Co3O4 nanocrystals on graphene as a synergistic catalys

Nature Materials 10, 780-786

DOI: 10.1038/nmat3087

Citation Report

#	Article	IF	CITATIONS
62	Nitrogen doping of graphene nanoflakes by thermal plasma as catalyst for oxygen reduction in Proton Exchange Membrane fuel cells. , 2012 , , .		3
63	Hierarchical mesoporous perovskite La ₀ _{.5} Sr _{0.5} CoO _{2.91} nanowires with ultrahigh capacity for Li-air batteries. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19569-19574.	3.3	315
64	Tailoring nanostructured catalysts for electrochemical energy conversion systems. Nanotechnology Reviews, 2012, 1, 427-453.	2.6	13
65	Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O ₂ Battery Cathodes. ACS Nano, 2012, 6, 9764-9776.	7.3	486
66	Controlled Synthesis of CeO ₂ /Graphene Nanocomposites with Highly Enhanced Optical and Catalytic Properties. Journal of Physical Chemistry C, 2012, 116, 11741-11745.	1.5	198
67	Synthesis of Octopus-Tentacle-Like Cu Nanowire-Ag Nanocrystals Heterostructures and Their Enhanced Electrocatalytic Performance for Oxygen Reduction Reaction. ACS Applied Materials & Lamp; Interfaces, 2012, 4, 6654-6660.	4.0	46
68	Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale, 2012, 4, 7326.	2.8	189
69	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
70	Controlled Synthesis of Pd–Pt Alloy Hollow Nanostructures with Enhanced Catalytic Activities for Oxygen Reduction. ACS Nano, 2012, 6, 2410-2419.	7.3	348
71	Reduced graphene oxide/nickel nanocomposites: facile synthesis, magnetic and catalytic properties. Journal of Materials Chemistry, 2012, 22, 3471.	6.7	273
72	α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy and Environmental Science, 2012, 5, 9765.	15.6	226
73	Hanging Pt hollow nanocrystal assemblies on graphene resulting in an enhanced electrocatalyst. Chemical Communications, 2012, 48, 10331.	2.2	43
74	Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11770-11773.	7.2	391
76	Preparation of a Ruâ∈Nanoparticles/Defectiveâ∈Graphene Composite as a Highly Efficient Areneâ∈Hydrogenation Catalyst. ChemCatChem, 2012, 4, 1938-1942.	1.8	55
77	DNAâ€Directed Growth of Pd Nanocrystals on Carbon Nanotubes towards Efficient Oxygen Reduction Reactions. Chemistry - A European Journal, 2012, 18, 15693-15698.	1.7	51
78	Coupling Effect Between Cobalt Oxides And Carbon For Oxygen Reduction Reaction. ChemSusChem, 2012, 5, 2315-2318.	3.6	44
79	Co3O4 nanoparticles on the surface of halloysite nanotubes. Physics and Chemistry of Minerals, 2012, 39, 789-795.	0.3	59
80	Complementary microscopy techniques applied for optimizing the structure and performance of graphene-based hybrids. Ultramicroscopy, 2012, 119, 97-101.	0.8	9

#	Article	IF	Citations
81	A template-free route to a Fe3O4–Co3O4 yolk–shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media. Journal of Materials Chemistry, 2012, 22, 19132.	6.7	116
82	Electronic and magnetic properties of the two-dimensional C4H-type polymer with strain effects, intrinsic defects and foreign atom substitutions. Physical Chemistry Chemical Physics, 2012, 14, 3651.	1.3	21
83	Synthesis of porous Ni@rGO nanocomposite and its synergetic effect on hydrogen sorption properties of MgH2. Journal of Materials Chemistry, 2012, 22, 22542.	6.7	91
84	A facile room-temperature route to flower-like CuO microspheres with greatly enhanced lithium storage capability. RSC Advances, 2012, 2, 8602.	1.7	40
85	lonothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 10663.	2.2	278
86	Spectroscopic understanding of ultra-high rate performance for LiMn0.75Fe0.25PO4 nanorods–graphene hybrid in lithium ion battery. Physical Chemistry Chemical Physics, 2012, 14, 9578.	1.3	48
87	Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C, 2012, 116, 21077-21082.	1.5	305
88	Stabilization of High-Performance Oxygen Reduction Reaction Pt Electrocatalyst Supported on Reduced Graphene Oxide/Carbon Black Composite. Journal of the American Chemical Society, 2012, 134, 12326-12329.	6.6	451
89	3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 2012, 6, 3206-3213.	7.3	1,510
90	Chemical and Morphological Changes of Li–O ₂ Battery Electrodes upon Cycling. Journal of Physical Chemistry C, 2012, 116, 20800-20805.	1.5	353
91	Oxygen Reduction Electrocatalyst Based on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 15849-15857.	6.6	747
92	Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2012, 6, 8904-8912.	7.3	544
93	Synthesis and bioanalytical applications of specific-shaped metallic nanostructures: A review. Analytica Chimica Acta, 2012, 716, 76-91.	2.6	66
94	Hollow carbon spheres with encapsulation of Co3O4 nanoparticles as anode material for lithium ion batteries. Electrochimica Acta, 2012, 78, 440-445.	2.6	54
95	Electrosynthesis of Iron, Cobalt, and Zinc Microcrystals and Magnetic Enhancement of the Oxygen Reduction Reaction. Chemistry of Materials, 2012, 24, 3878-3885.	3.2	57
96	Graphene Oxide: An Ideal Support for Gold Nanocatalysts. Journal of Physical Chemistry C, 2012, 116, 22336-22340.	1.5	54
97	Nitrogenâ€Doped Carbon Nanocages as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 5593-5597.	11.1	693
98	Graphene Multilayer Supported Gold Nanoparticles for Efficient Electrocatalysts Toward Methanol Oxidation. Advanced Energy Materials, 2012, 2, 1510-1518.	10.2	54

#	Article	IF	CITATIONS
99	Nanostructured Metalâ€Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 2012, 8, 3550-3566.	5.2	559
100	Shape Transformation and Visible Region Plasmonic Modulation of Silver Nanoplates by Graphene Oxide. Small, 2012, 8, 3438-3442.	5.2	11
101	Graphene based catalysts. Energy and Environmental Science, 2012, 5, 8848.	15.6	726
102	The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Physical Chemistry Chemical Physics, 2012, 14, 16552.	1.3	88
104	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	23.0	3,531
105	Interlayer-free electrodes for IT-SOFCs by applying Co3O4 as sintering aid. International Journal of Hydrogen Energy, 2012, 37, 11946-11954.	3.8	28
106	Graphene supported platinum nanoparticles as anode electrocatalyst for direct borohydride fuel cell. International Journal of Hydrogen Energy, 2012, 37, 17984-17991.	3.8	51
107	Easy synthesis of nitrogen-doped graphene–silver nanoparticle hybrids by thermal treatment of graphite oxide with glycine and silver nitrate. Carbon, 2012, 50, 5148-5155.	5.4	39
108	Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 2012, 48, 1027-1029.	2.2	336
109	Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets. Physical Chemistry Chemical Physics, 2012, 14, 15657.	1.3	213
110	FePt Nanoparticles Assembled on Graphene as Enhanced Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 2492-2495.	6.6	626
111	Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale, 2012, 4, 6455.	2.8	212
112	Graphene Oxide Sheath on Ag Nanoparticle/Graphene Hybrid Films as an Antioxidative Coating and Enhancer of Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6545-6551.	4.0	93
113	Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society Reviews, 2012, 41, 2172.	18.7	2,322
114	Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production. RSC Advances, 2012, 2, 10330.	1.7	48
115	Photochemical Engineering of Graphene Oxide Nanosheets. Journal of Physical Chemistry C, 2012, 116, 19822-19827.	1.5	122
116	Synergetic effect of Cu and graphene as cocatalyst on TiO2 for enhanced photocatalytic hydrogen evolution from solar water splitting. Journal of Materials Chemistry, 2012, 22, 18542.	6.7	177
117	Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities. ACS Nano, 2012, 6, 712-719.	7.3	260

#	Article	IF	CITATIONS
118	Efficient visible-light-driven photocatalytic hydrogen production using CdS@TaON core–shell composites coupled with graphene oxide nanosheets. Journal of Materials Chemistry, 2012, 22, 7291.	6.7	157
119	Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Research, 2012, 5, 521-530.	5.8	276
120	Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis. Nano Research, 2012, 5, 718-725.	5.8	104
121	Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano, 2012, 6, 8288-8297.	7.3	578
122	Substrate effect on the electronic structures of CuPc/graphene interfaces. Applied Physics Letters, 2012, 100, .	1.5	29
123	Chemically bonded graphene/BiOCl nanocomposites as high-performance photocatalysts. Physical Chemistry Chemical Physics, 2012, 14, 10572.	1.3	129
124	CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells. Nanoscale, 2012, 4, 5738.	2.8	65
126	Synthesis and Superior Anode Performances of TiO2–Carbon–rGO Composites in Lithium-Ion Batteries. ACS Applied Materials & Diterfaces, 2012, 4, 4776-4780.	4.0	64
127	A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: enhanced electrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 3319.	6.7	73
128	Interface Engineering Catalytic Graphene for Smart Colorimetric Biosensing. ACS Nano, 2012, 6, 3142-3151.	7.3	270
129	Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2012, 2, 781-794.	5. 5	3,171
130	Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. Energy and Environmental Science, 2012, 5, 6012.	15.6	1,201
131	Water Oxidation Electrocatalyzed by an Efficient Mn ₃ O ₄ /CoSe ₂ Nanocomposite. Journal of the American Chemical Society, 2012, 134, 2930-2933.	6.6	644
132	Covalent Hybrid of Spinel Manganese–Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2012, 134, 3517-3523.	6.6	1,266
133	Understanding Charge Transfer at PbSâ€Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials, 2012, 24, 2715-2720.	11.1	177
134	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	5.5	728
135	Graphene–inorganic nanocomposites. RSC Advances, 2012, 2, 64-98.	1.7	547
136	Structural Correlations in Heterogeneous Electron Transfer at Monolayer and Multilayer Graphene Electrodes. Journal of the American Chemical Society, 2012, 134, 7258-7261.	6.6	157

#	Article	IF	CITATIONS
137	Synergetic Effect of MoS ₂ and Graphene as Cocatalysts for Enhanced Photocatalytic H ₂ Production Activity of TiO ₂ Nanoparticles. Journal of the American Chemical Society, 2012, 134, 6575-6578.	6.6	2,245
138	Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst. Energy and Environmental Science, 2012, 5, 7931.	15.6	393
139	Strategies for chemical modification of graphene and applications of chemically modified graphene. Journal of Materials Chemistry, 2012, 22, 12435.	6.7	468
140	3D Nitrogen-Doped Graphene Aerogel-Supported Fe ₃ O ₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 9082-9085.	6.6	1,967
141	Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry, 2012, 22, 12810.	6.7	138
142	Facile Synthesis of Manganeseâ€Oxideâ€Containing Mesoporous Nitrogenâ€Doped Carbon for Efficient Oxygen Reduction. Advanced Functional Materials, 2012, 22, 4584-4591.	7.8	306
143	Grapheneâ€Based Materials for Energy Conversion. Advanced Materials, 2012, 24, 4203-4210.	11.1	303
144	Facile Synthesis of a Large Quantity of Graphene by Chemical Vapor Deposition: an Advanced Catalyst Carrier. Advanced Materials, 2012, 24, 2491-2495.	11.1	77
145	Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and Selfâ€Assembly of Metal Oxideâ€Graphene Nanocomposites. Advanced Materials, 2012, 24, 5136-5141.	11.1	92
146	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
147	Mixedâ€PtPdâ€Shell PtPdCu Nanoparticle Nanotubes Templated from Copper Nanowires as Efficient and Highly Durable Electrocatalysts. Advanced Energy Materials, 2012, 2, 1182-1187.	10.2	164
148	Active MnO _x Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy Materials, 2012, 2, 1269-1277.	10.2	298
150	Grapheneâ€Supported Hemin as a Highly Active Biomimetic Oxidation Catalyst. Angewandte Chemie - International Edition, 2012, 51, 3822-3825.	7.2	309
151	Cuprous oxide nanoparticles dispersed on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Chemical Communications, 2012, 48, 1892.	2,2	190
152	Reduced Graphene Oxide Conjugated Cu ₂ O Nanowire Mesocrystals for High-Performance NO ₂ Gas Sensor. Journal of the American Chemical Society, 2012, 134, 4905-4917.	6.6	706
153	An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nature Communications, 2012, 3, 917.	5.8	347
154	In situ growth of Ni–Fe alloy on graphene-like MoS2 for catalysis of hydrazine oxidation. Journal of Materials Chemistry, 2012, 22, 13925.	6.7	57
155	Graphene–Ni–α-MnO2 and –Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. Chemical Communications, 2012, 48, 7931.	2.2	84

#	Article	IF	CITATIONS
156	Ferromagnetic hematite@graphene nanocomposites for removal of rhodamine B dye molecules from water. CrystEngComm, 2012, 14, 5140.	1.3	41
157	Pt/titania/reduced graphite oxide nanocomposite: An efficient catalyst for nitrobenzene hydrogenation. Journal of Colloid and Interface Science, 2012, 374, 83-88.	5.0	27
158	ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2012, 377, 114-121.	5.0	396
159	Cobalt (hydr)oxide/graphite oxide composites: Importance of surface chemical heterogeneity for reactive adsorption of hydrogen sulfide. Journal of Colloid and Interface Science, 2012, 378, 1-9.	5.0	45
160	Carbon-supported cubic CoSe2 catalysts for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2012, 72, 129-133.	2.6	70
161	Biological water oxidation: Lessons from Nature. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1110-1121.	0.5	82
162	Surfactantless synthesis of Fe3O4 magnetic nanobelts by a simple hydrothermal process. Materials Letters, 2012, 75, 172-174.	1.3	29
163	Nitrogenâ€Enriched Coreâ€Shell Structured Fe/Fe ₃ C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 1399-1404.	11.1	517
164	Synthesis of Hexagonal Co3O4 and Ag/Co3O4 Composite Nanosheets and their Electrocatalytic Performances. Journal of Cluster Science, 2013, 24, 1001-1010.	1.7	3
165	Oxidation-state dependent electrocatalytic activity of iridium nanoparticles supported on graphene nanosheets. Physical Chemistry Chemical Physics, 2013, 15, 15365.	1.3	13
166	Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. Journal of Materials Chemistry A, 2013, 1, 12170.	5.2	286
167	Facile synthesis of Co3O4 and Ag/Co3O4 nanosheets and their electrocatalytic properties. Journal of Sol-Gel Science and Technology, 2013, 67, 573-579.	1.1	12
168	Graphene-based 3D composite hydrogel by anchoring Co3O4 nanoparticles with enhanced electrochemical properties. Physical Chemistry Chemical Physics, 2013, 15, 12940.	1.3	89
169	2D single- or double-layered vanadium oxide nanosheet assembled 3D microflowers: controlled synthesis, growth mechanism, and applications. Nanoscale, 2013, 5, 7790.	2.8	27
170	Oxygen electrocatalysis in chemical energy conversion and storage technologies. Current Applied Physics, 2013, 13, 309-321.	1.1	167
171	Highly Conductive and Strainâ€Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium″onâ€Storage Capability. Advanced Materials, 2013, 25, 539-544.	11.1	125
172	Mesoporous hybrid material composed of Mn ₃ O ₄ nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chemical Communications, 2013, 49, 7705-7707.	2.2	241
173	A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core–shell hybrid in alkaline solution. Journal of Materials Chemistry A, 2013, 1, 10538.	5.2	107

#	Article	IF	Citations
174	Oxygen evolution in alkali with gas diffusion electrodes. International Journal of Hydrogen Energy, 2013, 38, 11496-11506.	3.8	21
175	Nitrogenâ€Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2013, 30, 864-872.	1.2	27
176	Polyoxometalate-mediated green synthesis of a 2D silver nanonet/graphene nanohybrid as a synergistic catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11961.	5.2	75
177	Surface Structure Dependent Electrocatalytic Activity of Co3O4 Anchored on Graphene Sheets toward Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2300.	1.6	274
178	Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. Journal of Materials Chemistry A, 2013, 1, 9992.	5.2	275
179	A graphene-based smart catalytic system with superior catalytic performances and temperature responsive catalytic behaviors. Nanoscale, 2013, 5, 6275.	2.8	24
180	A novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide nanowires on graphene oxide sheets. RSC Advances, 2013, 3, 15005.	1.7	39
181	Graphene Coupled with Nanocrystals: Opportunities and Challenges for Energy and Sensing Applications. Journal of Physical Chemistry Letters, 2013, 4, 2441-2454.	2.1	80
182	Electrolytic graphene oxide and its electrochemical properties. Journal of Electroanalytical Chemistry, 2013, 704, 233-241.	1.9	29
183	Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions. Physical Chemistry Chemical Physics, 2013, 15, 2125.	1.3	13
184	Micelle-Templated Oxides and Carbonates of Zinc, Cobalt, and Aluminum and a Generalized Strategy for Their Synthesis. Chemistry of Materials, 2013, 25, 2749-2758.	3.2	47
185	Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 9603.	5.2	40
186	Cooperative catalysis by acid–base bifunctional graphene. RSC Advances, 2013, 3, 13655.	1.7	33
187	Transition Metal (Mn, Fe, Co, Ni)â€Doped Graphene Hybrids for Electrocatalysis. Chemistry - an Asian Journal, 2013, 8, 1295-1300.	1.7	78
188	Twoâ€Dimensional Sandwichâ€Type, Grapheneâ€Based Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2013, 52, 9668-9672.	7.2	220
189	Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2013, 3, 1726-1729.	5.5	337
190	Electrochemical preparation and characterization of PdPt nanocages with improved electrocatalytic activity toward oxygen reduction reaction. Electrochimica Acta, 2013, 103, 66-76.	2.6	27
191	Multi-Metallic Nanoparticles as More Efficient Catalysts for Fuel Cell Reactions., 2013,, 333-346.		0

#	Article	IF	CITATIONS
192	Graphene-based non-noble-metal $Co/N/C$ catalyst for oxygen reduction reaction in alkaline solution. Journal of Power Sources, 2013, 243, 65-71.	4.0	165
193	Edgeâ€Selectively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537
194	Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nature Communications, 2013, 4, 2390.	5.8	923
195	Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Analytica Chimica Acta, 2013, 796, 92-100.	2.6	181
196	Electrocatalysis on Shape ontrolled Titanium Nitride Nanocrystals for the Oxygen Reduction Reaction. ChemSusChem, 2013, 6, 2016-2021.	3.6	95
197	A Selfâ€Assembly Route to an Iron Phthalocyanine/Reduced Graphene Oxide Hybrid Electrocatalyst Affording an Ultrafast Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2013, 30, 1063-1070.	1.2	39
198	Electrocatalysis in Fuel Cells. Lecture Notes in Energy, 2013, , .	0.2	85
199	Interconnected Pt-Nanodendrite/DNA/Reduced-Graphene-Oxide Hybrid Showing Remarkable Oxygen Reduction Activity and Stability. ACS Nano, 2013, 7, 9223-9231.	7.3	79
200	Non-precious Ir $\hat{a}\in \text{``V}$ bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11457.	5.2	48
201	Controllable Synthesis of Tetragonal and Cubic Phase Cu ₂ Se Nanowires Assembled by Small Nanocubes and Their Electrocatalytic Performance for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 15164-15173.	1.5	73
202	Floating conductive catalytic nano-rafts at soft interfaces for hydrogen evolution. Chemical Science, 2013, 4, 3432.	3.7	75
203	In situ study of the catalytic mechanism for the oxygen reduction reaction on a polypyrrole modified carbon supported cobalt hydroxide cathode in direct borohydride fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9070-9074.	1.3	8
204	Bifunctional Composite Catalysts Using Co ₃ O ₄ Nanofibers Immobilized on Nonoxidized Graphene Nanoflakes for High-Capacity and Long-Cycle Li–O ₂ Batteries. Nano Letters, 2013, 13, 4190-4197.	4. 5	329
205	Graphene-hemin hybrid material as effective catalyst for selective oxidation of primary C-H bond in toluene. Scientific Reports, $2013, 3, \ldots$	1.6	45
206	Au@Pd coreâ€"shell nanoclusters growing on nitrogen-doped mildly reduced graphene oxide with enhanced catalytic performance for hydrogen generation from formic acid. Journal of Materials Chemistry A, 2013, 1, 12721.	5.2	196
207	Decorating reduced graphene oxide with Co3O4 hollow spheres andÂtheir application in supercapacitor materials. Current Applied Physics, 2013, 13, 1796-1800.	1.1	61
208	Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 13879-13884.	6.6	269
209	A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks. Scientific Reports, 2013, 3, 2505.	1.6	160

#	Article	IF	CITATIONS
210	A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support. Journal of Materials Chemistry A, 2013, 1, 8007.	5.2	126
211	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 13179.	5. 2	105
212	Layer-by-layer assembly of transparent amorphous Co3O4 nanoparticles/graphene composite electrodes for sustained oxygen evolution reaction. Journal of Materials Chemistry A, 2013, 1, 12726.	5.2	98
213	Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy and Environmental Science, 2013, 6, 2921.	15.6	939
214	Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2013, 65, 277-286.	5.4	80
215	Alcohol Fuel Cells. , 2013, , 453-478.		2
216	Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensors and Actuators B: Chemical, 2013, 188, 902-908.	4.0	186
217	Imaging state of charge and its correlation to interaction variation in an LiMn0.75Fe0.25PO4 nanorods–graphene hybrid. Chemical Communications, 2013, 49, 1765.	2.2	31
218	A sandwich N-doped graphene/Co3O4 hybrid: an efficient catalyst for selective oxidation of olefins and alcohols. Journal of Materials Chemistry A, 2013, 1, 9037.	5.2	196
219	Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Applied Catalysis B: Environmental, 2013, 132-133, 363-369.	10.8	56
220	Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Scientific Reports, 2013, 3, 2681.	1.6	580
221	Synthesis of Magnetic Cobalt Nanoparticles Anchored on Graphene Nanosheets and Catalytic Decomposition of Orange II. Industrial & Engineering Chemistry Research, 2013, 52, 17341-17350.	1.8	134
222	High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Advances, 2013, 3, 15375.	1.7	12
223	Electro- and Photochemical Water Oxidation on Ligand-free Co ₃ O ₄ Nanoparticles with Tunable Sizes. ACS Catalysis, 2013, 3, 383-388.	5.5	167
224	Highâ€Performance Oxygen Reduction Electrocatalysts based on Cheap Carbon Black, Nitrogen, and Trace Iron. Advanced Materials, 2013, 25, 6879-6883.	11.1	285
225	Hierarchically Porous Nitrogen-Doped Graphene–NiCo ₂ O ₄ Hybrid Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano, 2013, 7, 10190-10196.	7.3	506
226	Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst. Journal of Power Sources, 2013, 243, 908-912.	4.0	16
227	Quantification of Bax protein on tumor cells based on electrochemical immunoassay. Sensors and Actuators B: Chemical, 2013, 186, 506-514.	4.0	8

#	Article	IF	CITATIONS
228	Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 21359-21370.	1.5	109
229	One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li–O2 batteries. Chemical Communications, 2013, 49, 10838.	2.2	106
230	Spinel CuCo ₂ O ₄ Nanoparticles Supported on N-Doped Reduced Graphene Oxide: A Highly Active and Stable Hybrid Electrocatalyst for the Oxygen Reduction Reaction. Langmuir, 2013, 29, 13146-13151.	1.6	192
231	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy and Environmental Science, 2013, 6, 3693.	15.6	309
232	Facile preparation and adjustable thermal property of stearic acid–graphene oxide composite as shape-stabilized phase change material. Chemical Engineering Journal, 2013, 215-216, 819-826.	6.6	160
233	Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 16002-16005.	6.6	1,119
234	Enhanced hydrogenation of olefins and ketones with a ruthenium complex covalently anchored on graphene oxide. Journal of Materials Chemistry A, 2013, 1, 15039.	5.2	48
235	Synthesis of 3D nitrogen-doped graphene/Fe3O4 by a metal ion induced self-assembly process for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 14658.	5.2	108
236	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 14700.	5.2	107
237	In-Situ Formation of Cobalt-Phosphate Oxygen-Evolving Complex-Anchored Reduced Graphene Oxide Nanosheets for Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2263.	1.6	28
238	Iron(II) phthalocyanine covalently functionalized graphene as a highly efficient non-precious-metal catalyst for the oxygen reduction reaction in alkaline media. Electrochimica Acta, 2013, 112, 269-278.	2.6	99
239	Transition Metal Decorated Graphyne: An Efficient Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 26021-26028.	1.5	82
240	Ag@Fe ₂ O ₃ -GO Nanocomposites Prepared by a Phase Transfer Method with Long-Term Antibacterial Property. ACS Applied Materials & Samp; Interfaces, 2013, 5, 11307-11314.	4.0	85
241	Excellent Electromagnetic Absorption Properties of Poly(3,4-ethylenedioxythiophene)-Reduced Graphene Oxide–Co ₃ O ₄ Composites Prepared by a Hydrothermal Method. ACS Applied Materials & Diterrates amp; Interfaces, 2013, 5, 12355-12360.	4.0	232
242	Electrocatalytic Activity of BN Codoped Graphene Oxide Derived from Carbon Dioxide. Journal of Physical Chemistry C, 2013, 117, 24167-24173.	1.5	22
243	Enhanced CO Oxidation Rates at the Interface of Mesoporous Oxides and Pt Nanoparticles. Journal of the American Chemical Society, 2013, 135, 16689-16696.	6.6	361
244	Sol–Gel Design Strategy for Ultradispersed TiO ₂ Nanoparticles on Graphene for High-Performance Lithium Ion Batteries. Journal of the American Chemical Society, 2013, 135, 18300-18303.	6.6	348
245	Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nature Communications, 2013, 4, 2905.	5.8	606

#	Article	IF	CITATIONS
246	IrO2-graphene hybrid as an active oxygen evolution catalyst for water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 9217-9222.	3.8	37
247	The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts. Electrochimica Acta, 2013, 114, 582-589.	2.6	35
248	Manageable N-doped Graphene for High Performance Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 2771.	1.6	182
249	Catalysis-Material Crosstalk at Tailored Nano-Carbon Interfaces. Topics in Current Chemistry, 2013, 348, 139-180.	4.0	11
250	Preparation of graphene-modified TiO2 nanorod arrays with enhanced photocatalytic activity by a solvothermal method. Materials Letters, 2013, 101, 41-43.	1.3	15
251	Shape-selective synthesis and optical performance of ceria nanocrystal/graphene hybrid composites. CrystEngComm, 2013, 15, 3739.	1.3	30
252	Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy and Environmental Science, 2013, 6, 3483.	15.6	480
253	Controlled electrodeposition of cobalt oxides from protic ionic liquids for electrocatalytic water oxidation. RSC Advances, 2013, 3, 20936.	1.7	28
254	Nanosized Carbonâ€Supported Manganese Oxide Phases as Lithium–Oxygen Battery Cathode Catalysts. ChemCatChem, 2013, 5, 3358-3373.	1.8	20
255	Chelate resin self-assembled quaternary Co–N–P–C catalyst for oxygen reduction reaction. RSC Advances, 2013, 3, 14686.	1.7	17
257	Threeâ€Dimensional Macroporous NiCo ₂ O ₄ Sheets as a Nonâ€Noble Catalyst for Efficient Oxygen Reduction Reactions. Chemistry - A European Journal, 2013, 19, 14271-14278.	1.7	96
258	Spaceâ€Confinementâ€Induced Synthesis of Pyridinic†and Pyrrolicâ€Nitrogenâ€Doped Graphene for the Catalysis of Oxygen Reduction. Angewandte Chemie - International Edition, 2013, 52, 11755-11759.	7.2	620
259	Photoelectrochemical Properties of Graphene and Its Derivatives. Nanomaterials, 2013, 3, 325-356.	1.9	104
260	Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 13611-13616.	3.8	58
261	N-doped monolayer graphene catalyst on silicon photocathode for hydrogen production. Energy and Environmental Science, 2013, 6, 3658.	15.6	134
262	Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 10389-10393.	3.8	86
263	Sizeâ€Dependent Enhancement of Electrocatalytic Oxygenâ€Reduction and Hydrogenâ€Evolution Performance of MoS ₂ Particles. Chemistry - A European Journal, 2013, 19, 11939-11948.	1.7	226
264	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	8.2	426

#	Article	IF	CITATIONS
265	Nature of the band gap and origin of the electro-/photo-activity of Co3O4. Journal of Materials Chemistry C, 2013, 1, 4628.	2.7	176
266	A Pt-free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochimica Acta, 2013, 107, 126-132.	2.6	56
267	Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chemical Science, 2013, 4, 368-376.	3.7	164
268	Cubic spinel cobalt oxide/multi-walled carbon nanotube composites as an efficient bifunctionalelectrocatalyst for oxygen reaction. Electrochemistry Communications, 2013, 34, 125-129.	2.3	58
269	Facile synthesis of nitrogen doped reduced graphene oxide as a superior metal-free catalyst for oxidation. Chemical Communications, 2013, 49, 9914.	2.2	294
270	Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 7041.	1.3	49
271	Evolution of cobalt hydroxide from 2D microplatelets to a 3D hierarchical structure mediated by precursor concentration. RSC Advances, 2013, 3, 13304.	1.7	12
272	Graphene–cobaltite–Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 20333.	1.3	40
273	Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications. Journal of the Electrochemical Society, 2013, 160, A2244-A2250.	1.3	57
274	NiCo <inf>2</inf> O <inf>4</inf> - Graphene oxide hybrid as a bifunctional electrocatalyst for air breathing cathode material in metal air batteries. , 2013, , .		0
275	Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes. Journal of Materials Chemistry A, 2013, 1, 12053.	5.2	166
276	Efficient oxygen evolution reaction catalyzed by low-density Ni-doped Co3O4 nanomaterials derived from metal-embedded graphitic C3N4. Chemical Communications, 2013, 49, 7522.	2.2	220
277	N-doped graphene analogue synthesized by pyrolysis of metal tetrapyridinoporphyrazine with high and stable catalytic activity for oxygen reduction. RSC Advances, 2013, 3, 9344.	1.7	9
278	Nitrogen-doped graphene–vanadium carbide hybrids as a high-performance oxygen reduction reaction electrocatalyst support in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13404.	5.2	50
279	Fabrication of graphene/Ni–Ce mixed oxide with excellent performance for reducing fire hazard of polypropylene. RSC Advances, 2013, 3, 16440.	1.7	29
280	One-Pot Solvothermal Synthesis of ZnSe· <i>>x</i> N ₂ H ₄ /GS and ZnSe/N-GS and Enhanced Visible-Light Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8414-8422.	4.0	32
281	Direct growth of flower-like manganese oxide on reduced graphene oxide towards efficient oxygen reduction reaction. Chemical Communications, 2013, 49, 6334.	2.2	101
282	Graphene-supported [$\{Ru4O4(OH)2(H2O)4\}(\hat{l}^3-SiW10O36)2\}10\hat{a}^3$ for highly efficient electrocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 2654.	15.6	124

#	Article	IF	CITATIONS
283	High performance robust F-doped tin oxide based oxygen evolution electro-catalysts for PEM based water electrolysis. Journal of Materials Chemistry A, 2013, 1, 4026.	5. 2	66
284	Introduction of nitrogen with controllable configuration into graphene via vacancies and edges. Journal of Materials Chemistry A, 2013, 1, 14927.	5.2	39
285	Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. Journal of Power Sources, 2013, 225, 251-256.	4.0	41
286	Effect of carbon nanofiber surface functional groups on oxygen reduction in alkaline solution. Journal of Power Sources, 2013, 225, 192-199.	4.0	136
287	Silver–tungsten carbide nanohybrid for efficient electrocatalysis of oxygen reduction reaction in microbial fuel cell. Journal of Power Sources, 2013, 225, 330-337.	4.0	51
288	Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 2013, 49, 1838.	2.2	293
289	Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale, 2013, 5, 1564.	2.8	184
290	Electrocatalytic activity of nitrogen-doped graphene synthesized via a one-pot hydrothermal process towards oxygen reduction reaction. Journal of Power Sources, 2013, 227, 185-190.	4.0	166
291	Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale, 2013, 5, 1753.	2.8	338
292	Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews, 2013, 42, 2986.	18.7	1,393
293	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	5.2	172
294	Facile and rapid synthesis of highly crumpled graphene sheets as high-performance electrodes for supercapacitors. RSC Advances, 2013, 3, 2566.	1.7	50
295	Structurally ordered intermetallic platinumâ€"cobalt coreâ€"shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nature Materials, 2013, 12, 81-87.	13.3	1,768
296	High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2013, 135, 530-533.	6.6	163
297	Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid. Nanoscale, 2013, 5, 160-163.	2.8	99
298	Functional Hybrid Systems Based on Large-Area High-Quality Graphene. Accounts of Chemical Research, 2013, 46, 2193-2201.	7.6	28
299	FePt and CoPt Nanowires as Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 3465-3468.	7.2	389
300	B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. Journal of Materials Chemistry A, 2013, 1, 3694.	5.2	398

#	Article	IF	CITATIONS
301	Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity,. Journal of Materials Chemistry A, 2013, 1, 3593.	5.2	169
303	The Role of Catalysts and Peroxide Oxidation in Lithium–Oxygen Batteries. Angewandte Chemie - International Edition, 2013, 52, 392-396.	7.2	347
304	Graphene/polymer composites for energy applications. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 231-253.	2.4	222
305	Synthesis and electrocatalytic performance for p-nitrophenol reduction of rod-like Co3O4 and Ag/Co3O4 composites. Materials Research Bulletin, 2013, 48, 2648-2653.	2.7	18
306	Use of Pd–MnMoO4–graphene hybrids as efficient and CO poisoning tolerant electrocatalysts for methanol oxidation. International Journal of Hydrogen Energy, 2013, 38, 15388-15394.	3.8	16
307	Performance of polyaniline-derived Fe-N-C catalysts for oxygen reduction reaction in alkaline electrolyte. Chinese Journal of Catalysis, 2013, 34, 1992-1997.	6.9	29
308	Nonprecious catalytic honeycombs structured with three dimensional hierarchical Co3O4 nano-arrays for high performance nitric oxide oxidation. Journal of Materials Chemistry A, 2013, 1, 9897.	5.2	73
309	Flowerlike Co3O4 microspheres loaded with copper nanoparticle as an efficient bifunctional catalyst for lithium–air batteries. Electrochemistry Communications, 2013, 28, 13-16.	2.3	109
310	Cobalt doped nanoporous hollow carbon spheres as novel non-precious metal oxygen reduction electrocatalysts. Electrochemistry Communications, 2013, 36, 75-79.	2.3	36
311	Modification of electrocatalytic activity of BaCe0.40Sm0.20Fe0.40O3â^δwith Co3O4 as cathode for proton-conducting solid oxide fuel cell. Electrochimica Acta, 2013, 108, 369-375.	2.6	13
312	Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 6657-6662.	3.8	143
313	Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Materials Letters, 2013, 107, 166-169.	1.3	83
314	Co3O4 nanorods decorated reduced graphene oxide composite for oxygen reduction reaction in alkaline electrolyte. Electrochemistry Communications, 2013, 34, 299-303.	2.3	90
315	Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 5655-5664.	3.8	36
316	SC-IrO2NR-carbon hybrid: A catalyst with high electrochemical stability for oxygen reduction. Science China Chemistry, 2013, 56, 131-136.	4.2	10
317	Doped Graphene as a Material for Oxygen Reduction Reaction in Hydrogen Fuel Cells: A Computational Study. ACS Catalysis, 2013, 3, 159-165.	5.5	100
318	Sulfur–nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. Nanoscale, 2013, 5, 3283.	2.8	304
319	Oneâ€Pot Approach to a Highly Robust Iron Oxide/Reduced Graphene Oxide Nanocatalyst for Fischer–Tropsch Synthesis. ChemCatChem, 2013, 5, 714-719.	1.8	32

#	Article	IF	CITATIONS
320	Three-dimensional bimetallic Pd–Cu nanodendrites with superior electrochemical performance for oxygen reduction reaction. Electrochimica Acta, 2013, 89, 24-28.	2.6	52
321	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	6.6	856
322	Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chemical Communications, 2013, 49, 3025.	2.2	23
323	Formation of Grapheneâ€Wrapped Nanocrystals at Room Temperature through the Colloidal Coagulation Effect. Particle and Particle Systems Characterization, 2013, 30, 143-147.	1.2	39
324	Onion-like graphitic nanoshell structured Fe–N/C nanofibers derived from electrospinning for oxygen reduction reaction in acid media. Electrochemistry Communications, 2013, 30, 1-4.	2.3	51
325	Magnetite Nanocrystals on Multiwalled Carbon Nanotubes as a Synergistic Microwave Absorber. Journal of Physical Chemistry C, 2013, 117, 5446-5452.	1.5	189
326	Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chemical Society Reviews, 2013, 42, 3088.	18.7	795
327	Palladium nanoparticles supported on nitrogen-doped HOPG: a surface science and electrochemical study. Physical Chemistry Chemical Physics, 2013, 15, 2923.	1.3	52
328	Graphene oxide–iron complex: synthesis, characterization and visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2013, 1, 644-650.	5.2	55
329	Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nature Communications, 2013, 4, 1444.	5.8	756
330	Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality. Scientific Reports, 2013, 3, 1309.	1.6	59
331	Stability and Exfoliation of Germanane: A Germanium Graphane Analogue. ACS Nano, 2013, 7, 4414-4421.	7. 3	910
332	Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. Journal of Power Sources, 2013, 236, 238-249.	4.0	450
333	Simple synthesis of macroporous carbon–graphene composites and their use as a support for Pt electrocatalysts. Electrochimica Acta, 2013, 90, 283-290.	2.6	40
334	Onion-like carbon matrix supported Co3O4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability. Journal of Materials Chemistry A, 2013, 1, 5212.	5.2	77
335	Large-scale preparation and morphology-dependent photodegradation performances of monodispersed AgBr crystals. Applied Catalysis A: General, 2013, 455, 199-205.	2.2	11
336	Binding SnO ₂ Nanocrystals in Nitrogenâ€Doped Graphene Sheets as Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2013, 25, 2152-2157.	11.1	1,089
337	Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 6920.	1.3	123

#	Article	IF	Citations
338	Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2013, 2, 377-386.	8.2	200
339	Reduced graphene oxide–Ta3N5 composite: a potential cathode for efficient Co(bpy)33+/2+ mediated dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6342.	5.2	24
340	Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Research, 2013, 6, 167-173.	5.8	169
341	Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 2013, 195-196, 19-40.	7.0	306
342	Graphene-based electrodes for electrochemical energy storage. Energy and Environmental Science, 2013, 6, 1388.	15.6	696
343	Silver supported on Co3O4 modified carbon as electrocatalyst for oxygen reduction reaction in alkaline media. Electrochemistry Communications, 2013, 31, 108-111.	2.3	62
344	A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Advances, 2013, 3, 11745.	1.7	142
345	Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction. Journal of Materials Chemistry A, 2013, 1, 6839.	5.2	47
346	Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy and Environmental Science, 2013, 6, 926.	15.6	177
347	V2O5 quantum dots/graphene hybrid nanocomposite with stable cyclability for advanced lithium batteries. Nano Energy, 2013, 2, 916-922.	8.2	76
348	Enhanced electrochemical oxygen reduction reaction by restacking of N-doped single graphene layers. RSC Advances, 2013, 3, 4246.	1.7	30
349	High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in Anion-Exchange-Membrane Alkaline Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 8697-8707.	1.5	251
350	Enzymeless multi-sugar fuel cells with high power output based on 3D graphene–Co3O4 hybrid electrodes. Physical Chemistry Chemical Physics, 2013, 15, 9170.	1.3	42
351	Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials, 2013, 34, 4786-4793.	5.7	305
352	Metal-Free Electrocatalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 375-389.	0.2	3
353	Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Advances, 2013, 3, 5003.	1.7	44
354	Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Battery Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 1254-1259.	2.1	294
355	Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nature Communications, 2013, 4, 1805.	5.8	976

#	Article	IF	CITATIONS
356	A Nitrogenâ€Doped Graphene/Carbon Nanotube Nanocomposite with Synergistically Enhanced Electrochemical Activity. Advanced Materials, 2013, 25, 3192-3196.	11.1	576
357	Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 8526-8544.	7.2	902
358	Hierarchical wreath-like Au–Co(OH)2 microclusters for water oxidation at neutral pH. Nanoscale, 2013, 5, 6826.	2.8	60
359	Excellent catalytic effects of highly crumpled graphenenanosheets on hydrogenation/dehydrogenation of magnesium hydride. Nanoscale, 2013, 5, 1074-1081.	2.8	115
360	Redox Chemistry of the Superoxide Ion in a Phosphonium-Based Ionic Liquid in the Presence of Water. Journal of Physical Chemistry Letters, 2013, 4, 1834-1837.	2.1	43
361	Unusual Effect of an Electron Beam on the Formation of Core/Shell (Co/CoO) Nanoparticles Differing by Their Crystalline Structures. Chemistry of Materials, 2013, 25, 2372-2377.	3.2	23
362	Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9326.	1.3	53
363	Hybrid Hydrogels of Porous Graphene and Nickel Hydroxide as Advanced Supercapacitor Materials. Chemistry - A European Journal, 2013, 19, 7118-7124.	1.7	136
364	One-pot synthesis of Au@Pd/graphene nanostructures: electrocatalytic ethanol oxidation for direct alcohol fuel cells (DAFCs). RSC Advances, 2013, 3, 8864.	1.7	26
365	High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Scientific Reports, 2013, 3, .	1.6	514
366	A Graphene Oxide and Copperâ€Centered Metal Organic Framework Composite as a Triâ€Functional Catalyst for HER, OER, and ORR. Advanced Functional Materials, 2013, 23, 5363-5372.	7.8	858
367	Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells. Journal of Materials Chemistry A, 2013, 1, 5741.	5. 2	77
368	NiCo ₂ S ₄ @graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5002-5008.	4.0	641
369	Nickel Sulfide/Nitrogenâ€Doped Graphene Composites: Phaseâ€Controlled Synthesis and High Performance Anode Materials for Lithium Ion Batteries. Small, 2013, 9, 1321-1328.	5.2	297
370	Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2013, 1, 7463.	5.2	47
371	Enhanced Photocatalytic Oxygen Evolution by Crystal Cutting. Advanced Materials, 2013, 25, 2035-2039.	11.1	49
372	Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nature Communications, 2013, 4, 1922.	5.8	749
373	A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nature Nanotechnology, 2013, 8, 426-431.	15.6	362

#	Article	IF	CITATIONS
374	CdS nanorods/reduced graphene oxide nanocomposites for photocatalysis and electrochemical sensing. Journal of Materials Chemistry A, 2013, 1, 5158.	5.2	101
375	Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. Chemistry of Materials, 2013, 25, 1490-1495.	3.2	130
376	Co3O4/C nanocapsules with onion-like carbon shells as anode material for lithium ion batteries. Electrochimica Acta, 2013, 100, 140-146.	2.6	68
377	Solvothermal synthesis of sheet-like Co3O4 and Ag/Co3O4 nanocomposites andÂtheir electrocatalysis performances. Materials Chemistry and Physics, 2013, 140, 391-397.	2.0	4
378	A Highly Efficient Catalyst toward Oxygen Reduction Reaction in Neutral Media for Microbial Fuel Cells. Industrial & Engineering Chemistry Research, 2013, 52, 6076-6082.	1.8	93
379	Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nature Communications, 2013, 4, 2076.	5.8	630
380	Site-Selective Deposition of Twinned Platinum Nanoparticles on TiSi ₂ Nanonets by Atomic Layer Deposition and Their Oxygen Reduction Activities. ACS Nano, 2013, 7, 6337-6345.	7.3	38
381	Boron and Nitrogen Codoped Nanodiamond as an Efficient Metal-Free Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 14992-14998.	1.5	80
382	Structure-Dependent Electrocatalytic Properties of Cu ₂ O Nanocrystals for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 13872-13878.	1.5	92
383	Morphology control of CoCO3 crystals and their conversion to mesoporous Co3O4 for alkaline rechargeable batteries application. CrystEngComm, 2013, 15, 6101.	1.3	53
384	Monodisperse M _{<i>x</i>} Fe _{3â€"<i>x</i>} O ₄ (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction. Nano Letters, 2013, 13, 2947-2951.	4.5	421
385	Molecular Architecture of Cobalt Porphyrin Multilayers on Reduced Graphene Oxide Sheets for Highâ€Performance Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 5585-5589.	7.2	242
386	Visible-Light Driven Oxidation of Water as Catalyzed by Co-APO-5 in the Presence of Ru Sensitizer. ACS Catalysis, 2013, 3, 1272-1278.	5.5	25
387	Rhodium complex immobilized on graphene oxide as an efficient and recyclable catalyst for hydrogenation of cyclohexene. Nanoscale, 2013, 5, 882-885.	2.8	7 5
388	Incorporating Graphene Oxide and Gold Nanoclusters: A Synergistic Catalyst with Surprisingly High Peroxidaseâ€Like Activity Over a Broad pH Range and its Application for Cancer Cell Detection. Advanced Materials, 2013, 25, 2594-2599.	11.1	441
389	Synthesis of reduced graphene oxide/CeO ₂ nanocomposites and their photocatalytic properties. Nanotechnology, 2013, 24, 115603.	1.3	135
390	Controlled 3D-coating of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3â°'xO4 nanolayers. Nanoscale, 2013, 5, 5561.	2.8	12
391	Ag3PO4/graphene-oxide composite with remarkably enhanced visible-light-driven photocatalytic activity toward dyes in water. Journal of Hazardous Materials, 2013, 244-245, 86-93.	6.5	200

#	Article	lF	CITATIONS
392	An Advanced Ni–Fe Layered Double Hydroxide Electrocatalyst for Water Oxidation. Journal of the American Chemical Society, 2013, 135, 8452-8455.	6.6	2,498
393	The Oxidation of Cobalt Nanoparticles into Kirkendall-Hollowed CoO and Co ₃ O ₄ : The Diffusion Mechanisms and Atomic Structural Transformations. Journal of Physical Chemistry C, 2013, 117, 14303-14312.	1.5	128
394	Electrocatalysis and detection of nitrite on a reduced graphene/Pd nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2013, 185, 602-607.	4.0	122
395	Controlled synthesis of Zirconium Oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon, 2013, 52, 74-82.	5.4	55
396	Porous Co ₃ O ₄ Nanorods–Reduced Graphene Oxide with Intrinsic Peroxidase-Like Activity and Catalysis in the Degradation of Methylene Blue. ACS Applied Materials & Literfaces, 2013, 5, 3809-3815.	4.0	100
397	Bi ₂ MoO ₆ microstructures: controllable synthesis, growth mechanism, and visible-light-driven photocatalytic activities. CrystEngComm, 2013, 15, 498-508.	1.3	83
399	Synthesis and Electrochemical Characterization of N-Doped Partially Graphitized Ordered Mesoporous Carbon–Co Composite. Journal of Physical Chemistry C, 2013, 117, 16896-16906.	1.5	101
400	First Principles Study of Cobalt (Hydr)oxides under Electrochemical Conditions. Journal of Physical Chemistry C, 2013, 117, 20002-20006.	1.5	89
401	Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes: Impact on Electronic Properties and Growth Selectivity. Journal of Physical Chemistry C, 2013, 117, 25805-25816.	1.5	44
402	Probing Disordered Structure and Tube–Tube Interaction in Carbon Nanotubes by Scanning Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2013, 117, 1969-1973.	1.5	4
403	Tuning the electrochemical properties of a boron and nitrogen codoped nanodiamond rod array to achieve high performance for both electro-oxidation and electro-reduction. Journal of Materials Chemistry A, 2013, 1, 14706.	5.2	16
404	Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-lon Battery Anodes. Journal of Physical Chemistry C, 2013, 117, 25367-25373.	1.5	120
405	Reduced Graphene Oxide–TaON Composite As a High-Performance Counter Electrode for Co(bpy) ₃ ^{3+/2+} -Mediated Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	4.0	48
406	Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance. Journal of the American Chemical Society, 2013, 135, 18176-18182.	6.6	187
407	Solvothermal synthesis, characterization and magnetic properties of \hat{l}_{\pm} -Fe2O3 and Fe3O4 flower-like hollow microspheres. Journal of Solid State Chemistry, 2013, 199, 204-211.	1.4	22
408	Vesicular nitrogen doped carbon material derived from Fe2O3 templated polyaniline as improved non-platinum fuel cell cathode catalyst. Electrochimica Acta, 2013, 99, 30-37.	2.6	37
409	Large-Scale Synthesis of Silver Manganese Oxide Nanofibers and Their Oxygen Reduction Properties. Journal of Physical Chemistry C, 2013, 117, 25352-25359.	1.5	38
410	Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nature Communications, 2013, 4, 2221.	5.8	169

#	ARTICLE Proparation of amplymath ymlocimmi-"http://www.w2.org/1998/Math/MathMI."	IF	CITATIONS
411	Preparation of mml="http://www.w3.org/1998/Math/MathML" id="M1"> 		

#	Article	IF	CITATIONS
431	Titanium Nitride Nanocrystals on Nitrogenâ€Doped Graphene as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 14781-14786.	1.7	73
433	Facile Synthesis of Cubic Spinel Cobalt Oxide/Multi-Walled Carbon Nanotube Hybrid Material as a Bifunctional Electrocatalyst for Metal-Air Batteries. ECS Meeting Abstracts, 2013, , .	0.0	0
434	Imaging State of Charge and Its Correlation to Strong Interaction Variety in Graphene Based Nano Hybrid for Energy Application: A Case Study of Lmfp-Graphene. ECS Meeting Abstracts, 2013, , .	0.0	0
435	Cobalt Oxide Catalysts for Environmental Remediation. Current Catalysis, 2014, 3, 15-26.	0.5	25
439	Multifunctional nanocomposites of Fe ₃ O ₄ -graphene-Au for repeated use in simultaneous adsorption, <i>in situ</i> SERS detection and catalytic reduction of 4-nitrophenol in water. Materials Research Express, 2014, 1, 045049.	0.8	11
440	Two-step synthesis of boron and nitrogen co-doped graphene as a synergistically enhanced catalyst for the oxygen reduction reaction. RSC Advances, 2014, 4, 61437-61443.	1.7	61
441	Non-Precious Metal Oxygen Reduction Electrocatalyst from Pyrolyzing Cobalt Tetraethylenepentamine Complex on Carbon. Journal of the Electrochemical Society, 2014, 161, F925-F932.	1.3	10
443	Low temperature synthesis of high electrochemical performance Co3O4 nanoparticles for application in supercapacitor. Functional Materials Letters, 2014, 07, 1450002.	0.7	10
444	Functionalization of carbon nanotubes/graphene by polyoxometalates and their enhanced photo-electrical catalysis. Chinese Physics B, 2014, 23, 088801.	0.7	4
445	Fabrication and electrochemical properties of copper oxide (CuO) nanowire–cobalt oxide (Co ₃ O ₄) nanoparticle heterostructures for oxygen evolution reaction. Nanomaterials and Energy, 2014, 3, 93-101.	0.1	5
446	Thin-Film Modified Rotating Disk Electrodes: Models of Electron-Transfer Kinetics for Passive and Electroactive Films. Journal of Physical Chemistry C, 2014, 118, 30034-30038.	1.5	18
447	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	1.7	87
449	Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Science China Materials, 2014, 57, 70-100.	3.5	446
450	Highly active electrocatalyst for oxygen reduction reaction from pyrolyzing carbon-supported iron tetraethylenepentamine complex. Applied Catalysis B: Environmental, 2014, 160-161, 676-683.	10.8	13
451	Selfâ€Organization and/or Nanocrystallinity of Co Nanocrystals Effects on the Oxidation Process Using Highâ€Energy Electron Beam. Advanced Functional Materials, 2014, 24, 164-170.	7.8	6
453	Epitaxy of polar semiconductor Co3O4 (110): Growth, structure, and characterization. Journal of Applied Physics, 2014, 115 , .	1.1	27
454	Reduction of graphene oxide $\hat{a} \in \hat{a}$ a comprehensive electrochemical investigation in alkaline and acidic electrolytes. RSC Advances, 2014, 4, 57781-57790.	1.7	29
455	ELECTROCHEMICAL Co3O4 NANOPOROUS THIN FILMS SENSOR FOR HYDROGEN PEROXIDE DETECTION. Nano, 2014, 09, 1450047.	0.5	8

#	Article	IF	Citations
456	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
457	Morphological effect of fillers on graphite reinforced polydicyclopentadiene based composites. Polymer Composites, 2014, 35, 1918-1925.	2.3	16
458	Direct growth of porous crystalline NiCo ₂ O ₄ nanowire arrays on a conductive electrode for high-performance electrocatalytic water oxidation. Journal of Materials Chemistry A, 2014, 2, 20823-20831.	5 . 2	111
459	Tunable Ternary (N, P, B)-Doped Porous Nanocarbons and Their Catalytic Properties for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22297-22304.	4.0	117
461	Applications, composites, and devices: general discussion. Faraday Discussions, 2014, 173, 429-443.	1.6	5
462	Selfâ€Assembled Platinum Nanoflowers on Polydopamineâ€Coated Reduced Graphene Oxide for Methanol Oxidation and Oxygen Reduction Reactions. Chemistry - an Asian Journal, 2014, 9, 3221-3227.	1.7	16
463	Electrochemical Preparation of Nâ€Doped Cobalt Oxide Nanoparticles with High Electrocatalytic Activity for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2014, 20, 3457-3462.	1.7	39
464	Mn _{<i>x</i>} O _{<i>y</i>} /NC and Co _{<i>x</i>} O _{<i>y</i>} /NC Nanoparticles Embedded in a Nitrogenâ€Doped Carbon Matrix for Highâ€Performance Bifunctional Oxygen Electrodes. Angewandte Chemie - International Edition, 2014, 53, 8508-8512.	7.2	482
465	Blood Ties: Co ₃ O ₄ Decorated Blood Derived Carbon as a Superior Bifunctional Electrocatalyst. Advanced Functional Materials, 2014, 24, 7655-7665.	7.8	113
466	Synthesis of Pt, PtRh, and PtRhNi Alloys Supported by Pristine Graphene Nanosheets for Ethanol Electrooxidation. ChemCatChem, 2014, 6, 3254-3261.	1.8	49
467	Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 28502-28508.	1.5	92
469	Au/NiCo ₂ O ₄ Arrays with High Activity for Water Oxidation. ChemCatChem, 2014, 6, 2501-2506.	1.8	60
470	Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society, 2014, 136, 17530-17536.	6.6	575
471	Nanocomposite of N-Doped TiO ₂ Nanorods and Graphene as an Effective Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21978-21985.	4.0	76
472	The Effect of Substrates at Cathodes in Lowâ€temperature Fuel Cells. ChemElectroChem, 2014, 1, 37-46.	1.7	29
473	A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications. Nanotechnology, 2014, 25, 495604.	1.3	23
475	Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy, 2014, 8, 118-125.	8.2	106
476	Synthesis of Graphene Nanoparticles and Their Application in Surface Raman Enhancement. Spectroscopy Letters, 2014, 47, 704-709.	0.5	5

#	Article	IF	CITATIONS
477	Synchrotron Soft Xâ€ray Absorption Spectroscopy Study of Carbon and Silicon Nanostructures for Energy Applications. Advanced Materials, 2014, 26, 7786-7806.	11.1	84
478	Mesoporous TiN as a Noncarbon Support of Agâ€Rich PtAg Nanoalloy Catalysts for Oxygen Reduction Reaction in Alkaline Media. ChemSusChem, 2014, 7, 3356-3361.	3.6	19
479	Strain-induced on germanene monolayer 6nm short channel FET from first-principle study. , 2014, , .		5
480	Synthesis, Magnetic and Surface Properties of Reduced Graphene Oxide Supported Nickel Oxide Hybrid Nanomaterials. Advanced Materials Research, 2014, 938, 91-96.	0.3	0
482	Tuning nondoped carbon nanotubes to an efficient metal-free electrocatalyst for oxygen reduction reaction by localizing the orbital of the nanotubes with topological defects. Nanoscale, 2014, 6, 14262-14269.	2.8	41
483	Magnesium–air batteries: from principle to application. Materials Horizons, 2014, 1, 196-206.	6.4	371
484	Grapheneâ€Based Materials for Solar Cell Applications. Advanced Energy Materials, 2014, 4, 1300574.	10.2	398
485	Facile preparation of a Pt/Prussian blue/graphene composite and its application as an enhanced catalyst for methanol oxidation. Electrochimica Acta, 2014, 121, 245-252.	2.6	37
486	Effect of the electrochemical oxidation/reduction cycle on the electrochemical capacitance of graphite oxide. Carbon, 2014, 76, 40-45.	5.4	32
487	Hierarchical Fe3O4@Co3O4 core–shell microspheres: Preparation and acetone sensing properties. Sensors and Actuators B: Chemical, 2014, 199, 346-353.	4.0	98
488	Facile synthesis of silver nanoparticles supported on three dimensional graphene oxide/carbon black composite and its application for oxygen reduction reaction. Electrochimica Acta, 2014, 135, 168-174.	2.6	83
489	Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material. Electrochimica Acta, 2014, 129, 40-46.	2.6	38
490	Facile deposition of cobalt oxide based electrocatalyst on low-cost and tin-free electrode for water splitting. Journal of Energy Chemistry, 2014, 23, 179-184.	7.1	10
491	Super-Long Life Supercapacitors Based on the Construction of Ni foam/graphene/Co3S4 Composite film hybrid electrodes. Electrochimica Acta, 2014, 132, 180-185.	2.6	84
492	A simple and green pathway toward nitrogen and sulfur dual doped hierarchically porous carbons from ionic liquids for oxygen reduction. Journal of Power Sources, 2014, 259, 138-144.	4.0	59
493	Allâ€Surfaceâ€Atomicâ€Metal Chalcogenide Sheets for Highâ€Efficiency Visibleâ€Light Photoelectrochemical Water Splitting. Advanced Energy Materials, 2014, 4, 1300611.	10.2	154
494	Nitrogen-doped graphene prepared by a transfer doping approach forÂthe oxygen reduction reaction application. Journal of Power Sources, 2014, 245, 801-807.	4.0	102
495	Graphene for advanced Li/S and Li/air batteries. Journal of Materials Chemistry A, 2014, 2, 33-47.	5.2	166

#	Article	IF	Citations
496	25th Anniversary Article: Hybrid Nanostructures Based on Twoâ€Dimensional Nanomaterials. Advanced Materials, 2014, 26, 2185-2204.	11.1	579
497	Mechanisms for Enhanced Performance of Platinumâ€Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. ChemSusChem, 2014, 7, 361-378.	3.6	86
498	Effect of B-site vacancy on surface chemistry and catalytic performance of Dion–Jacobson phase layered perovskite KCa2Nb3O10. Chemical Engineering Journal, 2014, 244, 243-251.	6.6	7
499	Amide-functionalized carbon supports for cobalt oxide toward oxygen reduction reaction in Zn-air battery. Applied Catalysis B: Environmental, 2014, 148-149, 212-220.	10.8	31
500	A nanoceria–platinum–graphene nanocomposite for electrochemical biosensing. Biosensors and Bioelectronics, 2014, 58, 179-185.	5.3	49
501	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	15.6	996
502	Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128, 271-278.	2.6	129
503	Metalâ^'Organic Frameworkâ€Derived Nitrogenâ€Doped Coreâ€Shellâ€Structured Porous Fe/Fe ₃ C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1400337.	10.2	512
504	Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 2603.	2.8	105
505	Graphene–Co ₃ O ₄ nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. Journal of Materials Chemistry A, 2014, 2, 7188-7196.	5.2	192
506	A Sandwichâ€Like Hierarchically Porous Carbon/Graphene Composite as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2014, 4, 1301584.	10.2	365
507	Graphene and Grapheneâ€ike Layered Transition Metal Dichalcogenides in Energy Conversion and Storage. Small, 2014, 10, 2165-2181.	5.2	535
508	Controllable Synthesis of Doped Graphene and Its Applications. Small, 2014, 10, 2975-2991.	5.2	58
509	Modeling Practical Performance Limits of Photoelectrochemical Water Splitting Based on the Current State of Materials Research. ChemSusChem, 2014, 7, 1372-1385.	3.6	195
510	Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. Journal of Materials Science, 2014, 49, 4139-4147.	1.7	22
511	Ni2O3-around-Pd hybrid on graphene oxide: An efficient catalyst for ligand-free Suzuki–Miyaura coupling reaction. Applied Catalysis A: General, 2014, 473, 1-6.	2.2	67
512	Highly Efficient Electrocatalysts for Oxygen Reduction Based on 2D Covalent Organic Polymers Complexed with Nonâ€precious Metals. Angewandte Chemie - International Edition, 2014, 53, 2433-2437.	7.2	417
513	Facile synthesis of nitrogen-doped graphene supported AuPd–CeO2 nanocomposites with high-performance for hydrogen generation from formic acid at room temperature. Nanoscale, 2014, 6, 3073.	2.8	99

#	Article	IF	CITATIONS
514	NiCo ₂ S ₄ sub-micron spheres: an efficient non-precious metal bifunctional electrocatalyst. Nanoscale, 2014, 6, 3540-3544.	2.8	134
515	A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. Journal of Power Sources, 2014, 250, 196-203.	4.0	312
516	MoS2 nanoflower-decorated reduced graphene oxide paper for high-performance hydrogen evolution reaction. Nanoscale, 2014, 6, 5624.	2.8	320
517	25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Draphene for Optimized Nanostructures & Draphene for Op	11.1	479
518	Synthesis of Monodispere Au@Co ₃ O ₄ Coreâ€Shell Nanocrystals and Their Enhanced Catalytic Activity for Oxygen Evolution Reaction. Advanced Materials, 2014, 26, 3950-3955.	11.1	418
519	A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 6703-6707.	5.2	18
520	Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301415.	10.2	351
521	Catalytic Epoxidation of Olefins with Graphene Oxide Supported Copper (Salen) Complex. Industrial & Lamp; Engineering Chemistry Research, 2014, 53, 4232-4238.	1.8	116
522	Enriched graphitic N-doped carbon-supported Fe ₃ O ₄ nanoparticles as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7281-7287.	5.2	235
523	N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis, 2014, 314, 66-72.	3.1	537
524	A novel 3D structured reduced graphene oxide/TiO ₂ composite: synthesis and photocatalytic performance. Journal of Materials Chemistry A, 2014, 2, 3605-3612.	5.2	59
525	In Situ Hydrothermal Synthesis of Mn3O4 Nanoparticles on Nitrogen-doped Graphene as High-Performance Anode materials for Lithium Ion Batteries. Electrochimica Acta, 2014, 120, 452-459.	2.6	145
526	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	5.2	73
527	Carbon as catalyst and support for electrochemical energy conversion. Carbon, 2014, 75, 5-42.	5.4	443
528	Facile construction of Mn3O4 nanorods coated by a layer of nitrogen-doped carbon with high activity for oxygen reduction reaction. Nano Energy, 2014, 6, 44-50.	8.2	62
529	A Review of Grapheneâ€Based Nanostructural Materials for Both Catalyst Supports and Metalâ€Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1301523.	10.2	416
530	Spinel MFe2O4 (M = Co, Ni) nanoparticles coated on multi-walled carbon nanotubes as electrocatalysts for Liâ€"O2 batteries. Journal of Materials Chemistry A, 2014, 2, 10257.	5.2	57
531	Mesoporous MnCo ₂ O ₄ with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8676-8682.	5.2	227

#	Article	IF	CITATIONS
532	Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine. Applied Catalysis B: Environmental, 2014, 158-159, 60-69.	10.8	49
533	Direct Solvothermal Synthesis of B/Nâ€Doped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	7.2	61
534	Graphene Materials and Their Use in Dye-Sensitized Solar Cells. Chemical Reviews, 2014, 114, 6323-6348.	23.0	378
535	Shape Control of Mn ₃ O ₄ Nanoparticles on Nitrogenâ€Doped Graphene for Enhanced Oxygen Reduction Activity. Advanced Functional Materials, 2014, 24, 2072-2078.	7.8	283
536	Synergistic Catalytic Effect of MoS ₂ Nanoparticles Supported on Gold Nanoparticle Films for a Highly Efficient Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 1877-1881.	1.8	46
537	Nitrogenâ€Doped Holey Graphitic Carbon from 2D Covalent Organic Polymers for Oxygen Reduction. Advanced Materials, 2014, 26, 3315-3320.	11.1	292
538	Strongly Veined Carbon Nanoleaves as a Highly Efficient Metalâ€Free Electrocatalyst. Angewandte Chemie - International Edition, 2014, 53, 6905-6909.	7.2	156
539	Nitrogenâ€Doped Graphene/Carbon Nanotube Hybrids: In Situ Formation on Bifunctional Catalysts and Their Superior Electrocatalytic Activity for Oxygen Evolution/Reduction Reaction. Small, 2014, 10, 2251-2259.	5.2	571
540	A facile and general route for the synthesis of semiconductor quantum dots on reduced graphene oxide sheets. RSC Advances, 2014, 4, 13601.	1.7	8
541	Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221.	1.7	253
542	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	7.2	384
543	Graphene Coupled Schiffâ€base Porous Polymers: Towards Nitrogenâ€enriched Porous Carbon Nanosheets with Ultrahigh Electrochemical Capacity. Advanced Materials, 2014, 26, 3081-3086.	11.1	224
544	Tunable Decoration of Reduced Graphene Oxide with Au Nanoparticles for the Oxygen Reduction Reaction. Advanced Functional Materials, 2014, 24, 2764-2771.	7.8	61
545	One-step conversion from metal–organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8184.	5.2	130
546	Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. Journal of the Electrochemical Society, 2014, 161, D3105-D3112.	1.3	20
547	Ultrathin Graphitic C ₃ N ₄ Nanosheets/Graphene Composites: Efficient Organic Electrocatalyst for Oxygen Evolution Reaction. ChemSusChem, 2014, 7, 2125-2130.	3.6	232
548	Ternary core/shell structure of Co3O4/NiO/C nanowire arrays as high-performance anode material for Li-ion battery. Journal of Power Sources, 2014, 248, 115-121.	4.0	61
549	Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nature Communications, 2014, 5, 3949.	5.8	572

#	Article	IF	CITATIONS
550	Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn ₃ O ₄ Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen. ACS Applied Materials & Dysens amp; Interfaces, 2014, 6, 2692-2699.	4.0	214
551	Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst. Journal of the American Chemical Society, 2014, 136, 7077-7084.	6.6	1,202
552	Amine-functionalized holey graphene as a highly active metal-free catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 441-450.	5.2	119
553	Photocatalytic properties under visible light with graphene based platinium selenide nanocomposites synthesized by microwave assisted method. Materials Science in Semiconductor Processing, 2014, 25, 34-42.	1.9	15
554	Carbon-encapsulated iron nanoparticles as ferromagnetic matrix for oxygen reduction in absence and presence of immobilized laccase. Electrochimica Acta, 2014, 126, 115-121.	2.6	18
555	Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 147, 897-903.	10.8	85
556	In situ growth of Au nanocrystals on graphene oxide sheets. Nanoscale, 2014, 6, 1281-1285.	2.8	27
557	Semiconductor photocatalysts for water oxidation: current status and challenges. Physical Chemistry Chemical Physics, 2014, 16, 6810.	1.3	112
558	Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 576.	15.6	922
559	High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy and Environmental Science, 2014, 7, 609-616.	15.6	605
560	A novel bifunctional catalyst of Ba0.9Co0.5Fe0.4Nb0.1O3â^î^î perovskite for lithium–air battery. International Journal of Hydrogen Energy, 2014, 39, 2526-2530.	3.8	62
561	Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 3231.	5.2	74
562	Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. Journal of Hazardous Materials, 2014, 265, 124-132.	6.5	125
563	Layer-by-layer construction of caterpillar-like reduced graphene oxide $\hat{a} \in \mathbb{C}$ oxide $\hat{a} \in \mathbb{C}$ on glassy carbon electrode and its application as a bromate sensor. Electrochimica Acta, 2014, 115, 504-510.	2.6	29
564	Well-Coupled Graphene and Pd-Based Bimetallic Nanocrystals Nanocomposites for Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 2086-2094.	4.0	67
565	Facile Synthesis of Gold-Nanoparticle-Decorated Gd _{0.3} Ce _{0.7} O _{1.9} Nanotubes with Enhanced Catalytic Activity for Oxygen Reduction Reaction. ACS Applied Materials & Activity for Oxygen Reduction Reaction.	4.0	31
566	Synergistic effect of mesoporous Mn ₂ O ₃ -supported Pd nanoparticle catalysts for electrocatalytic oxygen reduction reaction with enhanced performance in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 1272-1276.	5.2	51
567	Graphene nanoribbons hybridized carbon nanofibers: remarkably enhanced graphitization and conductivity, and excellent performance as support material for fuel cell catalysts. Nanoscale, 2014, 6, 1377-1383.	2.8	37

#	Article	IF	CITATIONS
568	Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene. Journal of Physical Chemistry C, 2014, 118, 2804-2811.	1.5	65
569	A graphene–MnO2framework as a new generation of three-dimensional oxygen evolution promoter. Chemical Communications, 2014, 50, 207-209.	2.2	77
570	Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chemical Society Reviews, 2014, 43, 7746-7786.	18.7	1,264
571	Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications, 2014, 5, 5185.	5.8	134
572	Microwave-assisted solvothermal preparation of nitrogen and sulfur co-doped reduced graphene oxide and graphene quantum dots hybrids for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 20605-20611.	5.2	76
573	Nitrogen-doped graphene-supported Co/CoNx nanohybrid as a highly efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. RSC Advances, 2014, 4, 62272-62280.	1.7	13
574	A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage. Nanoscale, 2014, 6, 14679-14685.	2.8	61
575	Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20714-20722.	5.2	54
576	Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochimica Acta, 2014, 150, 23-34.	2.6	120
577	Molecular Co(II) and Co(III) Heteroarylalkenolates as Efficient Precursors for Chemical Vapor Deposition of Co ₃ O ₄ Nanowires. Inorganic Chemistry, 2014, 53, 10928-10936.	1.9	25
578	Cobalt carbonate hydroxide/C: an efficient dual electrocatalyst for oxygen reduction/evolution reactions. Chemical Communications, 2014, 50, 15529-15532.	2.2	93
579	P-modified and carbon shell coated Co nanoparticles for efficient alkaline oxygen reduction catalysis. Chemical Communications, 2014, 50, 15940-15943.	2.2	23
580	Nanoâ€Intermetallic AuCu ₃ Catalyst for Oxygen Reduction Reaction: Performance and Mechanism. Small, 2014, 10, 2662-2669.	5.2	54
581	Multifunctional Electroactive Heteroatomâ€Doped Carbon Aerogels. Small, 2014, 10, 4352-4361.	5.2	57
582	Strongly Coupled Rhodium/Graphene Hybrids for H ₂ O ₂ Oxidation with Ultra‣ow Potential and Enhanced Activity. ChemElectroChem, 2014, 1, 1480-1483.	1.7	4
583	Oneâ€Pot Synthesis of Cobaltâ€Incorporated Nitrogenâ€Doped Reduced Graphene Oxide as an Oxygen Reduction Reaction Catalyst in Alkaline Medium. ChemElectroChem, 2014, 1, 2163-2171.	1.7	33
584	Toward Full Exposure of "Active Sites― Nanocarbon Electrocatalyst with Surface Enriched Nitrogen for Superior Oxygen Reduction and Evolution Reactivity. Advanced Functional Materials, 2014, 24, 5956-5961.	7.8	332
585	ZIFâ€8 Derived Grapheneâ€Based Nitrogenâ€Doped Porous Carbon Sheets as Highly Efficient and Durable Oxygen Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 14235-14239.	7.2	849

#	Article	IF	CITATIONS
586	Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 2014, 7, 1861-1872.	5.8	97
587	Enhancing the electro catalytic activity of manganese ferrite through cerium substitution for oxygen evolution in KOH solutions. RSC Advances, 2014, 4, 64364-64370.	1.7	19
588	Reversible Chemical Tuning of Charge Carriers for Enhanced Photoelectrochemical Conversion and Probing of Living Cells. Small, 2014, 10, 4967-4974.	5.2	18
589	Ternary NiS/Zn <i>_x</i> Cd _{1â€<i>x</i>} S/Reduced Graphene Oxide Nanocomposites for Enhanced Solar Photocatalytic H ₂ â€Production Activity. Advanced Energy Materials, 2014, 4, 1301925.	10.2	244
590	Impacts of Geometry, Symmetry, and Morphology of Nanocast Co ₃ O ₄ on Its Catalytic Activity for Water Oxidation. Chemistry of Materials, 2014, 26, 6127-6134.	3.2	67
591	Low Overpotential in Vacancy-Rich Ultrathin CoSe ₂ Nanosheets for Water Oxidation. Journal of the American Chemical Society, 2014, 136, 15670-15675.	6.6	970
592	Growth control of cobalt oxide nanoparticles on reduced graphene oxide for enhancement of electrochemical capacitance. International Journal of Hydrogen Energy, 2014, 39, 21068-21075.	3.8	31
593	Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discussions, 2014, 176, 393-408.	1.6	30
594	Mussel-inspired nitrogen-doped graphene nanosheet supported manganese oxide nanowires as highly efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 6167.	5.2	41
595	Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale, 2014, 6, 15080-15089.	2.8	509
596	Self-template construction of hollow Co3O4 microspheres from porous ultrathin nanosheets and efficient noble metal-free water oxidation catalysts. Nanoscale, 2014, 6, 7255.	2.8	194
597	The influence of a fibrous carbon envelope on the formation of CoFe nanoparticles for durable electrocatalytic oxygen evolution. Physical Chemistry Chemical Physics, 2014, 16, 13807-13813.	1.3	39
598	A high-performance electrocatalyst for oxygen evolution reactions based on electrochemical post-treatment of ultrathin carbon layer coated cobalt nanoparticles. Chemical Communications, 2014, 50, 13019-13022.	2,2	49
599	X-ray chemical imaging and the electronic structure of a single nanoplatelet Ni/graphene composite. Chemical Communications, 2014, 50, 2282-2285.	2.2	13
600	One-step solution-phase synthesis of Co3O4/RGO/acetylene black as a high-performance catalyst for oxygen reduction reaction. RSC Advances, 2014, 4, 18286.	1.7	14
601	A high-performance electrocatalyst for oxygen reduction based on reduced graphene oxide modified with oxide nanoparticles, nitrogen dopants, and possible metal-N-C sites. Journal of Materials Chemistry A, 2014, 2, 1631-1635.	5. 2	47
602	One-step hydrothermal synthesis of NiCo ₂ S ₄ â€"rGO as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20990-20995.	5.2	73
603	The behaviour of an old catalyst revisited in a wet environment: Co ions in APO-5 split water under mild conditions. Physical Chemistry Chemical Physics, 2014, 16, 7074-7082.	1.3	7

#	Article	IF	CITATIONS
604	Influence of carbon pore size on the discharge capacity of Li–O ₂ batteries. Journal of Materials Chemistry A, 2014, 2, 12433-12441.	5.2	139
605	A wavy graphene/platinum hybrid with increased electroactivity for the methanol oxidation reaction. Journal of Materials Chemistry A, 2014, 2, 1940-1946.	5.2	33
606	Mn and Co co-substituted Fe ₃ O ₄ nanoparticles on nitrogen-doped reduced graphene oxide for oxygen electrocatalysis in alkaline solution. Journal of Materials Chemistry A, 2014, 2, 16217-16223.	5.2	118
607	Multiple transition metal oxide mesoporous nanospheres with controllable composition for lithium storage. Journal of Materials Chemistry A, 2014, 2, 5041-5050.	5.2	29
608	TiO ₂ Nanoparticles-Functionalized N-Doped Graphene with Superior Interfacial Contact and Enhanced Charge Separation for Photocatalytic Hydrogen Generation. ACS Applied Materials & Amp; Interfaces, 2014, 6, 13798-13806.	4.0	153
609	Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices. Journal of Materials Chemistry A, 2014, 2, 10022.	5.2	135
610	A novel CoN electrocatalyst with high activity and stability toward oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 62-65.	5.2	55
611	Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 2014, 9, 668-683.	6.2	230
612	Ultrasound mediated synthesis of \hat{l}_{\pm} -aminophosphonates and 3,4-dihydropyrimidin-2-ones using graphene oxide as a recyclable catalyst under solvent-free conditions. RSC Advances, 2014, 4, 45831-45837.	1.7	21
613	Ordered Hierarchically Micro- and Mesoporous Fe–N _{<i>x</i>} -Embedded Graphitic Architectures as Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2014, 4, 1793-1800.	5.5	211
614	Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction. Nature Communications, 2014, 5, 4973.	5.8	921
615	A Comparative Study of Composition and Morphology Effect of Ni _{<i>x</i>>} Co _{1–<i>x</i>} (OH) ₂ on Oxygen Evolution/Reduction Reaction. ACS Applied Materials & Amp; Interfaces, 2014, 6, 10172-10180.	4.0	118
616	Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today, 2014, 9, 405-432.	6.2	93
617	A Highâ€Performance Binary Ni–Co Hydroxideâ€based Water Oxidation Electrode with Threeâ€Dimensional Coaxial Nanotube Array Structure. Advanced Functional Materials, 2014, 24, 4698-4705.	7.8	348
618	Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 12240-12246.	5.2	52
619	Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. Nanoscale, 2014, 6, 12805-12813.	2.8	41
620	Peculiar surface–interface properties of nanocrystalline ceria–cobalt oxides with enhanced oxygen storage capacity. Physical Chemistry Chemical Physics, 2014, 16, 22659-22664.	1.3	25
621	Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. Journal of Materials Chemistry A, 2014, 2, 12262-12269.	5 . 2	85

#	Article	IF	CITATIONS
622	Reduction of the oxygen reduction reaction overpotential of nitrogen-doped graphene by designing it to a microspherical hollow shape. Journal of Materials Chemistry A, 2014, 2, 14071.	5.2	38
623	Self-healing catalysts: Co ₃ O ₄ nanorods for Fischer–Tropsch synthesis. Chemical Communications, 2014, 50, 4575-4578.	2.2	16
624	Ultrathin MnO2 nanoflakes as efficient catalysts for oxygen reduction reaction. Chemical Communications, 2014, 50, 7885.	2,2	113
625	A green-chemical synthetic route to fabricate a lamellar-structured Co/Co(OH)2 nanocomposite exhibiting a high removal ability for organic dye. Dalton Transactions, 2014, 43, 5393.	1.6	25
626	Fe–N/C catalysts synthesized by heat-treatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction. RSC Advances, 2014, 4, 12168.	1.7	38
627	Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications, 2014, 5, 5285.	5.8	202
628	A ZnO–graphene hybrid with remarkably enhanced lithium storage capability. Physical Chemistry Chemical Physics, 2014, 16, 25846-25853.	1.3	59
629	Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 19765-19770.	5.2	21
630	One-step replication and enhanced catalytic activity for cathodic oxygen reduction of the mesostructured Co ₃ O ₄ /carbon composites. Dalton Transactions, 2014, 43, 4163-4168.	1.6	23
631	Charge state-dependent catalytic activity of [Au ₂₅ (SC ₁₂ H ₂₅) ₁₈] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chemical Communications, 2014, 50, 8464-8467.	2.2	119
632	Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells. Nanoscale, 2014, 6, 3656.	2.8	77
633	Chemical bonding in amorphous Si-coated carbon nanotubes as anodes for Li ion batteries: a XANES study. RSC Advances, 2014, 4, 20226-20229.	1.7	17
634	Synthesis and electrocatalytic performance of MnO ₂ -promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 5371-5378.	5.2	36
635	Hexamethylenetetramine mediated simultaneous nitrogen doping and reduction of graphene oxide for a metal-free SERS substrate. RSC Advances, 2014, 4, 44146-44150.	1.7	17
636	Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 11606-11613.	5.2	461
637	MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 14064-14070.	5 . 2	407
638	A dramatic platform for oxygen reduction reaction based on silver nanoclusters. Chemical Communications, 2014, 50, 234-236.	2.2	44
639	Tween20 surfactant effect on the electrocatalytic performance of porous carbon micro-spheres supported MnO ₂ . RSC Advances, 2014, 4, 52100-52104.	1.7	4

#	Article	IF	CITATIONS
640	An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability. RSC Advances, 2014, 4, 32811.	1.7	37
641	Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11672.	5.2	112
642	Few-layered graphene-supported palladium as a highly efficient catalyst in oxygen reduction reaction. Chemical Communications, 2014, 50, 14433-14435.	2.2	32
643	In situ synthesis of a MoS ₂ /CoOOH hybrid by a facile wet chemical method and the catalytic oxidation of CO in epoxy resin during decomposition. Journal of Materials Chemistry A, 2014, 2, 13299.	5.2	129
644	Two-dimensional Cr ₂ O ₃ and interconnected graphene–Cr ₂ O ₃ nanosheets: synthesis and their application in lithium storage. Journal of Materials Chemistry A, 2014, 2, 944-948.	5.2	48
645	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104
646	Sonochemical fabrication of Cu 2 O@C/graphene nanohybrid with a hierarchical architecture. Journal of Solid State Chemistry, 2014, 220, 111-117.	1.4	5
647	Co/CoO/CoFe ₂ O ₄ /G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale, 2014, 6, 203-206.	2.8	80
648	Electrocatalytic activity of metalloporphyrins grown in situ on graphene sheets toward oxygen reduction reaction in an alkaline medium. RSC Advances, 2014, 4, 26653-26661.	1.7	24
649	Use of urchin-like Ni _x Co _{3â^x} O ₄ hierarchical nanostructures based on non-precious metals as bifunctional electrocatalysts for anion-exchange membrane alkaline alcohol fuel cells. Nanoscale, 2014, 6, 9665-9672.	2.8	83
650	Si photoanode protected by a metal modified ITO layer with ultrathin NiOx for solar water oxidation. Physical Chemistry Chemical Physics, 2014, 16, 4612-4625.	1.3	55
651	Synthesis, crystal structure and optical properties of a naphthylbisimide-Ni complex: a framework on TiO ₂ for visible light H ₂ production. Dalton Transactions, 2014, 43, 15704-15707.	1.6	16
652	Mesoporous carbon material co-doped with nitrogen and iron (Fe–N–C): high-performance cathode catalyst for oxygen reduction reaction in alkaline electrolyte. Journal of Materials Chemistry A, 2014, 2, 8617-8622.	5.2	87
653	2D polyacrylonitrile brush derived nitrogen-doped carbon nanosheets for high-performance electrocatalysts in oxygen reduction reaction. Polymer Chemistry, 2014, 5, 2057-2064.	1.9	54
654	Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. Journal of Materials Chemistry A, 2014, 2, 18263-18270.	5.2	78
655	Reduced Graphene Oxide Supported Palladium Nanoparticles via Photoassisted Citrate Reduction for Enhanced Electrocatalytic Activities. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15795-15801.	4.0	67
656	Chemically Integrated Two-Dimensional Hybrid Zinc Manganate/Graphene Nanosheets with Enhanced Lithium Storage Capability. ACS Nano, 2014, 8, 8610-8616.	7.3	141
657	Synthesis and characterization of Mn-based composite oxides with enhanced electrocatalytic activity for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 13345-13351.	5.2	17

#	Article	IF	CITATIONS
658	Synthesis of Highly Active and Stable Spinelâ€Type Oxygen Evolution Electrocatalysts by a Rapid Inorganic Selfâ€Templating Method. Chemistry - A European Journal, 2014, 20, 12669-12676.	1.7	42
659	Constant-Charge Reaction Theory for Potential-Dependent Reaction Kinetics at the Solid–Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 3629-3635.	1.5	26
660	Face-Raised Octahedral Co3O4Nanocrystals and Their Catalytic Activity in the Selective Oxidation of Alcohols. Journal of Physical Chemistry C, 2014, 118, 4767-4773.	1.5	30
661	The selective formation of graphene ranging from two-dimensional sheets to three-dimensional mesoporous nanospheres. Nanoscale, 2014, 6, 7204-7208.	2.8	9
662	Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2014, 16, 10088-10094.	1.3	43
663	Oxygen electroreduction on Fe- or Co-containing carbon fibers. Carbon, 2014, 79, 457-469.	5.4	29
664	Pyrolysis of Cellulose under Ammonia Leads to Nitrogen-Doped Nanoporous Carbon Generated through Methane Formation. Nano Letters, 2014, 14, 2225-2229.	4.5	297
665	Ultrafine iron oxide nanoparticles supported on N-doped carbon black as an oxygen reduction reaction catalyst. International Journal of Hydrogen Energy, 2014, 39, 14777-14782.	3.8	30
666	Synthesis of porous Co ₃ O ₄ nanonetworks to detect toluene at low concentration. Physical Chemistry Chemical Physics, 2014, 16, 19327-19332.	1.3	30
667	ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 442-450.	15.6	719
668	Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery. Nanoscale, 2014, 6, 10235-10242.	2.8	112
669	Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 4095-4103.	15.6	537
670	Oxide-on-metal as an inverted design of oxygen electrocatalysts for non-aqueous Li–O2batteries. Nanoscale, 2014, 6, 12324-12327.	2.8	8
671	Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for CO _x -free hydrogen production from ammonia. Journal of Materials Chemistry A, 2014, 2, 9185-9192.	5.2	47
672	Nitrogen Self-Doped Porous Carbon from Surplus Sludge as Metal-Free Electrocatalysts for Oxygen Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14911-14918.	4.0	54
673	Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2014, 2, 6921.	2.7	1,814
674	Multifunctional Co _{0.85} Se/graphene hybrid nanosheets: controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate. Nanoscale, 2014, 6, 1782-1789.	2.8	78
675	Nitrogen-Doped Mesoporous Graphene as a Synergistic Electrocatalyst Matrix for High-Performance Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17654-17660.	4.0	52

#	Article	IF	CITATIONS
676	A high-performance reduced graphene oxide/ZnCo layered double hydroxide electrocatalyst for efficient water oxidation. Dalton Transactions, 2014, 43, 15119-15125.	1.6	77
677	Single Crystal (Mn,Co)3O4 Octahedra for Highly Efficient Oxygen Reduction Reactions. Electrochimica Acta, 2014, 144, 31-41.	2.6	35
678	A cobalt–nitrogen complex on N-doped three-dimensional graphene framework as a highly efficient electrocatalyst for oxygen reduction reaction. Nanoscale, 2014, 6, 15066-15072.	2.8	117
679	Palladium Nanoparticles Supported on Vertically Oriented Reduced Graphene Oxide for Methanol Electroâ€Oxidation. ChemSusChem, 2014, 7, 2907-2913.	3.6	40
680	Ni nanoparticles-graphene hybrid film: one-step electrodeposition preparation and application as highly efficient oxygen evolution reaction electrocatalyst. Journal of Applied Electrochemistry, 2014, 44, 1165-1170.	1.5	20
681	Hydrothermal Transformation of Dried Grass into Graphitic Carbonâ€Based High Performance Electrocatalyst for Oxygen Reduction Reaction. Small, 2014, 10, 3371-3378.	5.2	135
682	Nitrogen-Doped Graphene Supported CoSe ₂ Nanobelt Composite Catalyst for Efficient Water Oxidation. ACS Nano, 2014, 8, 3970-3978.	7.3	516
683	Zinc–Air Battery: Understanding the Structure and Morphology Changes of Graphene-Supported CoMn ₂ O ₄ Bifunctional Catalysts Under Practical Rechargeable Conditions. ACS Applied Materials & Diterfaces, 2014, 6, 16545-16555.	4.0	132
684	A facile one-pot method to Au–SnO 2 -graphene ternary hybrid. Materials Research Bulletin, 2014, 59, 77-83.	2.7	5
685	Dual-Phase Spinel MnCo ₂ O ₄ and Spinel MnCo ₂ O ₄ /Nanocarbon Hybrids for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Materials & Diterraces, 2014, 6, 12684-12691.	4.0	322
686	Facile electrochemical co-deposition of a graphene–cobalt nanocomposite for highly efficient water oxidation in alkaline media: direct detection of underlying electron transfer reactions under catalytic turnover conditions. Physical Chemistry Chemical Physics, 2014, 16, 19035-19045.	1.3	46
687	High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 270, 28-33.	4.0	96
688	Bio-inspired highly active catalysts for oxygen reduction reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2014, 39, 12613-12619.	3.8	8
689	Decoupled bifunctional air electrodes for high-performance hybrid lithium-air batteries. Nano Energy, 2014, 9, 94-100.	8.2	60
690	Comparative studies of redox behaviors of Pt–Co/SiO ₂ and Au–Co/SiO ₂ catalysts and their activities in CO oxidation. Catalysis Science and Technology, 2014, 4, 3151-3158.	2.1	26
691	Nickel-Based Thin Film on Multiwalled Carbon Nanotubes as an Efficient Bifunctional Electrocatalyst for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15395-15402.	4.0	112
694	Finely tuning oxygen functional groups of graphene materials and optimizing oxygen levels for capacitors. RSC Advances, 2014, 4, 36377.	1.7	27
695	Hierarchical 3D Mesoporous Conch-like Co3O4 Nanostructure Arrays for High-Performance Supercapacitors. Electrochimica Acta, 2014, 141, 248-254.	2.6	56

#	Article	IF	CITATIONS
696	An efficient bifunctional catalyst of Fe/Fe3C carbon nanofibers for rechargeable Li–O2 batteries. Journal of Materials Chemistry A, 2014, 2, 10634.	5.2	76
697	Catalytic Epoxidation Reaction over N-Containing sp ² Carbon Catalysts. ACS Catalysis, 2014, 4, 1261-1266.	5.5	95
698	Synthesis and characterization of carbon black/manganese oxide air cathodes for zinc-air batteries. Journal of Power Sources, 2014, 269, 88-97.	4.0	65
699	Enabling Silicon for Solar-Fuel Production. Chemical Reviews, 2014, 114, 8662-8719.	23.0	329
700	Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale, 2014, 6, 11336-11343.	2.8	229
701	Ag nanoparticles supported on N-doped graphene hybrids for catalytic reduction of 4-nitrophenol. RSC Advances, 2014, 4, 43204-43211.	1.7	65
702	Reduced Mesoporous Co ₃ O ₄ Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1400696.	10.2	852
703	Controllable Synthesis of Cobalt Monoxide Nanoparticles and the Size-Dependent Activity for Oxygen Reduction Reaction. ACS Catalysis, 2014, 4, 2998-3001.	5 . 5	78
704	Role of the Morphology and Surface Planes on the Catalytic Activity of Spinel LiMn1.5Ni0.5O4 for Oxygen Evolution Reaction. ACS Catalysis, 2014, 4, 421-425.	5.5	54
705	Hierarchical Zn <i>>_x</i> Co _{3–<i>x</i>} O ₄ Nanoarrays with High Activity for Electrocatalytic Oxygen Evolution. Chemistry of Materials, 2014, 26, 1889-1895.	3.2	401
706	Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy and Environmental Science, 2014, 7, 3519-3542.	15.6	1,151
707	Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale, 2014, 6, 3173.	2.8	379
708	Silver/Nitrogen-Doped Graphene Interaction and Its Effect on Electrocatalytic Oxygen Reduction. Chemistry of Materials, 2014, 26, 5868-5873.	3.2	101
709	X-ray Absorption Spectroscopic Study of a Highly Thermally Stable Manganese Oxide Octahedral Molecular Sieve (OMS-2) with High Oxygen Reduction Reaction Activity. Chemistry of Materials, 2014, 26, 5752-5760.	3.2	32
710	Graphene Activating Room-Temperature Ferromagnetic Exchange in Cobalt-Doped ZnO Dilute Magnetic Semiconductor Quantum Dots. ACS Nano, 2014, 8, 10589-10596.	7.3	44
711	Rapid synthesis of mesoporous Ni _x Co _{3â^2x} (PO ₄) ₂ hollow shells showing enhanced electrocatalytic and supercapacitor performance. Journal of Materials Chemistry A, 2014, 2, 20182-20188.	5.2	101
712	Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014, 43, 7067-7098.	18.7	1,547
713	Chemical Control of Graphene Architecture: Tailoring Shape and Properties. ACS Nano, 2014, 8, 9733-9754.	7.3	107

#	ARTICLE	IF	Citations
714	Palladium nanoparticle decorated high nitrogen-doped graphene with high catalytic activity for Suzuki–Miyaura and Ullmann-type coupling reactions in aqueous media. Applied Catalysis A: General, 2014, 488, 265-274.	2.2	79
715	Direct electrochemistry of glucose oxidase immobilized on ZrO ₂ nanoparticles-decorated reduced graphene oxide sheets for a glucose biosensor. RSC Advances, 2014, 4, 30358-30367.	1.7	51
716	Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity. Nanoscale Research Letters, 2014, 9, 327.	3.1	133
717	Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 6316-6319.	5 . 2	179
718	Cobalt-Oxide-Based Materials as Water Oxidation Catalyst: Recent Progress and Challenges. ACS Catalysis, 2014, 4, 3701-3714.	5.5	451
719	Cobalt vanadate as highly active, stable, noble metal-free oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2014, 2, 18435-18443.	5.2	169
720	Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochimica Acta, 2014, 146, 646-653.	2.6	115
721	An SbO _{<i>x</i>} /Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 23527-23534.	1.5	101
722	Efficient Electrocatalytic Oxygen Evolution on Amorphous Nickel–Cobalt Binary Oxide Nanoporous Layers. ACS Nano, 2014, 8, 9518-9523.	7.3	359
723	Reduced graphene oxide (RGO)-supported NiCo ₂ O ₄ nanoparticles: an electrocatalyst for methanol oxidation. Nanoscale, 2014, 6, 10657.	2.8	177
724	Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chemical Communications, 2014, 50, 6818.	2.2	428
725	N-, O-, and S-Tridoped Nanoporous Carbons as Selective Catalysts for Oxygen Reduction and Alcohol Oxidation Reactions. Journal of the American Chemical Society, 2014, 136, 13554-13557.	6.6	317
726	Photothermal Contribution to Enhanced Photocatalytic Performance of Graphene-Based Nanocomposites. ACS Nano, 2014, 8, 9304-9310.	7.3	240
727	Ultrathin Hexagonal Hybrid Nanosheets Synthesized by Graphene Oxideâ€Assisted Exfoliation of β o(OH) ₂ Mesocrystals. Chemistry - A European Journal, 2014, 20, 12444-12452.	1.7	18
728	Electrospun porous nanorod perovskite oxide/nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries. Nano Energy, 2014, 10, 192-200.	8.2	168
729	Chicken bone-derived N-doped porous carbon materials as an oxygen reduction electrocatalyst. Electrochimica Acta, 2014, 147, 520-526.	2.6	40
730	Strongly Coupled Pd Nanotetrahedron/Tungsten Oxide Nanosheet Hybrids with Enhanced Catalytic Activity and Stability as Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2014, 136, 11687-11697.	6.6	314
731	Ultralong Cycle Life Sodium-Ion Battery Anodes Using a Graphene-Templated Carbon Hybrid. Journal of Physical Chemistry C, 2014, 118, 22426-22431.	1.5	66

#	Article	IF	Citations
732	Metal–Organic Framework Derived Hybrid Co ₃ O ₄ -Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. Journal of the American Chemical Society, 2014, 136, 13925-13931.	6.6	1,744
733	Facile synthesis of Ag-reduced graphene oxide hybrids and their application in electromagnetic interference shielding. Applied Physics A: Materials Science and Processing, 2014, 116, 25-32.	1.1	33
734	A non-enzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with cuprous oxide and nitrogen-doped graphene in a nafion matrix. Mikrochimica Acta, 2014, 181, 1463-1470.	2.5	56
735	Enhanced capacity for lithium–air batteries using LaFe0.5Mn0.5O3–CeO2 composite catalyst. Journal of Materials Science, 2014, 49, 4058-4066.	1.7	21
736	One step synthesis of \hat{l}^2 -FeOOH nanowire bundles/graphene oxide nanocomposites. Journal of Materials Science: Materials in Electronics, 2014, 25, 3680-3686.	1.1	0
737	Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 9079.	5.2	61
738	A three-dimensional Mn ₃ O ₄ network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2014, 2, 14493-14501.	5.2	120
739	Strategies on the Design of Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2014, 5, 119-125.	2.1	78
741	Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy and Environmental Science, 2014, 7, 1212-1249.	15.6	559
743	Flexible nitrogen-doped graphene/carbon nanotube/Co ₃ O ₄ paper and its oxygen reduction activity. Nanoscale, 2014, 6, 7534-7541.	2.8	75
744	Nitrogen-Doped Graphene Nanoribbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Diterfaces, 2014, 6, 4214-4222.	4.0	156
745	A bifunctional oxygen electrocatalyst from monodisperse MnCo ₂ O ₄ nanoparticles on nitrogen enriched carbon nanofibers. RSC Advances, 2014, 4, 25089-25092.	1.7	41
746	A rapid and sensitive method for hydroxyl radical detection on a microfluidic chip using an N-doped porous carbon nanofiber modified pencil graphite electrode. Analyst, The, 2014, 139, 3416.	1.7	32
747	Preparation of La1â^'Ca MnO3 perovskiteâ€"graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium. Journal of Power Sources, 2014, 269, 144-151.	4.0	82
748	Preparation of polydopamine-functionalized graphene–Fe ₃ O ₄ magnetic composites with high adsorption capacities. RSC Advances, 2014, 4, 30536-30541.	1.7	55
749	<i>In situ</i> Formation of Mildly Oxidized Graphene Oxide/Polydicyclopentadiene Composite and Reinforced Mechanical and Thermal Performances. Journal of Macromolecular Science - Pure and Applied Chemistry, 2014, 51, 514-521.	1.2	7
750	Mesoporous Mn3O4â€"CoO coreâ€"shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation. Journal of Materials Chemistry A, 2014, 2, 3794.	5.2	81
751	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014, 1, 379-399.	6.4	303

