Making memories last: the synaptic tagging and capture

Nature Reviews Neuroscience 12, 17-30 DOI: 10.1038/nrn2963

Citation Report

#	Article	IF	CITATIONS
1	Thinking About the Future Cognitive Remediation TherapyWhat Works and Could We Do Better?. Schizophrenia Bulletin, 2011, 37, S80-S90.	2.3	214
2	Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12931-12936.	3.3	155
3	An opportunistic theory of cellular and systems consolidation. Trends in Neurosciences, 2011, 34, 504-514.	4.2	207
4	A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 2011, 34, 536-547.	4.2	382
5	Polyrhythms of the Brain. Neuron, 2011, 72, 6-8.	3.8	6
6	A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience, 2011, 198, 152-170.	1.1	195
7	The role of histone acetylation in age-associated memory impairment and Alzheimer's disease. Neurobiology of Learning and Memory, 2011, 96, 19-26.	1.0	122
8	The role of the basal ganglia in learning and memory: Insight from Parkinson's disease. Neurobiology of Learning and Memory, 2011, 96, 624-636.	1.0	144
9	Mechanisms of dendritic mRNA transport and its role in synaptic tagging. EMBO Journal, 2011, 30, 3540-3552.	3.5	274
10	Long-term potentiation and long-term depression: a clinical perspective. Clinics, 2011, 66, 3-17.	0.6	213
11	MPTP-meditated hippocampal dopamine deprivation modulates synaptic transmission and activity-dependent synaptic plasticity. Toxicology and Applied Pharmacology, 2011, 254, 332-341.	1.3	31
12	Emetine treatment masks initial LTP without affecting long-term stability. Brain Research, 2011, 1426, 18-29.	1.1	8
13	A mechanism for the formation of hippocampal neuronal firing patterns that represent what happens where. Learning and Memory, 2011, 18, 718-727.	0.5	9
14	Creating Stable Memories. Science, 2011, 331, 869-870.	6.0	8
15	Sleep and Synaptic Homeostasis: Structural Evidence in <i>Drosophila</i> . Science, 2011, 332, 1576-1581.	6.0	315
16	Rapid increase in clusters of synaptophysin at onset of homosynaptic potentiation in Aplysia. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11656-11661.	3.3	11
17	Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex. PLoS Computational Biology, 2011, 7, e1002266.	1.5	39
18	Examining Form and Function of Dendritic Spines. Neural Plasticity, 2012, 2012, 1-9.	1.0	74

#	Article	IF	CITATIONS
19	Molecular Constraints on Synaptic Tagging and Maintenance of Long-Term Potentiation: A Predictive Model. PLoS Computational Biology, 2012, 8, e1002620.	1.5	52
20	Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nature Communications, 2012, 3, 605.	5.8	109
21	Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning. Nature Communications, 2012, 3, 1081.	5.8	104
22	Event-Related Nociceptive Arousal Enhances Memory Consolidation for Neutral Scenes. Journal of Neuroscience, 2012, 32, 1481-1487.	1.7	73
23	Long-Lasting LTP Requires Neither Repeated Trains for Its Induction Nor Protein Synthesis for Its Development. PLoS ONE, 2012, 7, e40823.	1.1	29
24	Fluoxetine restores spatial learning but not accelerated forgetting in mesial temporal lobe epilepsy. Brain, 2012, 135, 2358-2374.	3.7	28
25	A late phase of LTD in cultured cerebellar Purkinje cells requires persistent dynamin-mediated endocytosis. Journal of Neurophysiology, 2012, 107, 448-454.	0.9	19
26	Dynamic neural systems enable adaptive, flexible memories. Neuroscience and Biobehavioral Reviews, 2012, 36, 1646-1666.	2.9	70
27	NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology, 2012, 4, a005710-a005710.	2.3	720
28	Time scales of memory, learning, and plasticity. Biological Cybernetics, 2012, 106, 715-726.	0.6	73
29	Regional dissociation of paradigm-specific synapse remodeling during memory consolidation in the adult rat dentate gyrus. Neuroscience, 2012, 209, 74-83.	1.1	8
30	Memory traces compete under regimes of limited Arc protein synthesis: Implications for memory interference. Neurobiology of Learning and Memory, 2012, 98, 165-173.	1.0	33
31	Roles of Neuronal Activity-Induced Gene Products in Hebbian and Homeostatic Synaptic Plasticity, Tagging, and Capture. Advances in Experimental Medicine and Biology, 2012, 970, 335-354.	0.8	11
32	Cycloheximide impairs and enhances memory depending on dose and footshock intensity. Behavioural Brain Research, 2012, 233, 293-297.	1.2	17
33	What can fMRI tell us about the locus of learning?. Cortex, 2012, 48, 509-514.	1.1	13
34	Dissociating learning-induced changes in fMRI signal from structural modifications: A comment on Dorjee and Bowers (2012). Cortex, 2012, 48, 515-516.	1.1	2
35	Oculomotor learning revisited: a model of reinforcement learning in the basal ganglia incorporating an efference copy of motor actions. Frontiers in Neural Circuits, 2012, 6, 38.	1.4	32
36	Synaptic proteome changes in mouse brain regions upon auditory discrimination learning. Proteomics, 2012, 12, 2433-2444.	1.3	14

#	Article	IF	CITATIONS
37	Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. Journal of Cell Biology, 2012, 198, 1055-1073.	2.3	69
38	Emotional modulation of the synapse. Reviews in the Neurosciences, 2012, 23, 449-61.	1.4	21
39	A Prion-Mediated Mechanism for Memory Proposed in Drosophila. Neuron, 2012, 76, 260-262.	3.8	1
40	Synaptic tagging and capture in the living rat. Nature Communications, 2012, 3, 1246.	5.8	49
41	Stimulation-Dependent Intraspinal Microtubules and Synaptic Failure in Alzheimer's Disease: A Review. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	4
42	A Functional Role for CREB as a Positive Regulator of Memory Formation and LTP. Experimental Neurobiology, 2012, 21, 136-140.	0.7	100
43	Rapid neural circuit switching mediated by synaptic plasticity during neural morphallactic regeneration. Developmental Neurobiology, 2012, 72, 1256-1266.	1.5	9
44	A Metaplasticity-Like Mechanism Supports the Selection of Fear Memories: Role of Protein Kinase A in the Amygdala. Journal of Neuroscience, 2012, 32, 7843-7851.	1.7	46
45	Nuclear Calcium Signaling. Advances in Experimental Medicine and Biology, 2012, 970, 377-405.	0.8	82
46	Principles of mRNA transport in yeast. Cellular and Molecular Life Sciences, 2012, 69, 1843-1853.	2.4	53
47	Synaptic consolidation: an approach to long-term learning. Cognitive Neurodynamics, 2012, 6, 251-257.	2.3	42
48	Activityâ€dependent actin dynamics are required for the maintenance of longâ€ŧerm plasticity and for synaptic capture. European Journal of Neuroscience, 2012, 35, 195-206.	1.2	37
49	Optical highlighter molecules in neurobiology. Current Opinion in Neurobiology, 2012, 22, 111-120.	2.0	3
50	Conditioned food aversion reconsolidation in snails is impaired by translation inhibitors but not by transcription inhibitors. Brain Research, 2012, 1467, 42-47.	1.1	23
52	Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiology of Learning and Memory, 2013, 105, 40-53.	1.0	209
53	Asymmetrical Synaptic Cooperation between Cortical and Thalamic Inputs to the Amygdale. Neuropsychopharmacology, 2013, 38, 2675-2687.	2.8	18
55	The neuroscience of memory: implications for the courtroom. Nature Reviews Neuroscience, 2013, 14, 649-658.	4.9	104
56	The role of phosphodiesterases in hippocampal synaptic plasticity. Neuropharmacology, 2013, 74, 86-95.	2.0	44

#	Article	IF	CITATIONS
57	Intrinsically Motivated Learning in Natural and Artificial Systems. , 2013, , .		105
58	Spatial memory: behavioral determinants of persistence in the watermaze delayed matching-to-place task. Learning and Memory, 2013, 21, 767-775.	0.5	17
59	Computational modelling of memory retention from synapse to behaviour. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P03007.	0.9	3
60	Kinesin-1 Regulates Synaptic Strength by Mediating the Delivery, Removal, and Redistribution of AMPA Receptors. Neuron, 2013, 80, 1421-1437.	3.8	79
61	Synaptic Regulation of Microtubule Dynamics in Dendritic Spines by Calcium, F-Actin, and Drebrin. Journal of Neuroscience, 2013, 33, 16471-16482.	1.7	146
62	About Sleep's Role in Memory. Physiological Reviews, 2013, 93, 681-766.	13.1	2,026
63	Molecular mechanisms underlying neuronal synaptic plasticity: systems biology meets computational neuroscience in the wilds of synaptic plasticity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 717-731.	6.6	12
64	The role of Î ³ -secretase in hippocampal synaptic transmission and activity-dependent synaptic plasticity. Neuroscience Letters, 2013, 554, 16-21.	1.0	6
65	The incentive salience of courtship vocalizations: Hormone-mediated â€~̃wanting' in the auditory system. Hearing Research, 2013, 305, 19-30.	0.9	51
66	Lifetime memories from persistently supple synapses. Hippocampus, 2013, 23, 202-206.	0.9	18
67	Solving the Distal Reward Problem with Rare Correlations. Neural Computation, 2013, 25, 940-978.	1.3	19
68	The Hippocampal-VTA Loop: The Role of Novelty and Motivation in Controlling the Entry of Information into Long-Term Memory. , 2013, , 235-254.		21
69	Emerging roles of metaplasticity in behaviour and disease. Trends in Neurosciences, 2013, 36, 353-362.	4.2	164
70	Matched Pre- and Post-Synaptic Changes Underlie Synaptic Plasticity over Long Time Scales. Journal of Neuroscience, 2013, 33, 6257-6266.	1.7	32
71	Neurobiology of Learning and Memory. , 2013, , 2173-2211.		6
72	Hippocampal neurogenesis and forgetting. Trends in Neurosciences, 2013, 36, 497-503.	4.2	195
73	"Master―Neurons Induced by Operant Conditioning in Rat Motor Cortex during a Brain-Machine Interface Task. Journal of Neuroscience, 2013, 33, 8308-8320.	1.7	46
74	Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism. Hippocampus, 2013, 23, 931-941.	0.9	26

