ZINBA integrates local covariates with DNA-seq data to of enrichment, even within amplified genomic regions

Genome Biology 12, R67 DOI: 10.1186/gb-2011-12-7-r67

Citation Report

#	Article	IF	CITATIONS
1	ChIP-Seq: technical considerations for obtaining high-quality data. Nature Immunology, 2011, 12, 918-922.	7.0	199
2	An integrated strategy for identification of both sharp and broad peaks from next-generation sequencing data. Genome Biology, 2011, 12, 120.	13.9	3
3	Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Research, 2012, 22, 259-270.	2.4	96
4	Copy-number-aware differential analysis of quantitative DNA sequencing data. Genome Research, 2012, 22, 2489-2496.	2.4	28
5	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	2.4	1,708
6	Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nature Protocols, 2012, 7, 256-267.	5.5	274
7	Site identification in high-throughput RNA–protein interaction data. Bioinformatics, 2012, 28, 3013-3020.	1.8	272
8	Normalization of ChIP-seq data with control. BMC Bioinformatics, 2012, 13, 199.	1.2	100
9	Genome-Wide Mapping of Nucleosome Occupancy, Histone Modifications, and Gene Expression Using Next-Generation Sequencing Technology. Methods in Enzymology, 2012, 513, 297-313.	0.4	24
10	Systematic evaluation of factors influencing ChIP-seq fidelity. Nature Methods, 2012, 9, 609-614.	9.0	156
12	Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 25-hydroxyvitamin D levels and autoimmune disease. BMC Medicine, 2013, 11, 163.	2.3	59
13	Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1266-1275.	0.9	59
14	ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq. Bioinformatics, 2013, 29, 2485-2486.	1.8	41
15	Short read sequencing in studies of natural variation and adaptation. Current Opinion in Plant Biology, 2013, 16, 85-91.	3.5	20
16	Uniform, optimal signal processing of mapped deep-sequencing data. Nature Biotechnology, 2013, 31, 615-622.	9.4	145
17	A Detailed Protocol for Formaldehydeâ€Assisted Isolation of Regulatory Elements (FAIRE). Current Protocols in Molecular Biology, 2013, 102, Unit21.26.	2.9	35
18	EWS and RE1-Silencing Transcription Factor Inhibit Neuronal Phenotype Development and Oncogenic Transformation in Ewing Sarcoma. Genes and Cancer, 2013, 4, 213-223.	0.6	21
19	Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data. PLoS Computational Biology, 2013, 9, e1003326.	1.5	221

		CITATION RE	PORT	
#	Article		IF	CITATIONS
20	Regulation of the Boundaries of Accessible Chromatin. PLoS Genetics, 2013, 9, e1003778	3.	1.5	16
21	Improving detection of copy-number variation by simultaneous bias correction and read-c segmentation. Nucleic Acids Research, 2013, 41, 1519-1532.	epth	6.5	33
22	kmer-SVM: a web server for identifying predictive regulatory sequence features in genomi Nucleic Acids Research, 2013, 41, W544-W556.	c data sets.	6.5	118
23	Chromatin acetylation at transcription start sites and vitamin D receptor binding regions effects of 11±,25-dihydroxyvitamin D3 and histone deacetylase inhibitors on gene express Acids Research, 2013, 41, 110-124.	relates to ion. Nucleic	6.5	123
24	Predicting Cell Types and Genetic Variations Contributing to Disease by Combining GWA Epigenetic Data. PLoS ONE, 2013, 8, e54359.	S and	1.1	35
25	PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from ChIP-Seq data. Bioinformatics, 2014, 30, 2568-2575.	replicated	1.8	114
26	IRF5:RelA Interaction Targets Inflammatory Genes in Macrophages. Cell Reports, 2014, 8,	1308-1317.	2.9	94
27	Chromatin accessibility: a window into the genome. Epigenetics and Chromatin, 2014, 7,	33.	1.8	326
28	Quantifying the impact of inter-site heterogeneity on the distribution of ChIP-seq data. Fr Genetics, 2014, 5, 399.	ontiers in	1.1	1
29	A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data. Bio 2014, 9, 4.	logy Direct,	1.9	50
30	A Wavelet Approach to Detect Enriched Regions and Explore Epigenomic Landscapes. Jou Computational Biology, 2014, 21, 846-854.	rnal of	0.8	4
31	The epigenomic tool kit. Drug Discovery Today: Disease Models, 2014, 12, 27-33.		1.2	0
33	Impact of sequencing depth in ChIP-seq experiments. Nucleic Acids Research, 2014, 42, e	74-е74.	6.5	69
34	MUSIC: identification of enriched regions in ChIP-Seq experiments using a mappability-co multiscale signal processing framework. Genome Biology, 2014, 15, 474.	rected	3.8	81
35	CNV-guided multi-read allocation for ChIP-seq. Bioinformatics, 2014, 30, 2860-2867.		1.8	10
36	ncRNA–Protein Interactions in Development and Disease from the Perspective of High- Studies. , 2014, , 87-115.	hroughput		0
37	Variation in chromatin accessibility in human kidney cancer links H3K36 methyltransferas widespread RNA processing defects. Genome Research, 2014, 24, 241-250.	e loss with	2.4	160
38	A statistical framework for power calculations in ChIP-seq experiments. Bioinformatics, 20 753-760.	914, 30,	1.8	14

