optics Express, 2017, 25, 24437.	1.7	31
937	Efficient anchor loss suppression in coupled near-field optomechanical resonators. Optics Express, 2017, 25, 31347.	1.7	7
938	Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems. Optics Express, 2017, 25, 33097.	1.7	16
939	Full rotational control of levitated silicon nanorods. Optica, 2017, 4, 356.	4.8	105
940	Operation of high-speed silicon photonic micro-disk modulators at cryogenic temperatures. Optica, 2017, 4, 374.	4.8	50
941	Injection locking of an electro-optomechanical device. Optica, 2017, 4, 1196.	4.8	38
942	Quantum optomechanics beyond the quantum coherent oscillation regime. Optica, 2017, 4, 1382.	4.8	13
943	Dynamical Casimir effect of phonon excitation in the dispersive regime of cavity optomechanics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 642.	0.9	22
944	Coupled cavity optomechanical meta-waveguides [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, D68.	0.9	2
945	Tunable photon statistics in a non-Hermitian system. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 566.	0.9	0
946	Quantum Control of Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 263-374.	2.3	5
947	Sensing spontaneous collapse and decoherence with interfering Bose–Einstein condensates. Quantum Science and Technology, 2017, 2, 044010.	2.6	5
948	GaAs-based micro/nanomechanical resonators. Semiconductor Science and Technology, 2017, 32, 103003.	1.0	47
949	Light-sound interconversion in optomechanical Dirac materials. Scientific Reports, 2017, 7, 9811.	1.6	4
950	Nanomechanical Motion Transducers for Miniaturized Mechanical Systems. Micromachines, 2017, 8, 108.	1.4	32

#	Article	IF	CITATIONS
951	Enhancing quantum correlations in an optomechanical system via cross-Kerr nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1503.	0.9	18
952	Analog curved spacetimes in the reversed dissipation regime of cavity optomechanics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2519.	0.9	6
953	Coherent inflation for large quantum superpositions of levitated microspheres. New Journal of Physics, 2017, 19, 123029.	1.2	36
954	The vacuum friction paradox and related puzzles. Contemporary Physics, 2018, 59, 145-154.	0.8	4
955	Robustness of the Gaussian interferometric power in two optomechanical systems. International Journal of Quantum Information, 2018, 16, 1850015.	0.6	0
956	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .	1.0	34
957	Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings. Physical Review X, 2018, 8, .	2.8	57
958	Quantum non-demolition phonon counter with a hybrid optomechnical system. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	2
959	Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 075505.	0.6	9
960	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477.	13.7	408
960 961	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fast–slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204.	13.7 0.7	408 11
960 961 962	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fast–slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian R©nyi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594.	13.7 0.7 0.6	408 11 8
960 961 962 963	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fastâ€"slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian Rényi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594. Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, .	13.7 0.7 0.6 1.0	408 11 8 5
960 961 962 963	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fastâ€"slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian R©nyi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594. Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, . Measuring the internal temperature of a levitated nanoparticle in high vacuum. Physical Review A, 2018, 97, .	13.7 0.7 0.6 1.0	408 11 8 5 49
960 961 962 963 964	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fastâ€"slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian Rũnyi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594. Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, . Measuring the internal temperature of a levitated nanoparticle in high vacuum. Physical Review A, 2018, 97, . Optomechanically induced anomalous population inversion in a hybrid system. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 414017.	 13.7 0.7 0.6 1.0 1.0 0.7 	 408 11 8 5 49 3
960 961 962 963 964 965	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fastâ€" slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian RÃ@nyi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594. Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, . Measuring the internal temperature of a levitated nanoparticle in high vacuum. Physical Review A, 2018, 97, . Optomechanically induced anomalous population inversion in a hybrid system. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 414017. Optomechanical transistor with mechanical gain. Physical Review A, 2018, 97, .	 13.7 0.7 0.6 1.0 0.7 1.0 1.0 	408 11 8 5 49 3 32
960 961 962 963 964 965	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477. Multi-window transparency and fastâ€"slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms. Chinese Physics B, 2018, 27, 034204. Quantifying quantumness of correlations using Gaussian RÅ@nyi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594. Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, . Measuring the internal temperature of a levitated nanoparticle in high vacuum. Physical Review A, 2018, 97, . Optomechanically induced anomalous population inversion in a hybrid system. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 414017. Optomechanical transistor with mechanical gain. Physical Review A, 2018, 97, . Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium. Laser Physics, 2018, 28, 055201.	 13.7 0.7 0.6 1.0 0.7 1.0 0.7 1.0 	408 11 8 3 49 3 3 2 4

#	Article	IF	CITATIONS
969	Enhanced mechanical entanglement in an optomechanical cavity with a Coulomb interaction. Optik, 2018, 159, 368-378.	1.4	2
970	Optomechanics with a hybrid carbon nanotube resonator. Nature Communications, 2018, 9, 662.	5.8	42
971	Current state of the art in small mass and force metrology within the International System of Units. Measurement Science and Technology, 2018, 29, 072001.	1.4	23
972	Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 2018, 9, 383.	5.8	63
973	Multi-functional quantum router using hybrid opto-electromechanics. Laser Physics Letters, 2018, 15, 035201.	0.6	5
974	Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System. Physical Review Letters, 2018, 120, 063605.	2.9	20
975	Analytical Study of Noise Spectral Density in Q-controlled Atomic Force Microscopy. Journal of the Korean Physical Society, 2018, 72, 384-389.	0.3	1
976	Optomechanically Induced Transparency and Cooling in Thermally Stable Diamond Microcavities. ACS Photonics, 2018, 5, 782-787.	3.2	20
977	Ground state cooling in a hybrid optomechanical system with a three-level atomic ensemble. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 045503.	0.6	6
978	Quantum-Limited Directional Amplifiers with Optomechanics. Physical Review Letters, 2018, 120, 023601.	2.9	120
979	Gravity in the quantum lab. Advances in Physics: X, 2018, 3, 1383184.	1.5	20
980	Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing. Physical Review Letters, 2018, 120, 020503.	2.9	13
981	Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime. Physical Review A, 2018, 97, .	1.0	12
982	Levitated optomechanics with a fiber Fabry–Perot interferometer. New Journal of Physics, 2018, 20, 023017.	1.2	10
983	Controllable coherent perfect absorption and transmission in a generalized three-mode optomechanical system. Optik, 2018, 168, 46-53.	1.4	3
984	Optomechanical approach to controlling the temperature and chemical potential of light. Physical Review A, 2018, 97, .	1.0	2
985	Bulk crystalline optomechanics. Nature Physics, 2018, 14, 601-607.	6.5	61
986	Enhanced photoelastic modulation in silica phononic crystal cavities. Japanese Journal of Applied Physics, 2018, 57, 042002.	0.8	0

ARTICLE IF CITATIONS # Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. 987 1.0 42 Physical Review A, 2018, 97, . Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer. Physical Review 988 1.5 Applied, 2018, 9, . 989 Strong mechanical squeezing in an electromechanical system. Scientific Reports, 2018, 8, 3513. 1.6 3 Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong 990 coupling. Chinese Physics B, 2018, 27, 024204. On-chip quantum interference of a superconducting microsphere. Quantum Science and Technology, 991 2.6 80 2018, 3, 025001. Qubit assisted enhancement of quantum correlations in an optomechanical system. Annals of Physics, 1.0 2018, 392, 39-48. An Optical-Driven Quantum Shuttle: Modeling, Dynamics and Controllability. IEEE Journal of Quantum 993 1.0 3 Electronics, 2018, 54, 1-7. A maser based on dynamical backaction on microwave light. Physics Letters, Section A: General, Atomic 004 and Solid State Physics, 2018, 382, 2233-2237. 995 Photon-Phonon Coupling: Cavity Optomechanics. Springer Theses, 2018, , 83-101. 0.0 0 Comprehensive optical losses investigation of VLSI Silicon optomechanical ring resonator sensors., 996 2018, , . Measurement of wavelength-dependent radiation pressure from photon reflection and absorption 997 1.6 8 due to thin film interference. Scientific Reports, 2018, 8, 15930. Effective quality factor tuning mechanisms in micromechanical resonators. Applied Physics Reviews, 5.5 2018, 5, . Combined feedback and sympathetic cooling of a mechanical oscillator coupled to ultracold atoms. 999 1.2 21 New Journal of Physics, 2018, 20, 093020. Effect of the mechanical oscillator on the optical-response properties of an optical trimer system. 1000 1.0 Physical Review A, 2018, 98, . 1001 Optomechanical Cooling in a Continuous System. Physical Review X, 2018, 8, . 2.8 24 Quantum control of surface acoustic-wave phonons. Nature, 2018, 563, 661-665. 263 Ground-state cooling of a nanomechanical oscillator with <mml:math 1003 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> spins. Physical 1.0 19 Review A, 2018, 98, . 1004 Optomechanical effects in a macroscopic hybrid system. Physical Review A, 2018, 98, .

#	Article	IF	Citations
1005	Invited Article: Tuning and stabilization of optomechanical crystal cavities through NEMS integration. APL Photonics, 2018, 3, .	3.0	10
1006	Superconducting membrane mechanical oscillator based on vacuum-gap capacitor. Chinese Physics B, 2018, 27, 060701.	0.7	3
1007	Transverse spin forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical trap. Nature Communications, 2018, 9, 5453.	5.8	66
1008	Floquet scattering of light and sound in Dirac optomechanics. Physical Review A, 2018, 98, .	1.0	7
1009	Creation, storage, and retrieval of an optomechanical cat state. Physical Review A, 2018, 98, .	1.0	21
1010	Spontaneous continuous orbital motion of nanoparticles levitated in air. Physical Review A, 2018, 98, .	1.0	2
1011	Two-level system damping in a quasi-one-dimensional optomechanical resonator. Physical Review B, 2018, 98, .	1.1	22
1012	Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Physical Review A, 2018, 98, .	1.0	33
1013	Quantum-state reconstruction of a mechanical mirror in a hybrid system. Physical Review A, 2018, 98, .	1.0	1
1014	Recent advances in mechanical torque studies of small-scale magnetism. Journal Physics D: Applied Physics, 2018, 51, 483001.	1.3	13
1015	Enhanced nonlinear interaction effects in a four-mode optomechanical ring. Physical Review A, 2018, 98, .	1.0	5
1016	Enhancing Squeezing and Nonclassicality of Light in Atom–Optomechanical Systems. Annalen Der Physik, 2018, 530, 1800138.	0.9	9
1017	Reconstruction of quantum state of mechanical mirror via polariton-phonon coupling. Physica Scripta, 2018, 93, 124002.	1.2	3
1018	Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities. Physical Review A, 2018, 98, .	1.0	17
1019	Scalable nuclear-spin entanglement mediated by a mechanical oscillator. Physical Review B, 2018, 98, .	1.1	6
1020	Optomechanical quantum Cavendish experiment. Physical Review A, 2018, 98, .	1.0	46
1021	Controllable optical bistability in a three-mode optomechanical system with a membrane resonator. Chinese Physics B, 2018, 27, 074214.	0.7	4
1022	High-order sideband generation in a two-cavity optomechanical system with modulated photon-hopping interaction. Laser Physics Letters, 2018, 15, 115401.	0.6	9

#	Article	IF	CITATIONS
1023	Torsional cooling of a nanodiamond via the interaction with the electron spin of the embedded nitrogen-vacancy center. Physical Review A, 2018, 98, .	1.0	8
1024	Gravimetry through non-linear optomechanics. Nature Communications, 2018, 9, 3690.	5.8	56
1025	Dissipation-driven nonclassical-state generation in optomechanics with squeezed light. Physical Review A, 2018, 98, .	1.0	3
1026	Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum. New Journal of Physics, 2018, 20, 063028.	1.2	62
1027	Cavity-free quantum optomechanical cooling by atom-modulated radiation. Physical Review A, 2018, 98,	1.0	9
1028	Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems. Physical Review Letters, 2018, 121, 160604.	2.9	58
1029	Electrooptomechanical Equivalent Circuits for Quantum Transduction. Physical Review Applied, 2018, 10, .	1.5	11
1030	Phonon-Number-Sensitive Electromechanics. Physical Review Letters, 2018, 121, 183601.	2.9	48
1031	Measurement-based quantum control of mechanical motion. Nature, 2018, 563, 53-58.	13.7	263
1032	Manipulation of fast and slow light propagation by photonic-molecule optomechanics. Journal of Applied Physics, 2018, 124, .	1.1	12
1033	Single crystal diamond micro-disk resonators by focused ion beam milling. APL Photonics, 2018, 3, .	3.0	18
1034	Radiation-Pressure-Antidamping Enhanced Optomechanical Spring Sensing. ACS Photonics, 2018, 5, 4164-4169.	3.2	16
1035	Quantum nondemolition measurement of mechanical motion quanta. Nature Communications, 2018, 9, 3621.	5.8	18
1036	Deterministic preparation of highly non-classical macroscopic quantum states. Npj Quantum Information, 2018, 4, .	2.8	8
1037	Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions. Physical Review Letters, 2018, 121, 123604.	2.9	50
1038	Huygens' Metadevices for Parametric Waves. Physical Review X, 2018, 8, .	2.8	79
1039	Phase-dependent Fano-shape optomechanically induced transparency. Applied Optics, 2018, 57, 7444.	0.9	5
1040	Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Frontiers of Physics, 2018, 13, 1.	2.4	17

