Sideband cooling of micromechanical motion to the qua

Nature 475, 359-363

DOI: 10.1038/nature10261

Citation Report

#	Article	IF	CITATIONS
5	Polarization of nuclear spins by a cold nanoscale resonator. Physical Review A, 2011, 84, .	1.0	12
6	Dissipative Optomechanics in a Michelson-Sagnac Interferometer. Physical Review Letters, 2011, 107, 213604.	2.9	122
7	The Diamond Superconducting Quantum Interference Device. ACS Nano, 2011, 5, 7144-7148.	7.3	54
8	Storing Optical Information as a Mechanical Excitation in a Silica Optomechanical Resonator. Physical Review Letters, 2011, 107, 133601.	2.9	301
9	Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling. Physical Review A, 2011, 84, .	1.0	36
10	Single-Photon Optomechanics. Physical Review Letters, 2011, 107, 063602.	2.9	408
11	Wide-band idler generation in a GaAs electromechanical resonator. Physical Review B, 2011, 84, .	1.1	22
12	Microwave amplification with nanomechanical resonators. Nature, 2011, 480, 351-354.	13.7	253
13	Quantum superposition of massive objects and collapse models. Physical Review A, 2011, 84, .	1.0	190
14	The gentle cooling touch of light. Nature, 2011, 478, 47-48.	13.7	4
15	Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nature Nanotechnology, 2011, 6, 726-732.	15.6	216
16	Mechanical memory sees the light. Nature Nanotechnology, 2011, 6, 690-691.	15.6	13
17	Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature, 2011, 478, 89-92.	13.7	1,866
18	An Introduction to Quantum Optomechanics. Acta Physica Slovaca, 2011, 61, .	1.4	56
19	Entangling Macroscopic Diamonds at Room Temperature. Science, 2011, 334, 1253-1256.	6.0	299
20	Licht macht Druck. Physik in Unserer Zeit, 2011, 42, 276-284.	0.0	1
21	High-sensitivity three-mode optomechanical transducer. Physical Review A, 2011, 84, .	1.0	12
22	Optomechanical entanglement in the presence of laser phase noise. Physical Review A, 2011, 84, .	1.0	27

#	Article	IF	Citations
23	Quantum entanglement and teleportation in pulsed cavity optomechanics. Physical Review A, 2011, 84, .	1.0	199
24	Quantum optomechanics in the bistable regime. Physical Review A, 2011, 84, .	1.0	79
25	Effect of phase noise on the generation of stationary entanglement in cavity optomechanics. Physical Review A, $2011, 84, .$	1.0	62
26	Role of quantum fluctuations in the optomechanical properties of a Bose-Einstein condensate in a ring cavity. Physical Review A, 2011, 84, .	1.0	19
27	High-Q optomechanical GaAs nanomembranes. Applied Physics Letters, 2011, 99, 243102.	1.5	29
28	A micropillar for cavity optomechanics. Applied Physics Letters, 2011, 99, 121103.	1.5	23
29	Nondeterministic ultrafast ground-state cooling of a mechanical resonator. Physical Review B, 2011, 84, .	1.1	55
30	Macrorealism inequality for optoelectromechanical systems. Physical Review B, 2011, 84, .	1.1	42
31	Ultraefficient Cooling of Resonators: Beating Sideband Cooling with Quantum Control. Physical Review Letters, 2011, 107, 177204.	2.9	98
32	Proposal for Entangling Remote Micromechanical Oscillators via Optical Measurements. Physical Review Letters, 2011, 107, 123601.	2.9	92
33	Q-factor control of a microcantilever by mechanical sideband excitation. Applied Physics Letters, 2011, 99, .	1.5	59
34	Nanometer optomechanical transistor based on nanometer cavity optomechanics with a single quantum dot. Journal of Applied Physics, $2011,110,.$	1.1	12
35	Detecting Majorana bound states by nanomechanics. Physical Review B, 2011, 84, .	1.1	21
36	Mass sensing based on a circuit cavity electromechanical system. Journal of Applied Physics, 2011, 110, 083107.	1.1	10
37	Activating optomechanical entanglement. Scientific Reports, 2011, 1, 199.	1.6	22
38	High-frequency nanotube mechanical resonators. Applied Physics Letters, 2011, 99, .	1.5	51
39	Shuttle transport for single electrons. Nature Nanotechnology, 2011, 6, 691-692.	15.6	2
40	Cool Vibrations. Science, 2011, 333, 832-833.	6.0	6

#	Article	IF	Citations
41	Remote actuation of a mechanical resonator. Applied Physics Letters, 2011, 99, 103105.	1.5	1
42	Quantum optomechanics with a high-frequency dilational mode in thin dielectric membranes. New Journal of Physics, 2012, 14, 085016.	1.2	14
43	Driven optomechanical systems for mechanical entanglement distribution. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 154010.	0.6	9
44	Optomechanical quantum-state transfer beyond one-to-one interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 185503.	0.6	1
45	Cryogenic optomechanics with a Si ₃ N ₄ membrane and classical laser noise. New Journal of Physics, 2012, 14, 115018.	1.2	41
46	Cavity optomechanics with Si ₃ N ₄ membranes at cryogenic temperatures. New Journal of Physics, 2012, 14, 115021.	1.2	55
47	Ultrahigh- <i>Q</i> mechanical oscillators through optical trapping. New Journal of Physics, 2012, 14, 045002.	1.2	49
48	Continuous mode cooling and phonon routers for phononic quantum networks. New Journal of Physics, 2012, 14, 115004.	1.2	143
49	Macroscopic superpositions via nested interferometry: finite temperature and decoherence considerations. New Journal of Physics, 2012, 14, 115025.	1.2	10
50	Coupling carbon nanotube mechanics to a superconducting circuit. Scientific Reports, 2012, 2, 599.	1.6	52
51	Exciton-assisted optomechanics with suspended carbon nanotubes. New Journal of Physics, 2012, 14, 115003.	1.2	26
52	Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator. New Journal of Physics, 2012, 14, 113040.	1.2	40
53	Using dark modes for high-fidelity optomechanical quantum state transfer. New Journal of Physics, 2012, 14, 105010.	1.2	89
54	Experimental signatures of the quantum–classical transition in a nanomechanical oscillator modeled as a damped-driven double-well problem. Physica Scripta, 2012, T151, 014055.	1.2	6
55	Cryogenic optical refrigeration. Advances in Optics and Photonics, 2012, 4, 78.	12.1	79
56	Low-frequency noise in gallium nitride nanowire mechanical resonators. Applied Physics Letters, 2012, 101, .	1.5	15
57	Thermo-mechanical sensitivity calibration of nanotorsional magnetometers. Journal of Applied Physics, 2012, 111, .	1.1	17
58	Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison. Optics Express, 2012, 20, 26486.	1.7	16

#	Article	IF	Citations
59	Suppression of extraneous thermal noise in cavity optomechanics. Optics Express, 2012, 20, 3586.	1.7	12
60	Slot-mode-coupled optomechanical crystals. Optics Express, 2012, 20, 24394.	1.7	45
61	Controllable nonlinear responses in a cavity electromechanical system. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 220.	0.9	12
62	An electromechanical membrane resonator. Applied Physics Letters, 2012, 101, 063102.	1.5	38
63	Insertable system for fast turnaround time microwave experiments in a dilution refrigerator. Review of Scientific Instruments, 2012, 83, 093904.	0.6	6
64	High sensitivity SQUID-detection and feedback-cooling of an ultrasoft microcantilever. Applied Physics Letters, 2012, 101, .	1.5	13
65	Damping of optomechanical disks resonators vibrating in air. Applied Physics Letters, 2012, 100, 242105.	1.5	10
66	Nonlinear damping in graphene resonators. Physical Review B, 2012, 86, .	1.1	77
67	Quantum Magnetomechanics with Levitating Superconducting Microspheres. Physical Review Letters, 2012, 109, 147205.	2.9	87
68	Superconducting Microwave Multivibrator Produced by Coherent Feedback. Physical Review Letters, 2012, 109, 153602.	2.9	27
69	Probing the charge of a quantum dot with a nanomechanical resonator. Physical Review B, 2012, 86, .	1.1	49
70	Macroscopic Tunneling of a Membrane in an Optomechanical Double-Well Potential. Physical Review Letters, 2012, 108, 210403.	2.9	56
71	Optical Detection of the Quantization of Collective Atomic Motion. Physical Review Letters, 2012, 108, 133601.	2.9	91
72	Entanglement control in hybrid optomechanical systems. Physical Review A, 2012, 86, .	1.0	52
73	Improving the optomechanical entanglement and cooling by photothermal force. Physical Review A, 2012, 85, .	1.0	8
74	Feedback-enhanced sensitivity in optomechanics: Surpassing the parametric instability barrier. Physical Review A, 2012, 85, .	1.0	24
75	Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Physical Review A, 2012, 85, .	1.0	98
76	Generation of mechanical squeezing via magnetic dipoles on cantilevers. Physical Review A, 2012, 85, .	1.0	12

#	Article	IF	Citations
77	Optomechanical cooling of levitated spheres with doubly resonant fields. Physical Review A, 2012, 85, .	1.0	40
78	Linear amplifier model for optomechanical systems. Physical Review A, 2012, 85, .	1.0	33
79	Observation of Quantum Motion of a Nanomechanical Resonator. Physical Review Letters, 2012, 108, 033602.	2.9	334
80	Feedback cooling of cantilever motion using a quantum point contact transducer. Applied Physics Letters, 2012, 101, 133104.	1.5	10
81	Tuneable electromechanical comb generation. Applied Physics Letters, 2012, 100, .	1.5	17
82	Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating. Journal of Applied Physics, 2012, 111, .	1.1	13
83	Breakdown of the Classical Description of a Local System. Physical Review Letters, 2012, 108, 233601.	2.9	8
84	Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature. Applied Physics Letters, 2012, 100, .	1.5	73
85	Probing the quantum behavior of a nanomechanical resonator coupled to a double quantum dot. Physical Review B, 2012, 85, .	1.1	10
86	Predictions for cooling a solid to its ground state. Quarterly of Applied Mathematics, 2013, 71, 331-338.	0.5	1
87	Optomechanical photoabsorption spectroscopy of exciton states in GaAs. Applied Physics Letters, 2012, 101, 082107.	1.5	10
88	The stress of light cools vibration. Nature Physics, 2012, 8, 180-181.	6.5	4
89	Hot electrons but cool vibrations. Nature Physics, 2012, 8, 110-111.	6.5	2
90	Coherent Control of Micro/Nanomechanical Oscillation Using Parametric Mode Mixing. Applied Physics Express, 2012, 5, 014001.	1.1	21
91	Optomechanical circuits for nanomechanical continuous variable quantum state processing. New Journal of Physics, 2012, 14, 125005.	1.2	130
92	Dynamics of a nanoscale rotor driven by single-electron tunneling. Europhysics Letters, 2012, 98, 68004.	0.7	16
93	Optomechanical sideband cooling of a thin membrane within a cavity. New Journal of Physics, 2012, 14, 095015.	1.2	49
94	Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature. Nature Communications, 2012, 3, 728.	5.8	71

#	Article	IF	CITATIONS
95	Cavity optomechanics with low-noise crystalline mirrors. , 2012, , .		32
96	Exploring the Cooling Limit of Quantum Mechanical Oscillators via Optimization. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 236-241.	0.4	0
97	Coherent phonons as a new element of quantum computing and devices. Journal of Physics: Conference Series, 2012, 398, 012011.	0.3	5
98	A versatile scheme for read-out and actuation of nanomechanical motion using silica microspheres. , 2012, , .		0
99	Optomechanical Dark Mode. Science, 2012, 338, 1609-1613.	6.0	365
100	Subkelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle. Physical Review Letters, 2012, 109, 103603.	2.9	461
101	Ultralow-dissipation micro-oscillator for quantum optomechanics. Physical Review A, 2012, 86, .	1.0	21
102	Probing optical transitions. Nature Photonics, 2012, 6, 721-722.	15.6	0
103	A future without long memories?. Nature Photonics, 2012, 6, 722-724.	15.6	2
104	Coherent optical wavelength conversion via cavity optomechanics. Nature Communications, 2012, 3, 1196.	5.8	380
105	Zero point energy and zero point oscillations: how they are detected experimentally. Physics-Uspekhi, 2012, 55, 796-807.	0.8	14
106	Microwave quantum photonics in superconducting circuits. , 2012, , .		0
107	Quantum optomechanics beyond linearization. Physical Review A, 2012, 85, .	1.0	48
108	Strong Coupling and Long-Range Collective Interactions in Optomechanical Arrays. Physical Review Letters, 2012, 109, 223601.	2.9	199
109	Quantum Signatures of the Optomechanical Instability. Physical Review Letters, 2012, 109, 253601.	2.9	103
110	Optically mediated nonlinear quantum optomechanics. Physical Review A, 2012, 86, .	1.0	41
111	Backaction limits on self-sustained optomechanical oscillations. Physical Review A, 2012, 86, .	1.0	34
112	Precision measurement of electrical charge with optomechanically induced transparency. Physical Review A, 2012, 86, .	1.0	203

#	Article	IF	Citations
113	Effect of the Casimir force on the entanglement between a levitated nanosphere and cavity modes. Physical Review A, 2012, 86, .	1.0	26
114	Mechano-electronic and electro-mechanical energy transfer in mesoscopic superconducting weak links. Comptes Rendus Physique, 2012, 13, 426-439.	0.3	0
115	Quantum optomechanics with a mixture of ultracold atoms. Physical Review A, 2012, 86, .	1.0	7
116	Colloquium: Multiparticle quantum superpositions and the quantum-to-classical transition. Reviews of Modern Physics, 2012, 84, 1765-1789.	16.4	24
117	Phase-locked loop based on nanoelectromechanical resonant-body field effect transistor. Applied Physics Letters, 2012, 101, .	1.5	21
118	A High Quality Factor Carbon Nanotube Mechanical Resonator at 39 GHz. Nano Letters, 2012, 12, 193-197.	4.5	101
119	Electromechanically induced absorption in a circuit nano-electromechanical system. New Journal of Physics, 2012, 14, 123037.	1.2	60
120	Multimode circuit optomechanics near the quantum limit. Nature Communications, 2012, 3, 987.	5.8	193
121	Macroscopic quantum resonators (MAQRO). Experimental Astronomy, 2012, 34, 123-164.	1.6	74
122	Multipartite optomechanical entanglement from competing nonlinearities. Physical Review A, 2012, 86,	1.0	40
123	Generating macroscopic superposition states in nanomechanical graphene resonators. Physical Review B, 2012, 85, .	1,1	22
124	Opto- and electro-mechanical entanglement improved by modulation. New Journal of Physics, 2012, 14, 075014.	1.2	56
125	Demonstration of a single-photon router with a cavity electromechanical system. Journal of Applied Physics, 2012, 112, 033113.	1.1	8
126	Quantum optomechanics. Physics Today, 2012, 65, 29-35.	0.3	504
127	Quantum-state transfer between a Bose-Einstein condensate and an optomechanical mirror. Physical Review A, 2012, 86, .	1.0	50
128	Reservoir engineering and dynamical phase transitions in optomechanical arrays. Physical Review A, 2012, 86, .	1.0	81
129	Quantum optomechanics of a multimode system coupled via a photothermal and a radiation pressure force. Physical Review A, 2012, 86, .	1.0	14
130	Photon-phonon entanglement in coupled optomechanical arrays. Physical Review A, 2012, 86, .	1.0	66

#	Article	IF	CITATIONS
131	Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nature Communications, 2012, 3, 1091.	5.8	46
132	Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature, 2012, 488, 476-480.	13.7	307
134	Nonlinear mechanics with suspended nanomembranes. Europhysics Letters, 2012, 100, 68005.	0.7	31
135	Optical cavity cooling of mechanical modes of a semiconductor nanomembrane. Nature Physics, 2012, 8, 168-172.	6.5	79
136	Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature, 2012, 482, 63-67.	13.7	747
137	Steady-state negative Wigner functions of nonlinear nanomechanical oscillators. New Journal of Physics, 2012, 14, 023042.	1.2	77
138	Decoherence suppression by cavity optomechanical cooling. Comptes Rendus Physique, 2012, 13, 454-469.	0.3	4
139	Quantum dynamics of a mechanical resonator driven by a cavity. Comptes Rendus Physique, 2012, 13, 440-453.	0.3	16
140	Cavity-mediated stationary atom–mirror entanglement in the presence of photothermal effects. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2955-2961.	0.9	3
141	Low temperature properties of the Fermi–Dirac, Boltzmann and Bose–Einstein equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2887-2893.	0.9	1
142	Carbon's superconducting footprint. Nature Physics, 2012, 8, 111-112.	6.5	12
143	Photonic neural networks. Nature Physics, 2012, 8, 257-259.	6.5	128
144	Quantum dynamics of the damped harmonic oscillator. New Journal of Physics, 2012, 14, 083043.	1.2	24
145	Optimized optomechanical crystal cavity with acoustic radiation shield. Applied Physics Letters, 2012, 101, 081115.	1.5	269
146	A scheme for detecting the atom-field coupling constant in the Dicke superradiation regime using hybrid cavity optomechanical system. Optics Express, 2012, 20, 10106.	1.7	5
147	The quantum trajectory approach to quantum feedback control of an oscillator revisited. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 5338-5353.	1.6	32
148	Control of Material Damping in High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> Membrane Microresonators. Physical Review Letters, 2012, 108, 083603.	2.9	126
149	Transparency and amplification in a hybrid system of the mechanical resonator and circuit QED. Science China: Physics, Mechanics and Astronomy, 2012, 55, 2264-2272.	2.0	20

#	Article	IF	Citations
150	Photothermal Self-Oscillation and Laser Cooling of Graphene Optomechanical Systems. Nano Letters, 2012, 12, 4681-4686.	4.5	166
151	Pulsed Laser Cooling for Cavity Optomechanical Resonators. Physical Review Letters, 2012, 108, 153601.	2.9	94
152	To see a SAW. Nature Physics, 2012, 8, 256-257.	6.5	3
153	Observation of spontaneous Brillouin cooling. Nature Physics, 2012, 8, 203-207.	6.5	193
154	Enhanced Quantum Nonlinearities in a Two-Mode Optomechanical System. Physical Review Letters, 2012, 109, 063601.	2.9	245
155	Using Interference for High Fidelity Quantum State Transfer in Optomechanics. Physical Review Letters, 2012, 108, 153603.	2.9	376
157	Seeing the "Quantum―in Quantum Zero-Point Fluctuations. Physics Magazine, 2012, 5, .	0.1	2
158	Probing Planck-scale physics with quantum optics. Nature Physics, 2012, 8, 393-397.	6.5	473
159	Phonon-cavity electromechanics. Nature Physics, 2012, 8, 387-392.	6.5	127
160	Optomechanical Superpositions via Nested Interferometry. Physical Review Letters, 2012, 109, 023601.	2.9	99
161	Nonadiabatic Dynamics of Two Strongly Coupled Nanomechanical Resonator Modes. Physical Review Letters, 2012, 109, 037205.	2.9	100
162	Coherent Sensing of a Mechanical Resonator with a Single-Spin Qubit. Science, 2012, 335, 1603-1606.	6.0	326
163	A steady-state superradiant laser with less than one intracavity photon. Nature, 2012, 484, 78-81.	13.7	362
164	Role Reversal in a Bose-Condensed Optomechanical System. Physical Review Letters, 2012, 108, 240405.	2.9	19
165	Cooling in the single-photon strong-coupling regime of cavity optomechanics. Physical Review A, 2012, 85, .	1.0	51
166	Task-optimized control of open quantum systems. Physical Review A, 2012, 85, .	1.0	21
167	Generation of Fock states and qubits in periodically pulsed nonlinear oscillators. Physical Review A, 2012, 85, .	1.0	42
168	Proposal for a near-field optomechanical system with enhanced linear and quadratic coupling. Physical Review A, 2012, 85, .	1.0	30

#	ARTICLE	IF	CITATIONS
169	Master-equation approach to optomechanics with arbitrary dielectrics. Physical Review A, 2012, 86, .	1.0	40
170	Sensitivity and performance of cavity optomechanical field sensors. Photonic Sensors, 2012, 2, 259-270.	2.5	28
171	QuTiP: An open-source Python framework for the dynamics of open quantum systems. Computer Physics Communications, 2012, 183, 1760-1772.	3.0	1,143
172	Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 595-598.	0.9	11
173	Mechanical systems in the quantum regime. Physics Reports, 2012, 511, 273-335.	10.3	398
174	Phase-space behavior and conditional dynamics of an optomechanical system. Physical Review A, 2013, 88, .	1.0	1
175	Generation of macroscopic quantum superpositions of optomechanical oscillators by dissipation. Physical Review A, $2013, 88, .$	1.0	62
176	Open quantum dynamics of single-photon optomechanical devices. Physical Review A, 2013, 88, .	1.0	33
177	Two-mode back-action-evading measurements in cavity optomechanics. Physical Review A, 2013, 87, .	1.0	97
178	Nonlinear Interaction Effects in a Strongly Driven Optomechanical Cavity. Physical Review Letters, 2013, 111, 053602.	2.9	124
179	Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime. Physical Review Letters, 2013, 111, 053603.	2.9	141
180	Coherent control of a classical nanomechanical two-level system. Nature Physics, 2013, 9, 485-488.	6.5	149
181	On-chip cavity quantum phonodynamics with an acceptor qubit in silicon. Physical Review B, 2013, 88, .	1.1	44
182	Entangled-state engineering of vibrational modes in a multimembrane optomechanical system. Physical Review A, 2013, 88, .	1.0	68
183	Laser-induced rotation and cooling of a trapped microgyroscope in vacuum. Nature Communications, 2013, 4, 2374.	5 . 8	251
184	Cooling-by-measurement and mechanical state tomography via pulsed optomechanics. Nature Communications, 2013, 4, 2295.	5.8	132
185	Graphene Metallization of High-Stress Silicon Nitride Resonators for Electrical Integration. Nano Letters, 2013, 13, 4275-4279.	4.5	19
186	Parametric Down-Conversion and Polariton Pair Generation in Optomechanical Systems. Physical Review Letters, 2013, 111, 083601.	2.9	69

#	Article	IF	Citations
187	Motional entanglement with trapped ions and a nanomechanical resonator. Physical Review A, 2013, 88, .	1.0	6
188	Optomechanics assisted by a qubit: From dissipative state preparation to many-partite systems. Physical Review A, 2013, 88, .	1.0	29
189	Suppression of quantum-radiation-pressure noise in an optical spring. Physical Review A, 2013, 88, .	1.0	15
190	Quantum limit of laser cooling in dispersively and dissipatively coupled optomechanical systems. Physical Review A, 2013, 88, .	1.0	65
191	Controllability of optical bistability, cooling and entanglement in hybrid cavity optomechanical systems by nonlinear atom–atom interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 235502.	0.6	41
192	The properties of Stokes and anti-Stokes processes in a double-cavity optomechanical system. Optics Communications, 2013, 308, 265-269.	1.0	4
193	Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat. Review of Scientific Instruments, 2013, 84, 043108.	0.6	18
194	Quantum Mechanics Tackles Mechanics. Science, 2013, 342, 702-703.	6.0	2
195	Entangling Mechanical Motion with Microwave Fields. Science, 2013, 342, 710-713.	6.0	524
196	Bistability and chaos at low levels of quanta. Physical Review E, 2013, 88, 022910.	0.8	13
197	Squeezed light from a silicon micromechanical resonator. Nature, 2013, 500, 185-189.	13.7	458
198	Quantum Thermodynamics: A Dynamical Viewpoint. Entropy, 2013, 15, 2100-2128.	1.1	565
199	On the developments and applications of optical microcavities: an overview. Science China Information Sciences, 2013, 56, 1-15.	2.7	3
200	Photon-photon interactions in a largely detuned optomechanical cavity. Physical Review A, 2013, 88, .	1.0	38
201	Controlled assembly of graphene sheets and nanotubes: Fabrication of suspended multi-element all-carbon vibrational structures. Journal of Applied Physics, 2013, 114, 104310.	1.1	2
202	Entanglement of movable mirrors in a correlated emission laser via cascade-driven coherence. Physical Review A, 2013, 88, .	1.0	21
203	Coupled NanoSQUIDs and Nano-Electromechanical Systems (NEMS) Resonators. IEEE Transactions on Applied Superconductivity, 2013, 23, 1800304-1800304.	1.1	16
204	Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Physical Review A, 2013, 88, .	1.0	195

#	ARTICLE	IF	CITATIONS
205	Nanomechanical coupling between microwave and optical photons. Nature Physics, 2013, 9, 712-716.	6.5	485
206	OPTOMECHANICS OF LEVITATED DIELECTRIC PARTICLES. International Journal of Modern Physics B, 2013, 27, 1330018.	1.0	131
207	Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 104001.	0.6	195
208	Strong-coupling effects in dissipatively coupled optomechanical systems. New Journal of Physics, 2013, 15, 045017.	1.2	61
209	Controllable optical bistability based on photons and phonons in a two-mode optomechanical system. Physical Review A, 2013, 88, .	1.0	49
210	Engineering of nonclassical motional states in optomechanical systems. Physical Review A, 2013, 88, .	1.0	44
211	Phase noise measurement of external cavity diode lasers and implications for optomechanical sideband cooling of GHz mechanical modes. New Journal of Physics, 2013, 15, 015019.	1.2	23
212	Nonlinear effects of atomic collisions on the optomechanical properties of a Bose-Einstein condensate in an optical cavity. Physical Review A, 2013, 87, .	1.0	34
213	Gravitational bar detectors set limits to Planck-scale physics on macroscopic variables. Nature Physics, 2013, 9, 71-73.	6.5	102
214	Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator. Nature, 2013, 494, 211-215.	13.7	230
215	Observation of Radiation Pressure Shot Noise on a Macroscopic Object. Science, 2013, 339, 801-804.	6.0	334
216	Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Physical Review A, 2013, 88, .	1.0	32
217	Quantum dynamics of a nano-rod under compression. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1047-1051.	0.9	4
218	Optomechanical light storage in a silica microresonator. Physical Review A, 2013, 87, .	1.0	78
219	Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature, 2013, 495, 210-214.	13.7	358
220	Phonon Lasing in an Electromechanical Resonator. Physical Review Letters, 2013, 110, 127202.	2.9	127
221	Quantum Information Processing with Nanomechanical Qubits. Physical Review Letters, 2013, 110, 120503.	2.9	122
222	Single-photon transport and mechanical NOON-state generation in microcavity optomechanics. Physical Review A, 2013, 87, .	1.0	32