#	Article	IF	CITATIONS
39	Genetic factors underlying discordance in chromatin accessibility between monozygotic twins. Genome Biology, 2014, 15, R72.	13.9	6
40	Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nature Biotechnology, 2014, 32, 933-940.	9.4	161
41	Some Statistical Strategies for DAE-seq Data Analysis: Variable Selection and Modeling Dependencies Among Observations. Journal of the American Statistical Association, 2014, 109, 78-94.	1.8	6
42	Identifying and mitigating bias in next-generation sequencing methods for chromatin biology. Nature Reviews Genetics, 2014, 15, 709-721.	7.7	295
43	Chromatinized Protein Kinase C-Î, Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells. Molecular and Cellular Biology, 2014, 34, 2961-2980.	1.1	40
44	Protein–DNA binding in high-resolution. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 269-283.	2.3	41
45	IsoDOT Detects Differential RNA-Isoform Expression/Usage With Respect to a Categorical or Continuous Covariate With High Sensitivity and Specificity. Journal of the American Statistical Association, 2015, 110, 975-986.	1.8	10
46	STAT3 acts through pre-existing nucleosome-depleted regions bound by FOS during an epigenetic switch linking inflammation to cancer. Epigenetics and Chromatin, 2015, 8, 7.	1.8	33
47	histoneHMM: Differential analysis of histone modifications with broad genomic footprints. BMC Bioinformatics, 2015, 16, 60.	1.2	28
48	Zygotic Genome Activation Triggers the DNA Replication Checkpoint at the Midblastula Transition. Cell, 2015, 160, 1169-1181.	13.5	163
49	Using combined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics, 2015, 31, 2761-2769.	1.8	60
50	The role of protein kinase-C theta in control of epithelial to mesenchymal transition and cancer stem cell formation. Genomics Data, 2015, 3, 28-32.	1.3	8
51	Leukemia-Associated Cohesin Mutants Dominantly Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell Stem Cell, 2015, 17, 675-688.	5.2	177
52	groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics, 2015, 16, 222.	1.2	57
53	Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology. Bioinformatics, 2016, 32, 195-202.	1.8	32
54	Allele-specific copy-number discovery from whole-genome and whole-exome sequencing. Nucleic Acids Research, 2015, 43, e90-e90.	6.5	16
55	Histone reader BRWD1 targets and restricts recombination to the lgk locus. Nature Immunology, 2015, 16, 1094-1103.	7.0	37
56	Individuality and Variation of Personal Regulomes in Primary Human T Cells. Cell Systems, 2015, 1, 51-61.	2.9	128