			_
#	ARTICLE	IF.	CITATIONS
1041	Lamb Wave Focusing Transducer for Efficient Coupling to Wavelength-Scale Structures in Thin Piezoelectric Films. Journal of Microelectromechanical Systems, 2018, 27, 1054-1070.	1.7	17
1042	Frequency locking and controllable chaos through exceptional points in optomechanics. Physical Review E, 2018, 98, .	0.8	27
1043	Ground-state cooling in cavity optomechanics with unresolved sidebands. Europhysics Letters, 2018, 123, 14005.	0.7	5
1044	Interfacing quantum emitters with propagating surface acoustic waves. Journal Physics D: Applied Physics, 2018, 51, 373001.	1.3	41
1045	Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Physical Review A, 2018, 98, .	1.0	71
1046	Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator. Physical Review X, 2018, 8, .	2.8	27
1047	Microscopic–macroscopic entanglement transfer in optomechanical system: Non-Markovian effects. Optics Communications, 2018, 426, 70-76.	1.0	10
1048	Parametric excitation of a SiN membrane via piezoelectricity. AIP Advances, 2018, 8, .	0.6	17
1049	Interfacing planar superconducting qubits with high overtone bulk acoustic phonons. Physical Review B, 2018, 97, .	1.1	35
1050	Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect. Physical Review A, 2018, 97, .	1.0	13
1051	An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator. Applied Physics Letters, 2018, 112, .	1.5	13
1052	Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Nano Letters, 2018, 18, 3956-3961.	4.5	52
1053	Activation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice. Neurobiology of Learning and Memory, 2018, 155, 568-577.	1.0	10
1054	Macroscopic quantum states: Measures, fragility, and implementations. Reviews of Modern Physics, 2018, 90, .	16.4	110
1055	Hybrid entanglement between a trapped ion and a mirror. European Physical Journal Plus, 2018, 133, 1.	1.2	2
1056	Squeezed cooling of mechanical motion beyond the resolved-sideband limit. Europhysics Letters, 2018, 122, 14001.	0.7	2
1057	Generation and detection of non-Gaussian phonon-added coherent states in optomechanical systems. Physical Review A, 2018, 98, .	1.0	30
1058	Optomechanical Cavities for All-Optical Photothermal Sensing. ACS Photonics, 2018, 5, 3214-3221.	3.2	14

#	Article	IF	CITATIONS
1059	Improve the sensitivity of an optomechanical sensor with the auxiliary mechanical oscillator. European Physical Journal D, 2018, 72, 1.	0.6	2
1060	Reaching the optomechanical strong-coupling regime with a single atom in a cavity. Physical Review A, 2018, 97, .	1.0	21
1061	Enhanced photon-phonon coupling via dimerization in one-dimensional optomechanical crystals. Applied Physics Letters, 2018, 112, .	1.5	13
1062	Heisenberg-limited estimation of the coupling rate in an optomechanical system with a two-level system. Physical Review A, 2018, 98, .	1.0	7
1063	Highly-coherent stimulated phonon oscillations in a multi-core optical fiber. Scientific Reports, 2018, 8, 9514.	1.6	20
1064	Self-Sustained Laser Pulsation in Active Optomechanical Devices. IEEE Photonics Journal, 2018, 10, 1-10.	1.0	9
1065	Temporal rocking in a nonlinear hybrid optomechanical system. Optics Express, 2018, 26, 6285.	1.7	11
1066	Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Optics Express, 2018, 26, 6143.	1.7	49
1067	Nanocrystalline silicon optomechanical cavities. Optics Express, 2018, 26, 9829.	1.7	11
1068	Quantum-limited directional amplifier based on a triple-cavity optomechanical system. Optics Express, 2018, 26, 15255.	1.7	13
1069	Cross-Kerr effect in a parity-time symmetric optomechanical system. Optics Express, 2018, 26, 18043.	1.7	7
1070	Quantum enhanced optomechanical magnetometry. Optica, 2018, 5, 850.	4.8	120
1071	Optical binding of two cooled micro-gyroscopes levitated in vacuum. Optica, 2018, 5, 910.	4.8	49
1072	Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes. Journal of the Korean Physical Society, 2018, 73, 95-99.	0.3	0
1073	Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures. Scientific Reports, 2018, 8, 11263.	1.6	9
1074	Cavity Enhancement of Anti-Stokes Scattering via Optomechanical Coupling with Surface Acoustic Waves. Physical Review Applied, 2018, 10, .	1.5	12
1075	Quantum squeezing in a modulated optomechanical system. Optics Express, 2018, 26, 11915.	1.7	27
1076	Entangling Cavity Modes in a Double-Cavity Optomechanical System. International Journal of Theoretical Physics, 2018, 57, 3381-3388.	0.5	1

#	Article	IF	CITATIONS
1077	Controllable generation of photons and phonons in a coupled Bose–Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Annals of Physics, 2018, 396, 202-219.	1.0	33
1078	Single-Mode Phononic Wire. Physical Review Letters, 2018, 121, 040501.	2.9	47
1079	Electromagnetic elds and optomechanics in cancer diagnostics and treatment. Frontiers in Bioscience - Landmark, 2018, 23, 1391-1406.	3.0	7
1080	Optomechanical frequency combs. New Journal of Physics, 2018, 20, 043013.	1.2	34
1081	Optomechanically induced transparency and the long-lived slow light in a nonlinear system. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1649.	0.9	24
1082	Parametric Excitation of Optomechanical Resonators by Periodical Modulation. Micromachines, 2018, 9, 193.	1.4	1
1083	Unconventional photon blockade in three-mode optomechanics. Physical Review A, 2018, 98, .	1.0	60
1084	Ground-state cooling in cavity optomechanics with and without rotating-wave approximation. AIP Conference Proceedings, 2018, , .	0.3	1
1085	Optomechanically Induced Transparency at Exceptional Points. Physical Review Applied, 2018, 10, .	1.5	99
1086	Witnessing Optomechanical Entanglement with Photon Counting. Physical Review Letters, 2018, 121, 023602.	2.9	16
1087	â€~Mechano-optics': an optomechanical quantum simulator. New Journal of Physics, 2018, 20, 065004.	1.2	18
1088	Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities. Physical Review B, 2018, 97, .	1.1	18
1089	Thermal management and non-reciprocal control of phonon flow via optomechanics. Nature Communications, 2018, 9, 1207.	5.8	48
1090	Directional amplifier in an optomechanical system with optical gain. Physical Review A, 2018, 97, .	1.0	48
1091	Properties of the output field of a hybrid superconducting quantum circuit system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 175504.	0.6	3
1092	Fundamentals and applications of optomechanically induced transparency. Applied Physics Reviews, 2018, 5, 031305.	5.5	134
1093	Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501.	0.6	1
1094	Optically induced phonon blockade in an optomechanical system with second-order nonlinearity. Physical Review A, 2018, 98, .	1.0	34

#	Article	IF	CITATIONS
1095	Optical Cooling of Magnons. Physical Review Letters, 2018, 121, 087205.	2.9	94
1096	Dynamics of light-induced thermomechanical mirror deformations in high-finesse Fabry–Perot microresonators. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 372.	0.9	4
1097	Narrow-line laser cooling by adiabatic transfer. New Journal of Physics, 2018, 20, 023021.	1.2	34
1098	Antiresonant quantum transport in ac-driven molecular nanojunctions. Physical Review B, 2018, 97, .	1.1	2
1099	Phonon interferometry for measuring quantum decoherence. Physical Review A, 2018, 97, .	1.0	14
1100	Improving mechanical sensor performance through larger damping. Science, 2018, 360, .	6.0	53
1101	Unraveling nonclassicality in the optomechanical instability. Physical Review A, 2018, 97, .	1.0	6
1102	Controlling the entanglement of mechanical oscillators in composite optomechanical system. Chinese Physics B, 2018, 27, 040304.	0.7	2
1103	Classical and quantum dynamics of a trapped ion coupled to a charged nanowire. New Journal of Physics, 2019, 21, 013030.	1.2	3
1104	Tunable Coupling of a Double Quantum Dot Spin System to a Mechanical Resonator. Nano Letters, 2019, 19, 6166-6172.	4.5	9
1105	Spectral Characterization of Couplings in a Mixed Optomechanical Model. Communications in Theoretical Physics, 2019, 71, 939.	1.1	2
1106	Dynamically generated synthetic electric fields for photons. Physical Review A, 2019, 100, .	1.0	4
1107	Force sensing in hybrid Bose-Einstein-condensate optomechanics based on parametric amplification. Physical Review A, 2019, 100, .	1.0	45
1108	Tunable Second-Order Sideband Generation in a Hybrid Cavity-Atom Optomechanical System. IEEE Access, 2019, 7, 133832-133838.	2.6	5
1109	Conversion of mechanical noise into correlated photon pairs: Dynamical Casimir effect from an incoherent mechanical drive. Physical Review A, 2019, 100, .	1.0	24
1110	Optimal control for feedback cooling in cavityless levitated optomechanics. New Journal of Physics, 2019, 21, 073019.	1.2	8
1111	Controllable and tunable multiple optomechanically induced transparency and Fano resonance mediated by different mechanical resonators. AIP Advances, 2019, 9, .	0.6	3
1112	Dynamical generation of synthetic electric fields for photons in the quantum regime. Quantum Science and Technology, 2019, 4, 044001.	2.6	2

	Сітат	ion Report	
#	Article	IF	Citations
1113	Brillouin optomechanics in nanophotonic structures. APL Photonics, 2019, 4, .	3.0	68
1114	Dissipative Synthesis of Mechanical Fock-Like States. Proceedings (mdpi), 2019, 12, .	0.2	Ο
1115	Ideal optical isolator with a two-cavity optomechanical system. Optics Communications, 2019, 451, 197-201.	1.0	21
1116	Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator. Classical and Quantum Gravity, 2019, 36, 155006.	1.5	6
1117	Effect of quantum and thermal jitter on the feasibility of Bekenstein's proposed experiment to search for Planck-scale signals. Physical Review D, 2019, 99, .	1.6	1
1118	Enabling entanglement distillation via optomechanics. Physical Review A, 2019, 100, .	1.0	7
1119	Multiphonon interactions between nitrogen-vacancy centers and nanomechanical resonators. Physical Review A, 2019, 100, .	1.0	16
1120	Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics. Physical Review Letters, 2019, 123, 163602.	2.9	15
1121	Coupled mechanical resonators with broken Lorentz reciprocity for sensor applications. Mechanical Systems and Signal Processing, 2019, 134, 106329.	4.4	0
1122	Resolved-Sideband Cooling of a Levitated Nanoparticle in the Presence of Laser Phase Noise. Physical Review Letters, 2019, 123, 153601.	2.9	29
1123	Perfect Optical Nonreciprocity with Mechanical Driving in a Three-Mode Optomechanical System*. Communications in Theoretical Physics, 2019, 71, 1011.	1.1	9
1124	Double-passage mechanical cooling in a coupled optomechanical system. Chinese Physics B, 2019, 28, 114206.	0.7	2
1125	Online Identification Method of Induction Motor Parameters Based on Rotor Flux Linkage. Journal of Physics: Conference Series, 2019, 1187, 022019.	0.3	0
1126	Change Detection Method based on Block Similarity Measure. Journal of Physics: Conference Series, 2019, 1237, 022047.	0.3	0
1127	Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements. Physical Review X, 2019, 9, .	2.8	12
1128	Mechanical qubit-light entanglers in hybrid nonlinear qubit optomechanics. Physical Review A, 2019, 100, .	1.0	1
1129	On-chip Thermometry for Microwave Optomechanics Implemented in a Nuclear Demagnetization Cryostat. Physical Review Applied, 2019, 12, .	1.5	20
1130	Optomechanically induced nonreciprocity based on mechanical driving. European Physical Journal D, 2019, 73, 1.	0.6	1

	CITA	ation Report	
#	Article	IF	CITATIONS
1131	Phononic entanglement concentration via optomechanical interactions. Physical Review A, 2019, 100, .	1.0	19
1132	Estimation of squeezing in a nonlinear quadrature of a mechanical oscillator. New Journal of Physics, 2019, 21, 113050.	1.2	8
1133	A frequency-tunable nanomembrane mechanical oscillator with embedded quantum dots. Applied Physics Letters, 2019, 115, .	1.5	6
1134	Frequencyâ€Modulationâ€Enhanced Groundâ€State Cooling of Coupled Mechanical Resonators. Annal Der Physik, 2019, 531, 1900193.	en 0.9	9
1135	Generating a Squeezedâ€Coherentâ€Cat State in a Doubleâ€Cavity Optomechanical System. Annalen I Physik, 2019, 531, 1900196.	Der 0.9	7
1136	Electromagnetically Induced Absorption in Cavity Optomechanics System with a Bose–Einstein Condensate. Journal of Russian Laser Research, 2019, 40, 340-347.	0.3	2
1137	Intracavityâ \in Squeezed Optomechanical Cooling. Laser and Photonics Reviews, 2019, 13, 1900120.	4.4	37
1138	Probing the State of a Mechanical Oscillator with an Ultrastrongly Coupled Quantum Emitter. Physical Review Letters, 2019, 122, 013602.	2.9	1
1139	A proposal for the implementation of quantum gates in an optomechanical system via phonon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 205502.	0.6	10
1140	Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215402.	0.6	2
1141	Cooling of a Mechanical Oscillator and Normal Mode Splitting in Optomechanical Systems with Coherent Feedback. Applied Sciences (Switzerland), 2019, 9, 3402.	1.3	13
1142	Laser cooling with adiabatic transfer on a Raman transition. New Journal of Physics, 2019, 21, 073045.	1.2	5
1143	Controllable Optical Bistability and Four-Wave Mixing in a Photonic-Molecule Optomechanics. Nanoscale Research Letters, 2019, 14, 73.	3.1	14
1144	Macroscopic superposition states of a mechanical oscillator in an optomechanical system with quadratic coupling. Physical Review A, 2019, 100, .	1.0	14
1145	State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses. Physical Review Letters, 2019, 123, 113601.	2.9	19
1146	Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities. Optics Express, 2019, 27, 22855.	1.7	28
1147	Auxiliary cavity enhanced mode splitting and ground-state cooling of mechanical resonator in hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	0.6	3
1148	Optomechanically induced transparency and nonlinear responses based on graphene optomechanics system. EPJ Quantum Technology, 2019, 6, .	2.9	4