ARTICLE IF CITATIONS # Failure, Neuroscience and Success: Differentiating the pedagogies of music technology from 75 0.1 0 electroacoustic composition. Organised Sound, 2013, 18, 190-200. Learning and Memory., 2013, , 1009-1027. Consolidation Differentially Modulates Schema Effects on Memory for Items and Associations. PLoS 77 41 1.1 ONE, 2013, 8, e56155. Rare Neural Correlations Implement Robotic Conditioning with Delayed Rewards and Disturbances. Frontiers in Neurorobotics, 2013, 7, 6. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep. 79 1.4 30 Frontiers in Neural Circuits, 2013, 7, 132. Making long-term memories in minutes: a spaced learning pattern from memory research in education. Frontiers in Human Neuroscience, 2013, 7, 589. 1.0 Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. 81 1.0 105 Frontiers in Human Neuroscience, 2013, 7, 613. Unraveling the cellular and molecular mechanisms of repetitive magnetic stimulation. Frontiers in 1.4 Molecular Neuroscience, 2013, 6, 50. 83 The spine problem: finding a function for dendritic spines. Frontiers in Neuroanatomy, 2014, 8, 95. 0.9 4 The Spectro-Contextual Encoding and Retrieval Theory of Episodic Memory. Frontiers in Human 84 1.0 49 Neuroscience, 2014, 8, 75. Engram formation in psychiatric disorders. Frontiers in Neuroscience, 2014, 8, 118. 85 7 1.4 Learning and Memory., 2014, , 591-637. 86 Modeling and Analysis of Intracellular Signaling Pathways., 2014, , 175-205. 87 1 13. Epigenetische Mechanismen embryonaler Induktion und sozialer PrÄgungsprozesse., 2014, , 179-192. The Tagging and Capture Hypothesis from Synapse to Memory. Progress in Molecular Biology and 89 0.9 42 Translational Science, 2014, 122, 391-423. Simulations suggest pharmacological methods for rescuing long-term potentiation. Journal of Theoretical Biology, 2014, 360, 243-250. 14 Interneurons in the Olfactory Bulb: Roles in the Plasticity of Olfactory Information Processing., 91 1 2014, , 97-132. Decisions, dopamine, and degeneracy in complex biological systems. Neuroscience and Neuroeconomics, 0, , 11.

#	Article	IF	CITATIONS
93	Epigenetics of Memory and Plasticity. Progress in Molecular Biology and Translational Science, 2014, 122, 305-340.	0.9	53
94	GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opinion on Investigational Drugs, 2014, 23, 243-254.	1.9	107
95	Could Bertrand Russell's barber have bitten his own teeth? A problem of logic and definitions. Behavioral and Brain Sciences, 2014, 37, 416-417.	0.4	0
96	Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses. Acta Neuropathologica Communications, 2014, 2, 63.	2.4	24
97	Incorporating coordination dynamics into an evolutionarily grounded science of intentional change. Behavioral and Brain Sciences, 2014, 37, 428-429.	0.4	3
98	Intentional change, intrinsic motivations, and goal generation. Behavioral and Brain Sciences, 2014, 37, 431-432.	0.4	3
99	Unintentional behaviour change. Behavioral and Brain Sciences, 2014, 37, 418-418.	0.4	1
100	Evolutionary processes and mother-child attachment in intentional change. Behavioral and Brain Sciences, 2014, 37, 426-427.	0.4	0
101	The inevitability of normative analysis. Behavioral and Brain Sciences, 2014, 37, 436-436.	0.4	0
102	Which evolutionary process, and where do we want to go?. Behavioral and Brain Sciences, 2014, 37, 425-426.	0.4	1
103	Large-scale societal changes and intentionality–Âan uneasy marriage. Behavioral and Brain Sciences, 2014, 37, 419-420.	0.4	0
104	The rich detail of cultural symbol systems. Behavioral and Brain Sciences, 2014, 37, 434-435.	0.4	1
105	Evolving the future of education: Problems in enabling broad social reforms. Behavioral and Brain Sciences, 2014, 37, 424-425.	0.4	0
106	The perils of a science of intentional change. Behavioral and Brain Sciences, 2014, 37, 427-428.	0.4	0
107	Toward an integrated science and sociotecture of intentional change. Behavioral and Brain Sciences, 2014, 37, 421-422.	0.4	1
108	For public policies, our evolved psychology is the problem and the solution. Behavioral and Brain Sciences, 2014, 37, 418-419.	0.4	0
109	Is the science of positive intentional change a science of objective moral values?. Behavioral and Brain Sciences, 2014, 37, 435-436.	0.4	1
110	Evolving the future by creating and adapting to novel environments. Behavioral and Brain Sciences, 2014, 37, 429-430.	0.4	0

#	Article	IF	CITATIONS
111	Cooperation and emergence: The missing elements of the Darwin machine. Behavioral and Brain Sciences, 2014, 37, 426-426.	0.4	0
112	Domain-general mechanisms: What they are, how they evolved, and how they interact with modular, domain-specific mechanisms to enable cohesive human groups. Behavioral and Brain Sciences, 2014, 37, 430-431.	0.4	1
113	Niche construction is an important component of a science of intentional change. Behavioral and Brain Sciences, 2014, 37, 432-433.	0.4	0
114	Conservation combats exploitation: Choices within an evolutionary framework. Behavioral and Brain Sciences, 2014, 37, 437-438.	0.4	0
115	Does evolving the future preclude learning from it?. Behavioral and Brain Sciences, 2014, 37, 422-423.	0.4	0
116	Collaborating on evolving the future. Behavioral and Brain Sciences, 2014, 37, 438-460.	0.4	8
117	Evolving the future by learning from the future (as it emerges)? Toward an epistemology of change. Behavioral and Brain Sciences, 2014, 37, 433-434.	0.4	4
118	Developing of the future: Scaffolded Darwinism in societal evolution. Behavioral and Brain Sciences, 2014, 37, 417-418.	0.4	Ο
119	Why can't we all just get along? Integration needs more than stories. Behavioral and Brain Sciences, 2014, 37, 420-421.	0.4	0
120	A science of intentional change and the prospects for a culture of peace. Behavioral and Brain Sciences, 2014, 37, 423-424.	0.4	0
121	Let the social sciences evolve. Behavioral and Brain Sciences, 2014, 37, 437-437.	0.4	1
122	Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology, 2014, 79, 525-533.	2.0	22
123	The less things change, the more they are different: contributions of long-term synaptic plasticity and homeostasis to memory. Learning and Memory, 2014, 21, 128-134.	0.5	17
124	Neuroepigenetics of memory formation and impairment: The role of microRNAs. Neuropharmacology, 2014, 80, 61-69.	2.0	74
125	Activityâ€dependent Wnt 7 dendritic targeting in hippocampal neurons: Plasticity―and taggingâ€related retrograde signaling mechanism?. Hippocampus, 2014, 24, 455-465.	0.9	9
126	Balance and Stability of Synaptic Structures during Synaptic Plasticity. Neuron, 2014, 82, 430-443.	3.8	349
127	Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation. Neuron, 2014, 82, 444-459.	3.8	486
128	Infant Cognitive Training Preshapes Learning-Relevant Prefrontal Circuits for Adult Learning: Learning-Induced Tagging of Dendritic Spines. Cerebral Cortex, 2014, 24, 2920-2930.	1.6	14

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
129	Selective Memory Generalization by Spatial Patterning of Protein Synthesis. Neuron, 201	.4, 82, 398-412.	3.8	47
130	Hippocampal Neurogenesis Regulates Forgetting During Adulthood and Infancy. Science 598-602.	, 2014, 344,	6.0	579
131	The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philo Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130288.	sophical	1.8	499
132	Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus the synapses. Philosophical Transactions of the Royal Society B: Biological Sciences, 201 20130150.	leus back to 4, 369,	1.8	17
133	The role of rewarding and novel events in facilitating memory persistence in a separate s memory task. Learning and Memory, 2014, 21, 61-72.	patial	0.5	43
134	Synaptic tagging during memory allocation. Nature Reviews Neuroscience, 2014, 15, 15	7-169.	4.9	203
135	The learning of fear extinction. Neuroscience and Biobehavioral Reviews, 2014, 47, 670-	583.	2.9	105
136	Noradrenergic actions in the basolateral complex of the amygdala modulate Arc express hippocampal synapses and consolidation of aversive and non-aversive memory. Neurobic Learning and Memory, 2014, 115, 49-57.	on in blogy of	1.0	54
137	Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neurolmage, 2014, 102, 666	-673.	2.1	59
138	The penumbra of learning: A statistical theory of synaptic tagging and capture. Network in Neural Systems, 2014, 25, 97-115.	Computation	2.2	4
139	Translational Control in Synaptic Plasticity and Cognitive Dysfunction. Annual Review of Neuroscience, 2014, 37, 17-38.		5.0	285
140	Functionally diverse dendritic mRNAs rapidly associate with ribosomes following a novel Nature Communications, 2014, 5, 4510.	experience.	5.8	65
141	Synapse rearrangements upon learning: from divergent–sparse connectivity to dedica Trends in Neurosciences, 2014, 37, 604-614.	ted sub-circuits.	4.2	76
142	States of Curiosity Modulate Hippocampus-Dependent Learning via the Dopaminergic C 2014, 84, 486-496.	rcuit. Neuron,	3.8	411
143	Learning and behavioral deficits associated with the absence of the fragile X mental reta protein: what a fly and mouse model can teach us. Learning and Memory, 2014, 21, 543	dation -555.	0.5	85
144	Activity-controlled proteolytic cleavage at the synapse. Trends in Neurosciences, 2014, 3	7, 413-423.	4.2	43
145	A presynaptic role for PKA in synaptic tagging and memory. Neurobiology of Learning an 2014, 114, 101-112.	d Memory,	1.0	32
146	GluA2-dependent AMPA receptor endocytosis and the decay of early and late long-term possible mechanisms for forgetting of short- and long-term memories. Philosophical Trar the Royal Society B: Biological Sciences, 2014, 369, 20130141.	potentiation: isactions of	1.8	60