		CITATION REPORT		
#	Article		IF	CITATIONS
57	JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics, 2015, 31, 48-55.		1.8	57
58	A Stationary Wavelet Entropy-Based Clustering Approach Accurately Predicts Gene Expre Journal of Computational Biology, 2015, 22, 236-249.	ssion.	0.8	7
59	Iterative Fragmentation Improves the Detection of ChIP-seq Peaks for Inactive Histone M Bioinformatics and Biology Insights, 2016, 10, BBI.S40628.	arks.	1.0	3
60	The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Rec Hotspots In Vivo. PLoS Genetics, 2016, 12, e1006146.	combination	1.5	159
61	ALTRE: workflow for defining ALTered Regulatory Elements using chromatin accessibility Bioinformatics, 2017, 33, 740-742.	data.	1.8	3
62	DamID Analysis of Nuclear Organization in Caenorhabditis elegans. Methods in Molecula 2016, 1411, 341-358.	[.] Biology,	0.4	14
63	An inducible long noncoding RNA amplifies DNA damage signaling. Nature Genetics, 201	6, 48, 1370-1376.	9.4	195
64	Chromatin immunoprecipitation and an open chromatin assay in zebrafish erythrocytes. Cell Biology, 2016, 135, 387-412.	Methods in	0.5	5
65	Modeling and interoperability of heterogeneous genomic big data for integrative process querying. Methods, 2016, 111, 3-11.	ing and	1.9	41
66	Widespread Chromatin Accessibility at Repetitive Elements Links Stem Cells with Human Reports, 2016, 17, 1607-1620.	Cancer. Cell	2.9	32
67	Integrating Epigenomics into the Understanding of Biomedical Insight. Bioinformatics an Insights, 2016, 10, BBI.S38427.	d Biology	1.0	22
68	Identifying peaks in *-seq data using shape information. BMC Bioinformatics, 2016, 17, 2	06.	1.2	17
69	Features that define the best ChIP-seq peak calling algorithms. Briefings in Bioinformatics bbw035.	s, 2017, 18,	3.2	96
70	Zerone: a ChIP-seq discretizer for multiple replicates with built-in quality control. Bioinfor 2016, 32, 2896-2902.	matics,	1.8	11
71	Next generation sequencing technology and genomewide data analysis: Perspectives for research. Progress in Retinal and Eye Research, 2016, 55, 1-31.	retinal	7.3	58
72	Epigenome-wide effects of vitamin D and their impact on the transcriptome of human mo involve CTCF. Nucleic Acids Research, 2016, 44, 4090-4104.	onocytes	6.5	94
73	Recent advances in ChIP-seq analysis: from quality management to whole-genome annot Briefings in Bioinformatics, 2017, 18, bbw023.	ation.	3.2	107
74	Template-Based Models for Genome-Wide Analysis of Next-Generation Sequencing Data Resolution. Journal of the American Statistical Association, 2016, 111, 967-987.	at Base-Pair	1.8	1

#	Article	IF	CITATIONS
75	MuSERA: Multiple Sample Enriched Region Assessment. Briefings in Bioinformatics, 2016, 18, bbw029.	3.2	19
76	Assay for Transposaseâ€Accessible Chromatin Using Sequencing (ATACâ€seq) Data Analysis. Current Protocols in Human Genetics, 2017, 92, 20.4.1-20.4.13.	3.5	9
77	ldentification of Brassinosteroid Target Genes by Chromatin Immunoprecipitation Followed by High-Throughput Sequencing (ChIP-seq) and RNA-Sequencing. Methods in Molecular Biology, 2017, 1564, 63-79.	0.4	10
78	Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell, 2017, 169, 636-650.e14.	13.5	255
79	Mocap: large-scale inference of transcription factor binding sites from chromatin accessibility. Nucleic Acids Research, 2017, 45, 4315-4329.	6.5	30
80	Bioinformatics Tools for Genome-Wide Epigenetic Research. Advances in Experimental Medicine and Biology, 2017, 978, 489-512.	0.8	43
81	Epitranscriptomics: Toward A Better Understanding of RNA Modifications. Genomics, Proteomics and Bioinformatics, 2017, 15, 147-153.	3.0	31
82	GenoGAM: genome-wide generalized additive models for ChIP-Seq analysis. Bioinformatics, 2017, 33, 2258-2265.	1.8	9
83	Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data. Genome Research, 2017, 27, 1930-1938.	2.4	29
85	CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 911-921.	0.9	111
86	Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data. Scientific Reports, 2017, 7, 4660.	1.6	6
87	Genome-wide identification and differential analysis of translational initiation. Nature Communications, 2017, 8, 1749.	5.8	100
88	NicE-seq: high resolution open chromatin profiling. Genome Biology, 2017, 18, 122.	3.8	45
89	Indexing Next-Generation Sequencing data. Information Sciences, 2017, 384, 90-109.	4.0	7
90	Ritornello: high fidelity control-free chromatin immunoprecipitation peak calling. Nucleic Acids Research, 2017, 45, e173-e173.	6.5	8
91	Computational Epigenetics. , 2017, , 167-190.		0
92	HMCan-diff: a method to detect changes in histone modifications in cells with different genetic characteristics. Nucleic Acids Research, 2017, 45, gkw1319.	6.5	8
93	Computational Methods for Assessing Chromatin Hierarchy. Computational and Structural Biotechnology Journal, 2018, 16, 43-53.	1.9	22