#	Article	IF	CITATIONS
1149	Transmissivity of optomechanical system containing a two-level system. International Journal of Modern Physics B, 2019, 33, 1950252.	1.0	2
1150	Hexagonal Boron Nitride Cavity Optomechanics. Nano Letters, 2019, 19, 1343-1350.	4.5	32
1151	Nonclassical states of levitated macroscopic objects beyond the ground state. Quantum Science and Technology, 2019, 4, 024006.	2.6	3
1152	Heisenberg-Langevin Formalism for Squeezing Dynamics of Linear Hybrid Optomechanical System. International Journal of Theoretical Physics, 2019, 58, 2418-2427.	0.5	12
1153	Squeezing out higher precision. Science, 2019, 364, 1137-1138.	6.0	1
1154	Review of optical tweezers in vacuum. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 655-673.	1.5	14
1155	Phononic integrated circuitry and spin–orbit interaction of phonons. Nature Communications, 2019, 10, 2743.	5.8	67
1156	Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. Physical Review Letters, 2019, 122, 223601.	2.9	109
1157	Generation of Optical and Mechanical Squeezing in the Linearâ€andâ€Quadratic Optomechanics. Annalen Der Physik, 2019, 531, 1800399.	0.9	10
1158	Quantum correlations in optomechanical crystals. Physical Review A, 2019, 99, .	1.0	15
1159	Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. Physical Review Letters, 2019, 122, 223602.	2.9	77
1160	Influence of the counter-rotating terms on the quantum dynamics of the damped harmonic oscillator in a deformed bath. International Journal of Modern Physics B, 2019, 33, 1950126.	1.0	1
1161	Carrier-mediated cavity optomechanics in a semiconductor laser. Physical Review A, 2019, 99, .	1.0	4
1162	Optimal control of hybrid optomechanical systems for generating non-classical states of mechanical motion. Quantum Science and Technology, 2019, 4, 034001.	2.6	21
1163	Advanced quantum techniques for future gravitational-wave detectors. Living Reviews in Relativity, 2019, 22, 1.	8.2	39
1164	Electric feedback cooling of single charged nanoparticles in an optical trap. Physical Review A, 2019, 99, .	1.0	18
1165	Tunable subluminal and superluminal light with optomechanical-induced transparency under steady-state configuration. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 135504.	0.6	0
1166	Dueling dynamical backaction in a cryogenic optomechanical cavity. Physical Review A, 2019, 99,	1.0	7

#	Article	IF	CITATIONS
1167	Simultaneous cooling the coupled nano-mechanical resonators in the strong optomechanical coupling regime. Laser Physics, 2019, 29, 065201.	0.6	4
1168	Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity. Physical Review A, 2019, 99, .	1.0	13
1169	Dissipative phonon-Fock-state production in strong nonlinear optomechanics. Physical Review A, 2019, 99, .	1.0	5
1170	Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Physical Review A, 2019, 99, .	1.0	35
1171	Robust optomechanical state transfer under composite phase driving. Scientific Reports, 2019, 9, 4382.	1.6	15
1172	Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator. Physical Review A, 2019, 99, .	1.0	1
1173	Optical-mechanical cooling of a charged resonator. Physical Review A, 2019, 99, .	1.0	8
1174	Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. Physical Review Letters, 2019, 122, 123602.	2.9	111
1175	Speeding up adiabatic state conversion in optomechanical systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 115501.	0.6	15
1176	Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A, 2019, 99, .	1.0	10
1177	Tunable optomechanically induced transparency in a gain-assisted optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 085401.	0.6	3
1178	Optomechanical properties of a degenerate nonperiodic cavity chain. Frontiers of Physics, 2019, 14, 1.	2.4	5
1179	High-frequency cavity optomechanics using bulk acoustic phonons. Science Advances, 2019, 5, eaav0582.	4.7	37
1180	Interference effects in hybrid cavity optomechanics. Quantum Science and Technology, 2019, 4, 024002.	2.6	12
1181	Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications, 2019, 10, 1527.	5.8	35
1182	Diamond optomechanical crystals with embedded nitrogen-vacancy centers. Quantum Science and Technology, 2019, 4, 024009.	2.6	31
1183	Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 2019, 6, 213.	4.8	125
1184	Distinguishing photon blockade in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetric optomechanical system. Physical Review A, 2019. 99</mml:mi </mml:math 	1.0	57

#	Article	IF	CITATIONS
1185	Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics. New Journal of Physics, 2019, 21, 043049.	1.2	38
1186	Novel transparency, absorption and amplification in a driven optomechanical system with a two-level defect. Laser Physics Letters, 2019, 16, 035202.	0.6	4
1187	Strong quadrature squeezing and quantum amplification in a coupled Bose–Einstein condensate—optomechanical cavity based on parametric modulation. Annals of Physics, 2019, 405, 202-219.	1.0	22
1188	Strong mechanical squeezing in an unresolved-sideband optomechanical system. Physical Review A, 2019, 99, .	1.0	27
1189	Enhanced Quantum Synchronization via Quantum Machine Learning. Advanced Quantum Technologies, 2019, 2, 1800076.	1.8	10
1190	Single-photon transfer using levitated cavityless optomechanics. Physical Review A, 2019, 99, .	1.0	3
1191	Near Ground-State Cooling of Two-Dimensional Trapped-Ion Crystals with More than 100 Ions. Physical Review Letters, 2019, 122, 053603.	2.9	53
1192	Optomechanical Platform with a Three-dimensional Waveguide Cavity. Physical Review Applied, 2019, 11,	1.5	5
1193	Breaking the optomechanical cooling limit by two drive fields on a membrane-in-the-middle system. Physical Review A, 2019, 99, .	1.0	20
1194	Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements. Physical Review Letters, 2019, 122, 071101.	2.9	43
1195	Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Physical Review A, 2019, 99, .	1.0	41
1196	Quantum entanglement via a controllable four-wave-mixing mechanism in an optomechanical system. Physical Review A, 2019, 100, .	1.0	2
1197	The effect of optical cooling of the SPM probe in the optomechanical resonator. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012011.	0.3	0
1198	Laser refrigeration of gas filled hollow-core fibres. AIP Advances, 2019, 9, 105213.	0.6	1
1199	Twin-beam-enhanced displacement measurement of a membrane in a cavity. Applied Physics Letters, 2019, 115, .	1.5	4
1200	Coupling microwave photons to a mechanical resonator using quantum interference. Nature Communications, 2019, 10, 5359.	5.8	42
1201	Dynamics of ground-state cooling and quantum entanglement in a modulated optomechanical system. Physical Review A, 2019, 100, .	1.0	13
1202	Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State. Physical Review Letters, 2019, 123, 223602.	2.9	67

#	Article	IF	CITATIONS
1203	Coherent Optical Transduction of Suspended Microcapillary Resonators for Multi-Parameter Sensing Applications. Sensors, 2019, 19, 5069.	2.1	9
1204	Floquet dynamics in the quantum measurement of mechanical motion. Physical Review A, 2019, 100, .	1.0	13
1205	Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits. Npj Quantum Information, 2019, 5, .	2.8	14
1206	Phonon blockade in a hybrid system via the second-order magnetic gradient. Physical Review A, 2019, 100, .	1.0	17
1207	Control of electromagnetically induced transparency and Fano resonances in a hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	0.6	8
1208	Phonon traps reduce the quasiparticle density in superconducting circuits. Applied Physics Letters, 2019, 115, .	1.5	34
1209	Measurement and feedback for cooling heavy levitated particles in low-frequency traps. Physical Review A, 2019, 100, .	1.0	8
1210	Phonon counting boosts hybrid quantum networks based on optomechanics. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	1
1211	Force-dependent induced transparency in an atom-assisted optomechanical system. Optics Communications, 2019, 437, 153-159.	1.0	3
1212	Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Physical Review A, 2019, 99, .	1.0	61
1213	Atomic swap gate, driven by position fluctuations, in dispersive cavity optomechanics. Journal of Modern Optics, 2019, 66, 438-447.	0.6	3
1214	Parametric feedback cooling of rigid body nanodumbbells in levitated optomechanics. Physical Review A, 2019, 99, .	1.0	16
1215	Ground-state cooling enabled by critical coupling and dark entangled states. Physical Review B, 2019, 99, .	1.1	7
1216	Cooling of coupled nano-mechanical resonators in the weak optomechanical coupling regime. Laser Physics, 2019, 29, 025201.	0.6	4
1217	Optomechanical damping basis. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 08LT02.	0.7	10
1218	Precision ultrasound sensing on a chip. Nature Communications, 2019, 10, 132.	5.8	92
1219	Realizing Q> 300 000 in diamond microdisks for optomechanics via etch optimization. APL Photonics, 2019, 4, .	3.0	40
1220	Realization of a degenerate parametric oscillator in electromechanical systems. Physical Review B, 2019, 99, .	1.1	5

#	Article	IF	CITATIONS
1221	Nonclassical Properties of an Opto-Mechanical System Initially Prepared in N-Headed Cat State and Number State. International Journal of Theoretical Physics, 2019, 58, 58-70.	0.5	8
1222	Optomechanically induced transparency under the influence of spin ensemble system. Optik, 2019, 179, 1027-1034.	1.4	4
1223	Higher-order intermodal antibunching for couple-cavity optomechanical system. Journal of Optics (India), 2019, 48, 26-30.	0.8	1
1224	Electronically programmable photonic molecule. Nature Photonics, 2019, 13, 36-40.	15.6	155
1225	Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nature Physics, 2020, 16, 69-74.	6.5	182
1226	Optically Controlled Topologically Protected Acoustic Wave Amplification. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-10.	1.9	6
1227	Electro-optomechanical cooperative cooling of nanomechanical oscillator beyond resolved sideband regime. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	5
1228	Tunable slow and fast light in an atom-assisted optomechanical system with a mechanical pump. Optics Communications, 2020, 456, 124605.	1.0	6
1229	Currents cool and drive. Nature Physics, 2020, 16, 10-11.	6.5	0
1230	Optomechanics of Chiral Dielectric Metasurfaces. Advanced Optical Materials, 2020, 8, 1901507.	3.6	24
1231	Spin–Phonon Interfaces in Coupled Nanomechanical Cantilevers. Nano Letters, 2020, 20, 463-469.	4.5	12
1232	Berry-phase-like effect of thermo-phonon transport in optomechanics. Physical Review A, 2020, 102, .	1.0	9
1233	Dynamical tunneling of a nanomechanical oscillator. Physical Review A, 2020, 102, .	1.0	0
1234	Squeezed-light-driven force detection with an optomechanical cavity in a Mach–Zehnder interferometer. Scientific Reports, 2020, 10, 17496.	1.6	4
1235	Spectrum of Singleâ€Photon Scattering in a Strongâ€Coupling Hybrid Optomechanical System. Annalen Der Physik, 2020, 532, 2000154.	0.9	2
1236	Spin-Bath Dynamics in a Quantum Resonator-Qubit System: Effect of a Mechanical Resonator Coupled to a Central Qubit. International Journal of Theoretical Physics, 2020, 59, 3107-3123.	0.5	10
1237	High-Frequency Mechanical Excitation of a Silicon Nanostring with Piezoelectric Aluminum Nitride Layers. Physical Review Applied, 2020, 14, .	1.5	9
1238	Controllable optical response in a quadratically coupled optomechanical system with mechanical driving. Optics Communications, 2020, 475, 126249.	1.0	6