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
147	The Intersection of Amyloid Beta and Tau at Synapses in Alzheimera€™s Disease. Neuron, 2014, 82, 756-771.	3.8	862
148	Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Research Bulletin, 2014, 105, 17-24.	1.4	119
149	Coding and decoding with dendrites. Journal of Physiology (Paris), 2014, 108, 18-27.	2.1	17
150	Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology, 2014, 76, 610-627.	2.0	207
151	Making Synapses Strong: Metaplasticity Prolongs Associativity of Long-Term Memory by Switching Synaptic Tag Mechanisms. Cerebral Cortex, 2014, 24, 353-363.	1.6	47
152	BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology, 2014, 76, 639-656.	2.0	492
153	Despair-associated memory requires a slow-onset CA1 long-term potentiation with unique underlying mechanisms. Scientific Reports, 2015, 5, 15000.	1.6	12
154	Histone deacetylase 3 inhibition re-establishes synaptic tagging and capture in aging through the activation of nuclear factor kappa B. Scientific Reports, 2015, 5, 16616.	1.6	39
155	Oxytocin Protects Hippocampal Memory and Plasticity from Uncontrollable Stress. Scientific Reports, 2015, 5, 18540.	1.6	84
156	Light exposure before learning improves memory consolidation at night. Scientific Reports, 2015, 5, 15578.	1.6	23
157	Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents. Journal of Visualized Experiments, 2015, , .	0.2	44
158	Morning REM Sleep Naps Facilitate Broad Access to Emotional Semantic Networks. Sleep, 2015, 38, 433-443.	0.6	28
159	NF-KappaB in Long-Term Memory and Structural Plasticity in the Adult Mammalian Brain. Frontiers in Molecular Neuroscience, 2015, 8, 69.	1.4	85
160	Evidence of Maintenance Tagging in the Hippocampus for the Persistence of Long-Lasting Memory Storage. Neural Plasticity, 2015, 2015, 1-9.	1.0	16
161	Behavioral Tagging: A Translation of the Synaptic Tagging and Capture Hypothesis. Neural Plasticity, 2015, 2015, 1-21.	1.0	87
162	Nanoconnectomic upper bound on the variability of synaptic plasticity. ELife, 2015, 4, e10778.	2.8	208
163	Synaptic Tagging and Capture. , 2015, , .		6
164	Neural plasticity and memory: molecular mechanism. Reviews in the Neurosciences, 2015, 26, 253-68.	1.4	48

#	Article	IF	CITATIONS
165	Variation in the persistence of memory: An interplay between actin dynamics and AMPA receptors. Brain Research, 2015, 1621, 29-37.	1.1	16
166	Calcium Signaling, Excitability, and Synaptic Plasticity Defects in a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 45, 561-580.	1.2	61
167	Synaptic clustering within dendrites: An emerging theory of memory formation. Progress in Neurobiology, 2015, 126, 19-35.	2.8	149
168	Synaptic Consolidation: From Synapses to Behavioral Modeling. Journal of Neuroscience, 2015, 35, 1319-1334.	1.7	42
169	Extinction learning, which consists of the inhibition of retrieval, can be learned without retrieval. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E230-3.	3.3	38
170	Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a. Neuron, 2015, 87, 549-562.	3.8	168
171	Generation of multi-innervated dendritic spines as a novel mechanism of long-term memory formation. Neurobiology of Learning and Memory, 2015, 124, 48-51.	1.0	29
172	Biochemical Computation for Spine Structural Plasticity. Neuron, 2015, 87, 63-75.	3.8	178
173	Dopamine and Consolidation of Episodic Memory: Timing Is Everything. Journal of Cognitive Neuroscience, 2015, 27, 2035-2050.	1.1	21
174	Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Science, 2015, 13, 13.	0.7	17
175	Role of Environment, Epigenetics, and Synapses in Cognitive Enhancement. , 2015, , 61-86.		0
176	Spatial memory and hippocampal enhancement. Current Opinion in Behavioral Sciences, 2015, 4, 81-91.	2.0	3
177	Mammalian Target of Rapamycin (mTOR) Tagging Promotes Dendritic Branch Variability through the Capture of Ca2+/Calmodulin-dependent Protein Kinase II α (CaMKIIα) mRNAs by the RNA-binding Protein HuD. Journal of Biological Chemistry, 2015, 290, 16357-16371.	1.6	49
178	Fast Learning with Weak Synaptic Plasticity. Journal of Neuroscience, 2015, 35, 13351-13362.	1.7	25
179	The Consolidation and Transformation of Memory. Neuron, 2015, 88, 20-32.	3.8	482
180	Rethinking Extinction. Neuron, 2015, 88, 47-63.	3.8	227
181	β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learning and Memory, 2015, 22, 461-471.	0.5	122
182	Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature, 2015, 525, 333-338.	13.7	546

ARTICLE IF CITATIONS # The role of progesterone in memory: An overview of three decades. Neuroscience and Biobehavioral 183 2.9 57 Reviews, 2015, 49, 193-204. The role of DNA methylation in the mechanisms of memory reconsolidation and development of 184 1.2 amnesia. Behavioural Brain Research, 2015, 279, 148-154. 185 Synaptic Cooperation and Competition: Two Sides of the Same Coin?., 2015, , 29-44. 6 Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted 186 Cell to Granule Cell Synapse. Neural Plasticity, 2016, 2016, 1-16. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing. Neural Plasticity, 2016, 187 1.0 66 2016, 1-11. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules. Frontiers in Neural Circuits, 2015, 9, 85. 188 1.4 Sharing a Context with Other Rewarding Events Increases the Probability that Neutral Events will be 189 1.0 3 Recollected. Frontiers in Human Neuroscience, 2016, 9, 683. A Model of Synaptic Reconsolidation. Frontiers in Neuroscience, 2016, 10, 206. 190 1.4 9 Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory 191 347 1.4 Trace. Frontiers in Molecular Neuroscience, 2015, 8, 78. Dentate gyrus and hilar region revisited. Behavioral and Brain Sciences, 2016, 39, e210. 0.4 The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a 193 1.1 69 Continuous Tracking Task. PLoS ONE, 2016, 11, e0150039. Induction and Consolidation of Calcium-Based Homo- and Heterosynaptic Potentiation and 194 1.1 Depression. PLoS ONE, 2016, 11, e0161679. <scp>RNA</scp> polymerase I transcription is modulated by spatial learning in different brain regions. 196 2.1 13 Journal of Neurochemistry, 2016, 136, 706-716. GANEing traction: The broad applicability of NE hotspots to diverse cognitive and arousal phenomena. 0.4 Behavioral and Brain Sciences, 2016, 39, e228. Bodily arousal differentially impacts stimulus processing and memory: Norepinephrine in 198 0.4 5 interoception. Behavioral and Brain Sciences, 2016, 39, e205. 199 What do we GANE with age?. Behavioral and Brain Sciences, 2016, 39, e218. 0.4 Amplified selectivity in cognitive processing implements the neural gain model of norepinephrine 200 0.4 7 function. Behavioral and Brain Sciences, 2016, 39, e206. Emotionally arousing context modulates the ERP correlates of neutral picture processing: An ERP 0.4 test of the GANE model. Behavioral and Brain Sciences, 2016, 39, e225.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
202	The role of arousal in predictive coding. Behavioral and Brain Sciences, 2016, 39, e207.		0.4	11
203	Adaptive memory systems for remembering the salient and the seemingly mundane. Be Brain Sciences, 2016, 39, e221.	havioral and	0.4	7
204	Does arousal enhance apical amplification and disamplification?. Behavioral and Brain S 39, e215.	ciences, 2016,	0.4	6
205	GANEing on emotion and emotion regulation. Behavioral and Brain Sciences, 2016, 39,	e211.	0.4	0
206	What BANE can offer GANE: Individual differences in function of hotspot mechanisms. I Brain Sciences, 2016, 39, e226.	3ehavioral and	0.4	0
207	Interactions of noradrenaline and cortisol and the induction of indelible memories. Beha Brain Sciences, 2016, 39, e213.	avioral and	0.4	1
208	Dopamine neurons encode performance error in singing birds. Science, 2016, 354, 127	8-1282.	6.0	189
209	For better or worse, or for a change?. Behavioral and Brain Sciences, 2016, 39, e203.		0.4	0
210	Bidirectional synaptic plasticity can explain bidirectional retrograde effects of emotion of Behavioral and Brain Sciences, 2016, 39, e224.	on memory.	0.4	1
211	Comparative Aspects of Learning and Memory. , 2016, , 410-421.			0
212	Motivated encoding selectively promotes memory for future inconsequential semantica events. Neurobiology of Learning and Memory, 2016, 133, 1-6.	illy-related	1.0	17
213	Synaptic and extrasynaptic traces of long-term memory: the ID molecule theory. Review Neurosciences, 2016, 27, 575-598.	rs in the	1.4	2
214	A shared neural ensemble links distinct contextual memories encoded close in time. Na 115-118.	ture, 2016, 534,	13.7	756
215	Organization and dynamics of the actin cytoskeleton during dendritic spine morpholog remodeling. Cellular and Molecular Life Sciences, 2016, 73, 3053-3073.	ical	2.4	83
216	Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 2016, 5	37, 357-362.	13.7	561
217	Computational principles of synaptic memory consolidation. Nature Neuroscience, 201	6, 19, 1697-1706.	7.1	156
218	Talking to the neighbours: The molecular and physiological mechanisms of clustered sy plasticity. Neuroscience and Biobehavioral Reviews, 2016, 71, 352-361.	naptic	2.9	11
219	Parallel Engagement of Regions Associated with Encoding and Later Retrieval Forms Du Memories. Journal of Neuroscience, 2016, 36, 7985-7995.	rable	1.7	36