#	Article	IF	CITATIONS
223	Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics. Nature Physics, 2013, 9, 179-184.	6.5	150
224	Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane. Physical Review A, 2013, 87, .	1.0	60
225	Photon-induced tunneling in optomechanical systems. Physical Review A, 2013, 87, .	1.0	91
226	Full photon statistics of a light beam transmitted through an optomechanical system. Physical Review A, 2013, 87, .	1.0	72
227	Single-photon nonlinearities in two-mode optomechanics. Physical Review A, 2013, 87, .	1.0	146
228	Single Molecule Detection of Nanomechanical Motion. Physical Review Letters, 2013, 110, 125501.	2.9	47
229	Dissipation-driven two-mode mechanical squeezed states in optomechanical systems. Physical Review A, 2013, 87, .	1.0	151
230	Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems. Physical Review A, 2013, 87, .	1.0	115
231	Optical Readout of the Quantum Collective Motion of an Array of Atomic Ensembles. Physical Review Letters, 2013, 110, 153001.	2.9	31
232	Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Reviews of Modern Physics, 2013, 85, 623-653.	16.4	1,212
233	Achieving steady-state entanglement of remote micromechanical oscillators by cascaded cavity coupling. Physical Review A, 2013, 87, .	1.0	44
234	Macroscopic Quantum Mechanics in a Classical Spacetime. Physical Review Letters, 2013, 110, 170401.	2.9	100
235	Macroscopicity of Mechanical Quantum Superposition States. Physical Review Letters, 2013, 110, 160403.	2.9	145
236	A short walk through quantum optomechanics. Annalen Der Physik, 2013, 525, 215-233.	0.9	349
237	Evidence for the Role of Normal-State Electrons in Nanoelectromechanical Damping Mechanisms at Very Low Temperatures. Physical Review Letters, 2013, 110, 177206.	2.9	14
238	Self-sustained oscillations of a torsional SQUID resonator induced by Lorentz-force back-action. Nature Communications, 2013, 4, 1803.	5.8	17
239	Absolute Dynamical Limit to Cooling Weakly Coupled Quantum Systems. Physical Review Letters, 2013, 110, 157207.	2.9	11
240	Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators. Physical Review Letters, 2013, 110, 223603.	2.9	134

#	Article	IF	CITATIONS
241	Gain-tunable optomechanical cooling in a laser cavity. Physical Review A, 2013, 87, .	1.0	14
242	Reservoir-Engineered Entanglement in Optomechanical Systems. Physical Review Letters, 2013, 110, 253601.	2.9	346
243	Tension-induced nonlinearities of flexural modes in nanomechanical resonators. Physical Review B, $2013, 87, .$	1.1	10
244	Strong Thermomechanical Squeezing via Weak Measurement. Physical Review Letters, 2013, 110, 184301.	2.9	103
245	Ultra Low Power Consumption for Self-Oscillating Nanoelectromechanical Systems Constructed by Contacting Two Nanowires. Nano Letters, 2013, 13, 1451-1456.	4.5	14
246	Nonlinear Quantum Optomechanics via Individual Intrinsic Two-Level Defects. Physical Review Letters, 2013, 110, 193602.	2.9	130
247	Mechanical resonators for storage and transfer of electrical and optical quantum states. Physical Review A, $2013, 87, .$	1.0	64
248	Nondegenerate three-wave mixing with the Josephson ring modulator. Physical Review B, 2013, 87, .	1.1	88
249	Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling. Physical Review B, 2013, 88, .	1.1	18
250	Optomechanically Induced Transparency in the Nonlinear Quantum Regime. Physical Review Letters, 2013, 111, 133601.	2.9	182
251	Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. Journal of Optics (United Kingdom), 2013, 15, 025704.	1.0	47
252	Review of cavity optomechanical cooling. Chinese Physics B, 2013, 22, 114213.	0.7	104
253	Simulating open quantum systems by applying $SU(4)$ to quantum master equations. Physical Review A, 2013, 87, .	1.0	49
254	Multimode strong-coupling quantum optomechanics. Physical Review A, 2013, 88, .	1.0	47
255	Quantum-enhanced micromechanical displacement sensitivity. Optics Letters, 2013, 38, 1413.	1.7	60
256	Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction. Optics Express, 2013, 21, 11227.	1.7	44
257	Electromagnetically induced transparency and slow light in two-mode optomechanics. Optics Express, 2013, 21, 12165.	1.7	86
258	Fast optical cooling of nanomechanical cantilever with the dynamical Zeeman effect. Optics Express, 2013, 21, 29695.	1.7	29

#	ARTICLE	IF	CITATIONS
259	High frequency top-down junction-less silicon nanowire resonators. Nanotechnology, 2013, 24, 435203.	1.3	17
260	Quantized phonon modes in loaded polymer films. Journal of Applied Physics, 2013, 113, 033516.	1.1	2
261	Dynamics of levitated nanospheres: towards the strong coupling regime. New Journal of Physics, 2013, 15, 015001.	1.2	45
262	Multi-phonon relaxation and generation of quantum states in a nonlinear mechanical oscillator. New Journal of Physics, 2013, 15, 053041.	1.2	10
263	Antibunching photons in a cavity coupled to an optomechanical system. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 035502.	0.6	91
264	Dynamic Dissipative Cooling of a Mechanical Resonator in Strong Coupling Optomechanics. Physical Review Letters, 2013, 110, 153606.	2.9	203
265	Quantum State Orthogonalization and a Toolset for Quantum Optomechanical Phonon Control. Physical Review Letters, 2013, 110, 010504.	2.9	67
266	Tunable Coupling to a Mechanical Oscillator Circuit Using a Coherent Feedback Network. Physical Review X, 2013, 3, .	2.8	40
267	Time-Continuous Bell Measurements. Physical Review Letters, 2013, 111, 170404.	2.9	24
268	Multimode phonon cooling via three-wave parametric interactions with optical fields. Physical Review A, 2013, 88, .	1.0	24
269	Multi-functional MEMS/NEMS for nanometrology applications. , 2013, , .		1
270	Strong Optomechanical Squeezing of Light. Physical Review X, 2013, 3, .	2.8	266
271	Full Coherent Frequency Conversion between Two Propagating Microwave Modes. Physical Review Letters, 2013, 110, 173902.	2.9	55
272	Arbitrarily large steady-state bosonic squeezing via dissipation. Physical Review A, 2013, 88, .	1.0	193
273	Multi-mode parametric coupling in an electromechanical resonator. Applied Physics Letters, 2013, 103, .	1.5	32
274	Quantum point contact displacement transducer for a mechanical resonator at sub-Kelvin temperatures. Applied Physics Letters, 2013, 103, 192105.	1.5	24
275	Anomalous dynamic backaction in interferometers. Physical Review A, 2013, 88, .	1.0	35
276	Nonlinearity enhancement in optomechanical systems. Physical Review A, 2013, 88, .	1.0	22

#	Article	IF	CITATIONS
277	Quantum Many-Body Dynamics in Optomechanical Arrays. Physical Review Letters, 2013, 111, 073603.	2.9	246
278	Optical readout of coupling between a nanomembrane and an LC circuit at room temperature. , 2013, , .		0
279	Ultrahigh Q-frequency product for optomechanical disk resonators with a mechanical shield. Applied Physics Letters, 2013, 103, .	1.5	34
280	Collectively enhanced optomechanical coupling in periodic arrays of scatterers. Physical Review A, 2013, 88, .	1.0	45
281	Demonstrating a Driven Reset Protocol for a Superconducting Qubit. Physical Review Letters, 2013, 110, 120501.	2.9	147
282	Dynamics of a levitated nanosphere by optomechanical coupling and Casimir interaction. Physical Review A, 2013, 88, .	1.0	23
283	Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics. Physical Review A, 2013, 88, .	1.0	79
284	Toward engineered quantum many-body phonon systems. Physical Review B, 2013, 88, .	1.1	8
285	Phase conjugation in quantum optomechanics. Physical Review A, 2013, 88, .	1.0	10
286	Optomechanical effects of two-level systems in a back-action evading measurement of micro-mechanical motion. Applied Physics Letters, 2013, 103, .	1.5	21
287	Recent progress and perspectives of extremely low loss acoustic cavities: From frequency sources to artificial atoms. , 2013 , , .		0
288	Cavity cooling of an optically levitated submicron particle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14180-14185.	3.3	264
289	Cavity Optomechanical System with Bose-Einstein Condensate. , 2013, , 57-79.		0
291	Strong squeezing via phonon mediated spontaneous generation of photon pairs. New Journal of Physics, 2014, 16, 113004.	1.2	15
292	Classical non-Gaussian state preparation through squeezing in an optoelectromechanical resonator. Physical Review A, 2014, 90, .	1.0	26
293	Dynamical localization of matter waves in optomechanics. Laser Physics, 2014, 24, 115503.	0.6	12
294	Strong coupling of an optomechanical system to an anomalously dispersive atomic medium. Laser Physics Letters, 2014, 11, 126003.	0.6	4
295	Cavity optomechanics. Reviews of Modern Physics, 2014, 86, 1391-1452.	16.4	4,064

#	Article	IF	Citations
296	Synchronizing a single-electron shuttle to an external drive. New Journal of Physics, 2014, 16, 043009.	1.2	6
297	Investigation on Planck scale physics by the AURIGA gravitational bar detector. New Journal of Physics, 2014, 16, 085012.	1.2	23
298	Nonclassical States of Light and Mechanics. , 2014, , 25-56.		8
299	Brillouin Optomechanics. , 2014, , 157-168.		O
300	Coherent control and feedback cooling in a remotely coupled hybrid atom–optomechanical system. New Journal of Physics, 2014, 16, 083036.	1.2	32
301	Detection of weak forces based on noise-activated switching in bistable optomechanical systems. Physical Review A, 2014, 90, .	1.0	16
302	Phonon-induced dynamic resonance energy transfer. New Journal of Physics, 2014, 16, 053018.	1,2	12
303	Superfluid optomechanics: coupling of a superfluid to a superconducting condensate. New Journal of Physics, 2014, 16, 113020.	1.2	39
304	Modulated electromechanics: large enhancements of nonlinearities. New Journal of Physics, 2014, 16, 072001.	1,2	31
305	Damping and non-linearity of a levitating magnet in rotation above a superconductor. New Journal of Physics, 2014, 16, 075011.	1.2	13
306	Problems with the Newton–Schrödinger equations. New Journal of Physics, 2014, 16, 085007.	1.2	77
307	Cavity optomechanics with a nonlinear photonic-crystal nanomembrane. , 2014, , .		0
308	Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature. , 2014, , .		2
309	Cooling of optomechanical system by coherent feedback. , 2014, , .		0
310	A phononic bandgap shield for high- $\langle i \rangle Q \langle i \rangle$ membrane microresonators. Applied Physics Letters, 2014, 104, .	1.5	71
311	Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems. Optics Express, 2014, 22, 13773.	1.7	33
312	Photoelastic coupling in gallium arsenide optomechanical disk resonators. Optics Express, 2014, 22, 14072.	1.7	77
313	High-frequency acousto-optic effects in Bragg reflectors. Optics Express, 2014, 22, 15218.	1.7	4

#	Article	IF	Citations
314	Ground-state cooling of an oscillator in a hybrid atom-optomechanical system. Optics Express, 2014, 22, 20060.	1.7	25
315	Ground state cooling of an optomechanical resonator assisted by a $\hat{\mathfrak{b}}$ -type atom. Optics Express, 2014, 22, 28118.	1.7	28
316	Classical stochastic measurement trajectories: Bosonic atomic gases in an optical cavity and quantum measurement backaction. Physical Review A, 2014, 90, .	1.0	32
317	Optical and mechanical mode tuning in an optomechanical crystal with light-induced thermal effects. Journal of Applied Physics, 2014, 116, 093506.	1.1	5
318	Long-time correlated quantum dynamics of phonon cooling. Physical Review A, 2014, 90, .	1.0	1
319	Silicon optomechanical crystal resonator at millikelvin temperatures. Physical Review A, 2014, 90, .	1.0	89
320	High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID array. Physical Review B, 2014, 89, .	1.1	66
321	Prospect of detecting single-photon-force effects in cavity optomechanics. Physical Review A, 2014, 89,	1.0	10
322	Spin Transfer of Quantum Information between Majorana Modes and a Resonator. Physical Review Letters, 2014, 112, 106402.	2.9	19
323	Formation and manipulation of optomechanical chaos via a bichromatic driving. Physical Review A, 2014, 90, .	1.0	42
324	Improving the cooling performance of a mechanical resonator with two-level-system defects. Physical Review A, 2014, 90, .	1.0	2
325	Enhancing Optomechanical Coupling via the Josephson Effect. Physical Review Letters, 2014, 112, .	2.9	101
326	Quantum manifestation of a synchronization transition in optomechanical systems. Physical Review A, 2014, 90, .	1.0	46
327	Dissipation in Ultrahigh Quality Factor SiN Membrane Resonators. Physical Review Letters, 2014, 112, 127201.	2.9	84
328	Entangled-state generation and Bell inequality violations in nanomechanical resonators. Physical Review B, 2014, 90, .	1.1	32
329	Laser Theory for Optomechanics: Limit Cycles in the Quantum Regime. Physical Review X, 2014, 4, .	2.8	51
330	High-Q silica zipper cavity for optical radiation pressure driven MOMS switch. AIP Advances, 2014, 4, 077137.	0.6	2
331	Oscillator tunneling dynamics in the Rabi model. Physical Review B, 2014, 89, .	1.1	26

#	Article	IF	CITATIONS
332	Spectra of mechanical cavity modes in distributed Bragg reflector based vertical GaAs resonators. Physical Review B, 2014, 90, .	1.1	12
333	Two-Mode Thermal-Noise Squeezing in an Electromechanical Resonator. Physical Review Letters, 2014, 113, 167203.	2.9	67
334	Multistability of a Josephson parametric amplifier coupled to a mechanical resonator. Physical Review B, 2014, 90, .	1.1	3
335	Intermittency in an optomechanical cavity near a subcritical Hopf bifurcation. Physical Review A, 2014, 90, .	1.0	11
336	Dissipative and Dispersive Optomechanics in a Nanocavity Torque Sensor. Physical Review X, 2014, 4, .	2.8	104
337	Electromagnetically-induced-transparency-like ground-state cooling in a double-cavity optomechanical system. Physical Review A, 2014, 90, .	1.0	149
338	Dynamic stabilization of an optomechanical oscillator. Physical Review A, 2014, 90, .	1.0	8
339	Applications of cavity optomechanics. Applied Physics Reviews, 2014, 1, 031105.	5.5	192
340	Polariton path to fully resonant dispersive coupling in optomechanical resonators. Physical Review B, 2014, 90, .	1.1	22
341	Steady-state control in an unstable optomechanical system. Physical Review A, 2014, 90, .	1.0	11
342	Microwave-assisted coherent and nonlinear control in cavity piezo-optomechanical systems. Physical Review A, 2014, 90, .	1.0	32
343	Quantum-Limited Amplification via Reservoir Engineering. Physical Review Letters, 2014, 112, 133904.	2.9	94
344	Quantum networking of microwave photons using optical fibers. Physical Review A, 2014, 90, .	1.0	19
345	Observation and Interpretation of Motional Sideband Asymmetry in a Quantum Electromechanical Device. Physical Review X, 2014, 4, .	2.8	68
346	Noncanonical statistics of a finite quantum system with non-negligible system-bath coupling. Physical Review E, 2014, 90, 062125.	0.8	16
347	Cavity Optomechanics with Whispering-Gallery-Mode Microresonators. , 2014, , 121-148.		6
348	Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 413-440.	2.9	82
349	Quantum dynamics of two-optical modes and a single mechanical mode optomechanical system: Selective energy exchange. Optics Communications, 2014, 310, 204-211.	1.0	3

#	Article	IF	Citations
350	Nonlinear Dynamics and Quantum Entanglement in Optomechanical Systems. Physical Review Letters, 2014, 112, 110406.	2.9	90
351	Testing the limits of quantum mechanical superpositions. Nature Physics, 2014, 10, 271-277.	6.5	283
352	Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state. Nature Nanotechnology, 2014, 9, 358-364.	15.6	151
353	Controlling the dynamic range of a Josephson parametric amplifier. EPJ Quantum Technology, 2014, 1, .	2.9	95
354	Analytical approach and reconstruction of the density matrix of coupled oscillators. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 045501.	0.6	2
355	Bidirectional and efficient conversion between microwave and optical light. Nature Physics, 2014, 10, 321-326.	6.5	648
356	Steady-state entanglement, cooling, and tristability in a nonlinear optomechanical cavity. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1087.	0.9	44
357	Master equation for photon mediated phonon–atom coupled system. International Journal of Modern Physics B, 2014, 28, 1450123.	1.0	1
358	Coherence properties of coupled optomechanical cavities. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 1232.	0.9	6
359	Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities. Nano Letters, 2014, 14, 2854-2860.	4.5	146
360	A cavity-Cooper pair transistor scheme for investigating quantum optomechanics in the ultra-strong coupling regime. New Journal of Physics, 2014, 16, 055008.	1.2	59
361	Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science, 2014, 344, 1262-1265.	6.0	123
362	Conditional phase gate using an optomechanical resonator. Physical Review A, 2014, 89, .	1.0	8
363	Nonlinear nanomechanical resonators for quantum optoelectromechanics. Physical Review A, 2014, 89, .	1.0	45
364	Optimal limits of cavity optomechanical cooling in the strong-coupling regime. Physical Review A, 2014, 89, .	1.0	38
365	Squeezing a Thermal Mechanical Oscillator by Stabilized Parametric Effect on the Optical Spring. Physical Review Letters, 2014, 112, 023601.	2.9	51
366	Nanomechanical readout of a single spin. Physical Review B, 2014, 89, .	1.1	8
367	Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Physical Review A, 2014, 89, .	1.0	137

#	Article	IF	CITATIONS
368	Real-space tailoring of the electron–phonon coupling in ultraclean nanotube mechanical resonators. Nature Physics, 2014, 10, 151-156.	6.5	120
369	Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer. Applied Physics Letters, 2014, 105, .	1.5	13
370	Junctionless Silicon Nanowire Resonator. IEEE Journal of the Electron Devices Society, 2014, 2, 8-15.	1.2	24
371	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	1.0	58
372	Hybrid optomechanical cooling by atomic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Î></mml:mi>systems. Physical Review A, 2014, 90, .</mml:math 	1.0	45
373	Nano-optomechanics with optically levitated nanoparticles. Contemporary Physics, 2015, 56, 48-62.	0.8	39
374	Bidimensional nano-optomechanics and topological backaction in a non-conservative radiation force field. Nature Nanotechnology, 2014, 9, 920-926.	15.6	77
375	Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Physical Review A, 2014, 89, .	1.0	101
376	Enhanced interaction between a mechanical oscillator and two coupled resonant electrical circuits. Review of Scientific Instruments, 2014, 85, 085005.	0.6	2
377	Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator. Physical Review Letters, 2014, 113, 020503.	2.9	251
378	Nanosecond-pulse-controlled higher-order sideband comb in a GaAs optomechanical disk resonator in the non-perturbative regime. Annals of Physics, 2014, 349, 43-54.	1.0	36
379	Optomechanical-like coupling between superconducting resonators. Physical Review A, 2014, 90, .	1.0	66
380	Macroscopic Optomechanics from Displaced Single-Photon Entanglement. Physical Review Letters, 2014, 112, .	2.9	61
381	General-dyne unravelling of a thermal master equation. Russian Journal of Mathematical Physics, 2014, 21, 329-336.	0.4	14
382	Gravitational decoherence, alternative quantum theories and semiclassical gravity. Journal of Physics: Conference Series, 2014, 504, 012021.	0.3	19
383	Cavity quantum optomechanics: Coupling light and micromechanical oscillators. , 2014, , .		2
384	Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. Physical Review A, 2014, 89, .	1.0	15
385	Role of thermal noise in tripartite quantum steering. Physical Review A, 2014, 90, .	1.0	27

#	Article	IF	Citations
386	Ground-state cooling of mechanical motion in the unresolved sideband regime by use of optomechanically induced transparency. Physical Review A, 2014, 90, .	1.0	76
387	Photon propagation in a one-dimensional optomechanical lattice. Physical Review A, 2014, 89, .	1.0	36
388	Capacitive coupling of two transmission line resonators mediated by the phonon number of a nanoelectromechanical oscillator. Physical Review A, 2014, 90, .	1.0	4
389	Opto-nanomechanics strongly coupled to a Rydberg superatom: coherent versus incoherent dynamics. New Journal of Physics, 2014, 16, 063042.	1.2	37
390	Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Physical Review A, 2014, 90, .	1.0	169
391	Normal mode splitting in hybrid BEC-optomechanical system. Optik, 2014, 125, 5455-5460.	1.4	10
392	Investigation of Higher Order Reentrant Modes of a Cylindrical Reentrant-Ring Cavity Resonator. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1657-1662.	2.9	9
393	Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nature Communications, 2014, 5, 4429.	5.8	288
394	Theory of an optomechanical quantum heat engine. Physical Review A, 2014, 90, .	1.0	47
395	Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nature Nanotechnology, 2014, 9, 820-824.	15.6	217
396	A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5, 4452.	5.8	138
397	Spectrometric reconstruction of mechanical-motional states in optomechanics. Physical Review A, 2014, 90, .	1.0	16
398	Quantum effects improve the energy efficiency of feedback control. Physical Review E, 2014, 89, 042134.	0.8	23
399	State transfer and entanglement of two mechanical oscillators in coupled cavity optomechanical system. Journal of Modern Optics, 2014, 61, 1180-1186.	0.6	14
400	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mimathvariant="script">PT</mml:mimathvariant="script"></mml:mrow></mml:math> -Symmetric Phonon Laser. Physical Review Letters, 2014, 113, 053604.	2.9	502
401	Optomechanical Micro-Macro Entanglement. Physical Review Letters, 2014, 112, .	2.9	69
402	Teleportation-induced entanglement of two nanomechanical oscillators coupled to a topological superconductor. Physical Review B, 2014, 89, .	1.1	7
403	A PhoXonic crystal: Photonic and phononic bandgaps in a 1D optomechanical crystal. , 2014, , .		0

#	Article	IF	CITATIONS
404	Exponential localization of moving end mirror in optomechanics. Journal of Modern Optics, 2014, 61, 1318-1323.	0.6	18
405	Ground-State Cooling of a Carbon Nanomechanical Resonator by Spin-Polarized Current. Physical Review Letters, 2014, 113, 047201.	2.9	50
406	Preparing ground states and squeezed states of nanomechanical cantilevers by fast dissipation. Physical Review A, 2014, 90, .	1.0	13
407	Free-space cavity optomechanics in a cryogenic environment. Applied Physics Letters, 2014, 104, 044102.	1.5	13
408	Double optomechanically induced transparency in coupled-resonator system. Optics Communications, 2014, 333, 261-264.	1.0	35
409	Lasing from active optomechanical resonators. Nature Communications, 2014, 5, 4038.	5.8	37
410	Quantum Dot Opto-Mechanics in a Fully Self-Assembled Nanowire. Nano Letters, 2014, 14, 4454-4460.	4.5	94
411	Triply resonant cavity electro-optomechanics at X-band. New Journal of Physics, 2014, 16, 063060.	1.2	16
412	Dissipative optomechanical squeezing of light. New Journal of Physics, 2014, 16, 063058.	1.2	64
413	Dynamic range of atomically thin vibrating nanomechanical resonators. Applied Physics Letters, 2014, 104, .	1.5	33
414	Quantum Optomechanical Heat Engine. Physical Review Letters, 2014, 112, 150602.	2.9	196
415	Heralded Single-Phonon Preparation, Storage, and Readout in Cavity Optomechanics. Physical Review Letters, 2014, 112, 143602.	2.9	109
416	Optomechanical Sensing of Spontaneous Wave-Function Collapse. Physical Review Letters, 2014, 113, 020405.	2.9	114
417	Graphene Optomechanics Realized at Microwave Frequencies. Physical Review Letters, 2014, 113, 027404.	2.9	78
418	Dynamics and transmission of single two-level atom in an optomechanical system. European Physical Journal Plus, 2014, 129, 1.	1.2	6
419	Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir. Physical Review A, 2014, 89, .	1.0	175
420	Strong squeezing and robust entanglement in cavity electromechanics. Physical Review A, 2014, 89, .	1.0	76
421	Phonon waveguides for electromechanical circuits. Nature Nanotechnology, 2014, 9, 520-524.	15.6	118