	CITATION	Report	
#	Article	IF	CITATIONS
1239	On chip optical tractor beam by surface plasmon polariton. Optics Communications, 2020, 463, 125395.	1.0	6
1241	Magnon current generation by dynamical distortion. Physical Review B, 2020, 102, .	1.1	2
1242	Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nature Communications, 2020, 11, 3373.	5.8	56
1243	Nonreciprocal ground-state cooling of multiple mechanical resonators. Physical Review A, 2020, 102, .	1.0	82
1244	Optimal estimation of gravitation with Kerr nonlinearity in an optomechanical system. Quantum Information Processing, 2020, 19, 1.	1.0	0
1245	A cavity optomechanical locking scheme based on the optical spring effect. Review of Scientific Instruments, 2020, 91, 103102.	0.6	4
1246	Controlling Light, Heat, and Vibrations in Plasmonics and Phononics. Advanced Optical Materials, 2020, 8, 2001225.	3.6	46
1247	Quantum double-double-slit experiment with momentum entangled photons. Scientific Reports, 2020, 10, 11427.	1.6	10
1248	Mechanical Squeezing via Fast Continuous Measurement. Physical Review Letters, 2020, 125, 043604.	2.9	19
1249	Optical Forces: From Fundamental to Biological Applications. Advanced Materials, 2020, 32, e2001994.	11.1	107
1250	A perspective on hybrid quantum opto- and electromechanical systems. Applied Physics Letters, 2020, 117, .	1.5	49
1251	Unconventional Phonon Blockade in a Tavis–Cummings Coupled Optomechanical System. Annalen Der Physik, 2020, 532, 2000299.	0.9	14
1252	Observation of phonon trapping in the continuum with topological charges. Nature Communications, 2020, 11, 5216.	5.8	20
1253	Phonon heat transport in cavity-mediated optomechanical nanoresonators. Nature Communications, 2020, 11, 4656.	5.8	45
1254	An Interaction-Free Quantum Measurement-Driven Engine. Foundations of Physics, 2020, 50, 1294-1314.	0.6	8
1255	The Optomechanical Response of a Cubic Anharmonic Oscillator. Applied Sciences (Switzerland), 2020, 10, 5719.	1.3	5
1256	Polariton-driven phonon laser. Nature Communications, 2020, 11, 4552.	5.8	34
1257	Radiation pressure measurement using a macroscopic oscillator in an ambient environment. Scientific Reports, 2020, 10, 20419.	1.6	10

	Ст	ATION REPORT	
#	Article	IF	CITATIONS
1258	Observation of nonlinear dynamics in an optical levitation system. Communications Physics, 2020, 3, .	2.0	9
1259	Optical trapping of the transversal motion for an optically levitated mirror. Physical Review A, 2020, 102, .	1.0	3
1260	Demonstration of an amplitude filter cavity at gravitational-wave frequencies. Physical Review D, 2020, 102, .	1.6	5
1261	Superconducting qubit to optical photon transduction. Nature, 2020, 588, 599-603.	13.7	242
1262	Coupling spins to nanomechanical resonators: Toward quantum spin-mechanics. Applied Physics Letters, 2020, 117, .	1.5	21
1263	Quasinormal-Mode Perturbation Theory for Dissipative and Dispersive Optomechanics. Physical Review Letters, 2020, 125, 233601.	2.9	25
1264	Coupling of light and mechanics in a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29422-29430.	3.3	9
1265	Overdamped dynamics of a Brownian particle levitated in a Paul trap. Physical Review A, 2020, 101, .	1.0	9
1266	Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Physical Review A, 2020, 101, .	1.0	11
1267	Strong mechanical squeezing in a standard optomechanical system by pump modulation. Physical Review A, 2020, 101, .	1.0	24
1268	Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology, 2020, 5, 034011.	2.6	9
1269	Coherent Phonon Manipulation in a Disk Resonator Gyroscope with Internal Resonance. , 2020, , .		2
1270	Measurement-based cooling of a nonlinear mechanical resonator. Physical Review B, 2020, 101, .	1.1	14
1271	Faraday-cage-assisted etching of suspended gallium nitride nanostructures. AIP Advances, 2020, 10, 055319.	0.6	2
1272	Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nature Communications, 2020, 11, 3235.	5.8	17
1273	An Anomalous Magneto-Optic Effect in Epitaxial Indium Selenide Layers. Nano Letters, 2020, 20, 5330-5338.	4.5	10
1274	Collapses and revivals of entanglement in phase space in an optomechanical cavity. European Physical Journal Plus, 2020, 135, 1.	1.2	1
1275	Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics. New Journal of Physics, 2020, 22, 063019.	1.2	5

#	Article	IF	CITATIONS
1276	Quantum sensing with milligram scale optomechanical systems. European Physical Journal D, 2020, 74, 1.	0.6	17
1277	Phonon maser stimulated by spin postselection. Physical Review A, 2020, 101, .	1.0	2
1278	Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. Nature Communications, 2020, 11, 1183.	5.8	16
1279	Controllable movement of single-photon source in multifunctional magneto-photonic structures. Scientific Reports, 2020, 10, 4843.	1.6	4
1280	Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics. Physical Review Letters, 2020, 124, 103602.	2.9	49
1281	Optomechanical generation of a mechanical catlike state by phonon subtraction. Physical Review A, 2020, 101, .	1.0	14
1282	Nonvolatile Rewritable Frequency Tuning of a Nanoelectromechanical Resonator Using Photoinduced Doping. Nano Letters, 2020, 20, 2378-2386.	4.5	9
1283	Optimal optomechanical coupling strength in multimembrane systems. Physical Review A, 2020, 101, .	1.0	4
1284	Creating mirror–mirror quantum correlations in optomechanics. European Physical Journal D, 2020, 74, 1.	0.6	11
1285	Stable Fano-like plasmonic resonance: its impact on the reversal of far- and near-field optical binding force. Communications in Theoretical Physics, 2020, 72, 045502.	1.1	2
1286	Advances on studying optical forces: optical manipulation, optical cooling and light induced dynamics. Journal Physics D: Applied Physics, 2020, 53, 283001.	1.3	15
1287	Dynamics of classical-quantum correlations between two movable mirrors in optomechanics. International Journal of Modern Physics B, 2020, 34, 2050066.	1.0	4
1288	Light-controlled detachment of van der Waals adhered particles in solution with photoacoustic resonator. Optics Communications, 2020, 463, 125480.	1.0	2
1289	Entangling Two Macroscopic Mechanical Resonators at High Temperature. Physical Review Applied, 2020, 13, .	1.5	31
1290	Cavity piezo-mechanics for superconducting-nanophotonic quantum interface. Nature Communications, 2020, 11, 3237.	5.8	76
1291	Tunable fast to slow light and second-order sideband generation in an optomechanical system with phonon pump. European Physical Journal D, 2020, 74, 1.	0.6	1
1292	Using coherent feedback loop for high quantum state transfer in optomechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126705.	0.9	7
1293	Single-Photon Cooling in Microwave Magnetomechanics. Physical Review Letters, 2020, 125, 023601.	2.9	21
#	Article	IF	CITATIONS
------	--	-----	-----------
1294	Fourâ€Wave Mixing Response via Hybrid Coulombâ€Coupled Cavity Optomechanics. Advanced Quantum Technologies, 2020, 3, 2000061.	1.8	3
1295	Quantum optomechanics of a two-dimensional atomic array. Physical Review A, 2020, 101, .	1.0	18
1296	Enhanced optomechanical entanglement and cooling via dissipation engineering. Physical Review A, 2020, 101, .	1.0	16
1297	Microfiber Mechanical Resonator for Optomechanics. ACS Photonics, 2020, 7, 695-700.	3.2	1
1298	Mechanical Exceptional-Point-Enhanced Second-Order Sideband Generation. IEEE Access, 2020, 8, 18884-18892.	2.6	2
1299	Nonlinear dynamics of weakly dissipative optomechanical systems. New Journal of Physics, 2020, 22, 013049.	1.2	21
1300	Quantum Acoustomechanics with a Micromagnet. Physical Review Letters, 2020, 124, 093602.	2.9	38
1301	Trends in Quantum Nanophotonics. Advanced Quantum Technologies, 2020, 3, 1900126.	1.8	37
1302	Quality factor tuning of micromechanical resonators via electrical dissipation. Applied Physics Letters, 2020, 116, .	1.5	16
1303	Radiative Cooling of a Superconducting Resonator. Physical Review Letters, 2020, 124, 033602.	2.9	32
1304	Optomechanical second-order sideband effects in a Laguerre–Gaussian rotational-cavity system. Physica Scripta, 2020, 95, 045107.	1.2	11
1305	Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane. Quantum Information Processing, 2020, 19, 1.	1.0	11
1306	Systematic design of high-Q prestressed micro membrane resonators. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112692.	3.4	13
1307	Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space. Physical Review Letters, 2020, 124, 013603.	2.9	104
1308	Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Physical Review Letters, 2020, 124, 173601.	2.9	55
1309	Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Information Processing, 2020, 19, 1.	1.0	6
1310	Levitated cavity optomechanics in high vacuum. Quantum Science and Technology, 2020, 5, 025006.	2.6	31
1311	A Chipâ€Scale Oscillationâ€Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits. Laser and Photonics Reviews, 2020, 14, 1800329.	4.4	31

#	Article	IF	Citations
1312	Precision measurement of few charges in cavity optoelectromechanical system. Quantum Information Processing, 2020, 19, 1.	1.0	6
1313	Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Physical Review A, 2020, 101, .	1.0	11
1314	Resonant Nanoelectromechanical Systems (NEMS): Progress and Emerging Frontiers. , 2020, , .		2
1315	Controllable coherent optical response in a ring cavity optomechanical system. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114394.	1.3	3
1316	Photon-pressure strong coupling between two superconducting circuits. Nature Physics, 2021, 17, 85-91.	6.5	25
1317	Diamond quantum nanophotonics and optomechanics. Semiconductors and Semimetals, 2021, 104, 219-251.	0.4	2
1318	Underground test of gravity-related wave function collapse. Nature Physics, 2021, 17, 74-78.	6.5	67
1319	Remote weak-signal measurement via bound states in optomechanical systems. Communications in Theoretical Physics, 2021, 73, 025102.	1.1	3
1320	Rotational Doppler cooling and heating. Science Advances, 2021, 7, .	4.7	8
1321	Quantum Optomechanics. Graduate Texts in Physics, 2021, , 325-364.	0.1	0
1322	High-frequency GaAs optomechanical bullseye resonator. APL Photonics, 2021, 6, 016104.	3.0	3
1323	Processing light with an optically tunable mechanical memory. Nature Communications, 2021, 12, 663.	5.8	17
1324	Phase Sensitive Imaging of Mechanical Modes. Springer Theses, 2021, , 91-102.	0.0	0
1325	Large flux-mediated coupling in hybrid electromechanical system with a transmon qubit. Communications Physics, 2021, 4, .	2.0	16
1326	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i> . IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	2.9	69
1327	Strong quadratic acousto-optic coupling in 1D multilayer phoxonic crystal cavity. Nanotechnology Reviews, 2021, 10, 443-452.	2.6	5
1328	Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	0
1329	Rare-Earth-Mediated Optomechanical System in the Reversed Dissipation Regime. Physical Review Letters, 2021, 126, 047404.	2.9	13

#	Article	IF	CITATIONS
1330	Ground state cooling of an optomechanical resonator with double quantum interference processes*. Chinese Physics B, 2021, 30, 023701.	0.7	1
1331	Quantum optomechanics without the radiation pressure force noise. Optics Letters, 2021, 46, 904.	1.7	5
1332	Nonlinear optical response properties of a quantum dot embedded in a semiconductor microcavity: possible applications in quantum communication platforms. Journal of Modern Optics, 2021, 68, 177-188.	0.6	2
1333	Optical back-action on the photothermal relaxation rate. Optica, 2021, 8, 177.	4.8	5
1334	Cavity optomechanics with a laser-engineered optical trap. Physical Review B, 2021, 103, .	1.1	3
1335	Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. Nano Letters, 2021, 21, 1800-1806.	4.5	2
1336	Quantum limit cycles and the Rayleigh and van der Pol oscillators. Physical Review Research, 2021, 3, .	1.3	21
1337	Cavity optomechanics assisted by optical coherent feedback. Physical Review A, 2021, 103, .	1.0	12
1338	Membrane-Based Scanning Force Microscopy. Physical Review Applied, 2021, 15, .	1.5	38
1339	Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope. Physical Review D, 2021, 103, .	1.6	18
1340	Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems. Physical Review Research, 2021, 3, .	1.3	13
1341	Cavity optomechanics with photonic bound states in the continuum. Physical Review Research, 2021, 3, .	1.3	19
1342	Sympathetic cooling of a radio-frequency LC circuit to its ground state in an optoelectromechanical system. Physical Review A, 2021, 103, .	1.0	8
1343	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	0.9	7
1344	Design of an optomagnonic crystal: Towards optimal magnon-photon mode matching at the microscale. Physical Review Research, 2021, 3, .	1.3	21
1345	Superfluid Optomechanics With Phononic Nanostructures. Physical Review Applied, 2021, 15, .	1.5	4
1346	Gravitational Forces Between Nonclassical Mechanical Oscillators. Physical Review Applied, 2021, 15, .	1.5	17
1347	Continuous variable quantum entanglement in optomechanical systems: A short review. AVS Quantum Science, 2021, 3, .	1.8	8