#	Article	IF	CITATIONS
94	Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes. Nucleic Acids Research, 2018, 46, e2-e2.	6.5	11
95	Temporal Layering of Signaling Effectors Drives Chromatin Remodeling during Hair Follicle Stem Cell Lineage Progression. Cell Stem Cell, 2018, 22, 398-413.e7.	5.2	85
96	In vivo response of the human epigenome to vitamin D: A Proof-of-principle study. Journal of Steroid Biochemistry and Molecular Biology, 2018, 180, 142-148.	1.2	59
97	A randomized approach to speed up the analysis of large-scale read-count data in the application of CNV detection. BMC Bioinformatics, 2018, 19, 74.	1.2	1
98	OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biology, 2018, 19, 54.	3.8	47
99	Assay for Transposase Accessible Chromatin (ATAC-Seq) to Chart the Open Chromatin Landscape of Human Pancreatic Islets. Methods in Molecular Biology, 2018, 1766, 197-208.	0.4	10
100	Atrx inactivation drives disease-defining phenotypes in glioma cells of origin through global epigenomic remodeling. Nature Communications, 2018, 9, 1057.	5.8	66
101	Analysis of ChIP-seq Data in R/Bioconductor. Methods in Molecular Biology, 2018, 1689, 195-226.	0.4	8
102	Enhancer Architecture and Essential Core Regulatory Circuitry of Chronic Lymphocytic Leukemia. Cancer Cell, 2018, 34, 982-995.e7.	7.7	101
103	Clustering-local-unique-enriched-signals (CLUES) promotes identification of novel regulators of ES cell self-renewal and pluripotency. PLoS ONE, 2018, 13, e0206844.	1.1	1
104	Noise cancellation using total variation for copy number variation detection. BMC Bioinformatics, 2018, 19, 361.	1.2	6
105	Computational Epigenomics and Its Application in Regulatory Genomics. , 2018, , 115-139.		0
106	A Chromatin Basis for Cell Lineage and Disease Risk in the Human Pancreas. Cell Systems, 2018, 7, 310-322.e4.	2.9	38
107	OBSOLETE: Bioinformatics Principles for Deciphering Cardiovascular Diseases. , 2018, , .		1
108	Bioinformatics Principles for Deciphering Cardiovascular Diseases. , 2018, , 273-292.		3
109	Bioinformatics of Epigenomic Data Generated From Next-Generation Sequencing. , 2018, , 65-106.		4
110	ChromTime: modeling spatio-temporal dynamics of chromatin marks. Genome Biology, 2018, 19, 109.	3.8	10
111	Computational Pipelines and Workflows in Bioinformatics. , 2019, , 113-134.		0