#	Article	IF	Citations
422	Quantum transducer in circuit optomechanics. Solid State Communications, 2014, 198, 61-65.	0.9	7
423	Reconfigurable Long-Range Phonon Dynamics in Optomechanical Arrays. Physical Review Letters, 2014, 112, 133604.	2.9	66
424	Multidimensional optical trapping of a mirror. Physical Review D, 2014, 89, .	1.6	3
425	Deterministic quantum superpositions and Fock states of mechanical oscillators via quantum interference in single-photon cavity optomechanics. Physical Review A, 2014, 89, .	1.0	17
426	Dehydration melting at the top of the lower mantle. Science, 2014, 344, 1265-1268.	6.0	263
427	The quantum nondemolition derby. Science, 2014, 344, 1224-1226.	6.0	O
428	Probing Macroscopic Realism via Ramsey Correlation Measurements. Physical Review Letters, 2014, 112, 190402.	2.9	70
429	Nonlinear optomechanics in the stationary regime. Physical Review A, 2014, 89, .	1.0	58
430	How to Weigh Everything from Atoms to Apples Using the Revised SI. NCSL International Measure, 2014, 9, 26-38.	0.1	7
431	Circuit electromechanics with a non-metallized nanobeam. Applied Physics Letters, 2014, 105, .	1.5	5
432	Classical dynamics of a moving mirror due to radiation pressure. Journal of Physics: Conference Series, 2014, 512, 012005.	0.3	0
433	Slot-mode optomechanical crystals: a versatile platform for multimode optomechanics. Optica, 2015, 2, 994.	4.8	28
434	Generation of cluster states in optomechanical quantum systems. Physical Review A, 2015, 92, .	1.0	41
435	Cooling mechanical motion via vacuum effect of an ensemble of quantum emitters. Optics Express, 2015, 23, 30970.	1.7	28
436	Nanowire Architecture for Fast Electronic Devices. , 2015, , 175-220.		0
437	Enhanced optomechanical levitation of minimally supported dielectrics. Physical Review A, 2015, 91, .	1.0	10
438	Experimental exploration of the optomechanical attractor diagram and its dynamics. Physical Review A, 2015, 92, .	1.0	13
439	Mechanical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> symmetry in coupled optomechanical systems. Physical Review A, 2015, 92, .	1.0	120

#	Article	IF	CITATIONS
440	Limitations of a measurement-assisted optomechanical route to quantum macroscopicity of superposition states. Physical Review A, 2015, 92, .	1.0	7
441	Precision measurement of a low-loss cylindrical dumbbell-shaped sapphire mechanical oscillator using radiation pressure. Physical Review A, 2015, 92, .	1.0	9
442	Noise suppression of on-chip mechanical resonators by chaotic coherent feedback. Physical Review A, $2015, 92, .$	1.0	9
443	Effects of linear and quadratic dispersive couplings on optical squeezing in an optomechanical system. Physical Review A, 2015, 92, .	1.0	20
444	Optomechanically induced transparency and absorption in hybridized optomechanical systems. Physical Review A, 2015, 92, .	1.0	68
445	Fast Charge Sensing of a Cavity-Coupled Double Quantum Dot Using a Josephson Parametric Amplifier. Physical Review Applied, 2015, 4, .	1.5	85
446	Hybrid Quantum Device Based on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi><mml:mi></mml:mi>><mml:mi>Centers in Diamond Nanomechanical Resonators Plus Superconducting Waveguide Cavities. Physical Review Applied, 2015, 4, .</mml:mi></mml:math>	1.5	71
447	Control of vibrational states by spin-polarized transport in a carbon nanotube resonator. Physical Review B, 2015, 91, .	1.1	14
448	Coherent manipulation of a Majorana qubit by a mechanical resonator. Physical Review B, 2015, 92, .	1.1	13
449	Optomechanical response of a nonlinear mechanical resonator. Physical Review B, 2015, 92, .	1.1	8
450	Higher-order nonlinear effects in a Josephson parametric amplifier. Physical Review B, 2015, 92, .	1.1	19
451	Thermomechanical Two-Mode Squeezing in an Ultrahigh- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math> Membrane Resonator. Physical Review Letters, 2015, 115, 017202	2.9	49
452	Squeezing of Quantum Noise of Motion in a Micromechanical Resonator. Physical Review Letters, 2015, 115, 243601.	2.9	306
453	Sub-Poissonian phonon lasing in three-mode optomechanics. Physical Review A, 2015, 91, .	1.0	24
454	Generating quadrature squeezed light with dissipative optomechanical coupling. Physical Review A, 2015, 91, .	1.0	39
455	Resonant interaction of trapped cold atoms with a magnetic cantilever tip. Physical Review A, 2015, 91, .	1.0	7
456	Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Physical Review A, 2015, 92, .	1.0	78
457	Low-Loss Optomechanical Oscillator for Quantum-Optics Experiments. Physical Review Applied, 2015, 3,	1.5	11

#	Article	IF	Citations
458	Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Physical Review B, 2015, 92, .	1.1	103
459	Confinement of gigahertz sound and light in Tamm plasmon resonators. Physical Review B, 2015, 92, .	1.1	9
460	Nonlinear Radiation Pressure Dynamics in an Optomechanical Crystal. Physical Review Letters, 2015, 115, 233601.	2.9	60
461	Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object. Physical Review X, 2015, 5, 041037.	2.8	204
463	Frequency-tunable superconducting resonators via nonlinear kinetic inductance. Applied Physics Letters, 2015, 107, .	1.5	58
464	Fast optical cooling of a nanomechanical cantilever by a dynamical Stark-shift gate. Scientific Reports, 2015, 5, 14977.	1.6	4
465	A quantum squeezed state of a mechanical resonator has been realized. Physics Today, 2015, 68, 14-16.	0.3	0
466	Work extraction from heat-powered quantized optomechanical setups. Scientific Reports, 2015, 5, 7809.	1.6	62
467	Dynamical backaction cooling with free electrons. Nature Communications, 2015, 6, 8104.	5.8	23
468	Circuit electromechanics with single photon strong coupling. Applied Physics Letters, 2015, 107, 023102.	1.5	18
469	Strong optomechanical interactions in a sliced photonic crystal nanobeam. Scientific Reports, 2015, 5, 15974.	1.6	53
470	Optical wavelength conversion via optomechanical coupling in a silica resonator. Annalen Der Physik, 2015, 527, 100-106.	0.9	33
471	Squeezingâ€enhanced measurement sensitivity in a cavity optomechanical system. Annalen Der Physik, 2015, 527, 107-114.	0.9	11
472	Dynamical backâ€action effects in low loss optomechanical oscillators. Annalen Der Physik, 2015, 527, 89-99.	0.9	4
473	Diamond as a material for monolithically integrated optical and optomechanical devices. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2385-2399.	0.8	47
474	Nonresonant high-frequency excitation of mechanical vibrations in a movable quantum dot. New Journal of Physics, 2015, 17, 113057.	1.2	0
475	Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms. Atoms, 2015, 3, 450-473.	0.7	2
476	Controllable optical response in hybrid opto-electromechanical systems. Chinese Physics B, 2015, 24, 054206.	0.7	6

#	Article	IF	CITATIONS
477	Superconducting circuitry for quantum electromechanical systems., 2015,,.		2
478	Time-resolved phase-space tomography of an optomechanical cavity. Physical Review A, 2015, 91, .	1.0	6
479	Coherent-feedback-induced controllable optical bistability and photon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 105501.	0.6	12
480	Optomechanical Dirac physics. New Journal of Physics, 2015, 17, 023025.	1.2	35
481	Novel spectral features of nanoelectromechanical systems. Scientific Reports, 2015, 4, 4035.	1.6	2
482	Other Surface-Acoustic-Wave Based Instruments. Soft and Biological Matter, 2015, , 343-358.	0.3	0
483	Quantum state transfer between remote nanomechanical qubits. European Physical Journal D, 2015, 69, 1.	0.6	2
484	Atom-mirror entanglement via cavity dissipation. Physical Review A, 2015, 91, .	1.0	9
485	Cooling of a nanomechanical resonator in presence of a single diatomic molecule. Annals of Physics, 2015, 355, 130-142.	1.0	1
486	Si <inline-formula><tex-math>\$_{f} 3}\$</tex-math></inline-formula> N <inline-formula> <tex-math>\$_{f} 4}\$</tex-math></inline-formula> Nanobeam Optomechanical Crystals. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 61-71.	1.9	19
487	Large parametric amplification in an optomechanical system. Physica Scripta, 2015, T165, 014003.	1.2	2
488	Pulsed Excitation Dynamics of an Optomechanical Crystal Resonator near Its Quantum Ground State of Motion. Physical Review X, 2015, 5, .	2.8	84
489	Reconfigurable Josephson Circulator/Directional Amplifier. Physical Review X, 2015, 5, .	2.8	167
490	Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions. Physical Review Letters, 2015, 115, 240501.	2.9	56
491	Detection of genuine tripartite entanglement and steering in hybrid optomechanics. Optics Express, 2015, 23, 30104.	1.7	14
492	Route to Chaos in Optomechanics. Physical Review Letters, 2015, 114, 013601.	2.9	104
493	Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-8.	2.0	9
494	Review of cavity optomechanics in the weak-coupling regime: from linearization to intrinsic nonlinear interactions. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-13.	2.0	97

#	Article	IF	Citations
495	Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-6.	2.0	20
496	Confining the state of light to a quantum manifold by engineered two-photon loss. Science, 2015, 347, 853-857.	6.0	357
497	Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states. Physical Review A, 2015, 91, .	1.0	4
498	Testing Spontaneous Wave-Function Collapse Models on Classical Mechanical Oscillators. Physical Review Letters, 2015, 114, 050403.	2.9	63
499	Cooling mechanical resonators to the quantum ground state from room temperature. Physical Review A, 2015, 91, .	1.0	24
500	Cascaded optical transparency in multimode-cavity optomechanical systems. Nature Communications, 2015, 6, 5850.	5.8	111
501	Diabolical points in multi-scatterer optomechanical systems. Scientific Reports, 2015, 5, 7816.	1.6	10
502	Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. Journal of Optics (United Kingdom), 2015, 17, 045001.	1.0	31
503	Squeezed Optomechanics with Phase-Matched Amplification and Dissipation. Physical Review Letters, 2015, 114, 093602.	2.9	268
504	Towards optomechanical quantum state reconstruction of mechanical motion. Annalen Der Physik, 2015, 527, 15-26.	0.9	46
505	Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 065502.	0.6	68
506	Dispersive and Dissipative Coupling in a Micromechanical Resonator Embedded with a Nanomechanical Resonator. Nano Letters, 2015, 15, 2312-2317.	4.5	43
507	Optomechanically-induced transparency in parity-time-symmetric microresonators. Scientific Reports, 2015, 5, 9663.	1.6	261
508	Optomechanically induced transparency in the presence of an external time-harmonic-driving force. Scientific Reports, 2015, 5, 11278.	1.6	58
509	Einstein-Podolsky-Rosen–entangled motion of two massive objects. Physical Review A, 2015, 92, .	1.0	32
510	Nonlinear optical response of cavity optomechanical system with second-order coupling. Applied Optics, 2015, 54, 4623.	0.9	25
511	Asymmetric response function of the transduction spectrum for a microsphere pendulum. Proceedings of SPIE, 2015, , .	0.8	0
512	All-Optical Nanomechanical Heat Engine. Physical Review Letters, 2015, 114, 183602.	2.9	105

#	ARTICLE	IF	CITATIONS
513	Entanglement of two movable mirrors with a single photon superposition state. Physica Scripta, 2015, 90, 074015.	1.2	8
514	Coupled cavities for motional ground-state cooling and strong optomechanical coupling. Physical Review A, 2015, 91, .	1.0	91
515	Cold atoms as a coolant for levitated optomechanical systems. Physical Review A, 2015, 91, .	1.0	25
516	Macroscopic optomechanical superposition via periodic qubit flipping. Physical Review A, 2015, 91, .	1.0	27
517	Optical microscope and tapered fiber coupling apparatus for a dilution refrigerator. Review of Scientific Instruments, 2015, 86, 013107.	0.6	15
518	Steady-state one-way Einstein-Podolsky-Rosen steering in optomechanical interfaces. Physical Review A, 2015, 91, .	1.0	49
519	Cavity Cooling a Single Charged Levitated Nanosphere. Physical Review Letters, 2015, 114, 123602.	2.9	228
520	Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics. Physical Review A, 2015, 91, .	1.0	31
521	Enhanced entanglement between two movable mirrors in an optomechanical system with nonlinear media. Europhysics Letters, 2015, 110, 64004.	0.7	17
522	Heat transport in harmonic oscillator systems with thermal baths: application to optomechanical arrays. New Journal of Physics, 2015, 17, 055013.	1.2	39
523	Probing deformed commutators with macroscopic harmonic oscillators. Nature Communications, 2015, 6, 7503.	5. 8	116
524	Resolving the vacuum fluctuations of an optomechanical system using an artificial atom. Nature Physics, 2015, 11, 635-639.	6.5	83
525	Circuit analog of quadratic optomechanics. Physical Review A, 2015, 91, .	1.0	53
526	Efficient sympathetic motional-ground-state cooling of a molecular ion. Physical Review A, 2015, 91, .	1.0	42
527	Robust entanglement with a thermal mechanical oscillator. Physical Review A, 2015, 91, .	1.0	11
528	Cross-Kerr nonlinearity in optomechanical systems. Physical Review A, 2015, 91, .	1.0	34
529	Observation of three-mode parametric instability. Physical Review A, 2015, 91, .	1.0	19
530	Real photons from vacuum fluctuations in optomechanics: The role of polariton interactions. Physical Review A, 2015, 91, .	1.0	23

#	Article	IF	CITATIONS
531	Tunable Bistability in Hybrid Bose-Einstein Condensate Optomechanics. Scientific Reports, 2015, 5, 10612.	1.6	28
532	Large distance continuous variable communication with concatenated swaps. Physica Scripta, 2015, 90, 074055.	1.2	16
533	Squeezing of mechanical motion via qubit-assisted control. New Journal of Physics, 2015, 17, 013034.	1.2	9
534	Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: Analytical results in the regime of ground-state cooling. Physical Review A, 2015, 91, .	1.0	17
535	Quantum network of superconducting qubits through an optomechanical interface. Physical Review A, 2015, 91, .	1.0	55
536	Nonlinear analysis of sub-millikelvin optomechanical cooling for extremely low noise quantum measurement. Applied Physics Express, 2015, 8, 032801.	1.1	4
537	Quantum State Engineering with Circuit Electromechanical Three-Body Interactions. Physical Review Letters, 2015, 114, 173602.	2.9	34
538	Hybrid opto-mechanical systems with nitrogen-vacancy centers. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-12.	2.0	48
539	Fast cooling in dispersively and dissipatively coupled optomechanics. Scientific Reports, 2015, 5, 7745.	1.6	5
540	Quadrature squeezing of a mechanical resonator generated by the electromechanical coupling with two coupled quantum dots. Annalen Der Physik, 2015, 527, 169-179.	0.9	2
541	Cavity optomechanics mediated by a quantum two-level system. Nature Communications, 2015, 6, 6981.	5.8	173
542	Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Physical Review A, 2015, 91, .	1.0	24
543	Entanglement-enhanced time-continuous quantum control in optomechanics. Physical Review A, 2015, 91, .	1.0	44
544	Multimode optomechanical dynamics in a cavity with avoided crossings. Nature Communications, 2015, 6, 6232.	5.8	64
545	Tuning the acoustic frequency of a gold nanodisk through its adhesion layer. Nature Communications, 2015, 6, 7022.	5.8	65
546	Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity. Optics Express, 2015, 23, 3196.	1.7	52
547	Quantum technologies with hybrid systems. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3866-3873.	3.3	568
548	Equations of a moving mirror and the electromagnetic field. Physica Scripta, 2015, 90, 068011.	1.2	4

#	Article	IF	CITATIONS
549	Quantum optomechanical piston engines powered by heat. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 175501.	0.6	47
550	Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements. New Journal of Physics, 2015, 17, 073019.	1.2	31
551	Optomechanical interfaces for hybrid quantum networks. National Science Review, 2015, 2, 510-519.	4.6	48
552	Optical side-band cooling of a low frequency optomechanical system. Optics Express, 2015, 23, 8014.	1.7	23
553	Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz. Optica, 2015, 2, 826.	4.8	72
554	Engineering optomechanical normal modes for single-phonon transfer and entanglement preparation. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 588.	0.9	7
555	Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots. Optics Express, 2015, 23, 21306.	1.7	6
556	Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature, 2015, 524, 325-329.	13.7	245
557	Tunable strong nonlinearity of a micromechanical beam embedded in a dc-superconducting quantum interference device. Journal of Applied Physics, 2015, 117, 014309.	1.1	3
558	Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection. Applied Physics Letters, 2015, 106, .	1.5	5
559	Dynamics and transmissivity of optomechanical system in squeezed environment. International Journal of Modern Physics B, 2015, 29, 1550201.	1.0	2
560	Progress towards quantum state transfer between microwave and optical light using an electro-optomechanical resonator. , 2015, , .		0
561	Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature Communications, 2015, 6, 8491.	5.8	74
562	Multimode phononic correlations in a nondegenerate parametric amplifier. New Journal of Physics, 2015, 17, 063018.	1.2	5
563	Quantum squeezing of motion in a mechanical resonator. Science, 2015, 349, 952-955.	6.0	504
564	Quantum opto-mechanical coupling model for fiber micro-cantilever beam damping noise reduction. , 2015, , .		0
565	Theoretical scheme for the realization of the sphere-coherent motional states in an atom-assisted optomechanical cavity. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 1360.	0.9	4
566	Multi-dimensional single-spin nano-optomechanics with a levitated nanodiamond. Nature Photonics, 2015, 9, 653-657.	15.6	119

#	Article	IF	CITATIONS
567	Frozen motion. Nature Physics, 2015, 11, 710-711.	6.5	0
568	Observation of non-Markovian micromechanical Brownian motion. Nature Communications, 2015, 6, 7606.	5.8	141
569	Mechanical cooling in single-photon optomechanics with quadratic nonlinearity. Physical Review A, 2015, 92, .	1.0	10
570	Position-Squared Coupling in a Tunable Photonic Crystal Optomechanical Cavity. Physical Review X, 2015, 5, .	2.8	72
571	Fabrication and Analogue Applications of NanoSQUIDs Using Dayem Bridge Junctions. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 1-8.	1.9	12
572	Optoelectromechanical transducer: Reversible conversion between microwave and optical photons. Annalen Der Physik, 2015, 527, 1-14.	0.9	77
573	Mechanics of freelyâ€suspended ultrathin layered materials. Annalen Der Physik, 2015, 527, 27-44.	0.9	145
574	Resolvent method on the single-photon optomechanical cooling. Optics Communications, 2015, 341, 28-31.	1.0	6
575	Linking measures for macroscopic quantum states via photon–spin mapping. Optics Communications, 2015, 337, 2-11.	1.0	33
576	Sympathetic cooling of a membrane oscillator in a hybrid mechanical–atomic system. Nature Nanotechnology, 2015, 10, 55-59.	15.6	105
577	Perturbative approach to Markovian open quantum systems. Scientific Reports, 2014, 4, 4887.	1.6	76
578	Normal-mode splitting and output-field squeezing in a Kerr-down conversion optomechanical system. Journal of Modern Optics, 2015, 62, 114-124.	0.6	16
579	Phonon black-body radiation limit for heat dissipation in electronics. Nature Materials, 2015, 14, 187-192.	13.3	69
580	Generation and detection of gigahertz acoustic oscillations in thin membranes. Ultrasonics, 2015, 56, 109-115.	2.1	14
581	Macroscopic Entanglement of Remote Optomechanical Systems Assisted by Parametric Interactions. International Journal of Theoretical Physics, 2015, 54, 1334-1341.	0.5	3
582	The Quartz Crystal Microbalance in Soft Matter Research. Soft and Biological Matter, 2015, , .	0.3	141
583	More nonlocality with less entanglement in a tripartite atomâ€optomechanical system. Annalen Der Physik, 2015, 527, 147-155.	0.9	29
584	Engineering Raman Transitions in an Optomechanical System Strongly Coupled with a Two-level Emitter. , 2016, , .		0

#	Article	IF	CITATIONS
585	Optical bistability and dynamics in an optomechanical system with a two-level atom. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2099.	0.9	29
586	A quantum optomechanical interface beyond the resolved sideband limit. New Journal of Physics, 2016, 18, 053030.	1.2	36
587	Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nature Photonics, 2016, 10, 600-605.	15.6	42
588	Control of microwave signals using bichromatic electromechanically induced transparency in multimode circuit electromechanical systems. Chinese Physics B, 2016, 25, 054204.	0.7	7
589	Classical dynamical gauge fields in optomechanics. New Journal of Physics, 2016, 18, 113029.	1.2	30
590	Towards thermal noise free optomechanics. Journal Physics D: Applied Physics, 2016, 49, 455104.	1.3	9
591	Optomechanics with a polarization nondegenerate cavity. Physical Review A, 2016, 94, .	1.0	8
592	Pulsed quantum interaction between two distant mechanical oscillators. Physical Review A, 2016, 94, .	1.0	12
593	Controlling signal transport in a carbon nanotube opto-transistor. Scientific Reports, 2016, 6, 37193.	1.6	1
594	Proposal for a quantum delayed-choice experiment with a spin-mechanical setup. Physical Review A, 2016, 94, .	1.0	4
595	Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nature Communications, 2016, 7, 13662.	5.8	282
596	Approaching the standard quantum limit of mechanical torque sensing. Nature Communications, 2016, 7, 13165.	5.8	56
597	Cooling the mechanical motion of a tapered optical fiber and a microsphere-cantilever using whispering gallery modes. Proceedings of SPIE, 2016, , .	0.8	0
598	Quantum feedback cooling of a mechanical oscillator using variational measurements: tweaking Heisenberg's microscope. Journal of Optics (United Kingdom), 2016, 18, 084004.	1.0	13
599	Enhanced visibility of two-mode thermal squeezed states via degenerate parametric amplification and resonance. New Journal of Physics, 2016, 18, 083009.	1.2	8
600	Quantum measurements in gravitational-wave detectors. Physics-Uspekhi, 2016, 59, 968-996.	0.8	5
601	Cooling phonons with phonons: Acoustic reservoir engineering with silicon-vacancy centers in diamond. Physical Review B, 2016, 94, .	1.1	24
602	Force sensitivity of multilayer graphene optomechanical devices. Nature Communications, 2016, 7, 12496.	5.8	118

#	Article	IF	CITATIONS
603	Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification. Nature Communications, 2016, 7, 11338.	5.8	124
604	Thermal noise and optomechanical features in the emission of a membrane-coupled compound cavity laser diode. Scientific Reports, 2016, 6, 31489.	1.6	8
605	Efficient cooling of quantized vibrations using a four-level configuration. Physical Review A, 2016, 94,	1.0	7
606	Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay. New Journal of Physics, 2016, 18, 083034.	1.2	91
607	Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. Scientific Reports, 2016, 6, 35381.	1.6	16
608	Steady-state mechanical squeezing in a hybrid atom-optomechanical system with a highly dissipative cavity. Scientific Reports, 2016, 6, 24421.	1.6	35
609	Quantum nonlinear dynamics of optomechanical systems in the strong-coupling regime. Physical Review A, 2016, 94, .	1.0	7
610	Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control. Journal of Applied Physics, 2016, 120, .	1.1	6
611	Generation of macroscopic SchrĶdinger cat state in diamond mechanical resonator. Scientific Reports, 2016, 6, 37542.	1.6	11
612	Quantum Optomechanics. Progress in Optics, 2016, 61, 113-236.	0.4	17
613	Evolution of a quantum harmonic oscillator coupled to a minimal thermal environment. Physica A: Statistical Mechanics and Its Applications, 2016, 459, 78-85.	1.2	6
614	Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system. Optics Communications, 2016, 376, 21-25.	1.0	1
615	Macroscopic Quantum Resonators (MAQRO): 2015 update. EPJ Quantum Technology, 2016, 3, .	2.9	77
616	Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nature Photonics, 2016, 10, 399-405.	15.6	185
617	Storage and retrieval of quantum information with a hybrid optomechanics-spin system. Journal of Optics (United Kingdom), 2016, 18, 085703.	1.0	3
618	Acoustic confinement in superlattice cavities. Physical Review A, 2016, 94, .	1.0	12
619	Heterodyne photodetection measurements on cavity optomechanical systems: Interpretation of sideband asymmetry and limits to a classical explanation. Physical Review A, 2016, 94, .	1.0	16
620	Fluid-induced resonances in vibrational and Brownian dynamics of a shear oscillator. Current Applied Physics, 2016, 16, 1459-1463.	1.1	O