#	Article	IF	CITATIONS
220	SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Molecular Psychiatry, 2016, 21, 1740-1751.	4.1	73
221	Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA 1 pyramidal neurons via sustained ERK 1/2 activation. Hippocampus, 2016, 26, 137-150.	0.9	22
222	Identification of Stable Spike-Timing-Dependent Plasticity from Spiking Activity with Generalized Multilinear Modeling. Neural Computation, 2016, 28, 2320-2351.	1.3	13
223	miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clinical Science, 2016, 130, 1137-1146.	1.8	11
224	Computational model of a positive BDNF feedback loop in hippocampal neurons following inhibitory avoidance training. Learning and Memory, 2016, 23, 714-722.	0.5	18
225	Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory. Neurobiology of Learning and Memory, 2016, 136, 196-203.	1.0	67
226	The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag. Scientific Reports, 2016, 6, 33685.	1.6	24
227	Linking Memories across Time via Neuronal and Dendritic Overlaps in Model Neurons with Active Dendrites. Cell Reports, 2016, 17, 1491-1504.	2.9	80
228	Novelty during a late postacquisition time window attenuates the persistence of fear memory. Scientific Reports, 2016, 6, 35220.	1.6	4
229	Cognitive control, dynamic salience, and the imperative toward computational accounts of neuromodulatory function. Behavioral and Brain Sciences, 2016, 39, e227.	0.4	5
230	The Fluency Amplification Model supports the GANE principle of arousal enhancement. Behavioral and Brain Sciences, 2016, 39, e204.	0.4	5
231	Once more with feeling: On the explanatory limits of the GANE model and the missing role of subjective experience. Behavioral and Brain Sciences, 2016, 39, e212.	0.4	Ο
232	Competition elicits arousal and affect. Behavioral and Brain Sciences, 2016, 39, e220.	0.4	0
233	Effect of arousal on perception as studied through the lens of the motor correlates of sexual arousal. Behavioral and Brain Sciences, 2016, 39, e217.	0.4	1
234	Emotional memory: From affective relevance to arousal. Behavioral and Brain Sciences, 2016, 39, e216.	0.4	9
235	Time-Dependent Effects of Cardiovascular Exercise on Memory. Exercise and Sport Sciences Reviews, 2016, 44, 81-88.	1.6	119
236	Physical Exercise Performed Four Hours after Learning Improves Memory Retention and Increases Hippocampal Pattern Similarity during Retrieval. Current Biology, 2016, 26, 1722-1727.	1.8	83
237	The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis?. Neurochemistry International, 2016, 99, 110-132.	1.9	565

#	Article	IF	CITATIONS
238	Inhibition of G9a/GLP Complex Promotes Long-Term Potentiation and Synaptic Tagging/Capture in Hippocampal CA1 Pyramidal Neurons. Cerebral Cortex, 2017, 27, bhw170.	1.6	23
239	Does computational neuroscience need new synaptic learning paradigms?. Current Opinion in Behavioral Sciences, 2016, 11, 61-66.	2.0	28
240	Context-specific activation of hippocampus and SN/VTA by reward is related to enhanced long-term memory for embedded objects. Neurobiology of Learning and Memory, 2016, 134, 65-77.	1.0	21
241	What Learning Systems do Intelligent Agents Need? Complementary Learning Systems Theory Updated. Trends in Cognitive Sciences, 2016, 20, 512-534.	4.0	386
242	PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nature Neuroscience, 2016, 19, 454-464.	7.1	99
243	Proteomics of the Synapse – A Quantitative Approach to Neuronal Plasticity. Molecular and Cellular Proteomics, 2016, 15, 368-381.	2.5	61
244	Transcription inhibitors prevent amnesia induced by NMDA antagonist-mediated impairment of memory reconsolidation. Learning and Behavior, 2016, 44, 250-259.	0.5	10
245	Molecular Mechanisms of Learning and Memory**The authors declare no competing financial interests , 2016, , 1-27.		7
246	Effects of pre-natal alcohol exposure on hippocampal synaptic plasticity: Sex, age and methodological considerations. Neuroscience and Biobehavioral Reviews, 2016, 64, 12-34.	2.9	66
247	The emotional carryover effect in memory for words. Memory, 2016, 24, 916-938.	0.9	18
248	Evidence of VTA and LC control of protein synthesis required for the behavioral tagging process. Neurobiology of Learning and Memory, 2017, 138, 226-237.	1.0	36
249	â€~Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus. Ageing Research Reviews, 2017, 35, 22-35.	5.0	38
250	Optogenetic Control of Synaptic Composition and Function. Neuron, 2017, 93, 646-660.e5.	3.8	106
251	Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity. Journal of Neuroscience, 2017, 37, 2746-2763.	1.7	42
252	Hippocampal Contributions to Declarative Memory Consolidation During Sleep. , 2017, , 245-280.		7
253	Hebbian plasticity requires compensatory processes on multiple timescales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160259.	1.8	151
254	The temporal paradox of Hebbian learning and homeostatic plasticity. Current Opinion in Neurobiology, 2017, 43, 166-176.	2.0	138
255	New waves in dendritic spine actin cytoskeleton: From branches and bundles to rings, from actin binding proteins to post-translational modifications. Molecular and Cellular Neurosciences, 2017, 84, 77-84.	1.0	25

#	Article	IF	CITATIONS
256	Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5527-5532.	3.3	48
257	The malleable brain: plasticity of neural circuits and behavior – a review from students to students. Journal of Neurochemistry, 2017, 142, 790-811.	2.1	34
258	Methylphenidate during early consolidation affects long-term associative memory retrieval depending on baseline catecholamines. Psychopharmacology, 2017, 234, 657-669.	1.5	3
259	Reward retroactively enhances memory consolidation for related items. Learning and Memory, 2017, 24, 65-69.	0.5	94
260	Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity. Neuron, 2017, 96, 177-189.e7.	3.8	36
261	…with Love, from Post to Pre. Neuron, 2017, 96, 9-10.	3.8	0
262	Substance P induces plasticity and synaptic tagging/capture in rat hippocampal area CA2. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8741-E8749.	3.3	39
263	Enhancing early consolidation of human episodic memory by theta EEG neurofeedback. Neurobiology of Learning and Memory, 2017, 145, 165-171.	1.0	20
264	26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3. BMC Neuroscience, 2017, 18, .	0.8	7
265	Everyday memory: towards a translationally effective method of modelling the encoding, forgetting and enhancement of memory. European Journal of Neuroscience, 2017, 46, 1937-1953.	1.2	28
266	Memory Takes Time. Neuron, 2017, 95, 259-279.	3.8	49
267	Epigenetic regulation by G9a/ <scp>GLP</scp> complex ameliorates amyloidâ€beta 1â€42 induced deficits in longâ€ŧerm plasticity and synaptic tagging/capture in hippocampal pyramidal neurons. Aging Cell, 2017, 16, 1062-1072.	3.0	34
268	Activity-dependent expression of Channelrhodopsin at neuronal synapses. Nature Communications, 2017, 8, 1629.	5.8	21
269	Brief targeted memory reactivation during the awake state enhances memory stability and benefits the weakest memories. Scientific Reports, 2017, 7, 15325.	1.6	36
270	Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains. RNA Biology, 2017, 14, 568-586.	1.5	39
271	Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress. Hippocampus, 2017, 27, 77-88.	0.9	23
272	Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiology of Learning and Memory, 2017, 138, 62-77.	1.0	21
273	Differential involvement of Ca2+/calmodulin-dependent protein kinases and mitogen-activated protein kinases in the dopamine D1/D5 receptor-mediated potentiation in hippocampal CA1 pyramidal neurons. Neurobiology of Learning and Memory, 2017, 138, 111-120.	1.0	15

#	Article	IF	CITATIONS
274	Emerging pathways driving early synaptic pathology in Alzheimer's disease. Biochemical and Biophysical Research Communications, 2017, 483, 988-997.	1.0	69
275	Chelation of hippocampal zinc enhances longâ€ŧerm potentiation and synaptic tagging/capture in <scp>CA</scp> 1 pyramidal neurons of aged rats: implications to aging and memory. Aging Cell, 2017, 16, 136-148.	3.0	33
276	Disruption of Perceptual Learning by a Brief Practice Break. Current Biology, 2017, 27, 3699-3705.e3.	1.8	9
277	Procedural Memory Consolidation in Attention-Deficit/Hyperactivity Disorder Is Promoted by Scheduling of Practice to Evening Hours. Frontiers in Psychiatry, 2017, 8, 140.	1.3	11
278	Post-Transcriptional Mechanisms of Neuronal Translational Control in Synaptic Plasticity. , 2017, , .		1
279	Screening the Molecular Framework Underlying Local Dendritic mRNA Translation. Frontiers in Molecular Neuroscience, 2017, 10, 45.	1.4	6
280	Locus Coeruleus and Dopamine-Dependent Memory Consolidation. Neural Plasticity, 2017, 2017, 1-15.	1.0	50
281	Effects of dopamine on reinforcement learning and consolidation in Parkinson's disease. ELife, 2017, 6,	2.8	52
282	The Yin and Yang of Memory Consolidation: Hippocampal and Neocortical. PLoS Biology, 2017, 15, e2000531.	2.6	36
283	Forebrain-specific, conditional silencing of Staufen2 alters synaptic plasticity, learning, and memory in rats. Genome Biology, 2017, 18, 222.	3.8	25
284	Evidence for improved memory from 5Âminutes of immediate, post-encoding exercise among women. Cognitive Research: Principles and Implications, 2017, 2, 33.	1.1	9
285	Behaviorally Induced Synaptic Tagging. , 2017, , 611-619.		0
286	Microfilament-coordinated adhesion dynamics drives single cell migration and shapes whole tissues. F1000Research, 2017, 6, 160.	0.8	8
287	Dopaminergic innervation and modulation of hippocampal networks. Cell and Tissue Research, 2018, 373, 711-727.	1.5	63
288	Protein synthesis in the basolateral amygdala complex is required for consolidation of a first-order fear memory, but not for consolidation of a higher-order fear memory. Neurobiology of Learning and Memory, 2018, 153, 153-165.	1.0	14
289	Pharmacologically induced amnesia for learned fear is time and sleepÂdependent. Nature Communications, 2018, 9, 1316.	5.8	37
290	Control of synaptic plasticity in deep cortical networks. Nature Reviews Neuroscience, 2018, 19, 166-180.	4.9	176
291	The role of 19S proteasome associated deubiquitinases in activity-dependent hippocampal synaptic plasticity. Neuropharmacology, 2018, 133, 354-365.	2.0	16