ARTICLE IF CITATIONS Optomechanical quantum teleportation., 2021,,. 0 1348 Optomechanically induced transparency, amplification, and Fano resonance in a multimode 1349 optomechanical system with quadratic coupling. EPJ Quantum Technology, 2021, 8, . Tunable Exciton-Optomechanical Coupling in Suspended Monolayer MoSe₂. Nano Letters, 1350 4.5 25 2021, 21, 2538-2543. Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation. Physical Review A, 2021, 103, . Coherent control of quantum and entanglement dynamics via periodic modulations in 1352 optomechanical semiconductor resonator coupled to quantum-dot excitons. Quantum Information 1.0 4 Processing, 2021, 20, 1. Mode Localization and Eigenfrequency Curve Veerings of Two Overhanged Beams. Micromachines, 1.4 2021, 12, 324. Reservoir-engineered entanglement in an unresolved-sideband optomechanical system. 1354 1.1 4 Communications in Theoretical Physics, 2021, 73, 055105. Full three-dimensional wavelength-scale plasmomechanical resonator. Optics Letters, 2021, 46, 1317. 1.7 1355 1356 Foundry-processed optomechanical photonic integrated circuits. OSA Continuum, 2021, 4, 1215. 9 1.8 Optical tweezers $\hat{a} \in$ " from calibration to applications: a tutorial. Advances in Optics and Photonics, 12.1 2021, 13, 74. Decoherence effects in non-classicality tests of gravity. New Journal of Physics, 2021, 23, 043040. 1358 31 1.2 Application of machine learning for predicting strong phonon blockade. Applied Physics Letters, 2021, 1359 1.5 118, 164003. Mapping the Cavity Optomechanical Interaction with Subwavelength-Sized Ultrasensitive 1360 2.8 21 Nanomechanical Force Sensors. Physical Review X, 2021, 11, . Atomâ€Mediated Phonon Blockade and Controlledâ€Z Gate in Superconducting Circuit System. Annalen Der Physik, 2021, 533, 2100039. 1362 Thermophonon flux in double-cavity optomechanics. Physical Review A, 2021, 103, . 1.0 8 Progress and perspectives on phononic crystals. Journal of Applied Physics, 2021, 129, . 1.1 Prediction and observation of intermodulation sidebands from anharmonic phonons in NaBr. Physical 1364 1.1 1 Review B, 2021, 103, . Electrically Driven Microcavity Exciton-Polariton Optomechanics at 20ÂGHz. Physical Review X, 2021, 11, 2.8

#	Article	IF	CITATIONS
1366	Optical actuation of a micromechanical photodiode via the photovoltaic-piezoelectric effect. Microsystems and Nanoengineering, 2021, 7, 29.	3.4	4
1367	Two-photon blockade generated and enhanced by mechanical squeezing. Physical Review A, 2021, 103, .	1.0	32
1368	Backactionâ€Noise Suppression and System Stabilization in Doubleâ€Mode Optomechanical Systems. Annalen Der Physik, 2021, 533, 2100119.	0.9	3
1369	Measurement of the mechanical reservoir spectral density in an optomechanical system. Physical Review A, 2021, 103, .	1.0	4
1370	Phonon lasing in a hetero optomechanical crystal cavity. Photonics Research, 2021, 9, 937.	3.4	13
1371	Reversible quantum state transfer in a three-mode optomechanical system. Laser Physics Letters, 2021, 18, 065206.	0.6	0
1372	Efficient ground state cooling of a membrane by the combination of continuous-wave field and pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 095502.	0.6	3
1373	Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system. Physical Review B, 2021, 103, .	1.1	19
1374	Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic Bose–Einstein condensate. AVS Quantum Science, 2021, 3, .	1.8	21
1375	Acoustic cavities in 2D heterostructures. Nature Communications, 2021, 12, 3267.	5.8	26
1376	Dynamical Invariant and Exact Mechanical Analyses for the Caldirola–Kanai Model of Dissipative Three Coupled Oscillators. Entropy, 2021, 23, 837.	1.1	5
1377	Flexible Control of Two-Channel Transmission and Group Delay in an Optomechanical System with Double Quantum Dots Driven by External Field. Nanomaterials, 2021, 11, 1554.	1.9	0
1378	Efficient Brillouin Optomechanical Interaction Assisted by Piezomechanics on the SOI Platform. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	0
1379	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	6.0	59
1380	Robust Four-Wave Mixing and Double Second-Order Optomechanically Induced Transparency Sideband in a Hybrid Optomechanical System. Photonics, 2021, 8, 234.	0.9	1
1381	Electro-Optomechanical Modulation Instability in a Semiconductor Resonator. Physical Review Letters, 2021, 126, 243901.	2.9	8
1382	Enhanced force sensitivity and entanglement in periodically driven optomechanics. Physical Review A, 2021, 103, .	1.0	17
1383	Measure and control of quantum correlations in optomechanics. European Physical Journal D, 2021, 75, 1.	0.6	1

#	Article	IF	CITATIONS
1384	Controlled bistable dynamics of a four-mirror cavity-optomechanics with two movable mirrors. Optics Communications, 2021, 488, 126820.	1.0	5
1385	Optical response of a dual membrane active–passive optomechanical cavity. Annals of Physics, 2021, 429, 168465.	1.0	10
1386	Optomechanical cooling with coherent and squeezed light: The thermodynamic cost of opening the heat valve. Physical Review A, 2021, 103, .	1.0	5
1387	Quadratic optomechanical cooling of a cavity-levitated nanosphere. Physical Review Research, 2021, 3, .	1.3	12
1388	Gravitational effects in macroscopic quantum systems: a first-principles analysis. Classical and Quantum Gravity, 2021, 38, 155012.	1.5	17
1389	Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale. APL Materials, 2021, 9, .	2.2	17
1390	Out-of-equilibrium optomechanical resonance self-excitation. Journal of Applied Physics, 2021, 130, 035303.	1.1	1
1391	Dynamical Backaction in an Ultrahigh-Finesse Fiber-Based Microcavity. Physical Review Applied, 2021, 16,	1.5	13
1392	Stroboscopic high-order nonlinearity for quantum optomechanics. Npj Quantum Information, 2021, 7,	2.8	5
1393	High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump. Applied Physics Express, 2021, 14, 082005.	1.1	6
1394	Topological insulator in two synthetic dimensions based on an optomechanical resonator. Optica, 2021, 8, 1024.	4.8	8
1395	Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 2021, 595, 378-382.	13.7	163
1396	Master-equation treatment of nonlinear optomechanical systems with optical loss. Physical Review A, 2021, 104, .	1.0	10
1397	Tunable Amplification and Cooling of a Diamond Resonator with a Microscope. Physical Review Applied, 2021, 16, .	1.5	2
1398	Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light: Science and Applications, 2021, 10, 158.	7.7	12
1399	Energy-level attraction and heating-resistant cooling of mechanical resonators with exceptional points. Physical Review A, 2021, 104, .	1.0	11
1400	Floquet Phonon Lasing in Multimode Optomechanical Systems. Physical Review Letters, 2021, 127, 073601.	2.9	31
1401	Coherent Pulse Echo in Hybrid Magnonics with Multimode Phonons. Physical Review Applied, 2021, 16, .	1.5	11

#	Article	IF	CITATIONS
1402	Accurate modeling and characterization of photothermal forces in optomechanics. APL Photonics, 2021, 6, 086101.	3.0	7
1403	Cavity optomechanical sensing. Nanophotonics, 2021, 10, 2799-2832.	2.9	78
1404	Measuring Ion Oscillations at the Quantum Level with Fluorescence Light. Physical Review Letters, 2021, 127, 063603.	2.9	6
1405	Microwave-optical quantum frequency conversion. Optica, 2021, 8, 1050.	4.8	81
1406	Ion-laser-like interaction in optomechanical systems with Kerr nonlinearities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 408, 127490.	0.9	1
1407	Meissner Levitation of a Millimeter-Size Neodymium Magnet Within a Superconducting Radio Frequency Cavity. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.1	7
1408	Nanomechanical Dissipation and Strain Engineering. Advanced Functional Materials, 2022, 32, 2105247.	7.8	15
1409	Quantum simulation of tunable and ultrastrong mixed-optomechanics. Optics Express, 2021, 29, 28202.	1.7	1
1410	A phononic interface between a superconducting quantum processor and quantum networked spin memories. Npj Quantum Information, 2021, 7, .	2.8	20
1411	Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system*. Chinese Physics B, 2021, 30, 094203.	0.7	4
1412	Coherent scattering-mediated correlations between levitated nanospheres. Quantum Science and Technology, 2021, 6, 045013.	2.6	8
1413	Microwave photonic circulator based on optomechanical-like interactions. Quantum Information Processing, 2021, 20, 1.	1.0	0
1414	Acousto-optic cavity coupling in 2D phoxonic crystal with combined convex and concave holes. Journal of Applied Physics, 2021, 130, 123104.	1.1	6
1415	Demonstration of Forward Brillouin Gain in a Hybrid Photonic–Phononic Silicon Waveguide. ACS Photonics, 2021, 8, 2755-2763.	3.2	8
1416	Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump. Micromachines, 2021, 12, 1074.	1.4	1
1417	Amplitude stabilization of micromechanical oscillators using engineered nonlinearity. Physical Review Research, 2021, 3, .	1.3	5
1418	Static synthetic gauge field control of double optomechanically induced transparency in a closed-contour interaction scheme. Physical Review A, 2021, 104, .	1.0	4
1419	The Stationary Optomechanical Entanglement Between an Optical Cavity Field and a Cubic Anharmonic Oscillator. International Journal of Theoretical Physics, 2021, 60, 3961-3972.	0.5	1

#	Article	IF	CITATIONS
1420	Strong optomechanical coupling in chain-like waveguides of silicon nanoparticles with quasi-bound states in the continuum. Optics Letters, 2021, 46, 4466.	1.7	1
1421	Injection locking in an optomechanical coherent phonon source. Nanophotonics, 2021, 10, 1319-1327.	2.9	12
1422	Optomechanical Interaction. Springer Theses, 2021, , 27-41.	0.0	0
1423	Optomechanical quantum teleportation. , 2021, , .		0
1424	Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion. Nano Letters, 2021, 21, 529-535.	4.5	11
1425	Quantum Dynamics of Dual-Cavities Optochanical Systems. Wuli Xuebao/Acta Physica Sinica, 2021, .	0.2	1
1426	A Review on Theory and Modelling of Nanomechanical Sensors for Biological Applications. Processes, 2021, 9, 164.	1.3	18
1427	Foundry-Processed Optomechanical Mach-Zehnder Interferometers. , 2021, , .		Ο
1428	Mechanical and Magnetic Single-Molecule Excitations by Radio-Frequency Scanning Tunneling Microscopy. Advances in Atom and Single Molecule Machines, 2017, , 187-218.	0.0	1
1429	Observable quantum entanglement due to gravity. Npj Quantum Information, 2020, 6, .	2.8	100
1430	Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Advances in Physics: X, 2021, 6, 1838322.	1.5	15
1431	Quantum superposition of two gravitational cat states. Classical and Quantum Gravity, 2020, 37, 235012.	1.5	34
1432	Mesoscopic entanglement through central–potential interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 235501.	0.6	27
1433	Quantum decoherence by Coulomb interaction. New Journal of Physics, 2020, 22, 063039.	1.2	18
1434	Stationary quantum entanglement between a massive mechanical membrane and a low frequency LC circuit. New Journal of Physics, 2020, 22, 063041.	1.2	9
1435	A quantum heat machine from fast optomechanics. New Journal of Physics, 2020, 22, 103028.	1.2	15
1436	Comparing nonlinear optomechanical coupling in membrane-in-the-middle and single-cavity systems. New Journal of Physics, 2020, 22, 113006.	1.2	10
1437	Eigenfrequency loci crossings, veerings and mode splittings of two cantilevers coupled by an overhang. Journal of Physics Communications, 2020, 4, 085010.	0.5	3

#	Article	IF	CITATIONS
1438	Optimal detuning for quantum filter cavities. Physical Review D, 2020, 102, .	1.6	7
1439	Chimera states in small optomechanical arrays. Physical Review Research, 2020, 2, .	1.3	15
1440	Stroboscopic quantum optomechanics. Physical Review Research, 2020, 2, .	1.3	14
1441	Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime. Physical Review Research, 2020, 2, .	1.3	20
1442	Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus. Physical Review Research, 2020, 2, .	1.3	21
1443	Experimental demonstration of cavity-free optical isolators and optical circulators. Physical Review Research, 2020, 2, .	1.3	30
1444	Mechanical oscillator thermometry in the nonlinear optomechanical regime. Physical Review Research, 2020, 2, .	1.3	14
1445	Photonic tractor beams: a review. Advanced Photonics, 2019, 1, 1.	6.2	59
1446	Millikelvin cooling of the center-of-mass motion of a levitated nanoparticle. , 2017, , .		1
1447	Freestanding optical micro-disk resonators in single-crystal diamond by reactive ion etching and multidirectional focused ion-beam milling. , 2018, , .		2
1448	Optomechanical transistor: controlling the optical bistability in a photonic molecule. Applied Optics, 2019, 58, 2463.	0.9	4
1449	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288.	12.1	99
1450	Ground state cooling of mechanical motion through coupled cavity interactions in the unresolved sideband regime. , 2013, , .		2
1451	Coupling librational and translational motion of a levitated nanoparticle in an optical cavity. Journal of the Optical Society of America B: Optical Physics, 2017, 34, C8.	0.9	13
1452	Atomic quadrature squeezing and quantum state transfer in a hybrid atom–optomechanical cavity with two Duffing mechanical oscillators. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 775.	0.9	4
1453	Tailoring the thermalization time of a cavity field using distinct atomic reservoirs. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1252.	0.9	11
1454	Improving the sensitivity of weak microwave signal detection with optomechanical system under non-Markovian regime. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1363.	0.9	2
1455	Optomechanical entanglement switch in the hybrid opto-electromechanical device. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1544.	0.9	6