#	Article	IF	CITATIONS
752	Electrocatalytic Oxygen Evolution over Supported Small Amorphous Ni–Fe Nanoparticles in Alkaline Electrolyte. Langmuir, 2014, 30, 7893-7901.	1.6	234
753	Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Research, 2014, 7, 1054-1064.	5.8	72
754	La _{0.8} Sr _{0.2} MnO _{3â~δ} Decorated with Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{O_{3â~δ}: A Bifunctional Surface for Oxygen Electrocatalysis with Enhanced Stability and Activity. Journal of the American Chemical Society, 2014, 136, 5229-5232.}	6.6	196
755	Facile one-step room-temperature synthesis of Mn-based spinel nanoparticles for electro-catalytic oxygen reduction. RSC Advances, 2014, 4, 4727-4731.	1.7	27
756	Enhanced electrocatalytic activity of oxygen reduction by cobalt-porphyrin functionalized with Agraphene oxide in an alkaline solution. International Journal of Hydrogen Energy, 2014, 39, 4803-4811.	3.8	58
757	Facile and green synthesis of a surfactant-free Au clusters/reduced graphene oxide composite as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 13682.	5.2	34
758	A novel iron (â¡) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium. Journal of Power Sources, 2014, 268, 269-278.	4.0	47
759	One-Pot Synthesis of Metal–Carbon Nanotubes Network Hybrids as Highly Efficient Catalysts for Oxygen Evolution Reaction of Water Splitting. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10089-10098.	4.0	40
760	La ₂ O ₃ Doped Carbonaceous Microspheres: A Novel Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions with Ultrahigh Mass Activity. Journal of Physical Chemistry C, 2014, 118, 20229-20237.	1.5	42
761	Composite Electrode Boosts the Activity of Ba _{0.5} Fe _{0.2} O _{3-δ} Perovskite and Carbon toward Oxygen Reduction in Alkaline Media. ACS Catalysis, 2014, 4, 1061-1070.	5.5	111
762	Highâ€Rate Oxygen Electroreduction over Graphiticâ€N Species Exposed on 3D Hierarchically Porous Nitrogenâ€Doped Carbons. Angewandte Chemie - International Edition, 2014, 53, 9503-9507.	7.2	355
763	3D crumpled RGO-Co3O4 photocatalysts for UV-induced hydrogen evolution reaction. Materials Letters, 2014, 136, 118-121.	1.3	34
764	Nanocarbon-Based Hybrid Materials for Electrocatalytical Energy Conversion: Novel Materials and Methods. IEEE Nanotechnology Magazine, 2014, 8, 22-28.	0.9	4
766	Chemoselectivity-induced multiple interfaces in MWCNT/Fe ₃ O ₄ @ZnO heterotrimers for whole X-band microwave absorption. Nanoscale, 2014, 6, 12298-12302.	2.8	188
767	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	5.5	351
768	Application of cobalt oxide nanostructured modified aluminium electrode for electrocatalytic oxidation of guanine and single-strand DNA. RSC Advances, 2014, 4, 33874-33882.	1.7	9
769	Facile synthesis of Au@Fe3O4–graphene and Pt@Fe3O4–graphene ternary hybrid nanomaterials and their catalytic properties. RSC Advances, 2014, 4, 21909.	1.7	18
770	Hydrothermal synthesis of vanadium nitride and modulation of its catalytic performance for oxygen reduction reaction. Nanoscale, 2014, 6, 9608.	2.8	93

#	Article	IF	CITATIONS
771	The role of electronic interaction in the use of Ag and Mn ₃ O ₄ hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2014, 2, 17477-17488.	5.2	96
772	Novel graphene-like nanosheet supported highly active electrocatalysts with ultralow Pt loadings for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16898-16904.	5.2	21
773	Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€Î} Perovskite Activity towards the Oxygen Reduction Reaction in Alkaline Media. ChemElectroChem, 2014, 1, 338-342.	1.7	39
774	Nanocatalyst Superior to Pt for Oxygen Reduction Reactions: The Case of Core/Shell Ag(Au)/CuPd Nanoparticles. Journal of the American Chemical Society, 2014, 136, 15026-15033.	6.6	172
775	Chemical transformations of nanomaterials for energy applications. Journal of Materials Chemistry A, 2014, 2, 5965-5978.	5.2	49
776	Oxygen evolution in Co-doped RuO2 and IrO2: Experimental and theoretical insights to diminish electrolysis overpotential. Journal of Power Sources, 2014, 268, 69-76.	4.0	98
777	Electrochemical Synthesis of Spinel Type ZnCo ₂ O ₄ Electrodes for Use as Oxygen Evolution Reaction Catalysts. Journal of Physical Chemistry Letters, 2014, 5, 2370-2374.	2.1	269
778	Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano, 2014, 8, 10837-10843.	7.3	396
779	"Butterfly Effect―in CuO/Graphene Composite Nanosheets: A Small Interfacial Adjustment Triggers Big Changes in Electronic Structure and Li-Ion Storage Performance. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17236-17244.	4.0	110
780	Spinel Mn–Co Oxide in N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst Synthesized by Oxidative Cutting. Journal of the American Chemical Society, 2014, 136, 7551-7554.	6.6	275
781	Seed-assisted synthesis of Co3O4@α-Fe2O3 core–shell nanoneedle arrays for lithium-ion battery anode with high capacity. RSC Advances, 2014, 4, 13241.	1.7	41
782	Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation. Carbon, 2014, 79, 615-622.	5.4	34
783	Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chemical Science, 2014, 5, 3976.	3.7	332
784	One-pot synthesis of nitrogen and sulfur co-doped onion-like mesoporous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution. Journal of Power Sources, 2014, 272, 267-276.	4.0	67
785	Conducting CoMn2O4 - PEDOT nanocomposites as catalyst in oxygen reduction reaction. Electrochimica Acta, 2014, 118, 81-87.	2.6	50
786	Preparation–Morphology–Performance Relationships in Cobalt Aerogels as Supercapacitors. ACS Applied Materials & Diterfaces, 2014, 6, 1796-1803.	4.0	24
787	Needle-like Co ₃ O ₄ Anchored on the Graphene with Enhanced Electrochemical Performance for Aqueous Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 7626-7632.	4.0	316
788	A Facile and General Approach for the Direct Fabrication of 3D, Vertically Aligned Carbon Nanotube Array/Transition Metal Oxide Composites as Nonâ€Pt Catalysts for Oxygen Reduction Reactions. Advanced Materials, 2014, 26, 3156-3161.	11.1	74

#	Article	IF	CITATIONS
789	Graphene-Supported Nanoelectrocatalysts for Fuel Cells: Synthesis, Properties, and Applications. Chemical Reviews, 2014, 114, 5117-5160.	23.0	899
790	Promoted Oxygen Reduction Activity of Ag/Reduced Graphene Oxide by Incorporated CoOx. Electrochimica Acta, 2014, 132, 136-141.	2.6	13
791	The Impact of Loading and Temperature on the Oxygen Reduction Reaction at Nitrogen-doped Carbon Nanotubes in Alkaline Medium. Electrochimica Acta, 2014, 129, 47-54.	2.6	33
792	Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance. Journal of Solid State Chemistry, 2014, 213, 193-197.	1.4	28
793	A novel stainless steel mesh/cobalt oxide hybrid electrode for efficient catalysis of oxygen reduction in a microbial fuel cell. Biosensors and Bioelectronics, 2014, 55, 237-241.	5.3	66
794	CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery. Electrochemistry Communications, 2014, 41, 59-63.	2.3	172
795	Influence of pyrolyzing atmosphere on the catalytic activity and structure of Co-based catalysts for oxygen reduction reaction. Electrochimica Acta, 2014, 115, 1-9.	2.6	12
796	One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction. Carbon, 2014, 68, 755-762.	5 . 4	59
797	Microwave- or conventionalâ€"hydrothermal synthesis of Co-based materials for electrochemical energy storage. Ceramics International, 2014, 40, 8183-8188.	2.3	9
798	Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media. Journal of Power Sources, 2014, 265, 246-253.	4.0	59
799	A co-pyrolysis route to synthesize nitrogen doped multiwall carbon nanotubes for oxygen reduction reaction. Carbon, 2014, 68, 232-239.	5.4	34
800	Visibleâ€Lightâ€Enhanced Electrocatalysis and Bioelectrocatalysis Coupled in a Miniature Glucose/Air Biofuel Cell. ChemSusChem, 2014, 7, 2427-2431.	3.6	29
801	Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for Enhanced Photocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 6979-6985.	7.3	92
802	Graphene/Grapheneâ€Tube Nanocomposites Templated from Cageâ€Containing Metalâ€Organic Frameworks for Oxygen Reduction in Li–O ₂ Batteries. Advanced Materials, 2014, 26, 1378-1386.	11.1	398
803	Hybrid of Iron Nitride and Nitrogenâ€Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2014, 24, 2930-2937.	7.8	391
804	A Reliable Aerosolâ€6prayâ€Assisted Approach to Produce and Optimize Amorphous Metal Oxide Catalysts for Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7547-7551.	7.2	234
805	Facile Oneâ€Pot, Oneâ€Step Synthesis of a Carbon Nanoarchitecture for an Advanced Multifunctonal Electrocatalyst. Angewandte Chemie - International Edition, 2014, 53, 6496-6500.	7.2	169
806	Ultraâ€Uniform SnO <i>_x</i> /Carbon Nanohybrids toward Advanced Lithiumâ€Ion Battery Anodes. Advanced Materials, 2014, 26, 3943-3949.	11.1	311

#	Article	IF	CITATIONS
807	Graphitic Carbon Nitride Nanosheet–Carbon Nanotube Threeâ€Dimensional Porous Composites as Highâ€Performance Oxygen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2014, 53, 7281-7285.	7.2	737
808	Superior H ₂ production by hydrophilic ultrafine Ta ₂ O ₅ engineered covalently on graphene. Nanotechnology, 2014, 25, 215401.	1.3	16
809	Photochemical Reduction of CO ₂ by Graphitic Carbon Nitride Polymers. ACS Sustainable Chemistry and Engineering, 2014, 2, 353-358.	3.2	363
810	Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 2014, 114, 5057-5115.	23.0	3,865
811	Energetic carbon-based hybrids: green and facile synthesis from soy milk and extraordinary electrocatalytic activity towards ORR. Nanoscale, 2014, 6, 2964.	2.8	53
812	Strongly Coupled NiCo ₂ O ₄ â€rGO Hybrid Nanosheets as a Methanolâ€Tolerant Electrocatalyst for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 2408-2412.	11.1	283
813	Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO ₃ as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution. Advanced Materials, 2014, 26, 2047-2051.	11,1	244
814	Newly Developed Stepwise Electroless Deposition Enables a Remarkably Facile Synthesis of Highly Active and Stable Amorphous Pd Nanoparticle Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2014, 136, 5217-5220.	6.6	132
815	Electronic structure variation of the surface and bulk of a LiNi _{0.5} Mn _{1.5} O ₄ cathode as a function of state of charge: X-ray absorption spectroscopic study. Physical Chemistry Chemical Physics, 2014, 16, 13838-13842.	1.3	44
816	Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today, 2014, 9, 324-343.	6.2	369
817	Enhanced electromagnetic wave absorption performances of Co3O4 nanocube/reduced graphene oxide composite. Synthetic Metals, 2014, 194, 52-58.	2.1	95
818	Tungsten carbide synthesized by low-temperature combustion as gas diffusion electrode catalyst. International Journal of Hydrogen Energy, 2014, 39, 10911-10920.	3.8	14
819	The influence of manganese–cobalt oxide/graphene on reducing fire hazards of poly(butylene) Tj ETQq0 0 0 rgl	BT/Overlo 6.5	ck 10 Tf 50 2
820	Graphene-Manganite-Pd Hybrids as Highly Active and Stable Electrocatalysts for Methanol Oxidation and Oxygen Reduction. Electrochimica Acta, 2014, 136, 166-175.	2.6	25
821	Pt loaded on truncated hexagonal pyramid WC/graphene for oxygen reduction reaction. Nano Energy, 2014, 8, 52-61.	8.2	47
822	Electrocatalytic activity of carbon nanoparticles from diffusion flame towards oxygen reduction. Electrochimica Acta, 2014, 136, 176-181.	2.6	9
823	Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. Journal of Power Sources, 2014, 266, 384-392.	4.0	169
824	Recent advances in zinc–air batteries. Chemical Society Reviews, 2014, 43, 5257-5275.	18.7	1,882

#	Article	IF	CITATIONS
825	Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. Chemistry of Materials, 2014, 26, 3368-3376.	3.2	229
827	Hybrid material design for energy applications: impact of graphene and carbon nanotubes. Pure and Applied Chemistry, 2014, 86, 39-52.	0.9	4
828	Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy and Environmental Science, 2014, 7, 2025.	15.6	265
829	A novel glucose sensor based on MoS2 nanosheet functionalized with Ni nanoparticles. Electrochimica Acta, 2014, 136, 41-46.	2.6	132
830	Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst. Electrochimica Acta, 2014, 140, 404-411.	2.6	38
831	Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: a study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy. Electrochimica Acta, 2014, 137, 535-545.	2.6	39
832	Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media. Chinese Journal of Catalysis, 2014, 35, 891-895.	6.9	29
833	The value of mixed conduction for oxygen electroreduction on graphene–chitosan composites. Carbon, 2014, 73, 234-243.	5.4	14
834	X-ray techniques for innovation in industry. IUCrJ, 2014, 1, 604-613.	1.0	3
835	One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique. Kerntechnik, 2014, 79, 216-218.	0.2	1
838	An In Situ Sourceâ€Templateâ€Interface Reaction Route to 3D Nitrogenâ€Doped Hierarchical Porous Carbon as Oxygen Reduction Electrocatalyst. Advanced Materials Interfaces, 2015, 2, 1500199.	1.9	39
839	Bioâ€Inspired Leafâ€Mimicking Nanosheet/Nanotube Heterostructure as a Highly Efficient Oxygen Evolution Catalyst. Advanced Science, 2015, 2, 1500003.	5.6	90
840	Nanoporous Metal Papers for Scalable Hierarchical Electrode. Advanced Science, 2015, 2, 1500086.	5.6	26
841	Oxygen Reduction Non-PGM Electrocatalysts for PEM Fuel Cellsâ€"Recent Advances. Electrochemical Energy Storage and Conversion, 2015, , 385-403.	0.0	1
844	Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells. Scientific Reports, 2015, 5, 16246.	1.6	13
845	Non-precious metal catalysts with TBAH as carbon source for ORR. Emerging Materials Research, 2015, 4, 76-80.	0.4	1
846	Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles. Journal of Chemical Physics, 2015, 143, 114301.	1.2	3
848	Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Scientific Reports, 2015, 5, 12167.	1.6	309

#	ARTICLE	IF	Citations
849	Carbonâ€Free Cathodes: A Step Forward in the Development of Stable Lithium–Oxygen Batteries. ChemSusChem, 2015, 8, 3932-3940.	3.6	29
850	Multifunctional grapheneâ€based nanostructures for efficient electrocatalytic reduction of oxygen. Journal of Chemical Technology and Biotechnology, 2015, 90, 2132-2151.	1.6	20
851	Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications. Small, 2015, 11, 4267-4283.	5.2	127
852	Nanocomposite of Fe ₂ O ₃ @C@MnO ₂ as an Efficient Cathode Catalyst for Rechargeable Lithiumâ°Oxygen Batteries. Small, 2015, 11, 5545-5550.	5.2	57
853	Wellâ€Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogenâ€Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction. Small, 2015, 11, 5833-5843.	5.2	73
854	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	7.8	490
858	Synthesis of Mesoporous Feï£ i N/C Materials with High Catalytic Performance in the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2937-2944.	1.8	20
859	Nitrogenâ€Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 3808-3817.	1.8	69
860	Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Advanced Materials, 2015, 27, 5309-5327.	11.1	492
863	Layered Film of Graphene Oxides Decorated with Dendrimerâ€encapsulated Pt Nanoparticles on Indium Tin Oxide and Its Enhanced Electrocatalytic Redox Activity for Detection of Hydrogen Peroxide. Bulletin of the Korean Chemical Society, 2015, 36, 1713-1716.	1.0	3
864	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Doped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
865	Cobaltâ€Containing Nitrogenâ€Doped Carbon Aerogels as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2079-2088.	1.7	46
866	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie, 2015, 127, 8297-8301.	1.6	142
868	Metallic Singleâ€Unitâ€Cell Orthorhombic Cobalt Diselenide Atomic Layers: Robust Waterâ€Electrolysis Catalysts. Angewandte Chemie - International Edition, 2015, 54, 12004-12008.	7.2	166
869	Photoelectron Spectroscopy at the Graphene–Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst. Angewandte Chemie - International Edition, 2015, 54, 14554-14558.	7.2	135
870	Highâ∈Performance Feâ∈"Nâ∈Doped Graphene Electrocatalysts with pHâ∈Dependent Active Sites for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2032-2040.	1.7	34
871	Lowâ€Temperature Synthesis of Hierarchical Amorphous Basic Nickel Carbonate Particles for Water Oxidation Catalysis. ChemSusChem, 2015, 8, 2193-2197.	3.6	11
872	Structural Origin of the Activity in Mn ₃ O ₄ â€"Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 3331-3339.	3.6	56

#	Article	IF	CITATIONS
873	Strongly Coupled 3D Hybrids of Nâ€doped Porous Carbon Nanosheet/CoNi Alloyâ€Encapsulated Carbon Nanotubes for Enhanced Electrocatalysis. Small, 2015, 11, 5940-5948.	5.2	176
874	Electrochemical Reaction of Graphene Oxide at Au Electrode Surface Monitored by Surface Enhanced Infrared Absorption Spectroscopy. E-Journal of Surface Science and Nanotechnology, 2015, 13, 413-416.	0.1	1
876	Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table. ChemPhysChem, 2015, 16, 3527-3531.	1.0	47
877	Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Waterâ€Oxidation Performance. Angewandte Chemie - International Edition, 2015, 54, 10530-10534.	7.2	301
878	Electrochemical Degradation of Multiwall Carbon Nanotubes at High Anodic Potential for Oxygen Evolution in Acidic Media. ChemElectroChem, 2015, 2, 1929-1937.	1.7	90
879	Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2154-2161.	0.8	33
881	Engineering Nanoporous Iron(III) Oxide into an Effective Water Oxidation Electrode. ChemCatChem, 2015, 7, 2455-2459.	1.8	28
882	Homogenous Core–Shell Nitrogenâ€Doped Carbon Nanotubes for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1892-1896.	1.7	4
883	Revisiting Metal Sulfide Semiconductors: A Solutionâ€Based General Protocol for Thin Film Formation, Hall Effect Measurement, and Application Prospects. Advanced Functional Materials, 2015, 25, 5739-5747.	7.8	70
884	Palladiumâ€Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions. Advanced Materials, 2015, 27, 7025-7042.	11.1	115
885	Ultrasmall Co ₃ O ₄ Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. Advanced Materials Interfaces, 2015, 2, 1500358.	1.9	30
886	Superior Bifunctional Electrocatalytic Activity of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€Î} /Carbon Composite Electrodes: Insight into the Local Electronic Structure. Advanced Energy Materials, 2015, 5, 1402033.	10.2	102
888	Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 9654-9658.	7.2	372
889	Conductivityâ€Dependent Completion of Oxygen Reduction on Oxide Catalysts. Angewandte Chemie - International Edition, 2015, 54, 15730-15733.	7.2	62
890	Co ₃ O ₄ –MnO ₂ –CNT Hybrids Synthesized by HNO ₃ Vapor Oxidation of Catalytically Grown CNTs as OER Electrocatalysts. ChemCatChem, 2015, 7, 3027-3035.	1.8	38
891	Hierarchical ZnCo ₂ O ₄ @NiCo ₂ O ₄ Core–Sheath Nanowires: Bifunctionality towards Highâ€Performance Supercapacitors and the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2015, 21, 10100-10108.	1.7	119
892	Direct Synthesis of Phosphorusâ€Doped Mesoporous Carbon Materials for Efficient Electrocatalytic Oxygen Reduction. ChemCatChem, 2015, 7, 2903-2909.	1.8	65
893	Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. ChemCatChem, 2015, 7, 2788-2805.	1.8	83

#	Article	IF	CITATIONS
894	Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 982-987.	1.7	46
895	Atomic Layer Deposition of Hafnium(IV) Oxide on Graphene Oxide: Probing Interfacial Chemistry and Nucleation by using Xâ€ray Absorption and Photoelectron Spectroscopies. ChemPhysChem, 2015, 16, 2842-2848.	1.0	7
896	A Discussion on the Activity Origin in Metalâ€Free Nitrogenâ€Đoped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem, 2015, 8, 2772-2788.	3.6	111
897	Nanoparticle in Nanocage: Au@Porous Pt Yolkâ€Shell Nanoelectrocatalysts. Particle and Particle Systems Characterization, 2015, 32, 863-868.	1.2	38
898	Facile Synthesis of Au Nanoparticles Embedded in an Ultrathin Hollow Graphene Nanoshell with Robust Catalytic Performance. Small, 2015, 11, 5059-5064.	5.2	69
899	Popping of Graphite Oxide: Application in Preparing Metal Nanoparticle Catalysts. Advanced Materials, 2015, 27, 4688-4694.	11.1	48
900	Engineering of Carbonâ€Based Electrocatalysts for Emerging Energy Conversion: From Fundamentality to Functionality. Advanced Materials, 2015, 27, 5372-5378.	11,1	246
901	From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Advanced Materials, 2015, 27, 5010-5016.	11.1	1,224
902	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 8179-8183.	7.2	544
903	Coordination Chemistry of [Co(acac) ₂] with Nâ€Doped Graphene: Implications for Oxygen Reduction Reaction Reactivity of Organometallic Coâ€O ₄ â€N Species. Angewandte Chemie - International Edition, 2015, 54, 12622-12626.	7.2	93
904	Evaluation of Biogenic Characteristics of Iron Nanoparticles and Its Alloys in Vitro. Modern Applied Science, 2015, 9, .	0.4	1
905	Positive Effect of Heat Treatment on Carbon-Supported CoS Nanocatalysts for Oxygen Reduction Reaction. Catalysts, 2015, 5, 1211-1220.	1.6	9
906	Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping. Energies, 2015, 8, 8145-8164.	1.6	15
907	Synthesis and Ethanol Sensing Properties of Novel Hierarchical Sn ₃ O ₄ Nanoflowers. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	9
908	Ultrathin porous Co ₃ O ₄ nanoplates as highly efficient oxygen evolution catalysts. Journal of Materials Chemistry A, 2015, 3, 8107-8114.	5.2	95
909	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	5.5	420
910	Enhanced Oxygen Reduction Reaction Activity Due to Electronic Effects between Ag and Mn ₃ O ₄ in Alkaline Media. ACS Catalysis, 2015, 5, 3995-4002.	5.5	115
911	Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Solution. ACS Applied Materials & Solution. ACS Applied Materials & Solution.	4.0	151

#	Article	IF	CITATIONS
912	Facile synthesis of Pd nanostructures in hexagonal mesophases as a promising electrocatalyst for ethanol oxidation. Journal of Materials Chemistry A, 2015, 3, 9517-9527.	5.2	55
913	Rapid Synthesis and Efficient Electrocatalytic Oxygen Reduction/Evolution Reaction of CoMn ₂ O ₄ Nanodots Supported on Graphene. Inorganic Chemistry, 2015, 54, 5467-5474.	1.9	117
914	Metallic WO ₂ –Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 6983-6986.	6.6	470
915	Low Temperature Vacuum Synthesis of Triangular CoO Nanocrystal/Graphene Nanosheets Composites with Enhanced Lithium Storage Capacity. Scientific Reports, 2015, 5, 10017.	1.6	47
916	Preparation of Metal Oxide Nanofilms Using Graphene Oxide as a Template. Journal of Physical Chemistry C, 2015, 119, 12445-12454.	1.5	33
917	Antimony-doped graphene nanoplatelets. Nature Communications, 2015, 6, 7123.	5.8	77
918	Interconnected core–shell carbon nanotube–graphene nanoribbon scaffolds for anchoring cobalt oxides as bifunctional electrocatalysts for oxygen evolution and reduction. Journal of Materials Chemistry A, 2015, 3, 13371-13376.	5.2	51
919	Controllable synthesis of porous iron–nitrogen–carbon nanofibers with enhanced oxygen reduction electrocatalysis in acidic medium. RSC Advances, 2015, 5, 50324-50327.	1.7	3
920	Pristine graphene dispersion in solvents and its application as a catalyst support: a combined theoretical and experimental study. Journal of Materials Chemistry A, 2015, 3, 6282-6285.	5.2	26
921	Nitrogen and fluorine dual-doped mesoporous graphene: a high-performance metal-free ORR electrocatalyst with a super-low HO ₂ ^{â^'} yield. Nanoscale, 2015, 7, 10584-10589.	2.8	94
922	Carbon nanotube/S–N–C nanohybrids as high performance bifunctional electrocatalysts for both oxygen reduction and evolution reactions. New Journal of Chemistry, 2015, 39, 6289-6296.	1.4	32
923	Converting waste paper to multifunctional graphene-decorated carbon paper: from trash to treasure. Journal of Materials Chemistry A, 2015, 3, 13926-13932.	5.2	34
924	Hierarchically Porous Ni3S2 Nanorod Array Foam as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction and Oxygen Evolution Reaction. Electrochimica Acta, 2015, 174, 297-301.	2.6	316
925	Dual-site polydopamine spheres/CoFe layered double hydroxides for electrocatalytic oxygen reduction reaction. Electrochimica Acta, 2015, 170, 248-255.	2.6	31
926	Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nature Communications, 2015, 6, 7345.	5.8	500
927	Covalent Cobalt Porphyrin Framework on Multiwalled Carbon Nanotubes for Efficient Water Oxidation at Low Overpotential. Chemistry of Materials, 2015, 27, 4586-4593.	3.2	108
928	An Effective Way to Optimize the Functionality of Graphene-Based Nanocomposite: Use of the Colloidal Mixture of Graphene and Inorganic Nanosheets. Scientific Reports, 2015, 5, 11057.	1.6	40
929	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.	1.0	0

#	Article	IF	CITATIONS
930	Photofunctional Layered Materials. Structure and Bonding, 2015, , .	1.0	10
931	Naturally derived porous carbon with selective metal- and/or nitrogen-doping for efficient CO ₂ capture and oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5212-5222.	5.2	65
932	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463.	1.7	7
933	NiCoO2 nanowires grown on carbon fiber paper for highly efficient water oxidation. Electrochimica Acta, 2015, 174, 246-253.	2.6	90
934	Efficient Electrocatalytic Water Oxidation by Using Amorphous Ni–Co Double Hydroxides Nanocages. Advanced Energy Materials, 2015, 5, 1401880.	10.2	307
935	Graphene Oxide., 2015, , .		91
936	GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127.		0
937	Co ₃ O ₄ nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Advances, 2015, 5, 49385-49391.	1.7	32
938	(Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chemical Communications, 2015, 51, 10479-10482.	2.2	116
939	pH Effect on Electrochemistry of Nitrogen-Doped Carbon Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 4325-4332.	5.5	142
940	Enhanced Cycling Stability of Hybrid Li–Air Batteries Enabled by Ordered Pd ₃ Fe Intermetallic Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7278-7281.	6.6	149
941	Nitrogen and Phosphorus Dual-Doped Graphene/Carbon Nanosheets as Bifunctional Electrocatalysts for Oxygen Reduction and Evolution. ACS Catalysis, 2015, 5, 4133-4142.	5. 5	620
942	In situ synthesis of ordered mesoporous Co-doped TiO ₂ and its enhanced photocatalytic activity and selectivity for the reduction of CO ₂ . Journal of Materials Chemistry A, 2015, 3, 9491-9501.	5.2	155
943	Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment. Bioprocess and Biosystems Engineering, 2015, 38, 1671-1683.	1.7	24
944	A facile nanocasting strategy to nitrogen-doped porous carbon monolith by treatment with ammonia for efficient oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 12836-12844.	5.2	44
945	Reduced Graphene Oxide Supported CoO/MnO 2 Electrocatalysts from Layered Double Hydroxides for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 173, 575-580.	2.6	50
946	Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction. Scientific Reports, 2015, 5, 10389.	1.6	77
947	Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. Journal of Materials Chemistry A, 2015, 3, 18753-18808.	5.2	563

#	Article	IF	CITATIONS
948	Graphitic Carbon Nitride/Graphene Hybrids as New Active Materials for Energy Conversion and Storage. ChemNanoMat, 2015, 1, 298-318.	1.5	117
949	Influence of Carbon Precursors on the Structure, Composition, and Oxygen Reduction Reaction Performance of Nitrogen-Doped Carbon Materials. Journal of Physical Chemistry C, 2015, 119, 28757-28765.	1.5	45
950	Solvothermal synthesis of a dendritic TiN _x O _y nanostructure for oxygen reduction reaction electrocatalysis. RSC Advances, 2015, 5, 106439-106443.	1.7	9
951	Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chinese Journal of Catalysis, 2015, 36, 2049-2070.	6.9	458
952	Comprehensive Study of an Earth-Abundant Bifunctional 3D Electrode for Efficient Water Electrolysis in Alkaline Medium. ACS Applied Materials & Electrolysis in Alkaline Medium.	4.0	36
953	Hierarchical 3D ZnIn ₂ S ₄ /graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 31850-31861.	1.3	57
954	Cobalt sulfide/N,S codoped porous carbon core–shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale, 2015, 7, 20674-20684.	2.8	269
955	Three-dimensional architectures constructed using two-dimensional nanosheets. Science China Chemistry, 2015, 58, 1792-1799.	4.2	19
956	Microwave-assisted synthesis of Co3O4–graphene sheet-on-sheet nanocomposites and electrochemical performances for lithium ion batteries. Materials Research Bulletin, 2015, 72, 43-49.	2.7	30
957	Remarkable performance of heavily nitrogenated graphene in the oxygen reduction reaction of fuel cells in alkaline medium. Materials Research Express, 2015, 2, 095503.	0.8	7
958	A tungsten carbide/iron sulfide/FePt nanocomposite supported on nitrogen-doped carbon as an efficient electrocatalyst for oxygen reduction reaction. RSC Advances, 2015, 5, 106245-106251.	1.7	21
959	Graphene Oxide: A Fertile Nanosheet for Various Applications. Journal of the Physical Society of Japan, 2015, 84, 121012.	0.7	22
960	Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction. Applied Surface Science, 2015, 354, 221-228.	3.1	74
961	Cheap carbon black-based high-performance electrocatalysts for oxygen reduction reaction. Chemical Communications, 2015, 51, 1972-1975.	2.2	55
962	Graphene Oxide Supported Molybdenum Cluster: First Heterogenized Homogeneous Catalyst for the Synthesis of Dimethylcarbonate from CO 2 and Methanol. Chemistry - A European Journal, 2015, 21, 3488-3494.	1.7	39
963	Transition-Metal Doping of Oxide Nanocrystals for Enhanced Catalytic Oxygen Evolution. Journal of Physical Chemistry C, 2015, 119, 1921-1927.	1.5	96
964	Preparation of layered graphitic carbon nitride/montmorillonite nanohybrids for improving thermal stability of sodium alginate nanocomposites. RSC Advances, 2015, 5, 11761-11765.	1.7	10
965	Graphene-Co3O4 nanocomposite as electrocatalyst with high performance for oxygen evolution reaction. Scientific Reports, 2015, 5, 7629.	1.6	234

#	Article	IF	CITATIONS
966	Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction. Functional Materials Letters, 2015, 08, 1540005.	0.7	5
967	Diagnosis of the measurement inconsistencies of carbon-based electrocatalysts for the oxygen reduction reaction in alkaline media. RSC Advances, 2015, 5, 1571-1580.	1.7	42
968	N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.	5.4	145
969	Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy, 2015, 12, 1-8.	8.2	210
970	Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 544-549.	3.2	95
971	Mesoporous nitrogen-doped carbon derived from carp with high electrocatalytic performance for oxygen reduction reaction. Journal of Power Sources, 2015, 278, 213-217.	4.0	26
972	Electrophoretic deposition improves catalytic performance of Co ₃ O ₄ nanoparticles for oxygen reduction/oxygen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 4274-4283.	5.2	70
973	Covalent Entrapment of Cobalt–Iron Sulfides in N-Doped Mesoporous Carbon: Extraordinary Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Amp; Interfaces, 2015, 7, 1207-1218.	4.0	281
975	A hybrid catalyst composed of reduced graphene oxide/Cu ₂ S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Advances, 2015, 5, 9075-9078.	1.7	16
976	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	4.0	112
977	Co-calcination-derived Pd budded in N-Doped Ordered Mesoporous Graphitic Carbon Nanospheres for Advanced Methanol-tolerant Oxygen Reduction. Electrochimica Acta, 2015, 160, 306-312.	2.6	17
978	An Efficient Bi-functional Electrocatalyst Based on Strongly Coupled CoFe 2 O 4 /Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution. Electrochimica Acta, 2015, 177, 65-72.	2.6	92
979	Nitrogen and Sulfur Dual-Doped Reduced Graphene Oxide: Synergistic Effect of Dopants Towards Oxygen Reduction Reaction. Electrochimica Acta, 2015, 163, 16-23.	2.6	147
980	B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4, 5184.	1.6	68
981	Cobalt-Embedded Nitrogen Doped Carbon Nanotubes: A Bifunctional Catalyst for Oxygen Electrode Reactions in a Wide pH Range. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4048-4055.	4.0	156
982	One-step and rapid synthesis of nitrogen and sulfur co-doped graphene for hydrogen peroxide and glucose sensing. Journal of Electroanalytical Chemistry, 2015, 742, 8-14.	1.9	53
983	Design of N-graphene-NbOx hybrid nanosheets with sandwich-like structure and electrocatalytic performance towards oxygen reduction reaction. Electrochimica Acta, 2015, 158, 42-48.	2.6	7
984	A facile approach to synthesize stable CNTs@MnO electrocatalyst for high energy lithium oxygen batteries. Scientific Reports, 2015, 5, 8012.	1.6	34

#	Article	IF	CITATIONS
985	Facet-Dependent Electrocatalytic Performance of Co ₃ O ₄ for Rechargeable Li–O ₂ Battery. Journal of Physical Chemistry C, 2015, 119, 4516-4523.	1.5	99
986	CuCo ₂ O ₄ ORR/OER Bi-Functional Catalyst: Influence of Synthetic Approach on Performance. Journal of the Electrochemical Society, 2015, 162, F449-F454.	1.3	104
987	Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy, 2015, 12, 578-587.	8.2	76
988	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
989	Yeast Cells-Derived Hollow Core/Shell Heteroatom-Doped Carbon Microparticles for Sustainable Electrocatalysis. ACS Applied Materials & Interfaces, 2015, 7, 1978-1986.	4.0	49
990	Cobalt Oxide-Carbon Nanosheet Nanoarchitecture as an Anode for High-Performance Lithium-Ion Battery. ACS Applied Materials & Amp; Interfaces, 2015, 7, 2882-2890.	4.0	101
991	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>j^'</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	7.2	400
992	Paperâ€Based Nâ€Doped Carbon Films for Enhanced Oxygen Evolution Electrocatalysis. Advanced Science, 2015, 2, 1400015.	5.6	67
993	In situ Cobalt–Cobalt Oxide/N-Doped Carbon Hybrids As Superior Bifunctional Electrocatalysts for Hydrogen and Oxygen Evolution. Journal of the American Chemical Society, 2015, 137, 2688-2694.	6.6	1,642
994	Electrocatalytic Oxygen Evolution at Surface-Oxidized Multiwall Carbon Nanotubes. Journal of the American Chemical Society, 2015, 137, 2901-2907.	6.6	495
995	Hollow mesoporous NiCo ₂ O ₄ nanocages as efficient electrocatalysts for oxygen evolution reaction. Dalton Transactions, 2015, 44, 4148-4154.	1.6	151
996	CuCo 2 O 4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. Journal of Power Sources, 2015, 281, 243-251.	4.0	243
997	N-doped carbon encapsulated Co3O4 nanoparticles as a synergistic catalyst for oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy, 2015, 40, 3875-3882.	3.8	24
998	Influence of annealing temperature on oxygen reduction activity of sputtered Co catalysts on vertically-aligned carbon nanotubes. Electrochimica Acta, 2015, 161, 72-79.	2.6	8
999	High-Performance Oxygen Redox Catalysis with Multifunctional Cobalt Oxide Nanochains: Morphology-Dependent Activity. ACS Catalysis, 2015, 5, 2017-2027.	5.5	249
1000	Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catalysis, 2015, 5, 1857-1862.	5.5	172
1001	A Superlattice of Alternately Stacked Ni–Fe Hydroxide Nanosheets and Graphene for Efficient Splitting of Water. ACS Nano, 2015, 9, 1977-1984.	7.3	635
1002	Porous graphene wrapped CoO nanoparticles for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2015, 3, 5402-5408.	5.2	79

#	Article	IF	CITATIONS
1003	A hybrid of holey graphene and Mn ₃ O ₄ and its oxygen reduction reaction performance. Chemical Communications, 2015, 51, 3911-3914.	2.2	52
1004	Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochimica Acta, 2015, 158, 264-270.	2.6	42
1005	High Surface Iron/Cobaltâ€Containing Nitrogenâ€Doped Carbon Aerogels as Nonâ€Precious Advanced Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2015, 2, 584-591.	1.7	63
1006	Hollow Mesoporous Carbon Cubes with High Activity towards the Electrocatalytic Reduction of Oxygen. ChemSusChem, 2015, 8, 623-627.	3.6	14
1007	Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction. Chemical Communications, 2015, 51, 3419-3422.	2.2	157
1008	One-step pyrolytic synthesis of small iron carbide nanoparticles/3D porous nitrogen-rich graphene for efficient electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 4976-4982.	5.2	48
1009	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	1.6	80
1010	Modifying candle soot with FeP nanoparticles into high-performance and cost-effective catalysts for the electrocatalytic hydrogen evolution reaction. Nanoscale, 2015, 7, 4400-4405.	2.8	83
1011	Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale, 2015, 7, 6991-6998.	2.8	58
1012	N-doped graphene quantum sheets on silicon nanowire photocathodes for hydrogen production. Energy and Environmental Science, 2015, 8, 1329-1338.	15.6	136
1013	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	3.2	219
1014	Earth-Abundant Copper-Based Bifunctional Electrocatalyst for Both Catalytic Hydrogen Production and Water Oxidation. ACS Catalysis, 2015, 5, 1530-1538.	5 . 5	150
1015	Co ₃ O ₄ Hollow Nanoparticles and Co Organic Complexes Highly Dispersed on Nâ€Doped Graphene: An Efficient Cathode Catalyst for Liâ€O ₂ Batteries. Particle and Particle Systems Characterization, 2015, 32, 680-685.	1.2	36
1016	Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5617-5627.	5.2	32
1017	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	18.7	1,858
1018	CMK3/graphene-N-Co – a low-cost and high-performance catalytic system. Journal of Materials Chemistry A, 2015, 3, 2978-2984.	5.2	22
1019	The anion effect on the oxygen reduction of MnX ($X = O$, S , and Se) catalysts. Journal of Materials Chemistry A, 2015, 3, 3425-3431.	5.2	34
1020	Microwave-assisted Synthesis of Mesoporous Co ₃ O ₄ Nanoflakes for Applications in Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Lithium Ion Batteries &	4.0	169

#	Article	IF	CITATIONS
1021	CuO nanoparticles on sulfur-doped graphene for nonenzymatic glucose sensing. Electrochimica Acta, 2015, 156, 244-251.	2.6	119
1022	Preciousâ€Metalâ€Free Co–Fe–O/rGO Synergetic Electrocatalysts for Oxygen Evolution Reaction by a Facile Hydrothermal Route. ChemSusChem, 2015, 8, 659-664.	3.6	71
1023	Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 2583-2588.	1.5	150
1024	Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide. Nano Research, 2015, 8, 546-553.	5.8	17
1025	Organoamine-Functionalized Graphene Oxide as a Bifunctional Carbocatalyst with Remarkable Acceleration in a One-Pot Multistep Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1669-1677.	4.0	49
1026	An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications, 2015, 6, 5716.	5.8	377
1027	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	7. 3	275
1028	Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability. Journal of Alloys and Compounds, 2015, 628, 364-371.	2.8	14
1029	Three-dimensional graphene–Co ₃ O ₄ cathodes for rechargeable Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 1504-1510.	5.2	93
1030	Dualâ€Carbon Network for the Effective Transport of Charged Species in a LiFePO ₄ Cathode for Lithiumâ€lon Batteries. Energy Technology, 2015, 3, 63-69.	1.8	11
1031	Properties of Pyrolyzed Carbon-Supported Cobalt-Polypyrrole as Electrocatalyst toward Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2015, 162, F359-F365.	1.3	11
1032	Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS ₂ Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 1587-1592.	6.6	800
1033	Control of the Oxygen and Cobalt Atoms Diffusion through Co Nanoparticles Differing by Their Crystalline Structure and Size. Advanced Functional Materials, 2015, 25, 891-897.	7.8	34
1034	Hybrid Graphene–Giant Nanocrystal Quantum Dot Assemblies with Highly Efficient Biexciton Emission. Advanced Optical Materials, 2015, 3, 39-43.	3.6	21
1035	Ni ³⁺ â€Induced Formation of Active NiOOH on the Spinel Ni–Co Oxide Surface for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500091.	10.2	408
1036	Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chemical Communications, 2015, 51, 5951-5954.	2.2	84
1037	Carbon Nitride in Energy Conversion and Storage: Recent Advances and Future Prospects. ChemSusChem, 2015, 8, 931-946.	3.6	195
1038	N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. Nanoscale, 2015, 7, 5607-5611.	2.8	53

#	Article	IF	CITATIONS
1039	Advanced non-precious electrocatalyst of the mixed valence CoO x nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China Chemistry, 2015, 58, 180-186.	4.2	17
1040	Cobalt oxide/nanocarbon hybrid materials as alternative cathode catalyst for oxygen reduction in microbial fuel cell. International Journal of Hydrogen Energy, 2015, 40, 3868-3874.	3.8	93
1041	A Metalâ€Free, Freeâ€Standing, Macroporous Graphene@gâ€C ₃ N ₄ Composite Air Electrode for Highâ€Energy Lithium Oxygen Batteries. Small, 2015, 11, 2817-2824.	5.2	157
1042	Platinum nanoparticles functionalized nitrogen doped graphene platform for sensitive electrochemical glucose biosensing. Analytica Chimica Acta, 2015, 871, 35-42.	2.6	50
1043	Nitrogen-doped carbon shell structure derived from natural leaves as a potential catalyst for oxygen reduction reaction. Nano Energy, 2015, 13, 518-526.	8.2	132
1044	Macroscopic, Freestanding, and Tubular Graphene Architectures Fabricated <i>via</i> Thermal Annealing. ACS Nano, 2015, 9, 3206-3214.	7.3	26
1045	Copper–silver oxide nanowires grown on an alloy electrode as an efficient electrocatalyst for water oxidation. RSC Advances, 2015, 5, 26150-26156.	1.7	10
1046	Fast and Simple Preparation of Ironâ€Based Thin Films as Highly Efficient Waterâ€Oxidation Catalysts in Neutral Aqueous Solution. Angewandte Chemie - International Edition, 2015, 54, 4870-4875.	7.2	256
1047	Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon, 2015, 85, 279-288.	5.4	91
1048	Rational design of mesoporous NiFe-alloy-based hybrids for oxygen conversion electrocatalysis. Journal of Materials Chemistry A, 2015, 3, 7986-7993.	5.2	95
1049	From Water Oxidation to Reduction: Homologous Ni–Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Advanced Energy Materials, 2015, 5, 1402031.	10.2	448
1050	A general strategy for the synthesis of reduced graphene oxide-based composites. Ceramics International, 2015, 41, 7661-7668.	2.3	3
1051	Atomic Scale Analysis of the Enhanced Electro- and Photo-Catalytic Activity in High-Index Faceted Porous NiO Nanowires. Scientific Reports, 2015, 5, 8557.	1.6	12
1052	Component-Controlled Synthesis and Assembly of Cu–Pd Nanocrystals on Graphene for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5347-5357.	4.0	60
1053	Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. Journal of Power Sources, 2015, 283, 389-396.	4.0	79
1054	PtSn nanoparticles supported on iron nanoparticles wrapped inside nitrogen-doped carbon for ethanol oxidation. lonics, 2015, 21, 1703-1709.	1.2	12
1055	A Universal Photochemical Approach to Ultraâ€Small, Wellâ€Dispersed Nanoparticle/Reduced Graphene Oxide Hybrids with Enhanced Nonlinear Optical Properties. Advanced Optical Materials, 2015, 3, 836-841.	3.6	31
1056	Perovskite–Nitrogenâ€Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium–Air Batteries. ChemSusChem, 2015, 8, 1058-1065.	3.6	92

#	Article	IF	CITATIONS
1057	Interwoven Three-Dimensional Architecture of Cobalt Oxide Nanobrush-Graphene@Ni _{<i>x</i>} Co _{2<i>x</i>} (OH) _{6<i>x</i>} for High-Performance Supercapacitors. Nano Letters, 2015, 15, 2037-2044.	4.5	134
1058	Surfactant Effects on the Morphology and Pseudocapacitive Behavior of V ₂ O ₅ â <h<sub>2O. ChemSusChem, 2015, 8, 2399-2406.</h<sub>	3.6	44
1059	Fabrication of spinel ferrite based alkaline anion exchange membrane water electrolysers for hydrogen production. RSC Advances, 2015, 5, 34100-34108.	1.7	53
1060	Effect of boron–nitrogen bonding on oxygen reduction reaction activity of BN Co-doped activated porous carbons. RSC Advances, 2015, 5, 24661-24669.	1.7	39
1061	Enhanced electrocatalytic activity of PANI and CoFe 2 O 4 /PANI composite supported on graphene for fuel cell applications. Journal of Power Sources, 2015, 284, 383-391.	4.0	47
1062	Behavior of borate complex anion on the stabilities and the hydrogen evolutions of ZnxCo3â^'xO4 decorated graphene. Superlattices and Microstructures, 2015, 82, 599-611.	1.4	20
1063	High stability and reactivity of defective graphene-supported Fe n Pt13 \hat{a} n (n \hat{A} = \hat{A} 1, 2, and 3) nanoparticles for oxygen reduction reaction: a theoretical study. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	9
1064	Nanostructured Carbon Materials for Energy Conversion and Storage. RSC Catalysis Series, 2015, , 445-506.	0.1	O
1065	Electrochemiluminescence modified electrodes based on RuSi@Ru(bpy)32+ loaded with gold functioned nanoporous CO/Co3O4 for detection of mycotoxin deoxynivalenol. Biosensors and Bioelectronics, 2015, 70, 28-33.	5.3	29
1066	Electrochemically induced surface modifications of mesoporous spinels (Co3O4â^î, MnCo2O4â^î, Tj ETQq1 1 Chemistry A, 2015, 3, 17433-17444.	0.784314 5.2	rgBT Overlo 85
1067	Carbon-Supported Spinel Nanoparticle MnCo2O4 as a Cathode Catalyst towards Oxygen Reduction Reaction in Dual-Chamber Microbial Fuel Cell. Australian Journal of Chemistry, 2015, 68, 987.	0.5	14
1068	<i>In Situ</i> Self-Sacrificed Template Synthesis of Fe-N/G Catalysts for Enhanced Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18170-18178.	4.0	56
1069	A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. Journal of Materials Chemistry A, 2015, 3, 17866-17873.	5.2	20
1070	Probing the influence of the center atom coordination structure in iron phthalocyanine multi-walled carbon nanotube-based oxygen reduction reaction catalysts by X-ray absorption fine structure spectroscopy. Journal of Power Sources, 2015, 291, 20-28.	4.0	46
1071	Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale, 2015, 7, 14707-14714.	2.8	29
1072	Cobalt modified two-dimensional polypyrrole synthesized in a flat nanoreactor for the catalysis of oxygen reduction. Chemical Engineering Science, 2015, 135, 45-51.	1.9	27
1073	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015, 5, 5207-5234.	5.5	800
1074	In situ synthesis of mesoporous manganese oxide/sulfur-doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions. Carbon, 2015, 94, 1028-1036.	5.4	72

#	Article	IF	CITATIONS
1075	Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy, 2015, 16, 488-515.	8.2	518
1076	Facile synthesis of mesoporous ZnCo2O4 coated with polypyrrole as an anode material for lithium-ion batteries. Journal of Power Sources, 2015, 296, 298-304.	4.0	91
1077	Solution-Processed CoFe ₂ O ₄ Nanoparticles on 3D Carbon Fiber Papers for Durable Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17851-17856.	4.0	126
1078	Efficient oxygen reduction reaction using mesoporous Ni-doped Co ₃ O ₄ nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379.	5.2	54
1079	Amorphous Nickel Hydroxide Nanosheets with Ultrahigh Activity and Super-Long-Term Cycle Stability as Advanced Water Oxidation Catalysts. Crystal Growth and Design, 2015, 15, 4475-4483.	1.4	51
1080	Two-Dimensional Mesoporous Cobalt Sulfide Nanosheets as a Superior Anode for a Li-Ion Battery and a Bifunctional Electrocatalyst for the Li–O ₂ System. Chemistry of Materials, 2015, 27, 5726-5735.	3.2	133
1081	SrCo _{0.9} Ti _{0.1} O _{3â^Î} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17663-17670.	4.0	125
1082	M ₃ C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Nano, 2015, 9, 7407-7418.	7.3	445
1083	A green and facile method toward synthesis of waste paper-derived 3D functional porous graphene via in situ activation of cobalt(<scp>ii</scp>). Journal of Materials Chemistry A, 2015, 3, 16072-16078.	5.2	28
1084	Cobalt, nitrogen-codoped carbon quantum dots as a synergistic catalyst for oxygen reduction reaction. Green Processing and Synthesis, 2015, 4, .	1.3	1
1085	N-, P- and S-tridoped graphene as metal-free electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2015, 753, 21-27.	1.9	67
1086	Modified template synthesis and electrochemical performance of a Co ₃ O ₄ /mesoporous cathode for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 16132-16141.	5.2	31
1087	In Situ-Generated Co ^O -Co ₃ O ₄ /N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 4783-4789.	5.5	363
1088	One-step preparation of N-doped graphene/Co nanocomposite as an advanced oxygen reduction electrocatalyst. Electrochimica Acta, 2015, 176, 280-284.	2.6	33
1089	Highly Dispersed Ag-Functionalized Graphene Electrocatalyst for Oxygen Reduction Reaction in Energy-Saving Electrolysis of Sodium Carbonate. Industrial & Engineering Chemistry Research, 2015, 54, 7415-7422.	1.8	24
1090	Porphyrin-based graphene oxide frameworks with ultra-large d-spacings for the electrocatalyzation of oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 19538-19545.	1.3	37
1091	Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 16348-16353.	5.2	209
1092	Nickel oxide nanosheets array grown on carbon cloth as a high-performance three-dimensional oxygen evolution electrode. International Journal of Hydrogen Energy, 2015, 40, 9866-9871.	3.8	64

#	Article	IF	CITATIONS
1093	Application of GO in Energy Conversion and Storage. SpringerBriefs in Physics, 2015, , 79-118.	0.2	0
1094	The addition of ortho-hexagon nano spinel Co 3 O 4 to improve the performance of activated carbon air cathode microbial fuel cell. Bioresource Technology, 2015, 195, 180-187.	4.8	88
1095	Multifunctional Iron Oxide Nanoflake/Graphene Composites Derived from Mechanochemical Synthesis for Enhanced Lithium Storage and Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14446-14455.	4.0	75
1096	High catalytic activity for water oxidation based on nanostructured nickel phosphide precursors. Chemical Communications, 2015, 51, 11626-11629.	2.2	182
1097	General synthesis of binary PtM and ternary PtM ₁ M ₂ alloy nanoparticles on graphene as advanced electrocatalysts for methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 15882-15888.	5.2	31
1098	Synthesis of Co3O4 Cotton-Like Nanostructures for Cholesterol Biosensor. Materials, 2015, 8, 149-161.	1.3	18
1099	Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction. Scientific Reports, 2015, 5, 11739.	1.6	22
1100	Binary transition metal nitrides with enhanced activity and durability for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 16801-16809.	5.2	115
1101	In-Situ Generation of Oxide Nanowire Arrays from AgCuZn Alloy Sulfide with Enhanced Electrochemical Oxygen-Evolving Performance. ACS Applied Materials & Diterfaces, 2015, 7, 17112-17121.	4.0	24
1102	Active Sites of Au and Ag Nanoparticle Catalysts for CO ₂ Electroreduction to CO. ACS Catalysis, 2015, 5, 5089-5096.	5.5	434
1103	Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B: Chemical, 2015, 221, 1170-1181.	4.0	582
1104	Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction. Science China Materials, 2015, 58, 534-542.	3. 5	30
1105	An optimized mild reduction route towards excellent cobalt–graphene catalysts for water oxidation. RSC Advances, 2015, 5, 64858-64864.	1.7	2
1106	MOF derived Co ₃ O ₄ nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 2015, 3, 17392-17402.	5.2	351
1107	Three-dimensional porous carbon nanofiber networks decorated with cobalt-based nanoparticles: A robust electrocatalyst for efficient water oxidation. Carbon, 2015, 94, 680-686.	5.4	28
1108	Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni ₂ P cocatalysts. Energy and Environmental Science, 2015, 8, 2668-2676.	15.6	519
1109	A Co/metal–organic-framework bifunctional electrocatalyst: The effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte. International Journal of Hydrogen Energy, 2015, 40, 9713-9722.	3.8	109
1110	Co3O4/nitrogen-doped graphene/carbon nanotubes: An innovative ternary composite with enhanced electrochemical performance. Journal of Alloys and Compounds, 2015, 647, 873-879.	2.8	43

#	Article	IF	CITATIONS
1111	In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. ACS Central Science, 2015, 1, 244-251.	5. 3	373
1112	Morphology-tunable ultrafine metal oxide nanostructures uniformly grown on graphene and their applications in the photo-Fenton system. Nanoscale, 2015, 7, 14254-14263.	2.8	65
1113	Porous cobalt–nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions. Journal of Materials Chemistry A, 2015, 3, 16419-16423.	5.2	29
1114	Synthesis and X-ray Characterization of Cobalt Phosphide (Co ₂ P) Nanorods for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 8108-8115.	7.3	132
1115	Kinetic Study of the Oxygen Reduction Reaction on α-Ni(OH)2and α-Ni(OH)2Supported on Graphene Oxide. Journal of the Electrochemical Society, 2015, 162, H571-H578.	1.3	19
1116	Enhanced activity and stability of binuclear iron (III) phthalocyanine on graphene nanosheets for electrocatalytic oxygen reduction in acid. Journal of Power Sources, 2015, 293, 511-518.	4.0	54
1117	Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. Journal of Power Sources, 2015, 294, 103-111.	4.0	174
1118	From Hemoglobin to Porous N–S–Fe-Doped Carbon for Efficient Oxygen Electroreduction. Journal of Physical Chemistry C, 2015, 119, 13545-13550.	1.5	26
1119	Luminomagnetic bifunctionality of Mn2+-bonded graphene oxide/reduced graphene oxide two dimensional nanosheets. Nanoscale, 2015, 7, 12498-12509.	2.8	7
1120	An efficiently tuned d-orbital occupation of IrO ₂ by doping with Cu for enhancing the oxygen evolution reaction activity. Chemical Science, 2015, 6, 4993-4999.	3.7	208
1121	Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2015, 3, 14188-14194.	5.2	72
1122	Microwave-Assisted Synthesis of Co-Coordinated Hollow Mesoporous Carbon Cubes for Oxygen Reduction Reactions. Langmuir, 2015, 31, 7644-7651.	1.6	15
1123	Adsorption and Activation of CO on Co ₃ O ₄ (111) Thin Films. Journal of Physical Chemistry C, 2015, 119, 16688-16699.	1.5	72
1124	Electrochemical route for accessing amorphous mixed-metal hydroxide nanospheres and magnetism. RSC Advances, 2015, 5, 45359-45367.	1.7	13
1125	Spinel LiMn 2 O 4 nanoparticles dispersed on nitrogen-doped reduced graphene oxide nanosheets as an efficient electrocatalyst for aluminium-air battery. International Journal of Hydrogen Energy, 2015, 40, 9225-9234.	3.8	51
1126	Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015, 5, 4643-4667.	5.5	1,022
1128	Noble metal free naphthylbisimide/TiO ₂ /graphene: an efficient H ₂ evolution photocatalyst. New Journal of Chemistry, 2015, 39, 6925-6934.	1.4	6
1129	Incorporated oxygen in MoS ₂ ultrathin nanosheets for efficient ORR catalysis. Journal of Materials Chemistry A, 2015, 3, 16050-16056.	5.2	91

#	Article	IF	CITATIONS
1130	Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor. Nanoscale, 2015, 7, 9731-9737.	2.8	10
1131	Polyethylenimine mediated silver nanoparticle-decorated magnetic graphene as a promising photothermal antibacterial agent. Nanotechnology, 2015, 26, 195703.	1.3	42
1132	Ultra-tiny Co(OH) < sub > 2 < /sub > particles supported on graphene oxide for highly efficient electrocatalytic water oxidation. RSC Advances, 2015, 5, 39075-39079.	1.7	23
1133	Ni Nano-particle Encapsulated in Hollow Carbon Sphere Electrocatalyst in Polymer Electrolyte Membrane Water Electrolyzer. Electrochimica Acta, 2015, 167, 429-438.	2.6	15
1134	A nanotubular framework with customized conductivity and porosity for efficient oxidation and reduction of water. Journal of Materials Chemistry A, 2015, 3, 11040-11047.	5.2	9
1135	Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co _{0.55} Mn _{0.45}) _{0.99} O _{3â^Î} nanorod/graphene hybrid in alkaline media. Nanoscale, 2015, 7, 9046-9054.	2.8	86
1136	Ba0.95La0.05FeO3â^âe"multi-layer graphene as a low-cost and synergistic catalyst for oxygen evolution reaction. Carbon, 2015, 90, 122-129.	5.4	29
1137	Template-free synthesis of hierarchical yolk-shell Co and N codoped porous carbon microspheres with enhanced performance for oxygen reduction reaction. Journal of Power Sources, 2015, 288, 128-135.	4.0	46
1138	Boron and nitrogen doped carbon nanotubes/Fe3O4 composite architectures with microwave absorption property. Ceramics International, 2015, 41, 8163-8170.	2.3	30
1139	Nitrogen doped mesoporous carbon derived from copolymer and supporting cobalt oxide for oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2015, 40, 6072-6084.	3.8	26
1140	Nitrogen, phosphorus and iron doped carbon nanospheres with high surface area and hierarchical porous structure for oxygen reduction. Journal of Power Sources, 2015, 288, 253-260.	4.0	55
1141	N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy, 2015, 40, 4531-4539.	3.8	55
1142	Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications. Journal of Alloys and Compounds, 2015, 644, 534-544.	2.8	87
1143	Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5414-5420.	6.6	364
1144	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	1.6	67
1145	In situ growth of capping-free magnetic iron oxide nanoparticles on liquid-phase exfoliated graphene. Nanoscale, 2015, 7, 8995-9003.	2.8	6
1146	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	3.2	117
1147	Designed Formation of Co ₃ O ₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. Journal of the American Chemical Society, 2015, 137, 5590-5595.	6.6	1,059

#	ARTICLE	IF	Citations
1148	Sulfur-doped graphene-supported Ag nanoparticles for nonenzymatic hydrogen peroxide detection. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	20
1149	MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 169, 142-149.	2.6	77
1150	Synthesis and Characterization of Co ₃ O ₄ /Multiwalled Carbon Nanotubes Nanocomposite for Amperometric Sensing of Hydrazine. Electroanalysis, 2015, 27, 1188-1194.	1.5	26
1151	Pyrolyzed cobalt porphyrin-modified carbon nanomaterial as an active catalyst for electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2015, 40, 6538-6545.	3.8	45
1152	Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors. Journal of Power Sources, 2015, 283, 251-259.	4.0	51
1153	Graphene-Based Composite Materials for Chemical Sensor Application. Nanoscience and Technology, 2015, , 65-101.	1.5	11
1154	Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy and Environmental Science, 2015, 8, 1719-1724.	15.6	167
1155	Optimized electrospinning synthesis of iron–nitrogen–carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium. Nanotechnology, 2015, 26, 165401.	1.3	11
1156	Gold-doped graphene: A highly stable and active electrocatalysts for the oxygen reduction reaction. Journal of Chemical Physics, 2015, 142, 154703.	1.2	31
1157	Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction. Journal of Power Sources, 2015, 290, 25-34.	4.0	72
1158	Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. RSC Advances, 2015, 5, 41307-41316.	1.7	40
1159	Carbon Nitrogen Nanotubes as Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 11991-12000.	4.0	120
1160	LixCo3-xO4 solid solution nanocrystals supported on carbon black as a superior electrocatalyst for oxygen reduction reaction. Materials Letters, 2015, 139, 447-450.	1.3	14
1161	Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Scientific Reports, 2015, 5, 9164.	1.6	119
1162	Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438-4462.	1.1	464
1163	Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis, 2015, 5, 2534-2540.	5.5	81
1164	Boron/Nitrogen Co-Doped Helically Unzipped Multiwalled Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7786-7794.	4.0	85
1165	Graphene-templated directional growth of an inorganic nanowire. Nature Nanotechnology, 2015, 10, 423-428.	15.6	75

#	Article	IF	CITATIONS
1166	Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochimica Acta, 2015, 162, 263-270.	2.6	132
1167	Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures. Scientific Reports, 2014, 4, 6712.	1.6	59
1168	Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7767-7772.	5.2	78
1170	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Science Advances, 2015, 1, e1400035.	4.7	144
1171	Porous and single crystalline Co3O4 nanospheres for pseudocapacitors with enhanced performance. RSC Advances, 2015, 5, 27266-27272.	1.7	7
1172	Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nature Communications, 2015, 6, 6616.	5.8	1,671
1173	An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chemical Communications, 2015, 51, 7516-7519.	2.2	107
1174	Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation. Scientific Reports, 2015, 5, 8939.	1.6	31
1175	Core–shell cobalt oxide mesoporous silica based efficient electro-catalyst for oxygen evolution. New Journal of Chemistry, 2015, 39, 5561-5569.	1.4	38
1176	One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 12718-12722.	5. 2	50
1177	The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium–air battery: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 14605-14612.	1.3	77
1178	Delineating the roles of Co ₃ O ₄ and N-doped carbon nanoweb (CNW) in bifunctional Co ₃ O ₄ /CNW catalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 11615-11623.	5. 2	91
1179	Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts. Advanced Energy Materials, 2015, 5, 1500149.	10.2	68
1180	Carbon for the oxygen reduction reaction: a defect mechanism. Journal of Materials Chemistry A, 2015, 3, 11736-11739.	5.2	261
1181	Constructing Fe ₂ O ₃ /TiO ₂ core–shell photoelectrodes for efficient photoelectrochemical water splitting. Nanoscale, 2015, 7, 10094-10100.	2.8	72
1182	Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane. Nanoscale, 2015, 7, 9715-9722.	2.8	38
1183	Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se. Journal of Materials Chemistry A, 2015, 3, 12810-12819.	5.2	124
1184	Ultrathin Spinelâ€Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 7399-7404.	7.2	1,118

#	Article	IF	CITATIONS
1185	Enhanced Activity and Stability of TiO ₂ -Coated Cobalt/Carbon Catalysts for Electrochemical Water Oxidation. ACS Catalysis, 2015, 5, 3463-3469.	5 . 5	48
1186	Probing the Interfacial Interaction in Layered-Carbon-Stabilized Iron Oxide Nanostructures: A Soft X-ray Spectroscopic Study. ACS Applied Materials & Interfaces, 2015, 7, 7863-7868.	4.0	23
1187	Trinary Layered Double Hydroxides as Highâ€Performance Bifunctional Materials for Oxygen Electrocatalysis. Advanced Energy Materials, 2015, 5, 1500245.	10.2	328
1188	Facile fabrication of sandwich-structured Co3O4/N-rGO/AB hybrid with enhanced ORR electrocatalytic performances for metal–air batteries. RSC Advances, 2015, 5, 9057-9063.	1.7	17
1189	Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn–air batteries. Chemical Communications, 2015, 51, 8841-8844.	2.2	104
1190	Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11725-11729.	5.2	79
1191	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
1192	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 9394-9398.	2.8	50
1193	A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale, 2015, 7, 10334-10339.	2.8	61
1194	Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2015, 51, 7851-7854.	2.2	195
1195	Reduced Graphene Oxideâ€Modified Carbon Nanotube/Polyimide Film Supported MoS ₂ Nanoparticles for Electrocatalytic Hydrogen Evolution. Advanced Functional Materials, 2015, 25, 2693-2700.	7.8	113
1196	High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells. Nanoscale, 2015, 7, 7644-7650.	2.8	66
1197	Meso/Macroporous Nitrogenâ€Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Advanced Materials, 2015, 27, 2521-2527.	11.1	521
1198	FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon, 2015, 92, 74-83.	5.4	137
1199	Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy, 2015, 13, 318-326.	8.2	62
1200	Cu/(Cu(OH) 2 -CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode. Electrochimica Acta, 2015, 163, 102-106.	2.6	101
1201	Three-Dimensional Nitrogen-Doped Graphene/MnO Nanoparticle Hybrids as a High-Performance Catalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 8032-8037.	1.5	92
1202	Phase Transformation Fabrication of a Cu ₂ S Nanoplate as an Efficient Catalyst for Water Oxidation with Glycine. Inorganic Chemistry, 2015, 54, 3281-3289.	1.9	102

#	Article	IF	CITATIONS
1203	Epitaxy-driven vertical growth of single-crystalline cobalt nanowire arrays by chemical vapor deposition. Journal of Materials Chemistry C, 2015, 3, 100-106.	2.7	26
1204	Bifunctional catalysts of Co3O4@GCN tubular nanostructured (TNS) hybrids for oxygen and hydrogen evolution reactions. Nano Research, 2015, 8, 3725-3736.	5.8	117
1205	One-pot synthesis of cobalt-coordinated N-doped carbon catalysts via co-synthesis of ionic liquids and cobalt porphyrins. Chemical Communications, 2015, 51, 16637-16640.	2.2	16
1206	Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2015, 300, 279-284.	4.0	68
1207	One-pot fabrication of yolk–shell structured La _{0.9} Sr _{0.1} CoO ₃ perovskite microspheres with enhanced catalytic activities for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2015, 3, 22448-22453.	5.2	70
1208	Effective Synergistic Effect of Dipeptide-Polyoxometalate-Graphene Oxide Ternary Hybrid Materials on Peroxidase-like Mimics with Enhanced Performance. ACS Applied Materials & Enterfaces, 2015, 7, 22036-22045.	4.0	90
1209	Oxygen reduction electrocatalysts based on spatially confined cobalt monoxide nanocrystals on holey N-doped carbon nanowires: the enlarged interfacial area for performance improvement. Journal of Materials Chemistry A, 2015, 3, 21647-21654.	5.2	17
1210	Electrocatalytic performances of N-doped graphene with anchored iridium species in oxygen reduction reaction. 2D Materials, 2015, 2, 034019.	2.0	20
1211	Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites. ACS Catalysis, 2015, 5, 6563-6572.	5.5	260
1212	Wire Up on Carbon Nanostructures! How To Play a Winning Game. ACS Nano, 2015, 9, 9441-9450.	7. 3	47
1213	Mesoporous Vertical Co ₃ O ₄ Nanosheet Arrays on Nitrogen-Doped Graphene Foam with Enhanced Charge-Storage Performance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22831-22838.	4.0	82
1214	An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chemical Communications, 2015, 51, 16683-16686.	2.2	336
1215	Nanocrystal Bismuth Telluride Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the Electrochemical Society, 2015, 162, H785-H791.	1.3	10
1216	Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications. ACS Applied Materials & Electrocatalytic Applied Materials & Electrocat	4.0	76
1217	Photoelectrochemical water splitting in an organic artificial leaf. Journal of Materials Chemistry A, 2015, 3, 23936-23945.	5.2	61
1218	Synergistic Catalyst–Support Interactions in a Graphene–Mn ₃ O ₄ Electrocatalyst for Vanadium Redox Flow Batteries. ACS Catalysis, 2015, 5, 7122-7130.	5 . 5	112
1219	Nitrogen-doped graphene/carbon nanotube/Co ₃ O ₄ hybrids: one-step synthesis and superior electrocatalytic activity for the oxygen reduction reaction. RSC Advances, 2015, 5, 94615-94622.	1.7	30
1220	Synthesis and characterization of chemically modified graphenes. Current Opinion in Colloid and Interface Science, 2015, 20, 322-328.	3.4	27

#	Article	IF	Citations
1221	Oxygen Evolution Reaction on La $<$ sub $>$ 1â \in " $<$ i $>$ x $<$ /i $>$ >Sr $<$ sub $>$ <i<math>>x$<$/i$>$>CoO$<$sub$>$3$<$/sub$>$Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties. Chemistry of Materials, 2015, 27, 7662-7672.</i<math>	3.2	259
1222	Nb 2 O 5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H 2 O 2 electrogeneration. Journal of Catalysis, 2015, 332, 51-61.	3.1	70
1223	Graphene Quantum Dots-Supported Palladium Nanoparticles for Efficient Electrocatalytic Reduction of Oxygen in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2015, 3, 3315-3323.	3.2	64
1224	Influence of enolate/epoxy configuration, doping and vacancy on the catalytic activity of graphene. RSC Advances, 2015, 5, 93215-93225.	1.7	20
1225	Hydrothermal synthesis of 2D MoS ₂ nanosheets for electrocatalytic hydrogen evolution reaction. RSC Advances, 2015, 5, 89389-89396.	1.7	110
1226	A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 19201-19206.	2.8	55
1227	Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting. Journal of the American Chemical Society, 2015, 137, 14305-14312.	6.6	377
1228	Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nature Communications, 2015, 6, 8696.	5.8	263
1229	Facile Synthesis of Co ₃ O ₄ /Nitrogen-Doped Graphene Composite and their Electrochemical Performances. Advanced Materials Research, 0, 1120-1121, 347-351.	0.3	0
1230	A Green Biosensing Matrix Based on Chitosan and Graphene nanohybrid for the Immobilization of Glucose Oxidase: Synthesis and Property evaluation. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1332-1344.	1.9	4
1231	Strong-coupled Co-g-C ₃ N ₄ /SWCNTs composites as high-performance electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 65303-65307.	1.7	18
1232	A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chemical Society Reviews, 2015, 44, 7968-7996.	18.7	388
1233	<i>In Situ</i> X-ray Absorption Near-Edge Structure Study of Advanced NiFe(OH) _{<i>x</i>} Electrocatalyst on Carbon Paper for Water Oxidation. Journal of Physical Chemistry C, 2015, 119, 19573-19583.	1.5	146
1234	Urchin-like CoP Nanocrystals as Hydrogen Evolution Reaction and Oxygen Reduction Reaction Dual-Electrocatalyst with Superior Stability. Nano Letters, 2015, 15, 7616-7620.	4.5	425
1235	Design of an active and durable catalyst for oxygen reduction reactions using encapsulated Cu with N-doped carbon shells (Cu@N-C) activated by CO ₂ treatment. Journal of Materials Chemistry A, 2015, 3, 22031-22034.	5.2	77
1236	Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24330-24337.	4.0	23
1237	Ni ₁₂ P ₅ nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties. Nanoscale, 2015, 7, 19241-19249.	2.8	64
1238	Nanostructured Perovskite LaCo _{1-x} Mn _x O ₃ as Bifunctional Catalysts for Rechargeable Metal–Air Batteries. Journal of Molecular and Engineering Materials. 2015. 03. 1540006.	0.9	5

#	Article	IF	CITATIONS
1239	Synthesis of Amorphous Niâ^'Zn Double Hydroxide Nanocages with Excellent Electrocatalytic Activity toward Oxygen Evolution Reaction. ChemNanoMat, 2015, 1, 324-330.	1.5	32
1240	Highly Active and Durable Nanocrystalâ€Decorated Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ChemSusChem, 2015, 8, 3129-3138.	3.6	57
1241	Multi-layered Pt/Ni nanotube arrays with enhanced catalytic performance for methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 23201-23206.	5.2	46
1242	Fabrication and photoelectrochemical properties of silicon/nickel oxide core/shell nanowire arrays. RSC Advances, 2015, 5, 88209-88213.	1.7	7
1243	B, N-codoped 3D micro-/mesoporous carbon nanofibers web as efficient metal-free catalysts for oxygen reduction. Current Applied Physics, 2015, 15, 1606-1614.	1.1	34
1244	A Bi ₂ Te ₃ @CoNiMo composite as a high performance bifunctional catalyst for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2015, 3, 22770-22780.	5.2	46
1245	lonic block copolymer doped reduced graphene oxide supports with ultra-fine Pd nanoparticles: strategic realization of ultra-accelerated nanocatalysis. Journal of Materials Chemistry A, 2015, 3, 20471-20476.	5.2	48
1246	Preparation and Properties of Graphene/TiO ₂ Thin Films. Applied Mechanics and Materials, 2015, 778, 136-139.	0.2	0
1247	lonic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Materials, 2015, 1, 17-24.	9.5	67
1248	Conversion of straw to nitrogen doped carbon for efficient oxygen reduction catalysts in microbial fuel cells. RSC Advances, 2015, 5, 89771-89776.	1.7	29
1249	Composition-controlled synthesis of LixCo3â^'xO4 solid solution nanocrystals on carbon and their impact on electrocatalytic activity toward oxygen reduction reaction. RSC Advances, 2015, 5, 90785-90796.	1.7	19
1250	Surface modification of MnCo2O4 with conducting polypyrrole as a highly active bifunctional electrocatalyst for oxygen reduction and oxygen evolution reaction. Electrochimica Acta, 2015, 180, 788-794.	2.6	77
1251	Ultrasonication-assisted ultrafast preparation of multiwalled carbon nanotubes/Au/Co3O4 tubular hybrids as superior anode materials for oxygen evolution reaction. Journal of Power Sources, 2015, 300, 285-293.	4.0	65
1252	Core/Shell Face-Centered Tetragonal FePd/Pd Nanoparticles as an Efficient Non-Pt Catalyst for the Oxygen Reduction Reaction. ACS Nano, 2015, 9, 11014-11022.	7.3	165
1253	Enhanced oxygen reduction from the insertion of cobalt into nitrogen-doped porous carbons. RSC Advances, 2015, 5, 87971-87980.	1.7	9
1254	Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23299-23306.	5. 2	67
1255	Transformation of worst weed into N-, S-, and P-tridoped carbon nanorings as metal-free electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 23376-23384.	5,2	48
1256	Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale, 2015, 7, 15990-15998.	2.8	149

#	Article	IF	CITATIONS
1257	A Hybrid DNA-Templated Gold Nanocluster For Enhanced Enzymatic Reduction of Oxygen. Journal of the American Chemical Society, 2015, 137, 11678-11687.	6.6	128
1258	Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials. Nature Communications, 2015, 6, 7873.	5.8	526
1259	Thermal evolution of cobalt deposits on Co ₃ O ₄ (111): atomically dispersed cobalt, two-dimensional CoO islands, and metallic Co nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 23538-23546.	1.3	19
1260	Electrochemical-reduction-assisted assembly of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and their activity in the electrocatalysis of oxygen reduction. RSC Advances, 2015, 5, 74447-74456.	1.7	38
1261	Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 19969-19973.	5.2	37
1262	Porous nitrogen doped carbon foam with excellent resilience for self-supported oxygen reduction catalyst. Carbon, 2015, 95, 388-395.	5.4	77
1263	Hydrothermal Synthesis of Boron and Nitrogen Codoped Hollow Graphene Microspheres with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Applied Materials & Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. ACS Applied Materials & Enhanced Electrocatalytic Mater	4.0	83
1264	Co3O4 and CDots nanocrystals on g-C3N4 as a synergetic catalyst for oxygen reduction reaction. Green Processing and Synthesis, 2015, 4, .	1.3	3
1265	Hollow Fluffy Co ₃ O ₄ Cages as Efficient Electroactive Materials for Supercapacitors and Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20322-20331.	4.0	163
1266	Carbon-Free Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20607-20611.	4.0	39
1267	Facet-dependent activity and stability of Co ₃ O ₄ nanocrystals towards the oxygen evolution reaction. Physical Chemistry Chemical Physics, 2015, 17, 29387-29393.	1.3	190
1268	In situ formation of N- and Fe-doped carbon nanotube/mesoporous carbon nanocomposite with excellent activity for oxygen reduction in acidic media. RSC Advances, 2015, 5, 76599-76606.	1.7	5
1269	Direct Transformation from Graphitic C ₃ N ₄ to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19626-19634.	4.0	182
1270	<i>In Situ</i> Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene. ACS Nano, 2015, 9, 9244-9251.	7. 3	198
1271	Characterization of local electrocatalytical activity of nanosheet-structured ZnCo 2 O 4 /carbon nanotubes composite for oxygen reduction reaction with scanning electrochemical microscopy. Electrochimica Acta, 2015, 178, 767-777.	2.6	23
1272	Electrochemical growth of octahedral Fe ₃ O ₄ with high activity and stability toward the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 19273-19276.	5.2	34
1273	Carbon nanotube-supported Cu ₃ N nanocrystals as a highly active catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 18983-18990.	5.2	52
1274	Surface-Tuned Co ₃ O ₄ Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc–Air Battery Application. ACS Applied Materials & Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc–Air Battery Application.	4.0	145

#	Article	IF	CITATIONS
1275	Etching approach to hybrid structures of PtPd nanocages and graphene for efficient oxygen reduction reaction catalysts. Nano Research, 2015, 8, 2789-2799.	5.8	37
1276	Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Research, 2015, 8, 3365-3371.	5. 8	70
1277	Ultrathin Wrinkled N-Doped Carbon Nanotubes for Noble-Metal Loading and Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20507-20512.	4.0	17
1278	Controlled electrodeposition of nanostructured Pd thin films from protic ionic liquids for electrocatalytic oxygen reduction reactions. RSC Advances, 2015, 5, 74017-74023.	1.7	13
1279	A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Research, 2015, 8, 3461-3471.	5.8	44
1280	Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Applied Surface Science, 2015, 358, 425-435.	3.1	115
1281	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
1282	Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107, .	1.5	39
1283	Ni ₃ Se ₂ film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catalysis Science and Technology, 2015, 5, 4954-4958.	2.1	144
1284	Nanoplates and Nanospheres of Co3(VO4)2 as Noble Metal-free Electrocatalysts for Oxygen Evolution. Electrochimica Acta, 2015, 180, 260-267.	2.6	24
1285	NanoCOT: Low-Cost Nanostructured Electrode Containing Carbon, Oxygen, and Titanium for Efficient Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 11996-12005.	6.6	61
1286	Nanosized LiNi1â^'xFexPO4 embedded in a mesoporous carbon matrix for high-performance electrochemical water splitting. Chemical Communications, 2015, 51, 15815-15818.	2.2	9
1287	From supramolecular hydrogels to functional aerogels: a facile strategy to fabricate Fe ₃ O ₄ /N-doped graphene composites. RSC Advances, 2015, 5, 77296-77302.	1.7	12
1288	Nanosheets Co ₃ O ₄ Interleaved with Graphene for Highly Efficient Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21373-21380.	4.0	96
1289	Co ₃ O ₄ nanoparticles grown on N-doped Vulcan carbon as a scalable bifunctional electrocatalyst for rechargeable zinc–air batteries. RSC Advances, 2015, 5, 75773-75780.	1.7	39
1290	CoTiO _x Catalysts for the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H841-H846.	1.3	14
1291	Phosphate functionalized activated carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2015, 39, 8881-8886.	1.4	4
1292	MoO ₂ –CoO coupled with a macroporous carbon hybrid electrocatalyst for highly efficient oxygen evolution. Nanoscale, 2015, 7, 16704-16714.	2.8	51

#	Article	IF	CITATIONS
1293	Growth mechanism and active site probing of Fe $<$ sub $>3<$ sub $>C@N$ -doped carbon nanotubes $/C$ catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 21451-21459.	5.2	65
1294	Carbon nanodots modified cobalt phosphate as efficient electrocatalyst forÂwater oxidation. Journal of Materiomics, 2015, 1, 236-244.	2.8	29
1295	An Iron-based Film for Highly Efficient Electrocatalytic Oxygen Evolution from Neutral Aqueous Solution. ACS Applied Materials & Interfaces, 2015, 7, 21852-21859.	4.0	161
1296	The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2015, 17, 26864-26874.	1.3	86
1297	La ₂ O ₂ CO ₃ Encapsulated La ₂ O ₃ Nanoparticles Supported on Carbon as Superior Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Superior Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Superior Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Superior Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Superior Electrocatalysts for Oxygen Reduction Reaction.	4.0	77
1298	In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. Journal of Biological Inorganic Chemistry, 2015, 20, 1319-1326.	1.1	58
1299	Highly dispersed cobalt oxide nanoparticles on CMK-3 for selective oxidation of benzyl alcohol. RSC Advances, 2015, 5, 102508-102515.	1.7	20
1300	N-doped porous carbon derived from biomass as an advanced electrocatalyst for aqueous aluminium/air battery. International Journal of Hydrogen Energy, 2015, 40, 16230-16237.	3.8	49
1301	Strongly Bonded Selenium/Microporous Carbon Nanofibers Composite as a High-Performance Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2015, 119, 27316-27321.	1.5	77
1302	Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene. Nature Communications, 2015, 6, 10035.	5.8	466
1303	Hybrids based on transition metal phosphide (Mn ₂ P, Co ₂ P, Ni ₂ P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction. RSC Advances, 2015, 5, 92893-92898.	1.7	37
1304	Fe (Oxy)hydroxide Oxygen Evolution Reaction Electrocatalysis: Intrinsic Activity and the Roles of Electrical Conductivity, Substrate, and Dissolution. Chemistry of Materials, 2015, 27, 8011-8020.	3.2	395
1305	Carbon for engineering of a water-oxidizing catalyst. Dalton Transactions, 2015, 44, 20991-20998.	1.6	7
1306	Iron–nitrogen co-doped hollow carbon sphere with mesoporous structure for enhanced oxygen reduction reaction. RSC Advances, 2015, 5, 103302-103307.	1.7	13
1307	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	5.5	78
1308	<i>In Situ</i> Integration of Anisotropic SnO ₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 26085-26093.	4.0	27
1309	Nickel–cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2015, 278, 445-451.	4.0	494
1310	Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high-performance lithium-ion batteries. RSC Advances, 2015, 5, 8929-8932.	1.7	32

#	Article	IF	CITATIONS
1311	A novel electrocatalyst for oxygen evolution reaction based on rational anchoring of cobalt carbonate hydroxide hydrate on multiwall carbon nanotubes. Journal of Power Sources, 2015, 278, 464-472.	4.0	47
1312	Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 154, 177-183.	2.6	30
1313	Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc–Air Battery Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 902-910.	4.0	176
1314	An Advanced Nitrogenâ€Doped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. Advanced Functional Materials, 2015, 25, 872-882.	7.8	683
1315	Microstructure Effects on the Water Oxidation Activity of Co ₃ O ₄ /Porous Silica Nanocomposites. ACS Catalysis, 2015, 5, 1037-1044.	5.5	39
1316	Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Analytica Chimica Acta, 2015, 861, 25-35.	2.6	127
1317	Three-dimensional graphene-based composites for energy applications. Nanoscale, 2015, 7, 6924-6943.	2.8	241
1318	Carbon-coating functionalized La0.6Sr1.4MnO4+ \hat{l} layered perovskite oxide: enhanced catalytic activity for the oxygen reduction reaction. RSC Advances, 2015, 5, 974-980.	1.7	30
1319	Various Carbon Chain Containing Linkages Grafted Graphene with Silver Nanoparticles Electrocatalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, F1-F8.	1.3	47
1320	lonic Liquids as Precursors for Efficient Mesoporous Ironâ€Nitrogenâ€Doped Oxygen Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2015, 54, 1494-1498.	7.2	162
1321	Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 3559-3567.	5.2	123
1322	Bifunctionalized Mesoporous Silicaâ€Supported Gold Nanoparticles: Intrinsic Oxidase and Peroxidase Catalytic Activities for Antibacterial Applications. Advanced Materials, 2015, 27, 1097-1104.	11.1	511
1323	Cobalt sulfide nanoparticles impregnated nitrogen and sulfur co-doped graphene as bifunctional catalyst for rechargeable Zn–air batteries. RSC Advances, 2015, 5, 7280-7284.	1.7	42
1324	Revealing the Role of Catalysts in Carbon Nanotubes and Nanofibers by Scanning Transmission X-ray Microscopy. Scientific Reports, 2014, 4, 3606.	1.6	36
1325	Putting DFT to the Test: A First-Principles Study of Electronic, Magnetic, and Optical Properties of Co ₃ O ₄ . Journal of Chemical Theory and Computation, 2015, 11, 64-72.	2.3	93
1326	Synthesis of TiO ₂ decorated Co ₃ O ₄ acicular nanowire arrays and their application as an ethanol sensor. Journal of Materials Chemistry A, 2015, 3, 2794-2801.	5.2	7 3
1327	Cobalt–iron(II,III) oxide hybrid catalysis with enhanced catalytic activities for oxygen reduction in anion exchange membrane fuel cell. Journal of Power Sources, 2015, 277, 147-154.	4.0	47
1328	Low Surface Energy Plane Exposed Co ₃ O ₄ Nanocubes Supported on Nitrogen-Doped Graphene as an Electrocatalyst for Efficient Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 442-451.	4.0	108

#	Article	IF	CITATIONS
1330	Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 2015, 40, 948-979.	3.8	412
1331	Efficient Water Splitting Using a Simple Ni/N/C Paper Electrocatalyst. Advanced Energy Materials, 2015, 5, 1401660.	10.2	144
1332	Graphene-based photocatalysts for oxygen evolution from water. RSC Advances, 2015, 5, 6543-6552.	1.7	23
1333	An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 2015, 12, 33-42.	8.2	53
1334	Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction. Carbon, 2015, 82, 77-86.	5. 4	86
1335	Simultaneous polymerization and crosslinking for the synthesis of molecular-level graphene oxide–polyacryl amide–CeOx composites. Chemical Engineering Journal, 2015, 263, 27-37.	6.6	12
1336	Fe/N/C hollow nanospheres by Fe(<scp>iii</scp>)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 1501-1509.	2.8	242
1337	A simple and controlled electrochemical deposition route to urchin-like Pd nanoparticles with enhanced electrocatalytic properties. Journal of Electroanalytical Chemistry, 2015, 738, 1-7.	1.9	17
1338	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie, 2015, 127, 2375-2380.	1.6	27
1339	A Highly Efficient Bifunctional Catalyst for Alkaline Air-Electrodes Based on a Ag and Co3O4 Hybrid: RRDE and Online DEMS Insights. Electrochimica Acta, 2015, 151, 332-339.	2.6	58
1340	Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11, 366-376.	8.2	395
1341	Co ₃ O ₄ nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries. Nanoscale, 2015, 7, 1830-1838.	2.8	226
1342	Bio-inspired organic cobalt(<scp>ii</scp>) phosphonates toward water oxidation. Energy and Environmental Science, 2015, 8, 526-534.	15.6	79
1343	A Ternary Composite Based on Graphene, Hemin, and Gold Nanorods with High Catalytic Activity for the Detection of Cellâ€Surface Glycan Expression. Chemistry - A European Journal, 2015, 21, 1908-1914.	1.7	27
1344	3D hollow structured Co ₂ FeO ₄ /MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1601-1608.	5.2	48
1345	Graphene Oxide: Physics and Applications. SpringerBriefs in Physics, 2015, , .	0.2	70
1346	Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy and Environmental Science, 2015, 8, 221-229.	15.6	307
1347	Advancing the Electrochemistry of the Hydrogenâ€Evolution Reaction through Combining Experiment and Theory. Angewandte Chemie - International Edition, 2015, 54, 52-65.	7.2	1,616

#	Article	IF	CITATIONS
1348	2D and 3D graphene materials: Preparation and bioelectrochemical applications. Biosensors and Bioelectronics, 2015, 65, 404-419.	5. 3	172
1349	Threeâ€Dimensional Nitrogenâ€Doped Graphene Nanoribbons Aerogel as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. Small, 2015, 11, 1423-1429.	5.2	114
1350	High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 2015, 82, 417-424.	5.4	140
1351	Fe-containing polyimide-based high-performance ORR catalysts in acidic medium: a kinetic approach to study the durability of catalysts. Catalysis Science and Technology, 2015, 5, 475-483.	2.1	76
1352	Co3O4 nanocrystals coupled with O- and N-doped carbon nanoweb as a synergistic catalyst for hybrid Li-air batteries. Nano Energy, 2015, 12, 852-860.	8.2	92
1353	Core–shell Co@Co3O4nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 7056-64.	2.8	95
1354	Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 2015, 7, 1250-1269.	2.8	290
1355	Self-assembled three-dimensional mesoporous ZnFe2O4-graphene composites for lithium ion batteries with significantly enhanced rate capability and cycling stability. Journal of Power Sources, 2015, 275, 769-776.	4.0	81
1356	Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1142-1151.	5.2	55
1357	An Interfaceâ€Induced Coâ€Assembly Approach Towards Ordered Mesoporous Carbon/Graphene Aerogel for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2015, 25, 526-533.	7.8	222
1358	Cobalt–Manganeseâ€Based Spinels as Multifunctional Materials that Unify Catalytic Water Oxidation and Oxygen Reduction Reactions. ChemSusChem, 2015, 8, 164-171.	3.6	233
1359	Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electocatalytic activity and stability toward formic acid oxidation. Nano Energy, 2015, 11, 71-77.	8.2	131
1360	Noble metal-free electrocatalysts for the oxygen reduction reaction based on iron and nitrogen-doped porous graphene. Journal of Materials Chemistry A, 2015, 3, 1058-1067.	5.2	40
1361	A metal–organic framework route to in situ encapsulation of Co@Co ₃ O ₄ @C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy and Environmental Science, 2015, 8, 568-576.	15.6	571
1362	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
1363	Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. Journal of Power Sources, 2015, 274, 816-822.	4.0	164
1364	Facile and surfactant-free synthesis of SnO2-graphene hybrids as high performance anode for lithium-ion batteries. Ionics, 2015, 21, 987-994.	1,2	14
1365	In-Situ Confined Growth of Monodisperse Pt Nanoparticle@Graphene Nanobox Composites as Electrocatalytic Nanoreactors. Small, 2015, 11, 1003-1010.	5.2	24

#	Article	IF	CITATIONS
1366	Efficiently Enhancing Oxygen Reduction Electrocatalytic Activity of MnO ₂ Using Facile Hydrogenation. Advanced Energy Materials, 2015, 5, 1400654.	10.2	78
1367	Co3S4/NCNTs: A catalyst for oxygen evolution reaction. Catalysis Today, 2015, 245, 74-78.	2.2	62
1368	Composition effects of spinel Mn Co3â^'O4 nanoparticles on their electrocatalytic properties in oxygen reduction reaction in alkaline media. Journal of Power Sources, 2015, 273, 735-741.	4.0	75
1369	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	18.7	740
1370	Pristine carbon nanotubes as non-metal electrocatalysts for oxygen evolution reaction of water splitting. Applied Catalysis B: Environmental, 2015, 163, 96-104.	10.8	124
1371	Cellulose-derived nitrogen and phosphorus dual-doped carbon as high performance oxygen reduction catalyst in microbial fuel cell. Journal of Power Sources, 2015, 273, 1189-1193.	4.0	106
1372	A Threeâ€Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. Advanced Energy Materials, 2015, 5, 1401186.	10.2	34
1373	M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction. Scientific Reports, 2014, 4, 4386.	1.6	93
1374	Fabrication and microwave absorption properties of magnetite nanoparticle–carbon nanotube–hollow carbon fiber composites. Carbon, 2015, 81, 20-28.	5.4	195
1375	A novel quaternized poly(ether sulfone) membrane for alkaline fuel cell application. International Journal of Energy Research, 2015, 39, 317-325.	2.2	16
1376	Understanding the Role of Gold Nanoparticles in Enhancing the Catalytic Activity of Manganese Oxides in Water Oxidation Reactions. Angewandte Chemie - International Edition, 2015, 54, 2345-2350.	7.2	119
1377	Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon, 2015, 81, 552-563.	5. 4	218
1378	An Efficient CeO ₂ /CoSe ₂ Nanobelt Composite for Electrochemical Water Oxidation. Small, 2015, 11, 182-188.	5. 2	325
1379	Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015, 44, 2713-2731.	18.7	1,405
1380	TiO2 loaded on graphene nanosheet as reinforcer and its effect on the thermal behaviors of poly(vinyl chloride) composites. Chemical Engineering Journal, 2015, 260, 524-531.	6.6	67
1381	Nitrogen-Induced Surface Area and Conductivity Modulation of Carbon Nanohorn and Its Function as an Efficient Metal-Free Oxygen Reduction Electrocatalyst for Anion-Exchange Membrane Fuel Cells. Small, 2015, 11, 352-360.	5.2	83
1382	Electrochemical Characterization and Oxygen Reduction Kinetics of Cu-incorporated Cobalt Oxide Catalyst. International Journal of Electrochemical Science, 2016, 11, 8002-8015.	0.5	21
1383	Co/CoO Nanoparticles/Ag Nanowires/Nitrogen Codoped Electrospun Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction. International Journal of Electrochemical Science, 2016, 11, 8994-9006.	0.5	13

#	Article	IF	CITATIONS
1384	Electrocatalytic Applications of Graphene–Metal Oxide Nanohybrid Materials. , 0, , .		17
1385	Metal-organic Frameworks Derived CoS2-Co/N-doped Porous Carbon with Extremely High Electrocatalytic Stability for the Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2016, 11, 9575-9584.	0.5	11
1386	Mesoporous Carbon/Co3O4 Hybrid as Efficient Electrode for Methanol Electrooxidation in Alkaline Conditions. International Journal of Electrochemical Science, 2016, , 8374-8390.	0.5	18
1387	Core-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction. Frontiers in Chemistry, 2016, 4, 36.	1.8	18
1388	Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. Materials, 2016, 9, 759.	1.3	26
1389	An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin. Catalysts, 2016, 6, 108.	1.6	50
1390	What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?. Catalysts, 2016, 6, 145.	1.6	17
1391	One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation. Electrochimica Acta, 2016, 212, 864-875.	2.6	62
1392	Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Progress in Materials Science, 2016, 82, 445-498.	16.0	160
1393	Pyridinicâ€Nitrogenâ€Dominated Graphene Aerogels with Fe–N–C Coordination for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2016, 26, 5708-5717.	7.8	360
1394	Monodisperse Ternary NiCoP Nanostructures as a Bifunctional Electrocatalyst for Both Hydrogen and Oxygen Evolution Reactions with Excellent Performance. Advanced Materials Interfaces, 2016, 3, 1500454.	1.9	132
1395	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	1.9	33
1396	Robust Subâ€Monolayers of Co ₃ O ₄ Nanoâ€Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	10.2	44
1397	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie, 2016, 128, 9201-9205.	1.6	28
1398	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie - International Edition, 2016, 55, 9055-9059.	7.2	154
1399	Highly Efficient Hybrid Cobalt–Copper–Aluminum Layered Double Hydroxide/Graphene Nanocomposites as Catalysts for the Oxidation of Alkylaromatics. ChemCatChem, 2016, 8, 363-371.	1.8	19
1400	Electrospinning Synthesis of Bimetallic Nickel–Iron Oxide/Carbon Composite Nanofibers for Efficient Water Oxidation Electrocatalysis. ChemCatChem, 2016, 8, 992-1000.	1.8	69
1401	Hybrid Spinel Oxides/Nâ€Doped Reduced Graphene Oxide as Highlyâ€Active Bifunctional Electrocatalysts for Oxygen Reduction/Evolution Reactions. ChemElectroChem, 2016, 3, 1107-1115.	1.7	34