#	Article	IF	CITATIONS
621	Evolution of an electromagnetic field in the presence of a mobile membrane. Physical Review A, 2016, 94, .	1.0	0
622	Quantum Backaction Evading Measurement of Collective Mechanical Modes. Physical Review Letters, 2016, 117, 140401.	2.9	88
623	Phase noise and squeezing spectra of the output field of an optical cavity containing an interacting Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 145501.	0.6	12
624	Dynamically creating tripartite resonance and dark modes in a multimode optomechanical system. Journal of Optics (United Kingdom), 2016, 18, 104003.	1.0	8
625	Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems. Physical Review A, 2016, 94, .	1.0	3
626	Cooling Mechanical Oscillators by Coherent Control. Physical Review Letters, 2016, 117, 163601.	2.9	37
627	Josephson Traveling-Wave Parametric Amplifier with Three-Wave Mixing. Physical Review Applied, 2016, 6, .	1.5	79
628	Cooling and manipulation of nanoparticles in high vacuum. Proceedings of SPIE, 2016, , .	0.8	6
629	Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond. Physical Review Applied, $2016, 6, .$	1.5	68
630	Determination of nonlinear nanomechanical resonator-qubit coupling coefficient in a hybrid quantum system. Applied Optics, 2016, 55, 5358.	2.1	3
631	Strongly Coupled Nanotube Electromechanical Resonators. Nano Letters, 2016, 16, 5456-5462.	4.5	55
632	Laser cooling in solids: advances and prospects. Reports on Progress in Physics, 2016, 79, 096401.	8.1	90
633	Superconducting Cavity Electromechanics on a Silicon-on-Insulator Platform. Physical Review Applied, 2016, 6, .	1.5	16
634	Quantum simulation of the Anderson Hamiltonian with an array of coupled nanoresonators: delocalization and thermalization effects. EPJ Quantum Technology, 2016, 3, .	2.9	7
635	Ground-state cooling of a dispersively coupled optomechanical system in the unresolved sideband regime via a dissipatively coupled oscillator. Physical Review A, 2016, 94, .	1.0	10
636	Design of tunable GHz-frequency optomechanical crystal resonators. Optics Express, 2016, 24, 11407.	1.7	17
637	Editorial: Hybridizing Quantum Physics and Engineering. Physical Review Letters, 2016, 117, 100001.	2.9	14
638	Thermal vibration of a single-layered graphene with initial stress predicted by semiquantum molecular dynamics. Materials Research Express, 2016, 3, 095601.	0.8	6

#	Article	IF	CITATIONS
639	Heralded Control of Mechanical Motion by Single Spins. Physical Review Letters, 2016, 117, 077203.	2.9	26
640	Laser cooling of a high-temperature oscillator by a three-level system. Physical Review B, 2016, 94, .	1.1	7
641	Suppression of Stokes scattering and improved optomechanical cooling with squeezed light. Physical Review A, 2016, 94, .	1.0	37
642	Slow light and slow acoustic phonons in optophononic resonators. Physical Review B, 2016, 94, .	1.1	4
643	An electromechanical Ising Hamiltonian. Science Advances, 2016, 2, e1600236.	4.7	73
644	Enhanced electromechanical coupling of a nanomechanical resonator to coupled superconducting cavities. Scientific Reports, 2016, 6, 19065.	1.6	15
645	Ground state cooling of a quantum electromechanical system with a silicon nitride membrane in a 3D loop-gap cavity. New Journal of Physics, 2016, 18, 103036.	1.2	36
646	Fast quantum communication in linear networks. Europhysics Letters, 2016, 114, 40007.	0.7	13
647	Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics. Physical Review Letters, 2016, 117, 123603.	2.9	53
648	Towards hybrid circuit quantum electrodynamics with quantum dots. Comptes Rendus Physique, 2016, 17, 705-717.	0.3	11
649	Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit. Physical Review Letters, 2016, 117, 133601.	2.9	35
650	Nonlinear dynamics and cavity cooling of levitated nanoparticles. Proceedings of SPIE, 2016, , .	0.8	3
651	Trampolines Sense a Disturbance in the Force. Physics Magazine, 2016, 9, .	0.1	2
652	Cavity mode frequencies and strong optomechanical coupling in two-membrane cavity optomechanics. Journal of Optics (United Kingdom), 2016, 18, 084001.	1.0	25
653	Generalized analysis of quantum noise and dynamic backaction in signal-recycled Michelson-type laser interferometers. Physical Review A, 2016, 94, .	1.0	8
654	Ultrastrong optomechanics incorporating the dynamical Casimir effect. Physical Review A, 2016, 93, .	1.0	22
655	Strong coupling on a forbidden transition in strontium and nondestructive atom counting. Physical Review A, 2016, 93, .	1.0	25
656	Degenerate optomechanical parametric oscillators: Cooling in the vicinity of a critical point. Physical Review A, 2016, 93, .	1.0	16

#	Article	IF	CITATIONS
657	Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems. Physical Review A, 2016, 93, .	1.0	103
658	Degenerate parametric oscillation in quantum membrane optomechanics. Physical Review A, 2016, 93, .	1.0	21
659	Classical and quantum-linearized descriptions of degenerate optomechanical parametric oscillators. Physical Review A, 2016, 93, .	1.0	12
660	Ground-state cooling of micromechanical oscillators in the unresolved-sideband regime induced by a quantum well. Physical Review A, 2016, 93, .	1.0	27
661	Phonon Josephson junction with nanomechanical resonators. Physical Review A, 2016, 93, .	1.0	19
662	Generation of macroscopic Schr $ ilde{A}\P$ dinger-cat states in qubit-oscillator systems. Physical Review A, 2016, 93, .	1.0	48
663	Tunable optomechanically induced transparency in double quadratically coupled optomechanical cavities within a common reservoir. Physical Review A, 2016, 93, .	1.0	35
664	Strong mechanical squeezing and its detection. Physical Review A, 2016, 93, .	1.0	119
665	Optically defined mechanical geometry. Physical Review A, 2016, 93, .	1.0	7
666	Extracting work from quantum states of radiation. Physical Review A, 2016, 93, .	1.0	3
667	Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Physical Review A, 2016, 93, .	1.0	54
668	Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Physical Review A, 2016, 93, .	1.0	79
669	Surface acoustic wave resonators in the quantum regime. Physical Review B, 2016, 93, .	1.1	68
670	Quantum model for entropic springs. Physical Review B, 2016, 93, .	1.1	2
671	Quartz-superconductor quantum electromechanical system. Physical Review B, 2016, 93, .	1.1	9
672	Proposal for an Optomechanical Bell Test. Physical Review Letters, 2016, 116, 070405.	2.9	32
673	Proposal to Test Bell's Inequality in Electromechanics. Physical Review Letters, 2016, 116, 070406.	2.9	18
674	Upper Bounds on Spontaneous Wave-Function Collapse Models Using Millikelvin-Cooled Nanocantilevers. Physical Review Letters, 2016, 116, 090402.	2.9	85

#	Article	IF	CITATIONS
675	Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature. Physical Review Letters, 2016, 116, 147202.	2.9	240
676	Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators. Physical Review Letters, 2016, 116, 161303.	2.9	41
677	Macroscopic Quantum Superposition in Cavity Optomechanics. Physical Review Letters, 2016, 116, 163602.	2.9	139
678	Optimal quantum parameter estimation in a pulsed quantum optomechanical system. Physical Review A, 2016, 93, .	1.0	29
679	Optical-response properties in levitated optomechanical systems beyond the low-excitation limit. Physical Review A, 2016, 93, .	1.0	20
680	Observation of optomechanical coupling in a microbottle resonator. Laser and Photonics Reviews, 2016, 10, 603-611.	4.4	32
681	Response of a mechanical oscillator in an optomechanical cavity driven by a finite-bandwidth squeezed vacuum excitation. Physical Review A, 2016, 93, .	1.0	8
682	Quantum backaction and noise interference in asymmetric two-cavity optomechanical systems. Physical Review A, 2016, 93, .	1.0	24
683	Optomechanical cooling in the non-Markovian regime. Physical Review A, 2016, 93, .	1.0	42
684	Memory-effect-induced macroscopic-microscopic entanglement. Physical Review A, 2016, 94, .	1.0	30
685	Near-Field Integration of a SiN Nanobeam and a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mi>SiO</mml:mi><mml:mn>2</mml:mn></mml:msub>Microcay for Heisenberg-Limited Displacement Sensing. Physical Review Applied, 2016, 5, .</mml:math 	vity	48
686	Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime. Physical Review Letters, 2016, 116, 043601.	2.9	76
687	Dynamical Two-Mode Squeezing of Thermal Fluctuations in a Cavity Optomechanical System. Physical Review Letters, 2016, 116, 103601.	2.9	57
688	Ultrafast Optimal Sideband Cooling under Non-Markovian Evolution. Physical Review Letters, 2016, 116, 183602.	2.9	33
689	Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes. Physical Review Letters, 2016, 117, 015502.	2.9	127
690	Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics. Physical Review X, 2016, 6,	2.8	119
691	Chip-scale cavity optomechanics in lithium niobate. Scientific Reports, 2016, 6, 36920.	1.6	38
692	Cooling a mechanical resonator to the quantum regime by heating it. Physical Review A, 2016, 94, .	1.0	20

#	Article	IF	CITATIONS
693	Dynamics of an optomechanical system with quadratic coupling: Effect of first order correction to adiabatic elimination. Scientific Reports, 2016, 6, 35583.	1.6	7
694	Creating arbitrary quantum vibrational states in a carbon nanotube. Physical Review B, 2016, 94, .	1.1	3
695	Extended Bose-Hubbard model with pair hopping induced by a quadratically coupled optomechanical system. Physical Review A, 2016, 94, .	1.0	3
696	Correlated anomalous phase diffusion of coupled phononic modes in a sideband-driven resonator. Nature Communications, 2016, 7, 12694.	5.8	28
697	Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics. Scientific Reports, 2016, 6, 22651.	1.6	42
698	Dispersive coupling between light and a rare-earth-ion–doped mechanical resonator. Physical Review A, 2016, 94, .	1.0	19
699	Noise-induced transitions in optomechanical synchronization. New Journal of Physics, 2016, 18, 013043.	1.2	68
700	Sympathetic laser cooling of graphene with Casimir-Polder forces. Physical Review A, 2016, 94, .	1.0	5
701	Nonlinear optomechanical measurement of mechanical motion. Nature Communications, 2016, 7, 10988.	5.8	106
702	Artificial quantum thermal bath: Engineering temperature for a many-body quantum system. Physical Review A, 2016, 94, .	1.0	23
703	Optomechanically induced transparency in multi-cavity optomechanical system with and without one two-level atom. Scientific Reports, 2016, 6, 28830.	1.6	36
704	Nonlinear Dynamics and Strong Cavity Cooling of Levitated Nanoparticles. Physical Review Letters, 2016, 117, 173602.	2.9	119
705	Preparation of vibrational quantum states in nanomechanical graphene resonator. Laser Physics, 2016, 26, 115204.	0.6	5
706	Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device. Physical Review X, 2016, 6, .	2.8	44
707	Preservation Macroscopic Entanglement of Optomechanical Systems in non-Markovian Environment. Scientific Reports, 2016, 6, 23678.	1.6	31
708	Classical analog of Stù⁄4ckelberg interferometry in a two-coupled-cantilever–based optomechanical system. Physical Review A, 2016, 94, .	1.0	18
709	Quantum electromechanics on silicon nitride nanomembranes. Nature Communications, 2016, 7, 12396.	5 . 8	58
710	Quality-Factor Enhancement of Nanoelectromechanical Systems by Capacitive Driving Beyond Resonance. Physical Review Applied, 2016, 6, .	1.5	5

#	Article	IF	CITATIONS
711	Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection. Physical Review Letters, 2016, 117, 197202.	2.9	30
712	The Lagrangian approach to a Josephson traveling-wave parametric amplifier. , 2016, , .		4
713	An electromechanical displacement transducer. Applied Physics Express, 2016, 9, 086701.	1.1	2
714	Split-sideband spectroscopy in slowly modulated optomechanics. New Journal of Physics, 2016, 18, 113021.	1.2	19
715	Damped vacuum states of light. Journal of Optics (United Kingdom), 2016, 18, 095201.	1.0	4
716	Nested trampoline resonators for optomechanics. Applied Physics Letters, 2016, 108, .	1.5	19
717	Classical St $\tilde{A}^{1}\!\!/\!\!4$ ckelberg interferometry of a nanomechanical two-mode system. Physical Review B, 2016, 94, .	1.1	15
718	Resonance Frequency., 2016, , 1-56.		4
719	Preparation of a nonlinear coherent state of the mechanical resonator in an optomechanical microcavity. Optics Express, 2016, 24, 13590.	1.7	13
720	Fundamentals of Nanomechanical Resonators. , 2016, , .		129
721	Controllable optical bistability in a hybrid optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 1335.	0.9	43
722	Tunable phonon-cavity coupling in graphene membranes. Nature Nanotechnology, 2016, 11, 741-746.	15.6	128
723	Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums. Nature Nanotechnology, 2016, 11, 747-751.	15.6	139
724	Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nature Photonics, 2016, 10, 489-496.	15.6	161
725	Nanophononics: state of the art and perspectives. European Physical Journal B, 2016, 89, 1.	0.6	149
726	Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature, 2016, 530, 313-316.	13.7	348
728	Second-order sideband effects mediated by microwave in hybrid electro-optomechanical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 798-802.	0.9	30
729	Overwhelming Thermomechanical Motion with Microwave Radiation Pressure Shot Noise. Physical Review Letters, 2016, 116, 013602.	2.9	55

#	Article	IF	CITATIONS
730	Laser Cooling of a Micromechanical Membrane to the Quantum Backaction Limit. Physical Review Letters, 2016, 116, 063601.	2.9	183
732	Frequency fluctuations in silicon nanoresonators. Nature Nanotechnology, 2016, 11, 552-558.	15.6	183
733	Feedback control of optomechanical systems. , 2016, , .		1
734	Toward quantum teleporting living objects. Science Bulletin, 2016, 61, 110-111.	4.3	30
735	Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Science Bulletin, 2016, 61, 163-171.	4.3	109
736	Squeezing of output field in a two-mechanical-mode optomechanical system with a nonlinear medium. Optik, 2016, 127, 1714-1719.	1.4	2
737	Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity. Nano Letters, 2017, 17, 915-921.	4.5	37
738	Sideband cooling beyond the quantum backaction limit with squeezed light. Nature, 2017, 541, 191-195.	13.7	196
739	Toward the Use of NanoSQUIDs to Measure the Displacement of an NEMS Resonator. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1,1	3
740	Thermometry of levitated nanoparticles in a hybrid electro-optical trap. Journal of Optics (United) Tj ETQq $1\ 1\ 0.78$	84314 rgE 1.0	ST JOverlock
741	Real-Time Measurement of Nanotube Resonator Fluctuations in an Electron Microscope. Nano Letters, 2017, 17, 1748-1755.	4.5	33
742	Acousto-Optic Modulation and Optoacoustic Gating in Piezo-Optomechanical Circuits. Physical Review Applied, 2017, 7, .	1.5	43
743	Universal continuous-variable quantum computation without cooling. Physical Review A, 2017, 95, .	1.0	9
744	Cooling a mechanical resonator with nitrogen-vacancy centres using a room temperature excited state spin–strain interaction. Nature Communications, 2017, 8, 14358.	5.8	47
745	Optomechanical systems close to the conservative limit. Physical Review A, 2017, 95, .	1.0	5
746	Quantum feedback: Theory, experiments, and applications. Physics Reports, 2017, 679, 1-60.	10.3	181
747	Topical review: spins and mechanics in diamond. Journal of Optics (United Kingdom), 2017, 19, 033001.	1.0	126
748	A millikelvin all-fiber cavity optomechanical apparatus for merging with ultra-cold atoms in a hybrid quantum system. Review of Scientific Instruments, 2017, 88, 023115.	0.6	14

#	Article	IF	Citations
749	Mechanical dissipation in MoRe superconducting metal drums. Applied Physics Letters, 2017, 110, 083103.	1.5	2
750	Coherent coupling between an optomechanical membrane and an interacting photon Bose–Einstein condensate. Journal of Modern Optics, 2017, 64, 1725-1738.	0.6	2
751	Damping in a superconducting mechanical resonator. Europhysics Letters, 2017, 117, 57008.	0.7	3
752	Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems. Quantum Information Processing, 2017, 16, 1.	1.0	16
753	Controllable optomechanically induced transparency in coupled optomechanical systems. European Physical Journal D, 2017, 71, 1.	0.6	19
7 54	Controllable optical multistability in hybrid optomechanical system assisted by parametric interactions. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	10
755	Classical-to-quantum transition behavior between two oscillators separated in space under the action of optomechanical interaction. Scientific Reports, 2017, 7, 2545.	1.6	36
7 56	Quantum theory of the dissipative Josephson parametric amplifier. International Journal of Circuit Theory and Applications, 2017, 45, 864-881.	1.3	13
757	Optomechanical damping of a nanomembrane inside an optical ring cavity. New Journal of Physics, 2017, 19, 013038.	1.2	4
758	Microwave Frequency Graphene Optomechanics. Coherent Propagation Properties and Nonlinear Responses. Journal of Russian Laser Research, 2017, 38, 276-284.	0.3	1
759	Direct observation of coherent energy transfer in nonlinear micromechanical oscillators. Nature Communications, 2017, 8, 15523.	5.8	92
760	Low-Power Photothermal Self-Oscillation of Bimetallic Nanowires. Nano Letters, 2017, 17, 3995-4002.	4.5	11
761	Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator. Nanotechnology, 2017, 28, 255203.	1.3	1
762	Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light. Chinese Physics B, 2017, 26, 060303.	0.7	1
763	Generating EPR-type entanglement of degenerate optomechanical parametric oscillators. Journal of Modern Optics, 2017, 64, 2103-2109.	0.6	1
764	Coupling graphene nanomechanical motion to a single-electron transistor. Nanoscale, 2017, 9, 5608-5614.	2.8	21
765	Mass sensor based on split-nanobeam optomechanical oscillator. Proceedings of SPIE, 2017, , .	0.8	1
766	Using reservoir-engineering to convert a coherent signal in optomechanics with small optomechanical cooperativity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1629-1633.	0.9	1

#	Article	IF	CITATIONS
767	Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Physical Review A, 2017, 95, .	1.0	20
768	Bringing quantum mechanics to life: from Schrödinger's cat to Schrödinger's microbe. Contemporary Physics, 2017, 58, 119-139.	0.8	15
769	Coherent Optical Propagation Properties Based on a Generalized Multi-Mode Optomechanical System. International Journal of Theoretical Physics, 2017, 56, 948-956.	0.5	1
770	Distant entanglement enhanced in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric optomechanics. Physical Review A, 2017, 96, .	1.0	26
771	Probing noncommutative theories with quantum optical experiments. Nuclear Physics B, 2017, 924, 578-587.	0.9	26
772	A proposed method to measure weak magnetic field based on a hybrid optomechanical system. Scientific Reports, 2017, 7, 12521.	1.6	38
773	Optomechanics with a position-modulated Kerr-type nonlinear coupling. Physical Review A, 2017, 96, .	1.0	17
774	Circuit quantum acoustodynamics with surface acoustic waves. Nature Communications, 2017, 8, 975.	5.8	178
775	Tunneling, Current Gain, and Transconductance in Silicon-Germanium Heterojunction Bipolar Transistors Operating at Millikelvin Temperatures. Physical Review Applied, 2017, 8, .	1.5	15
776	Optical bistability and four-wave mixing in a hybrid optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3289-3294.	0.9	17
777	Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity. Laser Physics Letters, 2017, 14, 095202.	0.6	18
778	Faithful conversion of propagating quantum information to mechanical motion. Nature Physics, 2017, 13, 1163-1167.	6.5	92
779	Generation of the superposition of mesoscopic states of a nanomechanical resonator by a single two-level system. Physical Review A, 2017, 96, .	1.0	4
780	Surface-Wave Coupling to Single Phononic Subwavelength Resonators. Physical Review Applied, 2017, 8, .	1.5	22
781	Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science, 2017, 358, 203-206.	6.0	190
782	Enhancing Sideband Cooling by Feedback-Controlled Light. Physical Review Letters, 2017, 119, 123603.	2.9	61
783	Steady-state light-mechanical quantum steerable correlations in cavity optomechanics. Physical Review A, 2017, 95, .	1.0	24
784	Optical wave evolution due to interaction with elastic wave in a phoxonic crystal slab waveguide. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	7

#	Article	IF	Citations
785	Casimir forces in transmission-line circuits: QED and fluctuation-dissipation formalisms. Physical Review A, 2017, 95, .	1.0	3
786	Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis. Physical Review Letters, 2017, 119, 023601.	2.9	38
787	Optomechanical force sensor in a non-Markovian regime. New Journal of Physics, 2017, 19, 083022.	1.2	40
788	Quantum state atomic force microscopy. Physical Review A, 2017, 95, .	1.0	10
789	Editorial for special issue on nano-optomechanics. Journal of Optics (United Kingdom), 2017, 19, 080401.	1.0	1
790	Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble. Optics Communications, 2017, 403, 97-102.	1.0	15
791	Simulation of an optomechanical quantum memory in the nonlinear regime. Physical Review A, 2017, 96,	1.0	12
792	Decoherence as a way to measure extremely soft collisions with dark matter. Physical Review D, 2017, 96, .	1.6	29
793	Demonstration of Efficient Nonreciprocity in a Microwave Optomechanical Circuit. Physical Review X , 2017, 7 , .	2.8	106
794	Single-photon transport through a waveguide coupling to a quadratic optomechanical system. Physical Review A, 2017, 96, .	1.0	9
795	Sensitivity characterisation of a parametric transducer for gravitational wave detection through optical spring effect. Classical and Quantum Gravity, 2017, 34, 175001.	1.5	0
796	Amplified Optomechanical Transduction of Virtual Radiation Pressure. Physical Review Letters, 2017, 119, 053601.	2.9	60
797	Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity. Physical Review A, 2017, 96, .	1.0	65
798	Enhanced photothermal cooling of nanowires. Quantum Science and Technology, 2017, 2, 034005.	2.6	0
799	Enhancement of three-mode optomechanical interaction by feedback-controlled light. Quantum Science and Technology, 2017, 2, 034014.	2.6	20
800	Gravitational decoherence. Classical and Quantum Gravity, 2017, 34, 193002.	1.5	124
801	Adiabatic transfer of energy fluctuations between membranes inside an optical cavity. Physical Review A, 2017, 96, .	1.0	7
802	Arbitrary multimode Gaussian operations on mechanical cluster states. Physical Review A, 2017, 96, .	1.0	7

#	Article	IF	Citations
803	Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Physical Review A, 2017, 96, .	1.0	36
804	Einstein-Podolsky-Rosen steering and Bell nonlocality of two macroscopic mechanical oscillators in optomechanical systems. Physical Review A, 2017, 96, .	1.0	11
805	Ground-state cooling of a mechanical oscillator in a hybrid optomechanical system including an atomic ensemble. Scientific Reports, 2017, 7, 17258.	1.6	11
806	Macroscopic quantum coherence and mechanical squeezing of a graphene sheet. Physical Review A, 2017, 96, .	1.0	23
807	Strong quantum squeezing of mechanical resonator via parametric amplification and coherent feedback. Physical Review A, 2017, 96, .	1.0	16
808	Effect of an auxiliary mode on bipartite entanglement in a dissipative three-mode optomechanical system. European Physical Journal D, 2017, 71, 1.	0.6	2
809	Building mechanical Greenberger-Horne-Zeilinger and cluster states by harnessing optomechanical quantum steerable correlations. Physical Review A, 2017, 96, .	1.0	8
810	Characterization of coherent population-trapped states in a circuit-QED <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> system. Physical Review A, 2017, 96, .	1.0	4
811	Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks. Physical Review Letters, 2017, 119, 225301.	2.9	40
812	Optomechanical terahertz detection with single meta-atom resonator. Nature Communications, 2017, 8, 1578.	5.8	44
813	MEMS/NEMS Devices and Applications. Springer Handbooks, 2017, , 395-429.	0.3	13
814	Enhanced output entanglement with reservoir engineering. Physical Review A, 2017, 96, .	1.0	28
815	Dissipative generation of significant amount of mechanical entanglement in a coupled optomechanical system. Scientific Reports, 2017, 7, 14497.	1.6	12
816	Fano resonance and slow light in hybrid optomechanics mediated by a two-level system. Physical Review A, 2017, 96, .	1.0	48
817	Nonlinear frequency transduction of nanomechanical Brownian motion. Physical Review B, 2017, 96, .	1.1	22
818	Shelving-style QND phonon-number detection in quantum optomechanics. New Journal of Physics, 2017, 19, 033014.	1.2	8
819	Nonreciprocal quantum-state conversion between microwave and optical photons. Physical Review A, 2017, 96, .	1.0	57
820	Strong and tunable couplings in flux-mediated optomechanics. Physical Review B, 2017, 96, .	1.1	23

#	Article	IF	CITATIONS
821	Optomechanical proposal for monitoring microtubule mechanical vibrations. Physical Review E, 2017, 96, 012404.	0.8	8
822	Antibunching in an optomechanical oscillator. Physical Review A, 2017, 95, .	1.0	27
823	Optomechanically induced absorption in parity-time-symmetric optomechanical systems. Physical Review A, 2017, 95, .	1.0	37
824	Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nature Communications, 2017, 8, ncomms16024.	5.8	92
825	Synchronization of an optomechanical system to an external drive. Physical Review A, 2017, 95, .	1.0	34
826	Radiation Pressure Cooling as a Quantum Dynamical Process. Physical Review Letters, 2017, 118, 233604.	2.9	45
827	Micropillar Resonators for Optomechanics in the Extremely High 19–95-GHz Frequency Range. Physical Review Letters, 2017, 118, 263901.	2.9	63
828	Modification of Schrödinger–Newton equation due to braneworld models with minimal length. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 770, 325-330.	1.5	23
829	Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering. Physical Review B, 2017, 95, .	1.1	22
830	Optomechanical devices based on traveling-wave microresonators. Physical Review A, 2017, 95, .	1.0	12
831	Nonlinear effects in modulated quantum optomechanics. Physical Review A, 2017, 95, .	1.0	59
832	Controlling the net charge on a nanoparticle optically levitated in vacuum. Physical Review A, 2017, 95,	1.0	69
833	Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics. Optics Communications, 2017, 382, 73-79.	1.0	10
834	Financial states of world financial and commodities markets around sovereign debt crisis. Journal of the Korean Physical Society, 2017, 71, 733-739.	0.3	2
835	Magnetic actuation and feedback cooling of a cavity optomechanical torque sensor. Nature Communications, 2017, 8, 1355.	5.8	23
836	Optomechanical measurement of a millimeter-sized mechanical oscillator approaching the quantum ground state. New Journal of Physics, 2017, 19, 103014.	1.2	12
837	Investigation of thermomechanical motion in a nanomechanical resonator based on optical intensity mapping. Journal of the Korean Physical Society, 2017, 71, 684-691.	0.3	0
838	Quantum heat engine with coupled superconducting resonators. Physical Review E, 2017, 96, 062120.	0.8	42