#	Article	IF	CITATIONS
292	Hippocampal area CA2: an emerging modulatory gateway in the hippocampal circuit. Experimental Brain Research, 2018, 236, 919-931.	0.7	40
293	Synaptic plasticity modulation by circulating peptides and metaplasticity: Involvement in Alzheimer's disease. Pharmacological Research, 2018, 130, 385-401.	3.1	38
294	Sleep and plasticity: Waking from a fevered dream. Sleep Medicine Reviews, 2018, 39, 1-2.	3.8	5
295	Dissociation of immediate and delayed effects of emotional arousal on episodic memory. Neurobiology of Learning and Memory, 2018, 148, 11-19.	1.0	27
296	Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons. Neurobiology of Learning and Memory, 2018, 154, 70-77.	1.0	7
299	A novel modulator of AMPA receptors against Alzheimer's Disease pathology: the first in vivo evidence. European Neuropsychopharmacology, 2018, 28, S54-S55.	0.3	1
300	Behavioral tagging and capture: long-term memory decline in middle-aged rats. Neurobiology of Aging, 2018, 67, 31-41.	1.5	24
301	Facilitation of fear learning by prior and subsequent fear conditioning. Behavioural Brain Research, 2018, 347, 61-68.	1.2	5
302	Touching the void $\hat{a} \in$ First and third person perspectives in two cases of autobiographical amnesia linked to temporal lobe epilepsy. Neuropsychologia, 2018, 110, 55-64.	0.7	6
303	Discovering longâ€ŧerm potentiation (<scp>LTP</scp>) – recollections and reflections on what came after. Acta Physiologica, 2018, 222, e12921.	1.8	37
304	Inverse synaptic tagging: An inactive synapse-specific mechanism to capture activity-induced Arc/arg3.1 and to locally regulate spatial distribution of synaptic weights. Seminars in Cell and Developmental Biology, 2018, 77, 43-50.	2.3	31
305	Reward anticipation modulates the effect of stress-related increases in cortisol on episodic memory. Neurobiology of Learning and Memory, 2018, 147, 65-73.	1.0	5
306	Behavioral and neural mechanisms by which prior experience impacts subsequent learning. Neurobiology of Learning and Memory, 2018, 154, 22-29.	1.0	21
308	Langzeitpotenzierung im Hippokampus: Entdeckung, Mechanismen und Funktion. Neuroforum, 2018, 24, 163-185.	0.2	0
309	Parvalbumin Interneuron Plasticity for Consolidation of Reinforced Learning. Cold Spring Harbor Symposia on Quantitative Biology, 2018, 83, 25-35.	2.0	14
310	Retroactive and graded prioritization of memory by reward. Nature Communications, 2018, 9, 4886.	5.8	56
311	Peculiarities of Participation of DNA Methyltransferases in the Mechanisms of Storage, Impairment, and Recovery of Conditioned Food Aversion Memory. Bulletin of Experimental Biology and Medicine, 2018, 166, 1-6.	0.3	2
312	The limited capacity model of motivated mediated message processing: looking to the future. Annals of the International Communication Association, 2018, 42, 291-315.	2.8	41

#	Article	IF	Citations
313	Post-learning paradoxical sleep deprivation impairs reorganization of limbic and cortical networks associated with consolidation of remote contextual fear memory in mice. Sleep, 2018, 41, .	0.6	12
314	Memory, Novelty and Prior Knowledge. Trends in Neurosciences, 2018, 41, 654-659.	4.2	58
315	Making Memories: Why Time Matters. Frontiers in Human Neuroscience, 2018, 12, 400.	1.0	7
316	Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Frontiers in Molecular Neuroscience, 2018, 11, 369.	1.4	31
317	Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor Learning Rules. Frontiers in Neural Circuits, 2018, 12, 53.	1.4	174
318	Retrieval and sleep both counteract the forgetting of spatial information. Learning and Memory, 2018, 25, 258-263.	0.5	15
319	Loss of Synaptic Tagging in the Anterior Cingulate Cortex after Tail Amputation in Adult Mice. Journal of Neuroscience, 2018, 38, 8060-8070.	1.7	6
320	Synaptic Spinules in the Olfactory Circuit of Drosophila melanogaster. Frontiers in Cellular Neuroscience, 2018, 12, 86.	1.8	4
321	Oxytocin as a Modulator of Synaptic Plasticity: Implications for Neurodevelopmental Disorders. Frontiers in Synaptic Neuroscience, 2018, 10, 17.	1.3	39
322	Long-term potentiation in the hippocampus: discovery, mechanisms and function. Neuroforum, 2018, 24, A103-A120.	0.2	72
323	The mysteries of remote memory. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170029.	1.8	37
324	Novelty enhances memory persistence and remediates propranolol-induced deficit via reconsolidation. Neuropharmacology, 2018, 141, 42-54.	2.0	16
325	Curiosity-driven memory enhancement persists over time but does not benefit from post-learning sleep. Cognitive Neuroscience, 2018, 9, 100-115.	0.6	29
326	Modulating reconsolidation and extinction to regulate drug reward memory. European Journal of Neuroscience, 2019, 50, 2503-2512.	1.2	29
327	Proteins or RNA synthesis inhibitors suppressed induction of amnesia developing under impairment of memory reconsolidation by serotonin receptors antagonist. Neurochemistry International, 2019, 131, 104520.	1.9	0
328	"A―for Effort: Rewarding Effortful Retrieval Attempts Improves Learning From General Knowledge Errors in Women. Frontiers in Psychology, 2019, 10, 1179.	1.1	2
329	Activation of microglia in acute hippocampal slices affects activity-dependent long-term potentiation and synaptic tagging and capture in area CA1. Neurobiology of Learning and Memory, 2019, 163, 107039.	1.0	16
330	Role of microtubules in late-associative plasticity of hippocampal Schaffer collateral-CA1 synapses in mice. Neurobiology of Learning and Memory, 2019, 163, 107038.	1.0	1

#	Article	IF	CITATIONS
331	Proteasome and Autophagy-Mediated Impairment of Late Long-Term Potentiation (I-LTP) after Traumatic Brain Injury in the Somatosensory Cortex of Mice. International Journal of Molecular Sciences, 2019, 20, 3048.	1.8	9
332	The Influence of Hippocampal Dopamine D2 Receptors on Episodic Memory Is Modulated by BDNF and KIBRA Polymorphisms. Journal of Cognitive Neuroscience, 2019, 31, 1422-1429.	1.1	3
333	Separate Memory-Enhancing Effects of Reward and Strategic Encoding. Journal of Cognitive Neuroscience, 2019, 31, 1658-1673.	1.1	17
334	The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neuroscience and Biobehavioral Reviews, 2019, 107, 775-794.	2.9	23
335	Large-Scale Mapping of Axonal Arbors Using High-Density Microelectrode Arrays. Frontiers in Cellular Neuroscience, 2019, 13, 404.	1.8	18
336	How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. Trends in Cognitive Sciences, 2019, 23, 1014-1025.	4.0	124
337	Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges. Advanced Materials, 2019, 31, e1902761.	11.1	418
338	Post-encoding frontal theta activity predicts incidental memory in the reward context. Neurobiology of Learning and Memory, 2019, 158, 14-23.	1.0	8
339	Mechanisms of systems memory consolidation during sleep. Nature Neuroscience, 2019, 22, 1598-1610.	7.1	589
340	Susceptibility of consolidated procedural memory to interference is independent of its active task-based retrieval. PLoS ONE, 2019, 14, e0210876.	1.1	7
341	Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early-stage mouse model of Alzheimer's disease. Molecular Neurodegeneration, 2019, 14, 7.	4.4	52
342	Memory Integration as a Challenge to the Consolidation/Reconsolidation Hypothesis: Similarities, Differences and Perspectives. Frontiers in Systems Neuroscience, 2018, 12, 71.	1.2	17
343	Neuromodulatory Action of Picomolar Extracellular AÎ ² 42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. Journal of Neuroscience, 2019, 39, 5986-6000.	1.7	71
344	Principles underlying the input-dependent formation and organization of memories. Network Neuroscience, 2019, 3, 606-634.	1.4	13
345	Loss of CELF6 RNA binding protein impairs cocaine conditioned place preference and contextual fear conditioning. Genes, Brain and Behavior, 2019, 18, e12593.	1.1	15
346	Sleep and Plasticity. Handbook of Behavioral Neuroscience, 2019, 30, 425-442.	0.7	1
347	Noradrenergic and dopaminergic involvement in novelty modulation of aversive memory generalization of adult rats. Behavioural Brain Research, 2019, 371, 111991.	1.2	8
348	Comparing integration and contextual binding accounts of memory impairment. Nature Reviews Neuroscience, 2019, 20, 506-506.	4.9	7