#	Article	IF	CITATIONS
1402	Porous Mn ₂ O ₃ : A Lowâ€Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C. Chemistry - A European Journal, 2016, 22, 9909-9913.	1.7	49
1403	Carbon Nanodot Surface Modifications Initiate Highly Efficient, Stable Catalysts for Both Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2016, 6, 1502039.	10.2	83
1404	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.	7.2	258
1405	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	5.2	86
1406	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	5.2	83
1407	High-Loading Nickel Cobaltate Nanoparticles Anchored on Three-Dimensional N-Doped Graphene as an Efficient Bifunctional Catalyst for Lithium–Oxygen Batteries. ACS Applied Materials & Diterfaces, 2016, 8, 18060-18068.	4.0	61
1408	Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 14650-14664.	2.8	61
1409	Systematic study of transition-metal (Fe, Co, Ni, Cu) phthalocyanines as electrocatalysts for oxygen reduction and their evaluation by DFT. RSC Advances, 2016, 6, 67049-67056.	1.7	86
1410	Layer-by-layer assembly of exfoliated layered double hydroxide nanosheets for enhanced electrochemical oxidation of water. Journal of Materials Chemistry A, 2016, 4, 11516-11523.	5.2	104
1411	Facile Synthesis of Fe ₃ C@Graphene Hybrid Nanorods as an Efficient and Robust Catalyst for Oxygen Reduction Reaction. ChemPlusChem, 2016, 81, 646-651.	1.3	12
1412	Exfoliated 2D Transition Metal Disulfides for Enhanced Electrocatalysis of Oxygen Evolution Reaction in Acidic Medium. Advanced Materials Interfaces, 2016, 3, 1500669.	1.9	136
1413	Tuning Transition Metal Oxide–Sulfur Interactions for Long Life Lithium Sulfur Batteries: The "Goldilocks―Principle. Advanced Energy Materials, 2016, 6, 1501636.	10.2	623
1414	A Strategy to Promote the Electrocatalytic Activity of Spinels for Oxygen Reduction by Structure Reversal. Angewandte Chemie, 2016, 128, 1362-1366.	1.6	17
1415	Bifunktionale Sauerstoffelektroden durch Einbettung von Co@Co ₃ O ₄ â€Nanopartikeln in CNTâ€gekoppelte Stickstoffâ€dotierte Kohlenstoffpolyeder. Angewandte Chemie, 2016, 128, 4155-4160.	1.6	85
1417	A Strategy to Promote the Electrocatalytic Activity of Spinels for Oxygen Reduction by Structure Reversal. Angewandte Chemie - International Edition, 2016, 55, 1340-1344.	7.2	153
1418	Co@Co ₃ O ₄ Encapsulated in Carbon Nanotubeâ€Grafted Nitrogenâ€Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angewandte Chemie - International Edition, 2016, 55, 4087-4091.	7.2	1,027
1419	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	15.6	216
1420	Superaerophilic Carbonâ€Nanotubeâ€Array Electrode for Highâ€Performance Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 7155-7161.	11.1	231

#	Article	IF	Citations
1421	Fe/Fe ₃ C/Nâ€Doped Carbon Materials from Metal–Organic Framework Composites as Highly Efficient Oxygen Reduction Reaction Electrocatalysts. ChemPlusChem, 2016, 81, 718-723.	1.3	27
1422	Significant Enhancement of Water Splitting Activity of Nâ€Carbon Electrocatalyst by Trace Level Co Doping. Small, 2016, 12, 3703-3711.	5.2	111
1423	Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co ₃ O ₄ for oxygen electrocatalysis. Chemical Communications, 2016, 52, 9727-9730.	2.2	291
1424	A bi-functional catalyst for oxygen reduction and oxygen evolution reactions from used baby diapers: α-Fe ₂ O ₃ wrapped in P and S dual doped graphitic carbon. RSC Advances, 2016, 6, 64258-64265.	1.7	18
1425	Toward enhanced activity of a graphitic carbon nitride-based electrocatalyst in oxygen reduction and hydrogen evolution reactions via atomic sulfur doping. Journal of Materials Chemistry A, 2016, 4, 12205-12211.	5 . 2	112
1426	Ultrathin Co ₃ O ₄ Layers Realizing Optimized CO ₂ Electroreduction to Formate. Angewandte Chemie - International Edition, 2016, 55, 698-702.	7.2	424
1427	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6858-6863.	7.2	127
1428	Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodiumâ€lon Storage Performance. Chemistry - A European Journal, 2016, 22, 1445-1451.	1.7	77
1429	Facilely Tuning Porous NiCo ₂ O ₄ Nanosheets with Metal Valenceâ€5tate Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting. Chemistry - A European Journal, 2016, 22, 4000-4007.	1.7	172
1430	Design and Synthesis of FeOOH/CeO ₂ Heterolayered Nanotube Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2016, 28, 4698-4703.	11.1	592
1431	Topological Defects in Metalâ€Free Nanocarbon for Oxygen Electrocatalysis. Advanced Materials, 2016, 28, 6845-6851.	11.1	629
1432	Platinfreie Nanomaterialien fżr die Sauerstoffreduktion. Angewandte Chemie, 2016, 128, 2698-2726.	1.6	87
1433	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie, 2016, 128, 5363-5367.	1.6	472
1434	Twoâ€Dimensional Coreâ€Shelled Porous Hybrids as Highly Efficient Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6972-6977.	1.6	23
1435	Earthâ€Abundant Nanomaterials for Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 2650-2676.	7.2	926
1436	Phosphomolybdate@Carbon-Based Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction. ChemistrySelect, 2016, 1, 6257-6266.	0.7	15
1437	Intrinsic ferromagnetic coupling in Co3O4 quantum dots activatedby graphene hybridization. Applied Physics Letters, 2016, 108, .	1.5	14
1438	Uniform TiO2/Graphene hybrid nanosheets in a sandwich-like configuration as high-performance anodes for lithium-ion batteries. , $2016, , .$		0

#	Article	IF	Citations
1439	MnO ₂ Nanofilms on Nitrogen-Doped Hollow Graphene Spheres as a High-Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 35264-35269.	4.0	76
1440	Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells. Scientific Reports, 2016, 6, 24330.	1.6	56
1441	Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability. Journal of Applied Physics, 2016 , 119 , .	1.1	59
1442	OER activity manipulated by IrO6 coordination geometry: an insight from pyrochlore iridates. Scientific Reports, 2016, 6, 38429.	1.6	92
1443	Hydrothermal synthesis of Co3O4 nanowire electrocatalysts for oxygen evolution reaction. Journal of Renewable and Sustainable Energy, 2016, 8, 044703.	0.8	8
1444	Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO ₂ Plasmonic Film. ACS Applied Materials & Diterfaces, 2016, 8, 34970-34977.	4.0	52
1445	Self-supported nanoporous NiCo ₂ O ₄ nanowires with cobalt–nickel layered oxide nanosheets for overall water splitting. Nanoscale, 2016, 8, 1390-1400.	2.8	180
1446	Boron Nitride Nanocages as High Activity Electrocatalysts for Oxygen Reduction Reaction: Synergistic Catalysis by Dual Active Sites. Journal of Physical Chemistry C, 2016, 120, 28912-28916.	1.5	41
1447	A novel method to prepare Ti1.4V0.6Ni alloy covered with carbon and nanostructured Co3O4, and its good electrochemical hydrogen storage properties as negative electrode material for Ni-MH battery. Electrochimica Acta, 2016, 222, 1716-1723.	2.6	26
1448	Sulfur doped reduced graphene oxides with enhanced catalytic activity for oxygen reduction via molten salt redox-sulfidation. Physical Chemistry Chemical Physics, 2016, 18, 32653-32657.	1.3	10
1449	Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH4 hydrolysis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2016, 34, .	0.9	13
1450	Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions. Scientific Reports, 2016, 6, 27081.	1.6	76
1451	Doping Effect of Alkaline Earth Metal on Oxygen Reduction Reaction in Praseodymium Nickelate With Layered Perovskite Structure. Journal of Electrochemical Energy Conversion and Storage, 2016, 13, .	1.1	7
1452	Electrochemical Biosensor Based on Nanoporous Au/CoO Core–Shell Material with Synergistic Catalysis. ChemPhysChem, 2016, 17, 98-104.	1.0	15
1453	Facile synthesis of NiCo2O4 nanosphere-carbon nanotubes hybrid as an efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. International Journal of Hydrogen Energy, 2016, 41, 9211-9218.	3.8	71
1454	Enhancement of the photocatalytic activity and electrochemical property of graphene-SrWO 4 nanocomposite. Solid State Sciences, 2016, 55, 130-137.	1.5	27
1455	Facile synthesis of nitrogen and sulfur dual-doped graphitized carbon microspheres and their high performance in the oxygen reduction reaction. RSC Advances, 2016, 6, 38880-38886.	1.7	4
1456	Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 22510-22519.	3.8	74

#	Article	IF	CITATIONS
1457	One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction. Journal of Power Sources, 2016, 313, 128-133.	4.0	15
1458	Coupled cobalt oxide/hollow carbon sphere as an efficient electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 34159-34164.	1.7	14
1459	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
1460	Ni-doped CoFe2O4 Hollow Nanospheres as Efficient Bi-functional Catalysts. Electrochimica Acta, 2016, 201, 172-178.	2.6	107
1461	Carbon supported Pt-Y 2 O 3 and Pt-Gd 2 O 3 nanoparticles prepared via carbonyl chemical route towards oxygen reduction reaction: Kinetics and stability. International Journal of Hydrogen Energy, 2016, 41, 19601-19609.	3.8	18
1462	Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016, 4, 7107-7134.	5.2	408
1463	Unconventional structural and morphological transitions of nanosheets, nanoflakes and nanorods of AuNP@MnO ₂ . Journal of Materials Chemistry A, 2016, 4, 6447-6455.	5.2	39
1464	In Situ Stress Measurements during Cobalt Electrodeposition on (111)-Textured Au. Journal of the Electrochemical Society, 2016, 163, D146-D153.	1.3	13
1465	Free-Standing 3D Hierarchical Carbon Foam-Supported PtCo Nanowires with "Pt Skin―as Advanced Electrocatalysts. Electrochimica Acta, 2016, 199, 218-226.	2.6	31
1466	Three-Dimensional Graphene Supported Bimetallic Nanocomposites with DNA Regulated-Flexibly Switchable Peroxidase-Like Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9855-9864.	4.0	89
1467	Co/CoO nanoparticles immobilized on Co–N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Communications, 2016, 52, 5946-5949.	2.2	221
1468	A noble and single source precursor for the synthesis of metal-rich sulphides embedded in an N-doped carbon framework for highly active OER electrocatalysts. Dalton Transactions, 2016, 45, 6352-6356.	1.6	33
1469	The effect of block copolymer additives for a highly active polymeric metal-free oxygen reduction electrode. RSC Advances, 2016, 6, 28809-28814.	1.7	9
1470	NiO.85Se as an efficient non-noble bifunctional electrocatalyst for full water splitting. International Journal of Hydrogen Energy, 2016, 41, 10688-10694.	3.8	92
1471	Mesoporous Ni Co based nanowire arrays supported on three-dimensional N-doped carbon foams as non-noble catalysts for efficient oxygen reduction reaction. Microporous and Mesoporous Materials, 2016, 231, 128-137.	2.2	20
1472	Two-dimensional TaC nanosheets on a reduced graphene oxide hybrid as an efficient and stable electrocatalyst for water splitting. Chemical Communications, 2016, 52, 8810-8813.	2.2	35
1473	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	5. 2	32
1474	Mn2O3 doping induced the improvement of catalytic performance for oxygen reduction of MnO. International Journal of Hydrogen Energy, 2016, 41, 16087-16093.	3.8	20

#	Article	IF	CITATIONS
1475	High catalytic activity of Co ₃ O ₄ nanoparticles encapsulated in a graphene supported carbon matrix for oxygen reduction reaction. RSC Advances, 2016, 6, 50349-50357.	1.7	13
1476	Three metal complexes derived from 3-methyl-1H-pyrazole-4-carboxylic acid: synthesis, crystal structures, luminescence and electrocatalytic properties. RSC Advances, 2016, 6, 52040-52047.	1.7	14
1477	Enhancement of Bifunctional Activity of the Hybrid Catalyst of Hollow-Net Structure Co ₃ O ₄ and Carbon Nanotubes. Journal of the Electrochemical Society, 2016, 163, F3041-F3050.	1.3	8
1478	Enhanced power generation using nano cobalt oxide anchored nitrogen-decorated reduced graphene oxide as a high-performance air-cathode electrocatalyst in biofuel cells. RSC Advances, 2016, 6, 52556-52563.	1.7	32
1479	In situ morphological transformation and investigation of electrocatalytic properties of cobalt oxide nanostructures toward oxygen evolution. CrystEngComm, 2016, 18, 6008-6012.	1.3	21
1480	Highly efficient electrochemically driven water oxidation by graphene-supported mixed-valent Mn16-containing polyoxometalate. Green Energy and Environment, 2016, 1, 138-143.	4.7	17
1481	In-situ constructing hybrid oxygen electrode of porous Co3O4 nanowire array on La0.8Sr0.2MnO3â^Î for steam electrolysis. International Journal of Hydrogen Energy, 2016, 41, 5428-5436.	3.8	6
1482	Superior electrochemical properties of SiO2-doped Co3O4 hollow nanospheres obtained through nanoscale Kirkendall diffusion for lithium-ion batteries. Journal of Alloys and Compounds, 2016, 680, 366-372.	2.8	15
1483	ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy, 2016, 26, 241-247.	8.2	72
1484	Ba0.5Sr0.5Co0.8Fe0.2O3â^î^î on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. International Journal of Hydrogen Energy, 2016, 41, 10744-10754.	3.8	52
1485	Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nano Research, 2016, 9, 2123-2137.	5.8	116
1486	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	7.3	403
1487	Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 9370-9374.	5. 2	85
1488	Sandwich-like CoP/C nanocomposites as efficient and stable oxygen evolution catalysts. Journal of Materials Chemistry A, 2016, 4, 9072-9079.	5. 2	81
1489	Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Research, 2016, 9, 1300-1309.	5.8	87
1490	Metal–nitrogen (Co-g-C ₃ N ₄) doping of surface-modified single-walled carbon nanohorns for use as an oxygen reduction electrocatalyst. RSC Advances, 2016, 6, 25670-25677.	1.7	36
1491	Disentangling magnetic core/shell morphologies in Co-based nanoparticles. Journal of Materials Chemistry C, 2016, 4, 2302-2311.	2.7	13
1492	Effect of the Oxide–Carbon Heterointerface on the Activity of Co ₃ O ₄ /NRGO Nanocomposites toward ORR and OER. Journal of Physical Chemistry C, 2016, 120, 7949-7958.	1.5	137

#	Article	IF	CITATIONS
1493	Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy, 2016, 29, 268-274.	8.2	55
1494	Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt–nitrogen–carbon framework system. Energy and Environmental Science, 2016, 9, 1661-1667.	15.6	281
1495	Ruthenium oxide coated ordered mesoporous carbon nanofiber arrays: a highly bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 6282-6289.	5.2	63
1496	Controlling uniform deposition of discharge products at the nanoscale for rechargeable Na–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 7238-7244.	5.2	26
1497	Reduced Graphene Oxide Composite ofÂGallium Zinc Oxynitride Photocatalyst with Improved Activity for Overall Water Splitting. Chemical Engineering and Technology, 2016, 39, 142-148.	0.9	17
1498	Shrimp-shell derived carbon nanodots as precursors to fabricate Fe,N-doped porous graphitic carbon electrocatalysts for efficient oxygen reduction in zinc–air batteries. Inorganic Chemistry Frontiers, 2016, 3, 910-918.	3.0	27
1499	Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 509-532.	3.3	46
1500	One-step electrodeposition of Ni–Co–S nanosheets film as a bifunctional electrocatalyst for efficient water splitting. International Journal of Hydrogen Energy, 2016, 41, 7264-7269.	3.8	107
1501	Nanoelectrical investigation and electrochemical performance of nickel-oxide/carbon sphere hybrids through interface manipulation. Journal of Colloid and Interface Science, 2016, 469, 287-295.	5.0	10
1502	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29, 149-165.	8.2	177
1503	Creation of Ge–Nx–Cy Configures in Carbon Nanotubes: Origin of Enhanced Electrocatalytic Performance for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 10383-10391.	4.0	23
1504	Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions. Chemical Communications, 2016, 52, 6439-6442.	2.2	42
1505	Enhanced electrocatalytic oxygen evolution of α-Co(OH) ₂ nanosheets on carbon nanotube/polyimide films. Nanoscale, 2016, 8, 9667-9675.	2.8	133
1506	Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts. Journal of Materials Chemistry A, 2016, 4, 7422-7429.	5.2	71
1507	Iron and nickel co-doped cobalt hydroxide nanosheets with enhanced activity for oxygen evolution reaction. RSC Advances, 2016, 6, 42255-42262.	1.7	37
1508	Effect of Molybdenum Trioxide-Loaded Graphene and Cuprous Oxide-Loaded Graphene on Flame Retardancy and Smoke Suppression of Polyurethane Elastomer. Industrial & Engineering Chemistry Research, 2016, 55, 4930-4941.	1.8	36
1509	Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis. Nanoscale, 2016, 8, 10731-10738.	2.8	78
1510	Morphology controlled La2O3/Co3O4/MnO2–CNTs hybrid nanocomposites with durable bi-functional air electrode in high-performance zinc–air energy storage. Applied Energy, 2016, 175, 495-504.	5.1	68

#	Article	IF	CITATIONS
1511	Low-cost adsorbent derived and in situ nitrogen/iron co-doped carbon as efficient oxygen reduction catalyst in microbial fuel cells. Bioresource Technology, 2016, 214, 348-354.	4.8	55
1512	Mesoporous cobalt hydroxide prepared using liquid crystal template for efficient oxygen evolution in alkaline media. Electrochimica Acta, 2016, 207, 177-186.	2.6	36
1513	Unipolar resistive switching effect and mechanism of solution-processed spinel Co3O4 thin films. Materials and Design, 2016, 103, 230-235.	3.3	24
1514	Nanoporous Mn-based electrocatalysts through thermal conversion of cyano-bridged coordination polymers toward ultra-high efficiency hydrogen peroxide production. Journal of Materials Chemistry A, 2016, 4, 9266-9274.	5.2	51
1515	CoFe ₂ O ₄ nanoparticles anchored on bowl-like carbon backbone for enhanced reversible lithium storage. RSC Advances, 2016, 6, 50153-50157.	1.7	13
1516	Cobalt oxide anchored on nitrogen and sulfur dual-doped graphene foam as an effective oxygen electrode catalyst in alkaline media. Applied Materials Today, 2016, 4, 1-8.	2.3	34
1517	Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil–Water Separation. Journal of the American Chemical Society, 2016, 138, 6360-6363.	6.6	212
1518	NiCo2O4@La0.8Sr0.2MnO3 coreâ€"shell structured nanorods as efficient electrocatalyst for Li O2 battery with enhanced performances. Journal of Power Sources, 2016, 319, 19-26.	4.0	43
1519	Unusually Huge Charge Storage Capacity of Mn ₃ O ₄ â€"Graphene Nanocomposite Achieved by Incorporation of Inorganic Nanosheets. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13360-13372.	4.0	46
1520	Photoelectrochemical Solar Fuel Production. , 2016, , .		87
1521	Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction. Nano Energy, 2016, 25, 100-109.	8.2	124
1522	Bulk Production of Nonprecious Metal Catalysts from Cheap Starch as Precursor and Their Excellent Electrochemical Activity. ACS Sustainable Chemistry and Engineering, 2016, 4, 3235-3244.	3.2	22
1523	The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. , 2016, , 41-104.		81
1524	Hollow CoP nanopaticle/N-doped graphene hybrids as highly active and stable bifunctional catalysts for full water splitting. Nanoscale, 2016, 8, 10902-10907.	2.8	158
1525	In situ grown Co3O4 on hydrogen storage alloys for enhanced electrochemical performance. International Journal of Hydrogen Energy, 2016, 41, 8946-8953.	3.8	26
1526	Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2016, 41, 8847-8854.	3.8	104
1527	Cobalt phosphate nanoparticles decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 8155-8160.	5.2	222
1528	An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide. Nanotechnology, 2016, 27, 23LT01.	1.3	54

#	Article	IF	CITATIONS
1529	Facilely prepared Fe ₃ O ₄ /nitrogen-doped graphene quantum dot hybrids as a robust nonenzymatic catalyst for visual discrimination of phenylenediamine isomers. Nanoscale, 2016, 8, 10814-10822.	2.8	71
1530	Facile synthesis of highly active and durable PdM/C (M = Fe, Mn) nanocatalysts for the oxygen reduction reaction in an alkaline medium. Journal of Materials Chemistry A, 2016, 4, 8337-8349.	5.2	51
1531	Highly acid-durable carbon coated Co3O4 nanoarrays as efficient oxygen evolution electrocatalysts. Nano Energy, 2016, 25, 42-50.	8.2	187
1532	An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy and Environmental Science, 2016, 9, 2020-2024.	15.6	221
1533	CoO nanoparticles embedded in three-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions. Carbon, 2016, 106, 84-92.	5.4	134
1534	Facile Synthesis of a N-Doped Fe ₃ C@CNT/Porous Carbon Hybrid for an Advanced Oxygen Reduction and Water Oxidation Electrocatalyst. Journal of Physical Chemistry C, 2016, 120, 11006-11013.	1.5	54
1535	Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy and Environmental Science, 2016, 9, 2257-2261.	15.6	535
1536	Enhancing Activity and Stability of Cobalt Oxide Electrocatalysts for the Oxygen Evolution Reaction via Transition Metal Doping. Journal of the Electrochemical Society, 2016, 163, F3020-F3028.	1.3	55
1537	Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 10820-10827.	5.2	54
1538	Facile Synthesis of Co ₃ O ₄ /Nitrogen-Doped Graphene Composite with Enhanced Electrochemical Performance. Materials Science Forum, 2016, 847, 14-21.	0.3	5
1539	Co ₃ ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 9204-9212.	5.2	154
1540	MOF Derived Nonstoichiometric Ni <i></i> O _{4â^²} <i>_y</i> Nanocage for Superior Electrocatalytic Oxygen Evolution. Advanced Materials Interfaces, 2016, 3, 1600632.	1.9	111
1541	Application of graphene in dye and quantum dots sensitized solar cell. Solar Energy, 2016, 137, 531-550.	2.9	32
1542	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	5.2	65
1543	Efficient catalyst of defective CeO2â^'x and few-layer carbon hybrid for oxygen reduction reaction. Journal of Alloys and Compounds, 2016, 688, 613-618.	2.8	41
1544	Cobalt nanoparticles encapsulated in N-doped graphene nanoshells as an efficient cathode electrocatalyst for a mechanical rechargeable zinc–air battery. RSC Advances, 2016, 6, 90069-90075.	1.7	22
1545	Ultrafine Co ₂ P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15501-15510.	5.2	90
1546	Pulsed laser deposition of porous N-carbon supported cobalt (oxide) thin films for highly efficient oxygen evolution. Chemical Communications, 2016, 52, 11947-11950.	2.2	27

#	Article	IF	Citations
1547	In Situ Growth of Co ₃ O ₄ Nanoparticles on Interconnected Nitrogenâ€Doped Graphene Nanoribbons as Efficient Oxygen Reduction Reaction Catalyst. ChemNanoMat, 2016, 2, 972-979.	1.5	10
1548	Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles. Energy and Environmental Science, 2016, 9, 3290-3301.	15.6	138
1549	Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO ₂ reduction. Journal of Materials Chemistry A, 2016, 4, 15353-15360.	5.2	90
1550	Highly Dispersed Polyoxometalateâ€Doped Porous Co ₃ O ₄ Water Oxidation Photocatalysts Derived from POM@MOF Crystalline Materials. Chemistry - A European Journal, 2016, 22, 15513-15520.	1.7	87
1551	LaNiO ₃ -nanorod/graphene composite as an efficient bi-functional catalyst for zinc–air batteries. RSC Advances, 2016, 6, 86386-86394.	1.7	55
1552	In situ anchoring of Co9S8 nanoparticles on N and S co-doped porous carbon tube as bifunctional oxygen electrocatalysts. NPG Asia Materials, 2016, 8, e308-e308.	3.8	164
1553	Novel Hydrogel-Derived Bifunctional Oxygen Electrocatalyst for Rechargeable Air Cathodes. Nano Letters, 2016, 16, 6516-6522.	4.5	241
1554	A general melt-injection-decomposition route to oriented metal oxide nanowire arrays. Applied Surface Science, 2016, 390, 760-764.	3.1	9
1555	The effect of urea on microstructures of Ni3S2 on nickel foam and its hydrogen evolution reaction. Journal of Solid State Chemistry, 2016, 243, 106-110.	1.4	14
1556	Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Materials and Design, 2016, 109, 162-170.	3.3	28
1557	Graphene-like holey Co3O4 nanosheets as a highly efficient catalyst for oxygen evolution reaction. Nano Energy, 2016, 30, 267-275.	8.2	179
1558	Layered Transition Metal Oxynitride Co ₃ Mo ₂ O _{<i>x</i>} N _{6â€"<i>x</i>} /C Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 29536-29542.	4.0	12
1559	Adsorption of CO $$ inf $$ 2 $$ /inf $$ and CO gas on impurity-decorated phosphorenes: A first-principles study. , 2016, , .		1
1560	Electronic Coupling of Cobalt Nanoparticles to Nitrogenâ€Doped Graphene for Oxygen Reduction and Evolution Reactions. ChemSusChem, 2016, 9, 3067-3073.	3.6	21
1561	Pt nanoparticle and Fe,N-codoped 3D graphene as synergistic electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 335, 31-37.	4.0	32
1562	Kohlenstoffbasierte Metallfreie Katalysatoren f $\tilde{A}^{1}\!\!/\!\!4$ r die Elektrokatalyse jenseits der ORR. Angewandte Chemie, 2016, 128, 11910-11933.	1.6	58
1563	Oneâ€Pot Microwaveâ€Assisted Synthesis of Reduced Graphene Oxide/Iron Oxide Nanocomposite Catalyst for the Oxygen Reduction Reaction. ChemistrySelect, 2016, 1, 3640-3646.	0.7	22
1564	Nanostructured Bifunctional Redox Electrocatalysts. Small, 2016, 12, 5656-5675.	5.2	174

#	Article	IF	CITATIONS
1565	Nitrogen, Phosphorus, and Fluorine Triâ€doped Graphene as a Multifunctional Catalyst for Selfâ€Powered Electrochemical Water Splitting. Angewandte Chemie, 2016, 128, 13490-13494.	1.6	104
1566	Shaping electrocatalysis through tailored nanomaterials. Nano Today, 2016, 11, 587-600.	6.2	133
1567	Ti ³⁺ -Promoted High Oxygen-Reduction Activity of Pd Nanodots Supported by Black Titania Nanobelts. ACS Applied Materials & Discrete Supported by Black Titania Nanobelts. ACS Applied Materials & Discrete Supported by Black Titania Nanobelts. ACS Applied Materials & Discrete Supported by Black Titania Nanobelts. ACS Applied Materials & Discrete Supported by Black Titania Nanobelts.	4.0	50
1568	Facile one-pot synthesis of a nitrogen-doped mesoporous carbon architecture with cobalt oxides encapsulated in graphitic layers as a robust bicatalyst for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 16920-16927.	5.2	55
1569	In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale, 2016, 8, 18134-18142.	2.8	52
1570	Tuning Nanowires and Nanotubes for Efficient Fuelâ€Cell Electrocatalysis. Advanced Materials, 2016, 28, 10117-10141.	11.1	228
1571	Co/Co9S8@S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media. Nano Energy, 2016, 30, 93-102.	8.2	260
1572	Insights into the Catalytic Activity of Barium Carbonate for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 22895-22902.	1.5	15
1573	Co ₃ (OH) ₂ (HPO ₄) ₂ as a novel photocatalyst for O ₂ evolution under visible-light irradiation. Catalysis Science and Technology, 2016, 6, 8080-8088.	2.1	27
1574	Spinel CoMn ₂ O ₄ nanoparticles supported on a nitrogen and phosphorus dual doped graphene aerogel as efficient electrocatalysts for the oxygen reduction reaction. RSC Advances, 2016, 6, 96436-96444.	1.7	23
1575	A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 29356-29364.	4.0	36
1576	Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 30564-30575.	4.0	47
1577	Tracking the structural evolution at atomic-scale in the spinel Mn 3 O 4 induced by electrochemical cycling. Electrochemistry Communications, 2016, 72, 166-170.	2.3	7
1578	Electrochemical characterization of temperature dependence of plasma-treated cobalt-oxide catalyst for oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2016, 41, 22554-22559.	3.8	5
1579	Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst. Nano Energy, 2016, 30, 368-378.	8.2	229
1580	Intrinsically Conductive Perovskite Oxides with Enhanced Stability and Electrocatalytic Activity for Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 7865-7871.	5.5	51
1581	Controllable localization of carbon nanotubes on the holey edge of graphene: an efficient oxygen reduction electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2016, 4, 18240-18247.	5.2	31
1582	Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. Energy, 2016, 116, 392-401.	4.5	34

#	Article	IF	CITATIONS
1583	Remarkably High Heterogeneous Electron Transfer Activity of Carbon-Nanotube-Supported Reduced Graphene Oxide. Chemistry of Materials, 2016, 28, 7422-7432.	3.2	16
1584	Edge-selectively phosphorus-doped few-layer graphene as an efficient metal-free electrocatalyst for the oxygen evolution reaction. Chemical Communications, 2016, 52, 13008-13011.	2.2	87
1585	Functionalized-Graphene Composites: Fabrication and Applications in Sustainable Energy and Environment. Chemistry of Materials, 2016, 28, 8082-8118.	3.2	179
1586	Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 2016, 11, 601-625.	6.2	738
1587	Hybridization of inorganic CoB noncrystal with graphene and its Kubas-enhanced hydrogen adsorption at room temperature. RSC Advances, 2016, 6, 93238-93244.	1.7	7
1588	N-, Fe-Doped carbon sphere/oriented carbon nanofiber nanocomposite with synergistically enhanced electrochemical activities. RSC Advances, 2016, 6, 92739-92747.	1.7	1
1589	Effective hydrolysis of sodium borohydride driven by self-supported cobalt oxide nanorod array for on-demand hydrogen generation. Catalysis Communications, 2016, 87, 94-97.	1.6	39
1590	Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Materials, 2016, 8, e312-e312.	3.8	82
1591	Nitrogen, Phosphorus, and Fluorine Triâ€doped Graphene as a Multifunctional Catalyst for Selfâ€Powered Electrochemical Water Splitting. Angewandte Chemie - International Edition, 2016, 55, 13296-13300.	7.2	517
1592	CoP Nanoparticles in Situ Grown in Three-Dimensional Hierarchical Nanoporous Carbons as Superior Electrocatalysts for Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20720-20729.	4.0	67
1593	3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale, 2016, 8, 15414-15447.	2.8	127
1594	Hydrothermal Synthesis of a rGO Nanosheet Enwrapped NiFe Nanoalloy for Superior Electrocatalytic Oxygen Evolution Reactions. Chemistry - A European Journal, 2016, 22, 14480-14483.	1.7	29
1595	Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Research, 2016, 9, 2234-2243.	5.8	215
1596	Effect of copper oxide electrocatalyst on CO2 reduction using Co3O4 as anode. Journal of Science: Advanced Materials and Devices, 2016, 1, 330-336.	1.5	5
1597	The direct growth of highly dispersed CoO nanoparticles on mesoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 70763-70769.	1.7	12
1598	A Facile Route to Bimetal and Nitrogenâ€Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small, 2016, 12, 4193-4199.	5 . 2	150
1599	Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co ₃ O ₄ Nanosheets as a Highly Selective Anode Catalyst. ACS Central Science, 2016, 2, 538-544.	5.3	120
1600	NiCo 2 O 4 hexagonal nanoplates anchored on reduced graphene oxide sheets with enhanced electrocatalytic activity and stability for methanol and water oxidation. Electrochimica Acta, 2016, 213, 717-729.	2.6	131

#	Article	IF	Citations
1601	Cu,N-codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 21431-21439.	4.0	205
1602	Astridia velutina-like S, N-codoped hierarchical porous carbon from silk cocoon for superior oxygen reduction reaction. RSC Advances, 2016, 6, 73560-73565.	1.7	15
1603	Recent Progress in 1D Air Electrode Nanomaterials for Enhancing the Performance of Nonaqueous Lithium–Oxygen Batteries. ChemNanoMat, 2016, 2, 616-634.	1.5	24
1604	<i>N</i> â€Doped Subâ€3â€nm Co Nanoparticles as Highly Efficient and Durable Aerobic Oxidative Coupling Catalysts. Chemistry - an Asian Journal, 2016, 11, 2594-2601.	1.7	12
1605	Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species. Journal of Materials Science, 2016, 51, 10323-10349.	1.7	77
1606	Highly efficient iron phthalocyanine based porous carbon electrocatalysts for the oxygen reduction reaction. RSC Advances, 2016, 6, 78737-78742.	1.7	14
1607	Stabilizing nickel sulfide nanoparticles with an ultrathin carbon layer for improved cycling performance in sodium ion batteries. Nano Research, 2016, 9, 3162-3170.	5.8	65
1608	Coralloid Co ₂ P ₂ O ₇ Nanocrystals Encapsulated by Thin Carbon Shells for Enhanced Electrochemical Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22534-22544.	4.0	91
1609	Nano ceria supported nitrogen doped graphene as a highly stable and methanol tolerant electrocatalyst for oxygen reduction. RSC Advances, 2016, 6, 77100-77104.	1.7	27
1610	Co 3 O 4 supported on N, P-doped carbon as a bifunctional electrocatalyst for oxygen reduction and evolution reactions. Chinese Journal of Catalysis, 2016, 37, 1249-1256.	6.9	29
1611	A three-dimensional nitrogen-doped graphene aerogel-activated carbon composite catalyst that enables low-cost microfluidic microbial fuel cells with superior performance. Journal of Materials Chemistry A, 2016, 4, 15913-15919.	5 . 2	68
1612	Grapheneâ€Coated ZnO and SiO ₂ as Supports for CoO Nanoparticles with Enhanced Reducibility. ChemPhysChem, 2016, 17, 3055-3061.	1.0	6
1613	3D architecture reduced graphene oxide-MoS 2 composite: Preparation and excellent electromagnetic wave absorption performance. Composites Part A: Applied Science and Manufacturing, 2016, 90, 424-432.	3.8	129
1614	From channeled to hollow CoO octahedra: controlled growth, structural evolution and energetic applications. CrystEngComm, 2016, 18, 6849-6859.	1.3	22
1615	A class of transition metal-oxide@MnOx core–shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 13881-13889.	5. 2	42
1616	Is Ammonium Peroxydisulfate Indispensable for Preparation of Anilineâ€Derived Iron–Nitrogen–Carbon Electrocatalysts?. ChemSusChem, 2016, 9, 2301-2306.	3.6	14
1617	Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochimica Acta, 2016, 214, 94-102.	2.6	53
1618	Oxygen reduction reaction of Fe-Polyaniline/Carbon Nanotube and Pt/C catalysts in alkali media. International Journal of Hydrogen Energy, 2016, 41, 16903-16912.	3.8	20

#	Article	IF	CITATIONS
1619	Effects of halogen doping on nanocarbon catalysts synthesized by a solution plasma process for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 21843-21851.	1.3	38
1620	3D Macroscopic Graphene Assemblies. , 2016, , 281-294.		0
1621	MoS ₂ /WS ₂ â€Graphene Composites through Thermal Decomposition of Tetrathiomolybdate/Tetrathiotungstate for Proton/Oxygen Electroreduction. ChemPhysChem, 2016, 17, 2890-2896.	1.0	12
1622	Recent developments in copper-based, non-noble metal electrocatalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1049-1061.	6.9	59
1623	The conversion of CoSe 2 to Co oxide under the electrochemical water oxidation condition. International Journal of Hydrogen Energy, 2016, 41, 13469-13475.	3.8	34
1624	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	2.2	83
1625	Enhancing oxygen reduction reaction durability via coating graphene layers on iron-nitrogen supported carbon nanotubes. RSC Advances, 2016, 6, 73581-73588.	1.7	8
1626	One pot, rapid synthesis of Co3O4 by solution combustion method and its electrochemical properties in different electrolytes. Journal of Electroanalytical Chemistry, 2016, 776, 152-161.	1.9	17
1627	High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. Journal of Materials Chemistry A, 2016, 4, 13271-13279.	5.2	62
1628	One-Pot Synthesis of Fe(III)–Polydopamine Complex Nanospheres: Morphological Evolution, Mechanism, and Application of the Carbonized Hybrid Nanospheres in Catalysis and Zn–Air Battery. Langmuir, 2016, 32, 9265-9275.	1.6	78
1629	Low Band Gap Benzimidazole COF Supported Ni ₃ N as Highly Active OER Catalyst. Advanced Energy Materials, 2016, 6, 1601189.	10.2	182
1630	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammonia–Borane. Angewandte Chemie, 2016, 128, 12129-12133.	1.6	22
1631	Nanocubic-Co3O4 coupled with nitrogen-doped carbon nanofiber network: A synergistic binder-free catalyst toward oxygen reduction reactions. Composites Communications, 2016, 1, 15-19.	3.3	27
1632	Copper oxide as a synergistic catalyst for the oxygen reduction reaction on La0.6Sr0.4Co0.2Fe0.8O3â^'Î perovskite structured electrocatalyst. Journal of Power Sources, 2016, 329, 281-289.	4.0	28
1633	Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016, 27, 526-534.	8.2	166
1634	Transitionâ€Metal (Co, Ni, and Fe)â€Based Electrocatalysts for the Water Oxidation Reaction. Advanced Materials, 2016, 28, 9266-9291.	11.1	1,392
1635	Strategic Preparation of Efficient and Durable NiCo Alloy Supported Nâ€Doped Porous Graphene as an Oxygen Evolution Electrocatalyst: A Theoretical and Experimental Investigation. Advanced Materials Interfaces, 2016, 3, 1600532.	1.9	50
1636	Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. Carbon, 2016, 109, 632-639.	5.4	74

#	Article	IF	CITATIONS
1637	Iron–Nickel Nitride Nanostructures in Situ Grown on Surface-Redox-Etching Nickel Foam: Efficient and Ultrasustainable Electrocatalysts for Overall Water Splitting. Chemistry of Materials, 2016, 28, 6934-6941.	3.2	453
1638	High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353, 1413-1416.	6.0	670
1639	Core/shell FePd/Pd catalyst with a superior activity to Pt in oxygen reduction reaction. Science Bulletin, 2016, 61, 1248-1254.	4.3	17
1640	Noncovalent Immobilization of a Pyrene-Modified Cobalt Corrole on Carbon Supports for Enhanced Electrocatalytic Oxygen Reduction and Oxygen Evolution in Aqueous Solutions. ACS Catalysis, 2016, 6, 6429-6437.	5.5	170
1641	A Highâ€Performance Baseâ€Metal Approach for the Oxidative Esterification of 5â€Hydroxymethylfurfural. ChemCatChem, 2016, 8, 2907-2911.	1.8	58
1642	Substrateâ€Assisted Deposition of Metal Oxides on Threeâ€Dimensional Porous Reduced Graphene Oxide Networks as Bifunctional Hybrid Electrocatalysts for the Oxygen Evolution and Oxygen Reduction Reactions. ChemCatChem, 2016, 8, 2808-2816.	1.8	12
1643	Synthesis of novel hollow graphitic vesicle-supported Pt nanoparticles for oxygen reduction reaction. Carbon, 2016, 109, 505-516.	5.4	11
1644	Defectiveâ€Activatedâ€Carbonâ€Supported Mn–Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. Advanced Materials, 2016, 28, 8771-8778.	11.1	175
1645	Cu _x Co _{1â^'<i>x</i>} O Nanoparticles on Graphene Oxide as A Synergistic Catalyst for Highâ€Efficiency Hydrolysis of Ammoniaâ€"Borane. Angewandte Chemie - International Edition, 2016, 55, 11950-11954.	7.2	186
1646	Controllable fabrication of urchin-like Co ₃ O ₄ hollow spheres for high-performance supercapacitors and lithium-ion batteries. Dalton Transactions, 2016, 45, 15155-15161.	1.6	43
1647	Metal coordination enhanced Ni–Co@N-doped porous carbon core–shell microsphere bi-functional electrocatalyst and its application in rechargeable zinc/air batteries. RSC Advances, 2016, 6, 83386-83392.	1.7	8
1648	Low Ptâ€Loaded Mesoporous Sodium Germanate as a Highâ€Performance Electrocatalyst for the Oxygen Reduction Reaction. ChemSusChem, 2016, 9, 2337-2342.	3.6	10
1649	A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Scientific Reports, 2016, 6, 37752.	1.6	58
1650	Nitrogen-boron Dipolar-doped Nanocarbon as a High-efficiency Electrocatalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 222, 481-487.	2.6	37
1651	Nitrogen Doping in Oxygen-Deficient Ca ₂ Fe ₂ O ₅ : A Strategy for Efficient Oxygen Reduction Oxide Catalysts. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34387-34395.	4.0	46
1652	Electrochemical insights into bacterial respiration upon polarized substrates: A proposal for tricking bacteria and compelling them to exhibit desired activities. Journal of Electroanalytical Chemistry, 2016, 783, 125-131.	1.9	2
1653	Metal-free N-doped carbon nanofibers as an efficient catalyst for oxygen reduction reactions in alkaline and acid media. Nanotechnology, 2016, 27, 505402.	1.3	19
1654	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	1.7	10

#	Article	IF	Citations
1655	Nitrogen Functionalized Few Layer Graphene Derived from Metal-Organic Compound: A Catalyst for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 216, 457-466.	2.6	13
1656	Vanadium Carbide Based Composite for High Performance Oxygen Reduction Reaction and Lithium Ion Batteries. ChemistrySelect, 2016, 1, 2682-2686.	0.7	13
1657	Nitrogenâ€Doped Graphene Ribbon Assembled Coreâ€"Sheath MnO@Graphene Scrolls as Hierarchically Ordered 3D Porous Electrodes for Fast and Durable Lithium Storage. Advanced Functional Materials, 2016, 26, 7754-7765.	7.8	245
1658	NiMnO ₃ /NiMn ₂ O ₄ Oxides Synthesized via the Aid of Pollen: Ilmenite/Spinel Hybrid Nanoparticles for Highly Efficient Bifunctional Oxygen Electrocatalysis. ACS Applied Materials & Date: Applied Ma	4.0	88
1659	MOF-Derived Zn-Doped CoSe ₂ as an Efficient and Stable Free-Standing Catalyst for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26902-26907.	4.0	182
1660	Facile synthesis of ZnCo ₂ O ₄ mesoporous structures with enhanced electrocatalytic oxygen evolution reaction properties. RSC Advances, 2016, 6, 92699-92704.	1.7	38
1661	Enhanced electrocatalytic performance of perovskite supported iron oxide nanoparticles for oxygen reduction reaction. RSC Advances, 2016, 6, 94826-94832.	1.7	14
1662	Oxidation of Cobalt by Oxygen Bombardment at Room Temperature. Journal of Physical Chemistry C, 2016, 120, 22421-22425.	1.5	14
1663	A catalyst-free synthesis of B, N co-doped graphene nanostructures with tunable dimensions as highly efficient metal free dual electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 16469-16475.	5.2	158
1664	Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis, 2016, 6, 5887-5903.	5 . 5	1,077
1665	Transition Metal Carbides and Nitrides in Energy Storage and Conversion. Advanced Science, 2016, 3, 1500286.	5.6	1,001
1666	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalysis beyond the ORR. Angewandte Chemie - International Edition, 2016, 55, 11736-11758.	7.2	598
1667	Cobalt Ferrite Bearing Nitrogen-Doped Reduced Graphene Oxide Layers Spatially Separated with Microporous Carbon as Efficient Oxygen Reduction Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20730-20740.	4.0	41
1668	Ni- and Mn-Promoted Mesoporous Co ₃ O ₄ : A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20802-20813.	4.0	191
1669	Cobalt–Nitrogen Coâ€doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells. ChemElectroChem, 2016, 3, 1455-1465.	1.7	66
1670	Oneâ€pot Synthesized Co/Co ₃ O ₄ â€Nâ€Graphene Composite as Electrocatalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Electroanalysis, 2016, 28, 2435-2443.	1.5	48
1671	Flame synthesis of nitrogen doped carbon for the oxygen reduction reaction and non-enzymatic methyl parathion sensor. RSC Advances, 2016, 6, 71507-71516.	1.7	38
1672	Eggâ€Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600794.	10.2	177

#	Article	IF	CITATIONS
1673	The Effect of KOH Treatment on the Chemical Structure and Electrocatalytic Activity of Reduced Graphene Oxide Materials. Chemistry - A European Journal, 2016, 22, 11435-11440.	1.7	5
1674	Heteroepitaxial Growth of Wellâ€Dispersed Co 3 O 4 Nanocatalysts on Porous ZnO Nanoplates via Successive Hydrothermal Deposition. ChemNanoMat, 2016, 2, 946-951.	1.5	10
1675	Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal–air batteries. RSC Advances, 2016, 6, 71122-71133.	1.7	20
1676	Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.	5. 2	87
1677	Superaerophobic Electrode with Metal@Metalâ€Oxide Powder Catalyst for Oxygen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5998-6004.	7.8	88
1678	Efficient water oxidation through strongly coupled graphitic C ₃ N ₄ coated cobalt hydroxide nanowires. Journal of Materials Chemistry A, 2016, 4, 12940-12946.	5.2	88
1679	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	5.6	109
1680	Nonâ€Pt Nanostructured Catalysts for Oxygen Reduction Reaction: Synthesis, Catalytic Activity and its Key Factors. Advanced Energy Materials, 2016, 6, 1600458.	10.2	160
1681	An Efficient Electrocatalyst Derived from Bamboo Leaves for the Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 1466-1470.	1.7	14
1682	Graphene oxide-Laponite hybrid from highly stable aqueous dispersion. Applied Clay Science, 2016, 132-133, 105-113.	2.6	18
1683	Mixed-phase mullite electrocatalyst for pH-neutral oxygen reduction in magnesium-air batteries. Nano Energy, 2016, 27, 8-16.	8.2	81
1684	Nitrogen, phosphorus co-doped carbon dots/CoS ₂ hybrid for enhanced electrocatalytic hydrogen evolution reaction. RSC Advances, 2016, 6, 66893-66899.	1.7	21
1685	Synergistically Enhanced Electrocatalytic Activity of Sandwich-like N-Doped Graphene/Carbon Nanosheets Decorated by Fe and S for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19533-19541.	4.0	68
1686	Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale, 2016, 8, 14793-14802.	2.8	22
1687	Efficient aqueous hydrodeoxygenation of vanillin over a mesoporous carbon nitride-modified Pd nanocatalyst. RSC Advances, 2016, 6, 69045-69051.	1.7	33
1688	Non-precious Mn _{1.5} Co _{1.5} O ₄ –FeN _x /C nanocomposite as a synergistic catalyst for oxygen reduction in alkaline media. RSC Advances, 2016, 6, 69167-69176.	1.7	4
1689	Mo Doping Induced More Active Sites in Urchinâ€Like W ₁₈ O ₄₉ Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 5778-5786.	7.8	177
1690	Reactive Multifunctional Templateâ€Induced Preparation of Feâ€Nâ€Doped Mesoporous Carbon Microspheres Towards Highly Efficient Electrocatalysts for Oxygen Reduction. Advanced Materials, 2016, 28, 7948-7955.	11.1	342

#	ARTICLE	IF	CITATIONS
1691	A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese Journal of Catalysis, 2016, 37, 1127-1133.	6.9	17
1692	Mn3O4-decorated Co3O4 nanoparticles supported on graphene oxide: Dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy, 2016, 27, 185-195.	8.2	96
1693	Cobalt and Nitrogen Codoped Graphene with Inserted Carbon Nanospheres as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. ACS Sustainable Chemistry and Engineering, 2016, 4, 4131-4136.	3.2	101
1694	Exploring the kinetic and thermodynamic aspects of four-electron electrochemical reactions: electrocatalysis of oxygen evolution by metal oxides and biological systems. Physical Chemistry Chemical Physics, 2016, 18, 22364-22372.	1.3	20
1695	Cu ₂ ZnSnS ₄ Nanocrystals as Highly Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 24265-24270.	1.5	17
1696	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	19.8	1,974
1697	N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation. Chemical Communications, 2016, 52, 13588-13591.	2.2	45
1698	Triple-enzyme mimetic activity of Co ₃ O ₄ nanotubes and their applications in colorimetric sensing of glutathione. New Journal of Chemistry, 2016, 40, 10056-10063.	1.4	48
1699	A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. Journal of Materials Chemistry A, 2016, 4, 17587-17603.	5.2	1,037
1700	Nanohybrids of RGO nanosheets and 2-dimensional porous Co ₃ O ₄ nanoflakes working as highly efficient counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 10323-10328.	2.7	30
1701	In Situ Spectroscopic Identification of $\hat{1}/4$ -OO Bridging on Spinel Co ₃ O ₄ Water Oxidation Electrocatalyst. Journal of Physical Chemistry Letters, 2016, 7, 4847-4853.	2.1	136
1702	In situ preparation of Ca _{0.5} Mn _{0.5} O/C as a novel high-activity catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 19147-19153.	5.2	17
1703	Synergic Effect of Active Sites in Zincâ€Modified ZSMâ€5 Zeolites as Revealed by Highâ€Field Solidâ€State NMR Spectroscopy. Angewandte Chemie - International Edition, 2016, 55, 15826-15830.	7.2	59
1704	Spent Tea Leaf Templating of Cobalt-Based Mixed Oxide Nanocrystals for Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32488-32495.	4.0	43
1705	Growth and Deposition of Au Nanoclusters on Polymer-wrapped Graphene and Their Oxygen Reduction Activity. Scientific Reports, 2016, 6, 21314.	1.6	37
1706	General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent. Scientific Reports, 2016, 6, 37174.	1.6	21
1707	Synergic Effect of Active Sites in Zincâ€Modified ZSMâ€5 Zeolites as Revealed by Highâ€Field Solidâ€6tate NMR Spectroscopy. Angewandte Chemie, 2016, 128, 16058-16062.	1.6	12
1708	Facile synthesis of perovskite LaMnO3+ \hat{l} nanoparticles for the oxygen reduction reaction. Journal of Catalysis, 2016, 344, 578-582.	3.1	30

#	Article	IF	CITATIONS
1709	Pt-modified nitrogen doped reduced graphene oxide: A powerful electrocatalyst for direct CO2 reduction to methanol. Journal of Electroanalytical Chemistry, 2016, 783, 82-89.	1.9	34
1710	Voltammetric Studies of the Mechanism of the Oxygen Reduction in Alkaline Media at the Spinels Co3O4and NiCo2O4. Journal of the Electrochemical Society, 2016, 163, H884-H890.	1.3	21
1711	Application of a Nanostructured Composite Material Constructed by Selfâ€Assembly of Titanoniobate Nanosheets and Cobalt Porphyrin to Electrocatalytic Reduction of Oxygen. Chinese Journal of Chemistry, 2016, 34, 1021-1026.	2.6	5
1712	In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn–air batteries. Nanoscale, 2016, 8, 20048-20055.	2.8	122
1713	Systematic shape evolution of Co ₃ O ₄ nanocrystals from octahedra to spheres under the influence of C ₂ O ₄ ^{2â~²} and PVP. CrystEngComm, 2016, 18, 9299-9306.	1.3	12
1714	Co-Doped NiSe nanowires on nickel foam via a cation exchange approach as efficient electrocatalyst for enhanced oxygen evolution reaction. RSC Advances, 2016, 6, 106832-106836.	1.7	46
1715	An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 781, 198-203.	1.9	19
1716	Label-free electrochemical immunosensor based on enhanced signal amplification between Au@Pd and CoFe2O4/graphene nanohybrid. Scientific Reports, 2016, 6, 23391.	1.6	31
1717	Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction. Nanotechnology, 2016, 27, 445402.	1.3	20
1718	Enhanced Peroxidaseâ€Like Properties of Graphene–Heminâ€Composite Decorated with Au Nanoflowers as Electrochemical Aptamer Biosensor for the Detection of K562 Leukemia Cancer Cells. Chemistry - A European Journal, 2016, 22, 18001-18008.	1.7	42
1719	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078
1720	Freeâ€Standing NiO@C Nanobelt as an Efficient Catalyst for Water Splitting. ChemCatChem, 2016, 8, 3484-3489.	1.8	19
1721	Heteroatom (N or Nâ€5)â€Doping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO ₂ Capture and Energy Applications. Advanced Functional Materials, 2016, 26, 8651-8661.	7.8	182
1722	Three-Dimensional Phosphorus-Doped Graphitic-C ₃ N ₄ Self-Assembly with NH ₂ -Functionalized Carbon Composite Materials for Enhanced Oxygen Reduction Reaction. Langmuir, 2016, 32, 12569-12578.	1.6	66
1723	A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2016, 30, 503-510.	8.2	140
1724	Mesoscopic Fabric Sheet Racks and Blocks as Catalysts with Efficiently Exposed Surfaces for Methanol and Ethanol Electrooxidation. Advanced Materials Interfaces, 2016, 3, 1600743.	1.9	46
1725	A General Approach to Preferential Formation of Active Fe–N _{<i>x</i>} Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 15046-15056.	6.6	663
1726	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nature Communications, 2016, 7, 12876.	5.8	568

#	Article	IF	Citations
1727	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	5.8	334
1728	Hierarchical porous activated carbon in OER with high efficiency. RSC Advances, 2016, 6, 102422-102427.	1.7	23
1729	A Responsive Battery with Controlled Energy Release. Angewandte Chemie - International Edition, 2016, 55, 14643-14647.	7.2	37
1730	Visualization of the electrocatalytic activity of three-dimensional MoSe2@reduced graphene oxide hybrid nanostructures for oxygen reduction reaction. Nano Research, 2016, 9, 3795-3811.	5.8	34
1731	Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction. Nature Communications, 2016, 7, 12362.	5.8	190
1732	A Responsive Battery with Controlled Energy Release. Angewandte Chemie, 2016, 128, 14863-14867.	1.6	23
1733	Highly active Co–Mo–C/NRGO composite as an efficient oxygen electrode for water–oxygen redox cycle. Journal of Materials Chemistry A, 2016, 4, 18100-18106.	5.2	40
1734	High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets. Nanotechnology, 2016, 27, 405401.	1.3	9
1735	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
1736	Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery. Scientific Reports, 2016, 6, 33590.	1.6	57
1737	<i>In silico</i> engineering of grapheneâ€based van der Waals heterostructured nanohybrids for electronics and energy applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 551-570.	6.2	32
1738	Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26, 4397-4404.	7.8	350
1739	Directed Growth of Metalâ€Organic Frameworks and Their Derived Carbonâ€Based Network for Efficient Electrocatalytic Oxygen Reduction. Advanced Materials, 2016, 28, 2337-2344.	11.1	448
1740	Formation of Prussianâ€Blueâ€Analog Nanocages via a Direct Etching Method and their Conversion into Ni–Coâ€Mixed Oxide for Enhanced Oxygen Evolution. Advanced Materials, 2016, 28, 4601-4605.	11.1	550
1741	Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts. Advanced Energy Materials, 2016, 6, 1501661.	10.2	232
1742	3D Vertically Aligned and Interconnected Porous Carbon Nanosheets as Sulfur Immobilizers for High Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2016, 6, 1502518.	10.2	138
1743	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.	1.6	20
1744	Theoretical Modelling and Facile Synthesis of a Highly Active Boronâ€Doped Palladium Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2016, 128, 6956-6961.	1.6	11

#	ARTICLE	IF	CITATIONS
1745	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
1746	A Catalystâ∈Based Selfâ∈Sufficient System with Durable Selfâ∈Healing Functionality. Advanced Engineering Materials, 2016, 18, 923-931.	1.6	10
1747	Dual Electricalâ€Behavior Regulation on Electrocatalysts Realizing Enhanced Electrochemical Water Oxidation. Advanced Materials, 2016, 28, 3326-3332.	11.1	145
1748	Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Znâ€Air Batteries. Advanced Materials, 2016, 28, 3000-3006.	11.1	626
1749	Metalâ€Organic Frameworkâ€Derived Honeycombâ€Like Open Porous Nanostructures as Preciousâ€Metalâ€Free Catalysts for Highly Efficient Oxygen Electroreduction. Advanced Materials, 2016, 28, 6391-6398.	11.1	414
1750	Earthâ€Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials, 2016, 6, 1600087.	10.2	437
1751	Lowâ€Overpotential Electrocatalytic Water Splitting with Nobleâ€Metalâ€Free Nanoparticles Supported in a sp ³ Nâ€Rich Flexible COF. Advanced Energy Materials, 2016, 6, 1600110.	10.2	121
1752	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Advanced Energy Materials, 2016, 6, 1600236.	10.2	108
1753	Theoretical Modelling and Facile Synthesis of a Highly Active Boronâ€Doped Palladium Catalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2016, 55, 6842-6847.	7.2	92
1754	An Extension to the Analytical Evaluation of the Oxygen Reduction Reaction Based On the Electrokinetics On a Rotating Ring–Disk Electrode. ChemElectroChem, 2016, 3, 622-628.	1.7	19
1755	N-Doped carbon supported Co ₃ O ₄ nanoparticles as an advanced electrocatalyst for the oxygen reduction reaction in Al–air batteries. RSC Advances, 2016, 6, 55552-5559.	1.7	36
1756	Size-Dependent Activity Trends Combined with in Situ X-ray Absorption Spectroscopy Reveal Insights into Cobalt Oxide/Carbon Nanotube-Catalyzed Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2016, 6, 4347-4355.	5.5	125
1757	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016, 6, 4720-4728.	5. 5	513
1758	Enhancement of the electrocatalytic oxygen reduction reaction on Pd3Pb ordered intermetallic catalyst in alkaline aqueous solutions. Journal of Applied Electrochemistry, 2016, 46, 745-753.	1.5	18
1759	Biomass-derived carbon: synthesis and applications in energy storage and conversion. Green Chemistry, 2016, 18, 4824-4854.	4.6	735
1760	Strongly coupled hybrid ZnCo2O4 quantum dots/reduced graphene oxide with high-performance lithium storage capability. Electrochimica Acta, 2016, 210, 783-791.	2.6	21
1761	Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale, 2016, 8, 13311-13320.	2.8	94
1762	Integrating cobalt phosphide and cobalt nitride-embedded nitrogen-rich nanocarbons: high-performance bifunctional electrocatalysts for oxygen reduction and evolution. Journal of Materials Chemistry A, 2016, 4, 10575-10584.	5.2	141

#	Article	IF	CITATIONS
1763	Synchrotron-based x-ray absorption spectroscopy for energy materials. MRS Bulletin, 2016, 41, 466-472.	1.7	21
1764	Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. Journal of Materials Chemistry A, 2016, 4, 10014-10022.	5.2	171
1765	A facile synthesis of reduced Co3O4 nanoparticles with enhanced Electrocatalytic activity for oxygen evolution. International Journal of Hydrogen Energy, 2016, 41, 12976-12982.	3.8	56
1766	Mn ₃ O ₄ @CoMn ₂ O ₄ –Co _{<i>x</i>} O _{<i>y<</i>}	/i> 4.0	Nanopartic 72
1767	Graphene and carbon-based nanomaterials as highly efficient adsorbents for oils and organic solvents. Nanotechnology Reviews, 2016, 5, .	2.6	42
1768	Boosting oxygen reduction and hydrogen evolution at the edge sites of a web-like carbon nanotube-graphene hybrid. Carbon, 2016, 107, 739-746.	5.4	25
1769	A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale, 2016, 8, 14438-14447.	2.8	77
1770	Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell. Biosensors and Bioelectronics, 2016, 86, 129-134.	5.3	72
1771	The advances of Co 3 O 4 as gas sensing materials: A review. Journal of Alloys and Compounds, 2016, 686, 753-768.	2.8	177
1772	Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Applied Materials & Interfaces, 2016, 8, 16736-16743.	4.0	198
1773	Preparation of reduced graphene oxide/Co ₃ O ₄ composites and sensing performance to toluene at low temperature. RSC Advances, 2016, 6, 60109-60116.	1.7	33
1774	An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 11357-11364.	5.2	142
1775	Reduced graphene oxide supported chromium oxide hybrid as high efficient catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 11099-11107.	3.8	30
1776	NiFe ₂ O ₄ –CNT composite: an efficient electrocatalyst for oxygen evolution reactions in Li–O ₂ batteries guided by computations. Journal of Materials Chemistry A, 2016, 4, 9390-9393.	5.2	52
1777	Selecting Support Layer for Electrodeposited Efficient Cobalt Oxide/Hydroxide Nanoflakes to Split Water. ACS Sustainable Chemistry and Engineering, 2016, 4, 3151-3159.	3.2	42
1778	Ultrathin Laminar Ir Superstructure as Highly Efficient Oxygen Evolution Electrocatalyst in Broad pH Range. Nano Letters, 2016, 16, 4424-4430.	4.5	339
1779	Metal–organic framework-derived hybrid of Fe ₃ C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catalysis Science and Technology, 2016, 6, 6365-6371.	2.1	63
1780	Robust Au–Ag/graphene bimetallic nanocatalyst for multifunctional activity with high synergism. Chemical Engineering Journal, 2016, 300, 146-159.	6.6	31

#	Article	IF	CITATIONS
1781	Facile synthesis of Co-based selenides for oxygen reduction reaction in acidic medium. International Journal of Hydrogen Energy, 2016, 41, 8863-8870.	3.8	14
1782	Uniquely Monodispersing NiFe Alloyed Nanoparticles in Three-Dimensional Strongly Linked Sandwiched Graphitized Carbon Sheets for High-Efficiency Oxygen Evolution Reaction. ACS Catalysis, 2016, 6, 4477-4485.	5.5	112
1783	Carbon-supported Co(III) dimer for oxygen reduction reaction in alkaline medium. Ionics, 2016, 22, 2183-2194.	1.2	9
1784	Facile synthesis of N-doped carbon nanosheet-encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline and acidic media. Ionics, 2016, 22, 2203-2212.	1.2	14
1785	Spinel MnCo2O4 nanoparticles cross-linked with two-dimensional porous carbon nanosheets as a high-efficiency oxygen reduction electrocatalyst. Nano Research, 2016, 9, 2110-2122.	5.8	57
1786	A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16649-16655.	4.0	13
1787	X20CoCrWMo10-9//Co ₃ O ₄ : a metal–ceramic composite with unique efficiency values for water-splitting in the neutral regime. Energy and Environmental Science, 2016, 9, 2609-2622.	15.6	84
1788	Magnesium cobalt silicate as a bifunctional catalyst for the O2 electrode and its application in Li–O2 cells. Catalysis Science and Technology, 2016, 6, 6716-6725.	2.1	10
1789	Self-assembly of cobalt hexacyanoferrate crystals in 1-D array using ion exchange transformation route for enhanced electrocatalytic oxidation of alkaline and neutral water. Journal of Materials Chemistry A, 2016, 4, 9781-9788.	5.2	57
1790	Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chemical Science, 2016, 7, 5758-5764.	3.7	571
1791	Platinumâ€Decorated Ultrafine Pd Nanoparticles Monodispersed on Pristine Graphene with Enhanced Electrocatalytic Performance. ChemPlusChem, 2016, 81, 172-175.	1.3	9
1792	Dualâ€Templated Cobalt Oxide for Photochemical Water Oxidation. ChemSusChem, 2016, 9, 409-415.	3.6	12
1793	Oneâ€Step Scalable Production of Co _{1â^'} <i>_x</i> S/Graphene Nanocomposite as Highâ€Performance Bifunctional Electrocatalyst. Particle and Particle Systems Characterization, 2016, 33, 569-575.	1.2	21
1794	Graphene Emerges as a Versatile Template for Materials Preparation. Small, 2016, 12, 2674-2688.	5.2	56
1795	Revealing the Multibonding State between Hydrogen and Graphene-Supported Ti Clusters. Journal of Physical Chemistry C, 2016, 120, 12974-12979.	1.5	21
1796	Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1119-1126.	6.9	68
1797	Phosphorus and cobalt co-doped reduced graphene oxide bifunctional electrocatalyst for oxygen reduction and evolution reactions. RSC Advances, 2016, 6, 64155-64164.	1.7	18
1798	WO _{3–<i>x</i>} Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18132-18139.	4.0	129

#	ARTICLE	IF	CITATIONS
1799	Construction of a three-dimensional nest-like lithium ferrite/reduced graphene oxide composite with enhanced visible-light photocatalytic activity. New Journal of Chemistry, 2016, 40, 7171-7180.	1.4	19
1800	Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Advanced Materials, 2016, 28, 3423-3452.	11.1	1,256
1801	Flexible Rechargeable Zincâ€Air Batteries through Morphological Emulation of Human Hair Array. Advanced Materials, 2016, 28, 6421-6428.	11.1	183
1802	Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na–Air Batteries. Advanced Energy Materials, 2016, 6, 1501794.	10.2	120
1803	Controlling the Active Sites of Sulfurâ€Doped Carbon Nanotube–Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis. Advanced Energy Materials, 2016, 6, 1501966.	10.2	242
1804	A Nickelâ€Based Integrated Electrode from an Autologous Growth Strategy for Highly Efficient Water Oxidation. Advanced Energy Materials, 2016, 6, 1502489.	10.2	138
1805	Plasmaâ€Engraved Co ₃ O ₄ Nanosheets with Oxygen Vacancies and High Surface Area for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 5277-5281.	7.2	1,646
1806	Activity of Transitionâ€Metal (Manganese, Iron, Cobalt, and Nickel) Phosphates for Oxygen Electrocatalysis in Alkaline Solution. ChemCatChem, 2016, 8, 372-379.	1.8	127
1807	CoMn Layered Double Hydroxides/Carbon Nanotubes Architectures as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemElectroChem, 2016, 3, 906-912.	1.7	78
1808	Nitrogenâ€Doped Graphene Quantum Dots Anchored on Thermally Reduced Graphene Oxide as an Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 864-870.	1.7	34
1809	An efficient NiS@N/S-C hybrid oxygen evolution electrocatalyst derived from metal-organic framework. Electrochimica Acta, 2016, 191, 813-820.	2.6	79
1810	Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst. Green Chemistry, 2016, 18, 2819-2826.	4.6	84
1811	Sea urchin-like cobalt–iron phosphide as an active catalyst for oxygen evolution reaction. Nanoscale, 2016, 8, 3244-3247.	2.8	135
1812	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589.	5.2	195
1813	Controlled growth cerium oxide nanoparticles on reduced graphene oxide for oxygen catalytic reduction. Electrochimica Acta, 2016, 191, 669-676.	2.6	42
1814	A versatile strategy to fabricate MOFs/carbon material integrations and their derivatives for enhanced electrocatalysis. RSC Advances, 2016, 6, 7728-7735.	1.7	28
1815	Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation. Green Chemistry, 2016, 18, 2287-2295.	4.6	108
1816	Tuning Composition and Activity of Cobalt Titanium Oxide Catalysts for the Oxygen Evolution Reaction. Electrochimica Acta, 2016, 193, 240-245.	2.6	26

#	Article	IF	Citations
1817	Mussel-inspired one-pot synthesis of transition metal and nitrogen co-doped carbon (M/N–C) as efficient oxygen catalysts for Zn-air batteries. Nanoscale, 2016, 8, 5067-5075.	2.8	109
1818	Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochimica Acta, 2016, 192, 196-204.	2.6	28
1819	Shrimp-shell derived carbon nanodots as carbon and nitrogen sources to fabricate three-dimensional N-doped porous carbon electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 4095-4101.	1.3	97
1820	Cloud-like graphene nanoplatelets on Nd _{0.5} Sr _{0.5} CoO _{3â^'Î} nanorods as an efficient bifunctional electrocatalyst for hybrid Li–air batteries. Journal of Materials Chemistry A, 2016, 4, 2122-2127.	5.2	54
1821	Controlled synthesis of hollow micro/meso-pore nitrogen-doped carbon with tunable wall thickness and specific surface area as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 2433-2437.	5.2	61
1822	Mesoporous NiCo ₂ O ₄ Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28274-28282.	4.0	100
1823	One-step synthesis of magnetic iron–aluminum oxide/graphene oxide nanoparticles as a selective adsorbent for fluoride removal from aqueous solution. RSC Advances, 2016, 6, 10783-10791.	1.7	76
1824	Supramolecular gel-assisted synthesis of double shelled Co@CoO@N–C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale, 2016, 8, 4681-4687.	2.8	74
1825	Etched and doped Co ₉ S ₈ /graphene hybrid for oxygen electrocatalysis. Energy and Environmental Science, 2016, 9, 1320-1326.	15.6	774
1826	Probing the electronic structure of M-graphene oxide (M = Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Applied Surface Science, 2016, 362, 79-85.	3.1	36
1827	Exploration of the electrochemical mechanism of ultrasmall multiple phases molybdenum carbides nanocrystals for hydrogen evolution reaction. RSC Advances, 2016, 6, 9240-9246.	1.7	48
1828	Functionalized graphene oxide and multi-walled carbon nanotubes in hexadecyl trimethyl ammonium bromide and chitosan matrix as metal-free catalyst for enhanced oxygen reduction reaction. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 144-148.	1.0	2
1829	Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Materials, 2016, 8, e237-e237.	3.8	57
1830	Subnanometer Cobalt-Hydroxide-Anchored N-Doped Carbon Nanotube Forest for Bifunctional Oxygen Catalyst. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1571-1577.	4.0	67
1831	Microporous Organic Polymers Derived Microporous Carbon Supported Pd Catalysts for Oxygen Reduction Reaction: Impact of Framework and Heteroatom. Journal of Physical Chemistry C, 2016, 120, 2187-2197.	1.5	54
1832	Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-doped graphene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxygen reduction. Nano Research, 2016, 9, 317-328.	5.8	70
1833	Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles. International Journal of Hydrogen Energy, 2016, 41, 1559-1567.	3.8	37
1834	Facile Synthesis of Nickel–Iron/Nanocarbon Hybrids as Advanced Electrocatalysts for Efficient Water Splitting. ACS Catalysis, 2016, 6, 580-588.	5.5	354

#	Article	IF	CITATIONS
1835	One-step in situ synthesis of $CeO < sub > 2 < / sub > nanoparticles$ grown on reduced graphene oxide as an excellent fluorescent and photocatalyst material under sunlight irradiation. Physical Chemistry Chemical Physics, 2016, 18, 11157-11167.	1.3	89
1836	Self-assembled Co 3 O 4 nanostructure with controllable morphology towards high performance anode for lithium ion batteries. Electrochimica Acta, 2016, 188, 909-916.	2.6	34
1837	Carbon-Dotted Defective CoO with Oxygen Vacancies: A Synergetic Design of Bifunctional Cathode Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2016, 6, 400-406.	5.5	194
1838	Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chemical Society Reviews, 2016, 45, 1273-1307.	18.7	589
1839	Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Applied Catalysis A: General, 2016, 521, 83-89.	2.2	70
1840	Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2016, 3, 236-242.	3.0	243
1841	Direct electrochemical formation of nanostructured amorphous Co(OH) (sub>2 (sub>0n gold electrodes with enhanced activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 991-999.	5.2	175
1842	Spontaneous Cross-linking for Fabrication of Nanohybrids Embedded with Size-Controllable Particles. ACS Nano, 2016, 10, 889-898.	7. 3	61
1843	Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy, 2016, 19, 373-381.	8.2	597
1844	High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional electrocatalysts for rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	8.2	187
1845	Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 6376-6384.	5.2	164
1846	A switchable pH-differential unitized regenerative fuel cell with high performance. Journal of Power Sources, 2016, 314, 76-84.	4.0	28
1847	Rational Synthesis of Three-Dimensional Nanosuperstructures for Applications in Energy Storage and Conversion. IEEE Transactions on Device and Materials Reliability, 2016, 16, 475-482.	1.5	2
1848	Comprehensive electronic structure characterization of pristine and nitrogen/phosphorus doped carbon nanocages. Carbon, 2016, 103, 480-487.	5.4	23
1849	Co-supported catalysts on nitrogen and sulfur co-doped vertically-aligned carbon nanotubes for oxygen reduction reaction. RSC Advances, 2016, 6, 32676-32684.	1.7	7
1850	Nitrogen-doped hollow carbon spheres with highly graphitized mesoporous shell: Role of Fe for oxygen evolution reaction. Applied Catalysis B: Environmental, 2016, 191, 202-208.	10.8	81
1851	N,S-Codoped microporous carbon nanobelts with blooming nanoflowers for oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 5834-5838.	5.2	51
1852	Solvent-thermal preparation of a CuCo ₂ O ₄ /RGO heterocomposite: an efficient catalyst for the reduction of p-nitrophenol. New Journal of Chemistry, 2016, 40, 4769-4774.	1.4	38

#	Article	IF	CITATIONS
1853	Highly Active and Durable Non-Precious Metal Catalyst for the Oxygen Reduction Reaction in Acidic Medium. Journal of the Electrochemical Society, 2016, 163, F539-F547.	1.3	32
1854	Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Research, 2016, 9, 1497-1506.	5.8	112
1855	Co@Co ₃ O ₄ core–shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts. Dalton Transactions, 2016, 45, 5575-5582.	1.6	53
1856	Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst. Journal of Power Sources, 2016, 311, 68-80.	4.0	67
1857	A facile preparation of CoFe ₂ O ₄ nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 4472-4478.	5.2	168
1858	Interfacial effects on the catalysis of the hydrogen evolution, oxygen evolution and CO2-reduction reactions for (co-)electrolyzer development. Nano Energy, 2016, 29, 4-28.	8.2	104
1859	Nitrogen and sulfur co-doped graphene aerogels as an efficient metal-free catalyst for oxygen reduction reaction in an alkaline solution. RSC Advances, 2016, 6, 22781-22790.	1.7	40
1860	Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution. Chemical Research in Chinese Universities, 2016, 32, 106-111.	1.3	5
1861	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	5.2	65
1862	High-rate and long-life of Li-ion batteries using reduced graphene oxide/Co ₃ O ₄ as anode materials. RSC Advances, 2016, 6, 24320-24330.	1.7	25
1863	High-Performance Pd ₃ Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction. Nano Letters, 2016, 16, 2560-2566.	4.5	144
1864	Two-dimensional layered MoS ₂ : rational design, properties and electrochemical applications. Energy and Environmental Science, 2016, 9, 1190-1209.	15.6	532
1865	Thermolytical Entrapment of Ultrasmall MoC Nanoparticles into 3D Frameworks of Nitrogen-Rich Graphene for Efficient Oxygen Reduction. Journal of Physical Chemistry C, 2016, 120, 15707-15713.	1.5	17
1866	Recyclable graphene-supported palladium nanocomposites for Suzuki coupling reaction. Green Processing and Synthesis, 2016, 5, .	1.3	5
1867	Electro-catalyst based on cerium doped cobalt oxide for oxygen evolution reaction in electrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2016, 27, 5294-5302.	1.1	44
1868	Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochimica Acta, 2016, 194, 59-66.	2.6	128
1869	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
1870	Solvent-directed sol-gel assembly of 3-dimensional graphene-tented metal oxides and strong synergistic disparities in lithium storage. Journal of Materials Chemistry A, 2016, 4, 4032-4043.	5.2	19

#	Article	IF	CITATIONS
1871	Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts. Nanoscale, 2016, 8, 5015-5023.	2.8	60
1872	Electrochemical modification of ITO with Di-(3-diaminorpropyl)-viologen and its electrocatalytic behavior of the oxygen reduction reaction in an alkaline solution. Journal of Electroanalytical Chemistry, 2016, 764, 71-78.	1.9	3
1873	Pyridine-functionalized graphene oxide, an efficient metal free electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2016, 194, 95-103.	2.6	51
1874	Base–acid hybrid water electrolysis. Chemical Communications, 2016, 52, 3147-3150.	2.2	28
1875	CoSe ₂ and NiSe ₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 5327-5334.	4.0	425
1876	Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO ₂ Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 4633-4643.	4.0	103
1877	Synthesis of Co3O4/graphene composite catalysts through CTAB-assisted method for Orange II degradation by activation of peroxymonosulfate. Journal of Materials Science: Materials in Electronics, 2016, 27, 1020-1030.	1,1	23
1878	Electrodeposited Co-doped NiSe ₂ nanoparticles film: a good electrocatalyst for efficient water splitting. Nanoscale, 2016, 8, 3911-3915.	2.8	367
1879	Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Research, 2016, 9, 1012-1021.	5.8	39
1880	Precious-metal-free Co–Fe–O _x coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 6505-6512.	5.2	89
1881	Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 5877-5889.	5.2	155
1882	Hierarchical MnO2/rGO hybrid nanosheets as an efficient electrocatalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 5260-5268.	3.8	44
1883	Modulating photogenerated electron transfer with selectively exposed Co–Mo facets on a novel amorphous g-C3N4/CoxMo1â^xS2 photocatalyst. RSC Advances, 2016, 6, 23709-23717.	1.7	36
1884	Nanostructured Co _x Ni _{1â^'x} bimetallic alloys for high efficient and ultrafast adsorption: experiments and first-principles calculations. RSC Advances, 2016, 6, 9209-9220.	1.7	12
1885	Graphene anchored palladium complex as efficient and recyclable catalyst in the Heck cross-coupling reaction. Journal of Molecular Catalysis A, 2016, 416, 140-146.	4.8	43
1886	Graphene frameworks supported cobalt oxide with tunable morphologies for enhanced lithium storage behaviors. Journal of Materials Science, 2016, 51, 4856-4863.	1.7	4
1887	Electrocatalytic reduction of a coreactant using a hemin–graphene–Au nanoparticle ternary composite for sensitive electrochemiluminescence cytosensing. RSC Advances, 2016, 6, 26203-26209.	1.7	12
1888	Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?. Journal of Materials Chemistry A, 2016, 4, 4998-5001.	5.2	72

#	Article	IF	Citations
1889	Metallic Cobalt Encapsulated in Bamboo-Like and Nitrogen-Rich Carbonitride Nanotubes for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6439-6448.	4.0	110
1890	Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction. RSC Advances, 2016, 6, 10341-10351.	1.7	30
1891	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>Sub>. Journal of the American Chemical Society, 2016, 138, 3570-3578.}	6.6	1,549
1892	Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode. Journal of Power Sources, 2016, 313, 46-50.	4.0	32
1893	Bacterial-cellulose-derived carbon nanofiber-supported CoFe2O4 as efficient electrocatalyst for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2016, 41, 5351-5360.	3.8	63
1894	An iron porphyrin-based conjugated network wrapped around carbon nanotubes as a noble-metal-free electrocatalyst for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2016, 3, 821-827.	3.0	39
1895	Improved performance of cobalt-based spinel by the simple solvothermal method as electrocatalyst for oxygen reduction reaction in alkaline solution. Ionics, 2016, 22, 1425-1432.	1.2	10
1896	Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption. ACS Applied Materials & Interfaces, 2016, 8, 6464-6471.	4.0	46
1897	Noble-metal-free Co ₃ S ₄ –S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction. Chemical Science, 2016, 7, 4167-4173.	3.7	98
1899	Structural effects of a carbon matrix in non-precious metal O ₂ -reduction electrocatalysts. Chemical Society Reviews, 2016, 45, 2396-2409.	18.7	175
1900	Graphene-supported non-precious metal electrocatalysts for oxygen reduction reactions: the active center and catalytic mechanism. Journal of Materials Chemistry A, 2016, 4, 7148-7154.	5.2	17
1901	Simple template fabrication of porous MnCo ₂ O ₄ hollow nanocages as high-performance cathode catalysts for rechargeable Li-O ₂ batteries. Nanotechnology, 2016, 27, 135703.	1.3	17
1902	In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co ₃ O ₄ . Journal of the American Chemical Society, 2016, 138, 36-39.	6.6	787
1903	The influence of Co3V2O8 morphology on the oxygen evolution reaction activity and stability. Electrochemistry Communications, 2016, 63, 44-47.	2.3	37
1904	Synergistic Effect of Co ₃ O ₄ Nanoparticles and Graphene as Catalysts for Peroxymonosulfate-Based Orange II Degradation with High Oxidant Utilization Efficiency. Journal of Physical Chemistry C, 2016, 120, 336-344.	1.5	138
1905	Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions. Carbon, 2016, 99, 195-202.	5.4	143
1906	Synergistic Effects in Nanoengineered HNb ₃ O ₈ /Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO ₂ into Renewable Fuels. Langmuir, 2016, 32, 254-264.	1.6	37
1907	Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free electrocatalyst for oxygen reduction. Carbon, 2016, 99, 272-279.	5.4	65

#	Article	IF	CITATIONS
1908	Hierarchically Porous Urchin-Like Ni ₂ P Superstructures Supported on Nickel Foam as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS Catalysis, 2016, 6, 714-721.	5 . 5	737
1909	Electrochemistry of layered GaSe and GeS: applications to ORR, OER and HER. Physical Chemistry Chemical Physics, 2016, 18, 1699-1711.	1.3	77
1910	Porous and single-crystalline-like molybdenum nitride nanobelts as a non-noble electrocatalyst for alkaline fuel cells and electrode materials for supercapacitors. International Journal of Hydrogen Energy, 2016, 41, 996-1001.	3.8	54
1911	Synthesis of 4H/ <i>fcc</i> Noble Multimetallic Nanoribbons for Electrocatalytic Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2016, 138, 1414-1419.	6.6	196
1912	Hollandite Structure K _{<i>x</i>\$\angle \angle 0.25} IrO ₂ Catalyst with Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2016, 8, 820-826.	4.0	94
1913	Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction. Nanoscale Research Letters, 2016, 11, 3.	3.1	25
1914	Synergistic effects of codecoration of oxide nanoparticles on the gas sensing performance of In2O3 nanorods. Sensors and Actuators B: Chemical, 2016, 227, 591-599.	4.0	62
1915	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726.	2.6	14
1916	Maghemite nanorods anchored on a 3D nitrogen-doped carbon nanotubes substrate as scalable direct electrode for water oxidation. International Journal of Hydrogen Energy, 2016, 41, 69-78.	3.8	19
1917	Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media. Journal of Power Sources, 2016, 307, 152-159.	4.0	29
1918	Multi-channeled hierarchical porous carbon incorporated Co 3 O 4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy, 2016, 20, 94-107.	8.2	122
1919	Catalytic performance and mechanism of N-CoTi@CoTiO 3 catalysts for oxygen reduction reaction. Nano Energy, 2016, 20, 134-143.	8.2	33
1920	Electrochemically formed 3D hierarchical thin films of cobalt–manganese (Co–Mn) hexacyanoferrate hybrids for electrochemical applications. Journal of Power Sources, 2016, 305, 249-258.	4.0	53
1921	Iron-based sodium-ion full batteries. Journal of Materials Chemistry A, 2016, 4, 1754-1761.	5.2	50
1922	Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy, 2016, 20, 244-253.	8.2	62
1923	Hierarchical Metal-Free Nitrogen-Doped Porous Graphene/Carbon Composites as an Efficient Oxygen Reduction Reaction Catalyst. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1415-1423.	4.0	116
1924	Nitrogen-doped Co/Co9S8/partly-graphitized carbon as durable catalysts for oxygen reduction in microbial fuel cells. Journal of Power Sources, 2016, 307, 1-10.	4.0	87
1925	Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2016, 408, 1307-1326.	1.9	30

#	Article	IF	CITATIONS
1926	A "copolymer-co-morphology―conception for shape-controlled synthesis of Prussian blue analogues and as-derived spinel oxides. Nanoscale, 2016, 8, 2333-2342.	2.8	53
1927	One-pot synthesis of monodispersed porous CoFe ₂ O ₄ nanospheres on graphene as an efficient electrocatalyst for oxygen reduction and evolution reactions. RSC Advances, 2016, 6, 307-313.	1.7	49
1928	A reversible transformation of functional groups in graphene oxide with loading and unloading of metal compounds. Carbon, 2016, 99, 370-374.	5 . 4	14
1929	Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy and Environmental Science, 2016, 9, 478-483.	15.6	774
1930	Photocatalytic Reduction Synthesis of Ternary Ag Nanoparticles/Polyoxometalate/Graphene Nanohybrids and Its Activity in the Electrocatalysis of Oxygen Reduction. Journal of Cluster Science, 2016, 27, 241-256.	1.7	12
1931	Solution Synthesis of Thiospinel CuCo ₂ S ₄ Nanoparticles. Inorganic Chemistry, 2016, 55, 221-226.	1.9	69
1932	Nanoporous PdCr alloys as highly active electrocatalysts for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 4166-4173.	1.3	25
1933	Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. Journal of Physical Chemistry C, 2016, 120, 1586-1596.	1.5	148
1934	Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy, 2016, 19, 117-127.	8.2	115
1935	The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. Journal of Power Sources, 2016, 304, 81-101.	4.0	216
1936	Mesoporous carbon-supported cobalt catalyst for selective oxidation of toluene and degradation of water contaminants. Particuology, 2016, 24, 216-222.	2.0	17
1937	Superior oxygen reduction electrocatalysis enabled by integrating hierarchical pores, Fe ₃ C nanoparticles and bamboo-like carbon nanotubes. Nanoscale, 2016, 8, 959-964.	2.8	51
1938	Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016, 19, 265-273.	8.3	268
1939	Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 187, 234-242.	2.6	83
1940	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
1941	Fe ₃ O ₄ and Au nanoparticles dispersed on the graphene support as a highly active catalyst toward the reduction of 4-nitrophenol. Physical Chemistry Chemical Physics, 2016, 18, 615-623.	1.3	74
1942	Hydrangea-like NiCo ₂ S ₄ hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catalysis Science and Technology, 2016, 6, 434-437.	2.1	59
1943	Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy and Environmental Science, 2016, 9, 123-129.	15.6	683

#	Article	IF	CITATIONS
1944	Spinel MnCo2O4 and Spinel-Nanocarbon Hybrids as Bifunctional Catalysts for Alternating Oxygen Reduction and Evolution Reactions., 2016,, 83-91.		0
1945	PtCo/CoO x nanocomposites: Bifunctional electrocatalysts for oxygen reduction and evolution reactions synthesized via tandem laser ablation synthesis in solution-galvanic replacement reactions. Applied Catalysis B: Environmental, 2016, 182, 286-296.	10.8	99
1946	A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon, 2016, 98, 162-178.	5.4	527
1947	High utilization efficiency of NiCo2O4 supported on porous graphene as noble metal-free catalysts for oxygen reduction reaction. Journal of Alloys and Compounds, 2016, 655, 229-237.	2.8	25
1948	Reactive deposition of cobalt using bis(2,2,6,6-tetramethyl-3,5-heptanedionato) cobalt(II) from supercritical carbon dioxide. Journal of Supercritical Fluids, 2016, 107, 189-195.	1.6	3
1949	Comparison of the Spinels Co 3 O 4 and NiCo 2 O 4 as Bifunctional Oxygen Catalysts in Alkaline Media. Electrochimica Acta, 2016, 188, 286-293.	2.6	65
1950	Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co3O4 fibers through centrifugal-spinning technique. Materials Research Bulletin, 2016, 74, 319-324.	2.7	16
1951	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy and Environmental Science, 2016, 9, 357-390.	15.6	456
1952	Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications. Biosensors and Bioelectronics, 2016, 77, 1208-1220.	5.3	135
1953	One-step synthesis of CdS-reduced graphene oxide composites based on high-energy radiation technique. Radiation Physics and Chemistry, 2016, 119, 24-28.	1.4	8
1954	N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. Journal of Power Sources, 2016, 302, 114-125.	4.0	135
1955	Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sensors and Actuators B: Chemical, 2016, 222, 864-870.	4.0	169
1956	Synergistic electrocatalytic activity of a spinel ZnCo2O4/reduced graphene oxide hybrid towards oxygen reduction reaction. Journal of Solid State Electrochemistry, 2016, 20, 285-291.	1.2	25
1957	SnS2@Graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. Journal of Alloys and Compounds, 2016, 654, 357-362.	2.8	81
1958	Prussian blue as a single precursor for synthesis of Fe/Fe ₃ C encapsulated N-doped graphitic nanostructures as bi-functional catalysts. Green Chemistry, 2016, 18, 427-432.	4.6	152
1959	Synthesis, surface modification/decoration of luminescent–magnetic core/shell nanomaterials, based on the lanthanide doped fluorides (Fe 3 O 4 /SiO 2 /NH 2 /PAA/LnF 3). Journal of Luminescence, 2016, 170, 484-490.	1.5	31
1960	Selective hydrogenation of C C bond over N-doped reduced graphene oxides supported Pd catalyst. Applied Catalysis B: Environmental, 2016, 180, 607-613.	10.8	152
1961	Nanocarbon-intercalated and Fe–N-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 1930-1934.	5.2	88

#	Article	IF	Citations
1962	Nitrogen-doped graphene-chitosan matrix based efficient chemiluminescent immunosensor for detection of chicken interleukin-4. Biosensors and Bioelectronics, 2017, 89, 558-564.	5.3	17
1963	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80
1964	NiSe ₂ pyramids deposited on N-doped graphene encapsulated Ni foam for high-performance water oxidation. Journal of Materials Chemistry A, 2017, 5, 3981-3986.	5.2	67
1965	Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3570-3580.	4.0	20
1966	An ultrasensitive electrochemical immunosensor based on the synergistic effect of quaternary Cu ₂ SnZnS ₄ NCs and cyclodextrin-functionalized graphene. Analyst, The, 2017, 142, 780-786.	1.7	9
1967	The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chemical Society Reviews, 2017, 46, 816-854.	18.7	458
1968	A novel composite of W \langle sub \rangle 18 \langle sub \rangle 0 \langle sub \rangle 49 \langle sub \rangle nanorods on reduced graphene oxide sheets based on in situ synthesis and catalytic performance for oxygen reduction reaction. RSC Advances, 2017, 7, 2051-2057.	1.7	16
1969	Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in Metalâ€Decorationâ€Induced Reduction of Graphene Oxide. Advanced Materials, 2017, 29, 1605929.	11.1	32
1970	IrNi nanoparticle-decorated flower-shaped NiCo2O4 nanostructures: controllable synthesis and enhanced electrochemical activity for oxygen evolution reaction. Science China Materials, 2017, 60, 119-130.	3.5	32
1971	Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2996-3005.	3.8	34
1972	Nitrogen-doped graphene aerogels-supported cobaltosic oxide nanocrystals as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2017, 787, 46-54.	1.9	24
1973	Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy, 2017, 33, 229-237.	8.2	55
1974	Fe-Cluster Pushing Electrons to N-Doped Graphitic Layers with Fe ₃ C(Fe) Hybrid Nanostructure to Enhance O ₂ Reduction Catalysis of Zn-Air Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4587-4596.	4.0	117
1975	A study on synergetic EMI shielding behaviors of Ni-Co alloy-coated carbon fibers-reinforced composites. Synthetic Metals, 2017, 223, 212-217.	2.1	48
1976	Bacterial cellulose derived iron and phosphorus co-doped carbon nanofibers as an efficient oxygen reduction reaction electrocatalysts. Synthetic Metals, 2017, 223, 137-144.	2.1	16
1977	A Thin NiFe Hydroxide Film Formed by Stepwise Electrodeposition Strategy with Significantly Improved Catalytic Water Oxidation Efficiency. Advanced Energy Materials, 2017, 7, 1602547.	10.2	183
1978	Controllable Synthesis and Bi-functional Electrocatalytic Performance towards Oxygen Electrode Reactions of Co3O4/N-RGO Composites. Electrochimica Acta, 2017, 226, 104-112.	2.6	23
1979	Transfer hydrogenation of bio-fuel with formic acid over biomass-derived N-doped carbon supported acid-resistant Pd catalyst. Catalysis Science and Technology, 2017, 7, 627-634.	2.1	71

#	Article	IF	CITATIONS
1980	Synthesis of Ni 3 S 2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Applied Surface Science, 2017, 399, 769-774.	3.1	24
1981	Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction. Advanced Functional Materials, 2017, 27, 1604688.	7.8	186
1982	Co/N–C nanotubes with increased coupling sites by space-confined pyrolysis for high electrocatalytic activity. Green Energy and Environment, 2017, 2, 23-29.	4.7	10
1983	Insights into the Oxidation Mechanism of sp ² â€"sp ³ Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir, 2017, 33, 913-919.	1.6	33
1984	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3785-3791.	4.0	108
1985	Unraveling Oxygen Evolution Reaction on Carbon-Based Electrocatalysts: Effect of Oxygen Doping on Adsorption of Oxygenated Intermediates. ACS Energy Letters, 2017, 2, 294-300.	8.8	145
1986	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .	0.0	10
1987	Graphene-supported <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mstyle mathvariant="normal"><mml:mi>Co(OH)</mml:mi>tyle></mml:mstyle></mml:mrow><mml:mrow><mml:mrow><mml:mn>2<th>11.13 <th>ıl18row></th></th></mml:mn></mml:mrow></mml:mrow></mml:msub></mml:math>	11.13 <th>ıl18row></th>	ıl 18 row>
1988	0, 31 30. MOF Templateâ€Directed Fabrication of Hierarchically Structured Electrocatalysts for Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1602643.	10.2	281
1989	Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017, 13, 1603793.	5.2	277
1990	Microwave and electrochemical assisted synthesis of chlorinated iron phthalocyanine nanoparticles. Pigment and Resin Technology, 2017, 46, 156-160.	0.5	5
1991	Facile Preparation of Ultrathin Co ₃ O ₄ /Nanocarbon Composites with Greatly Improved Surface Activity as a Highly Efficient Oxygen Evolution Reaction Catalyst. Chemistry - A European Journal, 2017, 23, 4010-4016.	1.7	49
1992	An Efficient Bifunctional Electrocatalyst for a Zinc–Air Battery Derived from Fe/N/C and Bimetallic Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2017, 9, 5213-5221.	4.0	113
1993	Rationally Designed/Constructed CoO _{<i>x</i>} /WO ₃ Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis, 2017, 7, 1841-1845.	5.5	141
1994	Structural and morphological evolution of free-standing Co3O4 nanowires via water vapor-assisted thermal oxidation of Co foil. Journal of Alloys and Compounds, 2017, 703, 414-423.	2.8	11
1995	Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale, 2017, 9, 2398-2416.	2.8	121
1996	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355,	6.0	7,837
1997	Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Research, 2017, 10, 4436-4447.	5.8	98

#	Article	IF	CITATIONS
1998	La2O3-NCNTs hybrids in-situ derived from LaNi0.9Fe0.1O3-C composites as novel robust bifunctional oxygen electrocatalysts. Carbon, 2017, 115, 261-270.	5.4	25
1999	The development of cobalt phosphate for bifunctional oxygen electrocatalysis in alkaline solution. Electrochimica Acta, 2017, 227, 310-316.	2.6	38
2000	Rational design and synthesis of sandwich-like iron nitride-graphene composites as efficient catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 202-211.	3.8	10
2001	Synthesis of efficient electrocatalyst for oxygen reduction reaction by using poly(m-phenylenediamine) as the interlayer spacer and the sources of N-doped carbon and MnO. Synthetic Metals, 2017, 224, 92-98.	2.1	8
2002	MOF-derived RuO ₂ /Co ₃ O ₄ heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. RSC Advances, 2017, 7, 3686-3694.	1.7	116
2003	Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries. Journal of Power Sources, 2017, 343, 30-38.	4.0	99
2004	Silver/graphene nanocomposites as catalysts for the reduction of ⟨i>p⟨/i>â€nitrophenol to ⟨i>p⟨/i>â€aminophenol: Materials preparation and reaction kinetics studies. Canadian Journal of Chemical Engineering, 2017, 95, 1297-1304.	0.9	16
2005	Reduced graphene oxide intercalated Co ₂ C or Co ₄ N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 2972-2980.	5.2	85
2006	Metal–Organic Frameworks Derived Cobalt Phosphide Architecture Encapsulated into B/N Coâ€Doped Graphene Nanotubes for All pH Value Electrochemical Hydrogen Evolution. Advanced Energy Materials, 2017, 7, 1601671.	10.2	336
2007	Thermally Converted CoO Nanoparticles Embedded into Nâ€Doped Carbon Layers as Highly Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 1503-1510.	1.8	31
2008	Electrochemical properties of a rechargeable aluminum–air battery with a metal–organic framework as air cathode material. RSC Advances, 2017, 7, 6389-6395.	1.7	53
2009	Density Functional Theory (DFT) Calculations for Oxygen Reduction Reaction Mechanisms on Metal-, Nitrogen- co-doped Graphene (M-N2-G (M = Ti, Cu, Mo, Nb and Ru)) Electrocatalysts. Electrochimica Acta, 2017, 228, 619-627.	2.6	29
2010	Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 4949-4961.	5.2	129
2011	Bioinspired Cobalt–Citrate Metal–Organic Framework as an Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2017, 9, 7193-7201.	4.0	206
2012	Strain and deformations engineered germanene bilayer double gate-field effect transistor by first principles. Applied Surface Science, 2017, 418, 308-311.	3.1	3
2013	Electrodeposition-Solvothermal Access to Ternary Mixed Metal Ni-Co-Fe Sulfides for Highly Efficient Electrocatalytic Water Oxidation in Alkaline Media. Electrochimica Acta, 2017, 230, 151-159.	2.6	54
2014	A Facile Synthesis of Highly Stable Modified Carbon Nanotubes as Efficient Oxygen Reduction Reaction Catalysts. ChemistrySelect, 2017, 2, 1932-1938.	0.7	0
2015	Molecule-Level g-C ₃ N ₄ Coordinated Transition Metals as a New Class of Electrocatalysts for Oxygen Electrode Reactions. Journal of the American Chemical Society, 2017, 139, 3336-3339.	6.6	1,094