#	Article	IF	CITATIONS
1456	Mechanical driving mediated slow light in a quadratically coupled optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 650.	0.9	9
1457	Efficient ground state cooling of a mechanical resonator in a membrane-in-the-middle system by a single drive. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 956.	0.9	3
1458	Multistability, staircases, and optical high-order sideband combs in optomechanics. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A36.	0.9	10
1459	Generation of mechanical squeezing and entanglement via mechanical modulations. Optics Express, 2018, 26, 30773.	1.7	11
1460	Highly efficient cooling of mechanical resonator with square pulse drives. Optics Express, 2018, 26, 33830.	1.7	11
1461	Cryogenic packaging of an optomechanical crystal. Optics Express, 2019, 27, 28782.	1.7	15
1462	Macroscopic entanglement in optomechanical system induced by non-Markovian environment. Optics Express, 2019, 27, 29082.	1.7	14
1463	Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode. Optics Express, 2020, 28, 580.	1.7	14
1464	Dual-gate transistor amplifier in a multimode optomechanical system. Optics Express, 2020, 28, 7095.	1.7	8
1465	Enhanced four-wave mixing in <i>P T</i> -symmetric optomechanical systems. Optics Express, 2020, 28, 9049.	1.7	7
1466	Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise. Optics Express, 2020, 28, 12460.	1.7	5
1467	Spectrometric detection of weak forces in cavity optomechanics. Optics Express, 2020, 28, 28620.	1.7	7
1468	Enhanced photon blockade in an optomechanical system with parametric amplification. Optics Letters, 2020, 45, 2604.	1.7	32
1469	Dispersive optomechanics of supercavity modes in high-index disks. Optics Letters, 2020, 45, 5238.	1.7	4
1470	Ar/Cl2 etching of GaAs optomechanical microdisks fabricated with positive electroresist. Optical Materials Express, 2020, 10, 57.	1.6	4
1471	Electro-optic interface for ultrasensitive intracavity electric field measurements at microwave and terahertz frequencies. Optica, 2020, 7, 498.	4.8	39
1472	Near-field coupling of a levitated nanoparticle to a photonic crystal cavity. Optica, 2018, 5, 1597.	4.8	37
1473	Optomechanically amplified wavelength conversion in diamond microcavities. Optica, 2019, 6, 832.	4.8	15

# 1474	ARTICLE Lithium niobate piezo-optomechanical crystals. Optica, 2019, 6, 845.	IF 4.8	CITATIONS 81
1475	Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photonics Research, 2019, 7, 1229.	3.4	31
1476	Quantum sensing with nanoparticles for gravimetry: when bigger is better. Advanced Optical Technologies, 2020, 9, 227-239.	0.9	30
1477	Microwave oscillator and frequency comb in a silicon optomechanical cavity with a full phononic bandgap. Nanophotonics, 2020, 9, 3535-3544.	2.9	27
1478	Properties of nanocrystalline silicon probed by optomechanics. Nanophotonics, 2020, 9, 4819-4829.	2.9	4
1479	Optomechanical state reconstruction and nonclassicality verification beyond the resolved-sideband regime. Quantum - the Open Journal for Quantum Science, 0, 3, 125.	0.0	2
1480	Microscale Crystalline Rare-Earth Doped Resonators for Strain-Coupled Optomechanics. Journal of Modern Physics, 2019, 10, 1342-1352.	0.3	2
1481	Quantum control of fast/slow light in atom-assisted optomechanical cavity. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 054201.	0.2	4
1482	Optomechanical synchronization across multi-octave frequency spans. Nature Communications, 2021, 12, 5625.	5.8	10
1483	Fast laser cooling using optimal quantum control. Physical Review A, 2021, 104, .	1.0	3
1484	Improving few-photon optomechanical effects with coherent feedback. Optics Express, 2021, 29, 35299.	1.7	7
1485	Reversible optical–microwave quantum conversion assisted by optomechanical dynamically dark modes. Quantum Information Processing, 2021, 20, 1.	1.0	0
1486	Cooling photon-pressure circuits into the quantum regime. Science Advances, 2021, 7, eabg6653.	4.7	8
1487	Critical ambient pressure and critical cooling rate in optomechanics of electromagnetically levitated nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3652.	0.9	1
1488	Photonic Frequency Conversion of OFDM Microwave Signals in a Wavelengthâ€Scale Optomechanical Cavity. Laser and Photonics Reviews, 2021, 15, 2100175.	4.4	5
1489	Optomechanical quantum teleportation. Nature Photonics, 2021, 15, 817-821.	15.6	58
1490	Spiderweb Nanomechanical Resonators via Bayesian Optimization: Inspired by Nature and Guided by Machine Learning. Advanced Materials, 2022, 34, e2106248.	11.1	31
1491	Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems. Physical Review A, 2021, 104, .	1.0	26

#	Article	IF	CITATIONS
1492	Opportunities for Long-Range Magnon-Mediated Entanglement of Spin Qubits via On- and Off-Resonant Coupling. PRX Quantum, 2021, 2, .	3.5	46
1493	Geometric motion transfer between two indirectly coupled mechanical resonators. Applied Physics Letters, 2021, 119, 143504.	1.5	1
1494	Optomecânica de microcavidades: do quente ao frio. Physicae, 2011, 10, 1-5.	0.0	0
1496	High Frequency Double-disk Optomechanical Oscillators. , 2012, , .		0
1497	Dynamical photothermal response of optical whispering-gallery silica microresonators in helium-4 cryogenic environments. , 2012, , .		0
1498	Quantum Optomechanics: a mechanical platform for quantum foundations and quantum information. , 2012, , .		0
1499	Mechanical Laser Cooling in Cryogenic Cavities. Springer Theses, 2012, , 101-121.	0.0	0
1501	Introduction and Basic Theory. Springer Theses, 2012, , 3-34.	0.0	0
1502	A Cryogenic Cavity Optomechanics System for Membrane Microresonators. , 2012, , .		0
1503	Opto-Mechanics in the Strong Coupling Regime. Springer Theses, 2012, , 123-132.	0.0	0
1504	Entangled Mechanical Cat States From Conditional Optomechanics. , 2013, , .		0
1505	Nanocavity Optomechanics for Coupling to Quantum Systems. , 2013, , .		0
1506	Si3N4 nanobeam optomechanical crystals. , 2013, , .		0
1507	Quantum-limited, cavity-free nano-optomechanical vectorial coupling with SiC nanowires and Carbon nanotubes. , 2013, , .		0
1508	Manipulating NV centers with Optomechanical Crystals. , 2013, , .		0
1509	Dynamic cooling of a mechanical resonator in the strong coupling regime. , 2013, , .		0
1510	Nonlinear optical effects of ultrahigh-Q wavelength-sized silicon disk cavities immersed in superfluid helium. , 2013, , .		0
1511	Entangled Mechanical Cat States via Single Photon Conditional Optomechanics. , 2013, , .		0

#	Article	IF	CITATIONS
1512	High-efficiency, monolithic coupling to optomechanical cavities for quantum-limited position detection. , 2013, , .		0
1513	A Stretched-rod Nanobeam Cavity with High Optomechanical Coupling Rate. , 2013, , .		0
1515	Classicalization and the Macroscopicity of Quantum Superposition States. Springer Theses, 2014, , 161-238.	0.0	0
1516	CHAPTER 16. Superconductivity in Nanostructured Boron-doped Diamond and its Application to Device Fabrication. RSC Nanoscience and Nanotechnology, 2014, , 385-410.	0.2	0
1518	Integrated silicon optomechanical transducers and their application in atomic force microscopy. , 2014, , .		0
1519	Classical Dynamics of a Mobile Mirror and the Electromagnetic Field. , 2014, , .		Ο
1520	Towards Macroscopic Superpositions via Single-photon Optomechanics. , 2014, , 65-85.		0
1521	Strong Optomechanical Coupling in a Nanobeam Cavity based on Hetero Optomechanical Crystals. , 2014, , .		0
1522	Optical Detection of Radio Waves Through a Nanomechanical Transducer. , 2014, , .		3
1523	Quantum optomechanics. , 2014, , 321-350.		Ο
1524	Recent Trends in Nano-Optomechanical Systems. , 2014, , 207-249.		0
1525	Tripartite mechanical entanglement in quantum optomechanical systems. , 2015, , .		Ο
1526	Is Quantum Linear Superposition an Exact Principle of Nature?. The Frontiers Collection, 2015, , 151-164.	0.1	1
1527	Optomechanical Crystal Cavity with Ultra-small Effective Motion Mass based on Split-nanobeam Structure. , 2015, , .		Ο
1528	Optical Transistor and Coherent Optical Storage Based on Graphene Optomechanics System. Applied Physics, 2015, 05, 115-122.	0.0	0
1529	Nano-Optomechanical Systems (NOMS). , 2015, , 1-8.		Ο
1530	How to Stop a Nanosphere. Physics Magazine, 0, 8, .	0.1	0
1531	Arrays of optomechanical systems. , 2015, , 296-317.		0

#	Article	IF	CITATIONS
1532	Single-photon optomechanics. , 2015, , 212-249.		0
1534	- Cantilever Resonance Detection Using Nanophotonic Structures. , 2015, , 338-365.		0
1535	- Optical Transduction and Actuation of Subwavelength Nanomechanical Resonators. , 2015, , 308-337.		0
1536	Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 214204.	0.2	1
1537	Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 194205.	0.2	8
1538	Phonon routing, modulation, and sensitive motion detection in piezo-optomechanical circuits. , 2016, , .		0
1539	Diamond optomechanical crystals in the resolved-sideband regime. , 2016, , .		0
1540	Nano-optomechanical Systems (NOMS). , 2016, , 2539-2546.		0
1542	Hybrid optomechanical systems as transducers for quantum information. , 2017, , .		0
1543	A high performance optomechanical mass sensor. , 2017, , .		2
1544	Optomechanics with hybrid carbon nanotube resonators. , 2017, , .		0
1545	Effects of coupling configuration on resonance excitation in a slotted photonic crystal nanobeam. , 2017, , .		1
1546	A novel nano-sensor based on optomechanical crystal cavity. , 2017, , .		0
1547	Infrared nano-sensor based on doubly splited optomechanical cavity. , 2017, , .		Ο
1548	Effect of Thermal Nonlinearities on Sideband Asymmetry Measurements in Quantum Optomechanics. , 2018, , .		0
1549	Recent progress in nano-optomechanical devices at microwave frequencies. , 2018, , .		0
1550	Interference-based multimode opto-electro-mechanical transducers. , 2018, , .		0
1551	Storage and retrieval of optical information in levitated cavityless optomechanics. , 2018, , .		0

#	Article	IF	CITATIONS
1552	Large-capacity high-resolution optomechanical mass sensing based on free-space optical cavity. Optics Express, 2018, 26, 31567.	1.7	1
1553	Toward Novel Coherence Protection and Sensing Techniques: Closed Counter Interaction Using a Single Spin. , 2019, , .		0
1554	Quasi-2D Optomechanical Crystal Cavity for Quantum Optomechanics. , 2019, , .		0
1555	Surface-Acoustic-Wave-Photonic Devices in Standard Silicon-on-Insulator. , 2019, , .		0
1556	Sub-wavelength grating cavity optomechanics. , 2019, , .		0
1557	The influence of fabrication imperfections in an optomechanical crystal nanobeam cavity. , 2020, , .		1
1558	A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling. Nature Communications, 2021, 12, 6182.	5.8	20
1559	FDTD simulation of optical force under non-ideal conditions. Optics Communications, 2022, 505, 127586.	1.0	8
1560	Simulating the Bose-Hubbard model with a one-dimensional cavityoptomechanical system. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
1561	Optomechanical Platform for Probing Two-Dimensional Quantum Fluids. Springer Theses, 2020, , 25-53.	0.0	0
1562	Controllable quantum interference and photon transport in three-mode closed-loop cavity-atom system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 113701.	0.2	0
1563	Measurements of a quantum bulk acoustic resonator using a superconducting qubit. Applied Physics Letters, 2020, 117, .	1.5	5
1564	Cavity-less Quantum Optomechanics with Nanostring Mechanical Resonators. , 2020, , .		2
1565	Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 134203.	0.2	2
1566	Light-Mediated Control of Superfluid Flow. Springer Theses, 2020, , 55-74.	0.0	0
1567	Optomechanically induced transparency, amplification, and fast–slow light transitions in an optomechanical system with multiple mechanical driving phases. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 888.	0.9	7
1568	Structural imperfections on characteristics of optomechanical crystal nanobeam cavity. OSA Continuum, 2021, 4, 2998.	1.8	1
1570	Generation of the mechanical Schrödinger cat state in a hybrid atom-optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2146.	0.9	4