#	Article	IF	CITATIONS
349	The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. Journal of Neuroscience, 2019, 39, 5452-5465.	1.7	44
350	Expected Reward Value and Reward Uncertainty Have Temporally Dissociable Effects on Memory Formation. Journal of Cognitive Neuroscience, 2019, 31, 1443-1454.	1.1	27
351	Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9616-9621.	3.3	24
352	Primed to Sleep: The Dynamics of Synaptic Plasticity Across Brain States. Frontiers in Systems Neuroscience, 2019, 13, 2.	1.2	78
353	Long-term population spike-timing-dependent plasticity promotes synaptic tagging but not cross-tagging in rat hippocampal area CA1. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5737-5746.	3.3	14
354	Cholecystokinin release triggered by NMDA receptors produces LTP and sound–sound associative memory. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6397-6406.	3.3	38
355	On the Role of Calcium-Permeable AMPARs in Long-Term Potentiation and Synaptic Tagging in the Rodent Hippocampus. Frontiers in Synaptic Neuroscience, 2019, 11, 4.	1.3	19
356	Curiosity and Learning. , 2019, , 397-417.		20
357	Contribution of apical and basal dendrites to orientation encoding in mouse V1 L2/3 pyramidal neurons. Nature Communications, 2019, 10, 5372.	5.8	39
358	Optimal Stimulation Protocol in a Bistable Synaptic Consolidation Model. Frontiers in Computational Neuroscience, 2019, 13, 78.	1.2	5
359	Trax: A versatile signaling protein plays key roles in synaptic plasticity and DNA repair. Neurobiology of Learning and Memory, 2019, 159, 46-51.	1.0	8
360	Novelty and Dopaminergic Modulation of Memory Persistence: A Tale of Two Systems. Trends in Neurosciences, 2019, 42, 102-114.	4.2	177
361	Neuronal subâ€compartmentalization: a strategy to optimize neuronal function. Biological Reviews, 2019, 94, 1023-1037.	4.7	27
362	Spatial object recognition memory formation under acute stress. Hippocampus, 2019, 29, 491-499.	0.9	11
363	The up and down of sleep: From molecules to electrophysiology. Neurobiology of Learning and Memory, 2019, 160, 3-10.	1.0	38
364	Are there distinct forms of accelerated forgetting and, if so, why?. Cortex, 2019, 110, 115-126.	1.1	17
365	Molecular mechanisms underlying striatal synaptic plasticity: relevance to chronic alcohol consumption and seeking. European Journal of Neuroscience, 2019, 49, 768-783.	1.2	19
366	Hippocampal coupling with cortical and subcortical structures in the context of memory consolidation. Neurobiology of Learning and Memory, 2019, 160, 21-31.	1.0	61

#	Article	IF	CITATIONS
367	Synaptic Potentiation at Basal and Apical Dendrites of Hippocampal Pyramidal Neurons Involves Activation of a Distinct Set of Extracellular and Intracellular Molecular Cues. Cerebral Cortex, 2019, 29, 283-304.	1.6	27
368	Test-retest reliability of the emotional enhancement of memory. Memory, 2020, 28, 49-59.	0.9	7
369	MicroRNAâ€134â€5p inhibition rescues longâ€term plasticity and synaptic tagging/capture in an Aβ(1–42)â€induced model of Alzheimer's disease. Aging Cell, 2020, 19, e13046.	3.0	41
370	Neurochemical mechanisms for memory processing during sleep: basic findings in humans and neuropsychiatric implications. Neuropsychopharmacology, 2020, 45, 31-44.	2.8	35
371	Cortical plasticity as synaptic mechanism for chronic pain. Journal of Neural Transmission, 2020, 127, 567-573.	1.4	25
372	Neural correlates of sleep, stress, and selective memory consolidation. Current Opinion in Behavioral Sciences, 2020, 33, 57-64.	2.0	19
373	The differing roles of NREM and REM sleep in the slow enhancement of skills and schemas. Current Opinion in Physiology, 2020, 15, 82-88.	0.9	15
374	Long-term memory consolidation or reconsolidation impairment induces amnesia with key characteristics that are similar to key learning characteristics. Neuroscience and Biobehavioral Reviews, 2020, 108, 542-558.	2.9	7
375	Behavioral tagging underlies memory reconsolidation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18029-18036.	3.3	21
376	EphB2 mediates social isolation-induced memory forgetting. Translational Psychiatry, 2020, 10, 389.	2.4	9
377	Selective role of the translin/trax RNase complex in hippocampal synaptic plasticity. Molecular Brain, 2020, 13, 145.	1.3	8
378	Regulation of aberrant proteasome activity reâ€establishes plasticity and longâ€ŧerm memory in an animal model of Alzheimer's disease. FASEB Journal, 2020, 34, 9466-9479.	0.2	11
379	Sparse coding with a somato-dendritic rule. Neural Networks, 2020, 131, 37-49.	3.3	2
380	Dendritic Spine Plasticity: Function and Mechanisms. Frontiers in Synaptic Neuroscience, 2020, 12, 36.	1.3	110
381	Dopamine is associated with prioritization of reward-associated memories in Parkinson's disease. Brain, 2020, 143, 2519-2531.	3.7	10
382	Control of fear extinction by hypothalamic melanin-concentrating hormone–expressing neurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22514-22521.	3.3	21
383	Dynamical Learning of Dynamics. Physical Review Letters, 2020, 125, 088103.	2.9	33
384	Exploration of a novel virtual environment improves memory consolidation in ADHD. Scientific Reports, 2020, 10, 21453.	1.6	15

ARTICLE IF CITATIONS # Reactivation during sleep with incomplete reminder cues rather than complete ones stabilizes 385 2.0 9 long-term memory in humans. Communications Biology, 2020, 3, 733. Ca2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells, 2020, 9, 1.8 2655. N-Docosahexanoylethanolamine Reduces Microglial Activation and Improves Hippocampal Plasticity in 387 1.8 15 a Murine Model of Neuroinflammation. International Journal of Molecular Sciences, 2020, 21, 9703. Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochemical 388 Pharmacology, 2021, 191, 114369. CaMKIIÎ² in Neuronal Development and Plasticity: An Emerging Candidate in Brain Diseases. International 389 1.8 31 Journal of Molecular Sciences, 2020, 21, 7272. The hypothalamus as a primary coordinator of memory updating. Physiology and Behavior, 2020, 223, 112988. 1.0 Spontaneous Entry into an "Offline―State during Wakefulness: A Mechanism of Memory 391 1.1 18 Consolidation?. Journal of Cognitive Neuroscience, 2020, 32, 1714-1734. Temporal Gating of Synaptic Competition in the Amygdala by Cannabinoid Receptor Activation. 1.6 Cerebral Cortex, 2020, 30, 4064-4075. Research Progress on Alzheimer's Disease and Resveratrol. Neurochemical Research, 2020, 45, 393 1.6 55 989-1006. Initial memory consolidation and the synaptic tagging and capture hypothesis. European Journal of 394 1.2 Neuroscience, 2021, 54, 6826-6849. Exposure to Novelty Promotes Long-Term Contextual Fear Memory Formation in Juvenile Mice: 395 7 1.9 Evidence for a Behavioral Tagging. Molecular Neurobiology, 2020, 57, 3956-3968. Synaptic Plasticity Depends on the Fine-Scale Input Pattern in Thin Dendrites of CA1 Pyramidal Neurons. Journal of Neuroscience, 2020, 40, 2593-2605. Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity. IUBMB Life, 2020, 72, 397 1.5 22 577-589. Modulation of object memory consolidation by heroin and heroin-conditioned stimuli: Role of opioid 398 0.3 and noradrenergic systems. Éuropean Neuropsychopharmacology, 2020, 33, 146-157. A novelty-retrieval-extinction paradigm leads to persistent attenuation of remote fear memories. 399 10 1.6 Scientific Reports, 2020, 10, 3319. Neuroscience: Plasticity Matters for Mating. Current Biology, 2020, 30, R86-R88. 1.8 Novelty Improves the Formation and Persistence of Memory in a Naturalistic School Scenario. 401 1.1 18 Frontiers in Psychology, 2020, 11, 48. Spatial-Memory Formation After Spaced Learning Involves ERKs1/2 Activation Through a 1.6 Behavioral-Tagging Process. Scientific Reports, 2020, 10, 98.

#	Article	IF	CITATIONS
403	Subjective feeling of reâ€experiencing past events using immersive virtual reality prevents a loss of episodic memory. Brain and Behavior, 2020, 10, e01571.	1.0	28
404	Rapid acquisition through fast mapping: stable memory over time and role of prior knowledge. Learning and Memory, 2020, 27, 177-189.	0.5	5
405	Novelty exposure modulates visual and verbal emotional memory: An experimental design with adults. Acta Psychologica, 2020, 205, 103029.	0.7	7
406	Protein Synthesis and Synapse Specificity in Functional Plasticity. , 0, , 269-296.		0
407	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	13.1	57
408	Differential changes in GAP-43 or synaptophysin during appetitive and aversive taste memory formation. Behavioural Brain Research, 2021, 397, 112937.	1.2	2
409	My Neighbour Hetero — deconstructing the mechanisms underlying heterosynaptic plasticity. Current Opinion in Neurobiology, 2021, 67, 106-114.	2.0	28
410	Prior Reward Conditioning Dampens Hippocampal and Striatal Responses during an Associative Memory Task. Journal of Cognitive Neuroscience, 2021, 33, 402-421.	1.1	3
411	Human genetic variants disrupt RGS14 nuclear shuttling and regulation of LTP in hippocampal neurons. Journal of Biological Chemistry, 2021, 296, 100024.	1.6	9
412	The Cerebral Cortex: A Delay-Coupled Recurrent Oscillator Network?. Natural Computing Series, 2021, , 3-28.	2.2	3
413	Ageâ€related changes in hippocampalâ€dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell, 2021, 20, e13305.	3.0	31
414	Roles of palmitoylation in structural long-term synaptic plasticity. Molecular Brain, 2021, 14, 8.	1.3	28
415	Further evidence that CP-AMPARs are critically involved in synaptic tag and capture at hippocampal CA1 synapses. Molecular Brain, 2021, 14, 26.	1.3	8
416	The Mechanical Basis of Memory – the MeshCODE Theory. Frontiers in Molecular Neuroscience, 2021, 14, 592951.	1.4	24
417	Energetics of stochastic BCM type synaptic plasticity and storing of accurate information. Journal of Computational Neuroscience, 2021, 49, 71-106.	0.6	9
418	Analysis of memory modulation by conditioned stimuli. Learning and Memory, 2021, 28, 87-94.	0.5	5
419	Retrograde enhancement of episodic learning by a postlearning stimulus. Learning and Memory, 2021, 28, 82-86.	0.5	2
420	Orexin/Hypocretin and MCH Neurons: Cognitive and Motor Roles Beyond Arousal. Frontiers in Neuroscience, 2021, 15, 639313.	1.4	18