#	Article	IF	CITATIONS
2016	A microwave-assisted synthesis of CoO@Co core–shell structures coupled with N-doped reduced graphene oxide used as a superior multi-functional electrocatalyst for hydrogen evolution, oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 5865-5872.	5.2	78
2017	Nickel–cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst. Journal of Materials Chemistry A, 2017, 5, 5594-5600.	5.2	119
2018	Trivalent cerium-preponderant CeO ₂ /graphene sandwich-structured nanocomposite with greatly enhanced catalytic activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 6656-6663.	5.2	66
2019	Cobalt-Doped Iron Sulfide as an Electrocatalyst for Hydrogen Evolution. Journal of the Electrochemical Society, 2017, 164, F276-F282.	1.3	46
2020	Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923.	7.6	824
2021	An Intermediate-Temperature Oxygen Transport Membrane Based on Rare-Earth Doped Bismuth Oxide Dy _{0.08} W _{0.04} Bi _{0.88} O _{2-Î} . Journal of the Electrochemical Society, 2017, 164, F347-F353.	1.3	7
2022	Topochemical Reaction of Exfoliated Layered Cobalt(II) Hydroxide for the Synthesis of Ultrapure Co ₃ O ₄ as an Oxygen Reduction Catalyst. European Journal of Inorganic Chemistry, 2017, 2017, 2184-2189.	1.0	12
2023	H ₂ O ₂ â€Assisted Synthesis of Porous Nâ€Doped Graphene/Molybdenum Nitride Composites with Boosted Oxygen Reduction Reaction. Advanced Materials Interfaces, 2017, 4, 1601227.	1.9	35
2024	Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst. Journal of Power Sources, 2017, 348, 183-192.	4.0	62
2025	Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nature Communications, 2017, 8, 14675.	5.8	618
2026	Architecture of 3D ZnCo 2 O 4 marigold flowers: Influence of annealing on cold emission and photocatalytic behavior. Materials Chemistry and Physics, 2017, 194, 55-64.	2.0	39
2027	Co3O4 nanoparticles anchored on nitrogen-doped reduced graphene oxide as a multifunctional catalyst for H2O2 reduction, oxygen reduction and evolution reaction. Scientific Reports, 2017, 7, 43638.	1.6	104
2028	A Highly Efficient Co ₃ O ₄ Nanoparticleâ€Incorporated Mesoporous Beta Composite as a Synergistic Catalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 1279-1286.	1.7	12
2029	Iron–nitrogen co-doped hierarchically mesoporous carbon spheres as highly efficient electrocatalysts for the oxygen reduction reaction. RSC Advances, 2017, 7, 8879-8885.	1.7	15
2030	Tuning/exploiting Strong Metal-Support Interaction (SMSI) in Heterogeneous Catalysis. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 154-186.	2.7	238
2031	Fabrication of Co ₃ O ₄ nanoparticles in thin porous carbon shells from metalâ€"organic frameworks for enhanced electrochemical performance. RSC Advances, 2017, 7, 13340-13346.	1.7	55
2032	The plasma-assisted formation of Ag@Co3O4 core-shell hybrid nanocrystals for oxygen reduction reaction. Electrochimica Acta, 2017, 233, 123-133.	2.6	33
2033	Two-Dimensional (2D) Nanomaterials towards Electrochemical Nanoarchitectonics in Energy-Related Applications. Bulletin of the Chemical Society of Japan, 2017, 90, 627-648.	2.0	369

#	Article	IF	CITATIONS
2034	Directed selfâ€assembly of block copolymerâ€based nanocomposites in thin films. Polymers for Advanced Technologies, 2017, 28, 613-622.	1.6	9
2035	Highly uniform and monodisperse carbon nanospheres enriched with cobalt–nitrogen active sites as a potential oxygen reduction electrocatalyst. Journal of Power Sources, 2017, 346, 80-88.	4.0	42
2036	Phthalocyanine tethered iron phthalocyanine on graphitized carbon black as superior electrocatalyst for oxygen reduction reaction. Nano Energy, 2017, 34, 338-343.	8.2	113
2037	Roles of Feâ^'N _{<i>x</i>} and Feâ^'Fe ₃ C@C Species in Feâ^'N/C Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9567-9575.	4.0	151
2038	A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction. Scientific Reports, 2017, 7, 43366.	1.6	31
2039	One-step preparation of N-doped graphitic layer-encased cobalt/iron carbide nanoparticles derived from cross-linked polyphthalocyanines as highly active electrocatalysts towards the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 1529-1536.	2.1	18
2040	Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale. RSC Advances, 2017, 7, 12923-12930.	1.7	67
2041	Co(<scp>ii</scp>)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: an approach for fuel cell improvement. Journal of Materials Chemistry A, 2017, 5, 6263-6276.	5.2	121
2042	Znâ€MOFâ€74 Derived Nâ€Doped Mesoporous Carbon as pHâ€Universal Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1606190.	7.8	231
2043	Cu ₂ ZnSnS ₄ –AuAg Heterodimers and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 6712-6720.	1.5	12
2044	Nitrogen doped graphene anchored cobalt oxides efficiently bi-functionally catalyze both oxygen reduction reaction and oxygen revolution reaction. International Journal of Hydrogen Energy, 2017, 42, 5899-5907.	3.8	49
2045	Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: Antibacterial activity and mechanism. Journal of Alloys and Compounds, 2017, 704, 296-302.	2.8	77
2046	Strengthened Synergistic Effect of Metallic M $<$ i> $<$ sub> $<$ i>P $<$ i> $<$ sub> $<$ i>Vi>P $<$ i> $<$ sub> $<$ i>Vi>Co, Ni,) Tj ETQq0 CR Reactions. Small, 2017, 13, 1603718.	0 0 rgBT /C 5.2	Overlock 10 7 48
2047	X-ray Spectroscopic Interrogation of Transition-Metal-Mediated Homogeneous Catalysis: Primer and Case Studies. ACS Catalysis, 2017, 7, 1776-1791.	5.5	55
2048	The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in iron- and nitrogen-doped carbon materials. Journal of Materials Chemistry A, 2017, 5, 4199-4206.	5.2	30
2049	Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi ₂ Se ₃ Nanosheets. ACS Applied Materials & Action (2017), 9, 6931-6940.	4.0	131
2050	High efficiency platinum nanoparticles based on carbon quantum dot and its application for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 11605-11613.	3.8	21
2051	Hollow Nitrogen-Doped Carbon Spheres with Fe ₃ O ₄ Nanoparticles Encapsulated as a Highly Active Oxygen-Reduction Catalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 10610-10617.	4.0	128

#	Article	IF	Citations
2052	Highâ€Performance Oxygen Reduction Electrocatalyst Derived from Polydopamine and Cobalt Supported on Carbon Nanotubes for Metal–Air Batteries. Advanced Functional Materials, 2017, 27, 1606034.	7.8	121
2053	Nitrogenâ€Doped Co ₃ O ₄ Mesoporous Nanowire Arrays as an Additiveâ€Free Airâ€Cathode for Flexible Solidâ€State Zincâ€"Air Batteries. Advanced Materials, 2017, 29, 1602868.	11.1	428
2054	Ultrasensitive Ironâ€Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 2017, 7, 1602148.	10.2	216
2055	Iron–cobalt bimetal oxide nanorods as efficient and robust water oxidation catalysts. Dalton Transactions, 2017, 46, 10602-10610.	1.6	22
2056	Electrocatalytic activity in sensing of nitrite by films produced by electropolymerization of [Fe(Br-ph-tpy) ₂] ²⁺ . Journal of Coordination Chemistry, 2017, 70, 1137-1145.	0.8	3
2057	Hollow-structured conjugated porous polymer derived Iron/Nitrogen-codoped hierarchical porous carbons as highly efficient electrocatalysts. Journal of Colloid and Interface Science, 2017, 497, 108-116.	5.0	28
2058	In situ growth of Pt ₃ Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 6399-6404.	5.2	70
2059	Facile synthesis of FeCo@NC core–shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Research, 2017, 10, 2332-2343.	5.8	85
2060	Synthesis and Characterization of ZrO2/C as Electrocatalyst for Oxygen Reduction to H2O2. Electrocatalysis, 2017, 8, 189-195.	1.5	25
2061	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. Sustainable Energy and Fuels, 2017, 1, 823-831.	2.5	24
2062	Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Research, 2017, 10, 2056-2069.	5.8	99
2063	Tiny crystalline grain nanocrystal NiCo 2 O 4 /N-doped graphene composite for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 345, 41-49.	4.0	25
2064	Nickelâ€Foamâ€Supported Co ₃ O ₄ Nanosheets/PPy Nanowire Heterostructure for Nonâ€enzymatic Glucose Sensing. ChemElectroChem, 2017, 4, 1135-1140.	1.7	28
2065	Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites. Nano Energy, 2017, 33, 445-452.	8.2	131
2066	In situ segregation of cobalt nanoparticles on VN nanosheets via nitriding of Co 2 V 2 O 7 nanosheets as efficient oxygen evolution reaction electrocatalysts. Nano Energy, 2017, 34, 1-7.	8.2	119
2068	Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Physical Chemistry Chemical Physics, 2017, 19, 8681-8693.	1.3	80
2069	Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transitionâ€Metal Spinels. Advanced Materials, 2017, 29, 1606800.	11.1	525
2070	Twoâ€Dimensional Metal Oxide Nanomaterials for Nextâ€Generation Rechargeable Batteries. Advanced Materials, 2017, 29, 1700176.	11.1	317

#	Article	IF	CITATIONS
2071	A versatile cobalt catalyst for the reductive amination of carbonyl compounds with nitro compounds by transfer hydrogenation. Applied Catalysis B: Environmental, 2017, 210, 522-532.	10.8	118
2072	Facile Integration of Hierarchical Pores and N,P-Codoping in Carbon Networks Enables Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 238, 375-383.	2.6	34
2073	Layer-by-layer self-assembly of tricobalt tetroxide-polymer nanocomposite toward high-performance humidity-sensing. Journal of Alloys and Compounds, 2017, 711, 652-658.	2.8	33
2074	Enhanced electrocatalytic activity of Pt decorated spinals (M 3 O 4, M = Mn, Fe, Co)/C for oxygen reduction reaction in PEM fuel cell and their evaluation by hydrodynamic techniques. Journal of Electroanalytical Chemistry, 2017, 794, 164-174.	1.9	19
2075	Cobalt–zinc nitride on nitrogen doped carbon black nanohybrids as a non-noble metal electrocatalyst for oxygen reduction reaction. Nanoscale, 2017, 9, 6259-6263.	2.8	55
2076	Chitosan, EDTA and Cobalt Salts Derived Metal-N-C Sub-Micrometer Spheres for High-Performance Oxygen Reduction. Journal of the Electrochemical Society, 2017, 164, H389-H395.	1.3	2
2077	Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Research, 2017, 10, 3103-3112.	5.8	48
2078	NH ₃ Postâ€Treatment Induces High Activity of Coâ€Based Electrocatalysts Supported on Carbon Nanotubes for the Oxygen Evolution Reaction. ChemElectroChem, 2017, 4, 2091-2098.	1.7	7
2079	Phase-transfer synthesis of α-Co(OH)2 and its conversion to CoO for efficient electrocatalytic water oxidation. Science Bulletin, 2017, 62, 626-632.	4.3	54
2080	Iron phosphide nanocrystals decorated in situ on heteroatom-doped mesoporous carbon nanosheets used for an efficient oxygen reduction reaction in both alkaline and acidic media. RSC Advances, 2017, 7, 22263-22269.	1.7	26
2081	Electrospun Porous Perovskite La _{0.6} Sr _{0.4} Co ₁ _– <i>_x</i> Nanofibers for Efficient Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700146.	:/i 1 @ <sub< td=""><td>>374/sub><su< td=""></su<></td></sub<>	>374/sub> <su< td=""></su<>
2082	"Wiring―Feâ€N _{<i>x</i>} â€Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606534.	11.1	342
2083	In Situ Formation of Hierarchical Porous Fe,Coâ^'Nâ€Doped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2005-2011.	1.7	8
2084	Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16178-16186.	4.0	94
2085	Significant enhancement of visible light photocatalytic activity of the hybrid B ₁₂ -PIL/rGO in the presence of Ru(bpy) ₃ ²⁺ for DDT dehalogenation. RSC Advances, 2017, 7, 19197-19204.	1.7	11
2086	Synergistic effect induced ultrafine SnO ₂ /graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. Journal of Materials Chemistry A, 2017, 5, 10027-10038.	5 . 2	155
2087	TCNQ-induced in-situ electrochemical deposition for the synthesis of silver nanodendrites as efficient bifunctional electrocatalysts. Electrochimica Acta, 2017, 239, 45-55.	2.6	20
2088	In situ hybridization of CoO _X nanoparticles on N-doped graphene through one step mineralization of co-responsive hydrogels. Dalton Transactions, 2017, 46, 6163-6167.	1.6	11

#	Article	IF	CITATIONS
2089	Ironâ€Doped Cobalt Monophosphide Nanosheet/Carbon Nanotube Hybrids as Active and Stable Electrocatalysts for Water Splitting. Advanced Functional Materials, 2017, 27, 1606635.	7.8	206
2090	Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo 2 O 4 nanoparticles for efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42, 10802-10812.	3.8	35
2091	The role of iron nitrides in the Fe–N–C catalysis system towards the oxygen reduction reaction. Nanoscale, 2017, 9, 7641-7649.	2.8	96
2092	Ultrathin Co ₃ O ₄ nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc–air batteries. Nanoscale, 2017, 9, 8623-8630.	2.8	90
2093	In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers, 2017, 4, 1173-1181.	3.0	57
2094	Surface-rough Fe-N/C composite wrapped on carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Nanotechnology, 2017, 28, 225401.	1.3	14
2095	Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 12322-12329.	5.2	93
2096	Metalâ€Organic Frameworkâ€Derived Nonâ€Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700363.	10.2	297
2097	A promising N-doped carbon-metal oxide hybrid electrocatalyst derived from crustacean's shells: Oxygen reduction and oxygen evolution. Applied Catalysis B: Environmental, 2017, 214, 137-147.	10.8	45
2098	In situ synthesis of ultrasmall SnO2 quantum dots on nitrogen-doped reduced graphene oxide composite as high performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 727, 1-7.	2.8	22
2099	Co ₃ O ₄ @Co Nanoparticles Embedded Porous Nâ€Rich Carbon Matrix for Efficient Oxygen Reduction. Particle and Particle Systems Characterization, 2017, 34, 1700074.	1.2	11
2100	Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Letters, 2017, 2, 1370-1377.	8.8	709
2101	A hybrid composite catalyst of Fe ₃ O ₄ nanoparticles-based carbon for electrochemical reduction of oxygen. New Journal of Chemistry, 2017, 41, 4959-4965.	1.4	13
2102	In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 12354-12360.	5.2	93
2103	ZIF-derived graphene coated/Co 9 S 8 nanoparticles embedded in nitrogen doped porous carbon polyhedrons as advanced catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 12978-12988.	3.8	35
2104	Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017, 37, 136-157.	8.2	1,257
2105	Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. Journal of Materials Chemistry A, 2017, 5, 10244-10249.	5.2	62
2106	Green Fabrication of Co3O4 Nanoparticle-Decorated Reduced Graphene Oxide Sheets: Evaluation of Biocompatibility on Human Mesenchymal Stem Cells for Biomedical Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1110-1116.	1.9	10

#	Article	IF	CITATIONS
2107	Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy, 2017, 37, 187-194.	8.2	125
2108	Phaseâ€Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie - International Edition, 2017, 56, 7769-7773.	7.2	157
2109	CoV ₂ O ₆ –V ₂ O ₅ Coupled with Porous N-Doped Reduced Graphene Oxide Composite as a Highly Efficient Electrocatalyst for Oxygen Evolution. ACS Energy Letters, 2017, 2, 1327-1333.	8.8	84
2110	Modifying Commercial Carbon with Trace Amounts of ZIF to Prepare Derivatives with Superior ORR Activities. Advanced Materials, 2017, 29, 1701354.	11.1	94
2111	Phaseâ€Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie, 2017, 129, 7877-7881.	1.6	24
2112	Cobalt-nitrogen-activated carbon as catalyst in acetylene hydrochlorination. Catalysis Communications, 2017, 98, 22-25.	1.6	23
2113	A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2–RGO nanocomposites. Nanoscale, 2017, 9, 7830-7838.	2.8	34
2114	Catechol adsorption on graphene nanoplatelets: isotherm, flat to vertical phase transition and desorption kinetics. Chemical Science, 2017, 8, 4771-4778.	3.7	27
2115	Partial-sacrificial-template Synthesis of Fe/Ni Phosphides on Ni Foam: a Strongly Stabilized and Efficient Catalyst for Electrochemical Water Splitting. Electrochimica Acta, 2017, 242, 260-267.	2.6	61
2116	Anchoring of a Carboxyl-Functionalized Norbornadiene Derivative to an Atomically Defined Cobalt Oxide Surface. Journal of Physical Chemistry C, 2017, 121, 11508-11518.	1.5	13
2117	Phase-controllable synthesis of cobalt hydroxide for electrocatalytic oxygen evolution. Dalton Transactions, 2017, 46, 10545-10548.	1.6	70
2118	Graphene Oxide Based Electrochemical System for Energy Generation. Nanostructure Science and Technology, 2017, , 331-346.	0.1	1
2119	Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nature Communications, 2017, 8, 15139.	5.8	343
2120	Electrosynthesis of Bifunctional WS _{3â^'<i>x</i>} /Reduced Graphene Oxide Hybrid for Hydrogen Evolution Reaction and Oxygen Reduction Reaction Electrocatalysis. Chemistry - A European Journal, 2017, 23, 8510-8519.	1.7	20
2121	Co ₃ O _{4â^î^} Quantum Dots As a Highly Efficient Oxygen Evolution Reaction Catalyst for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16159-16167.	4.0	104
2122	Co-SrCO ₃ /N-doped carbon: a highly efficient hybrid electrocatalyst for the oxygen reduction reaction and Zn–air batteries. Inorganic Chemistry Frontiers, 2017, 4, 1073-1086.	3.0	17
2123	Raisin bread-like iron sulfides/nitrogen and sulfur dual-doped mesoporous graphitic carbon spheres: a promising electrocatalyst for the oxygen reduction reaction in alkaline and acidic media. Journal of Materials Chemistry A, 2017, 5, 11114-11123.	5.2	55
2124	Bio-inspired iron metal–carbon black based nano-electrocatalyst for the oxygen reduction reaction. Pigment and Resin Technology, 2017, 46, 267-275.	0.5	6

#	Article	IF	CITATIONS
2125	Ultrafine Pt nanoparticles decorated MoS 2 nanosheets with significantly improved hydrogen evolution activity. Electrochimica Acta, 2017, 241, 316-322.	2.6	80
2126	One-Step Conversion from Core–Shell Metal–Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction. ACS Applied Materials & Driverfaces, 2017, 9, 16109-16116.	4.0	117
2127	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie, 2017, 129, 1344-1348.	1.6	79
2128	Selfâ€Templating Synthesis of Hollow Co ₃ O ₄ Microtube Arrays for Highly Efficient Water Electrolysis. Angewandte Chemie - International Edition, 2017, 56, 1324-1328.	7.2	648
2129	Graphene membrane encapsulated Co3O4 nanotubes with superior capacity and stability as anode materials for lithium ion batteries. Journal of Sol-Gel Science and Technology, 2017, 82, 75-84.	1.1	10
2130	From biomass chitin to mesoporous nanosheets assembled loofa sponge-like N-doped carbon/g-C 3 N 4 3D network architectures as ultralow-cost bifunctional oxygen catalysts. Microporous and Mesoporous Materials, 2017, 240, 216-226.	2.2	51
2131	Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1211-1220.	5. 2	161
2132	Preparation of Sandwich-like NiCo2O4/rGO/NiO Heterostructure on Nickel Foam for High-Performance Supercapacitor Electrodes. Nano-Micro Letters, 2017, 9, 16.	14.4	56
2133	Functionalized Natural Carbonâ€Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production. Chemistry - an Asian Journal, 2017, 12, 366-371.	1.7	7
2134	Chrysanthemum flower-like NiCo ₂ O ₄ â€"nitrogen doped graphene oxide composite: an efficient electrocatalyst for lithiumâ€"oxygen and zincâ€"air batteries. Chemical Communications, 2017, 53, 7836-7839.	2.2	57
2135	A reduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygen reduction reaction. Dalton Transactions, 2017, 46, 9344-9348.	1.6	53
2136	Inorganic semiconductors-graphene composites in photo(electro)catalysis: Synthetic strategies, interaction mechanisms and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 33, 132-164.	5.6	54
2137	Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22578-22587.	4.0	128
2138	MOF-Derived Formation of Ni ₂ P–CoP Bimetallic Phosphides with Strong Interfacial Effect toward Electrocatalytic Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23222-23229.	4.0	276
2139	A 3D hierarchical porous Co ₃ O ₄ nanotube network as an efficient cathode for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 14673-14681.	5.2	50
2140	Metal–Organicâ€Frameworkâ€Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	11.1	678
2141	Cobaltâ€Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 3473-3481.	3.6	20
2142	MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small, 2017, 13, 1700740.	5.2	170

#	Article	IF	CITATIONS
2143	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969.	6.9	49
2144	Tailoring the Oxygen Reduction Activity of Hemoglobin through Immobilization within Microporous Organic Polymer–Graphene Composite. ACS Applied Materials & Diterfaces, 2017, 9, 27918-27926.	4.0	17
2145	Effect of temperature on the activities and stabilities of hydrothermally prepared IrOx nanocatalyst layers for the oxygen evolution reaction. Applied Catalysis B: Environmental, 2017, 218, 287-297.	10.8	78
2146	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,Nâ€Decorated Graphene. Angewandte Chemie - International Edition, 2017, 56, 7121-7125.	7.2	395
2147	Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal–Organic Frameworks and Ti ₃ C ₂ T _{<i>x</i>} Nanosheets for Electrocatalytic Oxygen Evolution. ACS Nano, 2017, 11, 5800-5807.	7.3	557
2148	Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts. Journal of Materials Chemistry A, 2017, 5, 13019-13031.	5.2	45
2149	Sm2O3 embedded in nitrogen doped carbon with mosaic structure: An effective catalyst for oxygen reduction reaction. Energy, 2017, 133, 115-120.	4.5	36
2150	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Evolution: Cobalt Oxide Nanoparticles Strongly Coupled to B,Nâ€Decorated Graphene. Angewandte Chemie, 2017, 129, 7227-7231.	1.6	59
2151	Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution. Sustainable Energy and Fuels, 2017, 1, 1199-1203.	2.5	19
2153	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Selfâ€Sacrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	2.7	9
2154	Atomically Precise Gold and Bimetal Nanoclusters as New Model Catalysts. Studies in Surface Science and Catalysis, 2017, 177, 359-408.	1.5	5
2155	Role of N doping on the electrochemical performances of ZnCo 2 O 4 quantum dots/reduced graphene oxide composite nanosheets. Chemical Engineering Journal, 2017, 327, 1000-1010.	6.6	54
2156	Silver chloride enwrapped silver grafted on nitrogen-doped reduced graphene oxide as a highly efficient visible-light-driven photocatalyst. Journal of Colloid and Interface Science, 2017, 505, 421-429.	5.0	21
2157	Effective Synthesis of Highly Oxidized Graphene Oxide That Enables Wafer-scale Nanopatterning: Preformed Acidic Oxidizing Medium Approach. Scientific Reports, 2017, 7, 3908.	1.6	43
2158	Cobalt carbonate hydroxide superstructures for oxygen evolution reactions. Chemical Communications, 2017, 53, 8010-8013.	2.2	74
2159	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. Sustainable Energy and Fuels, 2017, 1, 1524-1532.	2.5	16
2160	Highly Electrochemically Stable Morphology of Mesoscale Co₃O₄Flowerlike Oriented Aggregate (FLOA) for Electrocatalytic Water Splitting . Journal of the Electrochemical Society, 2017, 164, H526-H536.	1.3	2
2161	Hierarchical NiCo ₂ O ₄ nanosheets on carbon nanofiber films for high energy density and long-life Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 14530-14536.	5.2	46

#	ARTICLE	IF	CITATIONS
2162	Postâ€Synthetic Immobilization of Ni Ions in a Porousâ€Organic Polymerâ€Graphene Composite for Nonâ€Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2946-2951.	1.8	16
2163	Crosslinked Carbon Nanotube Aerogel Films Decorated with Cobalt Oxides for Flexible Rechargeable Zn–Air Batteries. Small, 2017, 13, 1700518.	5.2	99
2164	Effectively incorporating iron, nitrogen, and sulfur functionalities on carbon surface for a superior electrocatalyst toward oxygen reduction reaction. Electrochemistry Communications, 2017, 81, 34-37.	2.3	20
2165	Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution. Electrochimica Acta, 2017, 245, 829-838.	2.6	102
2166	Iron (II) phthalocyanine nanoclusters - Graphene sandwich composite for oxygen reduction reaction catalysts. Materials and Design, 2017, 130, 366-372.	3.3	15
2167	A rational design for enhanced oxygen reduction: Strongly coupled silver nanoparticles and engineered perovskite nanofibers. Nano Energy, 2017, 38, 392-400.	8.2	60
2168	Chemical synthesis and enhanced electrical properties of bulk poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposites. Synthetic Metals, 2017, 229, 65-71.	2.1	19
2169	Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21216-21224.	4.0	64
2170	Gluing Ionic Liquids to Oxide Surfaces: Chemical Anchoring of Functionalized Ionic Liquids by Vapor Deposition onto Cobalt(II) Oxide. Angewandte Chemie - International Edition, 2017, 56, 9072-9076.	7.2	16
2171	Interconnected Copper Cobaltite Nanochains as Efficient Electrocatalysts for Water Oxidation in Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 22378-22387.	4.0	56
2172	Lamellar <mml:math altimg="si0014.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi>Co</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mn></mml:mn></mml:mrow></mml:mrow><td>nl:mn>3<!--<br-->>2./mml:m</td><td>mml:mn><!--<br--> r6w></td></mml:mrow></mml:mrow></mml:math>	nl:mn>3 2./mml:m	mml:mn> <br r 6 w>
2173	properties. Ceramics International, 2017, 43, 10889-10894. Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth-antimony-telluride by lattice thermal conductivity reduction. Journal of Alloys and Compounds, 2017, 718, 342-348.	2.8	49
2175	Cobalt Oxide/Reduced Graphene Oxide Composite with Enhanced Electrochemical Supercapacitance Performance. Bulletin of the Chemical Society of Japan, 2017, 90, 955-962.	2.0	72
2177	In Situ Coupling FeM (M = Ni, Co) with Nitrogenâ€Doped Porous Carbon toward Highly Efficient Trifunctional Electrocatalyst for Overall Water Splitting and Rechargeable Zn–Air Battery. Advanced Sustainable Systems, 2017, 1, 1700020.	2.7	122
2178	Fabrication and Bifunctional Electrocatalytic Performance of Ternary CoNiMn Layered Double Hydroxides/Polypyrrole/Reduced Graphene Oxide Composite for Oxygen Reduction and Evolution Reactions. Electrochimica Acta, 2017, 245, 59-68.	2.6	63
2179	General Oriented Formation of Carbon Nanotubes from Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8212-8221.	6.6	777
2180	Stable 1T-MoSe ₂ and Carbon Nanotube Hybridized Flexible Film: Binder-Free and High-Performance Li-lon Anode. ACS Nano, 2017, 11, 6483-6491.	7.3	135
2181	Directly anchoring Fe3C nanoclusters and FeNx sites in ordered mesoporous nitrogen-doped graphitic carbons to boost electrocatalytic oxygen reduction. Carbon, 2017, 121, 143-153.	5.4	71

#	Article	IF	CITATIONS
2182	Nitrogen-doped microporous carbon: An efficient oxygen reduction catalyst for Zn-air batteries. Journal of Power Sources, 2017, 359, 71-79.	4.0	61
2183	O 2 2- /O - functionalized oxygen-deficient Co 3 O 4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting. Nano Energy, 2017, 38, 155-166.	8.2	294
2184	A Composite of Pyrroleâ€Doped Carbon Black Modified with Co ₃ O ₄ for Efficient Electrochemical Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 2260-2268.	1.7	11
2185	In situ directional formation of Co@CoO _x -embedded 1D carbon nanotubes as an efficient oxygen electrocatalyst for ultra-high rate Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 13994-14002.	5.2	74
2186	Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron–nitrogen-doped graphitic carbon spheres. Journal of Materials Chemistry A, 2017, 5, 12243-12251.	5.2	48
2187	Facile fabrication of N/S-doped carbon nanotubes with Fe ₃ O ₄ nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. Journal of Materials Chemistry A, 2017, 5, 13189-13195.	5.2	50
2188	In situ grown nickel nanoparticles in a calixarene nanoreactor on a graphene–MoS ₂ support for efficient water electrolysis. Sustainable Energy and Fuels, 2017, 1, 1329-1338.	2.5	13
2189	Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. Journal of Materials Chemistry A, 2017, 5, 13573-13580.	5.2	96
2190	RGO/ZnWO 4 /Fe 3 O 4 nanocomposite as an efficient electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2017, 799, 102-110.	1.9	17
2191	Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO ₂ Reduction Using Water as an Electron Donor. ACS Applied Materials & lnterfaces, 2017, 9, 20613-20619.	4.0	36
2192	Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Applied Catalysis B: Environmental, 2017, 217, 303-312.	10.8	58
2193	Unusual Hollow Al ₂ O ₃ Nanofibers with Loofah-Like Skins: Intriguing Catalyst Supports for Thermal Stabilization of Pt Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21258-21266.	4.0	35
2194	Direct Reductive Quinolyl β-C–H Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. ACS Catalysis, 2017, 7, 4780-4785.	5.5	95
2195	Space-confined synthesis of multilayer Cu–N-doped graphene nanosheets for efficient oxygen electroreduction. Dalton Transactions, 2017, 46, 8586-8592.	1.6	28
2196	From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction. Materials Research Express, 2017, 4, 076305.	0.8	5
2197	Multiwalled carbon nanotubes twined $\hat{l}\pm$ -nickel hydroxide microspheres as high-efficient urea electrooxidation catalysts. Journal of Applied Electrochemistry, 2017, 47, 905-915.	1.5	10
2198	Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. Journal of Physical Chemistry C, 2017, 121, 14524-14533.	1.5	89
2199	Fewâ€Layer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction. Advanced Energy Materials, 2017, 7, 1700396.	10.2	301

#	Article	IF	CITATIONS
2200	Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 15065-15072.	5.2	146
2201	Gluing Ionic Liquids to Oxide Surfaces: Chemical Anchoring of Functionalized Ionic Liquids by Vapor Deposition onto Cobalt(II) Oxide. Angewandte Chemie, 2017, 129, 9200-9204.	1.6	8
2202	A Carbon-Free Ag–Co3O4 Composite as a Bifunctional Catalyst for Oxygen Reduction and Evolution: Spectroscopic, Microscopic and Electrochemical Characterization. Electrocatalysis, 2017, 8, 540-553.	1.5	32
2203	The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sciences, 2017, 67, A1-A14.	1.5	33
2204	Integrative structural and advanced imaging characterization of manganese oxide nanotubes doped with cobaltite. CrystEngComm, 2017, 19, 2329-2338.	1.3	0
2205	Robust Polyoxometalate/Nickel Foam Composite Electrodes for Sustained Electrochemical Oxygen Evolution at High pH. Angewandte Chemie - International Edition, 2017, 56, 4941-4944.	7.2	131
2206	Hierarchically scaffolded CoP/CoP ₂ nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting. Nanoscale, 2017, 9, 5677-5685.	2.8	123
2207	A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochimica Acta, 2017, 235, 720-729.	2.6	22
2208	In situ X-ray photoelectron spectroscopy of electrochemically active solid-gas and solid-liquid interfaces. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 10-17.	0.8	36
2209	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	9.5	70
2210	Formation of NiCo 2 O 4 rods over Co 3 O 4 nanosheets as efficient catalyst for Li–O 2 batteries and water splitting. Journal of Catalysis, 2017, 349, 175-182.	3.1	58
2211	Synthesis of flower-like molybdenum sulfide/graphene hybrid as an efficient oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Journal of Power Sources, 2017, 353, 104-114.	4.0	34
2212	Simultaneous Co-Doping of Nitrogen and Fluorine into MWCNTs: An In-Situ Conversion to Graphene Like Sheets and Its Electro-Catalytic Activity toward Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2017, 164, F568-F576.	1.3	31
2213	Peptideâ€FlgA3â€Based Gold Palladium Bimetallic Nanoparticles That Catalyze the Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2017, 9, 2980-2987.	1.8	19
2214	Role of Composition and Size of Cobalt Ferrite Nanocrystals in the Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 2988-2995.	1.8	74
2215	Informing rational design of graphene oxide through surface chemistry manipulations: properties governing electrochemical and biological activities. Green Chemistry, 2017, 19, 2826-2838.	4.6	19
2216	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie - International Edition, 2017, 56, 8539-8543.	7.2	314
2217	Engineering Highâ€Energy Interfacial Structures for Highâ€Performance Oxygenâ€Involving Electrocatalysis. Angewandte Chemie, 2017, 129, 8659-8663.	1.6	36

#	Article	IF	CITATIONS
2218	A Sodiumâ€lonâ€Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angewandte Chemie, 2017, 129, 5828-5831.	1.6	28
2219	A Sodiumâ€lonâ€Conducting Direct Formate Fuel Cell: Generating Electricity and Producing Base. Angewandte Chemie - International Edition, 2017, 56, 5734-5737.	7.2	77
2220	Selfâ€Assembled Manganese Sulfide Nanostructures on Graphene as an Oxygen Reduction Catalyst for Anion Exchange Membrane Fuel Cells. ChemElectroChem, 2017, 4, 1544-1553.	1.7	24
2221	Recent advancements in metal-based hybrid electrocatalysts supported on graphene and related 2D materials for the oxygen reduction reaction. Carbon, 2017, 118, 493-510.	5.4	61
2222	Synthesis of RGOâ€"Co doped ZnO/PANI hybrid composite for supercapacitor application. Journal of Materials Science: Materials in Electronics, 2017, 28, 9836-9851.	1.1	12
2223	From Mixed-Metal MOFs to Carbon-Coated Coreâ€"Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to Co _{<i>x</i>} Ni _{1â€"<i>x</i>} O@C for the Oxygen Evolution Reaction, Inorganic Chemistry, 2017, 56, 5203-5209.	1.9	93
2224	Molecular Design of Polymer Heterojunctions for Efficient Solar–Hydrogen Conversion. Advanced Materials, 2017, 29, 1606198.	11.1	203
2225	MOFâ€Templated Assembly Approach for Fe ₃ C Nanoparticles Encapsulated in Bambooâ€Like Nâ€Doped CNTs: Highly Efficient Oxygen Reduction under Acidic and Basic Conditions. Chemistry - A European Journal, 2017, 23, 12125-12130.	1.7	64
2226	Effective Construction of High-quality Iron Oxy-hydroxides and Co-doped Iron Oxy-hydroxides Nanostructures: Towards the Promising Oxygen Evolution Reaction Application. Scientific Reports, 2017, 7, 43590.	1.6	51
2227	Atomic-scale topochemical preparation of crystalline Fe ³⁺ -doped β-Ni(OH) ₂ for an ultrahigh-rate oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 7753-7758.	5.2	80
2228	Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions. Scientific Reports, 2017, 7, 45384.	1.6	48
2229	Phosphorus Enhanced Intermolecular Interactions of SnO ₂ and Graphene as an Ultrastable Lithium Battery Anode. Small, 2017, 13, 1603973.	5.2	87
2230	Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable metal–air battery applications. Nanoscale, 2017, 9, 7373-7379.	2.8	56
2231	<i>In situ</i> preparation of grapheneâ€ZnO composites for enhanced graphite exfoliation and grapheneâ€nylonâ€6 composite films. Journal of Applied Polymer Science, 2017, 134, 45034.	1.3	3
2232	Composite hollow nanostructures composed of carbon-coated Ti ³⁺ self-doped TiO ₂ -reduced graphene oxide as an efficient electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 7072-7080.	5.2	61
2233	Fe–N-Doped carbon foam nanosheets with embedded Fe ₂ O ₃ nanoparticles for highly efficient oxygen reduction in both alkaline and acidic media. RSC Advances, 2017, 7, 14382-14388.	1.7	43
2234	Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes. Journal of Materials Chemistry A, 2017, 5, 8334-8342.	5.2	182
2235	A metal–organic-framework/carbon composite with enhanced bifunctional electrocatalytic activities towards oxygen reduction/evolution reactions. International Journal of Hydrogen Energy, 2017, 42, 17376-17385.	3.8	55

#	Article	IF	CITATIONS
2236	Two-dimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry A, 2017, 5, 7257-7284.	5.2	220
2237	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	5.2	23
2238	Graphene-Based Nanomaterials for Catalysis. Industrial & Engineering Chemistry Research, 2017, 56, 3477-3502.	1.8	234
2239	Bifunctional Oxygen Electrocatalysis through Chemical Bonding of Transition Metal Chalcogenides on Conductive Carbons. Advanced Energy Materials, 2017, 7, 1602217.	10.2	105
2240	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 117, 6225-6331.	23.0	3,940
2241	CoO nanosheets in situ grown on nitrogen-doped activated carbon as an effective cathodic electrocatalyst for oxygen reduction reaction in microbial fuel cells. Electrochimica Acta, 2017, 232, 339-347.	2.6	48
2242	Co-N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy, 2017, 41, 772-779.	8.2	118
2243	3D Hierarchically Porous Graphitic Carbon Nitride Modified Grapheneâ€Pt Hybrid as Efficient Methanol Oxidation Catalysts. Advanced Materials Interfaces, 2017, 4, 1601219.	1.9	27
2244	Nickel Phosphide Nanorod Arrays Vertically Grown on Ni Foam as Highâ€Efficiency Electrocatalyst for the Hydrogen Evolution Reaction. Chinese Journal of Chemistry, 2017, 35, 405-409.	2.6	17
2245	Excellent performance of cobalt-impregnated activated carbon in peroxymonosulfate activation for acid orange 7 oxidation. Environmental Science and Pollution Research, 2017, 24, 9651-9661.	2.7	44
2246	Cobalt oxide nanocubes interleaved reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2017, 237, 61-68.	2.6	56
2247	Semiconductor, molecular and hybrid systems for photoelectrochemical solar fuel production. Journal of Energy Chemistry, 2017, 26, 219-240.	7.1	48
2248	N-doped nanoporous Co ₃ O ₄ nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 2017, 28, 165402.	1.3	105
2249	One-pot surface engineering of battery electrode materials with metallic SWCNT-enriched, ivy-like conductive nanonets. Journal of Materials Chemistry A, 2017, 5, 12103-12112.	5.2	7
2250	Reducing and Uniforming the Co3 O 4 Particle Size by Sulfonated Graphenal Polymers for Electrochemical Applications. Nanoscale Research Letters, 2017, 12, 165.	3.1	11
2251	Nâ€Doped 3D Carbon Aerogel with Trace Fe as an Efficient Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 514-520.	1.7	43
2252	NiCo 2 S 4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017, 31, 541-550.	8.2	365
2253	A layered Na _{1â^'x} Ni _y Fe _{1â^'y} O ₂ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy and Environmental Science, 2017, 10, 121-128.	15.6	201

#	ARTICLE	IF	CITATIONS
2254	In situ electrochemically generated composite-type CoOx/WOx in self-activated cobalt tungstate nanostructures: implication for highly enhanced electrocatalytic oxygen evolution. Electrochimica Acta, 2017, 224, 551-560.	2.6	48
2255	Spinel ZnCo2O4 nanosheets as carbon and binder free electrode material for energy storage and electroreduction of H2O2. Journal of Alloys and Compounds, 2017, 696, 947-955.	2.8	32
2256	Cobalt nanoparticles/nitrogen-doped graphene with high nitrogen doping efficiency as noble metal-free electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 490, 576-586.	5.0	26
2257	A Robust Hybrid Zn-Battery with Ultralong Cycle Life. Nano Letters, 2017, 17, 156-163.	4.5	138
2258	Cu ₂ O–Cu Hybrid Foams as High-Performance Electrocatalysts for Oxygen Evolution Reaction in Alkaline Media. ACS Catalysis, 2017, 7, 986-991.	5.5	188
2259	Electrochemistry of Corroles in Nonaqueous Media. Chemical Reviews, 2017, 117, 3377-3419.	23.0	170
2260	A new method for developing defect-rich graphene nanoribbons/onion-like carbon@Co nanoparticles hybrid materials as an excellent catalyst for oxygen reactions. Nanoscale, 2017, 9, 1738-1744.	2.8	56
2261	Exfoliated clay nanosheets as an efficient additive for improving the electrode functionality of graphene-based nanocomposites. Inorganic Chemistry Frontiers, 2017, 4, 521-529.	3.0	10
2262	Synergetic Photocatalytic Nanostructures Based on Au/TiO ₂ /Reduced Graphene Oxide for Efficient Degradation of Organic Pollutants. Particle and Particle Systems Characterization, 2017, 34, 1600323.	1.2	14
2263	CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	16
2264	Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. ACS Applied Materials & Ditting (1997), 9, 2240-2248.	4.0	228
2265	Major Role of Surface Area in Perovskite Electrocatalysts for Alkaline Systems. ChemElectroChem, 2017, 4, 468-471.	1.7	10
2266	Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society, 2017, 139, 2277-2285.	6.6	133
2267	Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2717-2723.	5. 2	126
2268	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	5.2	37
2269	Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction. Chinese Chemical Letters, 2017, 28, 748-754.	4.8	20
2270	Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal–Organic Framework for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2541-2549.	4.0	137
2271	Reduced graphene oxide supported hierarchical flower like manganese oxide as efficient electrocatalysts toward reduction and evolution of oxygen. International Journal of Hydrogen Energy, 2017, 42, 4111-4122.	3.8	48

#	Article	IF	CITATIONS
2272	Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon, 2017, 114, 628-634.	5 . 4	94
2273	Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2017, 114, 706-716.	5.4	40
2274	The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. Journal of Power Sources, 2017, 341, 250-256.	4.0	175
2275	Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 1742-1748.	5.2	51
2276	Zirconia on Reduced Graphene Oxide Sheets: Synergistic Catalyst with High Selectivity for H ₂ O ₂ Electrogeneration. ChemElectroChem, 2017, 4, 508-513.	1.7	19
2277	ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Applied Catalysis B: Environmental, 2017, 205, 55-67.	10.8	149
2278	Reactivity-Controlled Preparation of Ultralarge Graphene Oxide by Chemical Expansion of Graphite. Chemistry of Materials, 2017, 29, 564-572.	3.2	93
2279	Facile Synthesis of Cobalt Oxide Nanoparticles by Thermal Decomposition of Cobalt(II) Carboxamide Complexes: Application as Oxygen Evolution Reaction Electrocatalyst in Alkaline Water Electrolysis. Electrocatalysis, 2017, 8, 122-131.	1.5	16
2280	Nitrogen-doped hollow mesoporous carbon spheres as a highly active and stable metal-free electrocatalyst for oxygen reduction. Carbon, 2017, 114, 177-186.	5.4	122
2281	Ultrafine Co-doped ZnO nanoparticles on reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 224, 561-570.	2.6	42
2282	Nanoreactor of Nickelâ€Containing Carbon–Shells as Oxygen Reduction Catalyst. Advanced Materials, 2017, 29, 1605083.	11.1	64
2283	Plasmonâ€Enhanced Photoelectrical Hydrogen Evolution on Monolayer MoS ₂ Decorated Cu _{1.75} Sâ€Au Nanocrystals. Small, 2017, 13, 1602235.	5.2	34
2284	PtPd alloy embedded in nitrogen-rich graphene nanopores: High-performance bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Carbon, 2017, 114, 740-748.	5.4	94
2285	A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction. Carbon, 2017, 114, 284-290.	5.4	92
2286	Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water. Electrochimica Acta, 2017, 224, 314-328.	2.6	98
2287	Fe–N _x moiety-modified hierarchically porous carbons derived from porphyra for highly effective oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1526-1532.	5.2	60
2288	Tuning the Electronic Bandgap: An Efficient Way To Improve the Electrocatalytic Activity of Carbonâ€Supported Co ₃ O ₄ Nanocrystals for Oxygen Reduction Reactions. Chemistry - A European Journal, 2017, 23, 2599-2609.	1.7	42
2289	Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 3336-3345.	5.2	88

#	Article	IF	CITATIONS
2290	Waste cotton-derived N-doped carbon as a sustainable metal-free electrocatalyst for oxygen reduction. Materials Letters, 2017, 188, 33-36.	1.3	9
2291	Nitrogen, sulfur and phosphorus-codoped carbon with a tunable nanostructure as an efficient electrocatalyst for the oxygen reduction reaction. RSC Advances, 2017, 7, 5782-5789.	1.7	16
2292	S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts. ACS Applied Materials & Samp; Interfaces, 2017, 9, 398-405.	4.0	194
2293	Engineered Graphene Materials: Synthesis and Applications for Polymer Electrolyte Membrane Fuel Cells. Advanced Materials, 2017, 29, 1601741.	11.1	142
2294	Polypyrrole-assisted oxygen electrocatalysis on perovskite oxides. Energy and Environmental Science, 2017, 10, 523-527.	15.6	60
2295	Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon, 2017, 114, 347-355.	5.4	110
2296	Mixed-valence NaSb ₃ O ₇ support toward improved electrocatalytic performance in the oxygen-reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1667-1671.	5.2	24
2297	Unique PCoN Surface Bonding States Constructed on g ₃ N ₄ Nanosheets for Drastically Enhanced Photocatalytic Activity of H ₂ Evolution. Advanced Functional Materials, 2017, 27, 1604328.	7.8	329
2298	Molecular‣evel Design of Hierarchically Porous Carbons Codoped with Nitrogen and Phosphorus Capable of In Situ Selfâ€Activation for Sustainable Energy Systems. Small, 2017, 13, 1602010.	5.2	47
2299	Reduced Graphene Oxide Supported Nickel–Manganese–Cobalt Spinel Ternary Oxide Nanocomposites and Their Chemically Converted Sulfide Nanocomposites as Efficient Electrocatalysts for Alkaline Water Splitting. ACS Catalysis, 2017, 7, 819-832.	5.5	101
2300	Synthesis of Cobalt Sulfide-Graphene as an Efficient Oxygen Reduction Catalyst in Alkaline Medium and Its Application in Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F71-F80.	1.3	29
2301	Morphology dependence of electrochemical properties on palladium nanocrystals. Journal of Colloid and Interface Science, 2017, 490, 190-196.	5.0	19
2302	Co3O4(100) films grown on Ag(100): Structure and chemical properties. Surface Science, 2017, 657, 90-95.	0.8	10
2303	Uniform Fe ₃ O ₄ /Nitrogen-Doped Mesoporous Carbon Spheres Derived from Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction. ACS Applied Materials & Diterfaces, 2017, 9, 335-344.	4.0	82
2304	Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2017, 9, 464-471.	4.0	174
2305	Catalytic activity of catalase–silica nanoparticle hybrids: from ensemble to individual entity activity. Chemical Science, 2017, 8, 2303-2308.	3.7	26
2306	Synthesis and basic catalytic application of Pd nanoparticles supported on 3D nitrogen-doped reduced graphene oxide. New Journal of Chemistry, 2017, 41, 865-872.	1.4	11
2307	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54

#	Article	IF	CITATIONS
2308	Ultrasensitive and Selective Organic FET-type Nonenzymatic Dopamine Sensor Based on Platinum Nanoparticles-Decorated Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39526-39533.	4.0	58
2309	Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid. Green Chemistry, 2017, 19, 5714-5722.	4.6	106
2311	Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. Journal of Catalysis, 2017, 355, 53-62.	3.1	110
2312	Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 368, 46-56.	4.0	74
2313	Polyaniline derived N- and O-enriched high surface area hierarchical porous carbons as an efficient metal-free electrocatalyst for oxygen reduction. Electrochimica Acta, 2017, 257, 73-81.	2.6	22
2314	MOF-reduced Graphene Oxide Composites with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. IOP Conference Series: Earth and Environmental Science, 2017, 83, 012016.	0.2	0
2315	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie - International Edition, 2017, 56, 14718-14722.	7.2	164
2316	Microwave-Assisted Synthesis of a Stainless Steel Mesh-Supported Co ₃ O ₄ Microrod Array As a Highly Efficient Catalyst for Electrochemical Water Oxidation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11069-11079.	3.2	35
2317	Vacancy-assisted oxygen reduction reaction on cobalt-based catalysts in direct borohydride fuel cell revealed by in-situ XAFS and XRD. Electrochimica Acta, 2017, 254, 72-78.	2.6	18
2318	Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 11105-11116.	3.2	61
2319	High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor. Science Bulletin, 2017, 62, 1602-1608.	4.3	7
2320	3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Applied Materials & Samp; Interfaces, 2017, 9, 36944-36954.	4.0	83
2321	Nitrogen–phosphorus co-doped hollow carbon microspheres with hierarchical micro–meso–macroporous shells as efficient electrodes for supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22631-22640.	5.2	130
2322	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie, 2017, 129, 14910-14914.	1.6	58
2323	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 23170-23178.	5.2	60
2324	Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core–Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting. Small, 2017, 13, 1702018.	5 . 2	91
2325	Hollow Carbon Nano-spheres: A Step Toward Energy Applications. , 2017, , 71-96.		0
2326	Oxygen electrode reactions of doped BiFeO ₃ materials for low and elevated temperature fuel cell applications. RSC Advances, 2017, 7, 47643-47653.	1.7	17

#	Article	IF	CITATIONS
2327	Hollow Co ₃ O ₄ Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solidâ€State Zincâ€"Air Batteries. Advanced Materials, 2017, 29, 1704117.	11.1	407
2328	Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst. Journal Physics D: Applied Physics, 2017, 50, 475501.	1.3	3
2329	Active Feâ€N <i>_x</i> Sites in Carbon Nanosheets as Oxygen Reduction Electrocatalyst for Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700085.	2.7	43
2330	Semiconducting Metal Oxide Nanostructures for Water Splitting and Photovoltaics. Advanced Energy Materials, 2017, 7, 1700706.	10.2	108
2331	Constructing MoO ₂ Porous Architectures Using Graphene Oxide Flexible Supports for Lithium Ion Battery Anodes. Global Challenges, 2017, 1, 1700050.	1.8	16
2332	CuCoO _{<i>x</i>} /FeOOH Core–Shell Nanowires as an Efficient Bifunctional Oxygen Evolution and Reduction Catalyst. ACS Energy Letters, 2017, 2, 2498-2505.	8.8	109
2333	Effect of alloying on the catalytic properties of Pt–Ni bimetallic subnanoclusters: a theoretical investigation. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	3
2334	Cobalt Spinel Nanocubes on N-Doped Graphene: A Synergistic Hybrid Electrocatalyst for the Highly Selective Reduction of Carbon Dioxide to Formic Acid. ACS Catalysis, 2017, 7, 7695-7703.	5.5	73
2335	Pt $<$ sub $>$ x $<$ /sub $>$ Ni $<$ sub $>$ 10 \hat{a} °x $<$ /sub $>$ O nanoparticles supported on N-doped graphene oxide with a synergetic effect for highly efficient hydrolysis of ammonia borane. Catalysis Science and Technology, 2017, 7, 5135-5142.	2.1	23
2336	Multifunctional Mo–N/C@MoS ₂ Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Advanced Functional Materials, 2017, 27, 1702300.	7.8	658
2337	Heteroatomâ€Doped Carbon Nanotube and Grapheneâ€Based Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1702002.	5.2	202
2338	Facile synthesis of Co(OH)2 magnetic nanoflake deposited on reduced graphene oxide nanoflake as an efficient bi-functional electrocatalyst for oxygen evolution/reduction reactions in alkaline media. Journal of Electroanalytical Chemistry, 2017, 805, 11-17.	1.9	14
2339	Synthesis of dimethyl carbonate on single Cu atom embedded in N-doped graphene: Effect of nitrogen species. Molecular Catalysis, 2017, 443, 1-13.	1.0	16
2340	Fine-sized Pt nanoparticles dispersed on PdPt bimetallic nanocrystals with non-covalently functionalized graphene toward synergistic effects on the oxygen reduction reaction. Electrochimica Acta, 2017, 257, 412-422.	2.6	14
2341	Synthesis of Three-Dimensional-Ordered Mesoporous Cobalt Oxides for Selective Oxidation of Benzyl Alcohol. ChemistrySelect, 2017, 2, 9486-9489.	0.7	13
2342	Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Frontiers in Energy, 2017, 11, 299-309.	1.2	37
2343	Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis. Nano Energy, 2017, 42, 17-25.	8.2	94
2344	Synthesis of Secondary Amines from One-Pot Reductive Amination with Formic Acid as the Hydrogen Donor over an Acid-Resistant Cobalt Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 12556-12565.	1.8	44

#	Article	IF	Citations
2345	Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochimica Acta, 2017, 258, 51-60.	2.6	61
2346	Heat treated Tethered Iron Phthalocyanine Carbon Nanotube-based Catalysts for Oxygen Reduction Reaction in Hybrid Fuel Cells. Electrochimica Acta, 2017, 257, 224-232.	2.6	20
2347	Study on the properties of Pb–Co ₃ O ₄ –PbO ₂ composite inert anodes prepared by vacuum hot pressing technique. RSC Advances, 2017, 7, 49166-49176.	1.7	25
2348	Design and synthesis of Co–N–C porous catalyst derived from metal organic complexes for highly effective ORR. Dalton Transactions, 2017, 46, 15646-15650.	1.6	44
2349	A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction. Nanotechnology, 2017, 28, 485701.	1.3	13
2350	Amorphous Co ₂ B Grown on CoSe ₂ Nanosheets as a Hybrid Catalyst for Efficient Overall Water Splitting in Alkaline Medium. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39312-39317.	4.0	96
2351	A novel Fe–N–C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale, 2017, 9, 17364-17370.	2.8	118
2352	Thermal treated 3D graphene as a highly efficient metal-free electrocatalyst toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 28278-28286.	3.8	13
2353	The flexible SiC nanowire paper electrode as highly efficient photocathodes for photoelectrocatalytic water splitting. Journal of Electroanalytical Chemistry, 2017, 806, 61-67.	1.9	15
2354	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
2355	Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material. Journal of Physical Chemistry C, 2017, 121, 20165-20176.	1.5	81
2356	Metal–Organic-Framework-Derived Yolk–Shell-Structured Cobalt-Based Bimetallic Oxide Polyhedron with High Activity for Electrocatalytic Oxygen Evolution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31777-31785.	4.0	58
2357	Coupling Ag-doping and rich oxygen vacancies in mesoporous NiCoO nanorods supported on nickel foam for highly efficient oxygen evolution. Inorganic Chemistry Frontiers, 2017, 4, 1783-1790.	3.0	34
2358	Metallic nanoislands on graphene: a metamaterial for chemical, mechanical, optical, and biological applications. Nanoscale Horizons, 2017, 2, 311-318.	4.1	24
2359	Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Accounts of Chemical Research, 2017, 50, 2194-2204.	7.6	130
2360	One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28627-28634.	4.0	116
2361	Effect of a sulfur and nitrogen dual-doped Fe–N–S electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 19790-19799.	5.2	54
2362	A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy and Environmental Science, 2017, 10, 2312-2317.	15.6	113

#	Article	IF	Citations
2363	Fe $<$ sub $>$ 3 $<$ /sub $>$ C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 19672-19679.	5. 2	109
2364	Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Science Advances, 2017, 3, e1700732.	4.7	158
2365	Hydrothermal Synthesis of Highly Dispersed Co ₃ O ₄ Nanoparticles on Biomass-Derived Nitrogen-Doped Hierarchically Porous Carbon Networks as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30662-30669.	4.0	99
2366	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32168-32178.	4.0	63
2367	High-Valence-State NiO/Co ₃ O ₄ Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential. ACS Energy Letters, 2017, 2, 2177-2182.	8.8	200
2368	How many surface atoms in Co ₃ O ₄ take part in oxygen evolution? Isotope labeling together with differential electrochemical mass spectrometry. Physical Chemistry Chemical Physics, 2017, 19, 25527-25536.	1.3	55
2369	Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. Journal of Power Sources, 2017, 365, 76-82.	4.0	30
2370	Cobalt Phosphide Coupled with Heteroatomâ€Doped Nanocarbon Hybrid Electroctalysts for Efficient, Longâ€Life Rechargeable Zinc–Air Batteries. Small, 2017, 13, 1702068.	5.2	100
2371	MnCo ₂ O ₄ decorated Magnà ©li phase titanium oxide as a carbon-free cathode for Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 19991-19996.	5.2	27
2372	Porous yolk–shell microspheres as N–doped carbon matrix for motivating the oxygen reduction activity of oxygen evolution oriented materials. Nanotechnology, 2017, 28, 365403.	1.3	10
2373	Impact of the Nanomaterials on Soil Bacterial Biodiversity., 2017,, 173-190.		0
2374	Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes. ACS Catalysis, 2017, 7, 7479-7489.	5 . 5	17
2375	Electrochemically exfoliated graphene as a novel microwave susceptor: the ultrafast microwave-assisted synthesis of carbon-coated siliconâ~graphene film as a lithium-ion battery anode. Nanoscale, 2017, 9, 15582-15590.	2.8	32
2376	Mesoporous Nanosheet Networked Hybrids of Cobalt Oxide and Cobalt Phosphate for Efficient Electrochemical and Photoelectrochemical Oxygen Evolution. Small, 2017, 13, 1701875.	5.2	66
2377	Co ₃ O ₄ Nanowire Arrays toward Superior Water Oxidation Electrocatalysis in Alkaline Media by Surface Amorphization. Chemistry - A European Journal, 2017, 23, 15601-15606.	1.7	29
2378	Fabrication of a mesoporous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{O_{3â~δ} perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Transactions, 2017, 46, 13903-13911.}	1.6	18
2379	CaCu3Ti4O12: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium. Electrochimica Acta, 2017, 252, 532-540.	2.6	25
2380	Catalysts Encapsulated in Nanostructured Carbon Systems. , 2017, , 71-122.		1

#	Article	IF	CITATIONS
2381	Enhanced Electrocatalytic Performance of Self-supported AuCuCo for Oxygen Reduction and Evolution Reactions. Electrochimica Acta, 2017, 252, 261-267.	2.6	14
2382	A new method for few-layer graphene preparation via plasma-assisted ball milling. Journal of Alloys and Compounds, 2017, 728, 578-584.	2.8	86
2383	Nitrogen and Fluorine-Codoped Porous Carbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32859-32867.	4.0	83
2384	Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction. Nanoscale, 2017, 9, 15534-15541.	2.8	48
2385	Mn ₃ O ₄ nanoparticles on layer-structured Ti ₃ C ₂ MXene towards the oxygen reduction reaction and zinc–air batteries. Journal of Materials Chemistry A, 2017, 5, 20818-20823.	5.2	226
2386	Interaction of Esterâ€Functionalized Ionic Liquids with Atomicallyâ€Defined Cobalt Oxides Surfaces: Adsorption, Reaction and Thermal Stability. ChemPhysChem, 2017, 18, 3443-3453.	1.0	13
2387	Layer Structured Materials for Advanced Energy Storage and Conversion. Small, 2017, 13, 1701649.	5.2	129
2388	Activity Tuning of Cobalt Ferrite Nanoparticles Anchored on Nâ€Doped Reduced Graphene Oxide as a Potential Oxygen Reduction Electrocatalyst by Zn Substitution in the Spinel Matrix. ChemistrySelect, 2017, 2, 7845-7853.	0.7	7
2389	Ag-enhanced Catalytic Performance of Ordered Mesoporous Fe–N-Graphitic Carbons for Oxygen Electroreduction. Catalysis Letters, 2017, 147, 2745-2754.	1.4	9
2390	Design and Fabrication of Highly Reducible PtCo Particles Supported on Graphene-Coated ZnO. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34256-34268.	4.0	10
2391	High-Efficiency Co/Co _{<i>x</i>} S _{<i>y</i>} @S,N-Codoped Porous Carbon Electrocatalysts Fabricated from Controllably Grown Sulfur- and Nitrogen-Including Cobalt-Based MOFs for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2017, 9, 34269-34278.	4.0	71
2392	Atomic-layer-deposited ultrathin Co ₉ S ₈ on carbon nanotubes: an efficient bifunctional electrocatalyst for oxygen evolution/reduction reactions and rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 21353-21361.	5.2	97
2393	Enhanced Electrocatalytic Oxygen Reduction on NiWO _{<i>x</i>>location Solution with Induced Oxygen Defects. ACS Applied Materials & Solution Solution with Induced Oxygen Defects. ACS Applied Materials & Solution Solution With Induced Oxygen Defects. ACS Applied Materials & Solution Solution With Induced Oxygen Defects. ACS Applied Materials & Solution Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied Materials & Solution With Induced Oxygen Defects. ACS Applied With Induced Oxygen Defects & Solution With Induced Oxygen}	4.0	17
2394	Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chemical Communications, 2017, 53, 11426-11429.	2.2	32
2395	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Advanced Materials, 2017, 29, 1606967.	11.1	334
2396	FeNi ₂ Se ₄ –Reduced Graphene Oxide Nanocomposite: Enhancing Bifunctional Electrocatalytic Activity for Oxygen Evolution and Reduction through Synergistic Effects. Advanced Sustainable Systems, 2017, 1, 1700086.	2.7	35
2397	Metallic Snâ€Based Anode Materials: Application in Highâ€Performance Lithium″on and Sodium″on Batteries. Advanced Science, 2017, 4, 1700298.	5.6	315
2398	Nanosheet-structured NiCoO2/carbon nanotubes hybrid composite as a novel bifunctional oxygen electrocatalyst. Electrochimica Acta, 2017, 252, 338-349.	2.6	22

#	Article	IF	CITATIONS
2399	A facile template approach for the synthesis of mesoporous Fe3C/Fe-N-doped carbon catalysts for efficient and durable oxygen reduction reaction. Chinese Chemical Letters, 2017, 28, 2159-2163.	4.8	21
2400	Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support. Materials Science and Engineering C, 2017, 81, 452-458.	3.8	43
2401	From Food Waste to Efficient Bifunctional Nonprecious Electrocatalyst. Chemistry - A European Journal, 2017, 23, 15283-15288.	1.7	8
2402	Low-cost fabrication of highly sensitive room temperature hydrogen sensor based on ordered mesoporous Co-doped TiO2 structure. Applied Physics Letters, 2017, 111, .	1.5	11
2403	Hierarchical CoMoO ₄ @Co ₃ O ₄ nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 17312-17324.	5.2	76
2404	Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.	2.7	12
2405	Edgeâ€Abundant Porous Fe ₃ O ₄ Nanoparticles Docking in Nitrogenâ€Rich Graphene Aerogel as Efficient and Durable Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2442-2447.	1.7	33
2406	Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium. Journal of Alloys and Compounds, 2017, 725, 260-269.	2.8	75
2407	Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. ChemPhysChem, 2017, 18, 2573-2605.	1.0	51
2408	Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chimica Acta, 2017, 468, 49-66.	1.2	161
2409	Platinum stabilized by defective activated carbon with excellent oxygen reduction performance in alkaline media. Chinese Journal of Catalysis, 2017, 38, 1011-1020.	6.9	13
2410	Reduced Graphene Oxide decorated with Manganese Cobalt Oxide as Multifunctional Material for Mechanically Rechargeable and Hybrid Zinc–Air Batteries. Particle and Particle Systems Characterization, 2017, 34, 1700097.	1.2	55
2411	Edges of graphene and carbon nanotubes with high catalytic performance for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2017, 19, 21003-21011.	1.3	15
2412	Laserâ€Induced Graphene Formation on Wood. Advanced Materials, 2017, 29, 1702211.	11.1	397
2413	Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction. Science China Chemistry, 2017, 60, 999-1006.	4.2	37
2414	Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts. Applied Surface Science, 2017, 426, 294-300.	3.1	18
2415	Graphene/graphitic carbon nitride hybrids for catalysis. Materials Horizons, 2017, 4, 832-850.	6.4	168
2416	In situ evolution of highly dispersed amorphous CoO _x clusters for oxygen evolution reaction. Nanoscale, 2017, 9, 11969-11975.	2.8	138

#	Article	IF	CITATIONS
2417	Confinement of Reactive Oxygen Species in an Artificialâ€Enzymeâ€Based Hollow Structure To Eliminate Adverse Effects of Photocatalysis on UV Filters. Chemistry - A European Journal, 2017, 23, 13518-13524.	1.7	13
2418	Functionalized Cobalt Triarylcorrole Covalently Bonded with Graphene Oxide: A Selective Catalyst for the Two- or Four-Electron Reduction of Oxygen. Inorganic Chemistry, 2017, 56, 8954-8963.	1.9	31
2419	Coassembly and high ORR performance of monodisperse Pt nanocrystals with a mesopore-rich nitrogen-doped graphene aerogel. Journal of Materials Chemistry A, 2017, 5, 17544-17548.	5.2	39
2420	Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945-976.	6.4	263
2421	Graphene Composites with Cobalt Sulfide: Efficient Trifunctional Electrocatalysts for Oxygen Reversible Catalysis and Hydrogen Production in the Same Electrolyte. Small, 2017, 13, 1701025.	5.2	103
2422	Photoelectrocatalytic sea water splitting using Kirkendall diffusion grown functional Co3O4 film. Solar Energy Materials and Solar Cells, 2017, 171, 267-274.	3.0	39
2423	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Advanced Energy Materials, 2017, 7, 1700544.	10.2	593
2424	Ni ₃ FeNâ€6upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metalâ€"Air Batteries. Angewandte Chemie, 2017, 129, 10033-10037.	1.6	25
2425	Surface-oxidized cobalt phosphide used as high efficient electrocatalyst in activated carbon air-cathode microbial fuel cell. Journal of Power Sources, 2017, 363, 87-94.	4.0	32
2426	Copper-coordination polymer-controlled Cu@N-rGO and CuO@C nanoparticle formation: reusable green catalyst for A ³ -coupling and nitroarene-reduction reactions. Dalton Transactions, 2017, 46, 11704-11714.	1.6	17
2427	Cobalt-based nanosheet arrays as efficient electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 17640-17646.	5.2	40
2428	Ball-milling synthesis of Co ₂ P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 17563-17569.	5.2	57
2429	Facile Synthesis of a Heteroatoms′ Quaternaryâ€Doped Porous Carbon as an Efficient and Stable Metalâ€Free Catalyst for Oxygen Reduction. ChemistrySelect, 2017, 2, 6129-6134.	0.7	5
2430	Strong Surface Hydrophilicity in Co-Based Electrocatalysts for Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26867-26873.	4.0	57
2431	Dual-Functional Electrocatalyst Derived from Iron-Porphyrin-Encapsulated Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2017, 9, 28758-28765.	4.0	49
2432	The Oxygen Reduction Reaction Rate of Metallic Nanoparticles during Catalyzed Oxidation. Scientific Reports, 2017, 7, 7017.	1.6	7
2433	Temperature-directed growth of highly pyridinic nitrogen doped, graphitized, ultra-hollow carbon frameworks as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 18064-18070.	5.2	43
2434	Exceptional catalytic activity of hollow structured La _{0.6} Sr _{0.4} CoO _{3â^îÎ} perovskite spheres in aqueous media and aprotic Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 18029-18037.	5. 2	33

#	Article	IF	CITATIONS
2435	Promoting Effect of Ni(OH) ₂ on Palladium Nanocrystals Leads to Greatly Improved Operation Durability for Electrocatalytic Ethanol Oxidation in Alkaline Solution. Advanced Materials, 2017, 29, 1703057.	11.1	251
2436	Enhanced electrocatalytic performances of \hat{l} ±-Fe 2 O 3 pseudo-nanocubes for oxygen reduction reaction in alkaline solution with conductive coating. International Journal of Hydrogen Energy, 2017, 42, 20711-20719.	3.8	18
2437	Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests. ACS Applied Materials & Emp; Interfaces, 2017, 9, 28355-28365.	4.0	69
2438	In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 18610-18617.	5.2	162
2439	Revealing the importance of nitrogen doping site in enhancing the oxygen reduction reaction on \hat{l}^2 -graphyne. Carbon, 2017, 123, 415-420.	5.4	37
2440	Conductive Co3O4/graphene (core/shell) quantum dots as electrode materials for electrochemical pseudocapacitor applications. Composites Part B: Engineering, 2017, 130, 230-235.	5.9	10
2441	Stabile Polyoxometallatâ€Nickelschaumâ€Elektroden fýr elektrochemische Sauerstoffentwicklung im alkalischen Milieu. Angewandte Chemie, 2017, 129, 5023-5026.	1.6	22
2442	Grow Bimetallic Platinumâ€iridium Alloy on Reduced Graphene Oxide to Construct Heteroâ€Atomic Bridge Catalysis toward Efficient Electrooxidation of Methanol. ChemistrySelect, 2017, 2, 6317-6322.	0.7	6
2443	Ascorbic acid-tailored synthesis of carbon-wrapped nanocobalt encapsulated in graphene aerogel as electrocatalysts for highly effective oxygen-reduction reaction. Journal of Solid State Electrochemistry, 2017, 21, 3641-3648.	1,2	6
2444	Ionic liquid-derived Co3O4/carbon nano-onions composite and its enhanced performance as anode for lithium-ion batteries. Journal of Materials Science, 2017, 52, 13192-13202.	1.7	28
2445	Hollow Co ₃ O ₄ Nanocages Decorated Graphene Aerogels Derived from Carbon Wrapped Nano o for Efficient Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 6359-6363.	0.7	6
2446	Co ₃ O ₄ /Reduced Graphene Oxide Nanocomposites as Effective Phosphotriesterase Mimetics for Degradation and Detection of Paraoxon. Industrial & Description of Paraox	1.8	27
2447	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. Nano Letters, 2017, 17, 5817-5822.	4.5	29
2448	Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 2017, 117, 10121-10211.	23.0	1,157
2449	Post-Synthetic Immobilization of Ni Ions in Porous-Organic Polymer-Graphene Composite for the Non-Noble Metal Electrocatalytic Water Oxidation. ChemCatChem, 2017, 9, 2894-2894.	1.8	0
2450	A novel composite (FMC) to serve as a durable 3D-clam-shaped bifunctional cathode catalyst for both primary and rechargeable zinc-air batteries. Science Bulletin, 2017, 62, 1216-1226.	4.3	33
2451	Out-of-plane Fe ^{II} â€"N ₄ moiety modified Feâ€"N co-doped porous carbons as high-performance electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2017, 7, 4017-4023.	2.1	32
2452	Spinel cobalt–manganese oxide supported on non-oxidized carbon nanotubes as a highly efficient oxygen reduction/evolution electrocatalyst. Inorganic Chemistry Frontiers, 2017, 4, 1628-1633.	3.0	37

#	Article	IF	CITATIONS
2453	High-performance Waste Biomass-derived Microporous Carbon Electrocatalyst with a Towel-like Surface for Alkaline Metal/air batteries. Electrochimica Acta, 2017, 250, 384-392.	2.6	15
2454	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	5. 5	141
2455	Topotactic transition of \hat{l} ±-Co(OH) ₂ to \hat{l} 2-Co(OH) ₂ anchored on CoO nanoparticles during electrochemical water oxidation: synergistic electrocatalytic effects. Chemical Communications, 2017, 53, 9809-9812.	2.2	48
2456	Amorphous Bimetallic Oxide–Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn–Air Batteries. Advanced Materials, 2017, 29, 1701410.	11.1	243
2457	A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes. Journal of Power Sources, 2017, 364, 101-109.	4.0	60
2458	Co,N,S-Codoped Three-Dimensional Graphene as Efficient Bi-Functional Electrocatalyst for Oxygen Reduction/Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2017, 164, F1110-F1114.	1.3	7
2459	Co ₃ O _{4â€"<i>x</i>} -Carbon@Fe _{2â€"<i>y</i>} Co _{<i>y</i>} O _{Heterostructural Hollow Polyhedrons for the Oxygen Evolution Reaction. ACS Applied Materials & &}	>3	71
2460	Pd Nanoparticlesâ€Supported Carbon Nanotubeâ€Encapsulated NiO/MgO Composite as an Enhanced Electrocatalyst for Ethanol Electrooxidation in Alkaline Medium. ChemistrySelect, 2017, 2, 11438-11444.	0.7	5
2461	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	4.2	60
2462	Encapsulated NdCuOx bimetallic nanoparticles with nitrogen doped carbon as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 258, 1404-1412.	2.6	16
2463	A highly reduced graphene oxide/ZrO _x â€"MnCO ₃ or â€"Mn ₂ O ₃ nanocomposite as an efficient catalyst for selective aerial oxidation of benzylic alcohols. RSC Advances, 2017, 7, 55336-55349.	1.7	42
2464	Preparation and Evaluation of Edge Selective Sulfonated Graphene by Chlorosulfuric Acid as an Active Metal―Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media. ChemistrySelect, 2017, 2, 11211-11217.	0.7	20
2465	Engineering Interface with One-Dimensional Co ₃ O ₄ Nanostructure in Catalytic Membrane Electrode: Toward an Advanced Electrocatalyst for Alcohol Oxidation. ACS Nano, 2017, 11, 12365-12377.	7.3	103
2466	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8, 1509.	5.8	361
2467	Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods, 2017, 1, 1700209.	4.6	183
2468	Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+. Chemical Research in Chinese Universities, 2017, 33, 951-957.	1.3	9
2469	Atomic Fe Embedded in Carbon Nanoshells–Graphene Nanomeshes with Enhanced Oxygen Reduction Reaction Performance. Chemistry of Materials, 2017, 29, 9915-9922.	3.2	64
2470	Cobalt modified N-doped carbon nanotubes for catalytic C bond formation <i>via</i> dehydrogenative coupling of benzyl alcohols and DMSO. Green Chemistry, 2017, 19, 5782-5788.	4.6	24

#	Article	IF	Citations
2471	General Oriented Synthesis of Precise Carbon-Confined Nanostructures by Low-Pressure Vapor Superassembly and Controlled Pyrolysis. Nano Letters, 2017, 17, 7773-7781.	4.5	53
2473	Electronic Structure Reconfiguration toward Pyrite NiS ₂ <i>via</i> Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano, 2017, 11, 11574-11583.	7.3	310
2474	A N,P-co-doped 3D graphene/cobalt-embedded electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 15236-15243.	1.4	5
2475	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	5.2	90
2476	Fe ₃ O ₄ -AuNPs anchored 2D metal–organic framework nanosheets with DNA regulated switchable peroxidase-like activity. Nanoscale, 2017, 9, 18699-18710.	2.8	122
2477	Advances, challenges and promises of carbon dots. Inorganic Chemistry Frontiers, 2017, 4, 1963-1986.	3.0	127
2478	Carbon-nanotube-templated deposition of amorphous aluminum oxide with linear photo transmittance. Journal of Applied Physics, 2017, 122, 175104.	1.1	1
2479	Boosting oxygen reduction activity of spinel CoFe 2 O 4 by strong interaction with hierarchical nitrogen-doped carbon nanocages. Science Bulletin, 2017, 62, 1365-1372.	4.3	18
2480	Study of iron oxide nanoparticle phases in graphene aerogels for oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 15180-15186.	1.4	15
2481	Binary metal Fe0.5Co0.5Se2 spheres supported on carbon fiber cloth for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 15189-15195.	3.8	30
2482	Sugar Blowingâ€Induced Porous Cobalt Phosphide/Nitrogenâ€Doped Carbon Nanostructures with Enhanced Electrochemical Oxidation Performance toward Water and Other Small Molecules. Small, 2017, 13, 1700796.	5.2	65
2483	Ultrathin Twoâ€Dimensional Nanostructured Materials for Highly Efficient Water Oxidation. Small, 2017, 13, 1700806.	5.2	116
2484	Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance. Journal of Power Sources, 2017, 362, 1-9.	4.0	27
2485	Ternary PtPdTe Nanowires Winded Around 3D Free-Standing Carbon Foam as Electrocatalysts for Oxygen Reduction Reaction. Electrochimica Acta, 2017, 247, 426-434.	2.6	27
2486	Thermal decomposition synthesis, characterization and electrochemical hydrogen storage characteristics of Co3O4–CeO2 porous nanocomposite. International Journal of Hydrogen Energy, 2017, 42, 20071-20081.	3.8	38
2487	Pt-free NiCo electrocatalysts for oxygen evolution by seawater splitting. Electrochimica Acta, 2017, 247, 381-391.	2.6	39
2488	The physics and chemistry of graphene-on-surfaces. Chemical Society Reviews, 2017, 46, 4417-4449.	18.7	309
2489	Crab-shell induced synthesis of ordered macroporous carbon nanofiber arrays coupled with MnCo ₂ O ₄ nanoparticles as bifunctional oxygen catalysts for rechargeable Zn–air batteries. Nanoscale, 2017, 9, 11148-11157.	2.8	39

#	Article	IF	CITATIONS
2490	Bimetallic thin film NiCo–NiCoO ₂ @NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. Journal of Materials Chemistry A, 2017, 5, 15901-15912.	5.2	109
2491	Evolution of dealloyed PdBi ₂ nanoparticles as electrocatalysts with enhanced activity and remarkable durability in hydrogen evolution reactions. Journal of Materials Chemistry A, 2017, 5, 15950-15960.	5.2	52
2492	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	0.9	16
2493	Cobalt hydroxide nanoflakes and their application as supercapacitors and oxygen evolution catalysts. Nanotechnology, 2017, 28, 375401.	1.3	33
2494	Graphene-loaded porous ZnCo2O4 nanosheets composite as counter electrode for dye-sensitized solar cells. Materials Letters, 2017, 207, 117-120.	1.3	13
2495	Generation–Collection Electrochemistry Inside a Rotating Droplet. Analytical Chemistry, 2017, 89, 8057-8063.	3.2	6
2496	Rise of nano effects in electrode during electrocatalytic CO ₂ conversion. Nanotechnology, 2017, 28, 352001.	1.3	19
2497	Co 3 O 4 nanoparticles assembled on polypyrrole/graphene oxide for electrochemical reduction of oxygen in alkaline media. Chinese Journal of Catalysis, 2017, 38, 1281-1290.	6.9	16
2498	Bifunctional Iron–Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting. Electrochimica Acta, 2017, 247, 666-673.	2.6	92
2499	Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Science China Materials, 2017, 60, 654-663.	3.5	110
2500	Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction. Applied Surface Science, 2017, 423, 909-916.	3.1	44
2501	Enhancement of catalytic activity of a programmed gold nanoparticle superstructure modulated by supramolecular protein assembly. Catalysis Today, 2017, 295, 95-101.	2.2	4
2502	Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell. Journal of Power Sources, 2017, 361, 21-30.	4.0	34
2503	Electrocatalysts composed of a Co(acetylacetonate) ₂ molecule and refluxed graphene oxide for an oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 6203-6209.	1.4	7
2504	Adsorption on graphene: flat to edge to end transitions of phenyl hydroquinone. Physical Chemistry Chemical Physics, 2017, 19, 17521-17525.	1.3	12
2505	Boosting the bifunctional electrocatalytic oxygen activities of CoO _x nanoarrays with a porous N-doped carbon coating and their application in Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 17804-17810.	5.2	46
2506	Iron-Induced Activation of Ordered Mesoporous Nickel Cobalt Oxide Electrocatalyst for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 21225-21233.	4.0	96
2507	Graphene Dots Embedded Phosphide Nanosheet-Assembled Tubular Arrays for Efficient and Stable Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24600-24607.	4.0	52

#	Article	IF	CITATIONS
2508	Ni ₃ FeNâ€6upported Fe ₃ Pt Intermetallic Nanoalloy as a Highâ€Performance Bifunctional Catalyst for Metal–Air Batteries. Angewandte Chemie - International Edition, 2017, 56, 9901-9905.	7.2	175
2509	Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes. Chemosphere, 2017, 183, 156-163.	4.2	62
2510	CoS nanosheet arrays grown on nickel foam as an excellent OER catalyst. Journal of Alloys and Compounds, 2017, 723, 772-778.	2.8	78
2511	Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 360, 528-537.	4.0	12
2512	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	6.6	558
2513	Li ₂ O ₂ as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chemical Communications, 2017, 53, 8324-8327.	2.2	65
2514	Hybrid nanocomposites of nanostructured Co ₃ O ₄ interfaced with reduced/nitrogen-doped graphene oxides for selective improvements in electrocatalytic and/or supercapacitive properties. RSC Advances, 2017, 7, 33166-33176.	1.7	41
2515	High-performance peroxidase mimics for rapid colorimetric detection of H2O2 and glucose derived from perylene diimides functionalized Co3O4 nanoparticles. Materials Science and Engineering C, 2017, 80, 558-565.	3.8	51
2516	Tungsten Nitrideâ€Cobalt Anchored in Nâ€Doped Ordered Porous Carbon as an Efficient Oxygen Reduction Reaction Electrocatalyst. Chemistry - an Asian Journal, 2017, 12, 60-66.	1.7	16
2517	In situ tracking the reversible spinel-rocksalt structural transformation between Mn3O4 and MnO. Micron, 2017, 92, 13-18.	1.1	6
2518	Nitrogenâ€Doped Hierarchical Porous Carbons Derived from Sodium Alginate as Efficient Oxygen Reduction Reaction Electrocatalysts. ChemCatChem, 2017, 9, 809-815.	1.8	45
2519	Co ₃ O ₄ nanoneedle arrays as a multifunctional "super-reservoir―electrode for long cycle life Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 250-257.	5.2	147
2520	Cobaltâ€Embedded Nitrogenâ€Doped Carbon Nanotubes as Highâ€Performance Bifunctional Oxygen Catalysts. Energy Technology, 2017, 5, 1265-1271.	1.8	26
2521	3D Graphene Frameworks/Co ₃ O ₄ Composites Electrode for Highâ€Performance Supercapacitor and Enzymeless Glucose Detection. Small, 2017, 13, 1602077.	5.2	153
2522	Coâ€Nâ€Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1602507.	5.2	143
2523	Plasma-etched, S-doped graphene for effective hydrogen evolution reaction. International Journal of Hydrogen Energy, 2017, 42, 4184-4192.	3.8	67
2524	Facile synthesis of nitrogen-doped carbon nanotubes encapsulating nickel cobalt alloys 3D networks for oxygen evolution reaction in an alkaline solution. Journal of Power Sources, 2017, 338, 26-33.	4.0	105
2525	A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell. Renewable and Sustainable Energy Reviews, 2017, 75, 775-795.	8.2	156

#	Article	IF	CITATIONS
2526	Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganeseâ€Oxynitride Nanocatalysts on Graphene. ChemSusChem, 2017, 10, 68-73.	3.6	28
2527	3D cobalt-embedded nitrogen-doped graphene xerogel as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. Journal of Applied Electrochemistry, 2017, 47, 13-23.	1.5	6
2528	Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale Horizons, 2017, 2, 6-30.	4.1	113
2529	Bimetallic Cobaltâ€Based Phosphide Zeolitic Imidazolate Framework: CoP <i></i> >Phaseâ€Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Advanced Energy Materials, 2017, 7, 1601555.	10.2	340
2530	A oneâ€step way to novel carbonâ€niobium nitride nanoparticles for efficient oxygen reduction. Journal of the American Ceramic Society, 2017, 100, 638-646.	1.9	5
2531	Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon. Nano Research, 2017, 10, 97-107.	5.8	25
2532	Graphene foam supported multilevel network-like NiCo2S4 nanoarchitectures for robust lithium storage and efficient ORR catalysis. New Journal of Chemistry, 2017, 41, 115-125.	1.4	25
2533	Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor. Advanced Energy Materials, 2017, 7, 1602002.	10.2	160
2534	Cobalt Nanoparticleâ€Embedded Porous Carbon Nanofibers with Inherent N―and Fâ€Doping as Binderâ€Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions. ChemPhysChem, 2017, 18, 223-229.	1.0	28
2535	Iron and nickel doped CoSe2 as efficient non precious metal catalysts for oxygen reduction. International Journal of Hydrogen Energy, 2017, 42, 236-242.	3.8	29
2536	Hydrogen Bubble-Assisted Electrodeposition of Metal Nanoparticles from Protic Ionic Liquids for Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 85-89.	3.2	26
2537	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Research, 2017, 10, 1213-1222.	5.8	73
2538	Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 63-71.	7.1	34
2539	Biomass-derived synthesis of nitrogen and phosphorus Co-doped mesoporous carbon spheres as catalysts for oxygen reduction reaction. Journal of Solid State Electrochemistry, 2017, 21, 103-110.	1.2	23
2540	Preparation of graphene-nickel nanoparticles hybrid by spray pyrolysis using nickel oleate precursor and its application as a ferrofluid. Inorganic and Nano-Metal Chemistry, 2017, 47, 558-564.	0.9	1
2541	Ni0.37Co0.63S2-reduced graphene oxide nanocomposites for highly efficient electrocatalytic oxygen evolution and photocatalytic pollutant degradation. Journal of Solid State Electrochemistry, 2017, 21, 183-192.	1.2	8
2542	NiCoMnO4 nanoparticles on N-doped graphene: Highly efficient bifunctional electrocatalyst for oxygen reduction/evolution reactions. Applied Catalysis B: Environmental, 2017, 201, 241-252.	10.8	194
2543	A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for Lithium–Air Batteries. Energy Technology, 2017, 5, 568-579.	1.8	12

#	Article	IF	CITATIONS
2544	Facile synthesis of high performance non-noble-metal electrocatalyst Fe–N–S/C for oxygen reduction reaction in acidic solutions. Journal of Materials Science: Materials in Electronics, 2017, 28, 949-957.	1.1	4
2545	Colloidal nanocrystals for electrochemical reduction reactions. Journal of Colloid and Interface Science, 2017, 485, 308-327.	5.0	17
2546	Core-shell LaPO4/g-C3N4 nanowires for highly active and selective CO2 reduction. Applied Catalysis B: Environmental, 2017, 201, 629-635.	10.8	109
2547	Ni ₃ Feâ€N Doped Carbon Sheets as a Bifunctional Electrocatalyst for Air Cathodes. Advanced Energy Materials, 2017, 7, 1601172.	10.2	369
2548	Development of Graphene-Based Nanostructures. , 2017, , 327-363.		1
2549	A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosensors and Bioelectronics, 2017, 89, 970-977.	5. 3	93
2550	Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. Journal of Alloys and Compounds, 2017, 693, 964-969.	2.8	49
2551	High oxygen reduction reaction activity of C-N/Ag hybrid composites for Zn-air battery. Journal of Alloys and Compounds, 2017, 694, 419-428.	2.8	31
2552	Ni/NiO _x -decorated carbon nanofibers with enhanced oxygen evolution activity for rechargeable zinc–air batteries. Materials Chemistry Frontiers, 2017, 1, 677-682.	3.2	29
2553	In-situ growth of highly uniform and single crystalline Co3O4 nanocubes on graphene for efficient oxygen evolution. Catalysis Communications, 2017, 88, 81-84.	1.6	25
2554	Highly durable and active Co3O4 nanocrystals supported on carbon nanotubes as bifunctional electrocatalysts in alkaline media. Applied Catalysis B: Environmental, 2017, 203, 138-145.	10.8	75
2555	Charge storage, electrocatalytic and sensing activities of nest-like nanostructured Co3O4. Journal of Colloid and Interface Science, 2017, 487, 20-30.	5.0	38
2556	Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sensors and Actuators B: Chemical, 2017, 238, 1043-1051.	4.0	163
2557	Electrically Rechargeable Zinc–Air Batteries: Progress, Challenges, and Perspectives. Advanced Materials, 2017, 29, 1604685.	11.1	1,143
2558	The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 2017, 69, 401-414.	8.2	300
2559	Investigation and modification of carbon buckypaper as an electrocatalyst support for oxygen reduction. Journal of Applied Electrochemistry, 2017, 47, 105-115.	1.5	4
2560	In situ confined synthesis of molybdenum oxide decorated nickel–iron alloy nanosheets from MoO ₄ ^{2â⁻³} intercalated layered double hydroxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 87-91.	5.2	157
2561	Pt-based alloy/carbon black nanohybrid covered with ionic liquid supramolecules as an efficient catalyst for oxygen reduction reactions. Applied Catalysis B: Environmental, 2017, 204, 365-373.	10.8	45

#	Article	IF	Citations
2562	ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Applied Surface Science, 2017, 392, 196-203.	3.1	162
2563	A combined self-assembly and calcination method for preparation of nanoparticles-assembled cobalt oxide nanosheets using graphene oxide as template and their application for non-enzymatic glucose biosensing. Journal of Colloid and Interface Science, 2017, 485, 159-166.	5.0	33
2564	Highly efficient electrocatalysts with CoO/CoFe ₂ O ₄ composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction. RSC Advances, 2017, 7, 56375-56381.	1.7	8
2565	Evolution of Calcite Nanocrystals through Oriented Attachment and Fragmentation: Multistep Pathway Involving Bottom-Up and Break-Down Stages. ACS Omega, 2017, 2, 8997-9001.	1.6	12
2566	Three-dimensional Co ₃ O ₄ @MWNTs nanocomposite with enhanced electrochemical performance for nonenzymatic glucose biosensors and biofuel cells. Royal Society Open Science, 2017, 4, 170991.	1.1	15
2567	Electrochemical performances of graphene nanoribbons interlacing hollow NiCo oxide nanocages. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
2568	Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co ₃ O ₄ mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale, 2017, 9, 14431-14441.	2.8	77
2569	Hybrid Bioelectrocatalytic Reduction of Oxygen at Anthracene-modified Multi-walled Carbon Nanotubes Decorated with Ni90Pd10 Nanoparticles. Electrochimica Acta, 2017, 251, 195-202.	2.6	4
2570	In situ fabrication of nickel based oxide on nitrogen-doped graphene for high electrochemical performance supercapacitors. Chemical Physics Letters, 2017, 685, 457-464.	1.2	15
2571	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
2573	Co3O4 Nanoparticle-Decorated N-Doped Mesoporous Carbon Nanofibers as an Efficient Catalyst for Oxygen Reduction Reaction. Catalysts, 2017, 7, 189.	1.6	13
2574	A Unique 3D Nitrogen-Doped Carbon Composite as High-Performance Oxygen Reduction Catalyst. Materials, 2017, 10, 921.	1.3	14
2575	Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields. Beilstein Journal of Nanotechnology, 2017, 8, 688-714.	1.5	93
2576	SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer. Theranostics, 2017, 7, 1133-1148.	4.6	165
2577	Highly Effective Dual Transition Metal Macrocycle Based Electrocatalyst with Macro-/Mesoporous Structures for Oxygen Reduction Reaction. Catalysts, 2017, 7, 201.	1.6	13
2578	Cross-Linked CoMoO4/rGO Nanosheets as Oxygen Reduction Catalyst. Catalysts, 2017, 7, 375.	1.6	7
2579	Preparation of Ag4Bi2O5/MnO2 Corn/Cob Like Nano Material as a Superior Catalyst for Oxygen Reduction Reaction in Alkaline Solution. Catalysts, 2017, 7, 379.	1.6	5
2580	The CeOX and MnOX Nanocrystals Supported on TiO2–Graphene Oxide Catalysts and Their Selective Catalytic Reduction Properties at Low Temperature. Crystals, 2017, 7, 159.	1.0	7

#	Article	IF	Citations
2581	Magnetic Cobalt and Cobalt Oxide Nanoparticles in Hyperbranched Polyester Polyol Matrix. Journal of Nanotechnology, 2017, 2017, 1-9.	1.5	26
2582	Yttrium Copper Titanate as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Fuel Cells, Synthesized via Ultrafast Automatic Flame Technique. Scientific Reports, 2017, 7, 9407.	1.6	6
2583	Electrocatalytic activity towards oxygen reduction reaction of laminar nanocomposite LaNb ₂ O ₇ /Co ^{III} TMPyP prepared via the exfoliation/restacking method. Micro and Nano Letters, 2017, 12, 731-734.	0.6	4
2584	Discovering and Utilizing Structure Sensitivity. Studies in Surface Science and Catalysis, 2017, 177, 613-641.	1.5	1
2585	Co3O4/Reduced Graphene Oxide Composite as Electrocatalyst for Oxygen Reduction Reaction. , 2017, , .		0
2586	Room temperature NO 2 gas sensor based on porous Co 3 O 4 slices/reduced graphene oxide hybrid. Sensors and Actuators B: Chemical, 2018, 263, 387-399.	4.0	159
2587	Molybdenum Phosphide/Carbon Nanotube Hybrids as pHâ€Universal Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2018, 28, 1706523.	7.8	185
2588	Surface Oxidation of AuNi Heterodimers to Achieve High Activities toward Hydrogen/Oxygen Evolution and Oxygen Reduction Reactions. Small, 2018, 14, e1703749.	5.2	60
2589	Nitrogen doped carbon nano-onions as efficient and robust electrocatalysts for oxygen reduction reactions. Current Applied Physics, 2018, 18, 417-423.	1.1	27
2590	Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 5740-5745.	5.2	113
2591	Highly efficient and stable bifunctional electrocatalyst for water splitting on Fe–Co3O4/carbon nanotubes. International Journal of Hydrogen Energy, 2018, 43, 5522-5529.	3.8	26
2592	Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions. Renewable Energy, 2018, 125, 182-192.	4.3	51
2593	Temperature Effect on Co-Based Catalysts in Oxygen Evolution Reaction. Inorganic Chemistry, 2018, 57, 2766-2772.	1.9	54
2594	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	1.7	34
2595	Anchoring Ironâ€EDTA Complex on Graphene toward the Synthesis of Highly Efficient Feâ€N Oxygen Reduction Electrocatalyst for Fuel Cells. Chinese Journal of Chemistry, 2018, 36, 287-292.	2.6	22
2596	Probing conducting polymers@cadmium sulfide core-shell nanorods for highly improved photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2018, 521, 1-10.	5.0	48
2597	Webâ€Like Interconnected Carbon Networks from NaClâ€Assisted Pyrolysis of ZIFâ€8 for Highly Efficient Oxygen Reduction Catalysis. Small, 2018, 14, e1704169.	5.2	95
2598	Co3O4 and its composites for high-performance Li-ion batteries. Chemical Engineering Journal, 2018, 343, 427-446.	6.6	126

#	Article	IF	Citations
2599	Stability and Reactivity: Positive and Negative Aspects for Nanoparticle Processing. Chemical Reviews, 2018, 118, 3209-3250.	23.0	261
2600	A Polycarboxylâ€Decorated Fe ^{III} â€Based Xerogelâ€Derived Multifunctional Composite (Fe ₃ O ₄ /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application. Chemistry - A European Journal, 2018, 24, 6586-6594.	1.7	12
2601	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	5.4	54
2602	Polydopamineâ€Derived, In Situ Nâ€Doped 3D Mesoporous Carbons for Highly Efficient Oxygen Reduction. ChemNanoMat, 2018, 4, 417-422.	1.5	19
2603	Anisotropic N-Graphene-diffused Co3O4 nanocrystals with dense upper-zone top-on-plane exposure facets as effective ORR electrocatalysts. Scientific Reports, 2018, 8, 3740.	1.6	55
2604	A Simple Oneâ€Pot Strategy for Synthesizing Ultrafine SnS ₂ Nanoparticle/Graphene Composites as Anodes for Lithium/Sodiumâ€lon Batteries. ChemSusChem, 2018, 11, 1549-1557.	3.6	63
2605	Charge-Transfer-Promoted High Oxygen Evolution Activity of Co@Co ₉ S ₈ Coreâ€"Shell Nanochains. ACS Applied Materials & Samp; Interfaces, 2018, 10, 11565-11571.	4.0	46
2606	Ancient Chemistry "Pharaoh's Snakes―for Efficient Fe-/N-Doped Carbon Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 10778-10785.	4.0	64
2607	The photo-, electro- and photoelectro-catalytic properties and application prospects of porous coordinate polymers. Journal of Materials Chemistry A, 2018, 6, 6130-6154.	5.2	66
2608	Ni ₂ P Entwined by Graphite Layers as a Low-Pt Electrocatalyst in Acidic Media for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9999-10010.	4.0	34
2609	Effective Oxygen Reduction and Evolution Catalysts Derived from Metal Organic Frameworks by Optimizing Active Sites. Journal of the Electrochemical Society, 2018, 165, F158-F165.	1.3	13
2610	Earthworm-likeÂN, S-Doped carbon tube-encapsulated Co ₉ S ₈ nanocomposites derived from nanoscaled metal–organic frameworks for highly efficient bifunctional oxygen catalysis. Journal of Materials Chemistry A, 2018, 6, 5935-5943.	5.2	101
2611	An agglomerate model for PEM fuel cells operated with non-precious carbon-based ORR catalysts. Chemical Engineering Science, 2018, 179, 198-213.	1.9	26
2612	Holey Co, N-codoped graphene aerogel with in-plane pores and multiple active sites for efficient oxygen reduction. Electrochimica Acta, 2018, 269, 544-552.	2.6	29
2613	Stable N-doped & Dri-decorated graphene non-precious electrocatalyst for Oxygen Reduction Reaction in Acid Medium. Scientific Reports, 2018, 8, 3757.	1.6	19
2614	A highly active and durable iron/cobalt alloy catalyst encapsulated in N-doped graphitic carbon nanotubes for oxygen reduction reaction by a nanofibrous dicyandiamide template. Journal of Materials Chemistry A, 2018, 6, 5962-5970.	5.2	77
2615	Template Conversion of Covalent Organic Frameworks into 2D Conducting Nanocarbons for Catalyzing Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1706330.	11.1	151
2616	Transitionâ€Metalâ€Doped αâ€MnO ₂ Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions. ChemistrySelect, 2018, 3, 2613-2622.	0.7	54