#	Article	IF	CITATIONS
1571	Quantum optical response of a hybrid optomechanical device embedded with a qubit. Journal of Optics (United Kingdom), 2020, 22, 115401.	1.0	7
1572	Monolithically integrated membrane-in-the-middle cavity optomechanical systems. Optics Express, 2020, 28, 28113.	1.7	5
1573	Noise Reduction of a Mechanical Resonator by Laser Cooling. Vacuum and Surface Science, 2020, 63, 536-541.	0.0	0
1574	Ultrasensitive and high resolution mass sensor by photonic-molecule optomechanics with phonon pump. Laser Physics, 2020, 30, 115203.	0.6	1
1575	Gain-nonlinearity-induced tunable phonon sideband spectrum and frequency comb. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2839.	0.9	1
1576	Cat-flap micro-pendulum for low noise optomechanics. Journal Physics D: Applied Physics, 2021, 54, 035104.	1.3	1
1577	Enhanced optomechanical interaction assisted by piezomechanics on the SOI platform. , 2020, , .		0
1578	Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Physical Review A, 2021, 104, .	1.0	2
1579	Quantum state transfer between distant optomechanical interfaces via shortcut to adiabaticity. Physical Review A, 2021, 104, .	1.0	4
1580	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.	15.6	73
1580 1581	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329. Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.	15.6	73 5
1580 1581 1582	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329. Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009. Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.	15.6 1.2 2.0	73 5 7
1580 1581 1582 1583	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.Quantum Network with Magnonic and Mechanical Nodes. PRX Quantum, 2021, 2, .	15.6 1.2 2.0 3.5	73 5 7 41
1580 1581 1582 1583 1583	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.Quantum Network with Magnonic and Mechanical Nodes. PRX Quantum, 2021, 2, .Quantum physics in space. Physics Reports, 2022, 951, 1-70.	15.6 1.2 2.0 3.5 10.3	73 5 7 41 38
1580 1581 1582 1583 1585 1585	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.Quantum Network with Magnonic and Mechanical Nodes. PRX Quantum, 2021, 2, .Quantum physics in space. Physics Reports, 2022, 951, 1-70.A generic metasurface for the optical pulling of dielectric or plasmonic or chiral Mie objects. Optics Communications, 2022, 508, 127679.	15.6 1.2 2.0 3.5 10.3 1.0	73 5 7 41 38
1580 1581 1582 1583 1585 1585 1586	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.Quantum Network with Magnonic and Mechanical Nodes. PRX Quantum, 2021, 2, .Quantum physics in space. Physics Reports, 2022, 951, 1-70.Ageneric metasurface for the optical pulling of dielectric or plasmonic or chiral Mie objects. Optics Communications, 2022, 508, 127679.Optimization of diamond optomechanical crystal cavities. , 2021, ,.	15.6 1.2 2.0 3.5 10.3 1.0	73 5 7 41 38 1
1580 1581 1582 1583 1585 1586 1587	Quantum-coherent nanoscience. Nature Nanotechnology, 2021, 16, 1318-1329.Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.Quantum Network with Magnonic and Mechanical Nodes. PRX Quantum, 2021, 2, .Quantum physics in space. Physics Reports, 2022, 951, 1-70.Ageneric metasurface for the optical pulling of dielectric or plasmonic or chiral Mie objects. Optics Communications, 2022, 508, 127679.Optimization of diamond optomechanical crystal cavities. , 2021, ,.Approaching the motional ground state of a 10 kg object. , 2021, ,.	15.6 1.2 2.0 3.5 10.3 1.0	 73 5 7 41 38 1 0 1

#	Article	IF	CITATIONS
1590	A review of optically induced rotation. Frontiers of Information Technology and Electronic Engineering, 2022, 23, 171-185.	1.5	3
1591	Quality factor control of mechanical resonators using variable phononic bandgap on periodic microstructures. Scientific Reports, 2022, 12, 392.	1.6	9
1592	Mechanical frequency control in inductively coupled electromechanical systems. Scientific Reports, 2022, 12, 1608.	1.6	6
1593	Intensive Cavity-Magnomechanical Cooling of a Levitated Macromagnet. Physical Review Letters, 2022, 128, 013602.	2.9	20
1594	Hetero-Optomechanical Crystal Zipper Cavity for Multimode Optomechanics. Photonics, 2022, 9, 78.	0.9	7
1595	Fast excitation fluctuation transfer between two membranes based on transitionless quantum driving. Laser Physics Letters, 2022, 19, 035202.	0.6	2
1596	Stability of the Discrete Time-Crystalline Order in Spin-Optomechanical and Open Cavity QED Systems. Photonics, 2022, 9, 61.	0.9	1
1597	Optomechanical strong coupling between a single photon and a single atom. New Journal of Physics, 2022, 24, 023006.	1.2	1
1598	Entanglement dynamics of a nano-mechanical resonator coupled to a central qubit. Quantum Information Processing, 2022, 21, 1.	1.0	6
1599	Two-Phonon Blockade in Quadratically Coupled Optomechanical Systems. Photonics, 2022, 9, 70.	0.9	6
1600	Amplitude and phase locking of mechanical oscillation driven by radiation pressure. Physical Review A, 2022, 105, .	1.0	5
1601	Torsional optomechanical cooling of a nanofiber. Photonics Research, 2022, 10, 601.	3.4	5
1602	Four-wave-cooling to the single phonon level in Kerr optomechanics. Communications Physics, 2022, 5, .	2.0	8
1603	A perspective on quantum entanglement in optomechanical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127966.	0.9	11
1604	Optical response properties of a hybrid electro-optomechanical system interacting with a qubit. Journal of Modern Optics, 2022, 69, 323-335.	0.6	4
1605	Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification. Physical Review Applied, 2022, 17, .	1.5	21
1606	Accelerated ground-state cooling of an optomechanical resonator via shortcuts to adiabaticity. Physical Review A, 2022, 105, .	1.0	4
1607	External-level assisted cooling by measurement. Physical Review A, 2021, 104, .	1.0	7

#	Article	IF	CITATIONS
1608	Optomechanical dissipative solitons. Nature, 2021, 600, 75-80.	13.7	48
1609	Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system. Physical Review A, 2021, 104, .	1.0	26
1610	Negative Gilbert damping. Physical Review B, 2022, 105, .	1.1	6
1611	Driven nonlinear damping and mode coupling in a superconducting levitated magnet. Physical Review Research, 2022, 4, .	1.3	0
1612	Squeezed vacuum interaction with an optomechanical cavity containing a quantum well. Scientific Reports, 2022, 12, 3658.	1.6	3
1613	On-Chip Coherent Transduction between Magnons and Acoustic Phonons in Cavity Magnomechanics. Physical Review Applied, 2022, 17, .	1.5	24
1614	Multiphonon quantum dynamics in cavity optomechanical systems. Physical Review A, 2022, 105, .	1.0	3
1615	Measurement of sub-fm/Hz ^{1/2} displacement spectral densities in ultrahigh-Q single-crystal microcavities with hertz-level lasers. Photonics Research, 2022, 10, 1202.	3.4	4
1616	Phase dependence of the dynamical behaviours and photon entanglement induced by two-fold modulations in optomechanical interfaces. Pramana - Journal of Physics, 2022, 96, 1.	0.6	1
1617	Active optomechanics. Communications Physics, 2022, 5, .	2.0	7
1618	Deep sub-wavelength localization of light and sound in dielectric resonators. Optics Express, 2022, 30, 12378.	1.7	2
1619	Nonlinear interaction effects in a three-mode cavity optomechanical system. Physical Review A, 2022, 105, .	1.0	2
1620	Enhancing Gravitational Interaction between Quantum Systems by a Massive Mediator. Physical Review Letters, 2022, 128, 110401.	2.9	30
1621	基于回音å£å¾®è…"çš"éžäº'æ~"å…‰å噔件. Chinese Science Bulletin, 2022, , .	0.4	0
1622	Tunable microwave-optical entanglement and conversion in multimode electro-opto-mechanics. Optics Express, 2022, 30, 10135.	1.7	0
1623	Enhancing photon entanglement in a three-mode optomechanical system via imperfect phonon measurements. Communications in Theoretical Physics, 2022, 74, 055105.	1.1	1
1624	Robust and fast excitation fluctuations transfer between two membranes in an optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 434, 128055.	0.9	0
1625	Robust Second-Order Sideband Generation in a Photonic-Molecule Optomechanics with Phonon Pump. Journal of Experimental and Theoretical Physics, 2021, 133, 542-551.	0.2	0

#	Article	IF	CITATIONS
1626	Nonclassical photon statistics in two-tone continuously driven optomechanics. Physical Review A, 2021, 104, .	1.0	3
1627	Magnomechanics in suspended magnetic beams. Physical Review B, 2021, 104, .	1.1	7
1628	Optomechanics for quantum technologies. Nature Physics, 2022, 18, 15-24.	6.5	100
1629	Optical Control of Bulk Phonon Modes in Crystalline Solids. Advanced Quantum Technologies, 2022, 5, .	1.8	5
1630	Realization of a coupled-mode heat engine with cavity-mediated nanoresonators. Science Advances, 2021, 7, eabl7740.	4.7	18
1631	Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity. PRX Quantum, 2022, 3, .	3.5	6
1632	Microwave amplification in a <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e750" altimg="si4.svg"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric-like cavity magnomechanical system. Optik, 2022, 260, 169035.	1.4	2
1633	Improving the Stochastic Feedback Cooling of a Mechanical Oscillator Using a Degenerate Parametric Amplifier. Photonics, 2022, 9, 264.	0.9	1
1634	Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators. Micromachines, 2022, 13, 591.	1.4	3
1635	Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nature Communications, 2022, 13, 2065.	5.8	23
1636	Mesoscopic quantum thermo-mechanics: A new frontier of experimental physics. AVS Quantum Science, 2022, 4, 020501.	1.8	3
1640	Exponentially Enhanced Singleâ€Photon Crossâ€Kerr Nonlinearity in Quantum Optomechanics. Annalen Der Physik, 2022, 534, 2100599.	0.9	1
1641	Quantum theory of feedback cooling of an anelastic macromechanical oscillator. Physical Review A, 2022, 105, .	1.0	2
1642	Multi-outlet single photon quantum router between optics and microwave based on a hybrid optomechanical system. Laser Physics, 2022, 32, 065202.	0.6	0
1643	Quantum versus classical correlations in a double cavity optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 115501.	0.6	5
1645	Measuring High-Order Phonon Correlations in an Optomechanical Resonator. Physical Review Letters, 2022, 128, 183601.	2.9	4
1646	Accelerated Gaussian quantum state transfer between two remote mechanical resonators. New Journal of Physics, 0, , .	1.2	0
1647	Surface acoustic wave coupling between micromechanical resonators. Communications Physics, 2022, 5, .	2.0	5

#	Article	IF	CITATIONS
1648	Ground-state cooling of multiple near-degenerate mechanical modes. Physical Review A, 2022, 105, .	1.0	12
1649	Simultaneous cooling by measuring one ancillary system. Physical Review A, 2022, 105, .	1.0	5
1650	Rapid ground-state cooling of a solid-state nanoparticle assisted by a magnetic-field gradient. Physical Review A, 2022, 105, .	1.0	1
1651	Tunable mechanical-mode coupling based on nanobeam-double optomechanical cavities. Photonics Research, 2022, 10, 1819.	3.4	5
1652	Unidirectional amplification in optomechanical system coupling with a structured bath. Optics Express, 2022, 30, 21649.	1.7	0
1653	Machine learning to probe modal interaction in dynamic atomic force microscopy. Mechanical Systems and Signal Processing, 2022, 179, 109312.	4.4	5
1654	The convergence of cavity optomechanics and Brillouin scattering. Semiconductors and Semimetals, 2022, , 93-131.	0.4	0
1655	Theoretical formalisms for stimulated Brillouin scattering. Semiconductors and Semimetals, 2022, , 27-91.	0.4	0
1656	Optomechanical crystal with bound states in the continuum. Nature Communications, 2022, 13, .	5.8	15
1657	On-Chip Microwave Frequency Combs in a Superconducting Nanoelectromechanical Device. Nano Letters, 2022, 22, 5459-5465.	4.5	4
1658	Cooling Effect and Cooling Speed for a Membrane-in-Middle Optomechanical System. Photonics, 2022, 9, 400.	0.9	1
1659	Optomechanical damping as the origin of sideband asymmetry. SciPost Physics Core, 2022, 5, .	0.9	1
1660	Quantum Fisher Information of an Optomechanical Force Sensor driven by a Squeezed Vacuum Field. Optics Express, 0, , .	1.7	0
1661	Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K. Applied Physics Letters, 2022, 120, .	1.5	5
1662	Robust macroscopic matter-wave interferometry with solids. Physical Review A, 2022, 105, .	1.0	1
1663	Pairwise entanglement in a three-cavity optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 445, 128247.	0.9	7
1664	Optomechanically induced thermal bistability in an optical microresonator. Physical Review A, 2022, 105, .	1.0	6
1665	Entanglement and mechanical squeezing in dissipative atom-photomechanical hybrid systems. International Journal of Quantum Information, 0, , .	0.6	0

#	Article	IF	CITATIONS
1666	Effects of quadratic coupling on optical response of a hybrid optomechanical cavity assisted by Kerr non-linear medium. Materials Today: Proceedings, 2022, , .	0.9	1
1667	Probing of nonlinear hybrid optomechanical systems via partial accessibility. Physical Review Research, 2022, 4, .	1.3	11
1668	Cavity-assisted coherent feedback cooling of a mechanical resonator to the ground-state in the unresolved sideband regime. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 165501.	0.6	7
1669	Quantum Biotechnology. Advanced Quantum Technologies, 2022, 5, .	1.8	5
1670	Optomechanically enhanced precision measurement. Physical Review A, 2022, 106, .	1.0	4
1671	Angular trapping of a linear-cavity mirror with an optical torsional spring. Physical Review A, 2022, 106, .	1.0	2
1672	Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fundamental Research, 2023, 3, 3-7.	1.6	20
1673	Multimode optomechanical cooling via general dark-mode control. Physical Review A, 2022, 106, .	1.0	16
1674	Dynamics of Rényi-2 correlations in optomechanics. Physica Scripta, 2022, 97, 095102.	1.2	5
1675	Cavity optomechanics in a fiber cavity: the role of stimulated Brillouin scattering. New Journal of Physics, O, , .	1.2	0
1676	Tripartite optomechanical entanglement via optical-dark-mode control. Physical Review Research, 2022, 4, .	1.3	9
1677	Dispersive readout of a high-Q encapsulated micromechanical resonator. Applied Physics Letters, 2022, 121, .	1.5	1
1678	Multimode Strong Coupling in Cavity Optomechanics. Physical Review Applied, 2022, 18, .	1.5	6
1679	Phonons hushed. Nature Nanotechnology, 2022, 17, 905-905.	15.6	1
1680	Cancellation of photothermally induced instability in an optical resonator. Optica, 2022, 9, 924.	4.8	3
1681	Parametrically enhanced interactions and nonreciprocal bath dynamics in a photon-pressure Kerr amplifier. Science Advances, 2022, 8, .	4.7	4
1682	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
1683	Engineered dissipation for quantum information science. Nature Reviews Physics, 2022, 4, 660-671.	11.9	32