ARTICLE IF CITATIONS # The Making of Long-Lasting Memories: A Fruit Fly Perspective. Frontiers in Behavioral Neuroscience, 421 1.0 10 2021, 15, 662129. Neuropsinâ€dependent and â€independent behavioral tagging. Neuropsychopharmacology Reports, 2021, 41, 422 1.1 215-222. 423 Synaptic plasticity as Bayesian inference. Nature Neuroscience, 2021, 24, 565-571. 7.1 49 Memory consolidation and improvement by synaptic tagging and capture in recurrent neural 424 2.0 networks. Communications Biology, 2021, 4, 275. A predictive account of how novelty influences declarative memory. Neurobiology of Learning and 425 1.0 41 Memory, 2021, 179, 107382. Durable memories and efficient neural coding through mnemonic training using the method of loci. 4.7 Science Advances, 2021, 7, . Transient Astrocytic Gq Signaling Underlies Remote Memory Enhancement. Frontiers in Neural 427 1.4 32 Circuits, 2021, 15, 658343. The biophysical basis underlying the maintenance of early phase long-term potentiation. PLoS Computational Biology, 2021, 17, e1008813. 428 1.5 Behavioral tagging as a mechanism for aversive \hat{e} memory formation under acute stress. European 429 1.2 3 Journal of Neuroscience, 2022, 55, 2651-2665. Upregulation of eIF4E, but not other translation initiation factors, in dendritic spines during memory formation. Journal of Comparative Neurology, 2021, 529, 3112-3126. Emotional learning retroactively enhances item memory but distorts source attribution. Learning and 432 17 0.5 Memory, 2021, 28, 178-186. â€~Sleep-dependent' memory consolidation? Brief periods of post-training rest and sleep provide an equivalent benefit for both declarative and procedural memory. Learning and Memory, 2021, 28, 0.5 195-203. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement 434 1.4 11 of Extracellular Matrix Molecules. Frontiers in Neuroscience, 2021, 15, 646678. The effect of acute aerobic exercise on the consolidation of motor memories. Experimental Brain Research, 2021, 239, 2461-2475. The limited reach of surprise: Evidence against effects of surprise on memory for preceding elements 437 7 1.4 of an event. Psychonomic Bulletin and Review, 2022, 29, 1053-1064. Protein-protein interactions at the NMDA receptor complex: From synaptic retention to 2.0 synaptonuclear protein messengers. Neuropharmacology, 2021, 190, 108551. RGS14 Regulation of Post-Synaptic Signaling and Spine Plasticity in Brain. International Journal of 439 1.8 15 Molecular Sciences, 2021, 22, 6823. Longâ€term plasticity in the hippocampus: maintaining within and †tagging' between synapses. FEBS 440 2.2 Journal, 2022, 289, 2176-2201.

#	Article	IF	Citations
441	Emergence of local and global synaptic organization on cortical dendrites. Nature Communications, 2021, 12, 4005.	5.8	22
442	Anticipation of novel environments enhances memory for incidental information. Learning and Memory, 2021, 28, 254-259.	0.5	4
443	CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neuroscience and Biobehavioral Reviews, 2021, 126, 398-412.	2.9	27
444	Memory consolidation as an adaptive process. Psychonomic Bulletin and Review, 2021, 28, 1796-1810.	1.4	48
445	A Biologically Plausible Audio-Visual Integration Model for Continual Learning. , 2021, , .		0
446	Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy, 2021, 85, 106010.	8.2	75
448	Dopamine modulations of rewardâ€driven music memory consolidation. Annals of the New York Academy of Sciences, 2021, 1502, 85-98.	1.8	17
450	Is there a neuroscience-based, mechanistic rationale for transcranial direct current stimulation as an adjunct treatment for posttraumatic stress disorder?. Behavioral Neuroscience, 2021, 135, 702-713.	0.6	3
451	Molecular mechanism of hippocampal long-term potentiation – Towards multiscale understanding of learning and memory. Neuroscience Research, 2022, 175, 3-15.	1.0	40
452	Dimensions and mechanisms of memory organization. Neuron, 2021, 109, 2649-2662.	3.8	18
454	Spaced training enhances memory and prefrontal ensemble stability in mice. Current Biology, 2021, 31, 4052-4061.e6.	1.8	6
457	Learning continuous-time working memory tasks with on-policy neural reinforcement learning. Neurocomputing, 2021, 461, 635-656.	3.5	2
458	Differences Between Natural and Artificial Cognitive Systems. , 2021, , 17-27.		5
459	Neurobiological Bases of Self-Reference and Deliberate Processing in Tailored Health Communication. , 2013, , 73-82.		4
460	Metaplasticity of Synaptic Tagging and Capture: Memory Beyond the Circle. , 2015, , 197-213.		3
462	Cellular and Systems Consolidation of Declarative Memory. Studies in Neuroscience, Psychology and Behavioral Economics, 2017, , 3-16.	0.1	12
463	A systems-neuroscience model of phasic dopamine Psychological Review, 2020, 127, 972-1021.	2.7	14
476	The Concept of Metaplasticity. Brain & Neurorehabilitation, 2014, 7, 1.	0.4	2

#	Article	IF	CITATIONS
477	β-adrenergic signaling broadly contributes to LTP induction. PLoS Computational Biology, 2017, 13, e1005657.	1.5	27
478	Memory in Elementary School Children Is Improved by an Unrelated Novel Experience. PLoS ONE, 2013, 8, e66875.	1.1	66
479	Interplay between Short- and Long-Term Plasticity in Cell-Assembly Formation. PLoS ONE, 2014, 9, e101535.	1.1	18
480	Test Expectation Enhances Memory Consolidation across Both Sleep and Wake. PLoS ONE, 2016, 11, e0165141.	1.1	21
481	Differential Involvement of Three Brain Regions during Mouse Skill Learning. ENeuro, 2019, 6, ENEURO.0143-19.2019.	0.9	6
482	mTOR signaling in proteostasis and its relevance to autism spectrum disorders. AIMS Biophysics, 2017, 4, 63-89.	0.3	1
483	A role for descending auditory cortical projections in songbird vocal learning. ELife, 2014, 3, .	2.8	93
484	A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. ELife, 2017, 6, .	2.8	15
485	Dendritic trafficking faces physiologically critical speed-precision tradeoffs. ELife, 2016, 5, .	2.8	39
486	Learning induces the translin/trax RNase complex to express activin receptors for persistent memory. ELife, 2017, 6, .	2.8	30
487	mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep. ELife, 2020, 9, .	2.8	37
488	Energy efficient synaptic plasticity. ELife, 2020, 9, .	2.8	25
489	Group III metabotropic glutamate receptors gate long-term potentiation and synaptic tagging/capture in rat hippocampal area CA2. ELife, 2020, 9, .	2.8	24
490	Long-term implicit memory for sequential auditory patterns in humans. ELife, 2020, 9, .	2.8	28
492	Modifying the m6A brain methylome by ALKBH5-mediated demethylation: a new contender for synaptic tagging. Molecular Psychiatry, 2021, 26, 7141-7153.	4.1	19
493	Post-training intra-basolateral complex of the amygdala infusions of clenbuterol enhance memory for conditioned place preference and increase ARC protein expression in dorsal hippocampal synaptic fractions. Neurobiology of Learning and Memory, 2021, 185, 107539.	1.0	1
494	The Addicted Self: A Neuroscientific Perspective. , 2013, , 283-299.		0
495	Electrophysiological and Behavioral Approaches to the Analysis of Synaptic Tagging and Capture. Neuromethods, 2013, , 179-195.	0.2	2

#	Article	IF	CITATIONS
497	Cellular and Dendritic Memory Allocation. Springer Series in Computational Neuroscience, 2014, , 415-432.	0.3	0
498	Dopaminergic Neuromodulation in Synaptic Tagging and Capture. , 2015, , 133-142.		1
500	PKA Anchoring and Synaptic Tagging and Capture. , 2015, , 61-78.		1
501	Prescient Synapses: Gating Future Neuronal Consciousness Through Synaptic Tagging and Metaplasticity. , 2015, , 173-196.		0
502	Inverse Synaptic Tagging by Arc. , 2016, , 99-117.		0
503	Learning and Memory. , 2016, , 2587-2627.		0
504	Nanoconnectomics. Research and Perspectives in Neurosciences, 2016, , 1-10.	0.4	1
515	Subthreshold Fear Conditioning Produces a Rapidly Developing Neural Mechanism that Primes Subsequent Learning. ENeuro, 2019, 6, ENEURO.0113-19.2019.	0.9	2
523	Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiological Reviews, 2022, 102, 269-318.	13.1	13
531	Neurobiology of Memory and Sleep. , 2021, , 81-89.		1
532	Continual Learning Through Synaptic Intelligence. Proceedings of Machine Learning Research, 2017, 70, 3987-3995.	0.3	30
533	Discovering Memory: Using Sea Slugs to Teach Learning and Memory. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2020, 19, R19-R22.	0.6	0
534	The Hippocampal Horizon: Constructing and Segmenting Experience for Episodic Memory. Neuroscience and Biobehavioral Reviews, 2022, 132, 181-196.	2.9	20
536	Molecular Mechanisms of Memory Consolidation That Operate During Sleep. Frontiers in Molecular Neuroscience, 2021, 14, 767384.	1.4	4
537	Forgetting as a form of adaptive engram cell plasticity. Nature Reviews Neuroscience, 2022, 23, 173-186.	4.9	70
538	Fading memories in aging and neurodegeneration: Is p75 neurotrophin receptor a culprit?. Ageing Research Reviews, 2022, 75, 101567.	5.0	3
539	Preserved motor memory in Parkinson's disease. Neuropsychologia, 2022, 167, 108161.	0.7	7
540	Spatial regulation of coordinated excitatory and inhibitory synaptic plasticity at dendritic synapses. Cell Reports, 2022, 38, 110347.	2.9	17