#	Article	IF	CITATIONS
2617	Facile synthesis of cobalt oxide as electrocatalyst for the oxygen reduction reaction in microbial fuel cells. Chemical Engineering Journal, 2018, 342, 395-400.	6.6	25
2618	Cordierite reinforced graphite nanocomposite with superior adsorption capacity synthesized by in-situ carbon-bed pyrolysis method. Microporous and Mesoporous Materials, 2018, 265, 219-226.	2.2	13
2619	Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films. Langmuir, 2018, 34, 5813-5820.	1.6	2
2620	Metal–organic framework-derived integrated nanoarrays for overall water splitting. Journal of Materials Chemistry A, 2018, 6, 9009-9018.	5. 2	74
2621	A facile and low-cost synthesis of MnOx/Mn2N N C nanohybrid as an advanced oxygen reduction electrocatalyst. Materials Research Bulletin, 2018, 104, 60-64.	2.7	3
2622	Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon. Nanoscale, 2018, 10, 9634-9641.	2.8	47
2623	VN Quantum Dots Anchored Uniformly onto Nitrogen-Doped Graphene as Efficient Electrocatalysts for Oxygen Reduction Reaction. Nano, 2018, 13, 1850041.	0.5	12
2625	Multifunctional Singleâ€Crystallized Carbonate Hydroxides as Highly Efficient Electrocatalyst for Full Water splitting. Advanced Energy Materials, 2018, 8, 1800175.	10.2	101
2626	Critical Impact of Graphene Functionalization for Transition Metal Oxide/Graphene Hybrids on Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 10017-10026.	1.5	22
2627	Probing Molecular-Scale Catalytic Interactions between Oxygen and Cobalt Phthalocyanine Using Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2018, 140, 5948-5954.	6.6	71
2628	Phase Diversity of Nickel Phosphides in Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1985-1994.	1.7	17
2629	MnCo ₂ O ₄ Anchored on Nitrogenâ€Doped Carbon Nanomaterials as an Efficient Electrocatalyst for Oxygen Reduction. ChemistrySelect, 2018, 3, 4228-4236.	0.7	14
2630	Porous oxide electrocatalysts for oxygen evolution reaction prepared through a combination of hydrogen bubble templated deposition, oxidation and galvanic displacement steps. Electrochimica Acta, 2018, 273, 454-461.	2.6	9
2631	Urchin-like non-precious-metal bifunctional oxygen electrocatalysts: Boosting the catalytic activity via the In-situ growth of heteroatom (N, S)-doped carbon nanotube on mesoporous cobalt sulfide/carbon spheres. Journal of Colloid and Interface Science, 2018, 524, 465-474.	5.0	29
2632	Strongly Coupled CoO Nanoclusters/CoFe LDHs Hybrid as a Synergistic Catalyst for Electrochemical Water Oxidation. Small, 2018, 14, e1800195.	5.2	91
2633	Cobalt Phosphide Composite Encapsulated within N,Pâ€Doped Carbon Nanotubes for Synergistic Oxygen Evolution. Small, 2018, 14, e1800367.	5.2	106
2634	Recent Advances in Carbonâ€Based Bifunctional Oxygen Electrocatalysts for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1424-1434.	1.7	129
2635	Formation of Core-Shell Metal Oxide Nanoparticles for Oxygen Reduction. Springer Theses, 2018, , 81-101.	0.0	0

#	Article	IF	CITATIONS
2636	Formation of Hollow Metal Oxide Nanoparticles for ORR. Springer Theses, 2018, , 103-119.	0.0	0
2637	Catalysis of the Oxygen Evolution Reaction by 4–10Ânm Cobalt Nanoparticles. Topics in Catalysis, 2018, 61, 977-985.	1.3	19
2638	NanoMOFs: little crystallites for substantial applications. Journal of Materials Chemistry A, 2018, 6, 7338-7350.	5. 2	79
2639	Enhanced Photochemical/Electrochemical Performance of Graphene Benefited from Morphological Change as Substrate of Typical Composites. Advanced Materials Interfaces, 2018, 5, 1800035.	1.9	2
2640	Nano-perovskite oxide prepared via inverse microemulsion mediated synthesis for catalyst of lithium-air batteries. Electrochimica Acta, 2018, 275, 248-255.	2.6	25
2641	Embedding Co3O4 nanoparticles into graphene nanoscrolls as anode for lithium ion batteries with superior capacity and outstanding cycling stability. Progress in Natural Science: Materials International, 2018, 28, 212-217.	1.8	9
2642	Monodisperse Ultrasmall Manganese-Doped Multimetallic Oxysulfide Nanoparticles as Highly Efficient Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 13413-13424.	4.0	27
2643	Homogeneously Dispersed Co ₉ S ₈ Anchored on Nitrogen and Sulfur Co-Doped Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapacitors. ACS Applied Materials & Dispersion of Supercapacitors. ACS Applied Materials & Dispersion of Supercapacitors.	4.0	57
2644	Engineering crystalline CoOOH anchored on an N-doped carbon support as a durable electrocatalyst for the oxygen reduction reaction. Dalton Transactions, 2018, 47, 6069-6074.	1.6	13
2645	Defect electrocatalytic mechanism: concept, topological structure and perspective. Materials Chemistry Frontiers, 2018, 2, 1250-1268.	3.2	119
2646	Universal molecular-confined synthesis of interconnected porous metal oxides-N-C frameworks for electrocatalytic water splitting. Nano Energy, 2018, 48, 600-606.	8.2	61
2647	Inverse Spinel Cobalt–Iron Oxide and N-Doped Graphene Composite as an Efficient and Durable Bifuctional Catalyst for Li–O ₂ Batteries. ACS Catalysis, 2018, 8, 4082-4090.	5.5	122
2648	Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8194-8209.	5.2	259
2649	Strategy for Enhancing Interfacial Effect of Bifunctional Electrocatalyst: Infiltration of Cobalt Nanooxide on Perovskite. Advanced Materials Interfaces, 2018, 5, 1800123.	1.9	18
2650	Controllable Construction of Core–Shell Polymer@Zeolitic Imidazolate Frameworks Fiber Derived Heteroatomâ€Doped Carbon Nanofiber Network for Efficient Oxygen Electrocatalysis. Small, 2018, 14, e1704207.	5.2	99
2651	Tuning the Electronic Spin State of Catalysts by Strain Control for Highly Efficient Water Electrolysis. Small Methods, 2018, 2, 1800001.	4.6	70
2652	Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn–Air Batteries. ACS Energy Letters, 2018, 3, 1183-1191.	8.8	456
2653	An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8349-8357.	5.2	71

#	Article	IF	CITATIONS
2654	Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 7762-7769.	5.2	131
2655	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PSâ€∢i>b∢/i>â€P4VP Micelles. Particle and Particle Systems Characterization, 2018, 35, 1700404.	1.2	9
2656	DFT Prediction of the Catalytic Oxygen Reduction Activity and Poisoning-Tolerance Ability on a Class of Fe/S/C Catalysts. Journal of the Electrochemical Society, 2018, 165, F334-F337.	1.3	18
2657	CoNi/CNTs composite as effective and stable electrode for oxygen evaluation reaction in alkaline media. International Journal of Hydrogen Energy, 2018, 43, 8623-8631.	3.8	17
2658	Multiple Metal (Cu, Mn, Fe) Centered Species Simultaneously Combined Nitrogenâ€doped Graphene as an Electrocatalyst for Oxygen Reduction in Alkaline and Neutral Solutions. ChemCatChem, 2018, 10, 2471-2480.	1.8	11
2659	Nanostructured copper–cobalt based spinel for the electrocatalytic H2O2 reduction reaction. Electrochimica Acta, 2018, 273, 474-482.	2.6	21
2660	Co oxide nanostructures for electrocatalytic water-oxidation: effects of dimensionality and related properties. Nanoscale, 2018, 10, 8806-8819.	2.8	56
2661	Synthesis of (<i>E</i>)â€2â€Alkenylazaarenes via Dehydrogenative Coupling of (Hetero)arylâ€fused 2â€Alkylcyclic Amines and Aldehydes with a Cobalt Nanocatalyst. ChemCatChem, 2018, 10, 2887-2892.	1.8	12
2662	Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with A-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media. Electrochimica Acta, 2018, 273, 80-87.	2.6	45
2663	Enhanced Photoelectrochemical Water Oxidation on BiVO4 with Mesoporous Cobalt Nitride Sheets as Oxygen-Evolution Cocatalysts. European Journal of Inorganic Chemistry, 2018, 2018, 2557-2563.	1.0	14
2664	Probing Interfacial Electrochemistry on a Co ₃ O ₄ Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-ray Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 13894-13901.	1.5	33
2665	Enhancement of Oxygen Transfer by Design Nickel Foam Electrode for Zincâ^'Air Battery. Journal of the Electrochemical Society, 2018, 165, A809-A818.	1.3	41
2666	Ultrathin amorphous cobalt–vanadium hydr(oxy)oxide catalysts for the oxygen evolution reaction. Energy and Environmental Science, 2018, 11, 1736-1741.	15.6	310
2667	Cavitation Mediated 3D Microstructured Architectures from Nanocarbon. Advanced Functional Materials, 2018, 28, 1706832.	7.8	9
2668	A highly stable bifunctional catalyst based on 3D Co(OH)2@NCNTs@NF towards overall water-splitting. Nano Energy, 2018, 47, 96-104.	8.2	121
2669	MOF@Cellulose Derived Co–N–C Nanowire Network as an Advanced Reversible Oxygen Electrocatalyst for Rechargeable Zinc–Air Batteries. ACS Applied Energy Materials, 2018, 1, 1060-1068.	2.5	43
2670	Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Materials Today, 2018, 21, 602-610.	8.3	48
2672	Electrochemical Analysis of Carbon Nanosheet Catalyst on Silicon Photocathode for Hydrogen Generation. Bulletin of the Korean Chemical Society, 2018, 39, 356-362.	1.0	4

#	Article	IF	CITATIONS
2673	Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries. Applied Surface Science, 2018, 439, 447-455.	3.1	16
2674	Spherical cobalt/cobalt oxide - Carbon composite anodes for enhanced lithium-ion storage. Electrochimica Acta, 2018, 264, 191-202.	2.6	19
2675	Correlating electrocatalytic oxygen reduction activity with d-band centers of metallic nanoparticles. Energy Storage Materials, 2018, 13, 189-198.	9.5	40
2676	Recent developments of metallic nanoparticle-graphene nanocatalysts. Progress in Materials Science, 2018, 94, 306-383.	16.0	102
2677	Ag ₃ PO ₄ electrocatalyst for oxygen reduction reaction: enhancement from positive charge. RSC Advances, 2018, 8, 5382-5387.	1.7	5
2679	Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2018, 27, 1124-1139.	7.1	89
2680	Atomic Layers of MoO ₂ with Exposed Highâ€Energy (010) Facets for Efficient Oxygen Reduction. Small, 2018, 14, e1703960.	5.2	22
2681	Integrated Flexible Electrode for Oxygen Evolution Reaction: Layered Double Hydroxide Coupled with Single-Walled Carbon Nanotubes Film. ACS Sustainable Chemistry and Engineering, 2018, 6, 2911-2915.	3.2	41
2682	Enhanced electrochemical performance of lithium ion batteries using Sb ₂ S ₃ nanorods wrapped in graphene nanosheets as anode materials. Nanoscale, 2018, 10, 3159-3165.	2.8	65
2683	Carbon nanotubes intercalated Co/N-doped porous carbon nanosheets as efficient electrocatalyst for oxygen reduction reaction and zinc–air batteries. Chemical Engineering Journal, 2018, 342, 163-170.	6.6	91
2684	Superior Oxygen Reduction Electrocatalyst: Hollow Porous Spinel Microsphere. CheM, 2018, 4, 196-198.	5.8	34
2685	A novel strategy for preparing layered double hydroxide/exfoliated carbon nanostructures composites as superior electrochemical catalysts with respect to oxygen evolution and methanol oxidation. Journal of Alloys and Compounds, 2018, 744, 347-356.	2.8	13
2686	Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy, 2018, 47, 172-198.	8.2	134
2687	TiO ₂ –Co ₃ O ₄ Core–Shell Nanorods: Bifunctional Role in Better Energy Storage and Electrochromism. ACS Applied Energy Materials, 2018, 1, 790-798.	2.5	97
2688	Carbon-supported MnO2 nanoflowers: Introducing oxygen vacancies for optimized volcano-type electrocatalytic activities towards H2O2 generation. Electrochimica Acta, 2018, 268, 101-110.	2.6	60
2689	Coral-like Co3O4 Decorated N-doped Carbon Particles as active Materials for Oxygen Reduction Reaction and Supercapacitor. Scientific Reports, 2018, 8, 1802.	1.6	41
2690	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 4331-4336.	5.2	27
2691	Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702774.	10.2	615

#	Article	IF	Citations
2692	Activity and Stability of Pt/IrO ₂ Bifunctional Materials as Catalysts for the Oxygen Evolution/Reduction Reactions. ACS Catalysis, 2018, 8, 2081-2092.	5.5	167
2693	Liquid Exfoliated Co(OH) ₂ Nanosheets as Lowâ€Cost, Yet Highâ€Performance, Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1702965.	10.2	92
2694	Interpenetrating Triphase Cobaltâ€Based Nanocomposites as Efficient Bifunctional Oxygen Electrocatalysts for Longâ€Lasting Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1702900.	10.2	242
2695	Cathodic electrochemical activation of Co ₃ O ₄ nanoarrays: a smart strategy to significantly boost the hydrogen evolution activity. Chemical Communications, 2018, 54, 2150-2153.	2.2	58
2696	Synthesis of freestanding amorphous giant carbon tubes with outstanding oil sorption and water oxidation properties. Journal of Materials Chemistry A, 2018, 6, 3996-4002.	5.2	19
2697	Steel: The Resurrection of a Forgotten Water-Splitting Catalyst. ACS Energy Letters, 2018, 3, 574-591.	8.8	122
2698	Carbon skeleton doped with Co, N, S and P as efficient electrocatalyst for oxygen evolution reaction. Science China Materials, 2018, 61, 686-696.	3.5	18
2700	Tumor Catalytic–Photothermal Therapy with Yolk–Shell Gold@Carbon Nanozymes. ACS Applied Materials & Interfaces, 2018, 10, 4502-4511.	4.0	130
2701	Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction. Journal of Materials Science, 2018, 53, 6124-6134.	1.7	11
2702	Novel MOFâ€Derived Co@N Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. Advanced Materials, 2018, 30, 1705431.	11.1	667
2703	High-Index Faceted Porous Co ₃ O ₄ Nanosheets with Oxygen Vacancies for Highly Efficient Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7079-7086.	4.0	179
2704	Hydrothermal-microwave synthesis of cobalt oxide incorporated nitrogen-doped graphene composite as an efficient catalyst for oxygen reduction reaction in alkaline medium. Journal of Materials Science: Materials in Electronics, 2018, 29, 6750-6762.	1.1	12
2705	Development of Highly Active Bifunctional Electrocatalyst Using Co3O4 on Carbon Nanotubes for Oxygen Reduction and Oxygen Evolution. Scientific Reports, 2018, 8, 2543.	1.6	108
2706	Rate Behavior of MoO ₂ /Graphene Oxide Lithium-Ion Battery Anodes from Electrochemical Contributions. Journal of the Electrochemical Society, 2018, 165, A439-A447.	1.3	28
2707	Novel Amorphous Molybdenum Selenide as an Efficient Catalyst for Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8659-8665.	4.0	49
2708	Graphene-based nanocomposites: synthesis and their theranostic applications. Journal of Drug Targeting, 2018, 26, 858-883.	2.1	51
2709	Metal–organic-framework-derived Co/nitrogen-doped porous carbon composite as an effective oxygen reduction electrocatalyst. Journal of Materials Science, 2018, 53, 6774-6784.	1.7	23
2710	Capacitance changes associated with cation-transport in free-standing flexible Ti3C2Tx (T O, F, OH) MXene film electrodes. Electrochimica Acta, 2018, 266, 86-93.	2.6	35

#	Article	IF	CITATIONS
2711	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
2712	Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 4783-4791.	1.5	46
2713	Highly Efficient Photocatalytic System Constructed from CoP/Carbon Nanotubes or Graphene for Visibleâ€Lightâ€Driven CO ₂ Reduction. Chemistry - A European Journal, 2018, 24, 4273-4278.	1.7	47
2714	Tunable Bifunctional Activity of Mn _{<i>x</i>} Co _{3â°'<i>x</i>} O ₄ Nanocrystals Decorated on Carbon Nanotubes for Oxygen Electrocatalysis. ChemSusChem, 2018, 11, 1295-1304.	3.6	50
2715	Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance. Applied Surface Science, 2018, 440, 308-319.	3.1	106
2716	Co ₃ O ₄ and Fe _{<i>x</i>} Co _{3–<i>x</i>} O ₄ Nanoparticles/Films Synthesized in a Vapor-Fed Flame Aerosol Reactor for Oxygen Evolution. ACS Applied Energy Materials, 2018, 1, 655-665.	2.5	20
2717	La0.1Ca0.9MnO3/Co3O4 for oxygen reduction and evolution reactions (ORER) in alkaline electrolyte. Journal of Solid State Electrochemistry, 2018, 22, 1697-1710.	1.2	10
2718	Electrocatalytic Nâ€Doped Graphitic Nanofiber – Metal/Metal Oxide Nanoparticle Composites. Small, 2018, 14, e1703459.	5.2	61
2719	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645
2720	Bifunctional Oxygen Reduction/Oxygen Evolution Activity of Mixed Fe/Co Oxide Nanoparticles with Variable Fe/Co Ratios Supported on Multiwalled Carbon Nanotubes. ChemSusChem, 2018, 11, 1204-1214.	3.6	49
2721	Facile synthesis of ultrathin two-dimensional nanosheets-constructed $MCo < sub > 2 < / sub > O < sub > 4 < / sub > (M = Ni, Cu, Zn)$ nanotubes for efficient photocatalytic oxygen evolution. Nanoscale, 2018, 10, 3871-3876.	2.8	28
2722	Co ₃ O ₄ -doped Co/CoFe nanoparticles encapsulated in carbon shells as bifunctional electrocatalysts for rechargeable Zn–Air batteries. Journal of Materials Chemistry A, 2018, 6, 3730-3737.	5. 2	98
2723	Crystalâ€Planeâ€Dependent Activity of Spinel Co ₃ O ₄ Towards Water Splitting and the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1080-1086.	1.7	47
2724	Rational Design of Fe _{1â^'} <i>_x</i> S/Fe ₃ O ₄ /Nitrogen and Sulfurâ€Doped Porous Carbon with Enhanced Oxygen Reduction Reaction Catalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701641.	1.9	14
2725	CoHPi Nanoflakes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Distribution Reaction ACS Applied Mate	4.0	67
2726	Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 3926-3932.	5.2	136
2727	Effect of annealing temperature on oxygen reduction reaction of reduced graphene oxide incorporated cobalt oxide nanocomposites for fuel cell applications. Applied Surface Science, 2018, 449, 705-711.	3.1	13
2728	Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: Role of different recovery processes. Chemical Engineering Journal, 2018, 337, 256-264.	6.6	77

#	Article	IF	CITATIONS
2729	Co- and defect-rich carbon nanofiber films as a highly efficient electrocatalyst for oxygen reduction. Applied Surface Science, 2018, 435, 1159-1167.	3.1	16
2730	The Role of Composition of Uniform and Highly Dispersed Cobalt Vanadium Iron Spinel Nanocrystals for Oxygen Electrocatalysis. ACS Catalysis, 2018, 8, 1259-1267.	5.5	101
2731	Nitrogen/sulfur dual-doped reduced graphene oxide supported CuFeS ₂ as an efficient electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 2081-2088.	1.4	12
2732	Electrocatalysis of As(III) oxidation by cobalt oxide nanoparticles: measurement and modeling the effect of nanoparticle amount on As(III) oxidation potential. Journal of Solid State Electrochemistry, 2018, 22, 1257-1267.	1.2	1
2733	Nitrogen doped graphene quantum dots (N-GQDs)/Co3O4 composite material as an efficient bi-functional electrocatalyst for oxygen evolution and oxygen reduction reactions. International Journal of Hydrogen Energy, 2018, 43, 4726-4737.	3.8	80
2734	Nitrogen and carbon functionalized cobalt phosphide as efficient non-precious electrocatalysts for oxygen reduction reaction electrocatalysis in alkaline environment. Journal of Electroanalytical Chemistry, 2018, 809, 96-104.	1.9	43
2735	The unified ordered mesoporous carbons supported Co-based electrocatalysts for full water splitting. Electrochimica Acta, 2018, 261, 412-420.	2.6	16
2736	A Thermally Decomposable Template Route to Synthesize Nitrogen-Doped Wrinkled Carbon Nanosheets as Highly Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1951-1960.	3.2	19
2737	Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy, 2018, 45, 127-135.	8.2	166
2738	Graphene-Directed Formation of a Nitrogen-Doped Porous Carbon Sheet with High Catalytic Performance for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 13508-13514.	1.5	16
2739	<i>In Situ</i> Self-Template Synthesis of Fe–N-Doped Double-Shelled Hollow Carbon Microspheres for Oxygen Reduction Reaction. ACS Nano, 2018, 12, 208-216.	7.3	231
2740	Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation. International Journal of Hydrogen Energy, 2018, 43, 2009-2017.	3.8	47
2741	Nickel Hydr(oxy)oxide Nanoparticles on Metallic MoS ₂ Nanosheets: A Synergistic Electrocatalyst for Hydrogen Evolution Reaction. Advanced Science, 2018, 5, 1700644.	5.6	104
2742	Morphology and dispersion of nanostructured manganese–cobalt spinel on various carbon supports: the effect on the oxygen reduction reaction in alkaline media. Catalysis Science and Technology, 2018, 8, 642-655.	2.1	28
2743	Ni–Co composite metal embedded porous N-doped carbon for an effective binder-free supercapacitor electrode. Journal of Materials Research, 2018, 33, 1167-1178.	1.2	7
2744	Ordered Mesoporous Tin Oxide Semiconductors with Large Pores and Crystallized Walls for High-Performance Gas Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1871-1880.	4.0	89
2745	Facile Synthesis of Co ₉ S ₈ Hollow Spheres as a High-Performance Electrocatalyst for the Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 1863-1871.	3.2	82
2746	Nanosheets/Mesopore Structured Co ₃ O ₄ @CMKâ€3 Composite as an Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 1321-1329.	1.8	15

#	Article	IF	CITATIONS
2747	N, P Coâ€doped Hierarchical Porous Graphene as a Metalâ€Free Bifunctional Air Cathode for Znâ^'Air Batteries. ChemElectroChem, 2018, 5, 1811-1816.	1.7	19
2748	Three-Dimensional Macroporous Co-Embedded N-Doped Carbon Interweaving with Carbon Nanotubes as Excellent Bifunctional Catalysts for Zn–Air Batteries. Langmuir, 2018, 34, 1992-1998.	1.6	21
2749	Highly reversible and fast sodium storage boosted by improved interfacial and surface charge transfer derived from the synergistic effect of heterostructures and pseudocapacitance in SnO ₂ -based anodes. Nanoscale, 2018, 10, 2301-2309.	2.8	40
2750	Extraction of nickel from NiFe-LDH into Ni ₂ P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chemical Science, 2018, 9, 1375-1384.	3.7	257
2751	Few-Layer Iron Selenophosphate, FePSe ₃ : Efficient Electrocatalyst toward Water Splitting and Oxygen Reduction Reactions. ACS Applied Energy Materials, 2018, 1, 220-231.	2.5	80
2752	Bimetallic M/N/C catalysts prepared from π-expanded metal salen precursors toward an efficient oxygen reduction reaction. RSC Advances, 2018, 8, 2892-2899.	1.7	15
2753	Controllable synthesis of Co ₃ O ₄ nanocrystals as efficient catalysts for oxygen reduction reaction. Nanotechnology, 2018, 29, 105401.	1.3	8
2754	Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting. Nano Energy, 2018, 45, 448-455.	8.2	257
2755	Oxygenâ€Vacancy Abundant Ultrafine Co ₃ O ₄ /Graphene Composites for Highâ€Rate Supercapacitor Electrodes. Advanced Science, 2018, 5, 1700659.	5.6	392
2756	Ultrafast-Versatile-Domestic-Microwave-Oven Based Graphene Oxide Reactor for the Synthesis of Highly Efficient Graphene Based Hybrid Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 4037-4045.	3.2	11
2757	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nature Catalysis, 2018, 1, 156-162.	16.1	1,120
2758	Nitrogen-doped graphene supported Cu-Ag2.9 nanoparticles as efficient methanol tolerant cathode for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 1781-1789.	3.8	5
2759	Hierarchical tubular structures composed of CoPx and carbon nanotubes: Highly effective electrocatalyst for oxygen reduction. Carbon, 2018, 130, 241-249.	5.4	27
2760	<i>In situ</i> synthesis of Ag nanoparticles-graphene oxide nanocomposites with strong SERS activity. Materials Research Express, 2018, 5, 015034.	0.8	12
2761	Adams Method Prepared Metal Oxide Catalysts for Solarâ€Driven Water Splitting. ChemPhotoChem, 2018, 2, 293-299.	1.5	10
2762	Electrocatalytic hydrogen evolution of palladium nanoparticles electrodeposited on nanographene coated macroporous electrically conductive network. International Journal of Hydrogen Energy, 2018, 43, 2171-2183.	3.8	12
2763	A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li-ion battery anode. Journal of Alloys and Compounds, 2018, 741, 223-230.	2.8	41
2764	Green synthesis of graphene oxide byÂseconds timescale water electrolytic oxidation. Nature Communications, 2018, 9, 145.	5.8	468

#	Article	IF	CITATIONS
2765	Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, $2018, 2, .$	13.8	631
2766	Patterning Graphene Surfaces with Ironâ€Oxideâ€Embedded Mesoporous Polypyrrole and Derived Nâ€Doped Carbon of Tunable Pore Size. Small, 2018, 14, 1702755.	5.2	73
2767	Anisotropy of graphene scaffolds assembled by three-dimensional printing. Carbon, 2018, 130, 1-10.	5.4	59
2768	Three-dimensional structures of Mn doped CoP on flexible carbon cloth for effective oxygen evolution reaction. Journal of Materials Research, 2018, 33, 1258-1267.	1.2	20
2769	Fe–N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2423-2429.	4.0	95
2770	Cobalt and Iron Oxides Coâ€supported on Carbon Nanotubes as an Efficient Bifunctional Catalyst for Enhanced Electrocatalytic Activity in Oxygen Reduction and Oxygen Evolution Reactions. ChemistrySelect, 2018, 3, 207-213.	0.7	14
2771	Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon, 2018, 130, 112-119.	5.4	209
2772	CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. Journal of Alloys and Compounds, 2018, 740, 743-753.	2.8	43
2773	An ultra-small NiFe ₂ O ₄ hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property. Nanoscale, 2018, 10, 2697-2703.	2.8	184
2774	Unlocking the potential of graphene for water oxidation using an orbital hybridization strategy. Energy and Environmental Science, 2018, 11, 407-416.	15.6	52
2775	Uric acid-derived Fe3C-containing mesoporous Fe/N/C composite with high activity for oxygen reduction reaction in alkaline medium. Journal of Power Sources, 2018, 378, 491-498.	4.0	26
2776	Polarization Resistanceâ€Free Mn ₃ O ₄ â€Based Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2010-2018.	1.7	13
2777	Few layer graphene as a template for Fe-based 2D nanoparticles. FlatChem, 2018, 9, 15-20.	2.8	4
2778	Promotion of the bifunctional electrocatalytic oxygen activity of manganese oxides with dual-affinity phosphate. Electrochimica Acta, 2018, 277, 143-150.	2.6	14
2779	Effect of pH on fluorescence quenching of organic dyes by graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 550, 123-131.	2.3	31
2780	Cation exchange synthesis of Ni _x Co _(3â^'x) O ₄ (<i>x</i> = 1.25) nanoparticles on aminated carbon nanotubes with high catalytic bifunctionality for the oxygen reduction/evolution reaction toward efficient Znâ€"air batteries. Journal of Materials Chemistry A, 2018, 6, 9517-9527.	5.2	65
2781	Compositing doped-carbon with metals, non-metals, metal oxides, metal nitrides and other materials to form bifunctional electrocatalysts to enhance metal-air battery oxygen reduction and evolution reactions. Chemical Engineering Journal, 2018, 348, 416-437.	6.6	141
2782	Graphene supported atomic Co/nanocrystalline Co3O4 for oxygen evolution reaction. Electrochimica Acta, 2018, 276, 153-161.	2.6	28

#	Article	IF	CITATIONS
2783	Efficient catalysts for oxygen evolution derived from cobalt-based alloy nanochains. Catalysis Science and Technology, 2018, 8, 2427-2433.	2.1	19
2784	Bimetallic carbide of Co3W3C enhanced non-noble-metal catalysts with high activity and stability for acidic oxygen reduction reaction. RSC Advances, 2018, 8, 12292-12299.	1.7	10
2785	Ultrathin dendritic IrTe nanotubes for an efficient oxygen evolution reaction in a wide pH range. Journal of Materials Chemistry A, 2018, 6, 8855-8859.	5.2	54
2786	Surface engineering of FeCo-based electrocatalysts supported on carbon paper by incorporating non-noble metals for water oxidation. New Journal of Chemistry, 2018, 42, 7254-7261.	1.4	21
2787	Nitrogen and Phosphorus Coâ€doped Hollow Carbon Spheres as Efficient Metalâ€Free Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1891-1898.	1.7	45
2788	Porous Cobalt Oxynitride Nanosheets for Efficient Electrocatalytic Water Oxidation. ChemSusChem, 2018, 11, 1479-1485.	3.6	29
2789	Highly wettable and metallic NiFe-phosphate/phosphide catalyst synthesized by plasma for highly efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7509-7516.	5.2	112
2790	Research and Development of Metal-Air Fuel Cells. Lecture Notes in Energy, 2018, , 285-323.	0.2	6
2791	Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction catalyst. Journal of Colloid and Interface Science, 2018, 523, 144-150.	5.0	44
2792	Engineering Cobalt Defects in Cobalt Oxide for Highly Efficient Electrocatalytic Oxygen Evolution. ACS Catalysis, 2018, 8, 3803-3811.	5.5	430
2793	Preparation of bacterial cellulose based nitrogen-doped carbon nanofibers and their applications in the oxygen reduction reaction and sodium–ion battery. New Journal of Chemistry, 2018, 42, 7407-7415.	1.4	12
2794	Distinctive organized molecular assemble of MoS ₂ , MOF and Co ₃ O ₄ , for efficient dye-sensitized photocatalytic H ₂ evolution. Catalysis Science and Technology, 2018, 8, 2352-2363.	2.1	63
2795	Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes. Langmuir, 2018, 34, 4554-4559.	1.6	38
2796	N-doped graphitic carbon materials hybridized with transition metals (compounds) for hydrogen evolution reaction: Understanding the synergistic effect from atomistic level. Carbon, 2018, 133, 260-266.	5.4	100
2797	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	2.8	73
2798	Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. Carbon, 2018, 133, 306-315.	5.4	34
2799	Atomically Defined Co ₃ O ₄ (111) Thin Films Prepared in Ultrahigh Vacuum: Stability under Electrochemical Conditions. Journal of Physical Chemistry C, 2018, 122, 7236-7248.	1.5	34
2800	Three-Dimensional Networks of S-Doped Fe/N/C with Hierarchical Porosity for Efficient Oxygen Reduction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 14602-14613.	4.0	50

#	Article	IF	CITATIONS
2801	Zirconium-Substituted Cobalt Ferrite Nanoparticle Supported N-doped Reduced Graphene Oxide as an Efficient Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery. ACS Catalysis, 2018, 8, 3715-3726.	5.5	75
2802	Bifunctional electrocatalytic CoNi-doped manganese oxide produced from microdumbbell manganese carbonate towards oxygen reduction and oxygen evolution reactions. Sustainable Energy and Fuels, 2018, 2, 1170-1177.	2.5	14
2803	Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, 2018, , .	0.2	7
2804	Graphene-templated synthesis of sandwich-like porous carbon nanosheets for efficient oxygen reduction reaction in both alkaline and acidic media. Science China Materials, 2018, 61, 915-925.	3.5	17
2805	A 3D graphene interface (Si-doped) of Ag matrix with excellent electronic transmission and thermal conductivity via nano-assembly modification. Journal Physics D: Applied Physics, 2018, 51, 165306.	1.3	3
2806	Facile synthesis of quantum sized <mml:math altimg="si2.gif" display="inline" id="mml2" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi><mml:mrow><mml:mrow><mml:mi></mml:mi>o</mml:mrow></mml:mrow></mml:mi></mml:mi><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	v> ^{1,9} mml:m	nn33
2807	Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catalysis, 2018, 8, 3579-3586.	5.5	98
2808	Cube-like CuCoO nanostructures on reduced graphene oxide for H ₂ generation from ammonia borane. Inorganic Chemistry Frontiers, 2018, 5, 1180-1187.	3.0	39
2809	Fabrication of (Ni,Co) _{0.85} Se nanosheet arrays derived from layered double hydroxides toward largely enhanced overall water splitting. Journal of Materials Chemistry A, 2018, 6, 7585-7591.	5.2	118
2810	Preparation, characterization and luminescence properties of core–shell ternary terbium composites SiO ₂₍₆₀₀₎ @Tb(MABA-Si)•L. Royal Society Open Science, 2018, 5, 171655.	1.1	5
2811	Cobalt encapsulated N-doped defect-rich carbon nanotube as pH universal hydrogen evolution electrocatalyst. Applied Surface Science, 2018, 446, 10-17.	3.1	47
2812	In situ growth of iron-nickel nitrides on carbon nanotubes with enhanced stability and activity for oxygen evolution reaction. Electrochimica Acta, 2018, 267, 8-14.	2.6	45
2813	Defect-rich, boron-nitrogen bonds-free and dual-doped graphenes for highly efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 521, 11-16.	5.0	13
2814	Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets. Journal of Materials Science and Technology, 2018, 34, 2515-2520.	5.6	87
2815	Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Research, 2018, 11, 163-173.	5.8	105
2816	Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews, 2018, 81, 1690-1704.	8.2	507
2817	Grapheneâ€mesoporous anatase TiO ₂ nanocomposite: A highly efficient and recyclable heterogeneous catalyst for oneâ€pot multicomponent synthesis of benzodiazepine derivatives. Applied Organometallic Chemistry, 2018, 32, e3961.	1.7	29
2818	Electrosynthesis of Co3O4 and Co(OH)2 ultrathin nanosheet arrays for efficient electrocatalytic water splitting in alkaline and neutral media. Nano Research, 2018, 11, 323-333.	5.8	65

#	Article	IF	CITATIONS
2819	Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification. Applied Surface Science, 2018, 427, 779-786.	3.1	37
2820	Milk powder-derived bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 11, 134-143.	9.5	45
2821	Synthesis of M (Fe3C, Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Materials, 2018, 11, 112-117.	9.5	71
2822	Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries. Nano Research, 2018, 11, 3282-3293.	5.8	44
2823	Efficient N-doping of hollow core-mesoporous shelled carbon spheres via hydrothermal treatment in ammonia solution for the electrocatalytic oxygen reduction reaction. Microporous and Mesoporous Materials, 2018, 261, 88-97.	2.2	62
2824	From Two-Phase to Three-Phase: The New Electrochemical Interface by Oxide Electrocatalysts. Nano-Micro Letters, 2018, 10, 8.	14.4	73
2825	An electrochemical sensing platform of cobalt oxide@gold nanocubes interleaved reduced graphene oxide for the selective determination of hydrazine. Electrochimica Acta, 2018, 259, 606-616.	2.6	69
2826	Copper–Palladium Tetrapods with Sharp Tips as a Superior Catalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 925-930.	1.8	14
2827	Shape control of Co 3 O 4 micro-structures for high-performance gas sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 121-124.	1.3	23
2828	Anion exchange membrane fuel cells: Current status and remaining challenges. Journal of Power Sources, 2018, 375, 170-184.	4.0	706
2829	Hybrids of Fe3O4/CoSe2 as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Science, 2018, 53, 1123-1134.	1.7	7
2830	Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction. Carbon, 2018, 126, 111-118.	5.4	63
2831	A Highly Efficient Electrocatalyst Derived from Polyaniline@CNTsâ^'SPS for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 195-200.	1.7	4
2832	Metal (M = Co, Ni) phosphate based materials for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 11-28.	3.0	169
2833	Graphene oxide assisted template-free synthesis of nanoscale splode-like NiCo2O4 hollow microsphere with superior lithium storage properties. Journal of Colloid and Interface Science, 2018, 511, 119-127.	5.0	13
2834	Creation of Triple Hierarchical Micro-Meso-Macroporous N-doped Carbon Shells with Hollow Cores Toward the Electrocatalytic Oxygen Reduction Reaction. Nano-Micro Letters, 2018, 10, 3.	14.4	99
2835	In Situ Antisolvent Approach to Hydrangeaâ€like HCo ₃ O ₄ â€NC@CoNiâ€LDH Core@Shell Superstructures for Highly Efficient Water Electrolysis. Chemistry - A European Journal, 2018, 24, 400-408.	1.7	21
2836	Hollowed structured PtNi bifunctional electrocatalyst with record low total overpotential for oxygen reduction and oxygen evolution reactions. Applied Catalysis B: Environmental, 2018, 222, 26-34.	10.8	115

#	Article	IF	CITATIONS
2837	Nitrogen doped graphene – Silver nanowire hybrids: An excellent anode material for lithium ion batteries. Applied Surface Science, 2018, 428, 1119-1129.	3.1	29
2838	Cobalt oxide nanosheets anchored onto nitrogen-doped carbon nanotubes as dual purpose electrodes for lithium-ion batteries and oxygen evolution reaction. International Journal of Energy Research, 2018, 42, 853-862.	2.2	30
2839	Improving the Electrochemical Oxygen Reduction Activity of Manganese Oxide Nanosheets with Sulfurizationâ€Induced Nanopores. ChemCatChem, 2018, 10, 422-429.	1.8	23
2840	Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 2018, 375, 277-290.	4.0	127
2841	Chemical-free fabrication of N, P dual-doped honeycomb-like carbon as an efficient electrocatalyst for oxygen reduction. Journal of Colloid and Interface Science, 2018, 510, 32-38.	5.0	35
2842	Effect of polyethylenimine addition and washing on stability and electrophoretic deposition of Co ₃ O ₄ nanoparticles. Journal of the American Ceramic Society, 2018, 101, 553-561.	1.9	12
2843	Cobalt-based hydroxide nanoparticles @ N-doping carbonic frameworks core–shell structures as highly efficient bifunctional electrocatalysts for oxygen evolution and oxygen reduction reactions. Nano Research, 2018, 11, 1482-1489.	5.8	36
2844	Electronic, magnetic and structural properties of Co3O4 (100) surface: a DFT+U study. Applied Surface Science, 2018, 427, 1090-1095.	3.1	17
2845	Singleâ€Crystalline Ultrathin Co ₃ O ₄ Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced Energy Materials, 2018, 8, 1701694.	10.2	451
2846	Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Applied Catalysis B: Environmental, 2018, 221, 320-328.	10.8	287
2847	Sulphur and nitrogen dual-doped mesoporous carbon hybrid coupling with graphite coated cobalt and cobalt sulfide nanoparticles: Rational synthesis and advanced multifunctional electrochemical properties. Journal of Colloid and Interface Science, 2018, 509, 254-264.	5.0	29
2848	Cu–MOF-Derived Cu/Cu ₂ O Nanoparticles and CuN _{<i>x</i>} Con\sub> <i>x</i> Con\sub> <i>x</i> Con\sub>Con\s	3.2	105
2849	Unique role of Mössbauer spectroscopy in assessing structural features of heterogeneous catalysts. Applied Catalysis B: Environmental, 2018, 224, 518-532.	10.8	83
2850	Photocatalytic degradation of phenanthrene by graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite under solar irradiation: Effects of water quality parameters and predictive modeling. Chemical Engineering Journal, 2018, 335, 290-300.	6.6	87
2851	Engineering beneficial structures and morphologies of M-N-C oxygen-reduction catalysts derived from different metal-containing precursors. lonics, 2018, 24, 1733-1744.	1.2	5
2852	Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER). Nano-Micro Letters, 2018, 10, 15.	14.4	124
2853	A new energy conversion and storage device of cobalt oxide nanosheets. Journal of Materials Chemistry A, 2018, 6, 36-40.	5.2	19
2854	Two- and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. Journal of Materials Chemistry A, 2018, 6, 702-734.	5.2	126

#	Article	IF	CITATIONS
2855	From 3D ZIF Nanocrystals to Co–N <i>_x</i> /C Nanorod Array Electrocatalysts for ORR, OER, and Zn–Air Batteries. Advanced Functional Materials, 2018, 28, 1704638.	7.8	708
2856	Optimisation of electrolytic solvents for simultaneous electrochemical exfoliation and functionalisation of graphene with metal nanostructures. Carbon, 2018, 128, 257-266.	5.4	30
2857	Selfâ€Assembled Grapheneâ€Based Architectures and Their Applications. Advanced Science, 2018, 5, 1700626.	5.6	70
2858	A nitrogen-doped electrocatalyst from metal–organic framework-carbon nanotube composite. Journal of Materials Research, 2018, 33, 538-545.	1.2	16
2859	3-Dimensional MWCNT/CuO nanostructures use as an electrochemical catalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2018, 735, 2311-2317.	2.8	27
2860	Engineering the Surface Structure of Binary/Ternary Ferrite Nanoparticles as Highâ€Performance Electrocatalysts for the Oxygen Evolution Reaction. ChemCatChem, 2018, 10, 1075-1083.	1.8	19
2861	Carbothermal Reduction Induced Ti ³⁺ Selfâ€Doped TiO ₂ /GQD Nanohybrids for Highâ€Performance Visible Light Photocatalysis. Chemistry - A European Journal, 2018, 24, 4390-4398.	1.7	51
2862	Magnetic Fieldâ€Enhanced 4â€Electron Pathway for Wellâ€Aligned Co ₃ O ₄ /Electrospun Carbon Nanofibers in the Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 580-588.	3.6	65
2863	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES., 2018,, 291-341.		0
2864	Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogelâ€Supported Ni/MnO Particles. Advanced Materials, 2018, 30, 1704609.	11.1	547
2865	Conductive Porous Network of Metal–Organic Frameworks Derived Cobaltâ€Nitrogenâ€doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries. ChemCatChem, 2018, 10, 1336-1343.	1.8	14
2866	Covalent Triazine Framework Anchored with Co ₃ O ₄ Nanoparticles for Efficient Oxygen Reduction. ChemElectroChem, 2018, 5, 717-721.	1.7	13
2867	Wellâ€Defined Cobalt Catalyst with Nâ€Doped Carbon Layers Enwrapping: The Correlation between Surface Atomic Structure and Electrocatalytic Property. Small, 2018, 14, 1702074.	5.2	56
2868	Exploration of the Active Center Structure of Nitrogen-Doped Graphene for Control over the Growth of Co ₃ O ₄ for a High-Performance Supercapacitor. ACS Applied Energy Materials, 2018, 1, 143-153.	2.5	63
2869	NiCo Alloy Nanoparticles Decorated on Nâ€Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705094.	7.8	405
2870	Tailored Porous ZnCo ₂ O ₄ Nanofibrous Electrocatalysts for Lithium–Oxygen Batteries. Advanced Materials Interfaces, 2018, 5, 1701234.	1.9	9
2871	Facile Synthesis of Self-Assembled Cobalt Oxide Supported on Iron Oxide as the Novel Electrocatalyst for Enhanced Electrochemical Water Electrolysis. ACS Applied Nano Materials, 2018, 1, 401-409.	2.4	24
2872	Rhodamine B removal on A-rGO/cobalt oxide nanoparticles composite by adsorption from contaminated water. Journal of Molecular Structure, 2018, 1161, 356-365.	1.8	48

#	Article	IF	CITATIONS
2873	Co3O4 polyhedrons with enhanced electric conductivity as efficient water oxidation electrocatalysts in alkaline medium. Journal of Materials Science, 2018, 53, 4323-4333.	1.7	42
2874	Recent Progress on MOFâ€Derived Heteroatomâ€Doped Carbonâ€Based Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2018, 5, 1700515.	5.6	306
2875	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	5.2	357
2876	Defectâ€Rich Ni ₃ FeN Nanocrystals Anchored on Nâ€Doped Graphene for Enhanced Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2018, 28, 1706018.	7.8	169
2877	Benchmarking the Oxygen Reduction Electroactivity of Firstâ€Row Transitionâ€Metal Oxide Clusters on Carbon Nanotubes. ChemElectroChem, 2018, 5, 1862-1867.	1.7	10
2878	Preparation and Electrochemical Properties of NiCo ₂ O ₄ Nanospinels Supported on Graphene Derivatives as Earthâ€Abundant Oxygen Bifunctional Catalysts. ChemPhysChem, 2018, 19, 319-326.	1.0	5
2879	Enhancement of oxygen reduction reaction performance: The characteristic role of Fe N coordinations. Electrochimica Acta, 2018, 260, 264-273.	2.6	27
2880	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
2881	Reversible Structural Evolution of NiCoO _{<i>x</i>} H _{<i>y</i>} during the Oxygen Evolution Reaction and Identification of the Catalytically Active Phase. ACS Catalysis, 2018, 8, 1238-1247.	5.5	153
2882	High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano, 2018, 12, 158-167.	7.3	321
2883	Towards a better understanding of the synergistic effect in the electro-peroxone process using a three electrode system. Chemical Engineering Journal, 2018, 337, 733-740.	6.6	26
2884	Ultrafine and highly disordered Ni2Fe1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte. Nano Energy, 2018, 44, 319-326.	8.2	118
2885	Highly efficient oxygen evolution electrocatalysts prepared by using reduction-engraved ferrites on graphene oxide. Inorganic Chemistry Frontiers, 2018, 5, 310-318.	3.0	24
2886	In-situ synthesized TiC@CNT as high-performance catalysts for oxygen reduction reaction. Carbon, 2018, 126, 566-573.	5.4	23
2887	Nonpreciousâ€metal Fe/N/C Catalysts Prepared from Ï€â€Expanded Fe Salen Precursors toward an Efficient Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 743-750.	1.8	17
2888	Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Materials Horizons, 2018, 5, 108-115.	6.4	184
2889	Remarkably enhanced water splitting activity of nickel foam due to simple immersion in a ferric nitrate solution. Nano Research, 2018, 11, 3959-3971.	5.8	88
2890	Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Applied Surface Science, 2018, 434, 1153-1160.	3.1	47

#	Article	IF	CITATIONS
2891	The electrodeposition of manganese oxide on graphite electrode in-situ exfoliated for solid state rechargeable Zn-oxygen battery. Materials Letters, 2018, 212, 221-224.	1.3	7
2892	Multi-scale porous graphene/activated carbon aerogel enables lightweight carbonaceous catalysts for oxygen reduction reaction. Journal of Materials Research, 2018, 33, 1247-1257.	1.2	7
2893	Short Hydrogen Bonds on Reconstructed Nanocrystal Surface Enhance Oxygen Evolution Activity. ACS Catalysis, 2018, 8, 466-473.	5 . 5	20
2894	Metal Loading Effect on the Activity of Co ₃ O ₄ /Nâ€Doped Reduced Graphene Oxide Nanocomposites as Bifunctional Oxygen Reduction/Evolution Catalysts. ChemElectroChem, 2018, 5, 483-493.	1.7	20
2895	Kinetically Controlled Coprecipitation for General Fast Synthesis of Sandwiched Metal Hydroxide Nanosheets/Graphene Composites toward Efficient Water Splitting. Advanced Functional Materials, 2018, 28, 1704594.	7.8	91
2896	Ultrathin and Porous Carbon Nanosheets Supporting Bimetallic Nanoparticles for Highâ€Performance Electrocatalysis. ChemCatChem, 2018, 10, 1241-1247.	1.8	3
2897	Mesoporous LaMnO3+Î' perovskite from sprayâ' pyrolysis with superior performance for oxygen reduction reaction and Znâ' air battery. Nano Energy, 2018, 43, 81-90.	8.2	71
2898	Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction. Applied Surface Science, 2018, 434, 243-250.	3.1	13
2899	Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon, 2018, 127, 287-296.	5.4	163
2900	Iron(III) chloride-benzotriazole adduct for oxygen reduction reaction in alkaline medium. International Journal of Hydrogen Energy, 2018, 43, 4754-4762.	3.8	11
2901	N-Doping of plasma exfoliated graphene oxide <i>via</i> dielectric barrier discharge plasma treatment for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 2011-2017.	5.2	94
2902	Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2018, 29, 025704.	1.3	71
2903	Metal-organic framework-derived CoNi-embedded carbon nanocages as efficient electrocatalysts for oxygen evolution reaction. lonics, 2018, 24, 1773-1780.	1.2	13
2904	Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 475-483.	1.8	18
2905	Von der PrÄzisionssynthese von Blockcopolymeren zu Eigenschaften und Anwendungen von funktionellen Nanopartikeln. Angewandte Chemie, 2018, 130, 2066-2093.	1.6	14
2906	Reduced graphene oxide-supported Pd@Au bimetallic nano electrocatalyst for enhanced oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2018, 43, 4125-4135.	3.8	42
2907	AgBr-wrapped Ag chelated on nitrogen-doped reduced graphene oxide for water purification under visible light. Applied Catalysis B: Environmental, 2018, 220, 118-125.	10.8	51
2908	From Precision Synthesis of Block Copolymers to Properties and Applications of Nanoparticles. Angewandte Chemie - International Edition, 2018, 57, 2046-2070.	7.2	138

#	Article	IF	CITATIONS
2909	Reduced graphene oxide modified activated carbon for improving power generation of air-cathode microbial fuel cells. Journal of Materials Research, 2018, 33, 1279-1287.	1.2	8
2910	Cobalt Hydroxide/Heteroatom Doped Graphene Composite as Electrocalyst for Oxygen Reduction Reaction. , 2018, , .		0
2911	Die facettenreiche ReaktivitÃt heterogener Einzelatomâ€Katalysatoren. Angewandte Chemie, 2018, 130, 15538-15552.	1.6	36
2912	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	7.8	87
2913	Electro-Reduction of Molecular Oxygen Mediated by a Cobalt(II)octaethylporphyrin System onto Oxidized Glassy Carbon/Oxidized Graphene Substrate. Catalysts, 2018, 8, 629.	1.6	2
2914	Rapid synthesis of Co ₃ O ₄ nanosheet arrays on Ni foam by <i>in situ</i> electrochemical oxidization of air-plasma engraved Co(OH) ₂ for efficient oxygen evolution. Chemical Communications, 2018, 54, 12698-12701.	2.2	31
2915	Cr ₂ O ₃ nanofiber: a high-performance electrocatalyst toward artificial N ₂ fixation to NH ₃ under ambient conditions. Chemical Communications, 2018, 54, 12848-12851.	2.2	100
2916	A synergetic stabilization and strengthening strategy for two-dimensional ordered hybrid transition metal carbides. Physical Chemistry Chemical Physics, 2018, 20, 29684-29692.	1.3	9
2917	The in situ growth of ultrathin Fcc-NiPt nanocrystals on graphene for methanol and formic acid oxidation. Dalton Transactions, 2018, 47, 15131-15140.	1.6	21
2918	Active site engineering by surface sulfurization for a highly efficient oxygen evolution reaction: a case study of Co ₃ O ₄ electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 22497-22502.	5. 2	54
2919	Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery. Journal of Materials Chemistry A, 2018, 6, 21162-21166.	5.2	38
2920	Mussel-inspired facile synthesis of Fe/Co-polydopamine complex nanospheres: complexation mechanism and application of the carbonized hybrid nanospheres as an efficient bifunctional electrocatalyst. New Journal of Chemistry, 2018, 42, 19494-19504.	1.4	6
2921	Reduced graphene oxide intercalated ZnS nanoparticles as an efficient and durable electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 19285-19293.	1.4	12
2922	Boosting reversible oxygen electrocatalysis with enhanced interfacial pyridinic-N–Co bonding in cobalt oxide/mesoporous N-doped graphene hybrids. Nanoscale, 2018, 10, 22140-22147.	2.8	22
2923	Mixed phthalocyanine-porphyrin-based conjugated microporous polymers towards unveiling the activity origin of Feâ€"N ₄ catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 22851-22857.	5.2	59
2924	Robust N-doped carbon aerogels strongly coupled with iron–cobalt particles as efficient bifunctional catalysts for rechargeable Zn–air batteries. Nanoscale, 2018, 10, 19937-19944.	2.8	144
2925	Incorporation of Cu–N _x cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale, 2018, 10, 21076-21086.	2.8	47
2926	Enhanced oxygen reduction on graphene via Y5Si3 electride substrate: A first-principles study. Chinese Journal of Chemical Physics, 2018, 31, 649-654.	0.6	6

#	Article	IF	CITATIONS
2928	Lowâ€Crystalline NiS Hybridized with BiOCl Nanosheet as Highly Efficient Electrocatalyst for Dyeâ€Sensitized Solar Cells. ChemistrySelect, 2018, 3, 11716-11723.	0.7	4
2929	Enhanced cathode performance of a rGO–V ₂ O ₅ nanocomposite catalyst for microbial fuel cell applications. Dalton Transactions, 2018, 47, 16777-16788.	1.6	19
2930	The Effects of Acidic, Alkaline, and Neutral Anolytes on Electrochemical Seawater Deoxygenation. Applied Sciences (Switzerland), 2018, 8, 2280.	1.3	1
2931	First-principles computational approach for innovative design of highly functional electrocatalysts in fuel cells. Current Opinion in Electrochemistry, 2018, 12, 225-232.	2.5	4
2932	Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chinese Chemical Letters, 2018, 29, 1757-1767.	4.8	63
2933	Recent Advances of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution Reaction. Catalysts, 2018, 8, 559.	1.6	107
2934	In situ synthesis of V ₂ O ₃ nanorods anchored on reduced graphene oxide as highâ€performance lithium ion battery anode. ChemistrySelect, 2018, 3, 12108-12112.	0.7	13
2935	Porous CoO-CeO2 heterostructures as highly active and stable electrocatalysts for water oxidation. International Journal of Hydrogen Energy, 2018, 43, 22529-22537.	3.8	35
2936	Self-templating synthesis nitrogen and sulfur co-doped hierarchical porous carbons derived from crab shells as a high-performance metal-free oxygen electroreduction catalyst. Materials Today Energy, 2018, 10, 388-395.	2.5	11
2937	Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc–Air Battery with Neutral Aqueous Electrolyte. Journal of the American Chemical Society, 2018, 140, 17624-17631.	6.6	258
2938	Preparation of High Contents of Pyridinic and Pyrrolic-Nitrogen Doped Activated-Carbon from Pyrolysis of Purple Cabbage for the Catalysis of Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2018, 13, 11203-11214.	0.5	6
2939	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	2.8	20
2940	Nb ₂ O ₅ Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density. ACS Omega, 2018, 3, 15943-15951.	1.6	30
2941	A Facile Synthesis of Câ€N Hollow Nanotubes as High Electroactivity Catalysts of Oxygen Reduction Reaction Derived from Dicyandiamide. ChemistrySelect, 2018, 3, 12603-12612.	0.7	21
2942	Activation of Reduced-Graphene-Oxide Supported Pt Nanoparticles by Aligning with WO ₃ -Nanowires toward Oxygen Reduction in Acid Medium: Diagnosis with Rotating-Ring-Disk Voltammetry and Double-Potential-Step Chronocoulometry. Journal of the Electrochemical Society, 2018, 165, J3384-J3391.	1.3	13
2943	A Strategy to Achieve Well-Dispersed Hollow Nitrogen-Doped Carbon Microspheres with Trace Iron for Highly Efficient Oxygen Reduction Reaction in Al-Air Batteries. Journal of the Electrochemical Society, 2018, 165, A3766-A3772.	1.3	8
2944	Phosphorus-doped SrCo0.5Mo0.5O3 perovskites with enhanced bifunctional oxygen catalytic activities. International Journal of Hydrogen Energy, 2018, 43, 20727-20733.	3.8	21
2945	Selfâ€Supporting Porous CoPâ€Based Films with Phaseâ€Separation Structure for Ultrastable Overall Water Electrolysis at Large Current Density. Advanced Energy Materials, 2018, 8, 1802445.	10.2	114

#	Article	IF	Citations
2946	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786.	16.1	746
2947	Co ₃ O ₄ Nanoparticles Anchored on Selectively Oxidized Graphene Flakes as Bifunctional Electrocatalysts for Oxygen Reactions. ChemistrySelect, 2018, 3, 10064-10076.	0.7	14
2948	NiO and Co3O4 nanofiber catalysts for the hydrogen evolution reaction at liquid/liquid interfaces. Electrochimica Acta, 2018, 291, 311-318.	2.6	26
2949	Graphene layers-wrapped FeNiP nanoparticles embedded in nitrogen-doped carbon nanofiber as an active and durable electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 290, 649-656.	2.6	59
2950	Pulsed Electrodeposition of Co3 O4 Nanocrystals on One-Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 889-889.	1.3	0
2951	In situ grown Co3O4 nanocubes on N-doped graphene as a synergistic hybrid for applications in nickel metal hydride batteries. International Journal of Hydrogen Energy, 2018, 43, 18421-18435.	3.8	24
2952	Nickel Nanoparticles Encapsulated in Nitrogen-Doped Carbon Nanotubes as Excellent Bifunctional Oxygen Electrode for Fuel Cell and Metal–Air Battery. ACS Sustainable Chemistry and Engineering, 2018, 6, 15108-15118.	3.2	42
2953	Relationships Between Crystal, Internal Microstructures, and Physicochemical Properties of Copper–Zinc–Iron Multinary Spinel Hierarchical Nano-microspheres. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 35919-35931.	4.0	18
2954	N-doped carbon nanofibers aerogels derived from aramid as efficient electrocatalysts for oxygen reduction reaction in alkaline and acidic media. Journal of Electroanalytical Chemistry, 2018, 829, 177-183.	1.9	31
2955	Multiscale Structural Engineering of Niâ€Doped CoO Nanosheets for Zinc–Air Batteries with High Power Density. Advanced Materials, 2018, 30, e1804653.	11.1	131
2956	Crucial role for oxygen functional groups in the oxygen reduction reaction electrocatalytic activity of nitrogen-doped carbons. Electrochimica Acta, 2018, 292, 942-950.	2.6	46
2957	Boron/Nitrogen-Codoped Carbon Nano-Onion Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2018, 1, 5763-5773.	2.4	57
2958	Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, 47, 7628-7658.	18.7	432
2959	Nitrogen-Doped Carbon Nanotubes Encapsulated Cobalt Nanoparticles Hybrids for Highly Efficient Catalysis of Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, J3052-J3058.	1.3	12
2960	Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Advanced Materials, 2018, 30, e1803551.	11.1	150
2961	Turning Carbon Atoms into Highly Active Oxygen Reduction Reaction Electrocatalytic Sites in Nitrogen-Doped Graphene-Coated Co@Ag. ACS Sustainable Chemistry and Engineering, 2018, 6, 14033-14041.	3.2	10
2962	Enhanced electromagnetic wave absorption induced by void spaces in hollow nanoparticles. Nanoscale, 2018, 10, 18742-18748.	2.8	88
2963	2D Metal Organic Frameworkâ€Graphitic Carbon Nanocomposites as Precursors for Highâ€Performance O ₂ â€Evolution Electrocatalysts. Advanced Energy Materials, 2018, 8, 1802404.	10.2	43

#	Article	IF	CITATIONS
2964	ldentification of Facetâ€Coverning Reactivity in Hematite for Oxygen Evolution. Advanced Materials, 2018, 30, e1804341.	11.1	96
2965	The Multifaceted Reactivity of Singleâ€Atom Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2018, 57, 15316-15329.	7.2	261
2966	Magnetic field induced anomalous Core-Shell magnetic behavior in short-rod Co3O4. Solid State Sciences, 2018, 86, 107-110.	1.5	0
2967	Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16859-16866.	3.2	22
2968	Chemically controlled in-situ growth of cobalt oxide microspheres on N,S-co-doped reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2018, 407, 70-83.	4.0	36
2969	Facile synthesis of BSCF perovskite oxide as an efficient bifunctional oxygen electrocatalyst. International Journal of Hydrogen Energy, 2018, 43, 20671-20679.	3.8	22
2970	Defect Engineering of Cobalt-Based Materials for Electrocatalytic Water Splitting. ACS Sustainable Chemistry and Engineering, 2018, 6, 15954-15969.	3.2	151
2971	Ultrastable Grapheneâ€Encapsulated 3 nm Nanoparticles by In Situ Chemical Vapor Deposition. Advanced Materials, 2018, 30, e1805023.	11.1	24
2972	Simultaneous Modulation of Composition and Oxygen Vacancies on Hierarchical ZnCo ₂ O ₄ /Co ₃ O ₄ /NC NT Mesoporous Dodecahedron for Enhanced Oxygen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18689-18695.	1.7	14
2973	Restricting Growth of Ni ₃ Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn–Air Battery. ACS Applied Materials & amp; Interfaces, 2018, 10, 38093-38100.	4.0	74
2974	Strong metal–support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo ₂ C (MXene). Journal of Physics Condensed Matter, 2018, 30, 475201.	0.7	20
2975	Co3O4@g-C3N4 supported on N-doped graphene as effective electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 20687-20695.	3.8	40
2976	Copper (0) Doping Makes Cobalt-Nickel Hydroxide a High-Efficiency Catalyst for Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2018, 165, H866-H871.	1.3	12
2977	A Self-Templating Redox-Mediated Synthesis of Hollow Phosphated Manganese Oxide Nanospheres as Noble-Metal-like Oxygen Electrocatalysts. Chemistry of Materials, 2018, 30, 8270-8279.	3. 2	31
2978	Large-Scale Synthesis of Co/CoO _{<i>x</i>} Encapsulated in Nitrogen-, Oxygen-, and Sulfur-Tridoped Three-Dimensional Porous Carbon as Efficient Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2018, 1, 6250-6259.	2.5	15
2979	Quasiâ€Amorphous Metallic Nickel Nanopowder as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution. Advanced Science, 2018, 5, 1801216.	5.6	37
2980	Sepia-Derived N, P Co-doped Porous Carbon Spheres as Oxygen Reduction Reaction Electrocatalyst and Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 16032-16038.	3.2	72
2981	Disordering the Atomic Structure of Co(II) Oxide via Bâ€Doping: An Efficient Oxygen Vacancy Introduction Approach for High Oxygen Evolution Reaction Electrocatalysts. Small, 2018, 14, e1802760.	5.2	88

#	Article	IF	CITATIONS
2982	Metal–Organic Framework-Derived Co ₃ O ₄ /Au Heterostructure as a Catalyst for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 34068-34076.	4.0	35
2983	Electrospinning Derived Hierarchically Porous Hollow CuCo ₂ O ₄ Nanotubes as an Effectively Bifunctional Catalyst for Reversible Li–O ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 15180-15190.	3.2	30
2984	Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 19075-19084.	5.2	45
2985	Hierarchical FeCo@MoS ₂ Nanoflowers with Strong Electromagnetic Wave Absorption and Broad Bandwidth. ACS Applied Nano Materials, 2018, 1, 5179-5187.	2.4	82
2986	Oxygen Evolution Reaction on Perovskites: A Multieffect Descriptor Study Combining Experimental and Theoretical Methods. ACS Catalysis, 2018, 8, 9567-9578.	5 . 5	98
2987	Electrocatalytic performance of different cobalt molybdate structures for water oxidation in alkaline media. CrystEngComm, 2018, 20, 5592-5601.	1.3	27
2988	Bio-inspired FeN ₅ moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance. Journal of Materials Chemistry A, 2018, 6, 18488-18497.	5.2	53
2989	Nickelâ€Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Chemistry - A European Journal, 2018, 24, 17665-17671.	1.7	15
2990	Enhanced electrocatalytic performance of NiOx@MnOx@graphene for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 18992-19001.	3.8	33
2995	A Tailored Bifunctional Electrocatalyst: Boosting Oxygen Reduction/Evolution Catalysis via Electron Transfer Between Nâ€Doped Graphene and Perovskite Oxides. Small, 2018, 14, e1802767.	5.2	85
2996	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33737-33767.	4.0	52
2997	Enhancement of Oxygen Reduction Reaction Catalytic Activity via the Modified Surface of La0.6Sr0.4Co0.2Fe0.8O3â^δwith Palladium Nanoparticles as Cathode for Lithium–Air Battery. ACS Applied Energy Materials, 2018, , .	2.5	11
2998	N,S-Atom-coordinated Co ₉ S ₈ trinary dopants within a porous graphene framework as efficient catalysts for oxygen reduction/evolution reactions. Dalton Transactions, 2018, 47, 14992-15001.	1.6	37
2999	Template Electro-Etching-Mediated FeOOH Nanotubes as Highly Efficient Photoactive Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials, 0, , .	2.5	5
3000	Ultrafine iridium oxide supported on carbon nanotubes for efficient catalysis of oxygen evolution and oxygen reduction reactions. Materials Today Energy, 2018, 10, 153-160.	2.5	25
3001	Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries. Nature Communications, 2018, 9, 3715.	5.8	77
3002	High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells. Journal of Power Sources, 2018, 401, 287-295.	4.0	44
3003	Promoting Oxygen Reduction Reaction Activity of Fe–N/C Electrocatalysts by Silica-Coating-Mediated Synthesis for Anion-Exchange Membrane Fuel Cells. Chemistry of Materials, 2018, 30, 6684-6701.	3.2	105

#	ARTICLE	IF	Citations
3004	Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Advances, 2018, 8, 28625-28631.	1.7	32
3005	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	11.1	51
3006	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
3007	Coordination-Assisted Polymerization of Mesoporous Cobalt Sulfide/Heteroatom (N,S)-Doped Double-Layered Carbon Tubes as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33124-33134.	4.0	66
3008	Sulfonated Nanobamboo Fiber-Reinforced Quaternary Ammonia Poly(ether ether ketone) Membranes for Alkaline Polymer Electrolyte Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 33581-33588.	4.0	24
3009	In situ synthesis of mesoporous Co3O4 nanorods anchored on reduced graphene oxide nanosheets as supercapacitor electrodes. Chemical Physics Letters, 2018, 710, 188-192.	1.2	22
3010	Two-Dimensional Mn-Co LDH/Graphene Composite towards High-Performance Water Splitting. Catalysts, 2018, 8, 350.	1.6	27
3011	Atomically-defined model catalysts in ultrahigh vacuum and in liquid electrolytes: particle size-dependent CO adsorption on Pt nanoparticles on ordered Co ₃ O ₄ (111) films. Physical Chemistry Chemical Physics, 2018, 20, 23702-23716.	1.3	13
3012	Octahedral Co3O4 particles with high electrochemical surface area as electrocatalyst for water splitting. Electrochimica Acta, 2018, 288, 82-90.	2.6	34
3013	Effect of methane concentration on oxygen reduction reaction of carbon films in alkaline solution. International Journal of Hydrogen Energy, 2018, 43, 18194-18201.	3.8	4
3014	Three-dimensionally mesoporous dual (Co, Fe) metal oxide/CNTs composite as electrocatalysts for air cathodes in Li-O2 batteries. Ceramics International, 2018, 44, 21942-21949.	2.3	10
3015	Zeolitic Imidazolate Framework-Mediated Synthesis of Co ₃ O ₄ Nanoparticles Encapsulated in N-Doped Graphitic Carbon as an Efficient Catalyst for Selective Oxidation of Hydrocarbons. ACS Applied Nano Materials, 2018, 1, 4836-4851.	2.4	27
3016	Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.	6.2	86
3017	Selective Reduction–Oxidation Strategy to the Conductivity-Enhancing Ag-Decorated Co-Based 2D Hydroxides as Efficient Electrocatalyst in Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 13420-13426.	3.2	27
3018	Simple synthesis of nitrogen-doped carbon spheres as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chinese Journal of Catalysis, 2018, 39, 1138-1145.	6.9	11
3019	Nanocarbons as platforms for developing novel catalytic composites: overview and prospects. Applied Catalysis A: General, 2018, 562, 94-105.	2.2	40
3020	Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon, 2018, 137, 349-357.	5.4	16
3021	Efficient ORR electrocatalytic activity of peanut shell-based graphitic carbon microstructures. Journal of Materials Chemistry A, 2018, 6, 12018-12028.	5.2	81

#	Article	IF	CITATIONS
3022	Metal organic framework nanofibers derived Co3O4-doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution. Carbon, 2018, 137, 433-441.	5.4	56
3023	Nitrogen-doped carbon layer coated CeNiO x as electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2018, 761, 8-14.	2.8	9
3024	SiO ₂ -protected shell mediated templating synthesis of Feâ€"N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy and Environmental Science, 2018, 11, 2208-2215.	15.6	196
3025	Co3O4 Nanosheet Arrays on Ni Foam as Electrocatalyst for Oxygen Evolution Reaction. Electrocatalysis, 2018, 9, 653-661.	1.5	23
3026	Oxygen Reduction Reaction from Water Electrolysis Intensified by Pressure and O ₂ ^{â~'} Oxidation Desulfurization. Journal of the Electrochemical Society, 2018, 165, E139-E147.	1.3	7
3027	Flameâ€Engraved Nickel–Iron Layered Double Hydroxide Nanosheets for Boosting Oxygen Evolution Reactivity. Small Methods, 2018, 2, 1800083.	4.6	115
3028	Novel Co 3 O 4 /covalent organic frameworks nanohybrids for conferring enhanced flame retardancy, smoke and CO suppression and thermal stability to polypropylene. Materials Chemistry and Physics, 2018, 215, 20-30.	2.0	25
3029	Insight into the effect of intercalated alkaline cations of layered manganese oxides on the oxygen reduction reaction and oxygen evolution reaction. Chemical Communications, 2018, 54, 8575-8578.	2.2	33
3030	Novel porous FexCyNz/N-doped CNT nanocomposites with excellent bifunctions for catalyzing oxygen reduction reaction and absorbing electromagnetic wave. Applied Surface Science, 2018, 453, 83-92.	3.1	22
3031	Pyridinic-N-Doped Graphene Paper from Perforated Graphene Oxide for Efficient Oxygen Reduction. ACS Omega, 2018, 3, 5522-5530.	1.6	42
3032	Value added transformation of ubiquitous substrates into highly efficient and flexible electrodes for water splitting. Nature Communications, 2018, 9, 2014.	5.8	126
3033	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	8.8	141
3034	Structural Engineering of 3D Carbon Materials from Transition Metal Ion-Exchanged Y Zeolite Templates. Chemistry of Materials, 2018, 30, 3779-3788.	3.2	28
3035	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	5.2	215
3036	Rational Design of Co(II) Dominant and Oxygen Vacancy Defective CuCo ₂ O ₄ @CQDs Hollow Spheres for Enhanced Overall Water Splitting and Supercapacitor Performance. Inorganic Chemistry, 2018, 57, 7380-7389.	1.9	104
3037	Elucidation of role of graphene in catalytic designs for electroreduction of oxygen. Current Opinion in Electrochemistry, 2018, 9, 257-264.	2.5	35
3038	Boron and nitrogen co-doped graphene aerogels: Facile preparation, tunable doping contents and bifunctional oxygen electrocatalysis. Carbon, 2018, 137, 458-466.	5.4	82
3039	Promoting Oxygen Evolution Reactions through Introduction of Oxygen Vacancies to Benchmark NiFe–OOH Catalysts. ACS Energy Letters, 2018, 3, 1515-1520.	8.8	249

#	Article	IF	CITATIONS
3040	Engineering the Interfaces of Superadsorbing Grapheneâ€Based Electrodes with Gas and Electrolyte to Boost Gas Evolution and Activation Reactions. ChemSusChem, 2018, 11, 2306-2309.	3.6	24
3041	Efficient Co@CoP _x core–shell nanochains catalyst for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 1844-1848.	3.0	9
3042	Scalable synthesis of porous hollow CoSe ₂ –MoSe ₂ /carbon microspheres for highly efficient hydrogen evolution reaction in acidic and alkaline media. Journal of Materials Chemistry A, 2018, 6, 12701-12707.	5.2	106
3043	Pod-like structured Co/CoOx nitrogen-doped carbon fibers as efficient oxygen reduction reaction electrocatalysts for Zn-air battery. Applied Surface Science, 2018, 456, 959-966.	3.1	50
3044	Facile synthesis of a BiFeO3/nitrogen-doped graphene nanocomposite system with enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2018, 121, 8-16.	1.9	27
3045	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie, 2018, 130, 8139-8143.	1.6	22
3046	Postâ€formation Copperâ€Nitrogen Species on Carbon Black: Their Chemical Structures and Active Sites for Oxygen Reduction Reaction. Chemistry - A European Journal, 2018, 24, 9968-9975.	1.7	37
3047	Ultra-thin CoO films grown on different oxide substrates: Size and support effects and chemical stability. Journal of Alloys and Compounds, 2018, 758, 5-13.	2.8	3
3048	Role of flower-like ultrathin Co ₃ O ₄ nanosheets in water splitting and non-aqueous Li–O ₂ batteries. Nanoscale, 2018, 10, 10221-10231.	2.8	60
3049	Oâ€, Nâ€Atomsâ€Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts. Advanced Materials, 2018, 30, e1801732.	11.1	239
3050	Dicyandiamide and iron-tannin framework derived nitrogen-doped carbon nanosheets with encapsulated iron carbide nanoparticles as advanced pH-universal oxygen reduction catalysts. Journal of Colloid and Interface Science, 2018, 530, 196-201.	5.0	32
3051	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	10.2	286
3052	Ionic Liquid Originated Synthesis of N,Pâ€doped Graphene for Hydrogen Evolution Reaction. ChemistrySelect, 2018, 3, 6814-6820.	0.7	6
3053	Nanomaterials as Catalysts. , 2018, , 45-82.		15
3054	A 3D electrode of core@shell branched nanowire TiN@Ni0.27Co2.73O4 arrays for enhanced oxygen evolution reaction. Applied Materials Today, 2018, 12, 276-282.	2.3	9
3055	Enhanced oxygen evolution activity of Co3â^'xNixO4 compared to Co3O4 by low Ni doping. Journal of Electroanalytical Chemistry, 2018, 823, 482-491.	1.9	19
3056	Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. Journal of Physical Chemistry Letters, 2018, 9, 4146-4154.	2.1	67
3057	Sustainable Synthesis of Co@NC Core Shell Nanostructures from Metal Organic Frameworks via Mechanochemical Coordination Selfâ€Assembly: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2018, 14, e1800441.	5.2	150

#	Article	IF	CITATIONS
3058	Adsorption-photocatalytic degradation of dye pollutant in water by graphite oxide grafted titanate nanotubes. Journal of Molecular Liquids, 2018, 266, 122-131.	2.3	45
3059	Powerful amorphous mixed metal catalyst for efficient water-oxidation. Materials Today Energy, 2018, 9, 247-253.	2.5	8
3060	In Situ Growth of NiFe Alloy Nanoparticles Embedded into N-Doped Bamboo-like Carbon Nanotubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26178-26187.	4.0	94
3061	Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion. Journal of Materials Chemistry A, 2018, 6, 14025-14042.	5. 2	224
3062	Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). Progress in Materials Science, 2018, 98, 108-167.	16.0	37
3063	Organophosphoric acid-derived CoP quantum dots@S,N-codoped graphite carbon as a trifunctional electrocatalyst for overall water splitting and Zn–air batteries. Nanoscale, 2018, 10, 14613-14626.	2.8	74
3064	A Highly Effective, Stable Oxygen Evolution Catalyst Derived from Transition Metal Selenides and Phosphides. Particle and Particle Systems Characterization, 2018, 35, 1800135.	1.2	28
3065	Host-guest electrocatalyst with cage-confined cuprous sulfide nanoparticles in etched chalcogenide semiconductor zeolite for highly efficient oxygen reduction reaction. Electrochimica Acta, 2018, 282, 877-885.	2.6	15
3066	High performance of yolk-shell structured MnO@nitrogen doped carbon microspheres as lithium ion battery anode materials and their in operando X-ray diffraction study. Electrochimica Acta, 2018, 282, 719-727.	2.6	25
3067	Fe Vacancies Induced Surface FeO ₆ in Nanoarchitectures of Nâ€Doped Graphene Protected βâ€FeOOH: Effective Active Sites for pHâ€Universal Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1803330.	7.8	51
3069	Controllable 1D and 2D Cobalt Oxide and Cobalt Selenide Nanostructures as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2018, 13, 2700-2707.	1.7	20
3070	Fully Ordered and Trace Auâ€Doped Intermetallic PdFe Catalyst with Extra High Activity and Durability toward Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 6399-6405.	0.7	6
3071	General self-template synthesis of transition-metal oxide microspheres and their excellent charge storage properties. Electrochimica Acta, 2018, 283, 190-196.	2.6	16
3072	Ultrasonic assisted coating of multiwalled carbon nanotubes with NiFe-layered double hydroxide for improved electrocatalytic oxygen reduction. Journal of Electroanalytical Chemistry, 2018, 823, 499-504.	1.9	28
3073	Novel Nanomaterials as Electrocatalysts for Fuel Cells. , 2018, , 169-204.		5
3074	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
3075	Oxygen vacancies induced ferromagnetic behaviors in Co3O4–: An experimental and first-principles study. Thin Solid Films, 2018, 660, 287-293.	0.8	9
3076	Low-cost CoFe ₂ O ₄ /biomass carbon hybrid from metal-enriched sulfate reducing bacteria as an electrocatalyst for water oxidation. RSC Advances, 2018, 8, 22799-22805.	1.7	8

#	Article	IF	CITATIONS
3077	Rapid inkjet printing of high catalytic activity Co3O4/N-rGO layers for oxygen reduction reaction. Applied Catalysis A: General, 2018, 563, 9-17.	2.2	17
3078	Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chemical Engineering Journal, 2018, 351, 441-461.	6.6	93
3079	Periodic density functional theory study of maghemite (001) surface. Structure and electronic properties. Surface Science, 2018, 677, 239-253.	0.8	8
3080	Single-Doped and Multidoped Transition-Metal (Mn, Fe, Co, and Ni) ZnO and Their Electrocatalytic Activities for Oxygen Reduction Reaction. Inorganic Chemistry, 2018, 57, 9977-9987.	1.9	57
3081	Facile synthesis of highly active fluorinated ultrathin graphitic carbon nitride for photocatalytic H ₂ evolution using a novel NaF etching strategy. RSC Advances, 2018, 8, 27021-27026.	1.7	4
3082	Charge transfer dynamical processes at graphene-transition metal oxides/electrolyte interface for energy storage: Insights from in-situ Raman spectroelectrochemistry. AIP Advances, 2018, 8, .	0.6	18
3083	Three-Dimensional Heteroatom-Doped Nanocarbon for Metal-Free Oxygen Reduction Electrocatalysis: A Review. Catalysts, 2018, 8, 301.	1.6	31
3084	Synergistic effect of three-dimensional cobalt diselenide/carbon nanotube arrays composites for enhanced hydrogen evolution reaction. Electrochimica Acta, 2018, 285, 254-261.	2.6	30
3085	FeS as a promising cathode catalyst for direct borohydride fuel cells. Journal of Alloys and Compounds, 2018, 769, 136-140.	2.8	11
3086	Oneâ€Pot Synthesis of Co ₃ O ₄ /Ag Nanoparticles Supported on Nâ€Doped Graphene as Efficient Bifunctional Oxygen Catalysts for Flexible Rechargeable Zinc–Air Batteries. Chemistry - A European Journal, 2018, 24, 14816-14823.	1.7	49
3087	More active sites exposed few-layer MoSe2 supported on nitrogen-doped carbon as highly efficient and durable electrocatalysts for water splitting. Electrochimica Acta, 2018, 285, 103-110.	2.6	18
3088	Influence of Surface Charges/Chemistry on the Catalysis of Perovskite Complexes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28502-28508.	4.0	4
3089	Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nature Chemistry, 2018, 10, 924-931.	6.6	558
3091	Pulsed Electrodeposition of Co ₃ O ₄ Nanocrystals on Oneâ€Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 934-940.	1.3	16
3092	3D Edgeâ€Enriched Fe ₃ C@C Nanocrystals with a Core–Shell Structure Grown on Reduced Graphene Oxide Networks for Efficient Oxygen Reduction Reaction. ChemSusChem, 2018, 11, 3292-3298.	3.6	25
3093	Nonprecious Nanoalloys Embedded in Nâ€Enriched Mesoporous Carbons Derived from a Dualâ€MOF as Highly Active Catalyst towards Oxygen Reduction Reaction. ChemistrySelect, 2018, 3, 7913-7920.	0.7	11
3094	Interfacial Chemistry of Low-Dimensional Systems for Applications in Nanocatalysis. European Journal of Inorganic Chemistry, 2018, 2018, 4311-4321.	1.0	6
3095	Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon, 2018, 139, 880-887.	5.4	91

#	Article	IF	Citations
3096	Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy, 2018, 52, 264-270.	8.2	331
3097	Mn ₃ O ₄ /Nâ€Doped Graphite Catalysts from Wastewater for the Degradation of Methylene Blue. Chemistry - A European Journal, 2018, 24, 14554-14559.	1.7	9
3098	Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catalysis, 2018, 8, 8244-8254.	5.5	82
3099	A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demand. Mikrochimica Acta, 2018, 185, 385.	2.5	21
3100	Enhanced exfoliation efficiency of graphite into few-layer graphene via reduction of graphite edge. Carbon, 2018, 138, 390-396.	5.4	11
3101	Cobalt and Nitrogen Co-Doped Graphene-Carbon Nanotube Aerogel as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts, 2018, 8, 275.	1.6	24
3102	A dual-reaction-center Fenton-like process on –Cî€,N–Cu linkage between copper oxides and defect-containing g-C ₃ N ₄ for efficient removal of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 17819-17828.	5.2	73
3103	Bioinspired fiber-like porous Cu/N/C electrocatalyst facilitating electron transportation toward oxygen reaction for metal–air batteries. Nanoscale, 2018, 10, 15819-15825.	2.8	30
3104	Morphology controlled synthesis of SmMn2O5 nanocrystals via a surfactant-free route for Zn-air batteries. Journal of Power Sources, 2018, 396, 754-763.	4.0	25
3105	Cu ₂ O and rGO Hybridizing for Enhancement of Low-Concentration NO ₂ Sensing at Room Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 10086-10094.	1.8	33
3106	Boosting Oxygen Reduction Catalysis with N-doped Carbon Coated Co ₉ S ₈ Microtubes. ACS Applied Materials & Microtubes. Microtubes. Microtubes. ACS Applied Materials & Microtubes.	4.0	89
3107	Electronic Band Structure and Electrocatalytic Performance of Cu ₃ N Nanocrystals. ACS Applied Nano Materials, 2018, 1, 3673-3681.	2.4	27
3108	Green Synthesis of Three-Dimensional Hybrid N-Doped ORR Electro-Catalysts Derived from Apricot Sap. Materials, 2018, 11, 205.	1.3	8
3109	Effect of Fluoride on the Morphology and Electrochemical Property of Co3O4 Nanostructures for Hydrazine Detection. Materials, 2018, 11, 207.	1.3	22
3110	Carbon Nitride Decorated Ball-Flower like Co3O4 Hybrid Composite: Hydrothermal Synthesis and Ethanol Gas Sensing Application. Nanomaterials, 2018, 8, 132.	1.9	55
3111	Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method. Sustainability, 2018, 10, 458.	1.6	32
3112	Highly Dispersive MoP Nanoparticles Anchored on Reduced Graphene Oxide Nanosheets for an Efficient Hydrogen Evolution Reaction Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26258-26263.	4.0	60
3113	Robust bifunctional oxygen electrocatalyst with a "rigid and flexible―structure for air-cathodes. NPG Asia Materials, 2018, 10, 618-629.	3.8	83

#	Article	IF	CITATIONS
3114	NiO hollow microspheres as efficient bifunctional electrocatalysts for Overall Water-Splitting. International Journal of Hydrogen Energy, 2018, 43, 21665-21674.	3.8	72
3115	Multi-Level Architecture Optimization of MOF-Templated Co-Based Nanoparticles Embedded in Hollow N-Doped Carbon Polyhedra for Efficient OER and ORR. ACS Catalysis, 2018, 8, 7879-7888.	5. 5	394
3116	Highly efficient AuNi-Cu2O electrocatalysts for the oxygen reduction and evolution reactions: Important role of interaction between Au and Ni engineered by leaching of Cu2O. Electrochimica Acta, 2018, 283, 1411-1417.	2.6	17
3117	Nonâ€Noble Metal Oxides and their Application as Bifunctional Catalyst in Reversible Fuel Cells and Rechargeable Air Batteries. ChemCatChem, 2018, 10, 4162-4171.	1.8	35
3118	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	10.2	242
3119	All-Solid-State Supercapacitors Based on Flexible Co3O4 Nanoflowers/rGO Nanocomposites. Journal of Electronic Materials, 2018, 47, 5987-5992.	1.0	12
3120	Transition metal oxide nanocatalysts for oxygen reduction reaction. Materials Science for Energy Technologies, 2018, 1, 117-128.	1.0	101
3121	Synthesis of Highly Efficient Bifunctional Ag/Co ₃ O ₄ Catalyst for Oxygen Reduction and Oxygen Evolution Reactions in Alkaline Medium. ACS Omega, 2018, 3, 7745-7756.	1.6	53
3122	Organometallic Precursor-Derived SnO ₂ /Sn-Reduced Graphene Oxide Sandwiched Nanocomposite Anode with Superior Lithium Storage Capacity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26170-26177.	4.0	32
3123	Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Science Advances, 2018, 4, eaap8817.	4.7	94
3124	N-doped and Fe-, N-codoped carbon: tuning of porous structures for highly efficient oxygen reduction reaction. Journal of Materials Science, 2018, 53, 15246-15256.	1.7	12
3125	Synergistic Amplification of Water Oxidation Catalysis on Pt by a Thin-Film Conducting Polymer Composite. ACS Applied Energy Materials, 2018, 1, 4235-4246.	2.5	8
3126	Quasi-single-crystalline CoO hexagrams with abundant defects for highly efficient electrocatalytic water oxidation. Chemical Science, 2018, 9, 6961-6968.	3.7	56
3127	One-step room-temperature exfoliation of graphite to 100% few-layer graphene with high quality and large size. Journal of Materials Chemistry C, 2018, 6, 8343-8348.	2.7	14
3128	Heteroatom-doped nanoporous carbon from recyclable Pueraria lobata and its dual activities for oxygen reduction and hydrogen evolution reactions. RSC Advances, 2018, 8, 24392-24398.	1.7	0
3129	Dehalogenated carbon-hosted cobalt-nitrogen complexes for high-performance electrochemical reduction of oxygen. Carbon, 2018, 139, 725-731.	5.4	3
3130	Carbon Nanomaterials in Analytical Chemistry. Analytical Sciences, 2018, 34, 257-257.	0.8	4
3131	Study of the effect of variation in temperature and pH on the adsorption process of natural Gardenia yellow dye into TiO2 mesoporous for dye sensitized solar cells using the statistical physics formalism: Physicochemical and thermodynamic investigation. Microporous and Mesoporous Materials. 2018. 270. 82-92.	2.2	17

#	Article	IF	CITATIONS
3132	Flower-like nanostructured V3S4 grown on three-dimensional porous graphene aerogel for efficient oxygen reduction reaction. Applied Surface Science, 2018, 450, 348-355.	3.1	23
3133	Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction. Nanotechnology, 2018, 29, 305708.	1.3	8
3134	Surfactantâ€Assisted Fabrication of Cubic Cobalt Oxide Hybrid Hollow Spheres as Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2192-2198.	1.7	8
3135	Progress in graphene-based materials as superior media for sensing, sorption, and separation of gaseous pollutants. Coordination Chemistry Reviews, 2018, 368, 93-114.	9.5	69
3136	Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochemistry Communications, 2018, 91, 31-35.	2.3	46
3137	Synthesis of metal–organic frameworks derived nanocomposites for superoxide anion radical sensing and cell monitoring upon oxidative stress. Journal of Electroanalytical Chemistry, 2018, 820, 51-59.	1.9	14
3138	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	2.5	40
3139	Understanding the Roles of Nitrogen Configurations in Hydrogen Evolution: Trace Atomic Cobalt Boosts the Activity of Planar Nitrogen-Doped Graphene. ACS Energy Letters, 2018, 3, 1345-1352.	8.8	65
3140	Toward Twoâ€Dimensional Ï€â€Conjugated Covalent Organic Radical Frameworks. Angewandte Chemie - International Edition, 2018, 57, 8007-8011.	7.2	140
3141	Co@C Nanoparticle Embedded Hierarchically Porous Nâ€Doped Hollow Carbon for Efficient Oxygen Reduction. Chemistry - A European Journal, 2018, 24, 10178-10185.	1.7	40
3142	Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. Journal of Materials Research, 2018, 33, 1506-1514.	1.2	22
3143	Nickel Sulfide Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn–Air Batteries. Journal of Physical Chemistry Letters, 2018, 9, 2746-2750.	2.1	19
3144	Structure-Dependent Dissociation of Water on Cobalt Oxide. Journal of Physical Chemistry Letters, 2018, 9, 2763-2769.	2.1	44
3145	New Interpretation of the Performance of Nickel-Based Air Electrodes for Rechargeable Zinc–Air Batteries. Journal of Physical Chemistry C, 2018, 122, 20153-20166.	1.5	24
3146	Formation of a Tubular Assembly by Ultrathin Ti _{0.8} Co _{0.2} N Nanosheets as Efficient Oxygen Reduction Electrocatalysts for Hydrogenâ€"/Metalâ€"Air Fuel Cells. ACS Catalysis, 2018, 8, 8970-8975.	5.5	147
3147	Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceramics International, 2018, 44, 21091-21098.	2.3	48
3148	Mesoporous non-noble metal electrocatalyst derived from ZIF-67 and cobalt porphyrin for the oxygen reduction in alkaline solution. Journal of Electroanalytical Chemistry, 2018, 825, 65-72.	1.9	27
3149	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2018, 130, 13371-13375.	1.6	19

#	Article	IF	CITATIONS
3150	Tailoring the nano heterointerface of hematite/magnetite on hierarchical nitrogen-doped carbon nanocages for superb oxygen reduction. Journal of Materials Chemistry A, 2018, 6, 21313-21319.	5.2	34
3151	One-Pot Synthesis of NiCo ₂ S ₄ Hollow Spheres via Sequential Ion-Exchange as an Enhanced Oxygen Bifunctional Electrocatalyst in Alkaline Solution. ACS Applied Materials & lnterfaces, 2018, 10, 29521-29531.	4.0	113
3152	Electroactive Cuâ^Pâ€Coupled Moieties Doped in Hierarchically Porous Carbon as Efficient Catalysts for the Oxygenâ€Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 3314-3320.	1.7	5
3153	Monodisperse and Tiny Co ₂ N _{0.67} Nanocrystals Uniformly Embedded over Two Curving Surfaces of Hollow Carbon Microfibers as Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Nano Materials, 2018, 1, 4461-4473.	2.4	23
3154	B-site doping effects of NdBa $<$ sub $>0.75sub>Ca<sub>0.25sub>Co<sub>2sub>O<sub>5+\hat{l}'sub>double perovskite catalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2018, 6, 17807-17818.$	5.2	50
3155	A general ligand-assisted self-assembly approach to crystalline mesoporous metal oxides. NPG Asia Materials, 2018, 10, 800-809.	3.8	43
3156	Enhanced indirect atomic H* reduction at a hybrid Pd/graphene cathode for electrochemical dechlorination under low negative potentials. Environmental Science: Nano, 2018, 5, 2282-2292.	2.2	57
3157	High-Performance Electrohydrogenation of N ₂ to NH ₃ Catalyzed by Multishelled Hollow Cr ₂ O ₃ Microspheres under Ambient Conditions. ACS Catalysis, 2018, 8, 8540-8544.	5.5	280
3158	Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 11286-11292.	6.6	328
3159	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	2.8	25
3160	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	10.2	156
3161	Investigation on the variation law of gas liquid solid three phase boundary in porous gas diffusion electrode. Heliyon, 2018, 4, e00729.	1.4	6
3162	Light-driven water oxidation using hybrid photosensitizer-decorated Co3O4 nanoparticles. Materials Today Energy, 2018, 9, 506-515.	2.5	11
3163	Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting – A review. Journal of Power Sources, 2018, 400, 31-68.	4.0	418
3164	Vertically Aligned N-Doped Diamond/Graphite Hybrid Nanosheets Epitaxially Grown on B-Doped Diamond Films as Electrocatalysts for Oxygen Reduction Reaction in an Alkaline Medium. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29866-29875.	4.0	10
3165	CoO/CoP Heterostructured Nanosheets with an O–P Interpenetrated Interface as a Bifunctional Electrocatalyst for Na–O ₂ Battery. ACS Catalysis, 2018, 8, 8953-8960.	5 . 5	98
3166	Sandwichâ€Like Reduced Graphene Oxide/Carbon Black/Amorphous Cobalt Borate Nanocomposites as Bifunctional Cathode Electrocatalyst in Rechargeable Zincâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1801495.	10.2	65
3167	Distorted niobium-self-doped graphene in-situ grown from 2D niobium carbide for catalyzing oxygen reduction. Carbon, 2018, 139, 1144-1151.	5.4	19

#	Article	IF	CITATIONS
3168	One step fabrication of carbon supported cobalt pentlandite (Co9S8) via the thermolysis of lignin and Co3O4. Journal of CO2 Utilization, 2018, 27, 196-203.	3.3	16
3169	Mechanism and activity of CO oxidation on (001) and (110) surfaces of spinel Co3O4, NiCo2O4 and NiFe2O4: A DFT + U study. Surface Science, 2018, 677, 278-283.	0.8	18
3170	Cobalt–Nitrogenâ€Doped Helical Carbonaceous Nanotubes as a Class of Efficient Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 13187-13191.	7.2	112
3171	Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell. Carbon, 2018, 140, 557-568.	5.4	24
3172	Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chemical Engineering Journal, 2018, 354, 856-865.	6.6	212
3173	Tailoring the Structure of Carbon Nanomaterials toward Highâ€End Energy Applications. Advanced Materials, 2018, 30, e1802104.	11.1	92
3174	Electrocatalysis with Atomically Defined Model Systems: Metal–Support Interactions between Pt Nanoparticles and Co3O4(111) under Ultrahigh Vacuum and in Liquid Electrolytes. Journal of Physical Chemistry C, 2018, 122, 20787-20799.	1.5	16
3175	La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance. Journal of Power Sources, 2018, 375, 265-276.	4.0	23
3176	Dual photoluminescence and charge transport in an alkoxy biphenyl benzoate ferroelectric liquid crystalline–graphene oxide composite. New Journal of Chemistry, 2018, 42, 16682-16693.	1.4	18
3177	A facile and general approach for the direct fabrication of N-rGO–metal(metal oxides)–Pt composites as electrocatalyst for oxygen reduction reactions. RSC Advances, 2018, 8, 27246-27252.	1.7	9
3178	Assessing the electron transfer and oxygen mass transfer of the oxygen reduction reaction using a new electrode kinetic equation. Physical Chemistry Chemical Physics, 2018, 20, 16159-16166.	1.3	29
3179	Enhanced electrocatalytic activity of FeCo2O4 interfacing with CeO2 for oxygen reduction and evolution reactions. Electrochemistry Communications, 2018, 93, 35-38.	2.3	27
3180	Electrifying model catalysts for understanding electrocatalytic reactions in liquid electrolytes. Nature Materials, 2018, 17, 592-598.	13.3	89
3181	Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives. Nanoscale, 2018, 10, 11241-11280.	2.8	258
3182	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	11.1	394
3183	Uniformly self-decorated Co ₃ O ₄ nanoparticles on N, S co-doped carbon layers derived from a camphor sulfonic acid and metal–organic framework hybrid as an oxygen evolution electrocatalyst. Journal of Materials Chemistry A, 2018, 6, 12106-12114.	5.2	36
3184	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
3185	Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Science Advances, 2018, 4, eaap9360.	4.7	195