#	Article	IF	Citations
839	Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator. Review of Scientific Instruments, 2017, 88, 123709.	0.6	21
840	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	1.2	28
841	Nonlinear quantum Langevin equations for bosonic modes in solid-state systems. Physical Review A, 2017, 96, .	1.0	6
842	Acoustic Waveguide Eigenmode Solver Based on a Staggered-Grid Finite-Difference Method. Scientific Reports, 2017, 7, 17509.	1.6	3
843	Josephson parametric converter saturation and higher order effects. Applied Physics Letters, 2017, 111,	1.5	25
844	Micromechanical Resonator Driven by Radiation Pressure Force. Scientific Reports, 2017, 7, 16056.	1.6	8
845	Entangling distant solid-state spins via thermal phonons. Physical Review B, 2017, 96, .	1.1	10
846	Quantum noise spectra for periodically driven cavity optomechanics. Physical Review A, 2017, 96, .	1.0	9
847	Dynamical and quantum effects of collective dissipation in optomechanical systems. New Journal of Physics, 2017, 19, 113007.	1.2	17
848	Two dimensional optomechanical crystals for quantum optomechanics., 2017,,.		0
849	Coherent versus measurement-based feedback for controlling a single qubit. Quantum Science and Technology, 2017, 2, 025001.	2.6	9
850	Hybrid optomechanical systems as transducers for quantum information., 2017,,.		0
851	Role of optical density of states in Brillouin optomechanical cooling. Optics Express, 2017, 25, 776.	1.7	9
852	Optical levitation of a mirror for reaching the standard quantum limit. Optics Express, 2017, 25, 13799.	1.7	15
853	Controllable photon and phonon localization in optomechanical Lieb lattices. Optics Express, 2017, 25, 17364.	1.7	17
854	Magnetometry via spin-mechanical coupling in levitated optomechanics. Optics Express, 2017, 25, 19568.	1.7	22
855	High frequency optomechanical disk resonators in Ill–V ternary semiconductors. Optics Express, 2017, 25, 24639.	1.7	20
856	Coupling mechanical motion of a single atom to a micromechanical cantilever. Optics Express, 2017, 25, 32931.	1.7	10

#	Article	IF	Citations
857	Tunable double optomechanically induced transparency in photonically and phononically coupled optomechanical systems. Optics Express, 2017, 25, 33097.	1.7	16
858	Full rotational control of levitated silicon nanorods. Optica, 2017, 4, 356.	4.8	105
859	Injection locking of an electro-optomechanical device. Optica, 2017, 4, 1196.	4.8	38
860	Quantum optomechanics beyond the quantum coherent oscillation regime. Optica, 2017, 4, 1382.	4.8	13
861	Dynamical Casimir effect of phonon excitation in the dispersive regime of cavity optomechanics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 642.	0.9	22
862	Coupled cavity optomechanical meta-waveguides [Invited]. Journal of the Optical Society of America B: Optical Physics, 2017, 34, D68.	0.9	2
863	Controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities. Optics Express, 2017, 25, 6851.	1.7	5
864	Preparation of entangled states of microwave photons in a hybrid system via the electro-optic effect. Optics Express, 2017, 25, 28305.	1.7	4
865	Tunable photon statistics in a non-Hermitian system. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 566.	0.9	0
866	Quantum Control of Optomechanical Systems. Advances in Atomic, Molecular and Optical Physics, 2017, 66, 263-374.	2.3	5
867	Sensing spontaneous collapse and decoherence with interfering Bose–Einstein condensates. Quantum Science and Technology, 2017, 2, 044010.	2.6	5
868	GaAs-based micro/nanomechanical resonators. Semiconductor Science and Technology, 2017, 32, 103003.	1.0	47
869	Quantum-enhanced accelerometry with a nonlinear electromechanical circuit. Physical Review A, 2017, 96, .	1.0	6
870	Light-sound interconversion in optomechanical Dirac materials. Scientific Reports, 2017, 7, 9811.	1.6	4
871	Analog curved spacetimes in the reversed dissipation regime of cavity optomechanics. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 2519.	0.9	6
872	Coherent inflation for large quantum superpositions of levitated microspheres. New Journal of Physics, 2017, 19, 123029.	1.2	36
873	Suspension and simple optical characterization of two-dimensional membranes. Materials Research Express, 2018, 5, 035023.	0.8	2
874	Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Physical Review A, 2018, 97, .	1.0	34

#	Article	IF	Citations
875	Cooling a quantum oscillator: A useful analogy to understand laser cooling as a thermodynamical process. Physical Review A, $2018, 97, .$	1.0	13
876	Quantum non-demolition phonon counter with a hybrid optomechnical system. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	2
877	Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 075505.	0.6	9
878	Remote quantum entanglement between two micromechanical oscillators. Nature, 2018, 556, 473-477.	13.7	408
879	Stabilized entanglement of massive mechanical oscillators. Nature, 2018, 556, 478-482.	13.7	388
880	Quantifying quantumness of correlations using Gaussian Rényi-2 entropy in optomechanical interfaces. Journal of Modern Optics, 2018, 65, 1584-1594.	0.6	8
881	Detection of light-matter interaction in the weak-coupling regime by quantum light. Physical Review A, 2018, 97, .	1.0	5
882	Optomechanically induced anomalous population inversion in a hybrid system. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 414017.	0.7	3
883	Optomechanical transistor with mechanical gain. Physical Review A, 2018, 97, .	1.0	32
884	Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium. Laser Physics, 2018, 28, 055201.	0.6	4
885	Enhanced mechanical entanglement in an optomechanical cavity with a Coulomb interaction. Optik, 2018, 159, 368-378.	1.4	2
886	Optomechanics with a hybrid carbon nanotube resonator. Nature Communications, 2018, 9, 662.	5.8	42
887	Current state of the art in small mass and force metrology within the International System of Units. Measurement Science and Technology, 2018, 29, 072001.	1.4	23
888	A new bound on polymer quantization via an opto-mechanical setup. Scientific Reports, 2018, 8, 1659.	1.6	32
889	Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nature Communications, 2018, 9, 383.	5.8	63
890	Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics. Physical Review Applied, 2018, 9, .	1.5	22
891	Multi-functional quantum router using hybrid opto-electromechanics. Laser Physics Letters, 2018, 15, 035201.	0.6	5
892	Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System. Physical Review Letters, 2018, 120, 063605.	2.9	20

#	Article	IF	Citations
893	Quantum magnetomechanics: Towards the ultrastrong coupling regime. Physical Review B, 2018, 97, .	1.1	12
894	Ground state cooling in a hybrid optomechanical system with a three-level atomic ensemble. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 045503.	0.6	6
895	Quantum-Limited Directional Amplifiers with Optomechanics. Physical Review Letters, 2018, 120, 023601.	2.9	120
896	Gravity in the quantum lab. Advances in Physics: X, 2018, 3, 1383184.	1.5	20
897	Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing. Physical Review Letters, 2018, 120, 020503.	2.9	13
898	Quantum reservoir engineering through quadratic optomechanical interaction in the reversed dissipation regime. Physical Review A, 2018, 97, .	1.0	12
899	Electronic zero-point fluctuation forces inside circuit components. Science Advances, 2018, 4, eaaq0842.	4.7	2
900	Levitated optomechanics with a fiber Fabry–Perot interferometer. New Journal of Physics, 2018, 20, 023017.	1.2	10
901	Controllable coherent perfect absorption and transmission in a generalized three-mode optomechanical system. Optik, 2018, 168, 46-53.	1.4	3
902	Optomechanical approach to controlling the temperature and chemical potential of light. Physical Review A, 2018, 97, .	1.0	2
903	Bulk crystalline optomechanics. Nature Physics, 2018, 14, 601-607.	6.5	61
904	Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime. Physical Review A, 2018, 97, .	1.0	42
905	Sensitivity-Bandwidth Limit in a Multimode Optoelectromechanical Transducer. Physical Review Applied, 2018, 9, .	1.5	33
906	Strong mechanical squeezing in an electromechanical system. Scientific Reports, 2018, 8, 3513.	1.6	3
907	On-chip quantum interference of a superconducting microsphere. Quantum Science and Technology, 2018, 3, 025001.	2.6	80
908	Qubit assisted enhancement of quantum correlations in an optomechanical system. Annals of Physics, 2018, 392, 39-48.	1.0	11
909	A maser based on dynamical backaction on microwave light. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2233-2237.	0.9	6
910	Enhanced Entanglement in Optomechanical Cavity with a Nonlinear Material χ (3). International Journal of Theoretical Physics, 2018, 57, 219-225.	0.5	1

#	Article	IF	CITATIONS
911	Photon-Phonon Coupling: Cavity Optomechanics. Springer Theses, 2018, , 83-101.	0.0	0
912	The Nonlinear Effects of a Kerr-Resonator Optomechanical System. International Journal of Theoretical Physics, 2018, 57, 957-964.	0.5	0
913	Cooling to Absolute Zero: TheÂUnattainability Principle. Fundamental Theories of Physics, 2018, , 597-622.	0.1	4
914	Effective quality factor tuning mechanisms in micromechanical resonators. Applied Physics Reviews, 2018, 5, .	5.5	91
915	Counting the Quanta of Sound. Physics Magazine, 2018, 11, .	0.1	0
916	Combined feedback and sympathetic cooling of a mechanical oscillator coupled to ultracold atoms. New Journal of Physics, 2018, 20, 093020.	1.2	21
917	Effect of the mechanical oscillator on the optical-response properties of an optical trimer system. Physical Review A, 2018, 98, .	1.0	12
918	Optomechanical Cooling in a Continuous System. Physical Review X, 2018, 8, .	2.8	24
919	Quantum control of surface acoustic-wave phonons. Nature, 2018, 563, 661-665.	13.7	263
920	Ground-state cooling of a nanomechanical oscillator with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> spins. Physical Review A, 2018, 98, .	1.0	19
921	Optomechanical effects in a macroscopic hybrid system. Physical Review A, 2018, 98, .	1.0	11
922	Magnon-Photon-Phonon Entanglement in Cavity Magnomechanics. Physical Review Letters, 2018, 121, 203601.	2.9	339
923	Electrostatic tuning of mechanical and microwave resonances in 3D superconducting radio frequency cavities. AIP Advances, 2018, 8, .	0.6	2
924	Superconducting membrane mechanical oscillator based on vacuum-gap capacitor. Chinese Physics B, 2018, 27, 060701.	0.7	3
925	Floquet scattering of light and sound in Dirac optomechanics. Physical Review A, 2018, 98, .	1.0	7
926	Creation, storage, and retrieval of an optomechanical cat state. Physical Review A, 2018, 98, .	1.0	21
927	Spontaneous continuous orbital motion of nanoparticles levitated in air. Physical Review A, 2018, 98, .	1.0	2
928	Two-level system damping in a quasi-one-dimensional optomechanical resonator. Physical Review B, 2018, 98, .	1.1	22

#	Article	IF	Citations
929	Cryogenic microwave filter cavity with a tunability greater than 5 GHz. Review of Scientific Instruments, 2018, 89, 114704.	0.6	13
930	Improving the cooling of a mechanical oscillator in a dissipative optomechanical system with an optical parametric amplifier. Physical Review A, 2018, 98, .	1.0	33
931	Characteristic resonance features of SOI-CMOS-compatible silicon nanoelectromechanical doubly-clamped beams up to 330 MHz. , 2018, , .		2
932	Quantum-state reconstruction of a mechanical mirror in a hybrid system. Physical Review A, 2018, 98, .	1.0	1
933	Double optomechanically induced transparency and absorption in parity-time-symmetric optomechanical systems. Physical Review A, 2018, 98, .	1.0	33
934	Enhanced nonlinear interaction effects in a four-mode optomechanical ring. Physical Review A, 2018, 98, .	1.0	5
935	Reconstruction of quantum state of mechanical mirror via polariton-phonon coupling. Physica Scripta, 2018, 93, 124002.	1.2	3
936	Phonon quantum nondemolition measurements in nonlinearly coupled optomechanical cavities. Physical Review A, 2018, 98, .	1.0	17
937	Scalable nuclear-spin entanglement mediated by a mechanical oscillator. Physical Review B, 2018, 98, .	1.1	6
938	Optomechanical quantum Cavendish experiment. Physical Review A, 2018, 98, .	1.0	46
939	High-order sideband generation in a two-cavity optomechanical system with modulated photon-hopping interaction. Laser Physics Letters, 2018, 15, 115401.	0.6	9
940	Dissipation-driven nonclassical-state generation in optomechanics with squeezed light. Physical Review A, 2018, 98, .	1.0	3
941	Cooling the motion of a silica microsphere in a magneto-gravitational trap in ultra-high vacuum. New Journal of Physics, 2018, 20, 063028.	1.2	62
942	Thermal-Piezoresistive Tuning of the Effective Quality Factor of a Micromechanical Resonator. Physical Review Applied, 2018, 10, .	1.5	14
943	High Quality Factor Mechanical Resonance in a Silicon Nanowire. JETP Letters, 2018, 108, 492-497.	0.4	8
944	Controlling stationary one-way steering via thermal effects in optomechanics. Physical Review A, 2018, 98, .	1.0	24
945	Cavity-free quantum optomechanical cooling by atom-modulated radiation. Physical Review A, 2018, 98,	1.0	9
946	Experimental Determination of Irreversible Entropy Production in out-of-Equilibrium Mesoscopic Quantum Systems. Physical Review Letters, 2018, 121, 160604.	2.9	58

#	ARTICLE	IF	Citations
947	Electrooptomechanical Equivalent Circuits for Quantum Transduction. Physical Review Applied, 2018, $10, \ldots$	1.5	11
948	Phonon-Number-Sensitive Electromechanics. Physical Review Letters, 2018, 121, 183601.	2.9	48
949	Measurement-based quantum control of mechanical motion. Nature, 2018, 563, 53-58.	13.7	263
950	Optomechanically induced transparency in optomechanics with both linear and quadratic coupling. Physical Review A, 2018, 98, .	1.0	23
951	Manipulation of fast and slow light propagation by photonic-molecule optomechanics. Journal of Applied Physics, 2018, 124, .	1.1	12
952	Single crystal diamond micro-disk resonators by focused ion beam milling. APL Photonics, 2018, 3, .	3.0	18
953	Phase-controlled phonon laser. New Journal of Physics, 2018, 20, 093005.	1.2	18
954	Dynamical coupling between a nuclear spin ensemble and electromechanical phonons. Nature Communications, 2018, 9, 2993.	5. 8	13
955	Unconditional Steady-State Entanglement in Macroscopic Hybrid Systems by Coherent Noise Cancellation. Physical Review Letters, 2018, 121, 103602.	2.9	19
956	Quantum nondemolition measurement of mechanical motion quanta. Nature Communications, 2018, 9, 3621.	5.8	18
957	Deterministic preparation of highly non-classical macroscopic quantum states. Npj Quantum Information, 2018, 4, .	2.8	8
958	An optical Bragg scattering readout for nano-mechanical resonances of GaN nanowire arrays. Applied Physics Letters, 2018, 113, .	1.5	4
959	Hybrid Systems for the Generation of Nonclassical Mechanical States via Quadratic Interactions. Physical Review Letters, 2018, 121, 123604.	2.9	50
960	Huygens' Metadevices for Parametric Waves. Physical Review X, 2018, 8, .	2.8	79
961	Phase-dependent Fano-shape optomechanically induced transparency. Applied Optics, 2018, 57, 7444.	0.9	5
962	Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Frontiers of Physics, 2018, 13, 1.	2.4	17
963	Frequency locking and controllable chaos through exceptional points in optomechanics. Physical Review E, 2018, 98, .	0.8	27
964	Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Physical Review A, 2018, 98, .	1.0	71

#	Article	IF	CITATIONS
965	Displacemon Electromechanics: How to Detect Quantum Interference in a Nanomechanical Resonator. Physical Review X , 2018, 8 , .	2.8	27
966	Parametric excitation of a SiN membrane via piezoelectricity. AIP Advances, 2018, 8, .	0.6	17
967	Interfacing planar superconducting qubits with high overtone bulk acoustic phonons. Physical Review B, 2018, 97, .	1.1	35
968	Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators. Physical Review Letters, 2018, 120, 223601.	2.9	30
969	Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect. Physical Review A, 2018, 97, .	1.0	13
970	Motion Control and Optical Interrogation of a Levitating Single Nitrogen Vacancy in Vacuum. Nano Letters, 2018, 18, 3956-3961.	4.5	52
971	Realizing a Circuit Analog of an Optomechanical System with Longitudinally Coupled Superconducting Resonators. Physical Review Letters, 2018, 120, 227702.	2.9	39
972	Macroscopic quantum states: Measures, fragility, and implementations. Reviews of Modern Physics, 2018, 90, .	16.4	110
973	Hybrid entanglement between a trapped ion and a mirror. European Physical Journal Plus, 2018, 133, 1.	1.2	2
974	Squeezed cooling of mechanical motion beyond the resolved-sideband limit. Europhysics Letters, 2018, 122, 14001.	0.7	2
975	Generation and detection of non-Gaussian phonon-added coherent states in optomechanical systems. Physical Review A, 2018, 98, .	1.0	30
976	Reaching the optomechanical strong-coupling regime with a single atom in a cavity. Physical Review A, 2018, 97, .	1.0	21
977	Temporal rocking in a nonlinear hybrid optomechanical system. Optics Express, 2018, 26, 6285.	1.7	11
978	Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Optics Express, 2018, 26, 6143.	1.7	49
979	Quantum-limited directional amplifier based on a triple-cavity optomechanical system. Optics Express, 2018, 26, 15255.	1.7	13
980	Cross-Kerr effect in a parity-time symmetric optomechanical system. Optics Express, 2018, 26, 18043.	1.7	7
981	Quantum enhanced optomechanical magnetometry. Optica, 2018, 5, 850.	4.8	120
982	Cavity Enhancement of Anti-Stokes Scattering via Optomechanical Coupling with Surface Acoustic Waves. Physical Review Applied, 2018, 10, .	1.5	12

#	Article	IF	CITATIONS
983	Ramsey Interferences and Spin Echoes from Electron Spins Inside a Levitating Macroscopic Particle. Physical Review Letters, 2018, 121, 053602.	2.9	36
984	Enhanced sensing of millicharged particles using nonlinear effects in an optomechanical system. Optics Express, 2018, 26, 2054.	1.7	1
985	Non-Markovian optimal sideband cooling. AIP Conference Proceedings, 2018, , .	0.3	0
986	Controllable generation of photons and phonons in a coupled Bose–Einstein condensate-optomechanical cavity via the parametric dynamical Casimir effect. Annals of Physics, 2018, 396, 202-219.	1.0	33
987	Electromagnetic elds and optomechanics in cancer diagnostics and treatment. Frontiers in Bioscience - Landmark, 2018, 23, 1391-1406.	3.0	7
988	Optomechanical frequency combs. New Journal of Physics, 2018, 20, 043013.	1.2	34
989	Parametric Excitation of Optomechanical Resonators by Periodical Modulation. Micromachines, 2018, 9, 193.	1.4	1
990	Optomechanically Induced Transparency at Exceptional Points. Physical Review Applied, 2018, 10, .	1.5	99
991	Witnessing Optomechanical Entanglement with Photon Counting. Physical Review Letters, 2018, 121, 023602.	2.9	16
992	Entangling two oscillating mirrors in an optomechanical system via a flying atom. Chinese Physics B, 2018, 27, 074209.	0.7	1
993	Optoelectronic forces with quantum wells for cavity optomechanics in GaAs/AlAs semiconductor microcavities. Physical Review B, 2018, 97, .	1.1	18
994	Directional amplifier in an optomechanical system with optical gain. Physical Review A, 2018, 97, .	1.0	48
995	Fundamentals and applications of optomechanically induced transparency. Applied Physics Reviews, 2018, 5, 031305.	5.5	134
996	Enhanced quadratic nonlinearity with parametric amplifications. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 652.	0.9	3
997	Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501.	0.6	1
998	Sensing and cooling of a nanomechanical resonator with an electron beam stimulated internal feedback and a capacitive force. Journal of Applied Physics, 2018, 124, 064304.	1.1	0
999	Optically induced phonon blockade in an optomechanical system with second-order nonlinearity. Physical Review A, 2018, 98, .	1.0	34
1000	Phonon interferometry for measuring quantum decoherence. Physical Review A, 2018, 97, .	1.0	14

#	ARTICLE	IF	CITATIONS
1001	Improving mechanical sensor performance through larger damping. Science, 2018, 360, .	6.0	53
1002	Bistability of a slow mechanical oscillator coupled to a laser-driven two-level system. Physical Review A, 2018, 97, .	1.0	6
1003	Unraveling nonclassicality in the optomechanical instability. Physical Review A, 2018, 97, .	1.0	6
1004	Electromechanical quantum simulators. Physical Review B, 2018, 97, .	1.1	6
1005	The analysis of high-order sideband signals in optomechanical system. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	17
1006	Controlling the entanglement of mechanical oscillators in composite optomechanical system. Chinese Physics B, 2018, 27, 040304.	0.7	2
1007	Opto-electromechanically induced transparency in a hybrid opto-electromechanical system*. Chinese Physics B, 2019, 28, 108502.	0.7	5
1008	Classical and quantum dynamics of a trapped ion coupled to a charged nanowire. New Journal of Physics, 2019, 21, 013030.	1.2	3
1009	Mechanical squeezing of the tripod-type four-level atom-assisted optomechanical system. Physica Scripta, 2019, 94, 125105.	1.2	1
1010	Tunable Coupling of a Double Quantum Dot Spin System to a Mechanical Resonator. Nano Letters, 2019, 19, 6166-6172.	4.5	9
1011	Controllable optical response in a three-mode optomechanical system by driving the cavities on different sidebands. Optics Express, 2019, 27, 21843.	1.7	4
1012	Spectral Characterization of Couplings in a Mixed Optomechanical Model. Communications in Theoretical Physics, 2019, 71, 939.	1.1	2
1013	Dynamically generated synthetic electric fields for photons. Physical Review A, 2019, 100, .	1.0	4
1014	Force sensing in hybrid Bose-Einstein-condensate optomechanics based on parametric amplification. Physical Review A, 2019, 100, .	1.0	45
1015	Backaction-evading measurement of entanglement in optomechanics. Physical Review A, 2019, 100, .	1.0	6
1016	Direct Dispersive Monitoring of Charge Parity in Offset-Charge-Sensitive Transmons. Physical Review Applied, 2019, 12, .	1.5	66
1017	Rapid cooling of a strain-coupled oscillator by an optical phase-shift measurement. Physical Review A, 2019, 100, .	1.0	10
1018	Influence of excited state decay and dephasing on phonon quantum state preparation. Physical Review B, 2019, 100, .	1.1	12

#	Article	IF	CITATIONS
1019	Optimal control for feedback cooling in cavityless levitated optomechanics. New Journal of Physics, 2019, 21, 073019.	1.2	8
1020	The fast and the furious: Ultrafast hot electrons in plasmonic metastructures. Size and structure matter. Nano Today, 2019, 27, 120-145.	6.2	112
1021	Controllable and tunable multiple optomechanically induced transparency and Fano resonance mediated by different mechanical resonators. AIP Advances, 2019, 9, .	0.6	3
1022	Bose-condensed optomechanical-like system and a Fabryâ€"Perot cavity with one movable mirror: quantum correlations from the perspectives of quantum optics. European Physical Journal D, 2019, 73, 1.	0.6	7
1023	Dynamical generation of synthetic electric fields for photons in the quantum regime. Quantum Science and Technology, 2019, 4, 044001.	2.6	2
1024	Time evolution of coupled multimode and multiresonator optomechanical systems. Journal of Mathematical Physics, 2019, 60, .	0.5	9
1025	Dissipative Synthesis of Mechanical Fock-Like States. Proceedings (mdpi), 2019, 12, .	0.2	0
1026	Ideal optical isolator with a two-cavity optomechanical system. Optics Communications, 2019, 451, 197-201.	1.0	21
1027	Tests of quantum gravity-induced non-locality: Hamiltonian formulation of a non-local harmonic oscillator. Classical and Quantum Gravity, 2019, 36, 155006.	1.5	6
1028	Effect of quantum and thermal jitter on the feasibility of Bekenstein's proposed experiment to search for Planck-scale signals. Physical Review D, 2019, 99, .	1.6	1
1029	Synchronization of Optomechanical Nanobeams by Mechanical Interaction. Physical Review Letters, 2019, 123, 017402.	2.9	44
1030	Vibrational modes in MEMS resonators. Journal of Micromechanics and Microengineering, 2019, 29, 123001.	1.5	15
1031	Manifestation of classical nonlinear dynamics in optomechanical entanglement with a parametric amplifier. Physical Review A, 2019, 100, .	1.0	21
1032	Multiphonon interactions between nitrogen-vacancy centers and nanomechanical resonators. Physical Review A, 2019, 100, .	1.0	16
1033	Symmetries and conservation laws in quantum trajectories: Dissipative freezing. Physical Review A, 2019, 100, .	1.0	35
1034	Quantum decoherence. Physics Reports, 2019, 831, 1-57.	10.3	178
1035	Dipole states and coherent interaction in surface-acoustic-waveÂcoupled phononic resonators. Nature Communications, 2019, 10, 4583.	5.8	20
1036	Resolved-Sideband Cooling of a Levitated Nanoparticle in the Presence of Laser Phase Noise. Physical Review Letters, 2019, 123, 153601.	2.9	29