#	Article	IF	CITATIONS
112	A practical guide for DNase-seq data analysis: from data management to common applications. Briefings in Bioinformatics, 2019, 20, 1865-1877.	3.2	7
113	Improved Detection of Epigenomic Marks with Mixed-Effects Hidden Markov Models. Biometrics, 2019, 75, 1401-1413.	0.8	0
114	RECAP reveals the true statistical significance of ChIP-seq peak calls. Bioinformatics, 2019, 35, 3592-3598.	1.8	7
115	Computational Analysis of Epigenetic Modifications in Melanoma. , 2019, , 327-342.		1
116	Computational Analysis Concerning the Impact of DNA Accessibility on CRISPR-Cas9 Cleavage Efficiency. Molecular Therapy, 2020, 28, 19-28.	3.7	26
117	Monitoring genome-wide chromatin accessibility by formaldehyde-assisted isolation of regulatory elements sequencing (FAIRE-seq). , 2020, , 353-369.		1
118	Recent advances in computational-based approaches in epigenetics studies. , 2020, , 569-590.		1
119	Topoisomerase IIÎ ² targets DNA crossovers formed between distant homologous sites to induce chromatin opening. Scientific Reports, 2020, 10, 18550.	1.6	6
120	Machine learning and deep learning for the advancement of epigenomics. , 2020, , 217-237.		0
121	S3norm: simultaneous normalization of sequencing depth and signal-to-noise ratio in epigenomic data. Nucleic Acids Research, 2020, 48, e43-e43.	6.5	31
122	From reads to insight: a hitchhiker's guide to ATAC-seq data analysis. Genome Biology, 2020, 21, 22.	3.8	268
123	ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation. Epigenetics and Chromatin, 2020, 13, 22.	1.8	49
124	The Road Not Taken with Pyrrole-Imidazole Polyamides: Off-Target Effects and Genomic Binding. Biomolecules, 2020, 10, 544.	1.8	7
125	Evaluation and measurement of epigenetic modifications in population-based studies. , 2021, , 17-39.		0
126	Identification of Enriched Regions in ChIP-Seq Data via a Linear-Time Multi-Level Thresholding Algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19, 2842-2850.	1.9	0
127	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	3.0	18
128	VSS: variance-stabilized signals for sequencing-based genomic signals. Bioinformatics, 2021, 37, 4383-4391.	1.8	3
129	The dynamic broad epigenetic (H3K4me3, H3K27ac) domain as a mark of essential genes. Clinical Epigenetics, 2021, 13, 138.	1.8	84

#	Article	IF	CITATIONS
130	HERON: A Novel Tool Enables Identification of Long, Weakly Enriched Genomic Domains in ChIP-seq Data. International Journal of Molecular Sciences, 2021, 22, 8123.	1.8	0
131	Chromatin accessibility profiling methods. Nature Reviews Methods Primers, 2021, 1, .	11.8	95
140	WaveSeq: A Novel Data-Driven Method of Detecting Histone Modification Enrichments Using Wavelets. PLoS ONE, 2012, 7, e45486.	1.1	9
141	A Comparison of Peak Callers Used for DNase-Seq Data. PLoS ONE, 2014, 9, e96303.	1.1	71
142	Identification of Binding Targets of a Pyrrole-Imidazole Polyamide KR12 in the LS180 Colorectal Cancer Genome. PLoS ONE, 2016, 11, e0165581.	1.1	11
143	Establishment and maintenance of heritable chromatin structure during early Drosophila embryogenesis. ELife, 2016, 5, .	2.8	139
144	Concentration dependent chromatin states induced by the bicoid morphogen gradient. ELife, 2017, 6, .	2.8	73
145	High-Throughput Computational Approaches to Analyzing Histone Modification Next-Generation Sequencing Data. Computational Molecular Biology, 0, , .	0.0	0
156	How Low Can You Go? Calling Robust ATAC-Seq Peaks Through Read Down-Sampling. SSRN Electronic Journal, 0, , .	0.4	0
158	Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9
160	Computational Genomics Approaches for Livestock Improvement and Management. Livestock Diseases and Management, 2023, , 351-376.	0.5	0
161	Bioinformatics of epigenetic data generated from next-generation sequencing. , 2024, , 37-82.		0
162	Best practices for ChIP-seq and its data analysis. , 2024, , 319-341.		0

Best practices for ChIP-seq and its data analysis. , 2024, , 319-341. 162