#	Article	IF	CITATIONS
3186	Silver-Perovskite Hybrid Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, H524-H529.	1.3	12
3187	Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy, 2018, 50, 691-698.	8.2	303
3188	Fabrication of Porous CoO _{<i>x</i>} /mC@MoS ₂ Composite Loaded on g-C ₃ N ₄ Nanosheets as a Highly Efficient Dual Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2018, 6, 9257-9268.	3.2	39
3189	Doping of Self-Standing CNT Fibers: Promising Flexible Air-Cathodes for High-Energy-Density Structural Zn–Air Batteries. ACS Applied Energy Materials, 2018, 1, 2434-2439.	2.5	31
3190	Cobalt Nanoparticles/Black Phosphorus Nanosheets: An Efficient Catalyst for Electrochemical Oxygen Evolution. Advanced Science, 2018, 5, 1800575.	5.6	102
3191	Surface-Roughened Pt-Decorated Pd Nanoparticles as Efficient Electrocatalysts for Direct Alcohol Fuel Cells. European Journal of Inorganic Chemistry, 2018, 2018, 3978-3984.	1.0	3
3192	Fabrication of high-quality or highly porous graphene sheets from exfoliated graphene oxide via reactions in alkaline solutions. Carbon, 2018, 138, 219-226.	5.4	26
3193	Improved structural design of single- and double-wall MnCo2O4 nanotube cathodes for long-life Li–O2 batteries. Nanoscale, 2018, 10, 13149-13158.	2.8	26
3194	Graphitic Nitrogen Is Responsible for Oxygen Electroreduction on Nitrogen-Doped Carbons in Alkaline Electrolytes: Insights from Activity Attenuation Studies and Theoretical Calculations. ACS Catalysis, 2018, 8, 6827-6836.	5.5	188
3195	Layered Metal–Organic Framework-Derived Metal Oxide/Carbon Nanosheet Arrays for Catalyzing the Oxygen Evolution Reaction. ACS Energy Letters, 2018, 3, 1655-1661.	8.8	176
3196	Low-Cost Solutions for Fabrication of Microbial Fuel Cells: Ceramic Separator and Electrode Modifications., 2018,, 95-124.		4
3197	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
3198	Superior stability of a bifunctional oxygen electrode for primary, rechargeable and flexible Zn–air batteries. Nanoscale, 2018, 10, 13626-13637.	2.8	36
3199	Contribution of pyrolytic gas medium to the fabrication of co-impregnated biochar. Journal of CO2 Utilization, 2018, 26, 476-486.	3.3	17
3200	Activity-Durability Coincidence of Oxygen Evolution Reaction in the Presence of Carbon Corrosion: Case Study of MnCo ₂ O ₄ Spinel with Carbon Black. ACS Sustainable Chemistry and Engineering, 2018, 6, 9566-9571.	3.2	51
3201	Effect of the metal–support interaction on the activity and selectivity of methanol oxidation over Au supported on mesoporous oxides. Chemical Communications, 2018, 54, 8174-8177.	2.2	20
3202	Graphene-supported 2D transition metal oxide heterostructures. Journal of Materials Chemistry A, 2018, 6, 13509-13537.	5.2	103
3203	<i>In situ</i> anchoring of metal nanoparticles in the N-doped carbon framework derived from conjugated microporous polymers towards an efficient oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 3572-3579.	2.1	28

#	Article	IF	CITATIONS
3204	Water on Atomically-Defined Cobalt Oxide Surfaces Studied by Temperature-Programmed IR Reflection Absorption Spectroscopy and Steady State Isotopic Exchange. Journal of Physical Chemistry C, 2019, 123, 7673-7681.	1.5	16
3205	Hydrothermal synthesis of sandwich interspersed LaCO3OH/Co3O4/graphene oxide composite and the enhanced catalytic performance for methane combustion. Catalysis Today, 2019, 327, 134-142.	2.2	11
3206	Synthesis of Cu-decorated PtTe nanotubes with high electrocatalytic activity for oxygen reduction. Journal of Alloys and Compounds, 2019, 770, 76-81.	2.8	4
3207	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	11.1	257
3208	Energy storage properties of graphene nanofillers. , 2019, , 155-179.		1
3209	Energy-saving electrolytic γ-MnO ₂ generation: non-noble metal electrocatalyst gas diffusion electrode as cathode in acid solution. RSC Advances, 2019, 9, 24816-24821.	1.7	0
3210	Revealing Energetics of Surface Oxygen Redox from Kinetic Fingerprint in Oxygen Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 13803-13811.	6.6	151
3211	High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane. Nano Energy, 2019, 65, 104021.	8.2	62
3212	Systematic Study of the Electronic, Carbon, and N-Doping Effects of CoMn-Oxide Composites as Bifunctional Oxygen Electrocatalysts. Journal of Physical Chemistry C, 2019, 123, 22130-22138.	1.5	3
3213	Electroactive Materials. SpringerBriefs in Materials, 2019, , 31-67.	0.1	0
3214	Electronic reconfiguration of Co ₂ P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 21232-21243.	5.2	46
3215	Size Control of Nanographene Supported Iron Oxide Nanoparticles Enhances Their Electrocatalytic Performance for the Oxygen Reduction and Oxygen Evolution Reactions. Journal of Physical Chemistry C, 2019, 123, 20774-20780.	1.5	13
3216	Nitrogen-doped Carbon Nanofibers Network Derived from Bacterial Cellulose for the Oxygen Reduction Reaction. Chemistry Letters, 2019, 48, 1188-1191.	0.7	5
3217	Electrohydrogenation of Carbon Dioxide using a Ternary Pd/Cu ₂ O–Cu Catalyst. ChemSusChem, 2019, 12, 4471-4479.	3.6	15
3218	Carbon nanotubes, graphene, porous carbon, and hybrid carbon-based materials: synthesis, properties, and functionalization for efficient energy storage., 2019,, 1-24.		7
3219	Recent progress in carbon-based materials as catalysts for electrochemical and photocatalytic water splitting., 2019, , 173-200.		2
3220	Spinel-type NiCo2O4 with abundant oxygen vacancies as a high-performance catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 23775-23783.	3.8	63
3221	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2973-2980.	1.0	7

#	Article	IF	CITATIONS
3222	Photocatalytic disinfection and purification of water employing reduced graphene oxide/TiO ₂ composites. Journal of Chemical Technology and Biotechnology, 2019, 94, 3905-3914.	1.6	16
3223	Synthesis and Imaging of Biocompatible Graphdiyne Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32798-32807.	4.0	49
3224	Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal–air batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 409-417.	2.9	2
3225	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	3.0	15
3226	Mesoporous Hollow Nested Nanospheres of Ni, Cu, Co-Based Mixed Sulfides for Electrocatalytic Oxygen Reduction and Evolution. ACS Applied Nano Materials, 2019, 2, 4921-4932.	2.4	30
3227	Enhancement of visible-light-driven photocatalytic performance of BiOBr nanosheets by Co2+ doping. Journal of Materials Science: Materials in Electronics, 2019, 30, 14967-14976.	1.1	23
3228	Ambient electrocatalytic nitrogen reduction on a MoO ₂ /graphene hybrid: experimental and DFT studies. Catalysis Science and Technology, 2019, 9, 4248-4254.	2.1	87
3229	An efficient electrocatalyst for the oxygen evolution reaction: in situ enrichment of cobalt by sulfate-reducing bacteria. Ionics, 2019, 25, 5919-5928.	1.2	0
3230	Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins. Composites Part B: Engineering, 2019, 175, 107189.	5.9	59
3231	Nitrogen-doped graphite encapsulated Fe/Fe3C nanoparticles and carbon black for enhanced performance towards oxygen reduction. Journal of Materials Science and Technology, 2019, 35, 2543-2551.	5. 6	31
3232	Highly nanocrystalline interconnected La _{0.5} Ca _{0.5} CoO _{3â^Î} as an efficient bi-functional electrocatalyst for zinc–air batteries with structural and morphological evidence for ZnO mitigation. Sustainable Energy and Fuels, 2019, 3, 2657-2667.	2.5	9
3233	Highly synergistic effect of bifunctional Ru-rGO catalyst for enhanced hydrogenative-reductive benzylation of N-heteroaromatics. Journal of Catalysis, 2019, 376, 77-86.	3.1	12
3234	ZnO Quantum Dots Coupled with Graphene toward Electrocatalytic N ₂ Reduction: Experimental and DFT Investigations. Chemistry - A European Journal, 2019, 25, 11933-11939.	1.7	71
3235	Interfacial reconstruction, exchange bias and photocurrent effect in epitaxial Fe3O4/Co3O4 spinel heterostructure. Applied Surface Science, 2019, 493, 1236-1242.	3.1	3
3236	Fe3C nanoparticles-loaded 3D nanoporous N-doped carbon: A highly efficient electrocatalyst for oxygen reduction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 21506-21517.	3.8	16
3237	Selective exposure of platinum catalyst embedded in protective oxide layer on conductive titanium carbide support. Materials Today Energy, 2019, 13, 353-361.	2.5	1
3238	Fabrication of Pt/IrO2Nb2O5–rGO Electrocatalyst by Support Improvement for Oxygen Reduction Reaction. Catalysis Letters, 2019, 149, 3041-3047.	1.4	6
3239	Large-Scale Computational Identification of p-Type Oxide Semiconductors by Hierarchical Screening. Chemistry of Materials, 2019, 31, 5475-5483.	3.2	18

#	Article	IF	CITATIONS
3240	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	2.2	19
3241	Interfacial effects in supported catalysts for electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 23432-23450.	5.2	94
3242	Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 257, 117930.	10.8	113
3243	Scalable processing hollow tungsten carbide spherical superstructure as an enhanced electrocatalyst for hydrogen evolution reaction over a wide pH range. Electrochimica Acta, 2019, 319, 775-782.	2.6	15
3244	N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy, 2019, 64, 103879.	8.2	110
3245	Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 2019, 7, 18674-18707.	5.2	277
3246	Bioâ€Inspired Synthesis of Hematite Mesocrystals by Using Xonotlite Nanowires as Growth Modifiers and Their Improved Oxygen Evolution Activity. ChemSusChem, 2019, 12, 3747-3752.	3.6	6
3247	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	13.3	167
3248	Hollow Bi ₂ MoO ₆ Sphere Effectively Catalyzes the Ambient Electroreduction of N ₂ to NH ₃ . ACS Sustainable Chemistry and Engineering, 2019, 7, 12692-12696.	3.2	49
3249	Three-dimensional interconnected core–shell networks with Ni(Fe)OOH and M–N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 19045-19059.	5.2	70
3250	Pt/Co ₃ O ₄ Surpasses Benchmark Pt/C: An Approach Toward Next Generation Hydrogen Evolution Electrocatalyst. ACS Applied Energy Materials, 2019, 2, 5613-5621.	2.5	29
3251	Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn–Air Batteries. Advanced Materials, 2019, 31, e1902339.	11.1	363
3252	Studies on some spinel oxides based electrocatalysts for oxygen evolution and capacitive applications. Electrochimica Acta, 2019, 320, 134584.	2.6	27
3253	Overwhelming the Performance of Single Atoms with Atomic Clusters for Platinum-Catalyzed Hydrogen Evolution. ACS Catalysis, 2019, 9, 8213-8223.	5.5	68
3254	A Hybrid Solar Absorber–Electrocatalytic Nâ€Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Advanced Materials, 2019, 31, e1903605.	11.1	43
3255	Sucrose leavening-induced hierarchically porous carbon enhanced the hydrogen evolution reaction performance of Pt nanoparticles. Electrochimica Acta, 2019, 320, 134603.	2.6	38
3256	In Situ Deposition of Pd during Oxygen Reduction Yields Highly Selective and Active Electrocatalysts for Direct H ₂ O ₂ Production. ACS Catalysis, 2019, 9, 8453-8463.	5. 5	60
3257	A mesoporous C,N-co doped Co-based phosphate ultrathin nanosheet derived from a phosphonate-based-MOF as an efficient electrocatalyst for water oxidation. Catalysis Science and Technology, 2019, 9, 4718-4724.	2.1	22

#	Article	IF	CITATIONS
3258	ZIF-8 derived nitrogen, phosphorus and sulfur tri-doped mesoporous carbon for boosting electrocatalysis to oxygen reduction in universal pH range. Electrochimica Acta, 2019, 318, 783-793.	2.6	33
3259	Molecular-Scale Mechanistic Investigation of Oxygen Dissociation and Adsorption on Metal Surface-Supported Cobalt Phthalocyanine. Journal of Physical Chemistry Letters, 2019, 10, 3966-3971.	2.1	7
3260	Enhanced Bifunctional Catalytic Activity of Manganese Oxide/Perovskite Hierarchical Core–Shell Materials by Adjusting the Interface for Metal–Air Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 25870-25881.	4.0	59
3261	Wrinkled Ni-doped Mo2C coating on carbon fiber paper: An advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction. Electrochimica Acta, 2019, 319, 293-301.	2.6	60
3262	Amorphous Feâ^'Coâ^'Pâ^'C Film on a Carbon Fiber Paper Support as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3976-3981.	1.7	13
3263	Towards efficient oxygen reduction reaction electrocatalysts through graphene doping. Electrochimica Acta, 2019, 319, 72-81.	2.6	30
3264	A review of transition metalâ€based bifunctional oxygen electrocatalysts. Journal of the Chinese Chemical Society, 2019, 66, 829-865.	0.8	82
3265	ZnTe dispersed in RGO matrix: Investigation of electrical transport processes, magnetic properties and their synergistic effect. Applied Surface Science, 2019, 493, 279-286.	3.1	8
3266	A multi-shelled V ₂ O ₃ /C composite with an overall coupled carbon scaffold enabling ultrafast and stable lithium/sodium storage. Journal of Materials Chemistry A, 2019, 7, 19234-19240.	5.2	45
3267	Co ₃ O ₄ Nanoparticles with Ultrasmall Size and Abundant Oxygen Vacancies for Boosting Oxygen Involved Reactions. Advanced Functional Materials, 2019, 29, 1903444.	7.8	108
3268	Palladium Nanoparticles Immobilized on Nitride Carbon-Coated Mesoporous Tungsten Oxide for Formic Acid Dehydrogenation. ACS Applied Nano Materials, 2019, 2, 7432-7440.	2.4	29
3269	Investigation of facile strategy for eliminating internal cracks of pultruded carbon fiber composites. Materials Research Express, 2019, 6, 125605.	0.8	0
3270	Bifunctional Electrocatalyst of Low-Symmetry Mesoporous Titanium Dioxide Modified with Cobalt Oxide for Oxygen Evolution and Reduction Reactions. Catalysts, 2019, 9, 836.	1.6	21
3271	Template-free Synthesis of Stable Cobalt Manganese Spinel Hollow Nanostructured Catalysts for Highly Water-Resistant CO Oxidation. IScience, 2019, 21, 19-30.	1.9	11
3272	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	8.2	68
3273	Cu(II) Ions Induced Structural Transformation of Cobalt Selenides for Remarkable Enhancement in Oxygen/Hydrogen Electrocatalysis. ACS Catalysis, 2019, 9, 10761-10772.	5.5	110
3274	Porous Carbons Derived from Collagenâ€Enriched Biomass: Tailored Design, Synthesis, and Application in Electrochemical Energy Storage and Conversion. Advanced Functional Materials, 2019, 29, 1905095.	7.8	94
3275	Ultrastable Co x Si y O z Nanowires by Glancing Angle Deposition with Magnetron Sputtering as Novel Electrocatalyst for Water Oxidation. ChemCatChem, 2019, 11, 6111-6115.	1.8	8

#	Article	IF	CITATIONS
3276	In Situ Transmission Electron Microscopy Study of Nanocrystal Formation for Electrocatalysis. ChemNanoMat, 2019, 5, 1439-1455.	1.5	14
3277	Promoting Oxygen Evolution Reaction of Coâ€Based Catalysts (Co ₃ O ₄ , CoS,) Tj ETQq1	1.0.78431 5.2.78431	14 rgBT /0\ 68
3278	Oxygen Vacancy–Rich Inâ€Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn–Air Batteries. Small, 2019, 15, e1904210.	5.2	142
3279	A novel support for platinum electrocatalyst based on mesoporous carbon embedded with bimetallic SnTi oxide as a bifunctional electrocatalyst. Journal of Electroanalytical Chemistry, 2019, 850, 113435.	1.9	5
3280	Fe azaphthalocyanine unimolecular layers (Fe AzULs) on carbon nanotubes for realizing highly active oxygen reduction reaction (ORR) catalytic electrodes. NPG Asia Materials, 2019, 11, .	3.8	30
3281	Hydrogen oxidation reaction on modified platinum model electrodes in alkaline media. Electrochimica Acta, 2019, 327, 135016.	2.6	17
3282	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	3.1	41
3283	Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction., 2019, 1, 526-533.		229
3284	Ion Immobilized Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 7811-7822.	2.5	9
3285	Cost-effective Co3O4 nanospheres on nitrogen-doped graphene used as highly efficient catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 30348-30356.	3.8	15
3286	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	5.2	165
3287	Optimization of Glass Edge Sealing Process Using Microwaves for Fabrication of Vacuum Glazing. Applied Sciences (Switzerland), 2019, 9, 874.	1.3	6
3288	Double-Shelled Co ₃ O ₄ /C Nanocages Enabling Polysulfides Adsorption for High-Performance Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 8153-8162.	2.5	55
3289	Advanced Co3O4–CuO nano-composite based electrocatalyst for efficient hydrogen evolution reaction in alkaline media. International Journal of Hydrogen Energy, 2019, 44, 26148-26157.	3.8	63
3290	Structure-dependence of electrical conductivity and electrocatalytic properties of Sr2Mn2O6 and CaSrMn2O6. Journal of Chemical Sciences, 2019, 131, 1.	0.7	7
3291	Tuning of metallic valence in CoMoP for promoting electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 31072-31081.	3.8	22
3292	Controllable synthesis and bi-functional electrocatalytic performance towards oxygen electrocatalytic reactions of Co3O4 nanoflakes/nitrogen-doped modified CMK-3 nanocomposite. Inorganic Chemistry Communication, 2019, 108, 107524.	1.8	11
3293	Enhanced cycling stability of capacitive deionization via effectively inhibiting H2O2 formation: The role of nitrogen dopants. Journal of Electroanalytical Chemistry, 2019, 855, 113488.	1.9	15

#	Article	IF	Citations
3294	N doped carbon dots modified needle-like NiCo2O4 supported on graphene as efficient dual-functional electrocatalyst for oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2019, 855, 113617.	1.9	29
3295	Enhanced activity of mesoporous SrCo0.8Fe0.1Nb0.1O3-δ perovskite electrocatalyst by H2O2 treatment for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2019, 854, 113556.	1.9	7
3296	Rock-Salt-Type MnCo ₂ O ₃ /C as Efficient Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Chemistry of Materials, 2019, 31, 9331-9337.	3.2	15
3297	Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 2019, 9, 11515-11529.	5.5	245
3298	Porous Fe, Co, and N-co-doped carbon nanofibers as high-efficiency oxygen reduction catalysts. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	15
3299	Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer. Chemical Reviews, 2019, 119, 11945-11979.	23.0	273
3300	Tuning the electrical conductivity of amorphous carbon/reduced graphene oxide wrapped-Co ₃ O ₄ ternary nanofibers for highly sensitive chemical sensors. Journal of Materials Chemistry A, 2019, 7, 27522-27534.	5.2	33
3301	Mutually Exclusive pâ€Type and nâ€Type Hybrid Electrode of MoS ₂ and Graphene for Artificial Soft Touch Fingers. Advanced Functional Materials, 2019, 29, 1905454.	7.8	30
3302	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19
3303	Controlled Synthesis of Niâ€Doped MoS ₂ Hybrid Electrode for Synergistically Enhanced Waterâ€Splitting Process. Chemistry - A European Journal, 2020, 26, 4097-4103.	1.7	23
3304	Atomic Layer Deposition of Pd Nanoparticles on Nâ€Doped Electrospun Carbon Nanofibers: Optimization of ORR Activity of Pdâ€Based Nanocatalysts by Tuning Their Nanoparticle Size and Loading. ChemNanoMat, 2019, 5, 1540-1546.	1.5	6
3305	Carbon-Supported Oxygen Vacancy-Rich Co ₃ O ₄ for Robust Photocatalytic H ₂ O ₂ Production via Coupled Water Oxidation and Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 8737-8746.	2.5	66
3306	Facile spray drying approach to synthesize Sb2Se3/rGO composite anode for lithium-ion battery. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	19
3307	Fe/Co-based nanoparticles encapsulated in heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 1626-1641.	3.5	20
3308	Facile mass production of self-supported two-dimensional transition metal oxides for catalytic applications. Chemical Communications, 2019, 55, 11406-11409.	2.2	10
3309	Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Mikrochimica Acta, 2019, 186, 660.	2.5	41
3310	Interwoven Molecular Chains Obtained by Ionic Self-Assembly of Two Iron(III) Porphyrins with Opposite and Mismatched Charges. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34203-34211.	4.0	11
3311	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	1.6	49

#	Article	IF	Citations
3312	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	7.2	215
3313	A study of synergistic effect on oxygen reduction activity and capacitive performance of NiCo2O4/rGO hybrid catalyst for rechargeable metal-air batteries and supercapacitor applications. Composites Part B: Engineering, 2019, 176, 107327.	5.9	29
3314	Tuning the electronic structure of PtRu bimetallic nanoparticles for promoting the hydrogen oxidation reaction in alkaline media. Inorganic Chemistry Frontiers, 2019, 6, 2900-2905.	3.0	46
3315	A facile one-pot synthesis of Fe2Si nanoparticles attached SWCNTs for enhanced electromagnetic wave absorption performance. Journal of Applied Physics, 2019, 126, .	1.1	4
3316	Silver Nanoparticles Encapsulated in an N-Doped Porous Carbon Matrix as High-Active Catalysts toward Oxygen Reduction Reaction via Electron Transfer to Outer Graphene Shells. ACS Sustainable Chemistry and Engineering, 2019, 7, 16511-16519.	3.2	17
3317	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
3318	Flower-like Co3O4 microstrips embedded in Co foam as a binder-free electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24209-24217.	3.8	23
3319	Monolithic heteronanomat paper air cathodes toward origami-foldable/rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 24231-24238.	5.2	27
3320	Structure-property relationship of graphene coupled metal (Ni, Co, Fe) (oxy)hydroxides for efficient electrochemical evolution of oxygen. Journal of Catalysis, 2019, 377, 619-628.	3.1	15
3321	N-doped carbon sheets loaded with well-dispersed Ni3Fe nanoparticles as bifunctional oxygen electrode for rechargeable Zn-air battery. Journal of Electroanalytical Chemistry, 2019, 851, 113418.	1.9	11
3322	Mn-doped ceria/reduced graphene oxide nanocomposite as an efficient oxygen reduction reaction catalyst. Journal of Electroanalytical Chemistry, 2019, 851, 113480.	1.9	21
3323	Confined Co ₉ S ₈ into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. Catalysis Science and Technology, 2019, 9, 5757-5762.	2.1	6
3324	An efficient CoOx-SnOx(Sb doped)/Ti electrocatalyst for the oxygen evolution reaction. Applied Surface Science, 2019, 495, 143596.	3.1	14
3325	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	2.2	4
3326	An assembly of carbon dots and carbon sheets from plant biomass for excellent oxygen reduction reaction. Sustainable Energy and Fuels, 2019, 3, 3172-3181.	2.5	9
3327	Melatonin alleviates cigarette smoke-induced endothelial cell pyroptosis through inhibiting ROS/NLRP3 axis. Biochemical and Biophysical Research Communications, 2019, 519, 402-408.	1.0	49
3328	Leveraging electrochemistry to uncover the role of nitrogen in the biological reactivity of nitrogen-doped graphene. Environmental Science: Nano, 2019, 6, 3525-3538.	2.2	12
3329	Functional molecule guided evolution of MnO _x nanostructure patterns on N-graphene and their oxygen reduction activity. RSC Advances, 2019, 9, 27945-27952.	1.7	4

#	Article	IF	Citations
3330	<i>Azadirachta indica</i> leaf-extract-assisted synthesis of CoO–NiO mixed metal oxide for application in a microbial fuel cell as a cathode catalyst. Sustainable Energy and Fuels, 2019, 3, 3430-3440.	2.5	41
3331	Controlled Synthesis of Porous Co ₃ O ₄ Nanostructures for Efficient Electrochemical Sensing of Glucose. Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	9
3332	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. CheM, 2019, 5, 2865-2878.	5. 8	346
3333	Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation. Nature Communications, 2019, 10, 4514.	5.8	80
3334	Zeolitic-imidazolate-framework-derived Co@Co3O4 embedded into iron, nitrogen, sulfur Co-doped reduced graphene oxide as efficient electrocatalysts for overall water splitting and zinc-air batteries. Electrochimica Acta, 2019, 323, 134821.	2.6	33
3335	Promising nature-based nitrogen-doped porous carbon nanomaterial derived from borassus flabellifer male inflorescence as superior metal-free electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 25918-25929.	3.8	19
3336	Two-dimensional Cobalt Oxy-hydrate Sulfide Nanosheets with Modified t2g Orbital State of CoO6–x Octahedron for Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 17325-17334.	3.2	15
3337	Two-Dimensional Closed Conjugated Covalent Organic Polymers for Oxygen Reduction Reaction. Frontiers in Materials, 2019, 6, .	1.2	3
3338	Influence of carbon doping concentration on photoelectrochemical activity of TiO2 nanotube arrays under water oxidation. Catalysis Science and Technology, 2019, 9, 688-694.	2.1	17
3339	Boosting the ORR performance of modified carbon black <i>via</i> C–O bonds. Chemical Science, 2019, 10, 2118-2123.	3.7	26
3340	Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy and Fuels, 2019, 3, 366-381.	2.5	305
3341	Treelike two-level PdxAgy nanocrystals tailored for bifunctional fuel cell electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 5248-5257.	5.2	42
3342	Observing Single Hollow Porous Carbon Catalyst Collisions for Oxygen Reduction at Gold Nanoband Electrode. ChemPhysChem, 2019, 20, 529-532.	1.0	2
3343	Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300, 123-130.	2.6	60
3344	One-Step Photochemical Synthesis of Transition Metal–Graphene Hybrid for Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 4112-4118.	3.2	6
3345	Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Materials Horizons, 2019, 6, 684-702.	6.4	149
3346	Atomic layer deposition of Co3O4 nanocrystals on N-doped electrospun carbon nanofibers for oxygen reduction and oxygen evolution reactions. Nanoscale Advances, 2019, 1, 1224-1231.	2.2	22
3347	Decoupling the roles of carbon and metal oxides on the electrocatalytic reduction of oxygen on La _{1â°'x} Sr _x CoO _{3â°'Î} perovskite composite electrodes. Physical Chemistry Chemical Physics, 2019, 21, 3327-3338.	1.3	26

#	Article	IF	CITATIONS
3348	Iron incorporation affecting the structure and boosting catalytic activity of Cox-Fey-P for efficient hydrogen evolution. Applied Surface Science, 2019, 478, 103-109.	3.1	4
3349	Enhancing Electrocatalytic Water Splitting Activities via Photothermal Effect over Bifunctional Nickel/Reduced Graphene Oxide Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 3710-3714.	3.2	59
3350	Efficient electrocatalytic N $<$ sub $>$ 2 $<$ /sub $>$ reduction on CoO quantum dots. Journal of Materials Chemistry A, 2019, 7, 4389-4394.	5.2	210
3351	Highly Efficient Hybrid Ni/Nitrogenated Graphene Electrocatalysts for Hydrogen Evolution Reaction. ACS Omega, 2019, 4, 2206-2216.	1.6	19
3352	An efficient carbon-based ORR catalyst from low-temperature etching of ZIF-67 with ultra-small cobalt nanoparticles and high yield. Journal of Materials Chemistry A, 2019, 7, 3544-3551.	5.2	112
3353	Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Applied Catalysis B: Environmental, 2019, 246, 322-329.	10.8	227
3354	Area-selective atomic layer deposition of cobalt oxide to generate patterned cobalt films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	15
3355	Dissociation of water on atomically-defined cobalt oxide nanoislands on Pt(111) and its effect on the adsorption of CO. Journal of Materials Research, 2019, 34, 379-393.	1.2	9
3356	Bifunctional Oxygen Electrocatalysts for Lithiumâ^'Oxygen Batteries. Batteries and Supercaps, 2019, 2, 311-325.	2.4	22
3357	CuO/Graphene Nanocomposite for Nitrogen Reduction Reaction. ChemCatChem, 2019, 11, 1441-1447.	1.8	95
3358	Facile Synthesis and Characterization of MOFâ€Derived Porous Co ₃ O ₄ Composite for Oxygen Evolution Reaction. ChemistrySelect, 2019, 4, 1131-1137.	0.7	19
3359	NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery. Applied Surface Science, 2019, 478, 552-559.	3.1	123
3360	Trace sulfur promoted Fe, N-codoped carbon black as electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 3625-3635.	3.8	15
3361	Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1675-1682.	2.4	69
3362	High dispersion and oxygen reduction reaction activity of Co ₃ O ₄ nanoparticles on platelet-type carbon nanofibers. RSC Advances, 2019, 9, 3726-3733.	1.7	9
3363	Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER. Carbon, 2019, 146, 671-679.	5 . 4	117
3364	â~'60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superior performance. Nature Communications, 2019, 10, 606.	5.8	121
3365	Nanoclay-modulated oxygen vacancies of metal oxide. Communications Chemistry, 2019, 2, .	2.0	84

#	Article	IF	CITATIONS
3366	High-Density Cobalt Nanoparticles Encapsulated with Nitrogen-Doped Carbon Nanoshells as a Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Materials, 2019, 12, 243.	1.3	10
3367	Co3O4 nanocrystals grown on graphene nanosheets for high-performance supercapacitor with excellent rate capability. Journal of Sol-Gel Science and Technology, 2019, 89, 634-640.	1.1	3
3368	Anodic oxidation of diuron using Co3O4/graphite composite electrode at low applied current. Electrochimica Acta, 2019, 299, 853-862.	2.6	16
3369	Synthesis of high crystalline nickelâ€iron hydrotalciteâ€ike compound as an efficient electrocatalyst for oxygen evolution reaction. International Journal of Energy Research, 2019, 43, 1460-1467.	2.2	24
3370	Synthesis of hydrous cobalt phosphate electro-catalysts by a facile hydrothermal method for enhanced oxygen evolution reaction: effect of urea variation. CrystEngComm, 2019, 21, 884-893.	1.3	37
3371	Rational design and observation of the tight interface between graphene and ligand protected nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 329-335.	1.3	2
3372	N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Transactions, 2019, 48, 2352-2358.	1.6	22
3373	A dipole–dipole interaction tuning the photoluminescence of silicon quantum dots in a water vapor environment. Nanoscale, 2019, 11, 1790-1797.	2.8	4
3374	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO ₂ under solvent-free conditions. Inorganic Chemistry Frontiers, 2019, 6, 317-325.	3.0	41
3375	Sacrificial template induced interconnected bubble-like N-doped carbon nanofoam as a pH-universal electrocatalyst for an oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 621-629.	3.0	4
3376	Light-induced water oxidation by polymorphs of the Zn–Co–Ni oxide spinel catalyst: a comparative study. Sustainable Energy and Fuels, 2019, 3, 786-792.	2.5	7
3377	Synergistic interaction of perovskite oxides and N-doped graphene in versatile electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 2048-2054.	5.2	104
3378	The influence of encapsulated cobalt content within N-doped bamboo-like carbon nanotubes catalysts for arylalkanes oxidation. Materials Chemistry and Physics, 2019, 232, 393-399.	2.0	19
3379	Hydrothermally Synthesized Cobalt Borophosphate as an Electrocatalyst for Water Oxidation in the pH Range from 7 to 14. ChemElectroChem, 2019, 6, 3132-3138.	1.7	5
3380	Engineering Two-Dimensional Materials and Their Heterostructures as High-Performance Electrocatalysts. Electrochemical Energy Reviews, 2019, 2, 373-394.	13.1	74
3381	Mechanochemical assisted synthesis of heteroatoms inherited highly porous carbon from biomass for electrochemical capacitor and oxygen reduction reaction electrocatalysis. Electrochimica Acta, 2019, 317, 1-9.	2.6	46
3382	A Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. Nanoscale, 2019, 11, 13300-13308.	2.8	31
3383	Graphene Oxide: From Tunable Structures to Diverse Luminescence Behaviors. Advanced Science, 2019, 6, 1900855.	5.6	70

#	Article	IF	CITATIONS
3384	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 11903-11909.	7.2	329
3385	Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chemical Society Reviews, 2019, 48, 4178-4280.	18.7	810
3386	Utilizing the Spaceâ€Charge Region of the FeNiâ€LDH/CoP pâ€n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2019, 131, 12029-12035.	1.6	17
3387	Recent Advances in Carbonâ€Based Bifunctional Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 743-765.	2.4	119
3388	The mechanistic role of a support–catalyst interface in electrocatalytic water reduction by Co ₃ O ₄ supported nanocarbon florets. Nanoscale, 2019, 11, 13532-13540.	2.8	16
3389	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128
3390	Application of Aptamers in Virus Detection and Antiviral Therapy. Frontiers in Microbiology, 2019, 10, 1462.	1.5	166
3391	Experimental and theoretical understanding on electrochemical activation and inactivation processes of Nb ₃ O ₇ (OH) for ambient electrosynthesis of NH ₃ . Journal of Materials Chemistry A, 2019, 7, 16969-16978.	5.2	39
3392	Cobalt Oxide Supported on Phosphorus-Doped g-C ₃ N ₄ as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 4718-4729.	2.5	62
3393	Oxygen Reduction Reaction Activity of Mesostructured Cobaltâ€Based Metal Oxides Studied with the Cavityâ€Microelectrode Technique. ChemElectroChem, 2019, 6, 3460-3467.	1.7	14
3394	Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries. Chemical Engineering Journal, 2019, 375, 122058.	6.6	46
3395	Hollow NiCo2O4 nanospheres supported on N-doped carbon nanowebs as efficient bifunctional catalyst for rechargeable and flexible Zn-air batteries. Electrochimica Acta, 2019, 319, 1-9.	2.6	23
3396	Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Materials Science, 2019, 1, 77-90.	3.9	38
3397	Room temperature thiosulfate ion redox reaction-driven synthesis of a robust porous copper–cobalt–sulfur–oxygen nanowire coating on copper foam for highly-efficient and low-cost oxygen evolution reaction. Chemical Communications, 2019, 55, 8587-8590.	2.2	0
3398	Intrinsic Effects of Ruddlesdenâ€Popperâ€Based Bifunctional Catalysts for Highâ€Temperature Oxygen Reduction and Evolution. Advanced Energy Materials, 2019, 9, 1901573.	10.2	58
3399	Co ₃ O ₄ Nanorods with a Great Amount of Oxygen Vacancies for Highly Efficient Hg ^O Oxidation from Coal Combustion Flue Gas. Energy & En	2.5	46
3400	Oxygen Reduction Reaction Activity of Microwave Mediated Solvothermal Synthesized CeO2/g-C3N4 Nanocomposite. Frontiers in Chemistry, 2019, 7, 403.	1.8	34
3401	Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.	2.5	33

#	Article	IF	CITATIONS
3402	New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 2019, 141, 10120-10136.	6.6	168
3403	Fe3C/C nanoparticles encapsulated in N-doped graphene aerogel: an advanced oxygen reduction reaction catalyst for fiber-shaped fuel cells. International Journal of Hydrogen Energy, 2019, 44, 18393-18402.	3.8	15
3404	Transition metal electrocatalysts encapsulated into N-doped carbon nanotubes on reduced graphene oxide nanosheets: efficient water splitting through synergistic effects. Journal of Materials Chemistry A, 2019, 7, 15145-15155.	5.2	75
3405	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	5.2	47
3406	Efficient oxygen reduction on sandwich-like metal@N–C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets. Nanoscale, 2019, 11, 12610-12618.	2.8	26
3407	Hard-templated preparation of mesoporous cobalt phosphide as an oxygen evolution electrocatalyst. Electrochemistry Communications, 2019, 104, 106476.	2.3	17
3408	Fe 3 O 4 Nanoparticles Supported on Arcâ€synthesized Carbon Nanotubes as Advanced Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 6227-6232.	0.7	3
3409	Enhanced Electrocatalytic Reduction of CO ₂ via Chemical Coupling between Indium Oxide and Reduced Graphene Oxide. Nano Letters, 2019, 19, 4029-4034.	4.5	142
3410	A nanostructured nickel/carbon matrix as an efficient oxygen evolution reaction electrocatalyst for rechargeable zinc–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 1873-1880.	3.0	4
3411	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 3967-3973.	3.2	85
3412	Reduced graphene oxide-supported cobalt oxide decorated N-doped graphitic carbon for efficient bifunctional oxygen electrocatalysis. RSC Advances, 2019, 9, 16534-16540.	1.7	29
3413	Predictable Catalysis of Electronâ€Rich Palladium Catalyst toward Aldehydes Hydrogenation. ChemCatChem, 2019, 11, 3770-3775.	1.8	4
3414	Co ₃ O ₄ Nanoparticles Anchored on Nitrogen-Doped Partially Exfoliated Multiwall Carbon Nanotubes as an Enhanced Oxygen Electrocatalyst for the Rechargeable and Flexible Solid-State Zn–Air Battery. ACS Applied Energy Materials, 2019, 2, 4428-4438.	2.5	47
3415	Oxygen permeability and structural stability of CO2-stable SDC–SSCFG dual-phase membrane. Surface Innovations, 2019, 7, 268-277.	1.4	3
3416	Theory assisted design of N-doped tin oxides for enhanced electrochemical CO2 activation and reduction. Science China Chemistry, 2019, 62, 1030-1036.	4.2	24
3417	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	9.5	48
3418	Observation of Different Charge Transport Processes and Origin of Magnetism in rGO and rGO-ZnSe Composite. Journal of Physical Chemistry C, 2019, 123, 15441-15450.	1.5	13
3419	Silver Phosphate/Graphene Oxide Aerogel Microspheres with Radially Oriented Microchannels for Highly Efficient and Continuous Removal of Pollutants from Wastewaters. ACS Sustainable Chemistry and Engineering, 2019, 7, 11228-11240.	3.2	23

#	Article	IF	CITATIONS
3420	Recent progress in Co ₉ S ₈ -based materials for hydrogen and oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 16068-16088.	5.2	95
3421	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623.	5.8	79
3422	Layerâ€byâ€Layer Coating of Cobaltâ€Based Ink for Largeâ€Scale Fabrication of OER Electrocatalyst. Energy Technology, 2019, 7, 1900603.	1.8	6
3423	Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. Journal of Catalysis, 2019, 375, 164-170.	3.1	133
3424	Ultrasonochemically-induced MnCo ₂ O ₄ nanospheres synergized with graphene sheet as a non-precious bi-functional cathode catalyst for rechargeable zinc–air battery. Nanoscale Advances, 2019, 1, 2392-2399.	2.2	17
3425	Universal Strategy for HF-Free Facile and Rapid Synthesis of Two-dimensional MXenes as Multifunctional Energy Materials. Journal of the American Chemical Society, 2019, 141, 9610-9616.	6.6	452
3426	The surface engineering of cobalt carbide spheres throughÂN, B co-doping achieved by room-temperature <i>in situ</i> anchoring effects for active and durable multifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 14904-14915.	5.2	88
3427	Electrospun Carbon Nanofiber Sprinkled with Co 3 O 4 as an Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect, 2019, 4, 5160-5167.	0.7	7
3428	All-solid-state sponge-like squeezable zinc-air battery. Energy Storage Materials, 2019, 23, 375-382.	9.5	47
3429	High-Loading Composition-Tolerant Co–Mn Spinel Oxides with Performance beyond 1 W/cm ² in Alkaline Polymer Electrolyte Fuel Cells. ACS Energy Letters, 2019, 4, 1251-1257.	8.8	77
3430	Two-dimensional bimetallic phosphide ultrathin nanosheets as non-noble electrocatalysts for a highly efficient oxygen evolution reaction. Nanoscale, 2019, 11, 9654-9660.	2.8	53
3431	Probing the effect of combustion controlled surface alloying in silver and copper towards ORR and OER in alkaline medium. Journal of Electroanalytical Chemistry, 2019, 844, 66-77.	1.9	25
3432	An efficient bifunctional electrocatalyst based on a nickel iron layered double hydroxide functionalized Co ₃ O ₄ core shell structure in alkaline media. Catalysis Science and Technology, 2019, 9, 2879-2887.	2.1	27
3433	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	9.5	171
3434	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
3435	Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews, 2019, 393, 48-78.	9.5	198
3436	Modification of pyridinic N and O-rich defects in a bifunctional electrocatalyst with enhanced electrocatalytic performance. Journal of Alloys and Compounds, 2019, 789, 874-880.	2.8	8
3437	Pony-Size Silver-Copper and Silver-Iron Alloy Nanoparticles Confined in N-Free Mesoporous Carbon for Efficient Oxygen Electroreduction. Journal of the Electrochemical Society, 2019, 166, H272-H282.	1.3	6

#	Article	IF	CITATIONS
3438	Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 15001-15008.	3.8	26
3439	Validation of H2O2-mediated pathway model for elucidating oxygen reduction mechanism: Experimental evidences and theoretical simulations. Electrochimica Acta, 2019, 313, 378-388.	2.6	13
3440	Ni- and P-doped carbon from waste biomass: A sustainable multifunctional electrode for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Electrochimica Acta, 2019, 314, 49-60.	2.6	71
3441	COFâ€Derived N,P Coâ€Doped Carbon as a Metalâ€Free Catalyst for Highly Efficient Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 957-963.	1.5	26
3442	A Nonâ€Pt Electronically Coupled Semiconductor Heterojunction for Enhanced Oxygen Reduction Electrocatalytic Property. ChemistrySelect, 2019, 4, 5264-5268.	0.7	2
3443	Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochimica Acta, 2019, 314, 32-39.	2.6	97
3444	Facile preparation of trace-iron doped manganese oxide/N-doped ketjenblack carbon composite for efficient ORR electrocatalyst. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 230-238.	2.7	18
3445	Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nature Catalysis, 2019, 2, 457-465.	16.1	117
3446	Advances in nanostructures fabricated <i>via </i> spray pyrolysis and their applications in energy storage and conversion. Chemical Society Reviews, 2019, 48, 3015-3072.	18.7	260
3447	Efficient Conversion of Lignin Waste to High Value Bio-Graphene Oxide Nanomaterials. Polymers, 2019, 11, 623.	2.0	29
3448	Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1900149.	10.2	262
3449	Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochimica Acta, 2019, 308, 74-82.	2.6	33
3450	Synthesis and Electrochemical Study of Mesoporous Nickel-Cobalt Oxides for Efficient Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18295-18304.	4.0	28
3451	Rh and Rh Alloy Nanoparticles as Highly Active H ₂ Oxidation Catalysts for Alkaline Fuel Cells. ACS Catalysis, 2019, 9, 5057-5062.	5.5	45
3452	Effect of proton irradiation on electrocatalytic properties of MnO ₂ for oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 11659-11664.	5.2	28
3453	Selfâ€6upported ZIFâ€Derived Co ₃ O ₄ Nanoparticlesâ€Decorated Porous Nâ€Doped Carbon Fibers as Oxygen Reduction Catalyst. Chemistry - A European Journal, 2019, 25, 6807-6813.	1.7	23
3454	ZIF-derived wrinkled Co3O4 polyhedra supported on 3D macroporous carbon sponge for supercapacitor electrode. Ceramics International, 2019, 45, 14634-14641.	2.3	27
3455	Metal–Organic Frameworks as Electro-Catalysts for Oxygen Reduction Reaction in Electrochemical Technologies. Journal of Electronic Materials, 2019, 48, 4127-4137.	1.0	19

#	Article	IF	CITATIONS
3456	Anchored NiCoMnS4 nanoparticles on N-doped rGO: High-performance bifunctional electrocatalysts for rechargeable Zn-Air batteries. Energy Storage Materials, 2019, 20, 216-224.	9.5	42
3457	Synthesis and third-order nonlinear optical properties of α-MnS and α-MnS/rGO composites. Optical Materials, 2019, 92, 156-162.	1.7	15
3458	Pseudocapacitive Na ⁺ Insertion in Ti–O–C Channels of TiO ₂ –C Nanofibers with High Rate and Ultrastable Performance. ACS Applied Materials & Diterfaces, 2019, 11, 17416-17424.	4.0	32
3459	Universal Method for Producing Reduced Graphene Oxide/Gold Nanoparticles Composites with Controlled Density of Grafting and Long-Term Stability. Nanomaterials, 2019, 9, 602.	1.9	13
3460	Confining ultrasmall bimetallic alloys in porous N–carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12451-12456.	5.2	128
3461	Spinel oxide CoFe ₂ O ₄ grown on Ni foam as an efficient electrocatalyst for oxygen evolution reaction. RSC Advances, 2019, 9, 13269-13274.	1.7	30
3462	Designing bifunctional catalysts for oxygen reduction/evolution reactions for high efficiency and long lifetime. Electrochimica Acta, 2019, 313, 41-47.	2.6	6
3463	Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. Journal of Power Sources, 2019, 427, 299-308.	4.0	29
3464	Atomically Dispersed Cobalt- and Nitrogen-Codoped Graphene toward Bifunctional Catalysis of Oxygen Reduction and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 9249-9256.	3.2	57
3465	A room-temperature interfacial approach towards iron/nitrogen co-doped fibrous porous carbons as electrocatalysts for the oxygen reduction reaction and Znâ \in Air batteries. Nanoscale, 2019, 11, 10257-10265.	2.8	39
3466	Graphene/Co3O4 composites in application of electrochemical energy conversion and storage. FlatChem, 2019, 16, 100107.	2.8	36
3467	Ostwald Ripening-Mediated Grafting of Metal–Organic Frameworks on a Single Colloidal Nanocrystal to Form Uniform and Controllable MXF. Journal of the American Chemical Society, 2019, 141, 7407-7413.	6.6	74
3468	S, N co-doped rod-like porous carbon derived from S, N organic ligand assembled Ni-MOF as an efficient electrocatalyst for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 275, 167-173.	1.4	24
3469	Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing. Sensors and Actuators B: Chemical, 2019, 291, 130-140.	4.0	64
3470	Black Phosphorus-Modified Co ₃ O ₄ through Tuning the Electronic Structure for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17459-17466.	4.0	87
3471	In Situ Mn-Doping-Promoted Conversion of Co(OH) ₂ to Co ₃ O ₄ as an Active Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 9690-9698.	3.2	36
3472	Hierarchically Porous MgMn2O4 Microspheres Assembled with Nanosheets as High Oxygen Reduction Catalyst. Catalysis Letters, 2019, 149, 1903-1910.	1.4	3
3473	Sponge Effect Boosting Oxygen Reduction Reaction at the Interfaces between Mullite SmMn ₂ O ₅ and Nitrogen-Doped Reduced Graphene Oxide. ACS Applied Materials & ACS Applied & ACS Ap	4.0	18

#	Article	IF	Citations
3474	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal–Air Batteries. ACS Nano, 2019, 13, 5502-5512.	7. 3	87
3475	Non-Precious Electrodes for Practical Alkaline Water Electrolysis. Materials, 2019, 12, 1336.	1.3	87
3476	Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells. International Journal of Hydrogen Energy, 2019, 44, 25180-25187.	3.8	57
3477	Water on Oxide Surfaces: A Triaqua Surface Coordination Complex on Co ₃ O ₄ (111). Journal of the American Chemical Society, 2019, 141, 5623-5627.	6.6	18
3478	Co ₃ O ₄ nanosheets on zeolite-templated carbon as an efficient oxygen electrocatalyst for a zinc–air battery. Journal of Materials Chemistry A, 2019, 7, 9988-9996.	5.2	60
3479	Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through combinatorial electrodeposition. Journal of Materials Chemistry A, 2019, 7, 9877-9889.	5.2	80
3480	Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials. Nanotechnology, 2019, 30, 285701.	1.3	2
3481	Geometric Occupancy and Oxidation State Requirements of Cations in Cobalt Oxides for Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12525-12534.	4.0	43
3482	Advances in Sustainable Catalysis: A Computational Perspective. Frontiers in Chemistry, 2019, 7, 182.	1.8	36
3483	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
3484	Cobalt-based electrode materials for sodium-ion batteries. Chemical Engineering Journal, 2019, 370, 185-207.	6.6	118
3485	Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Scientific Reports, 2019, 9, 4488.	1.6	75
3486	Grain boundaries modified uniformly-conjoint metal/oxides via binder strategy as efficient bifunctional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 10010-10018.	5.2	27
3487	Migration of Cobalt Species within Mixed Platinum-Cobalt Oxide Bifunctional Electrocatalysts in Alkaline Electrolytes. Journal of the Electrochemical Society, 2019, 166, F3093-F3097.	1.3	7
3488	High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts, 2019, 9, 264.	1.6	53
3490	Ionicâ€State Cobalt and Iron Coâ€doped Carbon Dots with Superior Electrocatalytic Activity for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 2088-2094.	1.7	26
3491	Transition metal coordinated framework porphyrin for electrocatalytic oxygen reduction. Chinese Chemical Letters, 2019, 30, 911-914.	4.8	54
3492	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chemical Engineering Journal, 2019, 369, 988-995.	6.6	121

#	ARTICLE	IF	CITATIONS
3493	WxCoyS core-shell grown on hollow-porous carbon fiber (HCF) as synergetic electrocatalysts for efficient water splitting. Electrochimica Acta, 2019, 306, 437-445.	2.6	19
3494	Thermal Emitting Strategy to Synthesize Atomically Dispersed Pt Metal Sites from Bulk Pt Metal. Journal of the American Chemical Society, 2019, 141, 4505-4509.	6.6	285
3495	Subâ€6 nm Fully Ordered <i>L</i> 1 ₀ â€Ptâ€"Niâ€"Co Nanoparticles Enhance Oxygen Reduction via Co Doping Induced Ferromagnetism Enhancement and Optimized Surface Strain. Advanced Energy Materials, 2019, 9, 1803771.	10.2	127
3496	Self-Assembled Magnetic Nanoparticle–Graphene Oxide Nanotag for Optomagnetic Detection of DNA. ACS Applied Nano Materials, 2019, 2, 1683-1690.	2.4	21
3497	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
3498	Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Applied Catalysis B: Environmental, 2019, 249, 306-315.	10.8	85
3499	Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Progress in Materials Science, 2019, 103, 596-677.	16.0	166
3502	Electrodeposited Ni-Co-Sn alloy as a highly efficient electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 8099-8108.	3.8	44
3503	Preparation of stable dispersion of graphene using copolymers: dispersity and aromaticity analysis. Soft Materials, 2019, 17, 190-202.	0.8	11
3504	Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water. Nano Convergence, 2019, 6, 6.	6.3	94
3505	Prospects and challenges of graphene based fuel cells. Journal of Energy Chemistry, 2019, 39, 217-234.	7.1	63
3506	Wellâ€Dispersed Nickel―and Zincâ€₹ailored Electronic Structure of a Transition Metal Oxide for Highly Active Alkaline Hydrogen Evolution Reaction. Advanced Materials, 2019, 31, e1807771.	11.1	216
3507	Mesoporous Ultrathin Cobalt Oxides Nanosheets Grown on Carbon Cloth as a High-Performance Electrode for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 1977-1987.	2.5	18
3508	Electrospun cobalt-ZIF micro-fibers for efficient water oxidation under unique pH conditions. Catalysis Science and Technology, 2019, 9, 1847-1856.	2.1	43
3509	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	10.2	85
3510	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie - International Edition, 2019, 58, 8330-8335.	7.2	60
3511	In-situ surface-derivation of Ni-Mo bimetal sulfides nanosheets on Co3O4 nanoarrays as an advanced overall water splitting electrocatalyst in alkaline solution. Journal of Alloys and Compounds, 2019, 791, 328-335.	2.8	27
3512	Mesoporous layered spinel zinc manganese oxide nanocrystals stabilized nitrogen-doped graphene as an effective catalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 545, 43-53.	5.0	18

#	Article	IF	Citations
3513	Study of structural phase transition in nanocrystalline Cobalt Oxide thin films by pulsed laser deposition. Materials Research Express, 2019, 6, 076415.	0.8	12
3514	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
3515	Oriented Transformation of Coâ€LDH into 2D/3D ZIFâ€67 to Achieve Co–N–C Hybrids for Efficient Overall Water Splitting. Advanced Energy Materials, 2019, 9, 1803918.	10.2	260
3516	Sodium Cobalt Metaphosphate as an Efficient Oxygen Evolution Reaction Catalyst in Alkaline Solution. Angewandte Chemie, 2019, 131, 8418-8423.	1.6	1
3517	Recent Progress in Defective Carbonâ€Based Oxygen Electrode Materials for Rechargeable Zinkâ€Air Batteries. Batteries and Supercaps, 2019, 2, 509-523.	2.4	41
3518	Direct Oneâ€pot Synthesis of Carbon Supported Agâ€Pt Alloy Nanoparticles as High Performance Electrocatalyst for Fuel Cell Application. Fuel Cells, 2019, 19, 169-176.	1.5	7
3519	Efficient Conversion of Benzyl Alcohol on a Mesoporous Co3O4. Industrial & Engineering Chemistry Research, 2019, 58, 4774-4779.	1.8	15
3520	Ptâ€Like Oxygen Reduction Activity Induced by Costâ€Effective MnFeO ₂ /Nâ€Carbon. Chemistry - A European Journal, 2019, 25, 6226-6232.	1.7	18
3521	Ternary nickel cobalt manganese spinel oxide nanoparticles as heterogeneous electrocatalysts for oxygen evolution and oxygen reduction reaction. Materials Chemistry and Physics, 2019, 229, 190-196.	2.0	31
3522	Identifying the Activation of Bimetallic Sites in NiCo ₂ S ₄ @g ₃ N ₄ NT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	11.1	315
3523	Flowerlike Ag-Supported Ce-Doped Mn ₃ O ₄ Nanosheet Heterostructure for a Highly Efficient Oxygen Reduction Reaction: Roles of Metal Oxides in Ag Surface States. ACS Catalysis, 2019, 9, 3498-3510.	5.5	74
3524	Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts ⟨i⟩via⟨ i⟩ a molecule-mediated interfacial co-assembly strategy. Journal of Materials Chemistry A, 2019, 7, 8975-8983.	5.2	55
3525	Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6635-6640.	3.3	242
3526	Facile Nonâ€enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. Electroanalysis, 2019, 31, 1296-1303.	1.5	32
3527	Fe-doped Li3VO4 as an excellent anode material for lithium ion batteries: Optimizing rate capability and cycling stability. Electrochimica Acta, 2019, 308, 185-194.	2.6	31
3528	Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nature Energy, 2019, 4, 392-398.	19.8	570
3529	Co-Fe/MIL-101(Cr) hybrid catalysts: Preparation and their electrocatalysis in oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 11754-11764.	3.8	16
3530	One Simple Strategy towards Nitrogen and Oxygen Codoped Carbon Nanotube for Efficient Electrocatalytic Oxygen Reduction and Evolution. Catalysts, 2019, 9, 159.	1.6	9

#	Article	IF	CITATIONS
3531	Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Applied Catalysis B: Environmental, 2019, 252, 214-221.	10.8	92
3532	Phosphorus-doped hierarchical porous carbon as efficient metal-free electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 12941-12951.	3.8	26
3533	Prussian blue analogues-derived bimetallic iron-cobalt selenides for efficient overall water splitting. Journal of Colloid and Interface Science, 2019, 548, 48-55.	5.0	52
3534	Renewable Soybean PulpÂDerived Nâ€Doped Carbon Materials for Efficient Chemoselective Hydrogenation of Halogenated Nitrobenzenes. ChemistrySelect, 2019, 4, 4083-4091.	0.7	6
3535	Metal oxide nanohybrids-based low-temperature sensors for NO2 detection: a short review. Journal of Materials Science: Materials in Electronics, 2019, 30, 8160-8170.	1.1	27
3536	Pure nitrogen-doped graphene aerogel with rich micropores yields high ORR performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 242, 1-5.	1.7	23
3537	Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. Journal of Materials Chemistry A, 2019, 7, 12154-12165.	5.2	34
3538	Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 8919-8940.	1.7	26
3539	Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environment International, 2019, 127, 160-180.	4.8	367
3540	Wrinkled Reduced Graphene Oxide Supported Nano Ag ₄ Bi ₂ O ₅ Rods as Greatly Enhanced Catalyst for Zinc-Air Battery. Journal of the Electrochemical Society, 2019, 166, A968-A974.	1.3	11
3541	Sandwich-like composites of double-layer Co3O4 and reduced graphene oxide and their sensing properties to volatile organic compounds. Journal of Alloys and Compounds, 2019, 793, 24-30.	2.8	87
3542	Oxygenâ€Deficient Ti _{0.9} Nb _{0.1} O _{2â€x} as an Efficient Anodic Catalyst Support for PEM Water Electrolyzer. ChemCatChem, 2019, 11, 2511-2519.	1.8	19
3543	A Comprehensive Investigation on Pyrolyzed Fe–N–C Composites as Highly Efficient Electrocatalyst toward the Oxygen Reduction Reaction of PEMFCs. ACS Applied Materials & Interfaces, 2019, 11, 14126-14135.	4.0	28
3544	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	2.2	34
3545	Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11223-11233.	5.2	39
3546	Metalâ€containing Ionic Liquid/Polyacrylonitrileâ€derived Carbon Nanofibers for Oxygen Reduction Reaction and Flexible Zn–Air Battery. Chemistry - an Asian Journal, 2019, 14, 2008-2017.	1.7	18
3547	Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nature Communications, 2019, 10, 1506.	5.8	212
3548	Amorphous CoFe Double Hydroxides Decorated with Nâ€Doped CNTs for Efficient Electrochemical Oxygen Evolution. ChemSusChem, 2019, 12, 2679-2688.	3.6	26

#	Article	IF	CITATIONS
3549	Carbon-based lanthanum nickelate material La2â^'xâ^'yNdxPryNiO4+δ (x = 0, 0.3, and 0.5; y =  bifunctional electrocatalyst for oxygen reduction in alkaline media. Ionics, 2019, 25, 3809-3822.	0 and 0.2)	as ₉ a
3550	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	3.1	22
3551	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
3552	A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochimica Acta, 2019, 307, 275-284.	2.6	49
3553	In-situ embedding zeolitic imidazolate framework derived Co–N–C bifunctional catalysts in carbon nanotube networks for flexible Zn–air batteries. Journal of Energy Chemistry, 2019, 38, 170-176.	7.1	55
3554	Enhancing the Catalytic Activity of Co ₃ O ₄ Nanosheets for Li-O ₂ Batteries by the Incoporation of Oxygen Vacancy with Hydrazine Hydrate Reduction. Inorganic Chemistry, 2019, 58, 4989-4996.	1.9	45
3555	Nitrogen-Doped Carbon Nano-Onions as a Metal-Free Electrocatalyst. Electrocatalysis, 2019, 10, 222-231.	1.5	16
3556	Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions. Carbon, 2019, 147, 9-18.	5.4	76
3557	Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7526-7532.	5.2	72
3558	Biomass Derived Grapheneâ€Like Carbons for Electrocatalytic Oxygen Reduction Reaction. ChemNanoMat, 2019, 5, 682-689.	1.5	39
3559	Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon, 2019, 146, 248-256.	5.4	177
3560	Spherical Murray-Type Assembly of Co–N–C Nanoparticles as a High-Performance Trifunctional Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9925-9933.	4.0	49
3561	Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 4626-4639.	5.2	59
3562	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	4.6	33
3563	Urchin-like ternary cobalt phosphosulfide as high-efficiency and stable bifunctional electrocatalyst for overall water splitting. Journal of Catalysis, 2019, 371, 126-134.	3.1	32
3564	Adsorption and On-Site Transformation of Transition Metal Cations on Ni-Doped AlOOH Nanoflowers for OER Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 5953-5962.	3.2	14
3565	Electrochemical impacts of sheet-like hafnium phosphide and hafnium disulfide catalysts bonded with reduced graphene oxide sheets for bifunctional oxygen reactions in alkaline electrolytes. RSC Advances, 2019, 9, 2599-2607.	1.7	17
3566	Biomass-derived porous carbon supported Co CoO yolk-shell nanoparticles as enhanced multifunctional electrocatalysts. International Journal of Hydrogen Energy, 2019, 44, 6525-6534.	3.8	33

#	Article	IF	CITATIONS
3567	Metal and Metal Oxide-Based Nanomaterials for Electrochemical Applications. Environmental Chemistry for A Sustainable World, 2019, , 499-530.	0.3	0
3568	Interior engineering of seaweed-derived N-doped versatile carbonaceous beads with Co _x O _y for universal organic pollutant degradation. RSC Advances, 2019, 9, 5009-5024.	1.7	14
3569	Highly Active Oxygen Evolution on Carbon Fiber Paper Coated with Atomic-Layer-Deposited Cobalt Oxide. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10608-10615.	4.0	12
3570	Electrocatalytic oxygen reduction reaction activity of KOH etched carbon films as metal-free cathodic catalysts for fuel cells. RSC Advances, 2019, 9, 2803-2811.	1.7	5
3571	A new metal–organic open framework enabling facile synthesis of carbon encapsulated transition metal phosphide/sulfide nanoparticle electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 7168-7178.	5.2	50
3572	A Lowâ€Cost and Facile Method for the Preparation of Feâ€N/Câ€Based Hybrids with Superior Catalytic Performance toward Oxygen Reduction Reaction. Advanced Materials Interfaces, 2019, 6, 1900273.	1.9	25
3573	Two-Dimensional Materials on the Rocks: Positive and Negative Role of Dopants and Impurities in Electrochemistry. ACS Nano, 2019, 13, 2681-2728.	7.3	62
3574	Nitrogen and sulfur-codoped porous carbon derived from a BSA/ionic liquid polymer complex: multifunctional electrode materials for water splitting and supercapacitors. RSC Advances, 2019, 9, 5189-5196.	1.7	8
3575	Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Sn <i>^Î</i> ⁺ Sites. Advanced Materials, 2019, 31, e1808135.	11.1	321
3576	Synergistic Effects of Mo 2 Câ€NC@Co x Fe y Core–Shell Nanoparticles in Electrocatalytic Overall Water Splitting Reaction. Energy Technology, 2019, 7, 1801121.	1.8	7
3577	A Strategy for Increasing the Efficiency of the Oxygen Reduction Reaction in Mn-Doped Cobalt Ferrites. Journal of the American Chemical Society, 2019, 141, 4412-4421.	6.6	90
3578	Less active CeO ₂ regulating bifunctional oxygen electrocatalytic activity of Co ₃ O ₄ @N-doped carbon for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 6753-6765.	5. 2	87
3579	Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction. Chemical Communications, 2019, 55, 3101-3104.	2.2	28
3580	Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 2019, 15, e1805147.	5.2	100
3581	N- and S- co-doped graphene sheet-encapsulated Co9S8 nanomaterials as excellent electrocatalysts for the oxygen evolution reaction. Journal of Power Sources, 2019, 417, 90-98.	4.0	52
3582	Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchemical Journal, 2019, 146, 881-887.	2.3	59
3583	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
3584	A review of studies using graphenes in energy conversion, energy storage and heat transfer development. Energy Conversion and Management, 2019, 184, 581-599.	4.4	115

#	Article	IF	Citations
3585	Metal-organic framework-derived core-shell-structured nitrogen-doped CoCx/FeCo@C hybrid supported by reduced graphene oxide sheets as high performance bifunctional electrocatalysts for ORR and OER. Journal of Catalysis, 2019, 371, 185-195.	3.1	78
3586	Defectsâ€Induced Inâ€Plane Heterophase in Cobalt Oxide Nanosheets for Oxygen Evolution Reaction. Small, 2019, 15, e1904903.	5.2	69
3587	Coupling low platinum and tungsten carbide supported on ZIFs-Derived porous carbon for efficient hydrogen evolution. Electrochimica Acta, 2019, 328, 135077.	2.6	5
3588	Electrospun Cuâ€Deposited Flexible Fibers as an Efficient Oxygen Evolution Reaction Electrocatalyst. ChemPhysChem, 2019, 20, 2899-2899.	1.0	2
3589	Influence of Functionalized Carbon Nanotubes on Catalytic Activity of V ₂ 0 ₅ /TiO ₂ â€CNTs for 1, 2â€Dichlorobenzene Oxidation. Environmental Progress and Sustainable Energy, 2019, 38, 13221.	1.3	8
3590	Cobalt-Based Nitride-Core Oxide-Shell Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 19241-19245.	6.6	154
3591	Engineering the coupling interface of rhombic dodecahedral NiCoP/C@FeOOH nanocages toward enhanced water oxidation. Nanoscale, 2019, 11, 19959-19968.	2.8	48
3592	Monitoring compositional changes in Ni(OH) ₂ electrocatalysts employed in the oxygen evolution reaction. Analyst, The, 2019, 144, 7318-7325.	1.7	20
3593	Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2019, 55, 12567-12570.	2.2	24
3594	Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 2019, 11, 21622-21678.	2.8	201
3595	N,S–Codoped hierarchical porous carbon spheres embedded with cobalt nanoparticles as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Nanoscale, 2019, 11, 21302-21310.	2.8	31
3596	Simple synthesis of a vacancy-rich NiO 2D/3D dendritic self-supported electrode for efficient overall water splitting. Nanoscale, 2019, 11, 22734-22742.	2.8	20
3597	Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustainable Energy and Fuels, 2019, 3, 3525-3537.	2.5	40
3598	ZIF-67-derived Co ₃ O ₄ @carbon protected by oxygen-buffering CeO ₂ as an efficient catalyst for boosting oxygen reduction/evolution reactions. Journal of Materials Chemistry A, 2019, 7, 25853-25864.	5.2	155
3599	Enhancing Oxygen Electroreduction Activity of Single-Site Fe–N–C Catalysts by a Metal Support. Journal of Physical Chemistry C, 2019, 123, 30335-30340.	1.5	6
3600	In Situ Electrochemical Activation of a Codoped Heterogeneous System as a Highly Efficient Catalyst for the Oxygen Evolution Reaction in Alkaline Water Electrolysis. ACS Applied Energy Materials, 2019, 2, 8809-8817.	2.5	11
3601	Carbon-Based Nanomaterials as Sustainable Noble-Metal-Free Electrocatalysts. Frontiers in Chemistry, 2019, 7, 759.	1.8	29
3602	Use of palladium nanoparticles dispersed on GNS - modified with 10Âwt%CoMoO4 as efficient bifunctional electrocatalysts. International Journal of Hydrogen Energy, 2019, 44, 31312-31322.	3.8	5

#	Article	IF	CITATIONS
3603	Facile One-Step Synthesis and Enhanced Optical Nonlinearity of Graphene- \hat{l}^3 MnS. Nanomaterials, 2019, 9, 1654.	1.9	8
3604	Designing of Ferromagnetic 3D Hierarchical Coreâ€Shell Fe ₃ O ₄ Microspheres Derived from a MOF Precursor: As an Efficient Catalyst for Câ€P Cross Coupling Reaction. ChemistrySelect, 2019, 4,	0.7	3
3605	Spin-orbit coupling and crystal-field distortions for a low-spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:n <mml:math="" in="" state="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">BaCoO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:n></mml:msup></mml:mrow></mml:math> >. Physical	ni>d <td>l:mi><mml:n 49</mml:n </td>	l:mi> <mml:n 49</mml:n
3606	Review B, 2019, 100, . Octahedral spinel electrocatalysts for alkaline fuel cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24425-24432.	3.3	60
3607	X-ray tracking of structural changes during a subnanosecond solid-solid phase transition in cobalt nanoparticles. Physical Review B, 2019, 100, .	1.1	2
3608	The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications. , 0, , .		3
3609	Noble metal-free two dimensional carbon-based electrocatalysts for water splitting. BMC Materials, 2019, 1 , .	6.8	21
3610	Preparation of Nanostructured Co3O4 and Ru-Doped Co3O4 and Their Applicability in Liquefied Petroleum Gas Sensing. Journal of Materials Engineering and Performance, 2019, 28, 7592-7601.	1.2	4
3611	Mixed Platinum–Nickel Catalysts of Oxygen Reduction. Russian Journal of Electrochemistry, 2019, 55, 1092-1097.	0.3	4
3612	Nitrogen-Doped Ketjenblack Carbon Supported Co3O4 Nanoparticles as a Synergistic Electrocatalyst for Oxygen Reduction Reaction. Frontiers in Chemistry, 2019, 7, 766.	1.8	20
3613	Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. Journal of Materials Chemistry A, 2019, 7, 25878-25886.	5.2	57
3614	Efficient tri-metallic oxides NiCo ₂ O ₄ /CuO for the oxygen evolution reaction. RSC Advances, 2019, 9, 42387-42394.	1.7	9
3615	Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Applied Surface Science, 2019, 464, 344-350.	3.1	38
3616	Sonochemical reduction method for synthesis of TiO2Pd nanocomposites and investigation of anode and cathode catalyst for ethanol oxidation and oxygen reduction reaction in alkaline medium. International Journal of Hydrogen Energy, 2019, 44, 30705-30718.	3.8	10
3617	Doped porous carbon nanostructures with N Co O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Applied Surface Science, 2019, 463, 386-394.	3.1	16
3618	Facile fabrication of electroactive microporous Co3O4 through microwave plasma etching for supercapacitors. Journal of Alloys and Compounds, 2019, 771, 156-161.	2.8	41
3619	3-D CdS@NiCo layered double hydroxide core-shell photoelectrocatalyst used for efficient overall water splitting. Applied Catalysis B: Environmental, 2019, 241, 28-40.	10.8	70
3620	Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction. Applied Surface Science, 2019, 473, 555-563.	3.1	23

#	Article	IF	CITATIONS
3621	Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution. Journal of Electroanalytical Chemistry, 2019, 833, 490-497.	1.9	17
3622	Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries. Journal of Industrial and Engineering Chemistry, 2019, 72, 250-254.	2.9	19
3623	Cobalt Phosphide Nanowire Arrays on Conductive Substrate as an Efficient Bifunctional Catalyst for Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 2360-2369.	3.2	37
3624	Exceptional Performance of Hierarchical Ni–Fe (hydr)oxide@NiCu Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1806769.	11.1	124
3625	Defect-Rich 2D Material Networks for Advanced Oxygen Evolution Catalysts. ACS Energy Letters, 2019, 4, 328-336.	8.8	148
3626	Sustainable and Atomically Dispersed Iron Electrocatalysts Derived from Nitrogen―and Phosphorusâ€Modified Woody Biomass for Efficient Oxygen Reduction. Advanced Materials Interfaces, 2019, 6, 1801623.	1.9	22
3627	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie, 2019, 131, 2648-2652.	1.6	116
3628	An Isolated Zinc–Cobalt Atomic Pair for Highly Active and Durable Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 2622-2626.	7.2	494
3629	Non-covalent pre-organization of molecular precursors: A facile approach for engineering structures and activities of pyrolyzed Co-N-CÂelectrocatalysts. Carbon, 2019, 144, 312-320.	5.4	28
3630	Cobalt oxide-based materials as non-PGM catalyst for HER in PEM electrolysis and in situ XAS characterization of its functional state. Catalysis Today, 2019, 336, 161-168.	2.2	17
3631	Progress and perspective on two-dimensional unilamellar metal oxide nanosheets and tailored nanostructures from them for electrochemical energy storage. Energy Storage Materials, 2019, 19, 281-298.	9.5	34
3632	Two-dimensional materials as catalysts for solar fuels: hydrogen evolution reaction and CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 430-454.	5. 2	125
3633	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	5.4	31
3634	A 2D MOF derived core-shell structured nanocomposite as effective electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2019, 833, 454-461.	1.9	8
3635	Laser Synthesized Bi-functional Hybrid Catalyst Oxygen-defective Co ₃ O _{4â^'x} /N-Graphene for Oxygen Electrode Reactions. Chemistry Letters, 2019, 48, 118-121.	0.7	6
3636	Pt nanoparticles embedded metal-organic framework nanosheets: A synergistic strategy towards bifunctional oxygen electrocatalysis. Applied Catalysis B: Environmental, 2019, 245, 389-398.	10.8	66
3637	Alveolate porous carbon aerogels supported Co9S8 derived from a novel hybrid hydrogel for bifunctional oxygen electrocatalysis. Carbon, 2019, 144, 557-566.	5.4	177
3638	Breathing-Mimicking Electrocatalysis for Oxygen Evolution and Reduction. Joule, 2019, 3, 557-569.	11.7	132

#	Article	IF	CITATIONS
3639	Silver nanofibers with controllable microstructure and crystal facet as highly efficient and methanol-tolerant oxygen reduction electrocatalyst. Journal of Power Sources, 2019, 413, 233-240.	4.0	10
3640	Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. Journal of Power Sources, 2019, 413, 367-375.	4.0	118
3641	Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nature Catalysis, 2019, 2, 134-141.	16.1	629
3642	Facile Dynamic Synthesis of Homodispersed Ni ₃ S ₂ Nanosheets as a Highâ€Efficient Bifunctional Electrocatalyst for Water Splitting. ChemCatChem, 2019, 11, 1320-1327.	1.8	21
3643	Remarkable Oxygenâ€Evolution Activity of a Perovskite Oxide from the Ca _{2â^'<i>x</i>} Sr _{<i>x</i>} Fe ₂ O _{6â^'<i>δ</i>} Series. Angewandte Chemie - International Edition, 2019, 58, 2060-2063.	7.2	53
3644	Synthesis, characterization and electrochemical properties of cadmium sulfide – Reduced graphene oxide nanocomposites. Results in Physics, 2019, 12, 878-885.	2.0	16
3645	<i>In situ</i> growth of α-Fe ₂ O ₃ @Co ₃ O ₄ core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale, 2019, 11, 1111-1122.	2.8	29
3646	Well-dispersed CoO embedded in 3D N-S-doped carbon framework through morphology-retaining pyrolysis as efficient oxygen reduction and evolution electrocatalyst. Electrochimica Acta, 2019, 295, 624-631.	2.6	21
3647	Dual Modulation via Electrochemical Reduction Activiation on Electrocatalysts for Enhanced Oxygen Evolution Reaction. ACS Energy Letters, 2019, 4, 423-429.	8.8	55
3648	Co-CoO-Co3O4/N-doped carbon derived from metal-organic framework: The addition of carbon black for boosting oxygen electrocatalysis and Zn-Air battery. Electrochimica Acta, 2019, 295, 966-977.	2.6	72
3649	NiCo-DH nanodots anchored on amorphous NiCo-Sulfide sheets as efficient electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 295, 1085-1092.	2.6	46
3650	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
3651	Surface Engineering of Nanomaterials for Photoâ€Electrochemical Water Splitting. Small, 2019, 15, e1803746.	5.2	72
3652	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^²2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie, 2019, 131, 1058-1063.	e ll s6	32
3653	Nitrogenâ€doped Carbon–CoO _{<i>x</i>} Nanohybrids: A Precious Metal Free Cathode that Exceeds 1.0â€W cm ^{â^'2} Peak Power and 100â€h Life in Anionâ€Exchange Membrane Fuel C Angewandte Chemie - International Edition, 2019, 58, 1046-1051.	etts2	117
3654	Metal–Organic Frameworks (MOFs) and MOF-Derived Materials for Energy Storage and Conversion. Electrochemical Energy Reviews, 2019, 2, 29-104.	13.1	274
3655	In situ growth of Co3O4 on nitrogen-doped hollow carbon nanospheres as air electrode for lithium-air batteries. Journal of Alloys and Compounds, 2019, 777, 944-953.	2.8	28
3656	Sulfur, Nitrogen and Fluorine Tripleâ€Doped Metalâ€Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 741-747.	1.7	33

#	Article	IF	Citations
3657	Nitrogen-doped CoOx/carbon nanotubes derived by plasma-enhanced atomic layer deposition: Efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Electrochimica Acta, 2019, 296, 964-971.	2.6	30
3658	Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 244, 536-545.	10.8	140
3659	Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochimica Acta, 2019, 296, 830-841.	2.6	93
3660	Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Science China Materials, 2019, 62, 671-680.	3.5	30
3661	A new photocatalyst based on $\text{Co}(\text{CO3})0.5(\text{OH})\hat{\text{A}}\cdot 0.11\text{H2O/Bi2WO6}$ nanocomposites for high-efficiency cocatalyst-free O2 evolution. Chemical Engineering Journal, 2019, 359, 924-932.	6.6	59
3662	Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochimica Acta, 2019, 296, 719-729.	2.6	86
3663	Dendritic core-shell Ni@Ni(Fe)OOH metal/metal oxyhydroxide electrode for efficient oxygen evolution reaction. Applied Surface Science, 2019, 469, 731-738.	3.1	34
3664	Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & amp; acidic media. Nano Energy, 2019, 56, 524-530.	8.2	88
3665	In-Situ Stress Measurements during Cobalt Electrodeposition. Journal of the Electrochemical Society, 2019, 166, D3246-D3253.	1.3	13
3666	Atomic layer deposition of cobalt oxide on oxide substrates and low temperature reduction to form ultrathin cobalt metal films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	12
3667	Ultrafine Pd nanoparticles supported on zeolite-templated mesocellular graphene network via framework aluminum mediation: An advanced oxygen reduction electrocatalyst. Applied Catalysis B: Environmental, 2019, 244, 957-964.	10.8	26
3668	Increase of Co 3d projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy, 2019, 57, 753-760.	8.2	40
3669	Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts. Nano Letters, 2019, 19, 1371-1378.	4.5	74
3670	Remarkable Oxygenâ€Evolution Activity of a Perovskite Oxide from the Ca _{2â^'<i>x</i>} Sr _{<i>x</i>} Fe ₂ O _{6â^'<i>Î</i>} Series. Angewandte Chemie, 2019, 131, 2082-2085.	1.6	17
3671	Biomolecule-derived N/S co-doped CNT-graphene hybrids exhibiting excellent electrochemical activities. Journal of Power Sources, 2019, 413, 408-417.	4.0	72
3672	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	8.2	298
3673	Encoding Metal–Cation Arrangements in Metal–Organic Frameworks for Programming the Composition of Electrocatalytically Active Multimetal Oxides. Journal of the American Chemical Society, 2019, 141, 1766-1774.	6.6	32
3674	A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology, 2019, 30, 144001.	1.3	9

#	Article	IF	CITATIONS
3675	Nitrogenâ€doped Hollow Co ₃ O ₄ Nanofibers for both Solidâ€state pH Sensing and Improved Nonâ€enzymatic Glucose Sensing. Electroanalysis, 2019, 31, 678-687.	1.5	14
3676	Cobalt Nanoparticles Confined in Carbon Cages Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Electrocatalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 355-363.	2.4	16
3677	Biomorphic CoNC/CoO <i>_x</i> Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1804855.	5.2	72
3678	Bimetallic Nickel Cobalt Sulfide as Efficient Electrocatalyst for Zn–Air Battery and Water Splitting. Nano-Micro Letters, 2019, 11, 2.	14.4	179
3679	Synthesis of color-tunable CdTe/CdS:Mn core-shell nanocrystal emitters. Physica B: Condensed Matter, 2019, 557, 23-26.	1.3	9
3680	Laser-Induced Graphene Hybrid Catalysts for Rechargeable Zn-Air Batteries. ACS Applied Energy Materials, 2019, 2, 1460-1468.	2.5	55
3681	Green synthesis of NiFe LDH/Ni foam at room temperature for highly efficient electrocatalytic oxygen evolution reaction. Science China Materials, 2019, 62, 681-689.	3.5	70
3682	Tuning the electronic and structural properties of Gd-TiO2-GO nanocomposites for enhancing photodegradation of IC dye: The role of Gd3+ ion. Applied Catalysis B: Environmental, 2019, 243, 106-120.	10.8	60
3683	Co3O4 nanoparticles on porous bio-carbon substrate as catalyst for oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 277, 45-51.	2.2	53
3684	Ag@Fe2O3-graphene oxide nanocomposite as a novel redox probe for electrochemical immunosensor for alpha-fetoprotein detection. Journal of Solid State Electrochemistry, 2019, 23, 335-343.	1.2	11
3685	(003)-Facet-exposed Ni3S2 nanoporous thin films on nickel foil for efficient water splitting. Applied Catalysis B: Environmental, 2019, 243, 693-702.	10.8	129
3686	Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Advanced Materials, 2019, 31, e1804828.	11.1	142
3687	Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2019, 295, 384-392.	2.6	19
3688	Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Research, 2019, 12, 177-182.	5.8	43
3689	Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries. Carbon, 2019, 142, 379-387.	5.4	111
3690	High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Materials Research Bulletin, 2019, 110, 97-101.	2.7	26
3691	Recent Progress in Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2019, 31, e1805230.	11.1	398
3692	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Diterfaces, 2019, 11, 1384-1393.	4.0	56

#	Article	IF	CITATIONS
3693	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	10.8	42
3694	Recent advances in metalloporphyrins for environmental and energy applications. Chemosphere, 2019, 219, 617-635.	4.2	40
3695	Well-defined gradient Fe/Zn bimetal organic framework cylinders derived highly efficient iron- and nitrogen- codoped hierarchically porous carbon electrocatalysts towards oxygen reduction. Nano Energy, 2019, 57, 108-117.	8.2	89
3696	Graphitic Carbon Nitride Impregnated Niobium oxide (g-C ₃ N ₄ /Nb ₂ O ₅) Type (II) Heterojunctions and its Synergetic Solar-Driven Hydrogen Generation. ACS Applied Energy Materials, 2019, 2, 607-615.	2.5	64
3697	Aluminum and Nitrogen Codoped Graphene: Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 610-619.	5.5	56
3698	Alcohol Oxidation and Hydrogen Evolution. Interface Science and Technology, 2019, 27, 253-301.	1.6	16
3699	Heterogeneous cobalt phosphides nanoparticles anchored on carbon cloth realizing the efficient hydrogen generation reaction. International Journal of Hydrogen Energy, 2019, 44, 531-539.	3.8	12
3700	Oxygen Electrocatalysis at Mn ^{III} â€"O <i>_x</i> ê€"C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Diterfaces, 2019, 11, 706-713.	4.0	7
3701	MnO 2 â€Mediated Synthesis of Mn 3 O 4 @CaMn 7 O 12 Core@Shell Nanorods for Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 618-622.	1.7	3
3702	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. Nano Energy, 2019, 56, 581-587.	8.2	35
3703	Increased activity of nitrogen-doped graphene-like carbon sheets modified by iron doping for oxygen reduction. Journal of Colloid and Interface Science, 2019, 536, 42-52.	5.0	32
3704	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon, 2019, 142, 115-122.	5.4	57
3705	Insights into Ni-Fe couple in perovskite electrocatalysts for highly efficient electrochemical oxygen evolution. Electrochimica Acta, 2019, 293, 240-246.	2.6	30
3706	Tunable oxidation state of Co in CoOx@N-doped graphene derived from PANI/Co3O4 and the enhanced oxygen reduction catalysis. Applied Surface Science, 2019, 465, 665-671.	3.1	12
3707	Size Controllable Metal Nanoparticles Anchored on Nitrogen Doped Carbon for Electrocatalytic Energy Conversion. ChemElectroChem, 2019, 6, 1508-1513.	1.7	4
3708	Non-noble Iron Group (Fe, Co, Ni)-Based Oxide Electrocatalysts for Aqueous Zinc–Air Batteries: Recent Progress, Challenges, and Perspectives. Organometallics, 2019, 38, 1186-1199.	1.1	51
3709	Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Applied Surface Science, 2019, 466, 92-98.	3.1	30
3710	Electrocatalytic activity of LaSr3Fe3O10 and LaSr3Fe3O10-GO towards oxygen reduction reaction in alkaline medium. Journal of Rare Earths, 2019, 37, 282-286.	2.5	12

#	Article	IF	CITATIONS
3711	Laserâ€Induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 31, e1803621.	11.1	512
3712	Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithiumâ€Air and Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 336-347.	2.4	173
3713	In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Applied Catalysis B: Environmental, 2019, 243, 151-160.	10.8	66
3714	Transforming Co3O4 nanosheets into porous N-doped Co O nanosheets with oxygen vacancies for the oxygen evolution reaction. Journal of Energy Chemistry, 2019, 35, 24-29.	7.1	98
3715	Biomorphic composites composed of octahedral Co3O4 nanocrystals and mesoporous carbon microtubes templated from cotton for excellent supercapacitor electrodes. Applied Surface Science, 2019, 465, 232-240.	3.1	48
3716	Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting – A review. Journal of Energy Chemistry, 2019, 34, 111-160.	7.1	323
3717	Three dimensional flower like cobalt sulfide (CoS)/functionalized MWCNT composite catalyst for efficient oxygen evolution reactions. Applied Surface Science, 2019, 466, 830-836.	3.1	62
3718	CADMIUM-DOPED Co3O4 THIN FILMS: SYNTHESIS AND CHARACTERIZATION. Surface Review and Letters, 2019, 26, 1850134.	0.5	4
3719	Scalable preparation and stabilization of atomic-thick CoNi layered double hydroxide nanosheets for bifunctional oxygen electrocatalysis and rechargeable zinc-air batteries. Energy Storage Materials, 2019, 16, 24-30.	9.5	52
3720	Electrocatalytic activity of starch/Fe3O4/zeolite bionanocomposite for oxygen reduction reaction. Arabian Journal of Chemistry, 2020, 13, 1297-1308.	2.3	13
3721	A facile synthesis of clay – graphene oxide nanocomposite catalysts for solvent free multicomponent Biginelli reaction. Arabian Journal of Chemistry, 2020, 13, 318-334.	2.3	53
3722	Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. Journal of Energy Chemistry, 2020, 41, 185-193.	7.1	48
3723	In situ construction of Co/Co3O4 with N-doped porous carbon as a bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Catalysis Today, 2020, 355, 286-294.	2.2	37
3724	Cobalt sulfides as efficient catalyst towards oxygen reduction reactions. Chinese Chemical Letters, 2020, 31, 530-534.	4.8	23
3725	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
3726	Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118188.	10.8	163
3727	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	23.0	436
3728	Synergistically enhanced oxygen reduction electrocatalysis by atomically dispersed and nanoscaled Co species in three-dimensional mesoporous Co, N-codoped carbon nanosheets network. Applied Catalysis B: Environmental, 2020, 260, 118207.	10.8	74

#	Article	IF	CITATIONS
3729	Co3O4 /N-doped RGO nanocomposites derived from MOFs and their highly enhanced gas sensing performance. Sensors and Actuators B: Chemical, 2020, 303, 127219.	4.0	53
3730	Co3O4 nanoparticles anchored in MnO2 nanorods as efficient oxygen reduction reaction catalyst for metal-air batteries. Journal of Alloys and Compounds, 2020, 814, 152239.	2.8	28
3731	Facile one step synthesis of Cu-g-C3N4 electrocatalyst realized oxygen reduction reaction with excellent methanol crossover impact and durability. Journal of Colloid and Interface Science, 2020, 558, 182-189.	5.0	55
3732	Fabrication and bifunctional electrocatalytic performance of FeNi3/MnFe2O4/nitrogen-doping reduced graphene oxide nanocomposite for oxygen electrocatalytic reactions. Ionics, 2020, 26, 991-1001.	1.2	9
3733	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	11.1	76
3734	Multifunctional Transition Metalâ€Based Phosphides in Energyâ€Related Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902104.	10.2	322
3735	Nb-doped TiO ₂ support with enhanced durability as a cathode for polymer electrolyte membrane fuel cells. Nanotechnology, 2020, 31, 03LT01.	1.3	5
3736	N, S-codoped graphene loaded Ni-Co bimetal sulfides for enhanced oxygen evolution activity. Applied Surface Science, 2020, 503, 144146.	3.1	41
3737	String of pyrolyzed ZIF-67 particles on carbon fibers for high-performance electrocatalysis. Energy Storage Materials, 2020, 25, 137-144.	9.5	102
3738	Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. Journal of Colloid and Interface Science, 2020, 559, 143-151.	5.0	21
3739	Recent developments in graphene based novel structures for efficient and durable fuel cells. Materials Research Bulletin, 2020, 122, 110674.	2.7	36
3740	Characterization of cobalt oxide nanoparticles produced by laser ablation method: Effects of laser fluence. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115, 113670.	1.3	34
3741	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	10.2	156
3742	Free chlorine induced phototransformation of graphene oxide in water: Reaction kinetics and product characterization. Chemical Engineering Journal, 2020, 381, 122609.	6.6	21
3743	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114
3744	LaSr2Mn2O7 Ruddlesden-Popper manganites for oxygen reduction and electrochemical capacitors. Journal of Rare Earths, 2020, 38, 763-769.	2.5	6
3745	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100
3746	Nitrogen-doped carbon nanotube–graphene hybrid stabilizes MxN (M = Fe, Co) nanoparticles for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 268, 118415.	10.8	46

#	Article	IF	CITATIONS
3747	Natural nanofiber-based stacked porous nitrogen-doped carbon/NiFe2O4 nanohybrid nanosheets. Cellulose, 2020, 27, 1021-1031.	2.4	14
3748	Efficient oxygen reduction activity on layered palladium phosphosulphide and its application in alkaline fuel cells. Journal of Power Sources, 2020, 445, 227280.	4.0	15
3749	Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOFâ€onâ€MOF Growth, Etching, and Structure Transformation. Angewandte Chemie - International Edition, 2020, 59, 1327-1333.	7.2	118
3750	Electronic structure tailoring of BiOBr (0 1 0) nanosheets by cobalt doping for enhanced visible-light photocatalytic activity. Applied Surface Science, 2020, 502, 143895.	3.1	42
3751	Iron-nitrogen doped carbon with exclusive presence of FexN active sites as an efficient ORR electrocatalyst for Zn-air battery. Applied Catalysis B: Environmental, 2020, 268, 118405.	10.8	80
3752	Porous carbon codoped with inherent nitrogen and externally embedded cobalt nanoparticles as a high-performance cathode catalyst for microbial fuel cells. Applied Surface Science, 2020, 505, 144547.	3.1	19
3753	Co3O4/C and Au supported Co3O4/C nanocomposites â€" Peculiarities of fabrication and application towards oxygen reduction reaction. Materials Chemistry and Physics, 2020, 241, 122332.	2.0	4
3754	Atypical Hybrid Metal–Organic Frameworks (MOFs): A Combinative Process for MOFâ€onâ€MOF Growth, Etching, and Structure Transformation. Angewandte Chemie, 2020, 132, 1343-1349.	1.6	32
3755	Pyrolysis derived helically nitrogen-doped carbon nanotubes with uniform cobalt for high performance oxygen reduction. Applied Surface Science, 2020, 504, 144380.	3.1	26
3756	Trimetallic Mnâ€Feâ€Ni Oxide Nanoparticles Supported on Multiâ€Walled Carbon Nanotubes as Highâ€Performance Bifunctional ORR/OER Electrocatalyst in Alkaline Media. Advanced Functional Materials, 2020, 30, 1905992.	7.8	209
3757	Hybrid Ni/NiO composite with N-doped activated carbon from waste cauliflower leaves: A sustainable bifunctional electrocatalyst for efficient water splitting. Carbon, 2020, 157, 515-524.	5.4	80
3758	Graphene-cobalt based oxygen electrocatalysts. Catalysis Today, 2020, 358, 184-195.	2.2	6
3759	Surface/interface engineering of noble-metals and transition metal-based compounds for electrocatalytic applications. Journal of Materials Science and Technology, 2020, 38, 221-236.	5.6	23
3760	PANI@Co-FeLDHs as highly efficient electrocatalysts for oxygen evolution reaction. Catalysis Communications, 2020, 133, 105826.	1.6	17
3761	Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Science Bulletin, 2020, 65, 45-54.	4.3	52
3762	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
3763	Electrocatalytic oxygen reduction over Co@Co3O4/N-doped porous carbon derived from pyrolysis of ZIF-8/67 on cellulose nanofibers. Cellulose, 2020, 27, 2723-2735.	2.4	15
3764	Construction of 3D carbon network with N,B,F-tridoping for efficient oxygen reduction reaction electrocatalysis and high performance zinc air battery. Applied Surface Science, 2020, 507, 145154.	3.1	15

#	Article	IF	CITATIONS
3765	Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 4587-4595.	3.8	53
3766	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174.	2.2	52
3767	Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chemistry, 2020, 22, 843-849.	4.6	126
3768	Top-down synthesis of polyoxometalate-like sub-nanometer molybdenum-oxo clusters as high-performance electrocatalysts. Chemical Science, 2020, 11, 1043-1051.	3.7	21
3769	Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification. Chemical Research in Chinese Universities, 2020, 36, 105-109.	1.3	7
3770	Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 2472-2480.	5.2	82
3771	Electronic structure modulation of bifunctional oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 1229-1237.	5.2	26
3772	A simple microwave process for the preparation of cobalt oxide nanoparticles supported on carbon nanotubes for electrocatalytic applications. Journal of Solid State Electrochemistry, 2020, 24, 131-136.	1.2	7
3773	Hierarchically porous N-doped carbon encapsulating CoO/MgO as superior cathode catalyst for microbial fuel cell. Chemical Engineering Journal, 2020, 385, 123861.	6.6	61
3774	Ternary nanocomposite of cobalt oxide nanograins and silver nanoparticles grown on reduced graphene oxide conducting platform for high-performance supercapattery electrode material. Journal of Alloys and Compounds, 2020, 821, 153452.	2.8	46
3775	Recent advances in cobalt-based electrocatalysts for hydrogen and oxygen evolution reactions. Journal of Alloys and Compounds, 2020, 821, 153542.	2.8	191
3776	Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 563, 241-251.	5.0	13
3777	Boosting electrocatalytic oxygen evolution using ultrathin carbon protected iron–cobalt carbonate hydroxide nanoneedle arrays. Journal of Power Sources, 2020, 450, 227639.	4.0	23
3778	Improved chemical water oxidation with Zn in the tetrahedral site of spinel-type ZnCo2O4 nanostructure. Materials Today Chemistry, 2020, 15, 100226.	1.7	19
3779	Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Science Bulletin, 2020, 65, 460-466.	4.3	152
3780	3Dâ€Graphene Decorated with gâ€C ₃ N ₄ /Cu ₃ P Composite: A Noble Metalâ€free Bifunctional Electrocatalyst for Overall Water Splitting. ChemCatChem, 2020, 12, 1394-1402.	1.8	71
3781	Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc–air batteries. Energy Storage Materials, 2020, 26, 157-164.	9.5	79
3782	Effect of Graphene Encapsulation of NiMo Alloys on Oxygen Evolution Reaction. ACS Catalysis, 2020, 10, 792-799.	5. 5	60

#	Article	IF	CITATIONS
3783	Oxygen vacancies engineered CoMoO4 nanosheet arrays as efficient bifunctional electrocatalysts for overall water splitting. Journal of Catalysis, 2020, 381, 44-52.	3.1	83
3784	Advanced nanomaterials for efficient oxygen electrodes in metal–air batteries. , 2020, , 191-222.		0
3785	Interfacial Engineering of W ₂ N/WC Heterostructures Derived from Solid tate Synthesis: A Highly Efficient Trifunctional Electrocatalyst for ORR, OER, and HER. Advanced Materials, 2020, 32, e1905679.	11.1	380
3786	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 1871-1877.	7.2	31
3787	Cube-shaped metal-nitrogen–carbon derived from metal-ammonia complex-impregnated metal-organic framework for highly efficient oxygen reduction reaction. Carbon, 2020, 158, 719-727.	5.4	27
3788	Two-Dimensional Hierarchical Fe–N–C Electrocatalyst for Zn-Air Batteries with Ultrahigh Specific Capacity. , 2020, 2, 35-41.		34
3789	Strain stabilized nickel hydroxide nanoribbons for efficient water splitting. Energy and Environmental Science, 2020, 13, 229-237.	15.6	78
3790	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
3791	Facile loading carbon dots on Co3O4 as an enhanced oxygen reduction reaction catalyst. Chemical Physics Letters, 2020, 740, 137058.	1.2	10
3792	Zirconium nitride catalysts surpass platinum for oxygen reduction. Nature Materials, 2020, 19, 282-286.	13.3	293
3793	Ni foam-supported azo linkage cobalt phthalocyanine as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2020, 449, 227516.	4.0	52
3794	Electrocatalyst of two-dimensional CoP nanosheets embedded by carbon nanoparticles for hydrogen generation and urea oxidation in alkaline solution. Applied Surface Science, 2020, 506, 144977.	3.1	48
3795	Pompon Dahliaâ€ike Cu ₂ O/rGO Nanostructures for Visible Light Photocatalytic H ₂ Production and 4 hlorophenol Degradation. ChemCatChem, 2020, 12, 1699-1709.	1.8	34
3796	Catalytic synergistic effects between Pt nanocrystals and elementary graphite oxides: A new insight detected by Langmuir-Blodgett technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124145.	2.3	3
3797	Facile and simple deposition of cobalt oxide onto oxidized multiwall carbon nanotubes for electrocatalytic oxygen reduction. Journal of Materials Science: Materials in Electronics, 2020, 31, 1391-1402.	1.1	1
3798	Highly Efficient B-Site Exsolution Assisted by Co Doping in Lanthanum Ferrite toward High-Performance Electrocatalysts for Oxygen Evolution and Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 302-310.	3.2	48
3799	Supercapacitor and oxygen evolution reaction performances based on morphology-dependent Co-MOFs. Journal of Solid State Chemistry, 2020, 283, 121128.	1.4	27
3800	Graphene materials in green energy applications: Recent development and future perspective. Renewable and Sustainable Energy Reviews, 2020, 120, 109656.	8.2	100