	CHATION R	EPORT	
#	Article	IF	CITATIONS
1684	Engineering nanoscale hypersonic phonon transport. Nature Nanotechnology, 2022, 17, 947-951.	15.6	23
1685	Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop: Giant enhancement in mechanical susceptibilities and net cooling rates. Physical Review Research, 2022, 4, .	1.3	8
1686	Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism. Physical Review Letters, 2022, 129, .	2.9	36
1687	Kerr effect based on two-level emitter coupled to graphene resonator and cavity. Optics Communications, 2022, 524, 128804.	1.0	1
1688	Nonequilibrium thermodynamics in cavity optomechanics. Fundamental Research, 2023, 3, 75-86.	1.6	2
1689	Interplay between optomechanics and the dynamical Casimir effect. Physical Review A, 2022, 106, .	1.0	3
1690	Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. Biosensors, 2022, 12, 762.	2.3	13
1691	The fast and slow light in a hybrid spinning optomechanical system mediated by a two-level system. Results in Physics, 2022, 42, 105987.	2.0	3
1692	Visible-wavelength optomechanical crystal for coupling phonons to a silicon vacancy center in diamond. , 2022, , .		0
1693	Towards Ultrahigh Quantum Cooperativity with Side-coupled 2D Optomechanical Crystals. , 2022, , .		0
1694	From cavity optomechanics to cavity-less exciton optomechanics: a review. Nanoscale, 2022, 14, 16710-16730.	2.8	4
1695	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
1696	The Fast and Slow Light in a Hybrid Spinning Optomechanical System Mediated by a Two-Level System. SSRN Electronic Journal, 0, , .	0.4	0
1697	Approaching the motional ground state of a 10 kg object. , 2022, , .		0
1698	Strong tunable phonon-phonon interactions induced by silicon-vacancy centers in one-dimensional chiral phononic waveguides. Physical Review A, 2022, 106, .	1.0	1
1699	Phonon trapping states as a witness for generation of phonon blockade in a hybrid micromaser system. European Physical Journal Plus, 2022, 137, .	1.2	0
1700	Exploiting non-linear effects in optomechanical sensors with continuous photon-counting. Quantum - the Open Journal for Quantum Science, 0, 6, 812.	0.0	1
1701	Optimization of diamond optomechanical crystal cavities. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2735.	0.9	0

#	Article	IF	CITATIONS
1702	Transmission and generation of arbitrary W states via an optomechanical interface. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2752.	0.9	0
1703	Millionfold improvement in multivibration-feedback optomechanical refrigeration via auxiliary mechanical coupling. Physical Review A, 2022, 106, .	1.0	3
1704	Large Single-Phonon Optomechanical Coupling Between Quantum Dots and Tightly Confined Surface Acoustic Waves in the Quantum Regime. Physical Review Applied, 2022, 18, .	1.5	13
1705	Floquet Control of Optomechanical Bistability in Multimode Systems. Physical Review Letters, 2022, 129, .	2.9	6
1706	Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical system. Physical Review A, 2022, 106, .	1.0	7
1707	High-precision multiparameter estimation of mechanical force by quantum optomechanics. Scientific Reports, 2022, 12, .	1.6	0
1708	2D-materials-integrated optoelectromechanics: recent progress and future perspectives. Reports on Progress in Physics, 2023, 86, 026402.	8.1	4
1709	Prospects of cooling a mechanical resonator with a transmon qubit in c-QED setup. Physical Review Research, 2022, 4, .	1.3	0
1710	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	7.3	55
1711	Optimizing measurement-based cooling by reinforcement learning. Physical Review A, 2022, 106, .	1.0	1
1712	Millimeter-scale ultrathin suspended metasurface integrated high-finesse optomechanical cavity. Optics Letters, 2022, 47, 5481.	1.7	3
1713	Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system. Optics Express, 2022, 30, 38776.	1.7	3
1714	Phase-Controlled Entanglement in a Four-Mode Optomechanical System. Photonics, 2022, 9, 818.	0.9	0
1715	Twisting an optomechanical cavity. Physical Review A, 2022, 106, .	1.0	2
1716	Design of GHz Mechanical Nanoresonator with High Q-Factor Based on Optomechanical System. Micromachines, 2022, 13, 1862.	1.4	0
1717	Coherent feedback in optomechanical systems in the sideband-unresolved regime. Quantum - the Open Journal for Quantum Science, 0, 6, 848.	0.0	3
1718	Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal. Optics Express, 2022, 30, 42579.	1.7	0
1719	Learning quantum-state feedback control with backpropagation-free stochastic optimization. Physical Review A, 2022, 106, .	1.0	1

#	Article	IF	CITATIONS
1720	High-cooperativity degenerated mechanical modes in diamond OMC cavities. , 2022, , .		0
1721	100 years of Brillouin scattering: Historical and future perspectives. Applied Physics Reviews, 2022, 9, .	5.5	11
1722	On-chip distribution of quantum information using traveling phonons. Science Advances, 2022, 8, .	4.7	9
1723	Effective temperature pulses in open quantum systems. Physical Review Research, 2022, 4, .	1.3	2
1724	Tailoring Structureâ€Borne Sound through Bandgap Engineering in Phononic Crystals and Metamaterials: A Comprehensive Review. Advanced Functional Materials, 2023, 33, .	7.8	37
1725	Quantum synchronization and entanglement of indirectly coupled mechanical oscillators in cavity optomechanics: A numerical study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 457, 128557.	0.9	1
1726	Probe absorption characteristics and a tunable susceptibility switch of a superconducting flux qubit coupled to two mechanical resonators. Optics and Laser Technology, 2023, 159, 108992.	2.2	1
1727	Demonstration and operation of quantum harmonic oscillators in an AlGaAs-GaAs heterostructure. Frontiers of Physics, 2023, 18, .	2.4	0
1728	Relaxation and dynamics of stressed predisplaced string resonators. Physical Review B, 2022, 106, .	1.1	2
1729	Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, .	1.0	8
1730	Simultaneous Brillouin and piezoelectric coupling to high-frequency bulk acoustic resonator. Optica, 0, , .	4.8	3
1731	Topological lattices realized in superconducting circuit optomechanics. Nature, 2022, 612, 666-672.	13.7	13
1732	Mesoscopic physics of nanomechanical systems. Reviews of Modern Physics, 2022, 94, .	16.4	39
1733	Macroscopic laser pulling based on the Knudsen force in rarefied gas. Optics Express, 2023, 31, 2665.	1.7	2
1734	Modulation depth and bandwidth analysis of planar thermo-optic diamond actuators. Optics Express, 2023, 31, 153.	1.7	0
1735	Enhancing the force sensitivity of a squeezed light optomechanical interferometer. Optics Express, 2023, 31, 177.	1.7	2
1736	Mechanical parametric feedback-cooling for pendulum-based gravity experiments. Engineering Research Express, 0, , .	0.8	1
1737	Improving mechanical cooling by using magnetic thermal noise in a cavity-magnomechanical system. Optics Letters, 2023, 48, 375.	1.7	4

ARTICLE IF CITATIONS # Engineering Multiple GHz Mechanical Modes in Optomechanical Crystal Cavities. Physical Review 1738 1.5 2 Applied, 2023, 19, . Kerr Enhanced Backaction Cooling in Magnetomechanics. Physical Review Letters, 2023, 130, . Size effects on the mixed modes and defect modes for a nano-scale phononic crystal slab. Applied 1740 1.9 3 Mathematics and Mechanics (English Edition), 2023, 44, 21-34. Quantum Optical Tests of the Foundations of Physics. Springer Handbooks, 2023, , 1231-1257. 1741 0.3 Synchronization of a superconducting qubit to an optical field mediated by a mechanical resonator. 1742 1.0 0 Physical Review A, 2023, 107, . On-chip mechanical exceptional points based on an optomechanical zipper cavity. Science Advances, 2023, 9, . 1743 4.7 Perspectives on high-frequency nanomechanics, nanoacoustics, and nanophononics. Applied Physics 1744 1.55 Letters, 2023, 122, . Tunable multi-outlet single photon quantum router in an optomechanical system. Laser Physics, 2023, 1745 0.6 33,065201. Optical bistability and four-wave mixing response of a quantum dot coupled to an optomechanical 1746 photonic crystal nanocavity. Photonics and Nanostructures - Fundamentals and Applications, 2023, 54, 1.0 1 101129. Unconventional photon blockade in four mode coupled optomechanical system. Physics Letters, 1747 Section A: General, Atomic and Solid State Physics, 2023, 462, 128653. Nonclassical correlations in lossy cavity optomechanics with intensity-dependent coupling. Physica A: 1748 1.2 1 Statistical Mechanics and Its Applications, 2023, 613, 128523. Intracavity-squeezed cooling in the three-cavity optomechanical system. Quantum Information 1749 1.0 Processing, 2023, 22, . Simultaneous cooling coupled nano-mechanical resonators in cavity optomechanics. Laser Physics, 1750 0.6 0 2023, 33, 035202. Laser Cooling of Nuclear Magnons. Physical Review Letters, 2023, 130, . Mechanical cooling and squeezing using optimal control. Physical Review A, 2023, 107, . 1752 1.0 1 Optimal quantum parametric feedback cooling. Physical Review A, 2023, 107, . Optimal Cooling of Multiple Levitated Particles through Far-Field Wavefront Shaping. Physical Review 1754 2.9 6 Letters, 2023, 130, . Optomechanical Simulation of a Parametric Oscillator. Journal of Physics: Conference Series, 2023, 2448, 012004.

ARTICLE IF CITATIONS # Dynamic Brillouin cooling for continuous optomechanical systems. Materials for Quantum 1756 1.2 1 Technology, 2023, 3, 015003. Quantum manipulation of a two-level mechanical system. Quantum - the Open Journal for Quantum Science, 0, 7, 943. Perfect optomechanically induced transparency and slow light in an Rydberg atom-assisted 1758 0.2 0 optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 094203. Measurement-based ground-state cooling of a trapped-ion oscillator. Physical Review A, 2023, 107, . Enhanced nonlinear optomechanics in a coupled-mode photonic crystal device. Nature 1760 5.8 10 Communications, 2023, 14, . Numerical and experimental demonstrations of a Si-based photonic crystal optomechanical cavity., 2022,,. Optomechanical-interface-induced strong spin-magnon coupling. Physical Review A, 2023, 107, . 1762 1.0 7 Thermal-Noise Cancellation for Optomechanically Induced Nonreciprocity in a 1763 1.5 Whispering-Gallery-Mode Microresonator. Physical Review Applied, 2023, 19, . Sympathetic feedback cooling in the optomechanical system consisting of two coupled cantilevers. 1764 1.0 0 Frontiers in Physics, 0, 11, . 1765 Optomechanical two-photon hopping. Physical Review Research, 2023, 5, . 1.3 Enhancement of magnon–photon–phonon entanglement in a cavity magnomechanics with coherent 1766 1.6 14 feedback loop. Scientific Reports, 2023, 13, . Optomechanically Induced Transparency in Optomechanical System with a Cubic Anharmonic Oscillator. Photonics, 2023, 10, 407. Enhanced weak force sensing based on atom-based coherent quantum noise cancellation in a hybrid 1768 1.0 9 cavity optomechanical system. Frontiers in Physics, 0, 11, . Dynamical backaction evading magnomechanics. Physical Review B, 2023, 107, . 1769 1.1 Continuous Raman sideband cooling beyond the Lamb-Dicke regime in a trapped ion chain. Physical 1770 1.3 3 Review Research, 2023, 5, . Quantum statistics and blockade of phonon and photon in a dissipative quadratically coupled optomechanical system. European Physical Journal D, 2023, 77, . Damping., 2023, , 69-106. 0 1793 1794 Transduction., 2023, , 107-143.

		CITATION REPO	RT	
#	Article	IF	F	Citations
1796	Progress in quantum teleportation. Nature Reviews Physics, 2023, 5, 339-353.	1	.1.9	18
1803	The QOM Toolbox: An Object-Oriented Python Framework forÂCavity Optomechanica Notes in Networks and Systems, 2023, , 581-590.	l Systems. Lecture d).5	0
1813	A giant Nernst power factor and figure-of-merit in polycrystalline NbSb ₂ Ettingshausen refrigeration. Energy and Environmental Science, 2023, 16, 3753-3759	or 1	.5.6	1
1817	Dynamic Brillouin Cooling for Continuous Optomechanical Systems. , 2023, , .			0
1818	Breaking squeezed light optomechanical interferometer limit. , 2023, , .			0
1819	Observation of Optomechanical Solitons in a WGM Microresonator. , 2023, , .			Ο
1820	Dynamics of Double Nitrogen-Vacancy Centre in a Photonic Crystal Nanocavity: Optic Four-Wave Mixing. Springer Proceedings in Materials, 2023, , 439-449.	al Bistability and c).1	0
1825	Imaging-based cavity optomechanics. , 2023, , .			0
1847	Pearcey beams and autofocusing waves. Progress in Optics, 2023, , .	C).4	0