#	Article	IF	CITATIONS
1037	Perfect Optical Nonreciprocity with Mechanical Driving in a Three-Mode Optomechanical System*. Communications in Theoretical Physics, 2019, 71, 1011.	1.1	9
1038	Double-passage mechanical cooling in a coupled optomechanical system. Chinese Physics B, 2019, 28, 114206.	0.7	2
1039	Online Identification Method of Induction Motor Parameters Based on Rotor Flux Linkage. Journal of Physics: Conference Series, 2019, 1187, 022019.	0.3	0
1040	Change Detection Method based on Block Similarity Measure. Journal of Physics: Conference Series, 2019, 1237, 022047.	0.3	O
1041	Two-Tone Optomechanical Instability and Its Fundamental Implications for Backaction-Evading Measurements. Physical Review X, 2019, 9, .	2.8	12
1042	Mechanical qubit-light entanglers in hybrid nonlinear qubit optomechanics. Physical Review A, 2019, 100, .	1.0	1
1043	On-chip Thermometry for Microwave Optomechanics Implemented in a Nuclear Demagnetization Cryostat. Physical Review Applied, 2019, 12, .	1.5	20
1044	Optomechanically induced nonreciprocity based on mechanical driving. European Physical Journal D, 2019, 73, 1.	0.6	1
1045	Coherent coupling between the motional fluctuation of a mirror and a trapped ion inside an optical cavity: Memory, state transfer, and entanglement. Physical Review A, 2019, 100, .	1.0	3
1046	Estimation of squeezing in a nonlinear quadrature of a mechanical oscillator. New Journal of Physics, 2019, 21, 113050.	1.2	8
1047	Measurement of Motion beyond the Quantum Limit by Transient Amplification. Physical Review Letters, 2019, 123, 183603.	2.9	13
1048	Frequencyâ€Modulationâ€Enhanced Groundâ€State Cooling of Coupled Mechanical Resonators. Annalen Der Physik, 2019, 531, 1900193.	0.9	9
1049	Electromagnetically Induced Absorption in Cavity Optomechanics System with a Bose–Einstein Condensate. Journal of Russian Laser Research, 2019, 40, 340-347.	0.3	2
1050	Intracavityâ€Squeezed Optomechanical Cooling. Laser and Photonics Reviews, 2019, 13, 1900120.	4.4	37
1051	Probing the State of a Mechanical Oscillator with an Ultrastrongly Coupled Quantum Emitter. Physical Review Letters, 2019, 122, 013602.	2.9	1
1052	A proposal for the implementation of quantum gates in an optomechanical system via phonon blockade. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 205502.	0.6	10
1053	Tunable transparency and amplification in a hybrid optomechanical system with quadratic coupling. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 215402.	0.6	2
1054	Cooling of a Mechanical Oscillator and Normal Mode Splitting in Optomechanical Systems with Coherent Feedback. Applied Sciences (Switzerland), 2019, 9, 3402.	1.3	13

#	Article	IF	CITATIONS
1055	Laser cooling with adiabatic transfer on a Raman transition. New Journal of Physics, 2019, 21, 073045.	1.2	5
1056	Controllable Optical Bistability and Four-Wave Mixing in a Photonic-Molecule Optomechanics. Nanoscale Research Letters, 2019, 14, 73.	3.1	14
1057	Macroscopic superposition states of a mechanical oscillator in an optomechanical system with quadratic coupling. Physical Review A, 2019, 100, .	1.0	14
1058	State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses. Physical Review Letters, 2019, 123, 113601.	2.9	19
1059	Auxiliary cavity enhanced mode splitting and ground-state cooling of mechanical resonator in hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	0.6	3
1060	Optomechanically induced transparency and nonlinear responses based on graphene optomechanics system. EPJ Quantum Technology, 2019, 6, .	2.9	4
1061	Thermomechanical-Noise-Limited Capacitive Transduction of Encapsulated MEM Resonators. Journal of Microelectromechanical Systems, 2019, 28, 965-976.	1.7	19
1062	Testing the generalized uncertainty principle with macroscopic mechanical oscillators and pendulums. Physical Review D, 2019, 100, .	1.6	70
1063	Transmissivity of optomechanical system containing a two-level system. International Journal of Modern Physics B, 2019, 33, 1950252.	1.0	2
1064	Hexagonal Boron Nitride Cavity Optomechanics. Nano Letters, 2019, 19, 1343-1350.	4.5	32
1065	Nonclassical states of levitated macroscopic objects beyond the ground state. Quantum Science and Technology, 2019, 4, 024006.	2.6	3
1066	Heisenberg-Langevin Formalism for Squeezing Dynamics of Linear Hybrid Optomechanical System. International Journal of Theoretical Physics, 2019, 58, 2418-2427.	0.5	12
1067	Review of optical tweezers in vacuum. Frontiers of Information Technology and Electronic Engineering, 2019, 20, 655-673.	1.5	14
1068	Hybrid quantum systems based on magnonics. Applied Physics Express, 2019, 12, 070101.	1.1	404
1069	Cold Damping of an Optically Levitated Nanoparticle to Microkelvin Temperatures. Physical Review Letters, 2019, 122, 223601.	2.9	109
1070	Generation of Optical and Mechanical Squeezing in the Linearâ€andâ€Quadratic Optomechanics. Annalen Der Physik, 2019, 531, 1800399.	0.9	10
1071	Manipulation of lateral shift via driven cavity-optomechanical system. Optics Communications, 2019, 450, 282-286.	1.0	1
1072	Quantum-correlation-enhanced weak-field detection in an optomechanical system. Physical Review A, 2019, 99, .	1.0	14

#	Article	IF	CITATIONS
1073	Quantum correlations in optomechanical crystals. Physical Review A, 2019, 99, .	1.0	15
1074	Optimal Feedback Cooling of a Charged Levitated Nanoparticle with Adaptive Control. Physical Review Letters, 2019, 122, 223602.	2.9	77
1075	Influence of the counter-rotating terms on the quantum dynamics of the damped harmonic oscillator in a deformed bath. International Journal of Modern Physics B, 2019, 33, 1950126.	1.0	1
1076	Carrier-mediated cavity optomechanics in a semiconductor laser. Physical Review A, 2019, 99, .	1.0	4
1077	Optimal control of hybrid optomechanical systems for generating non-classical states of mechanical motion. Quantum Science and Technology, 2019, 4, 034001.	2.6	21
1078	Advanced quantum techniques for future gravitational-wave detectors. Living Reviews in Relativity, 2019, 22, 1.	8.2	39
1079	Frequency-tunable high- <i>Q</i> superconducting resonators via wireless control of nonlinear kinetic inductance. Applied Physics Letters, 2019, 114, .	1.5	33
1080	Electric feedback cooling of single charged nanoparticles in an optical trap. Physical Review A, 2019, 99, .	1.0	18
1081	Dueling dynamical backaction in a cryogenic optomechanical cavity. Physical Review A, 2019, 99, .	1.0	7
1082	Simultaneous cooling the coupled nano-mechanical resonators in the strong optomechanical coupling regime. Laser Physics, 2019, 29, 065201.	0.6	4
1083	Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity. Physical Review A, 2019, 99, .	1.0	13
1084	Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Physical Review A, 2019, 99, .	1.0	35
1085	Robust optomechanical state transfer under composite phase driving. Scientific Reports, 2019, 9, 4382.	1.6	15
1086	Observation and stabilization of photonic Fock states in a hot radio-frequency resonator. Science, 2019, 363, 1072-1075.	6.0	31
1087	Theory of bifurcation amplifiers utilizing the nonlinear dynamical response of an optically damped mechanical oscillator. Physical Review A, 2019, 99, .	1.0	1
1088	Optical-mechanical cooling of a charged resonator. Physical Review A, 2019, 99, .	1.0	8
1089	Cavity Cooling of a Levitated Nanosphere by Coherent Scattering. Physical Review Letters, 2019, 122, 123602.	2.9	111
1090	Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A, 2019, 99, .	1.0	10

#	Article	IF	CITATIONS
1091	Realization of Directional Amplification in a Microwave Optomechanical Device. Physical Review Applied, 2019, 11 , .	1.5	51
1092	Optomechanical properties of a degenerate nonperiodic cavity chain. Frontiers of Physics, 2019, 14, 1.	2.4	5
1093	Interference effects in hybrid cavity optomechanics. Quantum Science and Technology, 2019, 4, 024002.	2.6	12
1094	Strong vibrational coupling in room temperature plasmonic resonators. Nature Communications, 2019, 10, 1527.	5.8	35
1095	Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics. Optica, 2019, 6, 213.	4.8	125
1096	Spin detection with a micromechanical trampoline: towards magnetic resonance microscopy harnessing cavity optomechanics. New Journal of Physics, 2019, 21, 043049.	1.2	38
1097	Strong quadrature squeezing and quantum amplification in a coupled Bose–Einstein condensate—optomechanical cavity based on parametric modulation. Annals of Physics, 2019, 405, 202-219.	1.0	22
1098	Near Ground-State Cooling of Two-Dimensional Trapped-Ion Crystals with More than 100 Ions. Physical Review Letters, 2019, 122, 053603.	2.9	53
1099	Fast Hybrid Quantum State Transfer and Entanglement Generation via No Transition Passage. Annalen Der Physik, 2019, 531, 1800402.	0.9	4
1100	Low-power phonon lasing through position-modulated Kerr-type nonlinearity. Scientific Reports, 2019, 9, 1684.	1.6	7
1101	Optomechanical Platform with a Three-dimensional Waveguide Cavity. Physical Review Applied, 2019, 11 ,	1.5	5
1102	Quantum electromechanics of a hypersonic crystal. Nature Nanotechnology, 2019, 14, 334-339.	15.6	30
1103	Breaking the optomechanical cooling limit by two drive fields on a membrane-in-the-middle system. Physical Review A, 2019, 99, .	1.0	20
1104	Demonstration of Displacement Sensing of a mg-Scale Pendulum for mm- and mg-Scale Gravity Measurements. Physical Review Letters, 2019, 122, 071101.	2.9	43
1105	Interaction and Size Effects in Open Nanoâ€Electromechanical Systems. Physica Status Solidi (B): Basic Research, 2019, 256, 1800443.	0.7	3
1106	Tomography of an optomechanical oscillator via parametrically amplified position measurement. New Journal of Physics, 2019, 21, 023020.	1.2	2
1107	Sideband cooling of nearly degenerate micromechanical oscillators in a multimode optomechanical system. Physical Review A, 2019, 99, .	1.0	41
1108	Coulomb forces in THz electromechanical meta-atoms. Nanophotonics, 2019, 8, 2269-2277.	2.9	13

#	Article	IF	CITATIONS
1109	Quantum entanglement via a controllable four-wave-mixing mechanism in an optomechanical system. Physical Review A, 2019, 100 , .	1.0	2
1110	Partial Optomechanical Refrigeration via Multimode Cold-Damping Feedback. Physical Review Letters, 2019, 123, 203605.	2.9	39
1111	Piezo-optomechanical coupling of a 3D microwave resonator to a bulk acoustic wave crystalline resonator. Applied Physics Letters, 2019, 115, .	1.5	9
1112	Coupling microwave photons to a mechanical resonator using quantum interference. Nature Communications, 2019, 10, 5359.	5.8	42
1113	Emission of photon pairs by mechanical stimulation of the squeezed vacuum. Physical Review A, 2019, 100, .	1.0	48
1114	Dynamics of ground-state cooling and quantum entanglement in a modulated optomechanical system. Physical Review A, 2019, 100, .	1.0	13
1115	Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State. Physical Review Letters, 2019, 123, 223602.	2.9	67
1116	Synthesizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconducting qubits. Npj Quantum Information, 2019, 5, .	2.8	14
1117	Quantum coherence versus nonclassical correlations in optomechanics. International Journal of Modern Physics B, 2019, 33, 1950343.	1.0	8
1118	Phonon blockade in a hybrid system via the second-order magnetic gradient. Physical Review A, 2019, 100, .	1.0	17
1119	Control of electromagnetically induced transparency and Fano resonances in a hybrid optomechanical system. European Physical Journal D, 2019, 73, 1.	0.6	8
1120	Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. Physical Review A, 2019, 100, .	1.0	19
1121	Ultrastrong Parametric Coupling between a Superconducting Cavity and a Mechanical Resonator. Physical Review Letters, 2019, 123, 247701.	2.9	43
1122	Phonon counting boosts hybrid quantum networks based on optomechanics. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	2.0	1
1123	Tabletop experiments for quantum gravity: a user's manual. Classical and Quantum Gravity, 2019, 36, 034001.	1.5	101
1124	Quantum Characteristics of a Nanomechanical Resonator Coupled to a Superconducting LC Resonator in Quantum Computing Systems. Nanomaterials, 2019, 9, 20.	1.9	6
1125	Weak-value amplification of photon-number operators in the optomechanical interaction. Physical Review A, 2019, 99, .	1.0	11
1126	Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Physical Review A, 2019, 99, .	1.0	61

#	Article	IF	CITATIONS
1128	Manipulation of nanomechanical resonator via shaking optical frequency. Journal of Physics B: Atomic, Molecular and Optical Physics, 2019, 52, 045502.	0.6	6
1129	Cooling of coupled nano-mechanical resonators in the weak optomechanical coupling regime. Laser Physics, 2019, 29, 025201.	0.6	4
1130	Optomechanical damping basis. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 08LT02.	0.7	10
1131	Precision ultrasound sensing on a chip. Nature Communications, 2019, 10, 132.	5.8	92
1132	Realization of a degenerate parametric oscillator in electromechanical systems. Physical Review B, 2019, 99, .	1.1	5
1133	Nonclassical Properties of an Opto-Mechanical System Initially Prepared in N-Headed Cat State and Number State. International Journal of Theoretical Physics, 2019, 58, 58-70.	0.5	8
1134	Optomechanically induced transparency under the influence of spin ensemble system. Optik, 2019, 179, 1027-1034.	1.4	4
1135	Microwave-to-optics conversion using a mechanical oscillator in its quantum ground state. Nature Physics, 2020, 16, 69-74.	6.5	182
1136	Enhancing optomechanical force sensing via precooling and quantum noise cancellation. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	18
1137	Electro-optomechanical cooperative cooling of nanomechanical oscillator beyond resolved sideband regime. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	5
1138	Lie algebraic approach to quantum driven optomechanics. Physica Scripta, 2020, 95, 035103.	1.2	4
1139	Currents cool and drive. Nature Physics, 2020, 16, 10-11.	6.5	0
1140	Spin–Phonon Interfaces in Coupled Nanomechanical Cantilevers. Nano Letters, 2020, 20, 463-469.	4.5	12
1141	Dynamical tunneling of a nanomechanical oscillator. Physical Review A, 2020, 102, .	1.0	0
1142	Sideband ground-state cooling of graphene with Rydberg atoms via vacuum forces. Physical Review A, 2020, 102, .	1.0	2
1143	Squeezed-light-driven force detection with an optomechanical cavity in a Mach–Zehnder interferometer. Scientific Reports, 2020, 10, 17496.	1.6	4
1144	Enhanced optomechanically induced transparency and slow/fast light in a position-dependent mass optomechanics. European Physical Journal D, 2020, 74, 1.	0.6	5
1145	Spectrum of Singleâ€Photon Scattering in a Strong oupling Hybrid Optomechanical System. Annalen Der Physik, 2020, 532, 2000154.	0.9	2

#	Article	IF	CITATIONS
1146	Spin-Bath Dynamics in a Quantum Resonator-Qubit System: Effect of a Mechanical Resonator Coupled to a Central Qubit. International Journal of Theoretical Physics, 2020, 59, 3107-3123.	0.5	10
1147	Ground state cooling of magnomechanical resonator in \$\${cal P}{cal T}\$\$-symmetric cavity magnomechanical system at room temperature. Frontiers of Physics, 2020, 15, 1.	2.4	26
1148	High-Frequency Mechanical Excitation of a Silicon Nanostring with Piezoelectric Aluminum Nitride Layers. Physical Review Applied, 2020, 14, .	1.5	9
1149	Controllable optical response in a quadratically coupled optomechanical system with mechanical driving. Optics Communications, 2020, 475, 126249.	1.0	6
1151	Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nature Communications, 2020, 11, 3373.	5.8	56
1152	Nonreciprocal ground-state cooling of multiple mechanical resonators. Physical Review A, 2020, 102, .	1.0	82
1153	Optimal estimation of gravitation with Kerr nonlinearity in an optomechanical system. Quantum Information Processing, 2020, 19, 1.	1.0	0
1154	A cavity optomechanical locking scheme based on the optical spring effect. Review of Scientific Instruments, 2020, 91, 103102.	0.6	4
1155	Generation of nonclassical states in nonlinear oscillators via Lyapunov control. Physical Review A, 2020, 102, .	1.0	12
1156	Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Information Processing, 2020, 19, 1.	1.0	6
1157	A perspective on hybrid quantum opto- and electromechanical systems. Applied Physics Letters, 2020, 117, .	1.5	49
1158	Unconventional Phonon Blockade in a Tavis–Cummings Coupled Optomechanical System. Annalen Der Physik, 2020, 532, 2000299.	0.9	14
1159	Observation of phonon trapping in the continuum with topological charges. Nature Communications, 2020, 11, 5216.	5.8	20
1160	Phonon heat transport in cavity-mediated optomechanical nanoresonators. Nature Communications, 2020, 11, 4656.	5.8	45
1161	An Interaction-Free Quantum Measurement-Driven Engine. Foundations of Physics, 2020, 50, 1294-1314.	0.6	8
1162	Highâ€5peed Quantum Transducer with a Singleâ€Photon Emitter in a 2D Resonator. Annalen Der Physik, 2020, 532, 2000233.	0.9	6
1163	The Optomechanical Response of a Cubic Anharmonic Oscillator. Applied Sciences (Switzerland), 2020, 10, 5719.	1.3	5
1164	Polariton-driven phonon laser. Nature Communications, 2020, 11, 4552.	5.8	34

#	ARTICLE	IF	CITATIONS
1165	Active optical table tilt stabilization. Review of Scientific Instruments, 2020, 91, 076102.	0.6	3
1166	Observation of nonlinear dynamics in an optical levitation system. Communications Physics, 2020, 3, .	2.0	9
1167	Optical trapping of the transversal motion for an optically levitated mirror. Physical Review A, 2020, 102, .	1.0	3
1168	Demonstration of an amplitude filter cavity at gravitational-wave frequencies. Physical Review D, 2020, 102, .	1.6	5
1169	Quantum entanglement and reflection coefficient for coupled harmonic oscillators. Physical Review E, 2020, 102, 052213.	0.8	22
1170	Superconducting qubit to optical photon transduction. Nature, 2020, 588, 599-603.	13.7	242
1171	Quantum nondemolition photon counting with a hybrid electromechanical probe. Physical Review A, 2020, 102, .	1.0	4
1172	Floquet Cavity Electromagnonics. Physical Review Letters, 2020, 125, 237201.	2.9	39
1173	Coupling of light and mechanics in a photonic crystal waveguide. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29422-29430.	3.3	9
1174	Opto-Mechanical Photonic Crystal Cavities for Sensing Application. Applied Sciences (Switzerland), 2020, 10, 7080.	1.3	29
1175	Overdamped dynamics of a Brownian particle levitated in a Paul trap. Physical Review A, 2020, 101, .	1.0	9
1176	Irreversible Qubit-Photon Coupling for the Detection of Itinerant Microwave Photons. Physical Review X, 2020, 10, .	2.8	47
1177	Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Optical and Quantum Electronics, 2020, 52, 1.	1.5	9
1178	Critical quantum fluctuations and photon antibunching in optomechanical systems with large single-photon cooperativity. Physical Review A, 2020, 101, .	1.0	11
1179	Strong mechanical squeezing in a standard optomechanical system by pump modulation. Physical Review A, 2020, 101, .	1.0	24
1180	Giant Tunable Mechanical Nonlinearity in Graphene–Silicon Nitride Hybrid Resonator. Nano Letters, 2020, 20, 4659-4666.	4.5	25
1181	Efficient microwave frequency conversion mediated by a photonics compatible silicon nitride nanobeam oscillator. Quantum Science and Technology, 2020, 5, 034011.	2.6	9
1182	Ultralow Mechanical Damping with Meissner-Levitated Ferromagnetic Microparticles. Physical Review Applied, 2020, 13, .	1.5	45

#	ARTICLE	IF	CITATIONS
1183	Measurement-based cooling of a nonlinear mechanical resonator. Physical Review B, 2020, 101, .	1.1	14
1184	Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nature Communications, 2020, 11, 3235.	5.8	17
1185	Impact of Transduction Scaling Laws on Nanoelectromechanical Systems. Physical Review Letters, 2020, 124, 223902.	2.9	7
1186	Voltage-Controlled Mechanical Oscillator Based on Superconducting Membrane. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	0
1187	Collapses and revivals of entanglement in phase space in an optomechanical cavity. European Physical Journal Plus, 2020, 135, 1.	1.2	1
1188	Combining Floquet and Lyapunov techniques for time-dependent problems in optomechanics and electromechanics. New Journal of Physics, 2020, 22, 063019.	1.2	5
1189	Quantum sensing with milligram scale optomechanical systems. European Physical Journal D, 2020, 74, 1.	0.6	17
1190	Phonon maser stimulated by spin postselection. Physical Review A, 2020, 101, .	1.0	2
1191	Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator. Nature Communications, 2020, 11, 1183.	5.8	16
1192	Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics. Physical Review Letters, 2020, 124, 103602.	2.9	49
1193	Probing a Two-Level System Bath via the Frequency Shift of an Off-Resonantly Driven Cavity. Physical Review Applied, 2020, 13, .	1.5	10
1194	Creating mirror–mirror quantum correlations in optomechanics. European Physical Journal D, 2020, 74, 1.	0.6	11
1195	Dissipative time crystal in an asymmetric nonlinear photonic dimer. Physical Review A, 2020, 101, .	1.0	38
1196	Dynamics of classical-quantum correlations between two movable mirrors in optomechanics. International Journal of Modern Physics B, 2020, 34, 2050066.	1.0	4
1197	Antimonotonicity, coexisting attractors and bursting oscillations in optomechanical system: Analysis and electronic implementation. European Physical Journal: Special Topics, 2020, 229, 1117-1132.	1.2	11
1198	Entangling Two Macroscopic Mechanical Resonators at High Temperature. Physical Review Applied, 2020, 13, .	1.5	31
1199	Tunable fast to slow light and second-order sideband generation in an optomechanical system with phonon pump. European Physical Journal D, 2020, 74, 1.	0.6	1
1200	Using coherent feedback loop for high quantum state transfer in optomechanics. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126705.	0.9	7

#	Article	IF	CITATIONS
1201	Single-Photon Cooling in Microwave Magnetomechanics. Physical Review Letters, 2020, 125, 023601.	2.9	21
1202	Cooling a Mechanical Oscillator in Opto-electro-mechanical System with Frequency Modulations. International Journal of Theoretical Physics, 2020, 59, 2781-2794.	0.5	O
1203	Quantum optomechanics of a two-dimensional atomic array. Physical Review A, 2020, 101, .	1.0	18
1204	Enhanced optomechanical entanglement and cooling via dissipation engineering. Physical Review A, 2020, 101, .	1.0	16
1205	Nonreciprocal Transport Based on Cavity Floquet Modes in Optomechanics. Physical Review Letters, 2020, 125, 023603.	2.9	23
1206	Microfiber Mechanical Resonator for Optomechanics. ACS Photonics, 2020, 7, 695-700.	3.2	1
1207	Cooling of mechanical resonator in a double-cavity system with two-level atomic ensemble. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 085402.	0.6	11
1208	Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Optics Express, 2020, 28, 5288.	1.7	37
1209	Hybrid quantum systems with circuit quantum electrodynamics. Nature Physics, 2020, 16, 257-267.	6.5	236
1210	Nonlinear dynamics of weakly dissipative optomechanical systems. New Journal of Physics, 2020, 22, 013049.	1.2	21
1211	Quadratic optomechanical coupling in an active-passive-cavity system. Physical Review A, 2020, 101, .	1.0	7
1212	Quantum Acoustomechanics with a Micromagnet. Physical Review Letters, 2020, 124, 093602.	2.9	38
1213	Exceptional points enhancing second-order sideband generation in a whispering-gallery-mode microresonator optomechanical system coupled with nanoparticles. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 095401.	0.6	0
1214	Prospects of reinforcement learning for the simultaneous damping of many mechanical modes. Scientific Reports, 2020, 10, 2623.	1.6	3
1215	Quench dynamics in one-dimensional optomechanical arrays. Physical Review A, 2020, 101, .	1.0	7
1216	Trends in Quantum Nanophotonics. Advanced Quantum Technologies, 2020, 3, 1900126.	1.8	37
1217	QuCAT: quantum circuit analyzer tool in Python. New Journal of Physics, 2020, 22, 013025.	1.2	18
1218	Quality factor tuning of micromechanical resonators via electrical dissipation. Applied Physics Letters, 2020, 116, .	1.5	16