#	Article	IF	Citations
3801	Facile preparation of porous Co3O4 nanocubes for directly screen-printing an ultrasensitive glutamate biosensor microchip. Sensors and Actuators B: Chemical, 2020, 306, 127587.	4.0	29
3802	Promotion of Nitrogen Reserve and Electronic Regulation in Bamboo-like Carbon Tubules by Cobalt Nanoparticles for Highly Efficient ORR. ACS Applied Energy Materials, 2020, 3, 2323-2330.	2.5	39
3803	Atomically Embedded Ag via Electrodiffusion Boosts Oxygen Evolution of CoOOH Nanosheet Arrays. ACS Catalysis, 2020, 10, 562-569.	5. 5	93
3804	Atomically Dispersed Mo Supported on Metallic Co ₉ S ₈ Nanoflakes as an Advanced Nobleâ€Metalâ€Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Advanced Energy Materials, 2020, 10, 1903137.	10.2	162
3805	One-pot synthesis of NiCoP/CNTs composites for lithium ion batteries and hydrogen evolution reaction. Ionics, 2020, 26, 1771-1778.	1.2	14
3806	Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Materials, 2020, 27, 478-505.	9.5	221
3808	Strongly Cooperative Nano-CoO/Co Active Phase in Hierarchically Porous Nitrogen-Doped Carbon Microspheres for Efficient Bifunctional Oxygen Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 1328-1337.	2.5	17
3809	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	10.2	102
3810	Evolution of phase pure magnetic cobalt ferrite nanoparticles by varying the synthesis conditions of polyol method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 252, 114451.	1.7	22
3811	CoO nanorods/C as a high performance cathode catalyst in direct borohydride fuel cell. Journal of Alloys and Compounds, 2020, 820, 153065.	2.8	15
3812	Robust assembly of urchin-like NiCo2O4/CNTs architecture as bifunctional electrocatalyst in Zn-Air batteries. Ceramics International, 2020, 46, 6262-6269.	2.3	11
3813	Antiperovskite Intermetallic Nanoparticles for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 1887-1893.	1.6	4
3814	Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately polymeric carbon nitride framework. Chemical Engineering Journal, 2020, 392, 123638.	6.6	78
3815	Highly efficient Fe-N-C oxygen reduction electrocatalyst engineered by sintering atmosphere. Journal of Power Sources, 2020, 449, 227497.	4.0	22
3816	Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction. Journal of Colloid and Interface Science, 2020, 561, 829-837.	5.0	31
3817	Effect of Experimental Operations on the Limiting Current Density of Oxygen Reduction Reaction Evaluated by Rotatingâ€Disk Electrode. ChemElectroChem, 2020, 7, 1107-1114.	1.7	52
3818	Electrifying Oxide Model Catalysis: Complex Electrodes Based on Atomically-Defined Oxide Films. Catalysis Letters, 2020, 150, 1546-1560.	1.4	10
3819	Bionic Preparation of CeO ₂ -Encapsulated Nitrogen Self-Doped Biochars for Highly Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 3642-3653.	4.0	38

#	ARTICLE	IF	CITATIONS
3820	Ordered mesoporous carbon assisted Fe–N–C for efficient oxygen reduction catalysis in both acidic and alkaline media. Nanotechnology, 2020, 31, 165708.	1.3	5
3821	Alkaline earth metal based single atom catalyst for the highly durable oxygen reduction reaction. Applied Materials Today, 2020, 21, 100846.	2.3	16
3822	A tri-electrode configuration for zinc-air batteries using gel polymer electrolytes. Electrochimica Acta, 2020, 357, 136865.	2.6	16
3823	Intercalation-Induced Conversion Reactions Give High-Capacity Potassium Storage. ACS Nano, 2020, 14, 14026-14035.	7. 3	42
3824	Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3 <i>d</i> Transition Metal Atoms Doped Borophene Nanosheets. ChemPhysChem, 2020, 21, 2651-2659.	1.0	17
3825	Cr2O3/rGO nanocomposite with excellent electrochemical capacitive properties. SN Applied Sciences, 2020, 2, 1.	1.5	2
3826	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
3827	Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Materials Today Physics, 2020, 15, 100280.	2.9	67
3828	Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano, 2020, 14, 12491-12521.	7.3	59
3829	In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 2020, 39, 1383-1394.	3.6	57
3830	Single-Atom Catalysts across the Periodic Table. Chemical Reviews, 2020, 120, 11703-11809.	23.0	690
3831	Bridging the energy efficiency gap between quasi-neutral and alkaline rechargeable zinc-air batteries by an efficient hybrid battery design. Energy Storage Materials, 2020, 33, 181-187.	9.5	19
3832	A highly efficient electrochemical oxygen evolution reaction catalyst constructed from a S-treated two-dimensional Prussian blue analogue. Dalton Transactions, 2020, 49, 14290-14296.	1.6	19
3833	Visibleâ€Lightâ€Driven Electrocatalytic Oxygen Evolution Reaction: NiFe ₂ O ₄ /NiFe–Layered Double Hydroxide Zâ€6cheme Heteronanosheet as a Model. Energy Technology, 2020, 8, 2000607.	1.8	6
3834	Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano, 2020, 14, 13279-13293.	7.3	107
3835	Combination of Co3O4 deposited rGO hybrid nanofluids and longitudinal strip inserts: Thermal properties, heat transfer, friction factor, and thermal performance evaluations. Thermal Science and Engineering Progress, 2020, 20, 100695.	1.3	33
3836	2D Metalâ€Organic Framework Derived Co 3 O 4 for the Oxygen Evolution Reaction and Highâ€Performance Lithiumâ€ion Batteries. ChemNanoMat, 2020, 6, 1770-1775.	1.5	5
3837	Carbon-coated Co3O4 with porosity derived from zeolite imidazole framework-67 as a bi-functional electrocatalyst for rechargeable zinc air batteries. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	5

#	Article	IF	CITATIONS
3838	Interface Engineering of Binderâ€Free Earthâ€Abundant Electrocatalysts for Efficient Advanced Energy Conversion. ChemSusChem, 2020, 13, 4795-4811.	3.6	28
3839	Synthesis of Holey Graphene Nanoparticle Compounds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36513-36522.	4.0	4
3840	Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: A review. International Journal of Hydrogen Energy, 2020, 45, 21205-21220.	3.8	91
3841	Interface Engineering between the Metal–Organic Framework Nanocrystal and Graphene toward Ultrahigh Potassium-Ion Storage Performance. ACS Nano, 2020, 14, 10210-10218.	7. 3	88
3842	S/N Co-Doped Hollow Carbon Particles for Oxygen Reduction Electrocatalysts Prepared by Spontaneous Polymerization at Oil–Water Interfaces. ACS Omega, 2020, 5, 18391-18396.	1.6	12
3843	Moss-Covered Rock-like Hybrid Porous Carbons with Enhanced Electrochemical Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 3065-3071.	3.2	44
3844	Carbon-based materials for photo- and electrocatalytic synthesis of hydrogen peroxide. Nanoscale, 2020, 12, 16008-16027.	2.8	63
3845	Synergistic Catalytic Effect of Hollow Carbon Nanosphere and Silver Nanoparticles for Oxygen Reduction Reaction. ChemistrySelect, 2020, 5, 8099-8105.	0.7	11
3846	Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomaterialia, 2020, 114, 343-357.	4.1	52
3847	Hydrogen Oxidation Reaction on Pdâ€Ni(OH) 2 Composite Electrocatalysts in an Alkaline Electrolyte. ChemistrySelect, 2020, 5, 7803-7807.	0.7	6
3848	Ferrites for electrocatalytic water splitting applications. , 2020, , 123-145.		2
3849	Co-Effect Flame Retardation of Co ₃ O ₄ -Loaded Titania Nanotubes and α-Zirconium Phosphate in the Epoxy Matrix. ACS Omega, 2020, 5, 28475-28482.	1.6	7
3850	NaClâ€Promoted Hierarchically Porous Carbon Selfâ€Coâ€Doped with Iron and Nitrogen for Efficient Oxygen Reduction. ChemistrySelect, 2020, 5, 13703-13710.	0.7	1
3851	Electro- and photoelectro-catalysts derived from bimetallic amorphous metal–organic frameworks. Catalysis Science and Technology, 2020, 10, 8265-8282.	2.1	13
3852	Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Advances, 2020, 10, 43248-43255.	1.7	10
3853	In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials, 2020, 3, 12316-12326.	2.5	23
3854	Synthesis of MgNiO2/CoNC-Based Ternary Metallic Dual-Active Interfacial Porous Hollow Nanocages as Efficient Oxygen Reduction Reaction and Oxygen Evolution Reaction Bi-Functional Electrocatalysts. Frontiers in Materials, 2020, 7, .	1.2	2
3855	One-pot hydrothermal preparation of B and N co-doped graphene aerogels loaded with cobalt oxides for the synergistic enhancement of oxygen reduction electrocatalysis. Journal of Electroanalytical Chemistry, 2020, 877, 114555.	1.9	9

#	Article	IF	CITATIONS
3856	A precious-metal-free Fe-intercalated carbon nitride porous-network with enhanced activity for the oxygen reduction reaction and methanol-tolerant oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 5050-5060.	2.5	13
3857	Advancing Applications of Black Phosphorus and BPâ€Analog Materials in Photo/Electrocatalysis through Structure Engineering and Surface Modulation. Advanced Science, 2020, 7, 2001431.	5.6	51
3858	Rational Design of Metal–Organic Frameworks towards Efficient Electrocatalysis. , 2020, 2, 1251-1267.		65
3859	Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano, 2020, 14, 11327-11340.	7.3	42
3860	Experimental investigation on the electrocatalytic behavior of Ag-based oxides, Ag2XO4 (X= Cr, Mo,) Tj ETQq0 0 (121571.	0 rgBT /Ov 1.4	verlock 10 Tf 2
3861	Phase Engineering of Iron–Cobalt Sulfides for Zn–Air and Na–Ion Batteries. ACS Nano, 2020, 14, 10438-10451.	7.3	53
3862	Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries. Nano Energy, 2020, 77, 105200.	8.2	71
3863	Carbon-supported cobalt (III) complex for direct reduction of oxygen in alkaline medium. International Journal of Hydrogen Energy, 2020, 45, 24738-24748.	3.8	4
3864	Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials. Energy Storage Materials, 2020, 32, 477-496.	9.5	46
3865	Surface engineering of RhOOH nanosheets promotes hydrogen evolution in alkaline. Nano Energy, 2020, 78, 105224.	8.2	27
3866	NiCo alloy nanoparticles encapsulated in N-doped 3D porous carbon as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 22797-22807.	3.8	20
3867	Activity and Regeneration of Electrodeposited Fe–Ni–Co-Based Electrocatalysts for the Alkaline Oxygen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 7239-7245.	2.5	8
3868	Insights into the Suzukiâ€Miyaura Reaction Catalyzed by Novel Pdâ^'Carbene Complexes. Are Palladiumâ^'Tetra―carbene Entities the Key Active Species?. ChemCatChem, 2020, 12, 5797-5808.	1.8	6
3869	Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochimica Acta, 2020, 357, 136840.	2.6	17
3870	Hydrogen peroxide sensing in body fluids and tumor cells via in situ produced redox couples on two-dimensional holey CuCo2O4 nanosheets. Mikrochimica Acta, 2020, 187, 469.	2.5	25
3871	Cobalt Nanoparticles Modified Single-Walled Titanium Carbonitride Nanotube Derived from Solid-Solid Separation for Oxygen Reduction Reaction in Alkaline Solution. Electrocatalysis, 2020, 11, 579-592.	1.5	3
3872	A computational evaluation of MoS ₂ -based materials for the electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 14189-14197.	1.4	14
3873	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. Journal of Materials Chemistry A, 2020, 8, 17128-17135.	5.2	9

#	Article	IF	CITATIONS
3874	Chemical design and synthesis of superior single-atom electrocatalysts <i>via in situ</i> polymerization. Journal of Materials Chemistry A, 2020, 8, 17683-17690.	5.2	19
3875	Robust Carbon-Stabilization of Few-Layer Black Phosphorus for Superior Oxygen Evolution Reaction. Coatings, 2020, 10, 695.	1.2	5
3876	Tertiary Hierarchical Complexity in Assemblies of Sulfur-Bridged Metal Chiral Clusters. Journal of the American Chemical Society, 2020, 142, 14495-14503.	6.6	22
3877	<i>In situ</i> growth of Fe and Nb co-doped β-Ni(OH) ₂ nanosheet arrays on nickel foam for an efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2020, 7, 3465-3474.	3.0	16
3878	Fe–N–Si tri-doped carbon nanofibers for efficient oxygen reduction reaction in alkaline and acidic media. International Journal of Hydrogen Energy, 2020, 45, 28792-28799.	3.8	6
3879	Heteropolytungstate-assisted fabrication and deposition of catalytic silver nanoparticles on different reduced graphene oxide supports: Electroreduction of oxygen in alkaline electrolyte. Journal of Electroanalytical Chemistry, 2020, 875, 114694.	1.9	8
3880	Molecularly Engineered Strong Metal Oxide–Support Interaction Enables Highly Efficient and Stable CO ₂ Electroreduction. ACS Catalysis, 2020, 10, 13227-13235.	5.5	94
3881	Regulating the Coordination of Co sites in Co 3 O 4 /MnO 2 Compounding for Facilitated Oxygen Reduction Reaction. ChemSusChem, 2020, 13, 6613-6620.	3.6	2
3882	Mesoporous ZnCo2O4 nanowire arrays with oxygen vacancies and N-dopants for significant improvement of non-enzymatic glucose detection. Journal of Electroanalytical Chemistry, 2020, 878, 114585.	1.9	12
3883	Pyrolyzed biosolid surface features promote a highly efficient oxygen reduction reaction. Green Chemistry, 2020, 22, 7858-7870.	4.6	8
3884	Versatile design of metal–organic framework cathode for Li–O ₂ and Li–O ₂ /CO ₂ batteries. Chemical Communications, 2020, 56, 14223-14226.	2.2	8
3885	Enhanced Fuel Decomposition in the Presence of Colloidal Functionalized Graphene Sheet-Supported Platinum Nanoparticles. ACS Applied Energy Materials, 2020, 3, 7637-7648.	2.5	8
3886	Boosting oxygen reduction reaction activity by incorporating the iron phthalocyanine nanoparticles on carbon nanotubes network. Inorganic Chemistry Communication, 2020, 120, 108160.	1.8	50
3887	One-step conversion of tannic acid-modified ZIF-67 into oxygen defect hollow Co ₃ O ₄ /nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. RSC Advances, 2020, 10, 38906-38911.	1.7	16
3888	Functionalized Fe/Ni@g-C ₃ N ₄ nanostructures for enhanced trichloroethylene dechlorination and successive oxygen reduction reaction activity. Environmental Science: Nano, 2020, 7, 3469-3481.	2.2	9
3889	Janus Conductive/Insulating Microporous Ion-Sieving Membranes for Stable Li–S Batteries. ACS Nano, 2020, 14, 13852-13864.	7.3	74
3890	Two-dimensional metal–organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF) valorization. Journal of Materials Chemistry A, 2020, 8, 20386-20392.	5.2	88
3891	A general approach for hierarchically porous metal/N/C nanosphere electrocatalysts: nano-confined pyrolysis of ⟨i⟩in situ⟨/i⟩-formed amorphous metal–ligand complexes. Journal of Materials Chemistry A, 2020, 8, 21026-21035.	5.2	20

#	Article	IF	Citations
3892	High-Entropy Alloys as a Platform for Catalysis: Progress, Challenges, and Opportunities. ACS Catalysis, 2020, 10, 11280-11306.	5.5	308
3893	Nanobiotechnology: A Multidisciplinary Field of Science. Nanotechnology in the Life Sciences, 2020, , .	0.4	6
3894	Fundamentals of Nanotechnology and Nanobiotechnology. Nanotechnology in the Life Sciences, 2020, , 1-36.	0.4	4
3895	First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustainable Energy and Fuels, 2020, 4, 5417-5432.	2.5	86
3896	An Overview of the Flame Retardants for Poly(vinyl chloride): Recent States and Perspective ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1870-1896.	2.6	17
3897	Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique. DYNA (Colombia), 2020, 87, 184-191.	0.2	13
3898	Cobalt Oxide-Supported Pt Electrocatalysts: Intimate Correlation between Particle Size, Electronic Metal–Support Interaction and Stability. Journal of Physical Chemistry Letters, 2020, 11, 8365-8371.	2.1	21
3899	Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting. Journal of Materials Chemistry A, 2020, 8, 20323-20330.	5.2	55
3900	Reduced Graphene Oxide-Supported Co ₃ O ₄ Nanocomposite Bifunctional Electrocatalysts for Glucose–Oxygen Fuel Cells. Energy & Electrocatalysts for Glucose—Oxygen Fuel Cells. Energy & Electrocatalysts for Glucose–Oxygen Fuel Cells. Energy & Electrocatalysts for Glucose—Oxygen Fuel Cells. Energy & Electrocatalysts for Glucose⧠Electrocatalysts for Glucose⧠Electro	2.5	11
3901	Zn-induced defect engineering to activate bimetallic NiCo alloy@nitrogen-doped graphene hybrid nanomaterials for enhanced oxygen reduction reaction. Journal of Materials Science, 2020, 55, 15454-15466.	1.7	8
3902	Immobilizing single atom catalytic sites onto highly reduced carbon hosts: Fe–N ₄ /CNT as a durable oxygen reduction catalyst for Na–air batteries. Journal of Materials Chemistry A, 2020, 8, 18891-18902.	5.2	31
3903	Surfactant Intercalated Monoâ€metallic Cobalt Hydrotalcite: Preparation, Characterization, and its Biâ€functional Electrocatalytic Application. ChemistrySelect, 2020, 5, 9615-9622.	0.7	7
3904	The history of organoplatinum chemistry in Iran: 40-year research. Journal of the Iranian Chemical Society, 2020, 17, 2683-2715.	1.2	7
3905	Efficient Ni(OH) ₂ /WO ₃ Photoanode for Photoelectrocatalytic Water Splitting at Low Bias. Journal of Physical Chemistry C, 2020, 124, 19447-19456.	1.5	13
3906	Graphite Nanoarrays-Confined Fe and Co Single-Atoms within Graphene Sponges as Bifunctional Oxygen Electrocatalyst for Ultralong Lasting Zinc-Air Battery. ACS Applied Materials & Diterfaces, 2020, 12, 40415-40425.	4.0	27
3907	Nanostructured Graphene Oxide-Based Hybrids as Anodes for Lithium-lon Batteries. Journal of Carbon Research, 2020, 6, 81.	1.4	8
3908	Anion-Modulated Platinum for High-Performance Multifunctional Electrocatalysis toward HER, HOR, and ORR. IScience, 2020, 23, 101793.	1.9	45
3909	Cobalt thin films as water-recombination electrocatalysts. Surface and Coatings Technology, 2020, 404, 126643.	2.2	8

#	Article	IF	CITATIONS
3910	Carbon Nitride Anchored on a Nitrogen-Doped Carbon Nanotube Surface for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56954-56962.	4.0	19
3911	Prediction of structure and cation ordering in an ordered normal-inverse double spinel. Communications Materials, 2020, 1 , .	2.9	46
3912	Enhancing bifunctional catalytic activity of cobalt–nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc–air batteries. RSC Advances, 2020, 10, 41871-41882.	1.7	22
3913	Dual Immobilization of SnO _{<i>x</i>} Nanoparticles by N-Doped Carbon and TiO ₂ for High-Performance Lithium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55820-55829.	4.0	18
3914	Structurally Ordered Pt ₃ Co Nanoparticles Anchored on N-Doped Graphene for Highly Efficient Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 16938-16945.	3.2	23
3915	Green and hydrothermal assembly of reduced graphene oxide (rGO)-coated ZnO and Fe hybrid nanocomposite for the removal of nitrate and phosphate. Environmental Chemistry and Ecotoxicology, 2020, 2, 141-149.	4.6	8
3916	Recent advances in grapheneâ€based materials for fuel cell applications. Energy Science and Engineering, 2021, 9, 958-983.	1.9	93
3917	Highly Selective Hydrogen Peroxide Electrosynthesis on Carbon: In Situ Interface Engineering with Surfactants. CheM, 2020, 6, 1443-1458.	5.8	141
3918	Sustainable starfish like cobalt electrocatalyst grown on optimized CNT-graphene hybrid host for efficient water oxidation. Applied Surface Science, 2020, 524, 146391.	3.1	9
3919	W–N/C@Co9S8@WS2-hollow carbon nanocage as multifunctional electrocatalysts for DSSCS,ORR and OER. Electrochimica Acta, 2020, 351, 136249.	2.6	29
3920	Nanocomposites of cobalt benzene tricarboxylic acid MOF with rGO: An efficient and robust electrocatalyst for oxygen evolution reaction (OER). Renewable Energy, 2020, 156, 1040-1054.	4.3	108
3921	Cerium Surface-Engineered Iridium Oxides for Enhanced Oxygen Evolution Reaction Activity and Stability. ACS Applied Energy Materials, 2020, 3, 4432-4440.	2.5	17
3922	Controllable growth of palladium on gold multipod nanoparticles and their enhanced electrochemical oxygen reduction reaction performances. Journal of Catalysis, 2020, 388, 20-29.	3.1	8
3923	Cobalt Colloid-derived Efficient and Durable Nanoscale Electrocatalytic Films for High-Activity Water Oxidation. ACS Omega, 2020, 5, 10651-10662.	1.6	6
3924	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Energy	2.5	100
3925	Enhancing Water Oxidation Activity by Tuning Two-Dimensional Architectures and Compositions on CoMo Hydr(oxy)oxide. Journal of Physical Chemistry C, 2020, 124, 16879-16887.	1.5	11
3926	Engineering a metal–organic framework derived Mn–N ₄ –C _x S _y atomic interface for highly efficient oxygen reduction reaction. Chemical Science, 2020, 11, 5994-5999.	3.7	113
3927	Highly Active Bifunctional Oxygen Electrocatalytic Sites Realized in Ceria–Functionalized Graphene. Advanced Sustainable Systems, 2020, 4, 2000048.	2.7	8

#	Article	IF	CITATIONS
3928	Mesoporous N-doped carbon nanofibers with surface nanocavities for enhanced catalytic activity toward oxygen reduction reaction. Journal of Materials Science, 2020, 55, 11177-11187.	1.7	6
3929	Development of Nanosized Mn3O4-Co3O4 on Multiwalled Carbon Nanotubes for Cathode Catalyst in Urea Fuel Cell. Energies, 2020, 13, 2322.	1.6	13
3930	Hierarchical Polyelemental Nanoparticles as Bifunctional Catalysts for Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2020, 10, 2001119.	10.2	39
3931	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
3932	Fabrication of Fe3C caged in N doped carbon nanotube as a desirable ORR electrocatalyst by a facile method. Journal of Electroanalytical Chemistry, 2020, 871, 114316.	1.9	10
3933	A Zeoliticâ€lmidazole Frameworksâ€Derived Interconnected Macroporous Carbon Matrix for Efficient Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Advanced Materials, 2020, 32, e2002170.	11.1	240
3934	Flowerâ€like FeS Coated with Heteroatom (S,N)â€Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 2433-2439.	1.7	6
3935	Amino-metalloporphyrin polymers derived Fe single atom catalysts for highly efficient oxygen reduction reaction. Science China Chemistry, 2020, 63, 810-817.	4.2	25
3936	IrO2 nanoparticle-decorated single-layer NiFe LDHs nanosheets with oxygen vacancies for the oxygen evolution reaction. Chemical Engineering Journal, 2020, 399, 125738.	6.6	60
3937	Boosting oxygen evolution reaction performance by nickel substituted cobalt-iron oxide nanoparticles embedded over reduced graphene oxide. Materials Chemistry and Physics, 2020, 252, 123238.	2.0	10
3938	Fe ₃ O ₄ @Nâ€Doped Interconnected Hierarchical Porous Carbon and Its 3D Integrated Electrode for Oxygen Reduction in Acidic Media. Advanced Science, 2020, 7, 2000407.	5.6	44
3939	Slower Removing Ligands of Metal Organic Frameworks Enables Higher Electrocatalytic Performance of Derived Nanomaterials. Small, 2020, 16, e2002210.	5.2	47
3940	Surface molecular engineering of axial-exchanged Fe(III)Cl- and Mn(III)Cl-porphyrins towards enhanced electrocatalytic ORRs and OERs. Inorganica Chimica Acta, 2020, 507, 119584.	1.2	5
3941	Microstructure Engineering of Fe/Fe ₃ C-Decorated Metalâ€"Nitrogenâ€"Carbon Mesoporous Nanospheres via a Self-Template Method for Enhancing Oxygen Reduction Activity. ACS Applied Materials & Los Applied & Los Applied Materials & Los Applied & L	4.0	10
3942	Integration of CoFe Alloys and Fe/Fe ₃ C Nanoparticles into N-Doped Carbon Nanosheets as Dual Catalytic Active Sites To Promote the Oxygen Electrocatalysis of Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 9009-9016.	3.2	30
3943	Proton exchange membrane with plasmon-active surface for enhancement of fuel cell effectivity. Nanoscale, 2020, 12, 12068-12075.	2.8	4
3944	Development of an Efficient Nonâ€Noble Metal Based Anode Electrocatalyst to Promote Methanol Oxidation Activity in DMFC. ChemistrySelect, 2020, 5, 6023-6034.	0.7	18
3945	Bifunctional oxygen electrodes with gradient hydrophilic/hydrophobic reactive interfaces for metal air flow batteries. Chemical Engineering Science, 2020, 224, 115795.	1.9	19

#	ARTICLE	IF	CITATIONS
3946	Immobilization of monodisperse metal-oxo-cluster on graphene for aerobic oxidative desulfurization of fuel. Chemical Engineering Research and Design, 2020, 140, 26-33.	2.7	21
3947	Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications. Nano Express, 2020, 1, 010036.	1.2	8
3948	Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale, 2020, 12, 13129-13136.	2.8	110
3949	Formation of Nanocrystalline Cobalt Oxide-Decorated Graphene for Secondary Lithium-Air Battery and Its Catalytic Performance in Concentrated Alkaline Solutions. Nanomaterials, 2020, 10, 1122.	1.9	1
3950	P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate. APL Materials, 2020, 8, .	2.2	93
3951	Amorphous Co3O4 nanoparticles-decorated biochar as an efficient activator of peroxymonosulfate for the removal of sulfamethazine in aqueous solution. Separation and Purification Technology, 2020, 250, 117246.	3.9	53
3952	Fabrication of Few-Layer Graphene-Supported Copper Catalysts Using a Lithium-Promoted Thermal Exfoliation Method for Methanol Oxidative Carbonylation. ACS Applied Materials & Diterfaces, 2020, 12, 30483-30493.	4.0	8
3953	Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 277, 119247.	10.8	65
3954	Hydrazine Hydrate Induced Two-Dimensional Porous Co ³⁺ Enriched Co ₃ O ₄ Nanosheets for Enhanced Water Oxidation Catalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 9813-9821.	3.2	55
3955	N, P-co doped carbon nanotubes coupled with Co2P nanoparticles as bifunctional oxygen electrocatalyst. Journal of Electroanalytical Chemistry, 2020, 871, 114327.	1.9	9
3956	Low-temperature synthesis of ultrasmall spinel Mn Co3-O4 nanoparticles for efficient oxygen reduction. Chinese Journal of Catalysis, 2020, 41, 1818-1825.	6.9	14
3957	Recent Developments for Aluminum–Air Batteries. Electrochemical Energy Reviews, 2020, 3, 344-369.	13.1	96
3958	Engineering the coordination environment enables molybdenum single-atom catalyst for efficient oxygen reduction reaction. Journal of Catalysis, 2020, 389, 150-156.	3.1	64
3959	Exfoliated Single Layers of Layered Cobalt Hydroxide for Ultrafine Co ₃ O ₄ Nanoparticles on Graphene Nanosheets as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry - A European Journal, 2020, 26, 14359-14365.	1.7	5
3960	Synthesis of Ultrathin MoS ₂ Nanosheets Embedded in 3D Hierarchically Nitrogenâ€andâ€Sulfur Coâ€Doped Porous Carbon Composites as Efficient Oxygen Reduction Reaction Catalyst. ChemElectroChem, 2020, 7, 3260-3268.	1.7	4
3961	Fabrication of hybrid photodiode systems: BODIPY decorated cyclotriphosphazene covalently grafted graphene oxides. Inorganic Chemistry Frontiers, 2020, 7, 2920-2931.	3.0	21
3962	A novel ethanol gas sensor based on α-Bi ₂ Mo ₃ O ₁₂ /Co ₃ O ₄ nanotube-decorated particles. RSC Advances, 2020, 10, 21940-21953.	1.7	13
3963	Towards Synergy of rGO and Ni doped CeO ₂ in their copmposite as Efficient Catalyst for Oxygen Reduction Reaction. ChemistrySelect, 2020, 5, 6608-6616.	0.7	12

#	Article	IF	Citations
3964	Self-assembled tetramethyl cucurbit[6]uril–polyoxometalate nanocubes as efficient and recyclable catalysts for the preparation of propyl gallate. New Journal of Chemistry, 2020, 44, 11895-11900.	1.4	9
3965	Facile Synthesis of Co3O4@CoO@Co Gradient Core@Shell Nanoparticles and Their Applications for Oxygen Evolution and Reduction in Alkaline Electrolytes. Materials, 2020, 13, 2703.	1.3	13
3966	N,S dual-doped carbon nanosheet networks with hierarchical porosity derived from biomass of Allium cepa as efficient catalysts for oxygen reduction and Zn–air batteries. Journal of Materials Science, 2020, 55, 7464-7476.	1.7	27
3967	How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Letters, 2020, 5, 1083-1087.	8.8	193
3968	Rational Design of Highly Efficient Perovskite Hydroxide for Electrocatalytic Water Oxidation. Inorganic Chemistry, 2020, 59, 4816-4824.	1.9	4
3969	Self-supported materials for battery technology-A review. Journal of Alloys and Compounds, 2020, 831, 154844.	2.8	10
3970	Two-dimensional metal–organic framework nanosheets: synthetic methodologies and electrocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 15271-15301.	5.2	79
3971	Preparation and properties of polybutyleneâ€terephthalate/graphene oxide in situ flameâ€retardant material. Journal of Applied Polymer Science, 2020, 137, 49214.	1.3	17
3972	Rhodium/graphitic-carbon-nitride composite electrocatalyst facilitates efficient hydrogen evolution in acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2020, 571, 30-37.	5.0	14
3973	A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production. Renewable Energy, 2020, 154, 704-714.	4.3	25
3974	Facile Synthesis of an Efficient Ni–Fe–Co Based Oxygen Evolution Reaction Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 046507.	1.3	26
3975	Self-assembled RuO2@IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer. Applied Surface Science, 2020, 514, 145943.	3.1	37
3976	Multifunctional Electrocatalysts: Ru–M (M = Co, Ni, Fe) for Alkaline Fuel Cells and Electrolyzers. ACS Catalysis, 2020, 10, 4608-4616.	5.5	102
3977	Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. Journal of the American Chemical Society, 2020, 142, 7116-7127.	6.6	147
3978	Microwave-assisted pyrolysis of <i>Pachira aquatica</i> leaves as a catalyst for the oxygen reduction reaction. RSC Advances, 2020, 10, 11543-11550.	1.7	3
3979	Preparation of Mesoporous/Microporous MnCo ₂ O ₄ and Nanocubic MnCr ₂ O ₄ Using a Single Step Solution Combustion Synthesis for Bifunction Oxygen Electrocatalysis. Journal of the Electrochemical Society, 2020, 167, 054507.	1.3	28
3980	Preparation of graphene nanocomposites from aqueous silver nitrate using graphene oxide's peroxidase-like and carbocatalytic properties. Scientific Reports, 2020, 10, 5126.	1.6	17
3981	Polyguanamine Derivative-Based Supramolecular Assemblies with Multiple Hydrogen Bonding and Their Metal-Scavenging Abilities. Langmuir, 2020, 36, 3770-3781.	1.6	7

#	ARTICLE	IF	CITATIONS
3982	Unravelling the Role of Metallic Cu in Cu-CuFe ₂ O ₄ /C Nanohybrid for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 3488-3496.	2.5	19
3983	Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites. ACS Catalysis, 2020, 10, 4664-4670.	5.5	116
3984	Modulation of Electronics of Oxide Perovskites by Sulfur Doping for Electrocatalysis in Rechargeable Zn–Air Batteries. Chemistry of Materials, 2020, 32, 3439-3446.	3.2	94
3985	Trifunctional catalytic activities of trimetallic FeCoNi alloy nanoparticles embedded in a carbon shell for efficient overall water splitting. Journal of Materials Chemistry A, 2020, 8, 9021-9031.	5.2	72
3986	Multifunctional Graphene-Based Additives for Enhanced Combustion of Cracked Hydrocarbon Fuels under Supercritical Conditions. Combustion Science and Technology, 2020, 192, 1420-1435.	1.2	7
3987	One-pot synthesis of monodisperse copper–silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 831, 154787.	2.8	23
3988	Synergism effect of first row transition metals in experimental and theoretical activity of NiM/rGO alloys at hydrogen evolution reaction in alkaline electrolyzer. Renewable Energy, 2020, 154, 1122-1131.	4.3	17
3989	A tetranuclear cobalt(<scp>ii</scp>) phosphate possessing a D4R core: an efficient water oxidation catalyst. Dalton Transactions, 2020, 49, 4878-4886.	1.6	8
3990	Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc–air batteries: examining the effects of compositional tuning on OER and ORR activity. Catalysis Science and Technology, 2020, 10, 2173-2182.	2.1	31
3991	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon, 2020, 168, 12-21.	5.4	63
3992	A new strategy to immobilize molecular Fe sites into a cationic polymer to fabricate an oxygen reduction catalyst. Electrochemistry Communications, 2020, 117, 106781.	2.3	1
3993	Optimal cobalt oxide (Co3O4): Graphene (GR) ratio in Co3O4/GR as air cathode catalyst for air-breathing hybrid electrolyte lithium-air battery. Journal of Power Sources, 2020, 471, 228373.	4.0	20
3994	Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Applied Surface Science, 2020, 529, 147081.	3.1	36
3995	Recent advances in cobalt based heterogeneous catalysts for oxygen evolution reaction. Inorganica Chimica Acta, 2020, 511, 119854.	1.2	74
3996	A Selfâ€Assembled Heteroâ€Structured Inverseâ€Spinel and Antiâ€Perovskite Nanocomposite for Ultrafast Water Oxidation. Small, 2020, 16, e2002089.	5.2	40
3997	Graphene doping for electrode application. , 2020, , 59-72.		O
3998	N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Materials, 2020, 32, 517-524.	9.5	80
3999	Crystalline MoP-amorphous MoS2 hybrid for superior hydrogen evolution reaction. Journal of Solid State Chemistry, 2020, 290, 121564.	1.4	10

#	Article	IF	CITATIONS
4000	A CoO _x /FeO _x heterojunction on carbon nanotubes prepared by plasma-enhanced atomic layer deposition for the highly efficient electrocatalysis of oxygen evolution reactions. Journal of Materials Chemistry A, 2020, 8, 15140-15147.	5.2	27
4001	Metal-organic framework-derived heterostructured ZnCo2O4@FeOOH hollow polyhedrons for oxygen evolution reaction. Journal of Alloys and Compounds, 2020, 832, 155067.	2.8	16
4002	<p>Exploring the Interaction of Cobalt Oxide Nanoparticles with Albumin, Leukemia Cancer Cells and Pathogenic Bacterial by Multispectroscopic, Docking, Cellular and Antibacterial Approaches</p> . International Journal of Nanomedicine, 2020, Volume 15, 4607-4623.	3.3	24
4004	Bimetallic Cu/Pt Oxygen Reduction Reaction Catalyst for Fuel Cells Cathode Materials. Catalysts, 2020, 10, 667.	1.6	13
4005	Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001756.	7.8	23
4006	Fabrication of efficient nanostructured Co3O4-Graphene bifunctional catalysts: Oxygen evolution, hydrogen evolution, and H2O2 sensing. Ceramics International, 2020, 46, 23479-23498.	2.3	24
4007	Synthesis of material libraries using gas diffusion electrodes. Journal of Materials Chemistry A, 2020, 8, 11674-11686.	5.2	6
4008	Tailoring the ORR selectivity for H ₂ O ₂ electrogeneration by modification of Printex L6 carbon with 1,4-naphthoquinone: a theoretical, experimental and environmental application study. Materials Advances, 2020, 1, 1318-1329.	2.6	10
4009	Robust tuning metal/carbon heterointerfaces via ketonic oxygen enables hydrogen evolution reaction outperforming Pt/C. Applied Surface Science, 2020, 529, 147080.	3.1	3
4010	Scalable synthesis of Fe3N nanoparticles within N-doped carbon frameworks as efficient electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 580, 460-469.	5.0	31
4011	Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 278, 119300.	10.8	111
4012	Carbon-based active support for water oxidation electrocatalyst: Making full use of the available surface area. Carbon, 2020, 167, 548-558.	5.4	11
4013	Ir-oxide mediated surface restructure and corresponding impacts on durability of bimetallic NiOx@Pd nanocatalysts in oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 844, 156160.	2.8	21
4014	Enlarged interlayer spacing and enhanced capacitive behavior of a carbon anode for superior potassium storage. Science Bulletin, 2020, 65, 2014-2021.	4.3	47
4015	Porous carbons embedded with nitrogen-coordinated cobalt as an exceptional electrochemical catalyst for high-performance Zn–air batteries. New Journal of Chemistry, 2020, 44, 12850-12856.	1.4	8
4016	Phosphoreneâ€Based Electrocatalysts. Chemistry - A European Journal, 2020, 26, 6437-6446.	1.7	39
4017	Engineering of the Heterointerface of Porous Carbon Nanofiber–Supported Nickel and Manganese Oxide Nanoparticle for Highly Efficient Bifunctional Oxygen Catalysis. Advanced Functional Materials, 2020, 30, 1910568.	7.8	92
4018	Molecular Design of Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2020, 10, 1903815.	10.2	295

#	Article	IF	CITATIONS
4019	Electrocatalytic Oxidation of Hydroxide Ions by Co ₃ O ₄ and Co ₃ O ₄ @SiO ₂ Nanoparticles Both at Particle Ensembles and at the Single Particle Level. ChemElectroChem, 2020, 7, 1261-1276.	1.7	11
4020	1D bamboo-like N-doped carbon nanotubes with encapsulated iron-based nanoparticles as an advanced Zn-air battery cathode electrocatalyst. Journal of Alloys and Compounds, 2020, 828, 154435.	2.8	25
4021	Trimetallic Spinelâ€Type Cobalt Nickelâ€Doped Manganese Oxides as Bifunctional Electrocatalysts for Znâ€Air Batteries. Batteries and Supercaps, 2020, 3, 631-637.	2.4	11
4022	High-Entropy Perovskite Fluorides: A New Platform for Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2020, 142, 4550-4554.	6.6	208
4023	Origin of CO ₂ -philic Sorption by Graphene Oxide Layered Nanosheets and Their Derivatives. Journal of Physical Chemistry Letters, 2020, 11, 2356-2362.	2.1	6
4024	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using Inâ€Situ Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2020, 59, 15314-15324.	7.2	22
4025	A general method to construct single-atom catalysts supported on N-doped graphene for energy applications. Journal of Materials Chemistry A, 2020, 8, 6190-6195.	5.2	41
4027	Recent trends in hydrogen and oxygen electrocatalysis for anion exchange membrane technologies. Current Opinion in Electrochemistry, 2020, 21, 146-159.	2.5	9
4028	Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution. Journal of Alloys and Compounds, 2020, 828, 154394.	2.8	15
4029	Balance between favored activity and side reactions of nitrogen doped carbon as cathode material in Lithium-oxygen battery. Journal of Catalysis, 2020, 383, 199-205.	3.1	8
4030	N, S-codoped graphene supports for Ag-MnFe2O4 nanoparticles with improved performance for oxygen reduction and oxygen evolution reactions. Journal of Electroanalytical Chemistry, 2020, 860, 113930.	1.9	10
4031	Highly stable bifunctional catalyst for Zn-Air batteries: The effect of a nitrated carbon support on Co3O4 activity. Journal of Power Sources, 2020, 453, 227834.	4.0	10
4032	Synergic Effect in a New Electrocatalyst Ni ₂ SbTe ₂ for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 3671-3680.	1.5	11
4033	In-situ construction of cobalt oxide/ nitrogen-doped porous carbon compounds as efficient bifunctional catalysts for oxygen electrode reactions. Journal of Alloys and Compounds, 2020, 827, 154308.	2.8	15
4034	Design of assembled composite of Mn3O4@Graphitic carbon porous nano-dandelions: A catalyst for Lowâ€"temperature selective catalytic reduction of NOx with remarkable SO2 resistance. Applied Catalysis B: Environmental, 2020, 269, 118731.	10.8	41
4035	Nature of Reaction Intermediates and Origin of Bifunctionality in Manganese Oxide. Journal of Physical Chemistry C, 2020, 124, 5286-5299.	1.5	13
4036	Enriched active surface structure in nanosized tungsten-cobalt oxides electrocatalysts for efficient oxygen redox reactions. Applied Surface Science, 2020, 513, 145831.	3.1	21
4037	Highly efficient oxygen electrode catalyst derived from chitosan biomass by molten salt pyrolysis for zinc-air battery. Electrochimica Acta, 2020, 339, 135923.	2.6	15

#	Article	IF	CITATIONS
4038	Metal-organic framework-derived cobalt nanoparticle space confined in nitrogen-doped carbon polyhedra networks as high-performance bifunctional electrocatalyst for rechargeable Li–O2 batteries. Journal of Power Sources, 2020, 453, 227899.	4.0	38
4039	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. ACS Nano, 2020, 14, 3219-3226.	7.3	159
4040	A facile and large-scale synthesis of Co3O4/N-doped graphene for CO oxidation: Low-temperature catalytic activity and the role of nitrogen states. Applied Surface Science, 2020, 513, 145800.	3.1	5
4041	Covalent organic polymers derived carbon incorporated with cobalt oxides as a robust oxygen reduction reaction catalyst for fuel cells. Chemical Engineering Journal, 2020, 390, 124581.	6.6	21
4042	Insight into efficient bifunctional catalysis: Oxygen reduction and oxygen evolution reactions using MWCNTs based composites with 5,10,15,20-tetrakis($3\hat{a}\in^2$,5 $\hat{a}\in^2$ -dimethoxyphenyl)porphyrinato cobalt(II) and 5,10,15,20-tetrakis($3\hat{a}\in^2$,5 $\hat{a}\in^2$ -dihydroxyphenyl)porphyrinato cobalt(II). International Journal of Hydrogen Energy, 2020, 45, 9710-9722.	3.8	21
4043	SiO2 stabilizes electrochemically active nitrogen in few-layer carbon electrodes of extraordinary capacitance. Journal of Energy Chemistry, 2020, 49, 179-188.	7.1	7
4044	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
4045	NH ₃ -Plasma pre-treated carbon supported active iron–nitrogen catalyst for oxygen reduction in acid and alkaline electrolytes. Catalysis Science and Technology, 2020, 10, 1675-1687.	2.1	24
4046	Metal‶uned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction. Small, 2020, 16, e1907341.	5. 2	39
4047	An effective strategy to tune the oxygen vacancy of pyrochlore oxides for electrochemical energy storage and conversion systems. Chemical Engineering Journal, 2020, 395, 124428.	6.6	23
4048	CoO/NF nanowires promote hydrogen and oxygen production for overall water splitting in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 8031-8040.	3.8	27
4049	In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. Journal of Alloys and Compounds, 2020, 828, 154238.	2.8	16
4050	Thermally induced fragmentation of nanoscale calcite. RSC Advances, 2020, 10, 6088-6091.	1.7	5
4051	Honeycomb-like porous Ce–Cr oxide/N-doped carbon nanostructure: Achieving high catalytic performance for the selective oxidation of cyclohexane to KA oil. Carbon, 2020, 160, 287-297.	5.4	32
4052	A low-overpotential sodium/fluorinated graphene battery based on silver nanoparticles as catalyst. Journal of Colloid and Interface Science, 2020, 565, 70-76.	5.0	9
4053	Plasma-induced surface reorganization of porous Co3O4-CoO heterostructured nanosheets for electrocatalytic water oxidation. Journal of Colloid and Interface Science, 2020, 565, 400-404.	5.0	10
4054	Metal-organic frameworks derived cobalt encapsulated in porous nitrogen-doped carbon nanostructure towards highly efficient and durable oxygen reduction reaction electrocatalysis. Journal of Power Sources, 2020, 451, 227747.	4.0	30
4055	Rational Design of Single Atomic Co in CoN x Moieties on Graphene Matrix as an Ultraâ€Highly Efficient Active Site for Oxygen Reduction Reaction. ChemNanoMat, 2020, 6, 218-222.	1.5	3

#	ARTICLE	IF	CITATIONS
4056	Hollow carbon nanoparticles derived from Co ₃ O ₄ /carbon black hybrid: solid-phase synthesis and applications in a Zn–air battery. Nanotechnology, 2020, 31, 195401.	1.3	6
4057	Cobaltâ€Exchanged Poly(Heptazine Imides) as Transition Metal–N <i></i> Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1903942.	11.1	56
4058	Simultaneous electrochemical ozone production and hydrogen evolution by using tantalum-based nanorods electrocatalysts. Applied Catalysis B: Environmental, 2020, 266, 118632.	10.8	42
4059	Highly durable photoelectrochemical H ₂ O ₂ production <i>via</i> dual photoanode and cathode processes under solar simulating and external bias-free conditions. Energy and Environmental Science, 2020, 13, 1730-1742.	15.6	73
4060	Enhanced cathode performance of Fe ₂ O ₃ , boron nitride-doped rGO nanosheets for microbial fuel cell applications. Sustainable Energy and Fuels, 2020, 4, 1454-1468.	2.5	16
4061	Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€inâ€Spider Web―Electrode Configurations. Small, 2020, 16, e1907029.	5.2	34
4062	Highly porous Co3O4 and Ni-deposited Co3O4 nanoflowers as bifunctional catalysts for oxygen reduction and evolution reactions. Inorganic Chemistry Communication, 2020, 113, 107799.	1.8	12
4063	Iron-Cluster-Directed Synthesis of 2D/2D Fe–N–C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis. ACS Nano, 2020, 14, 2436-2444.	7.3	130
4064	Rational Design of Core@shell Structured CoS <i>>_x</i> @Cu ₂ MoS ₄ Hybridized MoS ₂ /N,Sâ€Codoped Graphene as Advanced Electrocatalyst for Water Splitting and Znâ€Air Battery. Advanced Energy Materials, 2020, 10, 1903289.	10.2	179
4065	Synthesis of graphene-siloxene nanosheet based layered composite materials by tuning its interface chemistry: An efficient anode with overwhelming electrochemical performances for lithium-ion batteries. Journal of Power Sources, 2020, 450, 227618.	4.0	20
4066	Facile <i>in situ</i> fabrication of biomorphic Co ₂ P-Co ₃ O ₄ /rGO/C as an efficient electrocatalyst for the oxygen reduction reaction. Nanoscale, 2020, 12, 4374-4382.	2.8	68
4067	One-step electrodeposition of Ni _x Fe _{3â^'x} O ₄ /Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction. Green Chemistry, 2020, 22, 1710-1719.	4.6	33
4068	Rational Design of Spinel Cobalt Vanadate Oxide Co ₂ VO ₄ for Superior Electrocatalysis. Advanced Materials, 2020, 32, e1907168.	11.1	134
4069	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€Shaped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81
4070	FeCoNi Ternary Spinel Oxides Nanosheets as High Performance Water Oxidation Electrocatalyst. ChemCatChem, 2020, 12, 2209-2214.	1,8	10
4071	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	10.2	113
4072	Unraveling the electrocatalytically active sites and stability of Co & Do oxides on nanocarbon for oxygen evolution reaction in acid solution. Journal of Energy Chemistry, 2020, 49, 8-13.	7.1	16
4073	Mesoporous NiCo2O4 network constructed from ultrathin-mesoporous nanosheets as high performance electrocatalyst in dye sensitized solar cell. Journal of Electroanalytical Chemistry, 2020, 861, 113907.	1.9	8

#	ARTICLE	IF	Citations
4074	Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coordination Chemistry Reviews, 2020, 409, 213214.	9.5	182
4075	Gas-phase synthesis of metal (M=Co, Cu, Mn, Ni, Fe) nanoparticles on N-doped carbon nanofibers as excellent oxygen electrocatalyst. Electrochimica Acta, 2020, 337, 135848.	2.6	16
4076	Molten-salt/oxalate mediating Fe and N-doped mesoporous carbon sheet nanostructures towards highly efficient and durable oxygen reduction electrocatalysis. Microporous and Mesoporous Materials, 2020, 303, 110281.	2.2	16
4077	Advances in Understanding Mechanisms of Perovskites and Pyrochlores as Electrocatalysts using Inâ€Situ Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2020, 132, 15427-15437.	1.6	2
4078	Oxygen Reduction and Evolution on Niâ€modified Co ₃ O ₄ (1 1 1) Cathodes for Zn–Air Batteries: A Combined Surface Science and Electrochemical Model Study. ChemSusChem, 2020, 13, 3199-3211.	3.6	31
4079	CoNi Loaded C–N Tubular Nanocomposites as Excellent Cathodic Catalysts of Alkaline Zn–Air Batteries. Catalysis Letters, 2020, 150, 2886-2899.	1.4	6
4080	Graphene-supported metal single-atom catalysts: a concise review. Science China Materials, 2020, 63, 903-920.	3. 5	72
4081	Stacking faults triggered strain engineering of ZIF-67 derived Ni-Co bimetal phosphide for enhanced overall water splitting. Applied Catalysis B: Environmental, 2020, 272, 118951.	10.8	76
4082	Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon, 2020, 164, 121-128.	5.4	48
4083	Hollow La0.5Sr0.5MnO3 nanospheres as an electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2020, 45, 12514-12524.	3.8	7
4084	Controllable fabrication of graphitic nanocarbon encapsulating FexNiy hybrids for efficient splitting of water. Journal of Alloys and Compounds, 2020, 829, 154421.	2.8	2
4085	The effects of morphology, microstructure and mixed-valent states of MnO2 on the oxygen evolution reaction activity in alkaline anion exchange membrane water electrolysis. Journal of Power Sources, 2020, 461, 228131.	4.0	35
4086	Observation of Switchable Dual-Conductive Channels and Related Nitric Oxide Gas-Sensing Properties in the N-rGO/ZnO Heterogeneous Structure. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19755-19767.	4.0	43
4087	Fe-doped Co ₃ O ₄ polycrystalline nanosheets as a binder-free bifunctional cathode for robust and efficient zinc–air batteries. Chemical Communications, 2020, 56, 5374-5377.	2.2	36
4088	Optimized Enhancement Effect of Sulfur in Fe–N–S Codoped Carbon Nanosheets for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23995-24006.	4.0	48
4089	Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2020, 30, 1910539.	7.8	90
4090	An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 575, 69-77.	5.0	42
4091	Metal Oxide (Co3O4 and Mn3O4) Impregnation into S, N-doped Graphene for Oxygen Reduction Reaction (ORR). Materials, 2020, 13, 1562.	1.3	22

#	Article	IF	CITATIONS
4092	Facetâ€Dependent Oxygen Reduction Reaction Activity on the Surfaces of Co ₃ O ₄ . Energy and Environmental Materials, 2021, 4, 407-412.	7.3	19
4093	Recent progress in self-supported two-dimensional transition metal oxides and (oxy)hydroxides as oxygen evolution reaction catalysts. Sustainable Energy and Fuels, 2020, 4, 2625-2637.	2.5	28
4094	Fabrication and Applications of 3D Nanoarchitectures for Advanced Electrocatalysts and Sensors. Advanced Materials, 2020, 32, e1907500.	11.1	17
4095	Nanostructured graphene materials utilization in fuel cells and batteries: A review. Journal of Energy Storage, 2020, 29, 101386.	3.9	50
4096	Fe, N dual doped graphitic carbon derived from straw as efficient electrochemical catalysts for oxygen reduction reaction and Zn-air batteries. Journal of Electroanalytical Chemistry, 2020, 865, 114133.	1.9	15
4097	Facile Synthesis of Co ₃ O ₄ -Incorporated Multichannel Carbon Nanofibers for Electrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20613-20622.	4.0	43
4098	Iron-Doped Nickel Cobalt Phosphide Nanoarrays with Urchin-like Structures as High-Performance Electrocatalysts for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 6273-6281.	3.2	46
4099	Thin metal organic layer derived Co/Co ₉ S ₈ /N,S co-doped carbon nanosheets synthesized by the space confinement effect of montmorillonite for oxygen electrocatalysis. New Journal of Chemistry, 2020, 44, 9522-9529.	1.4	5
4100	High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6316-6322.	3.3	119
4101	Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. Nanotechnology, 2020, 31, 315401.	1.3	6
4102	Novel Fe ₃ C Nanoparticles Encapsulated in Bamboo-Like Nitrogen-Doped Carbon Nanotubes as High-Performance Electrocatalyst for Zinc-Air Battery. Journal of the Electrochemical Society, 2020, 167, 060526.	1.3	6
4103	Enzyme-Free Glucose Biosensors Based on MoS2 Nanocomposites. Nanoscale Research Letters, 2020, 15, 60.	3.1	34
4104	Ultrafine Co nanodots embedded in N-doped carbon nanotubes grafted on hexagonal VN for highly efficient overall water splitting. Nano Energy, 2020, 73, 104788.	8.2	71
4105	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	7.2	433
4106	Intrinsische elektrokatalytische AktivitÃtssteuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren fÃ1⁄4r die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	1.6	40
4107	Novel porous carbon felt cathode modified by cyclic voltammetric electrodeposited polypyrrole and anthraquinone 2-sulfonate for an efficient electro-Fenton process. International Journal of Hydrogen Energy, 2021, 46, 9707-9717.	3.8	22
4108	CoNi nanoparticles anchored inside carbon nanotube networks by transient heating: Low loading and high activity for oxygen reduction and evolution. Journal of Energy Chemistry, 2021, 54, 63-71.	7.1	17
4109	Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO2. Journal of Energy Chemistry, 2021, 54, 202-207.	7.1	44

#	Article	IF	CITATIONS
4110	Graphiticâ€shell encapsulated FeNi alloy/nitride nanocrystals on biomassâ€derived Nâ€doped carbon as an efficient electrocatalyst for rechargeable Znâ€air battery. , 2021, 3, 176-187.		85
4111	Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Advanced Energy Materials, 2021, 11, 2001304.	10.2	254
4112	Enhancement of oxygen evolution activity of perovskite (La0.8Sr0.2)0.95MnO3-δelectrode by Co phase surface modification. Catalysis Today, 2021, 364, 148-156.	2.2	13
4113	Overall Oxygen Electrocatalysis on Nitrogenâ€Modified Carbon Catalysts: Identification of Active Sites and Inâ€Situ Observation of Reactive Intermediates. Angewandte Chemie - International Edition, 2021, 60, 3299-3306.	7.2	42
4114	Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes. Inorganic Chemistry Frontiers, 2021, 8, 940-946.	3.0	11
4115	Theoretical study of methanol activation catalyzed by B11N11 and B14N14 nano-cages. Surface Science, 2021, 704, 121756.	0.8	2
4116	Rotating ring-disk electrode theory and method to correct quasi-four-electron oxygen reduction over Fe/N/C and N/C cathode catalysts. Current Opinion in Electrochemistry, 2021, 25, 100633.	2.5	8
4117	NiFe hydroxide pillared by metaborate for efficient oxygen evolution reaction. Electrochimica Acta, 2021, 366, 137427.	2.6	7
4118	Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries. Journal of Colloid and Interface Science, 2021, 581, 374-384.	5.0	42
4119	Morphologically controlled cobalt oxide nanoparticles for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 322-332.	5.0	51
4120	Carbon-based electrocatalysts for sustainable energy applications. Progress in Materials Science, 2021, 116, 100717.	16.0	216
4121	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.	1.6	6
4122	PEDOT functionalized ZIF-67 derived Co-N-S triple-doped porous carbon for high-efficiency oxygen reduction. Applied Surface Science, 2021, 535, 147659.	3.1	29
4123	Support structure-catalyst electroactivity relation for oxygen reduction reaction on platinum supported by two-dimensional titanium carbide. Nano Energy, 2021, 79, 105363.	8.2	23
4124	MxOy/M/graphene coated multi-shelled nano-sphere as Bi-functional electrocatalysts for hydrogen and oxygen evolution. International Journal of Hydrogen Energy, 2021, 46, 341-356.	3.8	16
4125	On the molecular properties of graphene-pyrazines conjugated Ru and Fe complexes: Computational insights. Materials Today Communications, 2021, 26, 101694.	0.9	0
4126	Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. Journal of Energy Chemistry, 2021, 57, 428-435.	7.1	45
4127	Green synthesized AgNPs decorated on Ketjen black for enhanced catalytic dye degradation. Research on Chemical Intermediates, 2021, 47, 637-648.	1.3	10

#	Article	IF	CITATIONS
4128	Bifunctional air electrodes for flexible rechargeable Zn-air batteries. Chinese Chemical Letters, 2021, 32, 999-1009.	4.8	23
4129	Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage. Nano-Micro Letters, 2021, 13, 21.	14.4	80
4130	O-, N-Coordinated single Mn atoms accelerating polysulfides transformation in lithium-sulfur batteries. Energy Storage Materials, 2021, 35, 12-18.	9.5	157
4131	Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628.	7.1	30
4132	Coordination Engineering of Singleâ€Atom Catalysts for the Oxygen Reduction Reaction: A Review. Advanced Energy Materials, 2021, 11, 2002473.	10.2	217
4133	A graphene oxide Cookbook: Exploring chemical and colloidal properties as a function of synthesis parameters. Journal of Colloid and Interface Science, 2021, 588, 725-736.	5.0	11
4134	Recent Advances in Electrocatalysis of Oxygen Evolution Reaction using Nobleâ€Metal, Transitionâ€Metal, and Carbonâ€Based Materials. ChemElectroChem, 2021, 8, 447-483.	1.7	68
4135	Environmentally friendly Zn-air rechargeable battery with heavy metal free charcoal based air cathode. Electrochimica Acta, 2021, 368, 137592.	2.6	6
4136	Ternary heterostructural CoO/CN/Ni catalyst for promoted CO2 electroreduction to methanol. Journal of Catalysis, 2021, 393, 83-91.	3.1	20
4137	Formic Acidâ€Assisted Selective Hydrogenolysis of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran over Bifunctional Pd Nanoparticles Supported on Nâ€Doped Mesoporous Carbon. Angewandte Chemie - International Edition, 2021, 60, 6807-6815.	7.2	65
4138	Fe-modified Co2(OH)3Cl microspheres for highly efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2021, 582, 803-814.	5.0	16
4139	Reconstructing 1D Fe Singleâ€atom Catalytic Structure on 2D Graphene Film for Highâ€Efficiency Oxygen Reduction Reaction. ChemSusChem, 2021, 14, 866-875.	3. 6	14
4140	Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Applied Catalysis B: Environmental, 2021, 284, 119750.	10.8	35
4141	Nanosized Co3O4–MoS2 heterostructure electrodes for improving the oxygen evolution reaction in an alkaline medium. Journal of Alloys and Compounds, 2021, 853, 156946.	2.8	33
4142	Components., 2021,, 11-21.		0
4143	N,Sâ€Coâ€Doped Porous Carbon Nanofiber Films Derived from Fullerenes (C ₆₀) as Efficient Electrocatalysts for Oxygen Reduction and a Zn–Air Battery. Chemistry - A European Journal, 2021, 27, 1423-1429.	1.7	22
4144	Atomic Fe Dispersed Hierarchical Mesoporous Fe–N–C Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 74-81.	5.5	147
4145	Nanocatalyst Design for Longâ€√erm Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 2021, 11, 2003188.	10.2	89

#	Article	IF	CITATIONS
4146	Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Applied Surface Science, 2021, 542, 148739.	3.1	40
4147	"H2-free―demethoxylation of guaiacol in subcritical water using Pt supported on N-doped carbon catalysts: A cost-effective strategy for biomass upgrading. Journal of Energy Chemistry, 2021, 58, 377-385.	7.1	19
4148	Porous FeCo Glassy Alloy as Bifunctional Support for Highâ€Performance Znâ€Air Battery. Advanced Energy Materials, 2021, 11, 2002204.	10.2	55
4149	Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 2021, 9, 818-828.	2.7	38
4150	AmeisensÃureâ€unterstýtzte selektive Hydrogenolyse von 5â€Hydroxymethylfurfural zu 2,5â€Dimethylfuran über bifunktionale Pdâ€Nanopartikel auf Nâ€dotiertem mesoporösem Kohlenstoff als TrÃger. Angewandte Chemie, 2021, 133, 6882-6891.	1.6	13
4151	Homogeneous Co3O4 film electrode with enhanced oxygen evolution electrocatalysis via surface reduction. Chinese Journal of Chemical Engineering, 2021, 29, 221-227.	1.7	4
4152	Ultrafine Ni nanoparticles anchored on carbon nanofibers as highly efficient bifunctional air electrodes for flexible solid-state zinc-air batteries. Journal of Colloid and Interface Science, 2021, 588, 627-636.	5.0	23
4153	Design of hollow carbon-based materials derived from metal–organic frameworks for electrocatalysis and electrochemical energy storage. Journal of Materials Chemistry A, 2021, 9, 3880-3917.	5.2	117
4154	Self-standing 3D nanoporous Ag2Al with abundant surface oxygen species facilitating oxygen electroreduction for efficient hybrid Zn battery. Journal of Energy Chemistry, 2021, 58, 345-354.	7.1	12
4155	Inside-mode indium oxide/carbon nanotubes for efficient carbon dioxide electroreduction by suppressing hydrogen evolution. Chemical Communications, 2021, 57, 1234-1237.	2.2	7
4156	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	5.2	12
4157	Gesamtâ€Sauerstoffâ€Elektrokatalyse auf stickstoffmodifizierten Kohlenstoffkatalysatoren: Identifizierung aktiver Zentren und Inâ€situâ€Beobachtung reaktiver Zwischenprodukte. Angewandte Chemie, 2021, 133, 3336-3343.	1.6	5
4158	3D spiral-like polyhedron nanocarbon confining uniformly dispersed Co nanoparticles for bifunctional electrocatalyst in metal-air battery. Journal of Power Sources, 2021, 482, 228897.	4.0	15
4159	Electrodeposition of Ir–Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. International Journal of Hydrogen Energy, 2021, 46, 609-621.	3.8	39
4160	Advanced Oxygen Electrocatalysis in Energy Conversion and Storage. Advanced Functional Materials, 2021, 31, 2007602.	7.8	86
4161	Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation. Fuel Processing Technology, 2021, 212, 106637.	3.7	35
4162	Reduced mesoporous Co3O4 nanowires grown on 3D graphene as efficient catalysts for oxygen reduction and binder-free electrodes in aluminum–air batteries. Journal of Materials Science, 2021, 56, 3861-3873.	1.7	7
4163	Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 2018-2025.	3.8	10

#	Article	IF	Citations
4164	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	7.2	107
4165	Effect of synthesis conditions on the bifunctional electrocatalytic properties of Co3O4/N-rGO for ORR and OER. Journal of Applied Electrochemistry, 2021, 51, 155-171.	1.5	7
4166	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	7.3	58
4167	Recent discovery of a multifunctional metallo-organic precursor for fabricating Co3O4/N-doped porous carbon by one-step in situ pyrolysis as an anode material for Li-ion batteries. Journal of Materials Science, 2021, 56, 1590-1599.	1.7	8
4168	Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Research, 2021, 14, 555-569.	5.8	137
4169	Immobilized some of vanadium compounds on modified graphene oxide as nanofiber network for epoxidation of allyl alcohols. Applied Organometallic Chemistry, 2021, 35, e6151.	1.7	5
4170	Reduced Graphene Oxide Aerogel inside Melamine Sponge as an Electrocatalyst for the Oxygen Reduction Reaction. Materials, 2021, 14, 322.	1.3	5
4171	Metal oxide electrocatalyst support for carbon-free durable electrodes with excellent corrosion resistance at high potential conditions. Sustainable Energy and Fuels, 2021, 5, 1374-1378.	2.5	6
4172	Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis, 2021, 11, 1248-1295.	5.5	51
4173	Plasma-assisted defect engineering of N-doped NiCo ₂ O ₄ for efficient oxygen reduction. Physical Chemistry Chemical Physics, 2021, 23, 6591-6599.	1.3	22
4174	Preparation of Graphene Oxide from Lignin by Gel Combustion Method and Its Performance as Supercapacitor. E3S Web of Conferences, 2021, 287, 04007.	0.2	3
4175	Alkaline Anion Exchange Membrane (AEM) Water Electrolysersâ€"Current/Future Perspectives in Electrolysers for Hydrogen., 2022,, 473-504.		2
4176	Tailoring unique neural-network-type carbon nanofibers inserted in CoP/NC polyhedra for robust hydrogen evolution reaction. Nanoscale, 2021, 13, 14705-14712.	2.8	3
4177	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
4178	Application of graphene in energy storage device – A review. Renewable and Sustainable Energy Reviews, 2021, 135, 110026.	8.2	452
4179	A Bifunctional Hybrid Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions: Nano-Co3O4-Deposited La0.5Sr0.5MnO3 via Infiltration. Molecules, 2021, 26, 277.	1.7	5
4180	Carbon nano-onions: Synthesis, characterization, and application., 2021, , 159-207.		6
4181	Carbon nanoflakes and nanofibers., 2021,, 399-459.		0

#	Article	IF	CITATIONS
4182	ZIF-67-based catalysts for oxygen evolution reaction. Nanoscale, 2021, 13, 12058-12087.	2.8	47
4183	A review on infiltration techniques for energy conversion and storage devices: from fundamentals to applications. Sustainable Energy and Fuels, 2021, 5, 5024-5037.	2.5	18
4184	Fe ₃ O ₄ /Co ₃ O ₄ binary oxides as bifunctional electrocatalysts for rechargeable Zn–air batteries by one-pot pyrolysis of zeolitic imidazolate frameworks. Sustainable Energy and Fuels, 2021, 5, 2985-2993.	2.5	6
4185	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	18.7	385
4186	MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media. Dalton Transactions, 2021, 50, 5473-5482.	1.6	44
4187	Two-dimensional palladium diselenide for the oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 4970-4980.	3.2	5
4188	Controlled over-growth for nail-like and urchin-like cobalt with enhanced CO hydrogenation activity. Applied Surface Science, 2021, 537, 147931.	3.1	1
4189	Electrocatalytic activity enhancement of N,P-doped carbon nanosheets derived from polymerizable ionic liquids. Journal of Applied Electrochemistry, 2021, 51, 669-679.	1.5	6
4190	Ultrafine Pt–Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Transactions, 2021, 50, 6811-6822.	1.6	10
4191	A hierarchical Co ₃ O ₄ /CoS microbox heterostructure as a highly efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 17344-17352.	5. 2	40
4192	Pd nanoparticles loaded onto a TiO2–C heterostructure via a photochemical strategy for efficient oxygen reduction reaction. New Journal of Chemistry, 0, , .	1.4	2
4193	Controllable atomic defect engineering in layered Ni _x Fe _{1â^'x} (OH) ₂ nanosheets for electrochemical overall water splitting. Journal of Materials Chemistry A, 2021, 9, 14432-14443.	5. 2	84
4194	The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnology Reviews, 2021, 10, 330-369.	2.6	31
4195	Cu-assisted induced atomic-level bivalent Fe confined on N-doped carbon concave dodecahedrons for acid oxygen reduction electrocatalysis. International Journal of Hydrogen Energy, 2021, 46, 1997-2006.	3.8	7
4196	O,N-Codoped 3D graphene hollow sphere derived from metal–organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 6174-6183.	2.8	17
4197	Electrochemically generation of hydrogen peroxide from molecular oxygen by BaSm2O4/carbon composite. Materials Today: Proceedings, 2021, 43, 3261-3267.	0.9	0
4198	Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications. Topics in Mining, Metallurgy and Materials Engineering, 2021, , 247-292.	1.4	1
4199	Catalyst Materials for Oxygen Reduction Reaction. , 2021, , 85-182.		0

#	Article	IF	CITATIONS
4200	Soft X-ray absorption spectroscopic investigation of MnO2/graphene nanocomposites used in supercapacitor. Catalysis Today, 2022, 388-389, 63-69.	2.2	9
4201	Fast and facile synthesis of carbonate-modified NiFe layered double hydroxide nanosheets by dielectric barrier discharge microplasma: mechanism and application in enhanced water oxidation. Journal of Materials Science, 2021, 56, 8115-8126.	1.7	10
4202	Three-dimensional MOF-derived Co and N co-doped porous carbon bifunctional catalyst for the Zn–air battery. CrystEngComm, 2021, 23, 4930-4937.	1.3	7
4203	Earthâ€Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000071.	2.8	30
4204	Lattice oxygen of PbO ₂ induces crystal facet dependent electrochemical ozone production. Journal of Materials Chemistry A, 2021, 9, 9010-9017.	5.2	25
4205	High-Performance Organometallic Catalyst Based on Nickel Porphyrin/Carbon Fibre for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 016510.	1.3	12
4206	Plasma-Modified FeGly/C as a Pt-Free Stable ORR Electrocatalyst in an Acid Electrolyte. ACS Applied Energy Materials, 2021, 4, 564-574.	2.5	16
4207	Facile growth of transition metal hydroxide nanosheets on porous nickel foam for efficient electrooxidation of benzyl alcohol. Green Chemistry, 2021, 23, 7825-7830.	4.6	17
4208	2D porous molybdenum nitride/cobalt nitride heterojunction nanosheets with interfacial electron redistribution for effective electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2021, 9, 8620-8629.	5.2	72
4209	Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives. Nanotechnology Reviews, 2021, 10, 137-157.	2.6	28
4210	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
4211	Electro-catalysts for oxygen electrodes in seawater electrolyzers (OER) and reversible electrolyzers (OER/ORR)., 2021,, 83-103.		2
4212	Selectivity of Mixed Iron-Cobalt Spinels Deposited on a N,S-Doped Mesoporous Carbon Support in the Oxygen Reduction Reaction in Alkaline Media. Materials, 2021, 14, 820.	1.3	16
4213	Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions. Electrochimica Acta, 2021, 370, 137747.	2.6	10
4214	Transition-Metal (Fe, Co, and Ni)-Based Nanofiber Electrocatalysts for Water Splitting. Advanced Fiber Materials, 2021, 3, 210-228.	7.9	74
4215	Designing Rational Interfacial Bonds for Hierarchical Mineralâ€Type Trogtalite with Double Carbon towards Ultraâ€Fast Sodiumâ€Ions Storage Properties. Advanced Functional Materials, 2021, 31, 2100156.	7.8	31
4216	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	7.2	265
4217	Structural Engineering of Ultrathin ReS ₂ on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction. ACS Nano, 2021, 15, 5560-5566.	7.3	24

#	Article	IF	CITATIONS
4218	Selective Hydrogenation of Furfural over the Co-Based Catalyst: A Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants. ACS Applied Materials & Subtle Synergy with Ni and Zn Dopants.	4.0	49
4219	Non-Stoichiometry Induced Exsolution of Metal Oxide Nanoparticles via Formation of Wavy Surfaces and their Enhanced Electrocatalytic Activity: Case of Misfit Calcium Cobalt Oxide. ACS Applied Materials & Interfaces, 2021, 13, 9897-9907.	4.0	8
4220	N, F dual-doped carbon embedded with Co&CoN paragenetic structure for oxygen electrocatalytic reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 7454-7463.	3.8	13
4221	Bimetallic Fe and Co supported on the Nâ€doped mesoporous carbon frameworks with enhanced oxygen reduction reaction performance via highâ€gravity technology. Journal of the Chinese Chemical Society, 2021, 68, 1047-1054.	0.8	4
4222	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	1.6	60
4223	Carbon encapsulation of magnetite nanoparticles enhances magnetism at room-temperature due to spin-polarized charge transfer. Applied Physics Letters, $2021,118,.$	1.5	2
4224	Palladium phosphide nanoparticles embedded in 3D N, P co-doped carbon film for high-efficiency oxygen reduction. Journal of Materials Science, 2021, 56, 10523-10536.	1.7	2
4225	Two step synthesis of TiO2–Co3O4 composite for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 9110-9122.	3.8	25
4226	The Interaction Energy between Solvent Molecules and Graphene as an Effective Descriptor for Graphene Dispersion in Solvents. Journal of Physical Chemistry C, 2021, 125, 5167-5171.	1.5	3
4227	An overview of non-noble metal electrocatalysts and their associated air cathodes for Mg-air batteries. Materials Reports Energy, 2021, 1, 100002.	1.7	12
4228	Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis, 2021, 11, 3094-3114.	5.5	115
4229	Heterogenization of Ionic liquid Boosting Electrochemical Oxygen Reduction Performance of Co 3 O 4 Supported on Graphene Oxide. ChemCatChem, 2021, 13, 1546-1551.	1.8	6
4230	Core-shell structured metal organic framework materials derived cobalt/iron–nitrogen Co-doped carbon electrocatalysts for efficient oxygen reduction. International Journal of Hydrogen Energy, 2021, 46, 9341-9350.	3.8	12
4231	Mechanochemical Synthesis of Catalytic Materials. Chemistry - A European Journal, 2021, 27, 6819-6847.	1.7	130
4232	Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters, 2021, 32, 2597-2616.	4.8	94
4233	Exploring the N ₂ Adsorption and Activation Mechanisms over the 2H/1T Mixed-Phase Ultrathin Mo _{1â€"<i>x</i>xxxxxxx<}	4.0	24
4234	Investigating Local Structure of Ion-Implanted (Ni ²⁺) and Thermally Annealed Rock Salt CoO Film by EXAFS Simulation Using Evolutionary Algorithm. ACS Applied Energy Materials, 2021, 4, 2049-2055.	2.5	14
4235	Prediction of novel X 2 ZnZ 4 (X = Sc, Y; Z = S, Se) spinels materials for renewable energy applications. International Journal of Energy Research, 2021, 45, 8307-8315.	2.2	5

#	Article	IF	CITATIONS
4236	Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc–air batteries. Journal of Energy Chemistry, 2021, 53, 364-371.	7.1	36
4237	Ultrathin Co3O4–Pt core-shell nanoparticles coupled with three-dimensional graphene for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 10303-10311.	3.8	11
4238	Electrochemical properties of hydrophilic NiCo2O4 in situ grown on biomass carbon networks for Lithium ion batteries. Journal of Solid State Chemistry, 2021, 295, 121903.	1.4	5
4239	Temperature Effect on the Topotatic Synthesis of Spinel MnCoO Nanoparticles for Efficient Oxygen Reduction Electrocatalyst. Bulletin of the Korean Chemical Society, 2021, 42, 786-791.	1.0	4
4240	Designing Synergistic Electrocatalysts for H ₂ Oxidation and Evolution Reactions in Alkaline Media. Journal of Physical Chemistry C, 2021, 125, 7188-7203.	1.5	9
4241	Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Research, 2021, 14, 4182.	5.8	7
4242	Carbonâ€Supported Highâ€Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2010561.	7.8	86
4243	Electrospun Fe-Incorporated ZIF-67 Nanofibers for Effective Electrocatalytic Water Splitting. Inorganic Chemistry, 2021, 60, 4034-4046.	1.9	49
4244	A Durable and Efficient Electrocatalyst for Saline Water Splitting with Current Density Exceeding 2000ÂmAÂcm ^{â^2} . Advanced Functional Materials, 2021, 31, 2010367.	7.8	102
4245	Recent Progress in Cost-effective and Stable AuAg/Cu-nanostructured Catalyst for Electrochemical Water Splitting. Applied Science and Convergence Technology, 2021, 30, 65-69.	0.3	1
4246	Electric conversion treatment of cobalt-containing wastewater. Water Science and Technology, 2021, 83, 1973-1986.	1.2	8
4247	Supported polyoxometalates as emerging nanohybrid materials for photochemical and photoelectrochemical water splitting. Nanophotonics, 2021, 10, 1595-1620.	2.9	28
4248	Three dimensional nitrogen, phosphorus and sulfur doped porous graphene as efficient bifunctional electrocatalysts for direct methanol fuel cell. International Journal of Hydrogen Energy, 2021, 46, 10247-10258.	3.8	23
4249	Fabrication of rGO/Cuprous Oxide Nanocomposites for Gas Sensing. IOP Conference Series: Earth and Environmental Science, 2021, 706, 012024.	0.2	0
4250	Dendrimer-Ni-Based Material: Toward an Efficient Ni–Fe Layered Double Hydroxide for Oxygen-Evolution Reaction. Inorganic Chemistry, 2021, 60, 6073-6085.	1.9	23
4251	Tailoring the Electronic Structures of the La ₂ NiMnO ₆ Double Perovskite as Efficient Bifunctional Oxygen Electrocatalysis. Chemistry of Materials, 2021, 33, 2062-2071.	3.2	58
4252	Morphology control of Co3O4 with nickel incorporation for highly efficient oxygen evolution reaction. Applied Surface Science, 2021, 541, 148221.	3.1	20
4253	Interfacially Superâ€Assembled Asymmetric and H ₂ O ₂ Sensitive Multilayerâ€Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions. Advanced Functional Materials, 2021, 31, 2010694.	7.8	49

#	ARTICLE	IF	CITATIONS
4254	Coâ€"Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 4064-4073.	6.6	175
4255	A novel nanoâ€electrocatalyst based on LaCoFe2O4–Graphene as a candidate cathode for metal–air batteries. Journal of Materials Science: Materials in Electronics, 2021, 32, 8535-8544.	1.1	1
4256	Atomic cobalt anchored on covalent triazine frameworks with ultra-high performance towards oxygen reduction reaction. Science China Materials, 2021, 64, 2221-2229.	3.5	12
4257	Self-Reconstruction of Co/Co ₂ P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc–Air Flow Batteries. ACS Energy Letters, 0, , 1153-1161.	8.8	104
4258	Facile Synthesis of Bimetallic Fluoride Heterojunctions on Defect-Enriched Porous Carbon Nanofibers for Efficient ORR Catalysts. Nano Letters, 2021, 21, 2618-2624.	4.5	73
4259	Effect of Co3O4 Nanoparticles on Improving Catalytic Behavior of Pd/Co3O4@MWCNT Composites for Cathodes in Direct Urea Fuel Cells. Nanomaterials, 2021, 11, 1017.	1.9	5
4260	Boosting oxygen reduction catalysis with abundant single atom tin active sites in zinc-air battery. Journal of Power Sources, 2021, 490, 229483.	4.0	19
4261	Phase evolution of vulcanized Co3O4 catalysts during oxygen evolution reaction. Applied Surface Science, 2021, 546, 148819.	3.1	21
4262	Unusual Formation of CoS _{0.61} Se _{0.25} Anion Solid Solution with Sulfur Defects to Promote Electrocatalytic Water Reduction. ACS Applied Energy Materials, 2021, 4, 2976-2982.	2.5	12
4263	Electronic Optimization by Coupling FeCo Nanoclusters and Pt Nanoparticles to Carbon Nanotubes for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 5895-5901.	3.2	9
4264	Valenceâ€State Effect of Iridium Dopant in NiFe(OH) < sub>2 < /sub> Catalyst for Hydrogen Evolution Reaction. Small, 2021, 17, e2100203.	5.2	31
4265	Efficient oxygen reduction reaction by a highly porous, nitrogen-doped carbon sphere electrocatalyst through space confinement effect in nanopores. Journal of Advanced Ceramics, 2021, 10, 714-728.	8.9	33
4266	Mo″Coâ€N Hybrid Nanosheets Oriented on Hierarchical Nanoporous Cu as Versatile Electrocatalysts for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2102285.	7.8	41
4267	A CoNâ€based OER Electrocatalyst Capable in Neutral Medium: Atomic Layer Deposition as Rational Strategy for Fabrication. Advanced Functional Materials, 2021, 31, 2101324.	7.8	46
4268	Selective phosphidation and reduction strategy to construct heterostructured porous nanorod of CoP coated on Mn3O4 as a bifunctional electrocatalyst for overall water splitting. Applied Surface Science, 2021, 544, 148860.	3.1	14
4269	A Facile and Efficient Ni-N-C Electrocatalyst Derived from Superabsorbent Resin for Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2021, 168, 046519.	1.3	2
4270	Multiâ€Functional Cerium Modification to Accelerate the Oxygen Reduction Reaction of Spinel Co ₃ O ₄ . ChemistrySelect, 2021, 6, 3512-3518.	0.7	9
4271	Sulfurâ€Induced Growth of Coordination Polymer Derivedâ€Straight Carbon Nanotubes on Carbon Nanofiber Network for Znâ€Air Batteries. Chemistry - A European Journal, 2021, 27, 7704-7711.	1.7	8

#	Article	IF	Citations
4272	Performance and mechanism of atrazine degradation using Co3O4/g-C3N4 hybrid photocatalyst with peroxymonosulfate under visible light irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126161.	2.3	37
4273	NiFe2O4–Ni3S2 nanorod array/Ni foam composite catalyst indirectly controlled by Fe3+ immersion for an efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 2021, 46, 14407-14417.	3.8	9
4274	Flame Spray Pyrolysis Co3O4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 925.	1.9	34
4275	Ultrasonic-assisted hydrothermal synthesis of cobalt oxide/nitrogen-doped graphene oxide hybrid as oxygen reduction reaction catalyst for Al-air battery. Ultrasonics Sonochemistry, 2021, 72, 105457.	3 . 8	15
4276	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe M¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	1.5	9
4277	Engineering of cation and anion vacancies in Co3O4 thin nanosheets by laser irradiation for more advancement of oxygen evolution reaction. Nano Energy, 2021, 83, 105800.	8.2	50
4278	Discovery of Single-Atom Catalyst: Customized Heteroelement Dopants on Graphene. Accounts of Materials Research, 2021, 2, 394-406.	5. 9	19
4279	Cost-effective and efficient plum-pudding-like FexNi1-xS2/C composite electrocatalysts for oxygen evolution reaction. Renewable Energy, 2021, 168, 416-423.	4.3	12
4280	Highly ordered mesoporous Co3O4 cubes/graphene oxide heterostructure as efficient counter electrodes in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 16519-16527.	1.1	5
4281	N, S, P co-doped graphene-like carbon nanosheets developed via in situ engineering strategy of carbon pz-orbitals for highly efficient oxygen redox reaction. FlatChem, 2021, 27, 100250.	2.8	14
4282	Tuning of Reciprocal Carbonâ€Electrode Properties for an Optimized Hydrogen Evolution ChemSusChem, 2021, 14, 2547-2553.	3.6	10
4283	Waste Biomass Derived Active Carbon as Cost-Effective and Environment-Friendly Cathode Material for Lithium-Oxygen Batteries. Journal of the Electrochemical Society, 2021, 168, 050542.	1.3	2
4284	Dimethylglyoxime Clathrate as Ligand Derived Nitrogen-Doped Carbon-Supported Nano-Metal Particles as Catalysts for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 1329.	1.9	4
4285	Alkaline fuel cell technology - A review. International Journal of Hydrogen Energy, 2021, 46, 18489-18510.	3.8	166
4286	Epitaxial Thin-Film Spinel Oxides as Oxygen Reduction Electrocatalysts in Alkaline Media. Chemistry of Materials, 2021, 33, 4006-4013.	3. 2	9
4287	Strengthening absorption ability of Co–N–C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy and Environment, 2023, 8, 459-469.	4.7	22
4288	Hetero-Dimensional 2D Ti ₃ C ₂ T _{<i>x</i>} MXene and 1D Graphene Nanoribbon Hybrids for Machine Learning-Assisted Pressure Sensors. ACS Nano, 2021, 15, 10347-10356.	7.3	57
4289	Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. , 2021, 3, 752-780.		62

#	Article	IF	CITATIONS
4290	Optimizing Surface Nâ€Doping of Feâ€Nâ€C Catalysts Derived from Fe/Melamineâ€Decorated Polyaniline for Oxygen Reduction Electrocatalysis. Advanced Materials Interfaces, 2021, 8, 2100197.	1.9	10
4291	Spin Effect on Oxygen Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100034.	2.8	32
4292	<i>In-Situ</i> Generated High-Valent Iron Single-Atom Catalyst for Efficient Oxygen Evolution. Nano Letters, 2021, 21, 4795-4801.	4.5	47
4293	Graphene-Based Two-Dimensional Mesoporous Materials: Synthesis and Electrochemical Energy Storage Applications. Materials, 2021, 14, 2597.	1.3	11
4294	Ternary nickel–tungsten–copper alloy rivals platinum for catalyzing alkaline hydrogen oxidation. Nature Communications, 2021, 12, 2686.	5.8	98
4295	Co3O4 nanoparticles embedded in triple-shelled graphitic carbon nitride (Co3O4/TSCN): a new sustainable and high-performance hierarchical catalyst for the Pd/Cu-free Sonogashira–Hagihara cross-coupling reaction in solvent-free conditions. Research on Chemical Intermediates, 2021, 47, 3217-3244.	1.3	3
4296	Activity-stability benefits of Pt/C fuel cell electrocatalysts prepared via remote CeO2 interfacial doping. Journal of Power Sources, 2021, 496, 229798.	4.0	30
4297	Thermochemically nanostructured off-stoichiometric Ti0.2Al1.8C4O5 nanowires as robust electrocatalysts for hydrogen evolution from corrosive acidic electrolyte. Catalysis Today, 2021, 370, 26-35.	2.2	0
4298	Metallized Ni(OH) ₂ ·NiO/FeOOH on Ni Foam as a Highly Effective Water Oxidation Catalyst Prepared by Surface Treatment: Oxidation–Corrosion Equilibrium. ACS Applied Energy Materials, 2021, 4, 5599-5605.	2.5	2
4299	The Role of Nitrogenâ€doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes. Chemistry - A European Journal, 2021, 27, 10948-10956.	1.7	12
4300	Grapheneâ€Based Hybrid Functional Materials. Small, 2021, 17, e2100514.	5.2	31
4301	ZIF-12/Fe-Cu LDH Composite as a High Performance Electrocatalyst for Water Oxidation. Frontiers in Chemistry, 2021, 9, 686968.	1.8	12
4302	Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. Journal of Catalysis, 2021, 398, 54-66.	3.1	58
4303	In-situ synthesis of Co ₃ O ₄ nanocrystal clusters on graphene as high-performance oxygen reduction reaction electrocatalysts. Materials Technology, 2022, 37, 2106-2115.	1.5	1
4304	One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 21924-21938.	3.8	60
4305	Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Reports Physical Science, 2021, 2, 100447.	2.8	30
4306	Single atom based electrocatalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cell: Recent advances, challenges and future perspectives. Journal of Physics and Chemistry of Solids, 2021, 153, 109989.	1.9	14
4307	Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction. Molecular Catalysis, 2021, 509, 111614.	1.0	5

#	ARTICLE	IF	CITATIONS
4308	Ultrathin ternary metal oxide Bi2MoO6 nanosheets for high performance asymmetric supercapacitor and gas sensor applications. Applied Surface Science, 2021, 551, 149422.	3.1	60
4309	Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc–Air Batteries. Advanced Energy Materials, 2021, 11, 2100514.	10.2	132
4310	A DFT study of graphene-FeNx (xÂ=Â4, 3, 2, 1) catalysts for acetylene hydrochlorination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126495.	2.3	10
4311	Trace Bimetallic Iron/Manganese Co-Doped N-Ketjenblack Carbon Electrocatalyst for Robust Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 060502.	1.3	2
4312	Toward Flexible Zinc–Air Batteries with Self‧upported Air Electrodes. Small, 2021, 17, e2006773.	5.2	28
4313	Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Materials Today Energy, 2021, 20, 100659.	2.5	31
4314	Alkaline Water Splitting Enhancement by MOFâ€Derived Fe–Co–Oxide/Co@NCâ€mNS Heterostructure: Boosting OER and HER through Defect Engineering and In Situ Oxidation. Small, 2021, 17, e2101312.	5.2	166
4315	Tailoring electrocatalytic activity of in situ crafted perovskite oxide nanocrystals via size and dopant control. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
4316	Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Materials Today Energy, 2021, 20, 100638.	2.5	73
4317	Pd–SnO2 heterojunction catalysts anchored on graphene sheets for enhanced oxygen reduction. Composites Communications, 2021, 25, 100703.	3.3	19
4318	Reversible hydrogenation and irreversible epoxidation induced by graphene oxide electrolysis. Carbon, 2021, 177, 26-34.	5.4	7
4319	Novel WS ₂ /Fe _{0.95} S _{1.05} Hierarchical Nanosphere as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemistry - A European Journal, 2021, 27, 10998-11004.	1.7	19
4320	Optimizing the Spin States of Mesoporous Co ₃ O ₄ Nanorods through Vanadium Doping for Long-Lasting and Flexible Rechargeable Znâ€"Air Batteries. ACS Catalysis, 2021, 11, 8097-8103.	5 . 5	84
4321	Rational design of nanocatalysts for ambient ammonia electrosynthesis. Pure and Applied Chemistry, 2021, 93, 777-797.	0.9	7
4322	Algae-inspired multifunctional ocean solar-energy conversion chain enabled by coordination polymers. Cell Reports Physical Science, 2021, 2, 100466.	2.8	9
4323	Hierarchical <scp> ReS ₂ </scp> / <scp>nitrogenâ€doped</scp> graphene hybrid nanoarchitectures for efficient oxygen reduction. International Journal of Energy Research, 2021, 45, 19586-19596.	2.2	2
4324	Solvent effect on the methanol oxidation mechanism on B24N24 nano-cage surface: A DFT-D study. Journal of Molecular Liquids, 2021, 332, 115841.	2.3	5
4325	Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano, 2021, 15, 11218-11230.	7.3	45

#	Article	IF	Citations
4326	<i>In Situ</i> X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. ACS Omega, 2021, 6, 17203-17216.	1.6	5
4327	Hierarchical CoFe LDH/MOF nanorods array with strong coupling effect grown on carbon cloth enables efficient oxidation of water and urea. Nanotechnology, 2021, 32, 385405.	1.3	25
4328	Cobalt and Nitrogen co-doped Carbon Composite Material Derived from Rice Husk as a cost-effective Electrocatalyst for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 0, , ArticleID:210724.	0.5	2
4329	Boosting the Activity and Stability with Dualâ€Metalâ€N Couplings for Li–O ₂ Battery. Energy and Environmental Materials, 2022, 5, 918-927.	7.3	11
4330	Conversion of Methane to Methanol on Cobalt-Embedded Graphene: A Theoretical Perspective. Catalysis Letters, $0, 1$.	1.4	5
4331	A novel Sm0.5Sr0.5Co1-xFexO3-Î/acetylene black composite as bifunctional electrocatalyst for oxygen reduction/evolution reactions. International Journal of Electrochemical Science, 2021, 16, 210722.	0.5	1
4332	Microwave-assisted synthesis of hierarchically porous Co3O4/rGO nanocomposite for low-temperature acetone detection. Journal of Colloid and Interface Science, 2021, 594, 690-701.	5.0	31
4333	Enhanced Electrochemical H ₂ O ₂ Production via Two-Electron Oxygen Reduction Enabled by Surface-Derived Amorphous Oxygen-Deficient TiO _{2â€"<i>x</i>} . ACS Applied Materials & Diterfaces, 2021, 13, 33182-33187.	4.0	67
4334	Investigation of the synergistic effect on cobalt oxide modified silver surface for electrocatalytic hydrogen evolution reaction. Journal of Alloys and Compounds, 2021, 869, 159324.	2.8	14
4335	Sustainable microwave-assisted hydrothermal synthesis of carbon-supported ZrO2 nanoparticles for H2O2 electrogeneration. Materials Chemistry and Physics, 2021, 267, 124575.	2.0	18
4336	Controllable Adsorption of Cobalt Metal Ions on Cotton Fabrics and Their Carbonised Oxygen Electrocatalysts. Electrocatalysis, 2021, 12, 667-677.	1.5	1
4337	Improvement of Hydrogen Oxidation Reaction in Anion Exchange Membrane Fuel Cells with Ruthenium-based Nanoparticle Catalysts. Journal of the Japan Petroleum Institute, 2021, 64, 166-171.	0.4	2
4338	Mesoporous Feâ€N x Subâ€Microspheres for Highly Efficient Electrocatalytic Oxygen Reduction Reaction. ChemCatChem, 2021, 13, 4047-4054.	1.8	5
4339	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
4340	\hat{I}^3 -Fe2O3 clusters embedded in 1D porous N-doped carbon matrix as pH-universal electrocatalyst for enhanced oxygen reduction reaction. Chemical Engineering Journal, 2021, 415, 129033.	6.6	25
4341	Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates. Nature Communications, 2021, 12, 4225.	5.8	218
4342	Recent advance on Coâ€based materials for polysulfide catalysis toward promoted lithiumâ€sulfur batteries. Nano Select, 2022, 3, 298-319.	1.9	9
4343	Efforts at Enhancing Bifunctional Electrocatalysis and Related Events for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 3998-4018.	1.7	36

#	ARTICLE	IF	CITATIONS
4344	N-Dopant-Mediated Growth of Metal Oxide Nanoparticles on Carbon Nanotubes. Nanomaterials, 2021, 11, 1882.	1.9	1
4345	Design of Highly Active and Stable Bifunctional Electrocatalysts for Oxygen Reactions. Journal of Physical Chemistry C, 2021, 125, 15166-15175.	1.5	7
4346	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	5.8	47
4347	Using Magnetometry to Understand the Relative Role of Magnetic Particles in Co-Based Catalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 17709-17717.	1.5	1
4348	In Situ Formation of Surface-Induced Oxygen Vacancies in Co9S8/CoO/NC as a Bifunctional Electrocatalyst for Improved Oxygen and Hydrogen Evolution Reactions. Nanomaterials, 2021, 11, 2237.	1.9	10
4349	Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Applied Catalysis B: Environmental, 2021, 291, 120065.	10.8	114
4350	Mechanochemical redox synthesis of interstitial mesoporous Co x Fe $1\hat{a}\in x$ O y catalyst for CO 2 hydrogenation. , 0, , .		0
4351	Activated Graphene Nanoplatelets Decorated with Carbon Nitrides for Efficient Electrocatalytic Oxygen Reduction Reaction. Advanced Energy and Sustainability Research, 2021, 2, 2100104.	2.8	11
4352	Developing Nâ€Rich Carbon from C ₃ N ₄ â€Polydopamine Composites for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 3954-3961.	1.7	4
4353	Regulating Percolation Threshold via Dual Conductive Phases for High-Efficiency Microwave Absorption Performance in C and X Bands. ACS Applied Materials & Interfaces, 2021, 13, 37517-37526.	4.0	37
4354	Efficient electrocatalytic oxidation of water and glucose on dendritic-shaped multicomponent transition metals/spongy graphene composites. Electrochimica Acta, 2021, 386, 138484.	2.6	16
4355	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate Framework <i>⟨i⟩ Derived Cobalt<i>â€"</i>Nitrogen<i>⟨i⟩ Doped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. ACS Nano, 2021, 15, 13240-13248.</i></i>	7.3	38
4356	Reduced Graphene Oxide Supported Cobalt-Calcium Phosphate Composite for Electrochemical Water Oxidation. Catalysts, 2021, 11, 960.	1.6	2
4357	A First-Principle Study of Fe-Doped Co ₃ O ₄ on N-Doped Graphene as Electrocatalyst. Key Engineering Materials, 0, 897, 95-100.	0.4	0
4358	Halfâ€Metallic CoO 2 and Semiconducting NiO 2 at High Pressures. Physica Status Solidi (B): Basic Research, 0, , 2100233.	0.7	0
4359	Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion. Advanced Science, 2021, 8, e2102777.	5.6	27
4360	Self-templated poly schiff base-Fe derived Fe-N co-doped porous carbon nanosheets for efficient electrocatalysis. Chemical Engineering Journal, 2022, 430, 132315.	6.6	7
4361	Shedding Light on the Role of Chemical Bond in Catalysis of Nitrogen Fixation. Advanced Materials, 2021, 33, e2007891.	11.1	32