#	Article	IF	CITATIONS
541	A Simplified Plasticity Model Based on Synaptic Tagging and Capture Theory: Simplified STC. Frontiers in Computational Neuroscience, 2021, 15, 798418.	1.2	2
542	Novel immersive virtual reality experiences do not produce retroactive memory benefits for unrelated material. Quarterly Journal of Experimental Psychology, 2022, 75, 2197-2210.	0.6	3
543	Astrocytic $\hat{I}\pm4nAchRs$ Signaling in the Hippocampus Governs the Formation of Temporal Association Memory. SSRN Electronic Journal, 0, , .	0.4	2
544	Behavioral and Cellular Tagging in Young and in Early Cognitive Aging. Frontiers in Aging Neuroscience, 2022, 14, 809879.	1.7	5
545	Persistence of Spatial Memory Induced by Spaced Training Involves a Behavioral-Tagging Process. Neuroscience, 2022, 497, 215-227.	1.1	4
546	The enigma of forgetting. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201332119.	3.3	0
547	Unraveling Molecular and System Processes for Fear Memory. Neuroscience, 2022, , .	1.1	0
548	Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity. Frontiers in Cellular Neuroscience, 2022, 16, 853634.	1.8	5
549	FORMATION MECHANISMS OF LONG-TERM POTENTIATION IN THE HIPPOCAMPUS NEURONS. Fiziolohichnyi Zhurnal (Kiev, Ukraine: 1994), 2021, 67, 74-83.	0.1	0
551	Unrelenting Fear Under Stress: Neural Circuits and Mechanisms for the Immediate Extinction Deficit. Frontiers in Systems Neuroscience, 2022, 16, 888461.	1.2	15
557	Serotonin facilitates late-associative plasticity via synaptic tagging/cross-tagging and capture at hippocampal CA2 synapses in male rats. , 2022, 1, .		2
558	Sleep spindles track cortical learning patterns for memory consolidation. Current Biology, 2022, 32, 2349-2356.e4.	1.8	23
559	Sleep enhances reconsolidation-based strengthening of visuospatial memories. Scientific Reports, 2022, 12, 7307.	1.6	1
560	Rabphilin-3A Drives Structural Modifications of Dendritic Spines Induced by Long-Term Potentiation. Cells, 2022, 11, 1616.	1.8	8
561	Learning induces coordinated neuronal plasticity of metabolic demands and functional brain networks. Communications Biology, 2022, 5, 428.	2.0	9
563	A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex. Nature Communications, 2022, 13, .	5.8	30
564	Behavioral and Neural Mechanisms of Latent Extinction: A Historical Review. Neuroscience, 2022, 497, 157-170.	1.1	1
566	Offline memory consolidation during waking rest. , 2022, 1, 441-453.		16

#	Article	IF	CITATIONS
567	Organization and Priming of Long-term Memory Representations with Two-phase Plasticity. Cognitive Computation, 2023, 15, 1211-1230.	3.6	4
568	Movement-dependent electrical stimulation for volitional strengthening of cortical connections in behaving monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
570	Contributions by metaplasticity to solving the Catastrophic Forgetting Problem. Trends in Neurosciences, 2022, 45, 656-666.	4.2	11
573	Tag and capture: how salient experiences target and rescue nearby events in memory. Trends in Cognitive Sciences, 2022, 26, 782-795.	4.0	21
574	MMM – The molecular model of memory. Journal of Theoretical Biology, 2022, 549, 111219.	0.8	0
575	Kallikrein 8: A key sheddase to strengthen and stabilize neural plasticity. Neuroscience and Biobehavioral Reviews, 2022, 140, 104774.	2.9	2
576	Persistent up-regulation of polyribosomes at synapses during long-term memory, reconsolidation, and extinction of associative memory. Learning and Memory, 2022, 29, 192-202.	0.5	0
577	Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons. Biochemistry, 0, , .	0.8	1
578	Multiplicative Shot-Noise: A New Route to Stability of Plastic Networks. Physical Review Letters, 2022, 129, .	2.9	2
579	Glucose derived carbon nanosphere (CSP) conjugated TTK21, an activator of the histone acetyltransferases CBP/p300, ameliorates amyloidâ€beta 1–42 induced deficits in plasticity and associativity in hippocampal CA1 pyramidal neurons. Aging Cell, 2022, 21, .	3.0	5
580	The Structural Basis of Long-Term Potentiation in Hippocampal Synapses, Revealed by Electron Microscopy Imaging of Lanthanum-Induced Synaptic Vesicle Recycling. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	0
581	Decreased cognitive function of ALG13KO female mice may be related to the decreased plasticity of hippocampal neurons. Neuropeptides, 2022, 96, 102290.	0.9	2
582	Adaptive control of synaptic plasticity integrates micro- and macroscopic network function. Neuropsychopharmacology, 2023, 48, 121-144.	2.8	8
583	A computational model to explore how temporal stimulation patterns affect synapse plasticity. PLoS ONE, 2022, 17, e0275059.	1.1	0
584	Formation and computational implications of assemblies in neural circuits. Journal of Physiology, 2023, 601, 3071-3090.	1.3	9
585	Sleep targets highly connected global and local nodes to aid consolidation of learned graph networks. Scientific Reports, 2022, 12, .	1.6	5
586	Behavior is movement only but how to interpret it? Problems and pitfalls in translational neuroscience—a 40-year experience. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	3
587	Independent effects of emotional arousal and reward anticipation on episodic memory formation. Cerebral Cortex, 2023, 33, 4527-4541.	1.6	2

ARTICLE IF CITATIONS # Learning and Memory., 2022, , 2945-2985. 0 588 Synaptic Plasticity in the Pain-Related Cingulate and Insular Cortex. Biomedicines, 2022, 10, 2745. 589 1.4 Neuromodulator-dependent synaptic tagging and capture retroactively controls neural coding in 590 1.6 5 spiking neural networks. Scientific Reports, 2022, 12, . Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally 2.8 discontiguous inputs. ELife, 0, 11, . A multifarious exploration of synaptic tagging and capture hypothesis in synaptic plasticity: Development of an integrated mathematical model and computational experiments. Journal of 592 0.8 3 Theoretical Biology, 2023, 556, 111326. The effects of physical activity timing and complexity on episodic memory: A randomized controlled trial. Psychology of Sport and Exercise, 2023, 64, 102332. 1.1 Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory 595 5.8 5 formation. Nature Communications, 2022, 13, . Threat learning impairs subsequent associative inference. Scientific Reports, 2022, 12, . 596 1.6 Continuously changing memories: a framework for proactive and non-linear consolidation. Trends in 597 4.2 5 Neurosciences, 2023, 46, 8-19. Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer's disease. Scientific Reports, 2022, 12, . 1.6 Noradrenergic signaling mediates cortical early tagging and storage of remote memory. Nature 600 5.8 6 Communications, 2022, 13, . To sleep or not to sleep – Effects on memory in normal aging and disease. Aging Brain, 2023, 3, 100068. Stress and Novelty: Two interventions to modulate emotional memory in adolescents. Journal of 602 0.8 1 Cognitive Enhancement: Towards the Integration of Theory and Practice, 2023, 7, 39-50. Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules. 1.0 Molecular and Cellular Neurosciences, 2023, 125, 103846. Lifelong learning with Shared and Private Latent Representations learned through synaptic 604 3.3 3 intelligence. Neural Networks, 2023, 163, 165-177. NMDA Receptor–Arc Signaling Is Required for Memory Updating and Is Disrupted in Alzheimer's Disease. Biological Psychiatry, 2023, , . 608 Modern Artificial Neural Networks: Is Evolution Cleverer?. Neural Computation, 2023, 35, 763-806. 1.37 A circuit mechanism linking past and future learning through shifts in perception. Science Advances, 609 2023, 9, .

IF ARTICLE CITATIONS # Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep. Journal of Neuroscience, 2023, 43, 610 1.7 3 3838-3848. Weight versus Node Perturbation Learning in Temporally Extended Tasks: Weight Perturbation Often Performs Similarly or Better. Physical Review X, 2023, 13, . 614 2.8 615 The study of plasticity has always been about gradients. Journal of Physiology, 0, , . 1.33 Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Molecular and Cellular Neurosciences, 2023, 125, 103854. The acute effects of psychoactive drugs on emotional episodic memory encoding, consolidation, and 617 2.9 0 retrieval: A comprehensive review. Neuroscience and Biobehavioral Reviews, 2023, 150, 105188. Computational Neuroscience Models of Working Memory., 2023, 611-663. Excitation–transcription coupling, neuronal gene expression and synaptic plasticity. Nature Reviews Neuroscience, 2023, 24, 672-692. 635 4.9 5 Is there selective retroactive memory enhancement in humans?: a meta-analysis. Psychonomic Bulletin 1.4 Microglial Cells Function in the Central Nervous System. Advances in Bioinformatics and Biomedical 643 0.2 0 Engineering Book Series, 2023, , 60-82. Proteomic-Based Studies on Memory Formation in Normal and Neurodegenerative Disease-Affected Brains. Advances in Experimental Médicine and Biology, 2024, 129-158