#	Article	IF	CITATIONS
1219	Optomechanical Microwave Amplification without Mechanical Amplification. Physical Review Applied, 2020, 13, .	1.5	5
1220	Radiative Cooling of a Superconducting Resonator. Physical Review Letters, 2020, 124, 033602.	2.9	32
1221	Optomechanical second-order sideband effects in a Laguerre–Gaussian rotational-cavity system. Physica Scripta, 2020, 95, 045107.	1.2	11
1222	Demonstration of monogamy laws for Gaussian steering in optomechanics. European Physical Journal Plus, 2020, 135, 1.	1.2	3
1223	Maximal entanglement and switch squeezing with atom coupled to cavity field and graphene membrane. Quantum Information Processing, 2020, 19, 1.	1.0	11
1224	Systematic design of high-Q prestressed micro membrane resonators. Computer Methods in Applied Mechanics and Engineering, 2020, 361, 112692.	3.4	13
1225	Motional Sideband Asymmetry of a Nanoparticle Optically Levitated in Free Space. Physical Review Letters, 2020, 124, 013603.	2.9	104
1226	Laser Cooling of a Nanomechanical Oscillator to Its Zero-Point Energy. Physical Review Letters, 2020, 124, 173601.	2.9	55
1227	Photonic-Crystal Josephson Traveling-Wave Parametric Amplifier. Physical Review X, 2020, 10, .	2.8	55
1228	Enhancement of photon–phonon entanglement transfer in optomechanics. Quantum Information Processing, 2020, 19, 1.	1.0	6
1229	Cavity electromechanics with parametric mechanical driving. Nature Communications, 2020, 11, 1589.	5.8	28
1230	Levitated cavity optomechanics in high vacuum. Quantum Science and Technology, 2020, 5, 025006.	2.6	31
1231	Precision measurement of few charges in cavity optoelectromechanical system. Quantum Information Processing, 2020, 19, 1.	1.0	6
1232	Switchable bipartite and genuine tripartite entanglement via an optoelectromechanical interface. Physical Review A, 2020, 101, .	1.0	11
1233	Resonant Nanoelectromechanical Systems (NEMS): Progress and Emerging Frontiers. , 2020, , .		2
1234	Controllable coherent optical response in a ring cavity optomechanical system. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 125, 114394.	1.3	3
1235	Photon-pressure strong coupling between two superconducting circuits. Nature Physics, 2021, 17, 85-91.	6.5	25
1236	Phononâ€Assisted Antiâ€Stokes Fluorescence of an Yb ³⁺ â€Doped Oxide Glass: Phononics and Spectroscopic Analysis of Its Prospects as Solidâ€State Laser Cooler. Physica Status Solidi (B): Basic Research, 2021, 258, 2000149.	0.7	O

#	Article	IF	CITATIONS
1237	Underground test of gravity-related wave function collapse. Nature Physics, 2021, 17, 74-78.	6.5	67
1238	Strong optomechanical coupling at room temperature by coherent scattering. Nature Communications, 2021, 12, 276.	5.8	35
1239	Quantum Optomechanics. Graduate Texts in Physics, 2021, , 325-364.	0.1	0
1240	A massive squeeze. Nature Physics, 2021, 17, 299-300.	6.5	1
1241	Processing light with an optically tunable mechanical memory. Nature Communications, 2021, 12, 663.	5.8	17
1242	Large flux-mediated coupling in hybrid electromechanical system with a transmon qubit. Communications Physics, 2021, 4, .	2.0	16
1243	Non-classical energy squeezing of a macroscopic mechanical oscillator. Nature Physics, 2021, 17, 322-326.	6.5	26
1244	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i>). IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	2.9	69
1245	Ground state cooling of an optomechanical resonator with double quantum interference processes*. Chinese Physics B, 2021, 30, 023701.	0.7	1
1246	Nonlinear optical response properties of a quantum dot embedded in a semiconductor microcavity: possible applications in quantum communication platforms. Journal of Modern Optics, 2021, 68, 177-188.	0.6	2
1247	Optical back-action on the photothermal relaxation rate. Optica, 2021, 8, 177.	4.8	5
1248	Cavity optomechanics with a laser-engineered optical trap. Physical Review B, 2021, 103, .	1.1	3
1249	Superconducting Nanoelectromechanical Transducer Resilient to Magnetic Fields. Nano Letters, 2021, 21, 1800-1806.	4.5	2
1250	Quantum limit cycles and the Rayleigh and van der Pol oscillators. Physical Review Research, 2021, 3, .	1.3	21
1251	Cavity optomechanics assisted by optical coherent feedback. Physical Review A, 2021, 103, .	1.0	12
1252	Exceptional points enhance sum sideband generation in a mechanical <i>PTT</i> <symmetric 2021,="" 29,="" 4875.<="" express,="" optics="" system.="" td=""><td>1.7</td><td>7</td></symmetric>	1.7	7
1253	Membrane-Based Scanning Force Microscopy. Physical Review Applied, 2021, 15, .	1.5	38
1254	Gain-type optomechanically induced absorption and precise mass sensor in a hybrid optomechanical system. Journal of Applied Physics, 2021, 129, 084504.	1.1	4

#	Article	IF	CITATIONS
1255	Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope. Physical Review D, 2021, 103, .	1.6	18
1256	Optimal estimation of time-dependent gravitational fields with quantum optomechanical systems. Physical Review Research, 2021, 3, .	1.3	13
1257	Cavity optomechanics with photonic bound states in the continuum. Physical Review Research, 2021, 3,	1.3	19
1258	Sympathetic cooling of a radio-frequency LC circuit to its ground state in an optoelectromechanical system. Physical Review A, 2021, 103, .	1.0	8
1259	Optimal Control for Robust Photon State Transfer in Optomechanical Systems. Annalen Der Physik, 2021, 533, 2000608.	0.9	7
1260	Automated wide-ranged finely tunable microwave cavity for narrowband phase noise filtering. Review of Scientific Instruments, 2021, 92, 034710.	0.6	1
1261	Superfluid Optomechanics With Phononic Nanostructures. Physical Review Applied, 2021, 15, .	1.5	4
1262	Gravitational Forces Between Nonclassical Mechanical Oscillators. Physical Review Applied, 2021, 15, .	1.5	17
1263	Continuous variable quantum entanglement in optomechanical systems: A short review. AVS Quantum Science, 2021, 3, .	1.8	8
1264	Optomechanically induced transparency, amplification, and Fano resonance in a multimode optomechanical system with quadratic coupling. EPJ Quantum Technology, 2021, 8, .	2.9	3
1265	Double-mechanical-oscillator cooling by breaking the restrictions of quantum backaction and frequency ratio via dynamical modulation. Physical Review A, 2021, 103, .	1.0	9
1266	Nanomechanical Microwave Bolometry with Semiconducting Nanowires. Physical Review Applied, 2021, 15, .	1.5	0
1267	Electric circuit model of microwave optomechanics. Journal of Applied Physics, 2021, 129, 114502.	1.1	8
1268	Reservoir-engineered entanglement in an unresolved-sideband optomechanical system. Communications in Theoretical Physics, 2021, 73, 055105.	1.1	4
1269	Optical tweezers â€" from calibration to applications: a tutorial. Advances in Optics and Photonics, 2021, 13, 74.	12.1	127
1270	Decoherence effects in non-classicality tests of gravity. New Journal of Physics, 2021, 23, 043040.	1.2	31
1271	Mapping the Cavity Optomechanical Interaction with Subwavelength-Sized Ultrasensitive Nanomechanical Force Sensors. Physical Review X, 2021, 11, .	2.8	21
1272	Generation of Strong Mechanical–Mechanical Entanglement by Pump Modulation. Advanced Quantum Technologies, 2021, 4, 2000149.	1.8	9

#	Article	IF	CITATIONS
1273	Cavity magnomechanical storage and retrieval of quantum states. New Journal of Physics, 2021, 23, 043041.	1.2	39
1274	Quantum ground state cooling of translational and librational modes of an optically trapped nanoparticle coupling cavity. Quantum Engineering, 2021, 3, e62.	1.2	6
1275	Optical actuation of a micromechanical photodiode via the photovoltaic-piezoelectric effect. Microsystems and Nanoengineering, 2021, 7, 29.	3.4	4
1276	Backactionâ€Noise Suppression and System Stabilization in Doubleâ€Mode Optomechanical Systems. Annalen Der Physik, 2021, 533, 2100119.	0.9	3
1277	Direct observation of deterministic macroscopic entanglement. Science, 2021, 372, 622-625.	6.0	137
1278	Measurement of the mechanical reservoir spectral density in an optomechanical system. Physical Review A, 2021, 103, .	1.0	4
1279	A cryogenic electro-optic interconnect for superconducting devices. Nature Electronics, 2021, 4, 326-332.	13.1	43
1280	Circuit quantum electrodynamics. Reviews of Modern Physics, 2021, 93, .	16.4	634
1281	Strong tunable spin-spin interaction in a weakly coupled nitrogen vacancy spin-cavity electromechanical system. Physical Review B, 2021, 103, .	1.1	19
1282	Ground-state cooling of mechanical resonators by quantum reservoir engineering. Communications Physics, 2021, 4, .	2.0	15
1283	High- $\langle i \rangle Q \langle i \rangle$ Silicon Nitride Drum Resonators Strongly Coupled to Gates. Nano Letters, 2021, 21, 5738-5744.	4.5	12
1284	Ultraprecision quantum sensing and measurement based on nonlinear hybrid optomechanical systems containing ultracold atoms or atomic Bose–Einstein condensate. AVS Quantum Science, 2021, 3, .	1.8	21
1285	Approaching the motional ground state of a 10-kg object. Science, 2021, 372, 1333-1336.	6.0	59
1286	Robust Four-Wave Mixing and Double Second-Order Optomechanically Induced Transparency Sideband in a Hybrid Optomechanical System. Photonics, 2021, 8, 234.	0.9	1
1287	Domino cooling of a coupled mechanical-resonator chain via cold-damping feedback. Physical Review A, 2021, 103, .	1.0	26
1288	Enhanced force sensitivity and entanglement in periodically driven optomechanics. Physical Review A, 2021, 103, .	1.0	17
1289	Heat transfer mediated by the dynamical Casimir effect in an optomechanical system. Physical Review A, 2021, 103, .	1.0	0
1290	Measure and control of quantum correlations in optomechanics. European Physical Journal D, 2021, 75, 1.	0.6	1

#	Article	IF	CITATIONS
1291	Simultaneous Cooling of Two Mechanical Resonators with Intracavity Squeezed Light. Annalen Der Physik, 2021, 533, 2100074.	0.9	4
1292	Controlled bistable dynamics of a four-mirror cavity-optomechanics with two movable mirrors. Optics Communications, 2021, 488, 126820.	1.0	5
1293	Optical response of a dual membrane active–passive optomechanical cavity. Annals of Physics, 2021, 429, 168465.	1.0	10
1294	Optomechanical cooling with coherent and squeezed light: The thermodynamic cost of opening the heat valve. Physical Review A, 2021, 103, .	1.0	5
1295	Room temperature cavity electromechanics in the sideband-resolved regime. Journal of Applied Physics, 2021, 130, .	1.1	2
1296	Gravitational effects in macroscopic quantum systems: a first-principles analysis. Classical and Quantum Gravity, 2021, 38, 155012.	1.5	17
1297	Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system. Frontiers of Physics, 2022, 17, 1.	2.4	6
1298	Dynamical Backaction in an Ultrahigh-Finesse Fiber-Based Microcavity. Physical Review Applied, 2021, 16,	1.5	13
1299	Stroboscopic high-order nonlinearity for quantum optomechanics. Npj Quantum Information, 2021, 7,	2.8	5
1300	High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump. Applied Physics Express, 2021, 14, 082005.	1.1	6
1301	Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature, 2021, 595, 378-382.	13.7	163
1302	Sideband transitions in a two-mode Josephson circuit driven beyond the rotating-wave approximation. Physical Review Research, 2021, 3, .	1.3	5
1303	Master-equation treatment of nonlinear optomechanical systems with optical loss. Physical Review A, 2021, 104, .	1.0	10
1304	Energy-level attraction and heating-resistant cooling of mechanical resonators with exceptional points. Physical Review A, 2021, 104, .	1.0	11
1305	Floquet Phonon Lasing in Multimode Optomechanical Systems. Physical Review Letters, 2021, 127, 073601.	2.9	31
1306	Coherent Pulse Echo in Hybrid Magnonics with Multimode Phonons. Physical Review Applied, 2021, 16, .	1.5	11
1307	Vectorial polaritons in the quantum motion of a levitated nanosphere. Nature Physics, 2021, 17, 1120-1124.	6.5	19
1308	Broadband continuous beam-steering with time-modulated metasurfaces in the near-infrared spectral regime. APL Photonics, 2021, 6, 086109.	3.0	15

#	Article	IF	CITATIONS
1309	Cavity optomechanical sensing. Nanophotonics, 2021, 10, 2799-2832.	2.9	78
1310	Measuring Ion Oscillations at the Quantum Level with Fluorescence Light. Physical Review Letters, 2021, 127, 063603.	2.9	6
1311	Microwave-optical quantum frequency conversion. Optica, 2021, 8, 1050.	4.8	81
1312	Ground-state cooling of a mechanical oscillator via a hybrid electro-optomechanical system. Physical Review A, 2021, 104, .	1.0	7
1313	Ion-laser-like interaction in optomechanical systems with Kerr nonlinearities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 408, 127490.	0.9	1
1314	Meissner Levitation of a Millimeter-Size Neodymium Magnet Within a Superconducting Radio Frequency Cavity. IEEE Transactions on Applied Superconductivity, 2021, 31, 1-4.	1.1	7
1315	Nanomechanical Dissipation and Strain Engineering. Advanced Functional Materials, 2022, 32, 2105247.	7.8	15
1316	Quantum simulation of tunable and ultrastrong mixed-optomechanics. Optics Express, 2021, 29, 28202.	1.7	1
1317	Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system*. Chinese Physics B, 2021, 30, 094205.	0.7	4
1318	Photon blockade in a coupled double quantum dotâ€"nonlinear optomechanical system. Physica Scripta, 2021, 96, 125108.	1.2	0
1319	Superconducting electro-mechanics to test $Di\tilde{A}^3sia$ "Penrose effects of general relativity in massive superpositions. AVS Quantum Science, 2021, 3, .	1.8	15
1320	Quantum estimation of coupling strengths in driven-dissipative optomechanics. Physical Review A, 2021, 104, .	1.0	6
1321	Microwave photonic circulator based on optomechanical-like interactions. Quantum Information Processing, 2021, 20, 1.	1.0	0
1322	Optical normal-mode-induced phonon-sideband splitting in the photon-blockade effect. Physical Review A, 2021, 104, .	1.0	7
1323	Controllable Fast and Slow Light in Photonic-Molecule Optomechanics with Phonon Pump. Micromachines, 2021, 12, 1074.	1.4	1
1324	Amplitude stabilization of micromechanical oscillators using engineered nonlinearity. Physical Review Research, 2021, 3, .	1.3	5
1325	Static synthetic gauge field control of double optomechanically induced transparency in a closed-contour interaction scheme. Physical Review A, 2021, 104, .	1.0	4
1326	The Stationary Optomechanical Entanglement Between an Optical Cavity Field and a Cubic Anharmonic Oscillator. International Journal of Theoretical Physics, 2021, 60, 3961-3972.	0.5	1

#	Article	IF	CITATIONS
1327	Perspective on traveling wave microwave parametric amplifiers. Applied Physics Letters, 2021, 119, .	1.5	38
1328	Prototype superfluid gravitational wave detector. Physical Review D, 2021, 104, .	1.6	9
1329	Quantum Optomechanics with Millimeter Wave Photons. , 2021, , .		1
1331	Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. , 0, .		1
1332	Observable quantum entanglement due to gravity. Npj Quantum Information, 2020, 6, .	2.8	100
1333	Non-Hermitian physics. Advances in Physics, 2020, 69, 249-435.	35.9	695
1334	Quantum superposition of two gravitational cat states. Classical and Quantum Gravity, 2020, 37, 235012.	1.5	34
1335	Mesoscopic entanglement through central–potential interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 235501.	0.6	27
1336	Trotterized adiabatic quantum simulation and its application to a simple all-optical system. New Journal of Physics, 2020, 22, 053012.	1.2	7
1337	Stationary quantum entanglement between a massive mechanical membrane and a low frequency LC circuit. New Journal of Physics, 2020, 22, 063041.	1.2	9
1338	A quantum heat machine from fast optomechanics. New Journal of Physics, 2020, 22, 103028.	1.2	15
1339	Optomechanical cooling by STIRAP-assisted energy transfer: an alternative route towards the mechanical ground state. New Journal of Physics, 2020, 22, 103043.	1.2	4
1340	Manipulating the steady-state entanglement via three-level atoms in a hybrid levitated optomechanical system. Physical Review A, 2020, 102, .	1.0	5
1341	Macroscopic nonclassical-state preparation via postselection. Physical Review A, 2017, 96, .	1.0	14
1342	Optimal detuning for quantum filter cavities. Physical Review D, 2020, 102, .	1.6	7
1343	Single-photon pump by Cooper-pair splitting. Physical Review Research, 2019, 1, .	1.3	5
1344	Chimera states in small optomechanical arrays. Physical Review Research, 2020, 2, .	1.3	15
1345	Stroboscopic quantum optomechanics. Physical Review Research, 2020, 2, .	1.3	14

#	ARTICLE	IF	Citations
1346	Flux-mediated optomechanics with a transmon qubit in the single-photon ultrastrong-coupling regime. Physical Review Research, 2020, 2 , .	1.3	20
1347	Stationary optomechanical entanglement between a mechanical oscillator and its measurement apparatus. Physical Review Research, 2020, 2, .	1.3	21
1348	Beyond linear coupling in microwave optomechanics. Physical Review Research, 2020, 2, .	1.3	12
1349	Mechanical oscillator thermometry in the nonlinear optomechanical regime. Physical Review Research, 2020, 2, .	1.3	14
1350	Optomechanical transistor: controlling the optical bistability in a photonic molecule. Applied Optics, 2019, 58, 2463.	0.9	4
1351	Optical pulling forces and their applications. Advances in Optics and Photonics, 2020, 12, 288.	12.1	99
1352	Directional amplifiers in a hybrid optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 306.	0.9	4
1353	Atomic quadrature squeezing and quantum state transfer in a hybrid atom–optomechanical cavity with two Duffing mechanical oscillators. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 775.	0.9	4
1354	Tailoring the thermalization time of a cavity field using distinct atomic reservoirs. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1252.	0.9	11
1355	Mechanical driving mediated slow light in a quadratically coupled optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 650.	0.9	9
1356	Efficient ground state cooling of a mechanical resonator in a membrane-in-the-middle system by a single drive. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 956.	0.9	3
1357	Multistability, staircases, and optical high-order sideband combs in optomechanics. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A36.	0.9	10
1358	Generation of the bipartite entanglement and correlations in an optomechanical array. Journal of the Optical Society of America B: Optical Physics, 2020, 37, A245.	0.9	14
1359	Generation of mechanical squeezing and entanglement via mechanical modulations. Optics Express, 2018, 26, 30773.	1.7	11
1360	Highly efficient cooling of mechanical resonator with square pulse drives. Optics Express, 2018, 26, 33830.	1.7	11
1361	Macroscopic entanglement in optomechanical system induced by non-Markovian environment. Optics Express, 2019, 27, 29082.	1.7	14
1362	Improving macroscopic entanglement with nonlocal mechanical squeezing. Optics Express, 2020, 28, 1492.	1.7	9
1363	Nonreciprocal interference and coherent photon routing in a three-port optomechanical system. Optics Express, 2020, 28, 3647.	1.7	10

#	Article	IF	CITATIONS
1364	Enhanced four-wave mixing in $\langle i \rangle P \langle i \rangle \langle i \rangle T \langle i \rangle$ -symmetric optomechanical systems. Optics Express, 2020, 28, 9049.	1.7	7
1365	Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise. Optics Express, 2020, 28, 12460.	1.7	5
1366	Spectrometric detection of weak forces in cavity optomechanics. Optics Express, 2020, 28, 28620.	1.7	7
1367	Observation of Brillouin optomechanical strong coupling with an 11  GHz mechanical mode. Optica, 2019, 6, 7.	4.8	38
1368	Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photonics Research, 2019, 7, 630.	3.4	149
1369	Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. Photonics Research, 2019, 7, 1229.	3.4	31
1370	Quantum sensing with nanoparticles for gravimetry: when bigger is better. Advanced Optical Technologies, 2020, 9, 227-239.	0.9	30
1371	Optomechanical state reconstruction and nonclassicality verification beyond the resolved-sideband regime. Quantum - the Open Journal for Quantum Science, 0, 3, 125.	0.0	2
1372	Microscale Crystalline Rare-Earth Doped Resonators for Strain-Coupled Optomechanics. Journal of Modern Physics, 2019, 10, 1342-1352.	0.3	2
1373	Research progress in non-classical microwave states preparation based on cavity optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 054203.	0.2	3
1374	Improving few-photon optomechanical effects with coherent feedback. Optics Express, 2021, 29, 35299.	1.7	7
1375	Cooling photon-pressure circuits into the quantum regime. Science Advances, 2021, 7, eabg6653.	4.7	8
1376	Critical ambient pressure and critical cooling rate in optomechanics of electromagnetically levitated nanoparticles. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3652.	0.9	1
1377	Topological physics of non-Hermitian optics and photonics: a review. Journal of Optics (United) Tj ETQq1 1 0.784	314 rgBT 1.0	Oygrlock 1(
1378	Optimized pulsed sideband cooling and enhanced thermometry of trapped ions. Physical Review A, 2021, 104, .	1.0	6
1379	Highly sensitive temperature sensor with optomechanofluidic resonators. , 2021, , .		1
1380	Multi-order phononic frequency comb generation within a MoS2 electromechanical resonator. Applied Physics Letters, 2021, 119, .	1.5	6
1381	Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems. Physical Review A, 2021, 104, .	1.0	26

#	Article	IF	CITATIONS
1382	Optomecânica de microcavidades: do quente ao frio. Physicae, 2011, 10, 1-5.	0.0	0
1384	Quantum Optomechanics: a mechanical platform for quantum foundations and quantum information. , 2012, , .		0
1386	Introduction and Basic Theory. Springer Theses, 2012, , 3-34.	0.0	0
1387	A Cryogenic Cavity Optomechanics System for Membrane Microresonators. , 2012, , .		O
1388	Quantum Optomechanics with Microwave Photons. , 2012, , .		0
1389	Opto-Mechanics in the Strong Coupling Regime. Springer Theses, 2012, , 123-132.	0.0	0
1390	Optomechanical effects of two-level systems. , 2013, , .		0
1391	Circuit Quantum Electrodynamics in Superconducting Circuits. The Review of Laser Engineering, 2013, 41, 502.	0.0	0
1392	Optomechanical effects of two-level systems. , 2013, , .		0
1393	High-efficiency, monolithic coupling to optomechanical cavities for quantum-limited position detection. , $2013, \ldots$		0
1395	Classicalization and the Macroscopicity of Quantum Superposition States. Springer Theses, 2014, , 161-238.	0.0	0
1396	CHAPTER 16. Superconductivity in Nanostructured Boron-doped Diamond and its Application to Device Fabrication. RSC Nanoscience and Nanotechnology, 2014, , 385-410.	0.2	0
1397	Integrated silicon optomechanical transducers and their application in atomic force microscopy. , 2014, , .		0
1398	Classical Dynamics of a Mobile Mirror and the Electromagnetic Field. , 2014, , .		0
1399	Towards Macroscopic Superpositions via Single-photon Optomechanics. , 2014, , 65-85.		0
1400	Micromechanics and superconducting circuits. , 2014, , 351-368.		0
1401	Quantum optomechanics., 2014,, 321-350.		0
1402	Recent Trends in Nano-Optomechanical Systems. , 2014, , 207-249.		0

#	Article	IF	CITATIONS
1403	Tripartite mechanical entanglement in quantum optomechanical systems., 2015,,.		0
1404	Optical Transistor and Coherent Optical Storage Based on Graphene Optomechanics System. Applied Physics, 2015, 05, 115-122.	0.0	0
1405	Coherent Perfect Absorption and Transmission Based on a Multi-Mode Optomechanical System. Applied Physics, 2015, 05, 172-180.	0.0	0
1406	Arrays of optomechanical systems. , 2015, , 296-317.		0
1407	Single-photon optomechanics., 2015,, 212-249.		0
1409	- Cantilever Resonance Detection Using Nanophotonic Structures. , 2015, , 338-365.		0
1410	Optomechanical interaction with triple membranes. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 124202.	0.2	0
1411	Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 194205.	0.2	8
1413	Hybrid optomechanical systems as transducers for quantum information. , 2017, , .		0
1415	Coherent perfect absorption and transmission of a generalized three-mode cavity optico-mechanical system. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 107101.	0.2	0
1416	A novel nano-sensor based on optomechanical crystal cavity. , 2017, , .		0
1417	Infrared nano-sensor based on doubly splited optomechanical cavity., 2017,,.		0
1418	Interference-based multimode opto-electro-mechanical transducers., 2018,,.		0
1419	Control of quantum correlation between atoms placed in coupled cavities. , 2018, , .		0
1420	Physics and Applications of NanoSQUIDs. Springer Series in Materials Science, 2019, , 555-585.	0.4	2
1421	Silicon nanobridge as a high quality mechanical resonator. , 2019, , .		0
1422	Commercializing optomechanical sensors: from the classical to quantum regime. , 2019, , .		1
1424	A macroscopic object passively cooled into its quantum ground state of motion beyond single-mode cooling. Nature Communications, 2021, 12, 6182.	5.8	20