#	Article	IF	CITATIONS
4362	The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162.	8.2	149
4363	In Situ Formation of Nano Ni–Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities. Advanced Materials, 2021, 33, e2103812.	11.1	78
4364	Recent development in electrocatalysts for hydrogen production through water electrolysis. International Journal of Hydrogen Energy, 2021, 46, 32284-32317.	3.8	236
4365	Synergistic Effect of Active Sites of Doubleâ€Atom Catalysts for Nitrogen Reduction Reaction. ChemSusChem, 2021, 14, 4593-4600.	3.6	18
4366	The cause of limited photoelectrochemical water reduction performance of Co3O4 photocathodes. Materials Chemistry and Physics, 2021, 270, 124834.	2.0	5
4367	Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica Acta, 2021, 398, 139263.	2.6	27
4368	Selfâ€Assembly of Surfaceâ€Functionalized Ag _{1.8} Mn ₈ O ₁₆ Nanorods with Reduced Graphene Oxide Nanosheets as an Efficient Bifunctional Electrocatalyst for Rechargeable Zincâ€Air Batteries. Chemistry - an Asian Journal, 2021, 16, 3677-3682.	1.7	4
4369	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
4370	Efficient solar light photocatalytic degradation of commercial pharmaceutical drug and dye using rGO-PANI assisted c-ZnO heterojunction nanocomposites. Ceramics International, 2021, 47, 23770-23780.	2.3	18
4371	Facile Co 3 O 4 nanoparticles deposited on polyvinylpyrrolidine for efficient water oxidation in alkaline media. Journal of the Chinese Chemical Society, 0 , , .	0.8	0
4372	Co3O4@carbon with high Co2+/Co3+ ratios derived from ZIF-67 supported on N-doped carbon nanospheres as stable bifunctional oxygen catalysts. Materials Today Energy, 2021, 21, 100737.	2.5	25
4373	Incorporation of Bi2O3 Residuals with Metallic Bi as High Performance Electrocatalyst toward Hydrogen Evolution Reaction. Catalysts, 2021, 11, 1099.	1.6	20
4374	Facile one-pot microwave assisted synthesis of rGO-CuS-ZnS hybrid nanocomposite cathode catalysts for microbial fuel cell application. Chemosphere, 2021, 278, 130426.	4.2	23
4375	Metal–Organic Frameworksâ€Derived Selfâ€Supported Carbonâ€Based Composites for Electrocatalytic Water Splitting. Chemistry - A European Journal, 2021, 27, 15866-15888.	1.7	35
4376	Chiral-induced enhanced electrocatalytic behaviour of cysteine coated bifunctional Au–Ni bilayer thin film device for water splitting application. International Journal of Hydrogen Energy, 2022, 47, 42160-42170.	3.8	8
4377	Covalent interfacial coupling of vanadium nitride with nitrogen-rich carbon textile boosting its lithium storage performance as binder-free anode. Nano Research, 2021, 14, 4336-4346.	5.8	12
4378	Design and development of defect rich titania nanostructure for efficient electrocatalyst for hydrogen evolution reaction in an acidic electrolyte. Journal of Materials Research and Technology, 2021, 14, 2739-2750.	2.6	6
4379	Application of layered nanoclay in electrochemical energy: Current status and future. EnergyChem, 2021, 3, 100062.	10.1	29

#	Article	IF	CITATIONS
4380	Perovskite La0.5Ca0.5CoO3-δ nanocrystals on graphene as a synergistic catalyst for rechargeable zinc-air batteries. Sustainable Materials and Technologies, 2021, 29, e00282.	1.7	3
4381	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
4382	Increasing Iridium Oxide Activity for the Oxygen Evolution Reaction with Hafnium Modification. Journal of the American Chemical Society, 2021, 143, 15616-15623.	6.6	82
4383	Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chemical Engineering Journal, 2022, 430, 132691.	6.6	58
4384	Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Applied Materials & Splitting. ACS Appli	4.0	34
4385	Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity. Materials Today, 2021, 50, 44-54.	8.3	27
4386	Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Research, 2022, 15, 1660-1671.	5.8	17
4387	Quo vadis carbocatalysis?. Journal of Energy Chemistry, 2021, 61, 219-227.	7.1	3
4388	Enhanced electrocatalysis of NiMnIn Heusler alloy films for hydrogen evolution reaction by magnetic field. Journal of Alloys and Compounds, 2021, 877, 160271.	2.8	23
4389	Multifunctional Metalâ€oxide Integrated Monolayer Graphene Heterostructures for Planar, Flexible, and Skinâ€mountable Device Applications. Nano Energy, 2021, 88, 106274.	8.2	11
4390	In situ observation of metal ion interactions with graphene oxide layers: From the growth of metal hydroxide to metal oxide formation. Carbon, 2021, 184, 721-727.	5.4	14
4391	Co1-xS/N-doped graphene foam composite as efficient bifunctional electrocatalysts for the evolution reaction of oxygen and hydrogen. Electrochimica Acta, 2021, 393, 139081.	2.6	8
4392	Ultrafine CoO nanoparticles and Co-N-C lamellae supported on mesoporous carbon for efficient electrocatalysis of oxygen reduction in zinc-air batteries. Electrochimica Acta, 2021, 394, 139135.	2.6	23
4393	Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coordination Chemistry Reviews, 2021, 445, 213982.	9.5	56
4394	Co/CoOx heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2021, 599, 46-57.	5.0	41
4395	Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coordination Chemistry Reviews, 2021, 445, 214073.	9.5	19
4396	Preparation of Ni-W-eGO composite coatings and investigation of its mechanical properties and corrosion resistance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127385.	2.3	16
4397	Interfacial charge transfer mechanism of oxygen reduction reaction in alkali media: Effects of molecular charge states and triphenylamine substituent on cobalt porphyrin electrocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127435.	2.3	11

#	Article	IF	CITATIONS
4398	Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chemical Engineering Journal, 2021, 423, 130233.	6.6	10
4399	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
4400	Rational construction of Au@Co2N0.67 nanodots-interspersed 3D interconnected N-graphene hollow sphere network for efficient water splitting and Zn-air battery. Nano Energy, 2021, 89, 106420.	8.2	26
4401	Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Storage Materials, 2021, 42, 118-128.	9.5	64
4402	Enhanced room temperature NH3 sensing of rGO/Co3O4 nanocomposites. Materials Chemistry and Physics, 2021, 272, 125033.	2.0	31
4403	2,5-Bis(hydroxymethyl)furan: A new alternative to HMF for simultaneously electrocatalytic production of FDCA and H2 over CoOOH/Ni electrodes. Applied Catalysis B: Environmental, 2021, 297, 120396.	10.8	56
4404	Preparation and application of OD-2D nanomaterial hybrid heterostructures for energy applications. Materials Today Advances, 2021, 12, 100169.	2.5	20
4405	MOF-derived hollow NiCo2O4/C composite for simultaneous electrochemical determination of furazolidone and chloramphenicol in milk and honey. Food Chemistry, 2021, 364, 130368.	4.2	58
4406	Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion. Coordination Chemistry Reviews, 2021, 449, 214209.	9.5	28
4407	Ag nanoparticles modified crumpled borophene supported Co3O4 catalyst showing superior oxygen evolution reaction (OER) performance. Applied Catalysis B: Environmental, 2021, 298, 120529.	10.8	118
4408	Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chemical Engineering Journal, 2021, 426, 131317.	6.6	40
4409	Synthesis and application in oxygen reduction reaction of N-doping porous graphitic carbon from biomass waste. Fuel Processing Technology, 2021, 224, 107028.	3.7	15
4410	Unexpected increasing Co valence state of an exsolved catalyst by Mo doping for enhanced oxygen evolution reaction. Chemical Engineering Journal, 2021, 425, 130681.	6.6	11
4411	Tuning electrochemical transformation process of zeolitic imidazolate framework for efficient water oxidation activity. Journal of Energy Chemistry, 2022, 65, 505-513.	7.1	23
4412	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	7.1	18
4413	Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal, 2022, 429, 132180.	6.6	56
4414	Metal-organic framework-derived carbon nanotubes with multi-active Fe-N/Fe sites as a bifunctional electrocatalyst for zinc-air battery. Journal of Energy Chemistry, 2022, 66, 306-313.	7.1	56
4415	Design of copper salt@graphene nanohybrids to accomplish excellent resilience and superior fire safety for flexible polyurethane foam. Journal of Colloid and Interface Science, 2022, 606, 1205-1218.	5.0	20

#	ARTICLE	IF	CITATIONS
4416	Electrocatalytic activity of calcined manganese ferrite solid nanospheres in the oxygen reduction reaction. Environmental Research, 2022, 204, 112126.	3.7	2
4417	A novel visible light active rare earth doped CdS nanoparticles decorated reduced graphene oxide sheets for the degradation of cationic dye from wastewater. Chemosphere, 2022, 287, 132091.	4.2	35
4418	The use of polymer-graphene composites in fuel cell and solar energy. , 2022, , 425-505.		1
4419	Predominantly enhanced catalytic activities of surface protected ZnO nanorods integrated stainless-steel mesh structures: A synergistic impact on oxygen evolution reaction process. Chemical Engineering Journal, 2022, 429, 132360.	6.6	9
4420	Ru-incorporated Co3O4 nanoparticles from self-sacrificial ZIF-67 template as efficient bifunctional electrocatalysts for rechargeable metal-air battery. Journal of Colloid and Interface Science, 2022, 606, 654-665.	5.0	62
4421	Highly efficient CoNiP nanoboxes on graphene oxide for the hydrolysis of ammonia borane. Chemical Engineering Journal, 2022, 428, 131219.	6.6	35
4422	Co/Co3O4 nanoparticles embedded into thin O-doped graphitic layer as bifunctional oxygen electrocatalysts for Zn-air batteries. Chemical Engineering Journal, 2022, 427, 130931.	6.6	25
4423	The thermodynamics and electronic structure analysis of P-doped spinel Co3O4. Physical Chemistry Chemical Physics, 2021, 23, 3588-3594.	1.3	5
4424	Crystal and electronic structure of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Co</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> spinel under pressure probed by XANES and Raman spectroscopy. Physical Review B, 2021, 103, .	1.1	8
4425	Cobalt and vanadium co-doped FeOOH nanoribbons: an iron-rich electrocatalyst for efficient water oxidation. Materials Chemistry Frontiers, 2021, 5, 6485-6490.	3.2	7
4426	A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy and Fuels, 2021, 5, 4710-4723.	2.5	5
4427	Electrocatalysis using nanomaterials. Frontiers of Nanoscience, 2021, 18, 343-420.	0.3	2
4428	Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H ₂ O ₂ . New Journal of Chemistry, 2021, 45, 15544-15554.	1.4	3
4429	A nitrogen-doped NiCo2S4/CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in Zn–air batteries. Nanoscale, 2021, 13, 810-818.	2.8	38
4430	Tailoring oxygen evolution reaction activity of metal-oxide spinel nanoparticles <i>via</i> judiciously regulating surface-capping polymers. Journal of Materials Chemistry A, 2021, 9, 20375-20384.	5. 2	14
4431	Functionalized graphene-based nanocomposites for smart optoelectronic applications. Nanotechnology Reviews, 2021, 10, 605-635.	2.6	28
4432	Self-assembly of corn-like Co ₃ O ₄ from nanoparticles induced by graphene wrinkles and its application in lithium ion batteries. Sustainable Energy and Fuels, 2021, 5, 2469-2476.	2.5	10
4433	Ion-biosorption induced core–shell Fe ₂ P@carbon nanoparticles decorated on N, P co-doped carbon materials for the oxygen evolution reaction. Inorganic Chemistry Frontiers, 2021, 8, 2385-2394.	3.0	14

#	Article	IF	CITATIONS
4434	Electrocatalytic oxygen reduction by a Co/Co ₃ O ₄ @N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers. RSC Advances, 2021, 11, 2693-2700.	1.7	21
4435	The Measurements of the Oxygen Reduction Reaction. , 2021, , 29-83.		0
4436	Fine regulation of electron transfer in Ag@Co ₃ O ₄ nanoparticles for boosting the oxygen evolution reaction. Chemical Communications, 2021, 57, 6284-6287.	2.2	3
4437	Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chemical Communications, 2021, 57, 6070-6073.	2.2	22
4438	A facile method of selective dissolution for preparation of Co ₃ O ₄ /LaCoO ₃ as a bifunctional catalyst for Al/Zn–air batteries. Sustainable Energy and Fuels, 2021, 5, 995-1002.	2.5	9
4439	Photothermal effect enables markedly enhanced oxygen reduction and evolution activities for high-performance Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 19734-19740.	5.2	33
4440	Multifunctional Polymer Composites: Self-Healing, Shape Memory, 3D Printing, and Flame Retardancy., 2021, , .		0
4441	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	18.7	461
4442	Applications of Soft X-ray Spectromicroscopy in Energy Research from Materials to Batteries. , 2021, , 141-178.		0
4443	Edge Sites with Unsaturated Coordination on Core–Shell Mn ₃ O ₄ @Mn <i>_x</i> Co _{3â^'} <i>_x</i> Nanostructures for Electrocatalytic Water Oxidation. Advanced Materials, 2017, 29, 1701820.	suulti>1	115
4444	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	11.1	302
4445	Synthesis of Porous Carbonâ€coated Cobalt Catalyst through Pyrolyzing Metal–Organic Framework and their Bifunctional OER/ORR Catalytic Activity for Znâ€Air Rechargeable Batteries. Bulletin of the Korean Chemical Society, 2020, 41, 310-316.	1.0	25
4446	Carbon Nanotubes Loaded on Graphene Microfolds as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 4520-4528.	1.8	9
4447	Cu Nanoparticles Embedded in <scp>Nâ€Doped</scp> Carbon Materials for Oxygen Reduction Reaction. Chinese Journal of Chemistry, 2020, 38, 941-946.	2.6	42
4448	Role of Nitrogen Precursor on the Activity Descriptor towards Oxygen Reduction Reaction in Ironâ€Based Catalysts. ChemistrySelect, 2018, 3, 6542-6550.	0.7	9
4449	Chloride Corrosion Resistant Nitrogen doped Reduced Graphene Oxide/Platinum Electrocatalyst for Hydrogen Evolution Reaction in an Acidic Medium. ChemistrySelect, 2020, 5, 1739-1750.	0.7	3
4450	Manipulating Interfaces of Electrocatalysts Down to Atomic Scales: Fundamentals, Strategies, and Electrocatalytic Applications. Small Methods, 2021, 5, e2001010.	4.6	35
4451	Formic Acid Oxidation. , 2014, , 895-901.		2

#	Article	IF	Citations
4453	Bio-Inspired Engineering of 3D Carbon Nanostructures. Springer Series in Biomaterials Science and Engineering, 2016, , 365-420.	0.7	1
4454	Electrochemical Exfoliation Synthesis of Graphene. Springer Theses, 2017, , 39-50.	0.0	6
4455	Encapsulated FeP nanoparticles with in-situ formed P-doped graphene layers: Boosting activity in oxygen reduction reaction. Science China Materials, 2021, 64, 1159-1172.	3.5	19
4456	3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Applied Catalysis B: Environmental, 2017, 217, 477-484.	10.8	212
4457	Single-phase Ru1â^'â^'Mn Co O2 nanoparticles as highly effective oxygen reduction electrocatalysts in alkaline media with enhanced stability and fuel-tolerance. Applied Catalysis B: Environmental, 2020, 277, 119149.	10.8	13
4458	Building highly active hybrid double–atom sites in C2N for enhanced electrocatalytic hydrogen peroxide synthesis. Green Energy and Environment, 2021, 6, 846-857.	4.7	22
4459	Copper induced phosphide for enhanced electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21422-21430.	3.8	15
4460	Calcination of Porphyrin-Based Conjugated Microporous Polymers Nanotubes As Nanoporous N-Rich Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 5260-5268.	2.5	29
4461	Challenges and Perspectives of Nanocatalysts in Alcohol-Fuelled Direct Oxidation Fuel Cells. RSC Energy and Environment Series, 2012, , 227-249.	0.2	3
4462	The chemically reduced CuO–Co ₃ O ₄ composite as a highly efficient electrocatalyst for oxygen evolution reaction in alkaline media. Catalysis Science and Technology, 2019, 9, 6274-6284.	2.1	24
4463	Hierarchical Co ₃ O ₄ nanorods anchored on nitrogen doped reduced graphene oxide: a highly efficient bifunctional electrocatalyst for rechargeable Zn–air batteries. Catalysis Science and Technology, 2020, 10, 1444-1457.	2.1	13
4464	Surface/interface nanoengineering for rechargeable Zn–air batteries. Energy and Environmental Science, 2020, 13, 1132-1153.	15.6	344
4465	Facile doping of nickel into Co ₃ O ₄ nanostructures to make them efficient for catalyzing the oxygen evolution reaction. RSC Advances, 2020, 10, 12962-12969.	1.7	20
4466	Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications. Journal Physics D: Applied Physics, 2021, 54, 085303.	1.3	6
4467	Heat Transfer of rGO/CO3O4 Hybrid Nanomaterial-Based Nanofluids and Twisted Tape Configurations in a Tube. Journal of Thermal Science and Engineering Applications, 2021, 13, .	0.8	17
4468	NiCo ₂ Se ₄ Nanowires as a High-Performance Bifunctional Oxygen Electrocatalyst. Journal of the Electrochemical Society, 2020, 167, 056503.	1.3	20
4469	Editors' Choiceâ€"Reviewâ€"Activated Carbon Electrode Design: Engineering Tradeoff with Respect to Capacitive Deionization Performance. Journal of the Electrochemical Society, 2020, 167, 143501.	1.3	47
4470	Metal Oxide Nanomaterials. , 2014, , 1-98.		1

#	Article	IF	Citations
4472	Combining Zn _{0.76} Co _{0.24} S with S-doped graphene as high-performance anode materials for lithium- and sodium-ion batteries. Nanotechnology Reviews, 2020, 9, 1227-1236.	2.6	8
4473	Electrodeposition of Ni-Fe-Co-Graphene Composite Coatings and Their Electrocatalytic Activity for Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2019, 14, 957-969.	0.5	18
4474	Triangular Prism Shaped Co3O4 as a high-performance Electrode Material for Supercapacitors. International Journal of Electrochemical Science, 2020, 15, 966-976.	0.5	12
4475	Design of Functional Nanostructured Carbons for Advanced Heterogeneous Catalysts: A Review. Current Organic Chemistry, 2014, 18, 1262-1279.	0.9	12
4476	Effect of Morphology of Co ₃ O ₄ for Oxygen Evolution Reaction in Alkaline Water Electrolysis. Current Nanoscience, 2014, 11, 107-112.	0.7	43
4478	Platinum and Platinum Group Metal-Free Catalysts for Anion Exchange Membrane Fuel Cells. Energies, 2020, 13, 582.	1.6	50
4479	A Unique Synthesis of Macroporous N-Doped Carbon Composite Catalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 43.	1.9	4
4480	Recent Progress in the Identification of Active Sites in Pyrolyzed Feâ^N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction. Journal of Electrochemical Science and Technology, 2017, 8, 169-182.	0.9	22
4481	Nanocomposites of nitrogen-doped graphene and cobalt tungsten oxide as efficient electrode materials for application in electrochemical devices. AIMS Materials Science, 2016, 3, 1456-1473.	0.7	8
4482	Characterization techniques for graphene-based materials in catalysis. AIMS Materials Science, 2017, 4, 755-788.	0.7	52
4483	Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for Supercapacitors Application. Aerosol and Air Quality Research, 2019, 19, 443-448.	0.9	21
4484	Facile Synthesis of Co3O4/Mildly Oxidized Multiwalled Carbon Nanotubes/Reduced Mildly Oxidized Graphene Oxide Ternary Composite as the Material for Supercapacitors. Bulletin of the Korean Chemical Society, 2014, 35, 1349-1355.	1.0	3
4485	Synthesis and Characterization of CuCo2O4Nanofiber Electrocatalyst for Oxygen Evolution Reaction. Journal of the Korean Institute of Surface Engineering, 2016, 49, 539-548.	0.1	1
4486	NiSe/Ni ₃ Se ₂ on nickel foam as an ultra-high-rate HER electrocatalyst: common anion heterostructure with built-in electric field and efficient interfacial charge transfer. RSC Advances, 2021, 11, 34432-34439.	1.7	8
4487	A graphene-like nanoribbon for efficient bifunctional electrocatalysts. Journal of Materials Chemistry A, 2021, 9, 26688-26697.	5.2	10
4488	The joint effect of electrical conductivity and surface oxygen functionalities of carbon supports on the oxygen reduction reaction studied over bare supports and Mn–Co spinel/carbon catalysts in alkaline media. Catalysis Science and Technology, 2021, 11, 7578-7591.	2.1	15
4489	Multianion Transition Metal Compounds: Synthesis, Regulation, and Electrocatalytic Applications. Accounts of Materials Research, 2021, 2, 1082-1092.	5.9	13
4490	NiCo Alloy Nanoparticles Anchored on Carbon Nanotube-Decorated Carbon Nanorods as a Durable and Efficient Oxygen Electrocatalyst for Zinc-Air Flow Batteries. ACS Applied Energy Materials, 2021, 4, 11041-11050.	2.5	13

#	Article	IF	CITATIONS
4491	Efficient <scp>Mnâ€Niâ€Co</scp> nanocomposite–based electrocatalyst for oxygen evolution reaction in alkaline media. Journal of the Chinese Chemical Society, 2021, 68, 2254-2263.	0.8	3
4492	Activating Inert Surface Pt Single Atoms via Subsurface Doping for Oxygen Reduction Reaction. Nano Letters, 2021, 21, 7970-7978.	4.5	33
4493	Oxygen Reduction Activity of Fe/Co/Ni Doped MnOx @ Graphene Nanohybrid: A Comparative Study. Journal of Electroanalytical Chemistry, 2021, 904, 115767.	1.9	1
4494	Facile Synthesis of Iron and Phosphorousâ€embedded Nitrogenâ€containing Porous Carbon as an Efficient Electrocatalyst for Microbial Fuel Cells. ChemElectroChem, 2021, 8, 4108.	1.7	5
4496	Cobaltâ€Based Electrocatalysts as Air Cathodes in Rechargeable Zn–Air Batteries: Advances and Challenges. Small Structures, 2021, 2, 2100144.	6.9	40
4497	Coâ€Electrodeposition of Nanostructured Ceâ€NiO <i></i> <nub><nub><nub><nub><nub>the Oxygen Evolution Reaction under Alkaline Conditions. Advanced Materials Technologies, 2022, 7, 2100705.</nub></nub></nub></nub></nub>	3.0	4
4498	Recent developments on transition <scp>metalâ€"based</scp> electrocatalysts for application in anion exchange membrane water electrolysis. International Journal of Energy Research, 2022, 46, 2241-2276.	2.2	41
4499	Silver Oxygen Reduction Electrocatalyst in Alkaline Medium: Aging and Protective Coating. Energy Technology, 2021, 9, 2100546.	1.8	1
4500	Nanostructured Co3O4 electrocatalyst for OER: The role of organic polyelectrolytes as soft templates. Electrochimica Acta, 2021, 398, 139338.	2.6	30
4501	Highly efficient asymmetric supercapacitor-based on Ni-Co oxides intercalated graphene as positive and Fe2O3 doped graphene as negative electrodes. Journal of Energy Storage, 2021, 44, 103305.	3.9	8
4502	Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting. Nano Energy, 2021, 90, 106635.	8.2	77
4504	In-Situ Stress Measurements during Cobalt Electrodeposition on (111)-Textured Au. ECS Meeting Abstracts, 2015, , .	0.0	O
4506	The Performance of Zn Doped TiO ₂ Films in Photo-Electrochemical Water Splitting. Material Sciences, 2016, 06, 149-155.	0.0	0
4507	Preparation of Nanosized Palladium-Graphene Composites and Photocatalytic Degradation of Various Organic Dyes. Elastomers and Composites, 2016, 51, 10-16.	0.1	0
4509	Effect of Annealing Time on the Dielectric Properties of BaMn ₃ Ti ₄ O <sub&pellets 07,="" 1637-1644.<="" 2019,="" and="" applied="" by="" journal="" mathematics="" of="" physics,="" plasma="" sintering.="" spark="" td=""><td>anop2gt;14</td><td>ł.25<!--</td--></td></sub&pellets>	an op 2gt;14	ł.25 </td
4511	Comparing Different Approaches to Form Cobalt Oxide Layer on CoPt Nanoparticles. Adıyaman University Journal of Science, 0, , .	0.0	0
4512	Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chemical Reviews, 2022, 122, 957-999.	23.0	87
4513	Electrospun CoFe2O4 nanofibers as bifunctional nanocatalysts for the oxygen evolution and oxygen reduction reactions in alkaline media. MRS Advances, 2020, 5, 2929-2937.	0.5	3

#	Article	IF	Citations
4514	Alkaline Fuel Cells, Theory and Applications. , 2022, , 166-231.		0
4515	Electrospinning of Nanofibers for Li-Air Battery. , 2020, , 141-156.		0
4516	High-throughput investigation of the formation of double spinels. Journal of Materials Chemistry A, 2020, 8, 25756-25767.	5.2	36
4517	High-Throughput Computational Studies in Catalysis and Materials Research, and Their Impact on Rational Design. , 2020, , 1-44.		1
4518	Graphene Oxide as a Polymer. Nanotechnologies in Russia, 2020, 15, 163-168.	0.7	5
4519	Dense Crystalline–Amorphous Interfacial Sites for Enhanced Electrocatalytic Oxygen Evolution. Advanced Functional Materials, 2022, 32, 2107056.	7.8	69
4520	Influence on Electrochemical Reactivity and Synthesis of Stainless Steel/Nitrogen-Doped Carbon Nanofibers. Journal of Physical Chemistry C, 2021, 125, 25197-25206.	1.5	2
4521	lodine-Doping-Induced Electronic Structure Tuning of Atomic Cobalt for Enhanced Hydrogen Evolution Electrocatalysis. ACS Nano, 2021, 15, 18125-18134.	7.3	40
4522	An active ZnxNi1-xS@Mo2C/carbon cloth electrode as efficient catalyst for water electrolysis. Vacuum, 2022, 196, 110729.	1.6	7
4523	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	6.9	16
4524	A Highly Active Bifunctional Catalyst of Mn–Co–Fe–N/S@CNT for Rechargeable Zinc-Air Batteries. Journal of the Electrochemical Society, 2021, 168, 110529.	1.3	7
4525	Spinel-Type Metal Oxide Nanoparticles Supported on Platelet-Type Carbon Nanofibers as a Bifunctional Catalyst for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Electrochemistry, 2020, 88, 566-573.	0.6	5
4526	Facile Synthesis of Mesoporous Co3O4/CoO on rGO Nanocomposites as Highly Active and Stable Oxygen Bi-Functional Electrocatalysts. Journal of the Electrochemical Society, 2020, 167, 134509.	1.3	0
4527	Mitigation and actions toward nitrogen losses in Pakistan. , 2022, , 149-175.		2
4528	Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures. Materials Advances, 2022, 3, 779-809.	2.6	45
4529	Fe,N-modulated carbon fibers aerogel as freestanding cathode catalyst for rechargeable Zn–Air battery. Carbon, 2022, 187, 196-206.	5.4	31
4530	Co@C nanorods as both magnetic stirring nanobars and magnetic recyclable nanocatalysts for microcatalytic reactions. Applied Catalysis B: Environmental, 2022, 304, 120925.	10.8	12
4531	Co-N-Si/AC Catalyst for Aerobic Oxidation of Benzyl Alcohols to Esters under Mild Conditions. Molecules, 2021, 26, 6792.	1.7	1

#	Article	IF	Citations
4532	Synthesis, Characterization and Photodegradation Studies of Copper Oxide–Graphene Nanocomposites. Coatings, 2021, 11, 1452.	1.2	1
4533	ZnS anchored on porous N, S-codoped carbon as superior oxygen reduction reaction electrocatalysts for Al-air batteries. Journal of Colloid and Interface Science, 2022, 609, 868-877.	5.0	6
4534	Highly dispersed PtNi nanoparticles modified carbon black as high-performanced electrocatalyst for oxygen reduction in acidic medium. Journal of Electroanalytical Chemistry, 2022, 904, 115908.	1.9	7
4535	Epitaxial III–V/Si Vertical Heterostructures with Hybrid 2Dâ€6emimetal/Semiconductor Ambipolar and Photoactive Properties. Advanced Science, 2022, 9, e2101661.	5 . 6	13
4536	RuCoO _{<i>x</i>} Nanofoam as a High-Performance Trifunctional Electrocatalyst for Rechargeable Zincâ€"Air Batteries and Water Splitting. Nano Letters, 2021, 21, 9633-9641.	4.5	49
4537	Support Effects in Electrocatalysis and Their Synchrotron Radiation-Based Characterizations. Journal of Physical Chemistry Letters, 2021, 12, 11543-11554.	2.1	12
4538	Adsorption of D ₂ O and CO on Co ₃ O ₄ (111): Water Stabilizes Coadsorbed CO. Journal of Physical Chemistry C, 2021, 125, 26785-26792.	1.5	3
4539	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30
4540	Sustainable Oxide Electrocatalyst for Hydrogen- and Oxygen-Evolution Reactions. ACS Catalysis, 2021, 11, 14605-14614.	5 . 5	35
4541	Surface functionalization of polyaniline and excellent electrocatalytic performance for oxygen reduction to produce hydrogen peroxide. Chemical Engineering Journal, 2022, 431, 133921.	6.6	9
4542	Strain engineering in the oxygen reduction reaction and oxygen evolution reaction catalyzed by Pt-doped Ti ₂ CF ₂ . Journal of Materials Chemistry A, 2022, 10, 1390-1401.	5.2	27
4544	Application of rock-salt-type Co–Mn oxides for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2022, 520, 230868.	4.0	5
4545	Evidence of synergistic electrocatalysis at a cobalt oxide–graphene interface through nanochemical mapping of scanning transmission X-ray microscopy. Chinese Journal of Physics, 2022, 76, 135-144.	2.0	3
4546	Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries. Renewable and Sustainable Energy Reviews, 2022, 156, 111970.	8.2	37
4547	Enhanced Feâ^'N active site formation through interfacial energy control of precursor impregnation solution for the air cathode of membraneless direct formate fuel cells. Carbon, 2022, 189, 240-250.	5.4	7
4548	Dispersed FeO nanoparticles decorated with Co2SiO4 hollow spheres for enhanced oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 611, 235-245.	5.0	19
4549	Regulating surface oxygen species on copper (I) oxides via plasma treatment for effective reduction of nitrate to ammonia. Applied Catalysis B: Environmental, 2022, 305, 121021.	10.8	98
4550	Clarifying the critical roles of iron in boosting oxygen reduction: Single Fe atoms anchored on carbon vacancies as efficient active sites. Applied Catalysis B: Environmental, 2022, 305, 121035.	10.8	27

#	Article	IF	CITATIONS
4551	Advanced interfacial engineering of oxygen-enriched Fe Sn1â^'OSe nanostructures for efficient overall water splitting and flexible zinc-air batteries. Applied Catalysis B: Environmental, 2022, 305, 120924.	10.8	33
4552	In-Situ Encapsulation of FeCo Alloy in Nitrogen-Doped Carbon Framework as Advanced Bifunctional Cathode Catalysts for Zn-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
4553	Modulating the electrocatalytic CO ₂ reduction performances of bismuth nanoparticles with carbon substrates with controlled degrees of oxidation. Nanoscale, 2021, 13, 20091-20097.	2.8	7
4554	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy. Angewandte Chemie, 2022, 134, .	1.6	3
4555	A spherical multishell hollow carbon-based catalyst with a controllable N-species content for the oxygen reduction reaction in air-breathing cathode microbial fuel cells. Reaction Chemistry and Engineering, $0, , .$	1.9	3
4556	New insights into the key bifunctional role of sulfur in Fe–N–C single-atom catalysts for ORR/OER. Nanoscale, 2022, 14, 3212-3223.	2.8	32
4557	Heteroatom-doped graphene-based electrocatalysts for ORR, OER, and HER., 2022, , 145-168.		1
4558	Bifunctional rare metal-free electrocatalysts synthesized entirely from biomass resources. Science and Technology of Advanced Materials, 2022, 23, 31-40.	2.8	8
4559	The mechanical hybrid of V2O5 microspheres/graphene as an excellent cathode for lithium-ion batteries. Journal of Solid State Electrochemistry, 2022, 26, 729-738.	1.2	8
4560	Multiple roles of graphene in electrocatalysts for metal-air batteries. Catalysis Today, 2023, 409, 2-22.	2.2	12
4561	Synthesis and Characterization of Plant Derived Copper Oxide Nanoparticles and Their Application towards Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	0
4562	Recycling and valorization of LDPE: direct transformation into highly ordered doped-carbon materials and their application as electro-catalysts for the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	2.1	3
4563	Studies on Co3O4–NiO nanocomposites for potential electrocatalyst for alkaline water electrolysis. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	2
4564	Oxygen plasma induced interfacial CoOx/Phthalocyanine Cobalt as bifunctional electrocatalyst towards oxygen-involving reactions. International Journal of Hydrogen Energy, 2022, 47, 9905-9914.	3.8	11
4565	Controlling the Interfacial Charge Polarization of MOF-Derived 0D–2D vdW Architectures as a Unique Strategy for Bifunctional Oxygen Electrocatalysis. ACS Applied Materials & Diterfaces, 2022, 14, 3919-3929.	4.0	63
4566	Bimetallic persulfide nanoflakes assembled by dealloying and sulfurization: a versatile electro-catalyst for overall water splitting and Zn–air batteries. Catalysis Science and Technology, 2022, 12, 497-508.	2.1	3
4568	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. Advanced Functional Materials, 2022, 32, .	7.8	22
4569	Cu ^{II} /Cu ^I decorated N-doped carbonaceous electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 6107-6114.	5.2	16

#	Article	IF	Citations
4570	Iron-based sulfur and nitrogen dual doped porous carbon as durable electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 6078-6088.	3.8	21
4571	N-doped hollow porous carbon spheres@Co Cu Fe alloy nanospheres as novel non-precious metal electrocatalysts for HER and OER. International Journal of Hydrogen Energy, 2022, 47, 5947-5960.	3.8	30
4572	In situ formation of Co3O4 nanocrystals embedded in laser-induced graphene foam for high-energy flexible micro-supercapacitors. Dalton Transactions, 2022, , .	1.6	2
4573	Rational Design of a High-Durability Pt-Based ORR Catalyst Supported on Mn/N Codoped Carbon Sheets for PEMFCs. Energy &	2.5	22
4574	Coordination modulation of iridium single-atom catalyst maximizing water oxidation activity. Nature Communications, 2022, 13, 24.	5.8	99
4575	Recent advances in oxygen deficient metal oxides: Opportunities as supercapacitor electrodes. International Journal of Energy Research, 2022, 46, 7055-7081.	2.2	20
4576	Atomic-level coupled spinel@perovskite dual-phase oxides toward enhanced performance in Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 1506-1513.	5.2	28
4577	Threeâ€Dimensional Electrodes for Oxygen Electrocatalysis. ChemElectroChem, 2022, 9, .	1.7	3
4578	Tailoring MS <i>>_x</i> Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage Materials with Strong Interfacial Engineering. Small, 2022, 18, e2106593.	5.2	8
4579	Oxygen Reduction Reaction Catalysed by Supported Nanoparticles: Advancements and Challenges. ChemCatChem, 2022, 14, .	1.8	10
4580	An Fe-doped Co-oxide electrocatalyst synthesized through a post-modification method toward advanced water oxidation. Dalton Transactions, 2022, 51, 3137-3145.	1.6	5
4581	Unmasking the Critical Role of the Ordering Degree of Bimetallic Nanocatalysts on Oxygen Reduction Reaction by In Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
4582	Advances in Graphene/Inorganic Nanoparticle Composites for Catalytic Applications. Chemical Record, 2022, 22, e202100274.	2.9	16
4583	Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Science Advances, 2022, 8, eabj1584.	4.7	94
4584	Composition and Electronic Structure of Mn ₃ O ₄ and Co ₃ O ₄ Cathodes in Zinc–Air Batteries: A DFT Study. Journal of Physical Chemistry C, 2022, 126, 2561-2572.	1.5	3
4585	MOF-derived CoN/CoFe/NC bifunctional electrocatalysts for zinc-air batteries. Applied Surface Science, 2022, 582, 152375.	3.1	17
4586	Advanced porous borocarbonitride nanoarchitectonics: Their structural designs and applications. Carbon, 2022, 190, 142-169.	5.4	24
4587	Rhenium induced electronic structure modulation of Ni3S2/N-doped graphene for efficient trifunctional electrocatalysis. Composites Part B: Engineering, 2022, 234, 109670.	5.9	12

#	Article	IF	CITATIONS
4588	Engineering of Co3O4@Ni2P heterostructure as trifunctional electrocatalysts for rechargeable zinc-air battery and self-powered overall water splitting. Journal of Materials Science and Technology, 2022, 115, 19-28.	5.6	35
4589	Enabling methanol oxidation by an interacting hybrid nanosystem of spinel Co ₃ O ₄ nanoparticle decorated MXenes. Dalton Transactions, 2022, 51, 4324-4337.	1.6	8
4590	One-Step Synthesis of PtNi Modified TiO $\langle sub \rangle 2 \langle sub \rangle$ Nanotubes Array for Methanol Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
4591	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	70
4592	Overturned Loading of Inert CeO ₂ to Active Co ₃ O ₄ for Unusually Improved Catalytic Activity in Fentonâ€Like Reactions. Angewandte Chemie, 2022, 134, .	1.6	7
4593	Dissolution of the Heteroatom Dopants and Formation of Ortho-Quinone Moieties in the Doped Carbon Materials during Water Electrooxidation. Journal of the American Chemical Society, 2022, 144, 3250-3258.	6.6	45
4594	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
4595	Electrochemical Growth and Formation Mechanism of Cu ₂ Se/CoSe ₂ -Based Bifunctional Electrocatalyst: A Strategy for the Development of Efficient Material toward Water Electrolysis. ACS Applied Energy Materials, 2022, 5, 3915-3925.	2.5	24
4596	Fabrication and Integration of Functionalized N-rGO-Ni/Ag and N-rGO-Ni/Co Nanocomposites as Synergistic Oxygen Electrocatalysts in Fuel Cells. Nanomaterials, 2022, 12, 585.	1.9	5
4597	Enhanced interactions of gas molecule with defective graphene induced by strong coupling effect between carbon-Co in Co3O4: A theoretical study. Applied Surface Science, 2022, 587, 152755.	3.1	3
4598	In-situ reconstructed Ru atom array on \hat{l} ±-MnO2 with enhanced performance for acidic water oxidation. Nature Catalysis, 2021, 4, 1012-1023.	16.1	324
4599	Oxygen-vacancy-rich Fe ₃ O ₄ /carbon nanosheets enabling high-attenuation and broadband microwave absorption through the integration of interfacial polarization and charge-separation polarization. Journal of Materials Chemistry A, 2022, 10, 8479-8490.	5.2	26
4600	Photothermal-effect-promoted interfacial OH ^{â²'} filling and the conversion of carrier type in (Co _{1â²'<i>x</i>} Ni _{<i>x</i>}) ₃ C during water oxidation. Journal of Materials Chemistry A, 2022, 10, 8258-8267.	5.2	6
4601	Dynamic coordination transformation of active sites in single-atom MoS ₂ catalysts for boosted oxygen evolution catalysis. Energy and Environmental Science, 2022, 15, 2071-2083.	15.6	33
4602	The Overlooked Role of Co(Oh)2 in Co3o4 Activated Pms System: Suppression of Co2+ Leaching and Enhanced Degradation Performance of Antibiotics. SSRN Electronic Journal, 0, , .	0.4	0
4603	Mechano-Thermal Milling Synthesis of Atomically Dispersed Platinum with Spin Polarization Induced by Cobalt Atoms Towards Enhanced Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	O
4604	Low-Temperature Crystallization of Lafeo3 and Inherent Surface Activation for Efficient Oxygen Evolution Reaction Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
4605	Carbon and isostructural boron nitride nanomaterials doped with ferromagnetic clusters. , 2022, , 165-233.		1

#	Article	IF	CITATIONS
4606	Artificial 2d Van Der Waals Inorganic Oxychloride Anhydrous Proton Conductor. SSRN Electronic Journal, 0, , .	0.4	0
4607	Three-dimensional nano-framework CoP/Co ₂ P/Co ₃ O ₄ heterojunction as a trifunctional electrocatalyst for metal–air battery and water splitting. New Journal of Chemistry, 2022, 46, 8786-8793.	1.4	5
4608	Current Methods for Synthesis and Potential Applications of Cobalt Nanoparticles: A Review. Crystals, 2022, 12, 272.	1.0	17
4609	MOF-derived three-dimensional ordered porous carbon nanomaterial for efficient alkaline zinc-air batteries. Science China Materials, 2022, 65, 1453-1462.	3.5	24
4610	Laser-assisted synthesis of FePc/N-doped carbon dots on Co3O4 flakes as an efficient cathode for lithium-oxygen batteries. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	1
4611	Ir-Pt/C composite with high metal loading as a high-performance anti-reversal anode catalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 13101-13111.	3.8	9
4612	F-doped carbon hollow nanospheres for efficient electrochemical oxygen reduction. Journal of Materials Science, 2022, 57, 5924-5932.	1.7	7
4613	2D Materials for Wearable Energy Harvesting. Advanced Materials Technologies, 2022, 7, .	3.0	16
4614	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	72
4615	Polyvinylpyrrolidone and graphene-modified hematite nanoparticles for efficient electrocatalytic oxidation of p-nitrophenol. Journal of Solid State Electrochemistry, 2022, 26, 1051-1065.	1.2	4
4616	Intrinsic defects of nonprecious metal electrocatalysts for energy conversion: Synthesis, advanced characterization, and fundamentals. ChemPhysMater, 2022, 1, 155-182.	1.4	6
4617	Bimetal Metalâ€Organic Frameworks Derived Hierarchical Porous Cobalt@Nitrogenâ€Doped Carbon Tubes as An Efficient Electrocatalyst for Oxygen Reduction Reaction. ChemElectroChem, 2022, 9, .	1.7	7
4618	Oxygen Reduction Electrocatalysis with Epitaxially Grown Spinel MnFe ₂ O ₄ and Fe ₃ O ₄ . ACS Catalysis, 2022, 12, 3577-3588.	5 . 5	16
4619	A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. Journal of Solid State Electrochemistry, 2022, 26, 1163-1173.	1.2	3
4620	Tailoring Defects in Hard Carbon Anode towards Enhanced Na Storage Performance. Energy Material Advances, 2022, 2022, .	4.7	53
4621	Fabrication of heteroatom doped cobalt catalyst for oxygen reduction and evolution reactions in alkaline medium. Bulletin of the Korean Chemical Society, 2022, 43, 745-749.	1.0	5
4622	Facet-Defined Strain-Free Spinel Oxide for Oxygen Reduction. Nano Letters, 2022, 22, 3636-3644.	4.5	3
4623	Boosting electrocatalysis of oxygen reduction and evolution reactions with cost-effective cobalt and nitrogen-doped carbons prepared by simple carbonization of ionic liquids. International Journal of Hydrogen Energy, 2022, 47, 14847-14858.	3.8	7

#	Article	IF	CITATIONS
4624	Hydrophobization Engineering of the Air–Cathode Catalyst for Improved Oxygen Diffusion towards Efficient Zinc–Air Batteries. Angewandte Chemie, 2022, 134, .	1.6	12
4625	Oxygenâ€Rich Cobalt–Nitrogen–Carbon Porous Nanosheets for Bifunctional Oxygen Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	55
4626	Hydrogen Spilloverâ€Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. ChemSusChem, 2022, 15, .	3.6	25
4627	Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Research, 2022, 15, 5038-5063.	5 . 8	25
4628	Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Advanced Functional Materials, 2022, 32, .	7.8	209
4629	Boosting the electrochemical energy storage and conversion performance by structural distortion in metal–organic frameworks. Chemical Engineering Journal, 2022, 443, 136269.	6.6	12
4630	Role of cobalt precursors in the synthesis of <scp> Co ₃ O ₄ </scp> hierarchical nanostructures toward the development of cobaltâ€based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media. Journal of the Chinese Chemical Society, 0, , .	0.8	1
4631	Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production. Journal of Power Sources, 2022, 528, 231220.	4.0	41
4632	Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy and Environment, 2023, 8, 1693-1702.	4.7	15
4633	A novel pomegranate-inspired bifunctional electrode materials design for acetylcholinesterase biosensor and methanol oxidation reaction. Bioelectrochemistry, 2022, 145, 108094.	2.4	2
4634	Nickel oxide nanoparticles dispersed on biomass–derived amorphous carbon/cobalt silicate support accelerate the oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 616, 476-487.	5. 0	27
4635	The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coordination Chemistry Reviews, 2022, 461, 214493.	9.5	91
4636	Nitrogen-functionalized carbon nanotube based palladium nanoparticles as an efficient catalyst for oxygen reduction and ethanol oxidation reaction. Applied Surface Science Advances, 2022, 9, 100235.	2.9	13
4637	Investigating the structural and dielectric properties of CoFe2â^'xNixO4 spinel ferrite. Journal of Alloys and Compounds, 2022, 908, 164589.	2.8	10
4638	Accelerated oxygen evolution enabled by encapsulating hybrid CoOx/RuO2 nanoparticle with nanoporous carbon. Applied Surface Science, 2022, 589, 152958.	3.1	9
4639	Atomically dispersed antimony on N-doped carbon for highly efficient oxygen reduction reaction. Chemical Engineering Journal, 2022, 439, 135700.	6.6	18
4640	Ionic liquid-derived FeCo alloys encapsulated in nitrogen-doped carbon framework as advanced bifunctional catalysts for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2022, 908, 164565.	2.8	21
4641	Sugar-cubic Fe2O3/nitrogen-doped graphene nanocomposite as high-performance anode material for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 910, 164852.	2.8	6

#	Article	IF	CITATIONS
4642	Design strategy for low-temperature sulfur etching to achieve high-performance hollow multifunctional electrode material. Journal of Materials Science and Technology, 2022, 119, 209-218.	5 . 6	7
4643	CuO–NiO binary transition metal oxide nanoparticle anchored on rGO nanosheets as high-performance electrocatalyst for the oxygen reduction reaction. Environmental Research, 2022, 211, 112992.	3.7	24
4644	Synthesis and Characterisation of Cobalt Ferrite Coatings for Oxygen Evolution Reaction. Catalysts, 2022, 12, 21.	1.6	10
4645	Pyrolysis-Free Oxygen Reduction Reaction (ORR) Electrocatalysts Composed of Unimolecular Layer Metal Azaphthalocyanines Adsorbed onto Carbon Materials. ACS Applied Energy Materials, 2021, 4, 14380-14389.	2.5	9
4646	Facile Oxygen-promoted Synthesis of Cu, N Co-doped Carbon Composites for Oxygen Reduction. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 796-803.	0.4	1
4647	Selective CH ₄ Partial Photooxidation by Positively Charged Metal Clusters Anchored on Carbon Aerogel under Mild Conditions. Nano Letters, 2021, 21, 10368-10376.	4.5	21
4648	Promoting Electrocatalytic Reduction of CO ₂ to C ₂ H ₄ Production by Inhibiting C ₂ H ₅ OH Desorption from Cu ₂ O/C Composite. Small, 2022, 18, e2105212.	5.2	15
4649	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	7.8	35
4650	Co3O4 Nanoneedle Array Grown on Carbon Fiber Paper for Air Cathodes towards Flexible and Rechargeable Zn–Air Batteries. Nanomaterials, 2021, 11, 3321.	1.9	3
4651	Mesoporous FeMoV Oxide Nanosheets Supported on Nickel Foam as Highly Efficient Electrocatalysts for the Oxygen Evolution Reaction. ACS Applied Energy Materials, 2021, 4, 14059-14067.	2.5	1
4652	Highâ€performance Teâ€doped <scp> Co ₃ O ₄ </scp> nanocatalysts for oxygen evolution reaction. International Journal of Energy Research, 2022, 46, 5963-5972.	2.2	10
4653	Ag/AgCl clusters derived from AgCu alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2022, 6, 2593-2601.	2.5	2
4654	Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nature Communications, 2022, 13, 2191.	5.8	179
4655	Systematically theoretical investigation the effect of nitrogen and iron-doped graphdiyne on the oxygen reduction reaction mechanism in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, , .	3.8	1
4656	Grapheneâ∈Based Nanomaterials for Solarâ∈Driven Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	4
4660	Structural Reconstruction of Catalysts in Electroreduction Reaction: Identifying, Understanding, and Manipulating. Advanced Materials, 2022, 34, e2110699.	11.1	16
4661	Selection of oxygen reduction catalysts for secondary tri-electrode zinc–air batteries. Scientific Reports, 2022, 12, 6696.	1.6	4
4663	Mof-Derived Carbon Nanotubes Modified Nimoco Ternary Alloy Electrocatalyst for Efficient and Stable Overall Water Splitting. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	CITATIONS
4664	Interfaces joining for modifying transition metal oxides. , 2022, , 191-216.		0
4665	Co(<scp>iii</scp>) 2-ethylhexanoate, a hydrophobic and highly soluble Co(<scp>iii</scp>) precursor for thin coatings for water electrolysis. Materials Chemistry Frontiers, 0, , .	3.2	1
4666	High-Performance Ligand-Protected Metal Nanocluster Catalysts for CO2 Conversion through the Exposure of Undercoordinated Sites. Catalysts, 2022, 12, 505.	1.6	5
4667	In situ confined vertical growth of Co2.5Ni0.5Si2O5(OH)4 nanoarrays on rGO for an efficient oxygen evolution reaction. Nano Materials Science, 2023, 5, 351-360.	3.9	7
4668	Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. Chinese Chemical Letters, 2023, 34, 107455.	4.8	3
4669	Pectin Stabilized/Capped Ferromagnetic Co3O4 Nanoparticles with Antimicrobial Efficacy: A Greener Approach. Oriental Journal of Chemistry, 2022, 38, 219-226.	0.1	0
4670	Recent progress in microwave-assisted preparations of 2D materials and catalysis applications. Nanotechnology, 2022, 33, 342002.	1.3	8
4671	Mechano-thermal milling synthesis of atomically dispersed platinum with spin polarization induced by cobalt atoms towards enhanced oxygen reduction reaction. Nano Energy, 2022, 98, 107341.	8.2	11
4672	Hybridization of iron phthalocyanine and MoS2 for high-efficiency and durable oxygen reduction reaction. Journal of Energy Chemistry, 2022, 71, 528-538.	7.1	10
4673	Understanding the activity decay of MnO2 for oxygen reduction in neutral media. Journal of Alloys and Compounds, 2022, 913, 165257.	2.8	6
4674	High-entropy oxide (Fe0.2Zn0.2Co0.2Ni0.2Cu0.2)Fe2O4: An efficient and stable spinel-type electrocatalyst for H2O2 production in alkaline media. Journal of Alloys and Compounds, 2022, 913, 165148.	2.8	11
4675	Highly sensitive and stable MEMS acetone sensors based on well-designed α-Fe2O3/C mesoporous nanorods. Journal of Colloid and Interface Science, 2022, 622, 156-168.	5.0	17
4676	<scp> Mn ₂ V ₂ O ₇ </scp> spiked ballâ€like material as bifunctional oxygen catalyst for zincâ€air batteries. International Journal of Energy Research, 2022, 46, 13528-13540.	2.2	3
4677	Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51, 4583-4762.	18.7	453
4678	Low-temperature liquid reflux synthesis of core@shell structured Ni@Fe-doped NiCo nanoparticles decorated on carbon nanotubes as a bifunctional electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 13088-13096.	5.2	7
4679	Various types of electrochemical biosensors for leukemia detection and therapeutic approaches. Analytical Biochemistry, 2022, 654, 114736.	1.1	47
4680	Highly exposed NiFeOx nanoclusters supported on boron doped carbon nanotubes for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2023, 34, 107524.	4.8	5
4681	Insight into Reversible Conversion Reactions in SnO ₂ â€Based Anodes for Lithium Storage: A Review. Small, 2022, 18, e2201110.	5.2	40

#	Article	IF	CITATIONS
4682	Promoting oxygen reduction <i>via</i> coordination environment modulation through secondary metal-atom incorporation. Journal of Materials Chemistry A, 2022, 10, 19626-19634.	5.2	9
4683	Peony-like 3D-MoS2/graphene nanostructures with enhanced mimic peroxidase performance for colorimetric determination of dopamine. Talanta, 2022, 247, 123553.	2.9	9
4684	Ternary NiMoCo alloys and fluffy carbon nanotubes grown on ZIF-67-derived polyhedral carbon frameworks as bifunctional electrocatalyst for efficient and stable overall water splitting. Electrochimica Acta, 2022, 424, 140613.	2.6	6
4685	Rise of 2D materials-based membranes for desalination. Desalination, 2022, 536, 115851.	4.0	21
4686	Cobalt(III) corrole-tethered semiconducting graphdiyne film for efficient electrocatalysis of oxygen reduction reaction. Materials Today Chemistry, 2022, 25, 100932.	1.7	2
4687	Optimizing Energy Storage and Overall Water Splitting by Constructing Znco2o4@Comoo4 Heterogeneous Structures. SSRN Electronic Journal, 0, , .	0.4	0
4688	Biomass-derived cobalt/ carbon hierarchically structured composites for efficient oxygen electrocatalysis and zinc-air batteries. Catalysis Science and Technology, 0, , .	2.1	5
4689	Thermal Stability and Utilisation of 1d-Nanostructured Co3o4 Rods Derived by Simple Solvothermal Processing. SSRN Electronic Journal, 0, , .	0.4	0
4690	Synthesis of all-biomass-derived carbon nanofibers for dual-functional filtration membranes and oxygen evolution reaction electrocatalysts. Journal of Alloys and Compounds, 2022, 918, 165600.	2.8	4
4691	Fe ₂ Dimers for Nonâ€Polar Diatomic O ₂ Electroreduction. ChemSusChem, 2022, 15, .	3.6	2
4692	Controllable Solid-Phase Fabrication of an Fe ₂ /Fe–N–C Electrocatalyst toward Optimizing the Oxygen Reduction Reaction in Zinc–Air Batteries. Nano Letters, 2022, 22, 4879-4887.	4.5	72
4693	Multifunctional Co3O4/Ti3C2Tx MXene nanocomposites for integrated all solid-state asymmetric supercapacitors and energy-saving electrochemical systems of H2 production by urea and alcohols electrolysis. International Journal of Hydrogen Energy, 2022, 47, 22663-22679.	3.8	15
4694	Particle-Based Crystallization. ACS Symposium Series, 0, , 37-73.	0.5	1
4695	Strategies to improve electrocatalytic performance of MoS ₂ -based catalysts for hydrogen evolution reactions. RSC Advances, 2022, 12, 17959-17983.	1.7	10
4696	Interface Engineering of Hybrid Znco2o4@Ni2.5mo6s6.7 Structures for Flexible Energy Storage and Alkaline Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
4697	Ni-modified \hat{l}^2 -FeOOH nanorod cocatalysts for oxygen evolution utilising photoexcited holes on N2p level in N-doped TiO (sub) 2 (sub) electrode. Chemical Communications, 0, , .	2.2	0
4698	Construction of three-dimensional cobalt sulfide/multi-heteroatom co-doped porous carbon as an efficient trifunctional electrocatalyst. Nanoscale, 2022, 14, 9849-9859.	2.8	14
4699	Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. Environmental Research, 2022, 214, 113731.	3.7	21

#	Article	IF	CITATIONS
4700	Transition Metal Nonâ€Oxides as Electrocatalysts: Advantages and Challenges. Small, 2022, 18, .	5.2	47
4701	N/Oâ€coâ€doped carbon shell structures loaded with iron phthalocyanine for oxygen reduction catalysis. ChemCatChem, 0, , .	1.8	O
4702	Orbital Dependence in Single-Atom Electrocatalytic Reactions. Journal of Physical Chemistry Letters, 2022, 13, 5969-5976.	2.1	18
4703	Reviewâ€"The Oxygen Reduction Reaction on MXene-Based Catalysts: Progress and Prospects. Journal of the Electrochemical Society, 2022, 169, 063513.	1.3	19
4704	CuCo2O4/Ti3C2Tx MXene hybrid electrocatalysts for oxygen evolution reaction of water splitting. Journal of Alloys and Compounds, 2022, 920, 165811.	2.8	8
4705	Nanochemistry as a Relevant Concept in Teaching Chemistry. Advances in Chemistry Education, 2022, , 96-117.	0.2	0
4706	Enhancing microbial fuel cell performance by carbon nitride-based nanocomposites., 2022,, 63-79.		0
4707	Mussel-Inspired Binder with Cpet Mechanism and Ph-Universal Overall H2o2 Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
4708	Triple-Doping (Cu, P, N) for the Activation of Catalytic Sites in Co0.4mn0.6o2 Nanosheets for Zn-Air Battery Applications. SSRN Electronic Journal, 0, , .	0.4	0
4709	CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor. Journal of Materials Chemistry A, 2022, 10, 14501-14512.	5.2	18
4710	Nanotechnology and Chemistry: The Unseen Scale with Magnificent Impact. Advances in Chemistry Education, 2022, , 1-35.	0.2	0
4711	Boosting bifunctional oxygen electrocatalysis of graphitic C ₃ N ₄ using non-covalently functionalized non-oxidized graphene aerogels as catalyst supports. Journal of Materials Chemistry A, 2022, 10, 15689-15697.	5. 2	7
4712	Why is graphene an extraordinary material? A review based on a decade of research. Frontiers of Materials Science, 2022, 16, .	1.1	11
4713	Mechanisms of the Oxygen Evolution Reaction on NiFe ₂ O ₄ and CoFe ₂ O ₄ Inverse-Spinel Oxides. ACS Catalysis, 2022, 12, 9058-9073.	5.5	40
4714	Co ²⁺ â€Doped Porous Ni(OH) ₂ Nanosheets Electrode for Selective Electrocatalytic Oxidation of Methanol at High Current Densities. ChemElectroChem, 2022, 9, .	1.7	3
4715	Graphitic carbon layer-encapsulated Co nanoparticles embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 317, 121758.	10.8	24
4716	Atomically Dispersed Pentacoordinatedâ€Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	39
4717	Atomically Dispersed Pentacoordinatedâ€Zirconium Catalyst with Axial Oxygen Ligand for Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	1.6	3

#	Article	IF	Citations
4718	Nanoscale TiO ₂ Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33130-33140.	4.0	13
4719	Constructing a multi-bishelled cobalt-based electrocatalyst for the oxygen evolution reaction in CO2 electrolysis. NPG Asia Materials, 2022, 14, .	3.8	9
4720	Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries. Materials Today Energy, 2022, 28, 101086.	2.5	1
4721	Research progress on carbon materials as negative electrodes in sodium―and potassium―on batteries. , 2022, 4, 1182-1213.		55
4722	Structural and electrical study of nanocomposite Fe _{0.} <scp> ₂ Ni0 ₀ </scp> _. anode with effect of graphene oxide (<scp>GO</scp>) for lowâ€temperature <scp>SOFCs</scp> . International Journal of Energy Research, 0, , .	2.2	1
4723	Construction of Pd nanoparticles/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination. Applied Catalysis B: Environmental, 2022, 317, 121730.	10.8	26
4724	Recent Advances in the Construction of 2D Heterostructures for Electrocatalytic Water Splitting. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	15
4725	Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9077-9086.	3.2	7
4726	Preparation of FePcNs@GO composites and boosting oxygen reduction reaction. Research on Chemical Intermediates, 2022, 48, 3375-3387.	1.3	1
4727	Electric Field Polarized Feâ^'N Functionalized Graphene Oxide Nanosheet Catalyst for Efficient Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	0
4728	FeCo nanoalloys encapsulated in pod-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts for zinc-air batteries. Journal of Alloys and Compounds, 2022, 921, 166122.	2.8	9
4729	Microrods-evolved WO3 nanospheres with enriched oxygen-vacancies anchored on dodecahedronal CoO(Co2+)@carbon as durable catalysts for oxygen reduction/evolution reactions. Applied Surface Science, 2022, 601, 154195.	3.1	5
4730	Doping-engineered bifunctional oxygen electrocatalyst with Se/Fe-doped Co3O4/N-doped carbon nanosheets as highly efficient rechargeable zinc-air batteries. Journal of Colloid and Interface Science, 2022, 626, 475-485.	5.0	15
4731	Electrochemically prepared Fe: NiO thin film catalysis for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2022, 33, 18180-18186.	1.1	2
4732	Electric-Field-Treated Ni/Co3O4 Film as High-Performance Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Nano-Micro Letters, 2022, 14, .	14.4	68
4733	Electrodeposited Nickel Oxide Thin Film for Electrochemical Water Splitting. International Journal of Advanced Research in Science, Communication and Technology, 0, , 38-42.	0.0	1
4734	Sustainable oxygen evolution electrocatalysis in aqueous $1\hat{a}\in\%M$ H2SO4 with earth abundant nanostructured Co3O4. Nature Communications, 2022, 13, .	5.8	55
4735	Lewis Acid Site Assisted Bifunctional Activity of Tin Doped Gallium Oxide and Its Application in Rechargeable Znâ€Air Batteries. Small, 2022, 18, .	5.2	9

#	Article	IF	CITATIONS
4736	One-step synthesis of nitrogen-doped few-layer graphene structures decorated with Mn1.5Co1.5O4 nanoparticles for highly efficient electrocatalysis of oxygen reduction reaction. Mendeleev Communications, 2022, 32, 492-494.	0.6	2
4737	State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental, 2023, 325, 121733.	10.8	54
4738	Curving Engineering of Hollow Concave-Shaped Rhombic Dodecahedrons of N-Doped Carbon Encapsulated with Fe-Doped Co/Co ₃ O ₄ Nanoparticles for an Efficient Oxygen Reduction Reaction and Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 11441-11450.	3.2	7
4739	Tailoring the nanostructure of plasma-deposited CoOX-based thin films for catalytic applications – A step forward in designing nanocatalysts. Materials and Design, 2022, 222, 111095.	3.3	2
4740	Enhanced electrocatalytic activities of <scp>MoO₃</scp> / <scp>rGO</scp> nanocomposites for oxygen reduction reaction. Journal of Chemical Technology and Biotechnology, 2022, 97, 3459-3466.	1.6	1
4741	Carbonâ€Shielded Singleâ€Atom Alloy Material Family for Multiâ€Functional Electrocatalysis. Advanced Functional Materials, 2022, 32, .	7.8	20
4742	Recent advances in nonâ€precious Niâ€based promising catalysts for water splitting application. International Journal of Energy Research, 2022, 46, 17829-17847.	2.2	17
4743	Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction. Nature Energy, 2022, 7, 765-773.	19.8	138
4744	A novel chemical approach for synthesizing highly porous graphene analogue and its composite with Ag nanoparticles for efficient electrochemical oxygen reduction. Chemical Engineering Journal, 2023, 451, 138766.	6.6	8
4745	Experimental and Theoretical Investigation of the Thermophysical Properties of Cobalt Oxide (Co3O4) in Distilled Water (DW), Ethylene Glycol (EG), and DW–EG Mixture Nanofluids. Nanomaterials, 2022, 12, 2779.	1.9	5
4746	Single step assemble of cerium oxide embellished on layered graphene oxide: An efficacious electrode for supercapacitors and hydrogen evolution reaction. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 284, 115924.	1.7	3
4747	Structure optimization of ZIF-12-derived Co-N-C for efficient oxygen reduction and oxygen evolution. Fuel, 2022, 330, 125516.	3.4	6
4748	Preparation of a MnO2@C@MnO Core-shell Heterojunction as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. International Journal of Electrochemical Science, 2022, 17, 221050.	0.5	1
4749	A Bifunctional Electrocatalyst based on Ni-porphyrin/Vapor-Grown Carbon Fibres for Oxygen Reduction and Evolution Reactions in Alkaline Media. International Journal of Electrochemical Science, 2022, 17, 221013.	0.5	4
4750	Recent advances in graphdiyne materials for biomedical applications. Nano Today, 2022, 46, 101616.	6.2	6
4751	Robust bimetallic metal-organic framework cathode catalyst to boost oxygen reduction reaction in microbial fuel cell. Journal of Power Sources, 2022, 547, 231947.	4.0	12
4752	Iron-tin based nanoparticles anchored on N-doped carbon as high-efficiency oxygen electrocatalyst for rechargeable Zn-air batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130101.	2.3	3
4753	CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction. Materials Today Chemistry, 2022, 26, 101167.	1.7	4

#	Article	IF	CITATIONS
4754	Post incorporation of Fe sites on defective carbon sponge with high accessibility to enhance oxygen reduction elecrocatalysis. Journal of Alloys and Compounds, 2022, 927, 167054.	2.8	1
4755	Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination. Chemical Engineering Journal, 2023, 451, 139107.	6.6	3
4756	Anthraquinone porous polymers with different linking patterns for high performance Zinc-Organic battery. Journal of Colloid and Interface Science, 2023, 629, 434-444.	5.0	12
4757	An S-scheme CdS/K2Ta2O6 heterojunction photocatalyst for production of H2O2 from water and air. Chemical Engineering Journal, 2023, 452, 139070.	6.6	40
4758	Facile Synthesis of Coâ, fOâ, "@G-Câ, fNâ, "Nanocomposites as Catalysts for Oxygen Evolution Reaction in Alkaline Electrolyte. SSRN Electronic Journal, O, , .	0.4	0
4759	Carbon-Based Nanomaterials for Oxygen Evolution Reaction. Springer Series in Materials Science, 2022, , 147-167.	0.4	0
4760	A novel graphdiyne (C _{<i>n</i>} H _{2<i>n</i>>î>n<isub>) preparation strategy: calcium carbide-derived graphdiyne film supported cobalt tetroxide nanoneedles for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 23134-23144.</isub>}	5.2	21
4761	Visualization of the Multi-Center Ultrafast Response in Photoexcited Spinel Co3O4. , 2022, , .		О
4762	Suppressing H ₂ O ₂ formation in the oxygen reduction reaction using Co-doped copper oxide electrodes. Journal of Materials Chemistry A, 2022, 10, 22042-22057.	5.2	0
4763	Post Incorporation of Fe Sites on Defective Carbon Sponge with High Accessibility to Enhance Oxygen Reduction Elecrocatalysis. SSRN Electronic Journal, 0, , .	0.4	O
4764	Research Progress on Anode Pt-Based Catalysts for Direct Methanol Fuel Cells. Hans Journal of Nanotechnology, 2022, 12, 192-209.	0.1	1
4765	Defect-Engineered Tio2 Nanotube Cathode for Nitrate Reduction to Ammonia and Upcycling IntoÂ(Nh4)2so4 in the PairedÂElectrolysis System. SSRN Electronic Journal, 0, , .	0.4	O
4766	Co2p Encapsulated in N, O Co-Doped Carbons as Bifunctional Electrocatalysts for Oxygen Evolution and Reduction Reactions. SSRN Electronic Journal, 0, , .	0.4	0
4767	Non-noble metal nanocatalysts for oxygen evolution reaction. , 2022, , .		1
4768	Metal-organic framework in fuel cell technology: Fundamentals and application. , 2022, , 135-189.		1
4769	Improved oxygen evolution reaction performance in Co0.4Mn0.6O2 nanosheets through Triple-doping (Cu, P, N) strategy and its application to Zn-air battery. Applied Catalysis B: Environmental, 2023, 320, 122023.	10.8	15
4770	Robust and highly conductive Ti4O7/MXene nanocomposites as high-performance and long cyclic stability oxygen reduction electrocatalysts. Applied Surface Science, 2023, 607, 154929.	3.1	8
4771	Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coordination Chemistry Reviews, 2023, 474, 214854.	9.5	63

#	Article	IF	CITATIONS
4772	A Review: Preâ€lithiation Strategies Based on Cathode Sacrificial Lithium Salts for Lithiumâ€lon Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	4
4773	Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catalysis, 2022, 12, 11639-11650.	5.5	33
4774	Comparative Study of Ru-Transition Metal Alloys and Oxides as Oxygen Evolution Reaction Electrocatalysts in Alkaline Media. ACS Applied Energy Materials, 2022, 5, 11241-11253.	2.5	4
4775	Layered double hydroxide nanomaterials for bifunctional ORR/OER electro-catalyst. Journal of the Korean Ceramic Society, 2022, 59, 763-774.	1.1	11
4776	A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications. Sustainability, 2022, 14, 12336.	1.6	10
4777	Co2FeO4@rGO composite: Towards trifunctional water splitting in alkaline media. International Journal of Hydrogen Energy, 2022, 47, 33919-33937.	3.8	35
4778	Hollow CoO Nanoparticles Embedded in Nâ€doped Mesoporous Graphene for Efficient Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	3
4779	Bifunctional OER/NRR Catalysts Based on a Thin-Layered Co ₃ O _{4–<i>x</i>} /GO Sandwich Structure. ACS Applied Materials & Samp; Interfaces, 2022, 14, 43508-43516.	4.0	15
4780	Rational construction of high-active Co3O4 electrocatalysts for oxygen evolution reaction. Nano Research, 2023, 16, 624-633.	5.8	9
4781	Iron Carbide Nanoparticles Embedded in Edge-Rich, N and F Codoped Graphene/Carbon Nanotubes Hybrid for Oxygen Electrocatalysis. Catalysts, 2022, 12, 1023.	1.6	4
4782	Investigate the morphological, magnetic and electrochemical behaviour of Mn1-xSrxFe2O4 by co-precipitation approach. Materials Chemistry and Physics, 2022, , 126732.	2.0	0
4783	ZIF-8 derived bimetallic Fe–Ni-Nanoporous carbon for enhanced oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 37002-37012.	3.8	10
4784	Tuning the Interface of Co _{1–<i>x</i>} S/Co(OH)F by Atomic Replacement Strategy toward High-Performance Electrocatalytic Oxygen Evolution. ACS Nano, 2022, 16, 15460-15470.	7.3	37
4785	Sulfur Reduction Reaction in Lithium–Sulfur Batteries: Mechanisms, Catalysts, and Characterization. Advanced Energy Materials, 2022, 12, .	10.2	69
4786	Metal-organic frameworks derived Co/N-doped carbon nanonecklaces as high-efficient oxygen reduction reaction electrocatalysts. International Journal of Hydrogen Energy, 2022, 47, 39133-39145.	3.8	7
4787	Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceramics International, 2023, 49, 4422-4434.	2.3	17
4788	Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Research, 2023, 16, 1913-1966.	5.8	59
4789	The overlooked role of Co(OH)2 in Co3O4 activated PMS system: Suppression of Co2+ leaching and enhanced degradation performance of antibiotics with rGO. Separation and Purification Technology, 2023, 304, 122203.	3.9	13

#	Article	IF	Citations
4790	Trends and progress in application of cobalt-based materials in catalytic, electrocatalytic, photocatalytic, and photoelectrocatalytic water splitting. Photosynthesis Research, 2022, 154, 329-352.	1.6	3
4791	Recent major advances and challenges in the emerging graphene-based nanomaterials in electrocatalytic fuel cell technology. Journal of Materials Chemistry C, 2022, 10, 17812-17873.	2.7	3
4792	Interfacing MnO and FeCo alloy inside N-doped carbon hierarchical porous nanospheres derived from metal–organic framework to boost high-performance oxygen reduction for Zn–air batteries. Nanoscale, 2022, 14, 16516-16523.	2.8	2
4793	Hollow CoO _{<i>X</i>} nanoparticle-embedded N-doped porous carbon as an efficient oxygen electrocatalyst for rechargeable zinc–air batteries. Materials Chemistry Frontiers, 2022, 6, 3706-3715.	3.2	2
4794	Unravelling faradaic electrochemical efficiencies over Fe/Co spinel metal oxides using surface spectroscopy and microscopy techniques. Nanoscale, 2022, 14, 15928-15941.	2.8	6
4795	Mixture screening strategy of efficient transition metal heteronuclear dual-atom electrocatalysts toward nitrogen fixation. Physical Chemistry Chemical Physics, 2022, 24, 26776-26784.	1.3	6
4796	Morphology Effect of Co ₃ O ₄ Nanooctahedron in Boosting Oxygen Reduction and Oxygen Evolution Reactions. Energy & Samp; Fuels, 2022, 36, 13863-13872.	2.5	3
4798	Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nature Communications, 2022, 13, .	5 . 8	65
4799	Electrochemical CO $<$ sub $>$ 2 $<$ /sub $>$ Reduction in the Presence of Impurities: Influences and Mitigation Strategies. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
4800	Electrochemical CO ₂ Reduction in the Presence of Impurities: Influences and Mitigation Strategies. Angewandte Chemie, 2022, 134, .	1.6	2
4801	Rational Designing of Co–N–C Electrocatalysts for Comprehensive Elucidation of Intrinsic and Extrinsic Activities in the Oxygen Reduction Reaction. ACS Applied Energy Materials, 2022, 5, 14019-14034.	2.5	1
4802	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	5 . 8	10
4803	Metal oxide/carbon nanosheet arrays derivative of stacked metal organic frameworks for triggering oxygen evolution reaction. Ceramics International, 2023, 49, 5936-5943.	2.3	6
4804	Strong Electronic Orbit Coupling between Cobalt and Single-Atom Praseodymium for Boosted Nitrous Oxide Decomposition on Co ₃ O ₄ Catalyst. Environmental Science & amp; Technology, 2022, 56, 16325-16335.	4.6	19
4805	Advances in nonprecious metal catalysts for efficient water oxidation in alkaline media. Ionics, 2023, 29, 9-32.	1.2	3
4806	Thermal Stability and Utilization of 1D-Nanostructured Co3O4 Rods Derived by Simple Solvothermal Processing. Catalysts, 2022, 12, 1162.	1.6	0
4807	Enhanced Electrochemical Performances of Mn3O4/Heteroatom-Doped Reduced Graphene Oxide Aerogels as an Anode for Sodium-Ion Batteries. Nanomaterials, 2022, 12, 3569.	1.9	3
4809	Controlled Adsorption Boosting the Cumulation of H ₂ O ₂ Based on the Chain Mail Catalyst. Advanced Energy Materials, 2022, 12, .	10.2	5

#	Article	IF	CITATIONS
4812	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Materials Science, 2022, , .	3.9	12
4813	Irreversible oxidation of hydroxide ion in the light of negative capacitance by fast scan voltammetry. Journal of Electroanalytical Chemistry, 2022, 926, 116919.	1.9	0
4814	Development of self-supporting catalyst based on bionic honeycomb communication channel from biomass cork waste for hydrogen evolution. Journal of Power Sources, 2022, 551, 232219.	4.0	2
4815	Novel highly active and selective Co N S C efficient ORR catalyst derived from in-situ egg gel pyrolysis. Fuel, 2023, 333, 126432.	3.4	9
4816	Controlled synthesis of highly active bifunctional electrocatalysts for overall water splitting using coal-based activated carbons. Journal of Materials Chemistry A, O, , .	5. 2	10
4817	Identifying diffusion limiting current to unravel the intrinsic kinetics of electrode reactions affected by mass transfer at rotating disk electrode. Chinese Journal of Chemical Physics, 2022, 35, 797-804.	0.6	5
4818	Microwave assisted synthesis of Mn3O4 nanograins intercalated into reduced graphene oxide layers as cathode material for alternative clean power generation energy device. Scientific Reports, 2022, 12, .	1.6	10
4819	S and O Co-Coordinated Mo Single Sites in Hierarchically Porous Tubes from Sulfur–Enamine Copolymerization for Oxygen Reduction and Evolution. Journal of the American Chemical Society, 2022, 144, 20571-20581.	6.6	39
4820	Facile Electron Transfer in Atomically Coupled Heterointerface for Accelerated Oxygen Evolution. Small, 2023, 19, .	5.2	4
4821	Plasma-modified graphitic C3N4@Cobalt hydroxide nanowires as a highly efficient electrocatalyst for oxygen evolution reaction. Heliyon, 2022, 8, e11573.	1.4	5
4822	Low-temperature crystallization of LaFeO3 perovskite with inherent catalytically surface for the enhanced oxygen evolution reaction. Nano Energy, 2023, 105, 108003.	8.2	4
4823	Multifunctional catalytic activity of Cu3N (001) surface: A first-principles study. ChemPhysMater, 2022, , .	1.4	2
4824	Interface engineering of hybrid ZnCo2O4@Ni2.5Mo6S6.7 structures for flexible energy storage and alkaline water splitting. Chemical Engineering Journal, 2023, 454, 140458.	6.6	17
4825	Hierarchical Porous Carbon Anchored Atomic/Clustered Cobalt for Boosting Oxygen Reduction Electrocatalysis. ChemCatChem, 2022, 14, .	1.8	7
4826	Revisiting the two-dimensional structure and reduction process of graphene oxide with in-plane X-ray diffraction. Carbon, 2023, 202, 26-35.	5.4	10
4827	Diazines on graphene: adsorption, structural variances and electronic states. Physical Chemistry Chemical Physics, 2022, 24, 29712-29720.	1.3	O
4828	Recycling of value-added products from spent lithium-ion batteries for oxygen reduction and methanol oxidation reactions. Journal of Cleaner Production, 2023, 384, 135520.	4.6	16
4829	Catalytic hydroconversion of poplar lignin over a nitrogen-doped carbon material-supported nickel prepared by in situ co-pyrolysis. Molecular Catalysis, 2023, 534, 112806.	1.0	1

#	Article	IF	CITATIONS
4830	Vacancy defect tuning of electronic structures of transition metal (hydr)oxide-based electrocatalysts for enhanced oxygen evolution. Energy Advances, 2023, 2, 73-85.	1.4	5
4831	High-performance zinc–air batteries enabled by hybridizing atomically dispersed FeN ₂ with Co ₃ O ₄ nanoparticles. Journal of Materials Chemistry A, 2023, 11, 1312-1323.	5. 2	6
4832	NiFeO H with electron-deficient Ni2+ for oxygen evolution in mild media. Journal of Power Sources, 2023, 556, 232444.	4.0	0
4833	Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. Journal of Colloid and Interface Science, 2023, 633, 303-313.	5.0	4
4834	Pyridinic N and carbon defects synergistically promote methane dry reforming to syngas catalyzed by Co/N-CNTs. Fuel, 2023, 337, 127136.	3.4	7
4835	pH-responsive, magnetic-luminescent core/shell carriers for co-delivery of anticancer drugs (MTX) Tj ETQq $1\ 1\ 0.78$	4314 rgB1 2.8	[LOverlock
4836	2D/2D core/shell structure of FeCo2O4@NiMn LDH for efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2023, 937, 168478.	2.8	3
4837	Adjustable heterointerface-vacancy enhancement effect in RuO2@Co3O4 electrocatalysts for efficient overall water splitting. Applied Catalysis B: Environmental, 2023, 324, 122294.	10.8	38
4838	One-pot gamma radiolysis synthesis of a graphene oxide-supported cobalt oxyhydroxide electrocatalyst for oxygen reduction reaction. Radiation Physics and Chemistry, 2023, 205, 110680.	1.4	3
4839	Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coordination Chemistry Reviews, 2023, 478, 214969.	9.5	35
4840	Multi-scale designed Co Mn3–O4 spinels: Smart pre-catalysts towards high-efficiency pyrolysis-catalysis recycling of waste plastics. Applied Catalysis B: Environmental, 2023, 324, 122271.	10.8	4
4841	Understanding the Effect of Nickel Doping in Cobalt Spinel Oxides on Regulating Spin State to Promote the Performance of the Oxygen Reduction Reaction and Zinc–Air Batteries. ACS Energy Letters, 2023, 8, 159-168.	8.8	24
4842	A bottom-up method to construct Ru-doped FeP nanosheets on foam iron with ultra-high activity for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48, 4686-4693.	3.8	8
4843	Electrocatalytic Oxygen Reduction Reaction on 48-Tungsto-8-Phosphate Wheel Anchored on Carbon Nanomaterials. Electrocatalysis, 2023, 14, 294-305.	1.5	3
4844	Cu/CuOx@C Composite as a High-Efficiency Electrocatalyst for Oxygen Reduction Reactions. Catalysts, 2022, 12, 1515.	1.6	3
4845	Amorphous Nitrogen-Doped Vanadium Oxide on Graphene for Enhanced Aerobic Oxidative Desulfurization of Fuels. Energy & En	2.5	3
4846	Carbon Surface-Influenced Heterogeneity of Ni and Co Catalytic Sites as a Factor Affecting the Efficiency of Oxygen Reduction Reaction. Nanomaterials, 2022, 12, 4432.	1.9	2
4847	Designing bifunctional ZIF-67 derivatives decorated N-doped carbon nanotubes as an electrocatalyst for oxygen conversion reaction in rechargeable zinc-air battery. Journal of the Taiwan Institute of Chemical Engineers, 2022, 141, 104598.	2.7	4

#	Article	IF	CITATIONS
4848	Metal-air batteries: progress and perspective. Science Bulletin, 2022, 67, 2449-2486.	4.3	61
4849	Enhancing Voltage Reversal Tolerance of Proton Exchange Membrane Fuel Cells by Tuning the Microstructure of IrO <i></i> Catalysts. ACS Applied Materials & Tuning the Microstructure of IrO <i< p=""> 56867-56876.</i<>	4.0	2
4850	Enhanced Stability and Narrowed Dâ€Band Gap of Ceâ€Doped Co ₃ O ₄ for Rechargeable Aqueous Znâ€Air Battery. Advanced Functional Materials, 2023, 33, .	7.8	25
4851	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-37.	0.5	6
4852	Electrocatalysts Based on Graphene and Its Composites. ACS Symposium Series, 0, , 165-199.	0.5	1
4854	Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nature Communications, 2022, 13, .	5.8	10
4855	Facile Synthesis of CoOOH Nanorings over Reduced Graphene Oxide and Their Application in the Reduction of p-Nitrophenol. Materials, 2022, 15, 8862.	1.3	3
4856	Enhanced Electrocatalytic Water Oxidation of Ultrathin Porous Co3O4 Nanosheets by Physically Mixing with Au Nanoparticles. Nanomaterials, 2022, 12, 4419.	1.9	0
4857	Regulation of graphitized pore structure adjacent to atomic Fe N4 sites with pyrolyzing rate for highly active oxygen reduction reaction electrocatalysts. Applied Surface Science, 2023, 614, 156076.	3.1	1
4858	Two-Dimensional Nanomaterial-Templated Composites. Accounts of Chemical Research, 2022, 55, 3581-3593.	7.6	25
4859	Co2P encapsulated in N, O co-doped carbons as bifunctional electrocatalysts for oxygen evolution and reduction reactions. International Journal of Hydrogen Energy, 2023, 48, 9273-9284.	3.8	10
4860	Improved Reversal Tolerant Properties of IrO _X as an Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Samp; Interfaces, 2023, 15, 4092-4100.	4.0	4
4861	Metal and metal oxide electrocatalysts for the electrochemical reduction of CO $<$ sub $>$ 2 $<$ /sub $>$ -to-C1 chemicals: are we there yet?. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	10
4862	Two-Steps Method to Prepare Multilayer Sandwich Structure Carbon Fiber Composite with Thermal and Electrical Anisotropy and Electromagnetic Interference Shielding. Materials, 2023, 16, 680.	1.3	2
4863	Protein-Carbonized Engineering to Construct Three-Dimensional Sponge-like Carbons for Oxygen Reduction Electrocatalysis. Catalysts, 2023, 13, 166.	1.6	0
4864	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0
4865	Carbonâ∈Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	54
4866	Controllable synthetic strategy of the coordinatively unsaturated metal sites on Ni-BTC for highly efficient oxygen evolution. Catalysis Today, 2023, 423, 114000.	2.2	1

#	Article	IF	CITATIONS
4867	Modulating the Fe–N ₄ Active Site Content by Nitrogen Source in Fe–N–C Aerogel Catalysts for Proton Exchange Membrane Fuel Cell. ACS Catalysis, 2023, 13, 1149-1163.	5.5	7
4868	Carbonâ€Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	1.6	5
4869	Upcycling of waste lithium-cobalt-oxide from spent batteries into electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction: A strategy to turn the trash into treasure. Journal of Power Sources, 2023, 557, 232571.	4.0	13
4870	Enhanced Li storage properties of nickel oxalate microtubes with manganese doping and graphene oxide for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 940, 168808.	2.8	7
4871	Graphene used for energy conversion and storage by electrochemistry: A brief global overview. Current Nanoscience, 2022, 19, .	0.7	0
4872	Electronic applications of carbon nano-dots. , 2023, , 227-247.		0
4873	Recent Progress of Non-Pt Catalysts for Oxygen Reduction Reaction in Fuel Cells. Processes, 2023, 11, 361.	1.3	8
4874	Wearable chemical sensors based on 2D materials for healthcare applications. Nanoscale, 2023, 15, 3079-3105.	2.8	7
4875	Regulation of the B Site at La(Ni _{0.1})MnO ₃ Perovskite Decorated with N-Doped Carbon for a Bifunctional Electrocatalyst in Zn–Air Batteries. Industrial & Decorated with N-Doped Research, 2023, 62, 2687-2697.	1.8	7
4876	Emerging Trends of Carbonâ€Based Quantum Dots: Nanoarchitectonics and Applications. Small, 2023, 19,	5.2	33
4877	Electron Modulation and Morphology Engineering Jointly Accelerate Oxygen Reaction to Enhance Znâ€Air Battery Performance. Advanced Science, 2023, 10, .	5.6	24
4878	Densityâ€Controlled Metal Nanocluster with Modulated Surface for pHâ€Universal and Robust Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	11
4879	Graphene-Based Microbial Fuel Cell. , 2023, , 155-187.		0
4880	Development of highly sensitive electrochemical sensor for antibiotic drug ronidazole based on spinel cobalt oxide nanorods embedded with hexagonal boron nitride. Electrochimica Acta, 2023, 446, 142008.	2.6	4
4881	One-step synthesis of PtNi anchored on TiO2 nanotube arrays for methanol oxidation. Journal of Alloys and Compounds, 2023, 943, 169179.	2.8	4
4882	High-entropy alloys in water electrolysis: Recent advances, fundamentals, and challenges. Science China Materials, 2023, 66, 1681-1701.	3.5	24
4883	Treatment of Hydrophobic Polycyclic Aromatic Hydrocarbons and Toxicity Using GO-TiO2-Sr(OH)2/SrCO3 Nanocomposite via Photocatalytic Degradation., 2022, 1, 60-83.		1
4884	In situ Growth of Co3O4 Nanoparticles on Nitrogen-doped Reduced Graphene Oxide for High-Efficiency Oxygen Reduction Catalysis. New Journal of Chemistry, 0, , .	1.4	1

#	Article	IF	CITATIONS
4885	A comprehensive review of cathode materials for Na–air batteries. Energy Advances, 2023, 2, 465-502.	1.4	1
4886	Facile synthesis approach of bifunctional Co–Ni–Fe oxyhydroxide and spinel oxide composite electrocatalysts from hydroxide and layered double hydroxide composite precursors. RSC Advances, 2023, 13, 10681-10692.	1.7	O
4887	嫿œ‰ä¸°å¯Œé"物ç§çš"é…体诱导ä¸ç©ºMOFè¡ç"Ÿç¢³çº³ç±³ææ—™ç"¨äºŽé«~æ•^æ°§è;~原å应. Scienc	e (3h\$na Ma	at e rials, 2023
4888	Efficient catalytic hydrogenation of furfural over cobalt-based catalysts with adjustable acidity. Chemical Engineering Science, 2023, 270, 118527.	1.9	6
4889	Enhancing long-term stability of bio-photoelectrochemical cell by defect engineering of a WO3-photoanode. Journal of Energy Chemistry, 2023, 80, 584-593.	7.1	6
4890	Fe-doping-induced cation substitution and anion vacancies promoting Co3O4 hexagonal nanosheets for efficient overall water splitting., 2023, 1, 100002.		3
4891	NiCu alloys anchored Co3O4 nanowire arrays as efficient hydrogen evolution electrocatalysts in alkaline and neutral media. Journal of Colloid and Interface Science, 2023, 642, 604-611.	5.0	9
4892	Defect-engineered TiO2 nanotube cathode for nitrate reduction to ammonia and upcycling into (NH4)2SO4 in the paired electrolysis system. Applied Catalysis B: Environmental, 2023, 330, 122658.	10.8	6
4893	Recent advances and perspectives on graphene-based gels for superior flexible all-solid-state supercapacitors. Journal of Power Sources, 2023, 565, 232916.	4.0	23
4894	CoOx-Fe3O4/N-rGO Oxygen Reduction Catalyst for Anion-Exchange Membrane Fuel Cells. Energies, 2023, 16, 3425.	1.6	3
4895	Evolution in graphene oxide-based materials characterization and modeling. , 2022, , .		0
4896	Picomolar, Electrochemical Detection of Paraoxon Ethyl, by Strongly Coordinated NiCo2O4-SWCNT Composite as an Electrode Material. Journal of Electroanalytical Chemistry, 2023, 931, 117175.	1.9	4
4897	Acetic acidâ€assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward highâ€efficiency oxygen reduction and ethanol oxidation electrocatalysis. , 2023, 5, .		14
4898	Highly Active Porous Carbon-Supported CoNi Bimetallic Catalysts for Four-Electron Reduction of Oxygen. Energy &	2.5	4
4899	Co3C-stabilized-CoFe heterostructure wrapped by bamboo-like N-doped carbon nanotubes for highly-efficient oxygen electrocatalysis. Chemical Engineering Journal, 2023, 459, 141591.	6.6	5
4900	Insights into the Electrochemical Behavior of Manganese Oxides as Catalysts for the Oxygen Reduction and Evolution Reactions: Monometallic Coreâ€Shell Mn/Mn ₃ O ₄ . Small, 2023, 19, .	5.2	7
4901	Porous nitrogen-doped reduced graphene oxide-supported CuO@Cu2O hybrid electrodes for highly sensitive enzyme-free glucose biosensor. IScience, 2023, 26, 106155.	1.9	3
4902	Synthesis of FeCo2O4@Co3O4 nanocomposites and their electrochemical catalytical performaces for energy-saving H2 prodcution. International Journal of Hydrogen Energy, 2023, 48, 17147-17159.	3.8	3

#	Article	IF	CITATIONS
4903	Inducing Fe 3d Electron Delocalization and Spin-State Transition of FeN4 Species Boosts Oxygen Reduction Reaction for Wearable Zinc–Air Battery. Nano-Micro Letters, 2023, 15, .	14.4	9
4904	Combined experimental and DFT investigation of temozolomide sensing properties of 2Dâ^'Â2D interface of rich oxygen vacancies of WO3â''x and sulfur-doped g-C3N4 nanosheets hybrids composites. Journal of Environmental Chemical Engineering, 2023, 11, 109459.	3.3	0
4905	Bifunctional electrocatalyst junction engineering: CoP nanoparticles in-situ anchored on Co3(Si2O5)2(OH)2 nanosheets for highly efficient water splitting. Chemical Engineering Journal, 2023, 460, 141709.	6.6	10
4906	Application of Nickel Foam in Electrochemical Systems: A Review. Journal of Electronic Materials, 2023, 52, 2264-2291.	1.0	5
4907	Construction of a Co/MnO Mott–Schottky Heterostructure to Achieve Interfacial Synergy in the Oxygen Reduction Reaction for Aluminum–Air Batteries. ACS Applied Materials & amp; Interfaces, 2023, 15, 9150-9159.	4.0	9
4908	Approaches to construct high-performance Mg–air batteries: from mechanism to materials design. Journal of Materials Chemistry A, 2023, 11, 7924-7948.	5.2	10
4909	Atomically dispersed Fe/Co dual site electrocatalysts derived from covalent triazine frameworks for boosting oxygen reduction. Journal of Materials Chemistry A, 2023, 11, 5902-5909.	5.2	4
4910	The thermal stability of carbon materials in the air: Quantitative structural investigation of thermal stability of carbon materials in air. Carbon, 2023, 206, 211-225.	5.4	7
4911	Digitization of Freeâ€Shapable Graphene Foam with Damage Tolerance. Advanced Functional Materials, 2023, 33, .	7.8	4
4912	A Static Tin–Manganese Battery with 30000-Cycle Lifespan Based on Stabilized Mn ³⁺ /Mn ²⁺ Redox Chemistry. ACS Nano, 2023, 17, 5083-5094.	7.3	11
4913	Potential-Dependent Oxygen Reduction on FeN ₄ under Explicit Solvation Environment. Journal of Physical Chemistry C, 2023, 127, 4934-4941.	1.5	3
4914	Nickel Oxide Thin Films for Oxygen Evolution Reaction. International Journal of Advanced Research in Science, Communication and Technology, 0, , 543-547.	0.0	0
4915	Surface Reduced Manganese States as a Source of Oxygen Reduction Activity in BaMnO ₃ . Advanced Functional Materials, 0, , 2214883.	7.8	0
4916	Carbon-Based Electrodes for Advanced Zinc-Air Batteries: Oxygen-Catalytic Site Regulation and Nanostructure Design. Electrochemical Energy Reviews, 2023, 6, .	13.1	32
4917	Nanoengineered Zn-modified Nickel Sulfide (NiS) as a bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 21969-21980.	3.8	6
4918	Nanocomposite of nickel benzeneâ€1,3,5â€tricarboxylic acid metal organic framework with multiwalled carbon nanotubes: A robust and effective electrocatalyst for oxygen evolution reaction in water splitting. Applied Organometallic Chemistry, 2023, 37, .	1.7	1
4919	Uniform integration of SnO2 nanoparticles on graphene benefitting from the buffer vacancies induced by Al2O3 used as anode for lithiumâ€'ion batteries. lonics, 0, , .	1.2	0
4920	Activated nanolithia as an effective prelithiation additive for lithium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 8757-8765.	5.2	7

#	Article	IF	CITATIONS
4921	Co3O4 Supported on Graphene-like Carbon by One-Step Calcination of Cobalt Phthalocyanine for Efficient Oxygen Reduction Reaction under Alkaline Medium. Nanomaterials, 2023, 13, 1241.	1.9	3
4922	A Mechanistic Overview of the Current Status and Future Challenges in Air Cathode for Aluminum Air Batteries. Chemical Record, 2024, 24, .	2.9	3
4923	Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117423.	1.9	1
4924	Elucidating the oxygen reduction reaction kinetics on defect engineered nanocarbon electrocatalyst: interplay between the N-dopant and defect sites. Journal of Materials Chemistry A, 2023, 11, 17045-17055.	5.2	6
4925	Metal Oxideâ€Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	4.6	6
4926	Four New Sbâ€based Orthophosphates: Cation Regulation to Investigate Diversified Structural Architecture. Chemistry - A European Journal, 0, , .	1.7	1
4927	A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, 2023, 1-15.	1.0	3
4928	Schiff-base polymer derived ultralong FeCo/N-doped carbon nanotubes as bifunctional oxygen electrocatalyst for liquid and flexible all-solid-state rechargeable zinc–air batteries. Carbon, 2023, 210, 118000.	5.4	9
4929	MOF-derived nanocarbon materials loaded with bimetallic sulfides as cathode catalysts for zinc–air batteries. New Journal of Chemistry, 2023, 47, 9870-9878.	1.4	2
4930	Two-Dimensional Covalent Framework Derived Nonprecious Transition Metal Single-Atomic-Site Electrocatalyst toward High-Efficiency Oxygen Reduction. Nano Letters, 2023, 23, 3803-3809.	4.5	4
4936	Thermal shock synthesis of carbon nanotubes supporting small-sized rhenium nanoparticles for efficient electrocatalytic hydrogen evolution. Rare Metals, 2023, 42, 2166-2173.	3 . 6	3
4945	Functionalization of Graphene and Factors Affecting Catalytic Performance. , 2023, , 154-207.		0
4966	Short Communication: Electrochemical Detection of Dissolved Oxygen in Water using a Composite of Graphene oxide and Platinum Nanoparticles. International Journal of Electrochemical Science, 2015, 10, 10038-10044.	0.5	5
4974	Green nanoparticle synthesis at scale: a perspective on overcoming the limits of pulsed laser ablation in liquids for high-throughput production. Physical Chemistry Chemical Physics, 2023, 25, 19380-19408.	1.3	8
4976	Graphene Nano Sheets for the Fuel Cell Applications. , 0, , .		0
4977	Recent Progress in Metal-Organic Frameworks and their Derivatives as Advanced Electrocatalysts for Oxygen Reduction Reactions. , 2023, , 129-161.		O
4980	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	18.7	9
4985	Graphene-Based Materials in Energy Harvesting. Materials Horizons, 2023, , 227-247.	0.3	O

#	Article	IF	CITATIONS
4993	Use of Plant-Derived Nanoparticles in Cancer Therapy. , 2023, , 1405-1428.		0
5007	Fundamentals of catalytic activities, recent progress, and perspectives in the oxygen reduction reaction., 2023,, 78-106.		0
5011	Recent progress in electrochemical application of Magnéli phase Ti4O7-based materials: a review. Journal of Materials Science, 2023, 58, 14911-14944.	1.7	0
5014	New Frontiers for Heterostructured Nanocomposites with Interfacial Functionalities Synthesized via Laser Ablation Synthesis in Solution (LASiS). Challenges and Advances in Computational Chemistry and Physics, 2024, , 157-199.	0.6	0
5034	Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. Analytical Methods, 2023, 15, 6344-6361.	1.3	0
5042	Recent advances in nitrogen-doped graphene-based heterostructures and composites: mechanism and active sites for electrochemical ORR and HER. Green Chemistry, 2024, 26, 57-102.	4.6	2
5085	Advanced electrode materials of fuel cells. , 2024, , 367-421.		0
5092	Single-atom catalysts for electrocatalytic oxygen reduction. , 2024, , 91-118.		0
5109	One-Dimensional Carbon for Electrocatalytic Activities. Engineering Materials, 2024, , 81-98.	0.3	0
5110	Graphene-Based Electrocatalysts. Engineering Materials, 2024, , 179-197.	0.3	O