#	Article	IF	CITATIONS
1425	Simulating the Bose-Hubbard model with a one-dimensional cavity optomechanical system. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0
1426	Optomechanical Platform for Probing Two-Dimensional Quantum Fluids. Springer Theses, 2020, , 25-53.	0.0	0
1428	Sideband-resolved resonator electromechanics based on a nonlinear Josephson inductance probed on the single-photon level. Communications Physics, 2020, 3, .	2.0	17
1429	Ground-state cooling of mechanical resonator in double optical cavity. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 064202.	0.2	3
1430	Nonlinear optical effect and nonlinear optical mass sensor based on graphene optomechanical system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 134203.	0.2	2
1431	Optomechanically induced transparency, amplification, and fast–slow light transitions in an optomechanical system with multiple mechanical driving phases. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 888.	0.9	7
1432	Phonon-number resolution of voltage-biased mechanical oscillators with weakly anharmonic superconducting circuits. Physical Review A, 2021, 104, .	1.0	4
1433	Generation of the mechanical SchrĶdinger cat state in a hybrid atom-optomechanical system. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2146.	0.9	4
1434	Quantum optical response of a hybrid optomechanical device embedded with a qubit. Journal of Optics (United Kingdom), 2020, 22, 115401.	1.0	7
1435	Monolithically integrated membrane-in-the-middle cavity optomechanical systems. Optics Express, 2020, 28, 28113.	1.7	5
1436	Ultrasensitive and high resolution mass sensor by photonic-molecule optomechanics with phonon pump. Laser Physics, 2020, 30, 115203.	0.6	1
1437	Gain-nonlinearity-induced tunable phonon sideband spectrum and frequency comb. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2839.	0.9	1
1438	Output spectra of a hybrid electro-optomechanical system: Effect of a DC voltage. Physica Scripta, 2020, 95, 105106.	1.2	0
1439	Electromagnetically Induced Transparency in a Coupled NV Spin-Mechanical Resonator System*., 2021,,		0
1440	Practical Guide for Building Superconducting Quantum Devices. PRX Quantum, 2021, 2, .	3.5	29
1441	Optomechanical gyroscope simultaneously estimating the position of the rotation axis. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 98.	0.9	5
1442	Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction. Physical Review A, 2021, 104, .	1.0	2
1443	Quantum state transfer between distant optomechanical interfaces via shortcut to adiabaticity. Physical Review A, 2021, 104, .	1.0	4

#	Article	IF	CITATIONS
1444	Entanglement and coherence in a hybrid Laguerre–Gaussian rotating cavity optomechanical system with two-level atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 215502.	0.6	26
1445	Constraining modified gravity with quantum optomechanics. New Journal of Physics, 2022, 24, 033009.	1.2	5
1446	Phonon pump enhanced fast and slow light in a spinning optomechanical system. Results in Physics, 2021, 31, 105002.	2.0	7
1447	Controllable four-wave mixing in an atom–optical cavity coupling system with a second-order nonlinear crystal. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 46.	0.9	0
1449	Quantum physics in space. Physics Reports, 2022, 951, 1-70.	10.3	38
1450	Approaching the motional ground state of a 10 kg object. , 2021, , .		1
1451	Cavity-enhanced photon-phonon coupling using a quantum emitter and surface acoustic waves. , 2021, , .		0
1452	A Chip-Based Superconducting Magnetic Trap for Levitating Superconducting Microparticles. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.1	7
1453	Quality factor control of mechanical resonators using variable phononic bandgap on periodic microstructures. Scientific Reports, 2022, 12, 392.	1.6	9
1454	Effects of Remote Boundary Conditions on Clamping Loss in Micromechanical Resonators. Journal of Microelectromechanical Systems, 2022, 31, 204-216.	1.7	2
1455	Mechanical frequency control in inductively coupled electromechanical systems. Scientific Reports, 2022, 12, 1608.	1.6	6
1456	Generation of an Enhanced Multiâ€Mode Optomechanicalâ€Like Quantum System and Its Application in Creating Hybrid Entangled States. Annalen Der Physik, 2022, 534, .	0.9	5
1457	Strong coupling and active cooling in a finite-temperature hybrid atom-cavity system. Physical Review A, 2022, 105, .	1.0	0
1458	Fast excitation fluctuation transfer between two membranes based on transitionless quantum driving. Laser Physics Letters, 2022, 19, 035202.	0.6	2
1459	Optomechanical strong coupling between a single photon and a single atom. New Journal of Physics, 2022, 24, 023006.	1.2	1
1460	Design of strongly nonlinear graphene nanoelectromechanical systems in quantum regime. Applied Physics Letters, 2022, 120, .	1.5	8
1461	Antibunching via cooling by heating. Physical Review A, 2022, 105, .	1.0	5
1462	Unconditional measurement-based quantum computation with optomechanical continuous variables. Physical Review A, 2022, 105, .	1.0	4

#	Article	IF	CITATIONS
1463	Entanglement dynamics of a nano-mechanical resonator coupled to a central qubit. Quantum Information Processing, 2022, 21, 1.	1.0	6
1464	Two-Phonon Blockade in Quadratically Coupled Optomechanical Systems. Photonics, 2022, 9, 70.	0.9	6
1465	Amplitude and phase locking of mechanical oscillation driven by radiation pressure. Physical Review A, 2022, 105, .	1.0	5
1466	Four-wave-cooling to the single phonon level in Kerr optomechanics. Communications Physics, 2022, 5, .	2.0	8
1467	A perspective on quantum entanglement in optomechanical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127966.	0.9	11
1468	Optical response properties of a hybrid electro-optomechanical system interacting with a qubit. Journal of Modern Optics, 2022, 69, 323-335.	0.6	4
1469	Arnoldi-Lindblad time evolution: Faster-than-the-clock algorithm for the spectrum of time-independent and Floquet open quantum systems. Quantum - the Open Journal for Quantum Science, 0, 6, 649.	0.0	3
1470	Enhanced Phonon Blockade in a Weakly Coupled Hybrid System via Mechanical Parametric Amplification. Physical Review Applied, 2022, 17, .	1.5	21
1471	Effective sideband cooling in an ytterbium optical lattice clock. Chinese Physics B, O, , .	0.7	0
1472	Accelerated ground-state cooling of an optomechanical resonator via shortcuts to adiabaticity. Physical Review A, 2022, 105, .	1.0	4
1473	Higher-order exceptional point in a pseudo-Hermitian cavity optomechanical system. Physical Review A, 2021, 104, .	1.0	26
1474	Squeezed vacuum interaction with an optomechanical cavity containing a quantum well. Scientific Reports, 2022, 12, 3658.	1.6	3
1475	On-Chip Coherent Transduction between Magnons and Acoustic Phonons in Cavity Magnomechanics. Physical Review Applied, 2022, 17, .	1.5	24
1476	Multiphonon quantum dynamics in cavity optomechanical systems. Physical Review A, 2022, 105, .	1.0	3
1477	Phase dependence of the dynamical behaviours and photon entanglement induced by two-fold modulations in optomechanical interfaces. Pramana - Journal of Physics, 2022, 96, 1.	0.6	1
1478	Simultaneous measurement for amplitude and frequency of time-harmonic force based on optomechanically induced nonlinearity. Journal of Applied Physics, 2022, 131, 104401.	1.1	0
1479	Ground state cooling of an ultracoherent electromechanical system. Nature Communications, 2022, 13, 1507.	5.8	21
1480	Nonlinear interaction effects in a three-mode cavity optomechanical system. Physical Review A, 2022, 105, .	1.0	2

#	Article	IF	CITATIONS
1481	Enhancing Gravitational Interaction between Quantum Systems by a Massive Mediator. Physical Review Letters, 2022, 128, 110401.	2.9	30
1482	基于回音å£å¾ºè…"çš"éžäº'æ~"å…‰å器件. Chinese Science Bulletin, 2022, , .	0.4	0
1483	Dissipative optomechanical preparation of non-Gaussian mechanical entanglement. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 438, 128101.	0.9	7
1484	Quantum Toffoli gate in hybrid optomechanical system. Results in Physics, 2022, 35, 105338.	2.0	3
1485	Enhancing photon entanglement in a three-mode optomechanical system via imperfect phonon measurements. Communications in Theoretical Physics, 2022, 74, 055105.	1.1	1
1486	Quantum phase modulation with acoustic cavities and quantum dots. Optica, 2022, 9, 501.	4.8	15
1487	Robust and fast excitation fluctuations transfer between two membranes in an optomechanical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 434, 128055.	0.9	0
1488	Robust Second-Order Sideband Generation in a Photonic-Molecule Optomechanics with Phonon Pump. Journal of Experimental and Theoretical Physics, 2021, 133, 542-551.	0.2	0
1489	Nonclassical photon statistics in two-tone continuously driven optomechanics. Physical Review A, 2021, 104, .	1.0	3
1490	Highâ€Efficiency Generation of Flat Highâ€Order Sidebands in a Gently Modulating Optomechanical System. Annalen Der Physik, 2022, 534, 2100359.	0.9	0
1491	Magnomechanics in suspended magnetic beams. Physical Review B, 2021, 104, .	1.1	7
1492	Force Dependent Quantum Phase Transition in the Hybrid Optomechanical System. Photonics, 2021, 8, 588.	0.9	1
1493	Dynamics of a hybrid optomechanical system in the framework of the generalized linear response theory. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 035301.	0.7	2
1494	Optomechanics for quantum technologies. Nature Physics, 2022, 18, 15-24.	6.5	100
1495	Optical Control of Bulk Phonon Modes in Crystalline Solids. Advanced Quantum Technologies, 2022, 5, .	1.8	5
1496	Realization of a coupled-mode heat engine with cavity-mediated nanoresonators. Science Advances, 2021, 7, eabl7740.	4.7	18
1497	Self-sustaining MoS2 nanomechanical oscillators and feedback cooling. Applied Physics Letters, 2021, 119, .	1.5	7
1498	Dissipative Quantum Feedback in Measurements Using a Parametrically Coupled Microcavity. PRX Quantum, 2022, 3, .	3.5	6

#	Article	IF	CITATIONS
1499	Ground-State Cooling of the Mechanical Resonator in an Optomechanical Cavity with Two-Level Atomic Ensemble. International Journal of Theoretical Physics, 2022, 61, 1.	0.5	1
1500	Improving the Stochastic Feedback Cooling of a Mechanical Oscillator Using a Degenerate Parametric Amplifier. Photonics, 2022, 9, 264.	0.9	1
1501	Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators. Micromachines, 2022, 13, 591.	1.4	3
1502	Mesoscopic quantum thermo-mechanics: A new frontier of experimental physics. AVS Quantum Science, 2022, 4, 020501.	1.8	3
1505	Exponentially Enhanced Singleâ€Photon Crossâ€Kerr Nonlinearity in Quantum Optomechanics. Annalen Der Physik, 2022, 534, 2100599.	0.9	1
1506	Nonlinearity-mediated digitization and amplification in electromechanical phonon-cavity systems. Nature Communications, 2022, 13, 2352.	5.8	12
1507	Quantum theory of feedback cooling of an anelastic macromechanical oscillator. Physical Review A, 2022, 105, .	1.0	2
1508	Multi-outlet single photon quantum router between optics and microwave based on a hybrid optomechanical system. Laser Physics, 2022, 32, 065202.	0.6	0
1509	Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. Advanced Photonics Research, 2022, 3, .	1.7	3
1510	Enhancement of the optomechanical coupling and Kerr nonlinearity using the Josephson capacitance of a Cooper-pair box. Physical Review B, 2022, 105, .	1.1	7
1511	Resonant Excitation-Induced Nonlinear Mode Coupling in a Microcantilever Resonator. Physical Review Applied, 2022, 17, .	1.5	0
1512	Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>nl2.8 nl:mn>9<!--</td--><td>/mml:mn> <!--</td--></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl 2.8 nl:mn>9 </td <td>/mml:mn> <!--</td--></td>	/mml:mn> </td
1513	Measuring High-Order Phonon Correlations in an Optomechanical Resonator. Physical Review Letters, 2022, 128, 183601.	2.9	4
1514	Electrically controlled optical nonlinear effects in the hybrid opto-electromechanical system with the cross-Kerr effect. Journal of Applied Physics, 2022, 131, .	1.1	6
1515	Ground-state cooling of multiple near-degenerate mechanical modes. Physical Review A, 2022, 105, .	1.0	12
1516	Optomechanically Induced Transparency in Double-Laguerre-Gaussian-Cavity with Atomic Ensemble. International Journal of Theoretical Physics, 2022, 61, .	0.5	1
1517	Rapid ground-state cooling of a solid-state nanoparticle assisted by a magnetic-field gradient. Physical Review A, 2022, 105, .	1.0	1
1518	The convergence of cavity optomechanics and Brillouin scattering. Semiconductors and Semimetals, 2022, , 93-131.	0.4	O

#	Article	IF	Citations
1519	On-Chip Microwave Frequency Combs in a Superconducting Nanoelectromechanical Device. Nano Letters, 2022, 22, 5459-5465.	4.5	4
1520	Cooling Effect and Cooling Speed for a Membrane-in-Middle Optomechanical System. Photonics, 2022, 9, 400.	0.9	1
1521	Transparency and Enhancement in Fast and Slow Light in <i>q</i> â€Deformed Optomechanical System. Annalen Der Physik, 2022, 534, .	0.9	4
1522	Robust macroscopic matter-wave interferometry with solids. Physical Review A, 2022, 105, .	1.0	1
1523	Exciton–polariton mediated nonlinear optics in a hybrid optomechanical system. Chinese Journal of Physics, 2022, 78, 72-82.	2.0	1
1524	Entanglement and mechanical squeezing in dissipative atom-photomechanical hybrid systems. International Journal of Quantum Information, 0, , .	0.6	0
1525	Ultrasensitive detection of local acoustic vibrations at room temperature by plasmon-enhanced single-molecule fluorescence. Nature Communications, 2022, 13, .	5.8	4
1526	Effects of quadratic coupling on optical response of a hybrid optomechanical cavity assisted by Kerr non-linear medium. Materials Today: Proceedings, 2022, , .	0.9	1
1527	Optomechanically enhanced precision measurement. Physical Review A, 2022, 106, .	1.0	4
1528	Engineering entanglement between resonators by hot environment. Quantum Science and Technology, $0, , .$	2.6	4
1529	Cavity magnonics. Physics Reports, 2022, 979, 1-61.	10.3	140
1530	Manipulation of flying and single excitons by GHz surface acoustic waves. AVS Quantum Science, 2022, 4, 035901.	1.8	2
1531	Optimal Purification of a Spin Ensemble by Quantum-Algorithmic Feedback. Physical Review X, 2022, 12, .	2.8	4
1532	Angular trapping of a linear-cavity mirror with an optical torsional spring. Physical Review A, 2022, 106, .	1.0	2
1533	Tunable slow and fast light in an atom-assisted hybrid system via external mechanical driving force. European Physical Journal Plus, 2022, 137, .	1.2	2
1534	Magnon squeezing enhanced ground-state cooling in cavity magnomechanics. Fundamental Research, 2023, 3, 3-7.	1.6	20
1535	Multimode optomechanical cooling via general dark-mode control. Physical Review A, 2022, 106, .	1.0	16
1536	Quantum backaction evading measurements of a silicon nitride membrane resonator. New Journal of Physics, 2022, 24, 083043.	1.2	3

#	Article	IF	CITATIONS
1537	Dynamics of Rényi-2 correlations in optomechanics. Physica Scripta, 2022, 97, 095102.	1.2	5
1538	Tripartite optomechanical entanglement via optical-dark-mode control. Physical Review Research, 2022, 4, .	1.3	9
1539	Dispersive readout of a high-Q encapsulated micromechanical resonator. Applied Physics Letters, 2022, 121, .	1.5	1
1540	Cancellation of photothermally induced instability in an optical resonator. Optica, 2022, 9, 924.	4.8	3
1541	Parametrically enhanced interactions and nonreciprocal bath dynamics in a photon-pressure Kerr amplifier. Science Advances, 2022, 8, .	4.7	4
1542	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
1543	Engineering nanoscale hypersonic phonon transport. Nature Nanotechnology, 2022, 17, 947-951.	15.6	23
1544	Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop: Giant enhancement in mechanical susceptibilities and net cooling rates. Physical Review Research, 2022, 4, .	1.3	8
1545	Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism. Physical Review Letters, 2022, 129, .	2.9	36
1546	Nonequilibrium thermodynamics in cavity optomechanics. Fundamental Research, 2023, 3, 75-86.	1.6	2
1547	Interplay between optomechanics and the dynamical Casimir effect. Physical Review A, 2022, 106, .	1.0	3
1548	Casimir-force-assisted ground-state cooling and macroscopic quantum coherence. Results in Physics, 2022, 41, 105939.	2.0	O
1549	Dynamic strain-mediated coherence based microwave photon detection within the transparent windows. Optik, 2022, 269, 169874.	1.4	0
1550	The fast and slow light in a hybrid spinning optomechanical system mediated by a two-level system. Results in Physics, 2022, 42, 105987.	2.0	3
1551	Excitation and detection of acoustic phonons in nanoscale systems. Nanoscale, 2022, 14, 13428-13451.	2.8	15
1552	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
1553	The Fast and Slow Light in a Hybrid Spinning Optomechanical System Mediated by a Two-Level System. SSRN Electronic Journal, 0, , .	0.4	0
1554	Approaching the motional ground state of a 10 kg object. , 2022, , .		O

#	Article	IF	CITATIONS
1555	Transmission and generation of arbitrary W states via an optomechanical interface. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 2752.	0.9	0
1556	Millionfold improvement in multivibration-feedback optomechanical refrigeration via auxiliary mechanical coupling. Physical Review A, 2022, 106, .	1.0	3
1557	Large Single-Phonon Optomechanical Coupling Between Quantum Dots and Tightly Confined Surface Acoustic Waves in the Quantum Regime. Physical Review Applied, 2022, 18, .	1.5	13
1558	Floquet Control of Optomechanical Bistability in Multimode Systems. Physical Review Letters, 2022, 129, .	2.9	6
1559	Nonreciprocal ground-state cooling of mechanical resonator in a spinning optomechanical system. Frontiers of Physics, 2022, 17, .	2.4	8
1560	Higher-order exceptional point in a blue-detuned non-Hermitian cavity optomechanical system. Physical Review A, 2022, 106, .	1.0	7
1561	High-precision multiparameter estimation of mechanical force by quantum optomechanics. Scientific Reports, 2022, 12, .	1.6	0
1562	Dynamical heat engines with non-Markovian reservoirs. Physical Review Research, 2022, 4, .	1.3	8
1563	2D-materials-integrated optoelectromechanics: recent progress and future perspectives. Reports on Progress in Physics, 2023, 86, 026402.	8.1	4
1564	Coupling Capacitively Distinct Mechanical Resonators for Room-Temperature Phonon-Cavity Electromechanics. Nano Letters, 2022, 22, 7351-7357.	4.5	4
1565	Prospects of cooling a mechanical resonator with a transmon qubit in c-QED setup. Physical Review Research, 2022, 4, .	1.3	0
1566	Nanomechanical Resonators: Toward Atomic Scale. ACS Nano, 2022, 16, 15545-15585.	7.3	55
1567	Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system. Optics Express, 2022, 30, 38776.	1.7	3
1568	Phase-Controlled Entanglement in a Four-Mode Optomechanical System. Photonics, 2022, 9, 818.	0.9	0
1569	Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems. Progress in Quantum Electronics, 2022, , 100396.	3.5	1
1570	Classifiable Limiting Mass Change Detection in a Graphene Resonator Using Applied Machine Learning. ACS Applied Electronic Materials, 2022, 4, 5184-5190.	2.0	1
1571	Non-linear effects of quadratic coupling and Kerr medium in a hybrid optomechanical cavity system. Optical and Quantum Electronics, 2022, 54, .	1.5	4
1572	Thermally-induced qubit coherence in quantum electromechanics. New Journal of Physics, 2022, 24, 113006.	1.2	2

#	Article	IF	CITATIONS
1573	Coherent feedback in optomechanical systems in the sideband-unresolved regime. Quantum - the Open Journal for Quantum Science, 0, 6, 848.	0.0	3
1574	Photothermal effect in macroscopic optomechanical systems with an intracavity nonlinear optical crystal. Optics Express, 2022, 30, 42579.	1.7	0
1575	The second-order sideband enhancement in spinning resonators with an external phonon pump. European Physical Journal Plus, 2022, 137, .	1.2	0
1576	MEMS thermal-piezoresistive resonators, thermal-piezoresistive oscillators, and sensors. Microsystem Technologies, 2023, 29, 1-17.	1.2	8
1577	Thermal-noise-resistant optomechanical entanglement via general dark-mode control. Physical Review A, 2022, 106, .	1.0	8
1578	Dislocation-position fluctuations in solid 4He as collective variables in a quantum crystal. Npj Quantum Materials, 2022, 7, .	1.8	0
1579	Simultaneous Brillouin and piezoelectric coupling to high-frequency bulk acoustic resonator. Optica, 0, , .	4.8	3
1580	Topological lattices realized in superconducting circuit optomechanics. Nature, 2022, 612, 666-672.	13.7	13
1581	Mesoscopic physics of nanomechanical systems. Reviews of Modern Physics, 2022, 94, .	16.4	39
1582	Mechanical parametric feedback-cooling for pendulum-based gravity experiments. Engineering Research Express, 0, , .	0.8	1
1583	Phonon-phonon interaction and Parametric down-conversion generation in multimode optomechanical systems. Communications in Theoretical Physics, 0, , .	1,1	0
1584	Improving mechanical cooling by using magnetic thermal noise in a cavity-magnomechanical system. Optics Letters, 2023, 48, 375.	1.7	4
1585	Kerr Enhanced Backaction Cooling in Magnetomechanics. Physical Review Letters, 2023, 130, .	2.9	13
1586	Application perspective of cavity optomechanical system. , 0, 1 , .		1
1587	Quantum state purity versus average phonon number for characterization of mechanical oscillators in cavity optomechanics. Physical Review A, 2023, 107, .	1.0	0
1588	Experimental demonstration of classical analogous time-dependent superposition of states. Scientific Reports, 2022, 12, .	1.6	0
1589	Synchronization of a superconducting qubit to an optical field mediated by a mechanical resonator. Physical Review A, 2023, 107, .	1.0	0
1590	Collapse of Superradiant Phase and Unstable Macroscopic Vacuum State in An-Optomechanical-Dual-Cavity with a Bose-Einstein Condensate. International Journal of Theoretical Physics, 2023, 62, .	0.5	0

#	Article	IF	CITATIONS
1591	New Explicit and Approximate Solutions of the Newton-Schr $\tilde{A}\P$ dinger System. Journal of Nonlinear Mathematical Physics, 0, , .	0.8	0
1592	Tunable multi-outlet single photon quantum router in an optomechanical system. Laser Physics, 2023, 33, 065201.	0.6	0
1593	Hybrid quantum thermal machines with dynamical couplings. IScience, 2023, 26, 106235.	1.9	4
1594	Optomechanically-induced nonreciprocal conversion between microwave and optical photons. Optics Express, 2023, 31, 7120.	1.7	0
1595	Coherent resonant coupling between atoms and a mechanical oscillator mediated by cavity-vacuum fluctuations. Physical Review Research, 2023, 5, .	1.3	4
1596	Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Science, 2023, 5, 014403.	1.8	1
1597	Simultaneous cooling coupled nano-mechanical resonators in cavity optomechanics. Laser Physics, 2023, 33, 035202.	0.6	0
1598	Quantum Uncertainty Dynamics. Foundations of Physics, 2023, 53, .	0.6	0
1599	Optimal quantum parametric feedback cooling. Physical Review A, 2023, 107, .	1.0	1
1600	Optomechanical Simulation of a Parametric Oscillator. Journal of Physics: Conference Series, 2023, 2448, 012004.	0.3	1
1601	Nonlinear effects in a Floquet-driven optomechanical system. Physical Review A, 2023, 107, .	1.0	0
1602	Flexible control of an ultrastable levitated orbital micro-gyroscope through orbital-translational coupling. Nanophotonics, 2023, 12, 1245-1253.	2.9	2
1603	A novel architecture for room temperature microwave optomechanical experiments. Journal of Applied Physics, 2023, 133, 094501.	1.1	2
1604	Dynamic Brillouin cooling for continuous optomechanical systems. Materials for Quantum Technology, 2023, 3, 015003.	1.2	1
1605	Quantum manipulation of a two-level mechanical system. Quantum - the Open Journal for Quantum Science, 0, 7, 943.	0.0	2
1606	Nonreciprocal photon blockade in a spinning optomechanical system with nonreciprocal coupling. Optics Express, 2023, 31, 12847.	1.7	9
1607	Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor. Science Advances, 2023, 9, .	4.7	1
1609	Measurement-based ground-state cooling of a trapped-ion oscillator. Physical Review A, 2023, 107, .	1.0	0

#	Article	IF	CITATIONS
1610	Optomechanical-interface-induced strong spin-magnon coupling. Physical Review A, 2023, 107, .	1.0	7
1611	Monogamy inequality and entanglement sharing in optomechanics. International Journal of Modern Physics B, 2024, 38, .	1.0	1
1612	Sympathetic feedback cooling in the optomechanical system consisting of two coupled cantilevers. Frontiers in Physics, $0,11,1$	1.0	0
1613	Optomechanical two-photon hopping. Physical Review Research, 2023, 5, .	1.3	2
1614	Enhancement of magnon–photon–phonon entanglement in a cavity magnomechanics with coherent feedback loop. Scientific Reports, 2023, 13, .	1.6	14
1615	Optomechanically Induced Transparency in Optomechanical System with a Cubic Anharmonic Oscillator. Photonics, 2023, 10, 407.	0.9	3
1616	Dynamical backaction evading magnomechanics. Physical Review B, 2023, 107, .	1.1	9
1646	A macroscopic oscillator goes and stays quantum. Nature Physics, 0, , .	6.5	O
1655	Dynamic Brillouin Cooling for Continuous Optomechanical Systems. , 2023, , .		0
1656	Optoacoustic Active Cooling in Waveguides. , 2023, , .		О