Urea as a hydrogen carrier: a perspective on its potential long-term energy supply

Energy and Environmental Science 4, 1216 DOI: 10.1039/c0ee00705f

Citation Report

	CITATION REDORT		CITATION REDOPT	
Article	IF	CITATIONS		
Chemical hydrogen storage: †material' gravimetric capacity versus†system' gravimet and Environmental Science, 2011, 4, 3334.	tric capacity. Energy $_{15.6}$	105		
Hydrogen from urea–water and ammonia–water solutions. Applied Catalysis B: Environment 106, 304-315.	tal, 2011, 10.8	47		

2	Hydrogen from urea–water and ammonia–water solutions. Applied Catalysis B: Environmental, 2011, 106, 304-315.	10.8	47
3	Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons. Journal of Power Sources, 2012, 217, 498-502.	4.0	187
4	Electrochemical decomposition of urea with Ni-based catalysts. Applied Catalysis B: Environmental, 2012, 127, 221-226.	10.8	254
5	Solar driven hydrogen releasing from urea and human urine. Energy and Environmental Science, 2012, 5, 8215.	15.6	160
6	Electrochemical Decomposition of Urea with Ni-Based Catalysts. ECS Meeting Abstracts, 2012, , .	0.0	0
7	Simultaneous production of hydrogen with the degradation of organic pollutants using TiO2 photocatalyst modified with dual surface components. Energy and Environmental Science, 2012, 5, 7647.	15.6	236
8	Assessing the effects of partially decarbonising a diesel engine by co-fuelling with dissociated ammonia. International Journal of Hydrogen Energy, 2012, 37, 6074-6083.	3.8	102
9	Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochimica Acta, 2013, 89, 732-736.	2.6	161
10	Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature. Journal of Materials Chemistry A, 2013, 1, 14957.	5.2	116
13	Electrolysis of urea and urine for solar hydrogen. Catalysis Today, 2013, 199, 2-7.	2.2	80
14	Formation of open-ended nickel hydroxide nanotubes on three-dimensional nickel framework for enhanced urea electrolysis. Electrochemistry Communications, 2013, 29, 21-24.	2.3	104
15	Thermogravimetric evolved gas analysis of urea and urea solutions with nickel alumina catalyst. Thermochimica Acta, 2013, 565, 39-45.	1.2	40
16	Thermodynamics of hydrogen production from urea by steam reforming with and without in situ carbon dioxide sorption. International Journal of Hydrogen Energy, 2013, 38, 10260-10269.	3.8	16
17	Supportâ€Induced Oxidation State of Catalytic Ru Nanoparticles on Carbon Nanofibers that were Doped with Heteroatoms (O, N) for the Decomposition of NH ₃ . ChemCatChem, 2013, 5, 3829-3834.	1.8	43
18	Ammonia as a Suitable Fuel for Fuel Cells. Frontiers in Energy Research, 0, 2, .	1.2	163
19	Toward Practical Application Of H ₂ Generation From Ammonia Decomposition Guided by Rational Catalyst Design. Catalysis Reviews - Science and Engineering, 2014, 56, 220-237.	5.7	84
20	In Situ X-Ray Diffraction Study of Urea Electrolysis on Nickel Catalysts. ECS Electrochemistry Letters, 2014, 3, H29-H32.	1.9	79

#

1

ARTICLE IF CITATIONS # Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochimica Acta, 2014, 134, 2.6 148 21 266-271. Significantly enhanced dehydrogenation properties of calcium borohydride combined with urea. 1.6 Dalton Transactions, 2014, 43, 15291-15294. Anion-exchange membranes in electrochemical energy systems. Energy and Environmental Science, 23 15.6 1,617 2014, 7, 3135-3191. Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for 24 106 enhanced electrolysis of urea. Electrochimica Acta, 2014, 144, 194-199. Photoelectrochemical Properties of LaFeO₃ Nanoparticles. ChemElectroChem, 2014, 1, 25 1.7 53 1667-1671. Urea Degradation by Electrochemically Generated Reactive Chlorine Species: Products and Reaction 4.6 Pathways. Environmental Science & amp; Technology, 2014, 48, 11504-11511. Facile synthesis of mesoporous spinel NiCo₂O₄nanostructures as highly 27 2.8 283 efficient electrocatalysts for urea electro-oxidation. Nanoscale, 2014, 6, 1369-1376. Ni–WC/C nanocluster catalysts for urea electrooxidation. Journal of Power Sources, 2014, 264, 28 4.0 120 282-289. Template-assisted synthesis of Ni–Co bimetallic nanowires for urea electrocatalytic oxidation. 29 1.5 63 Journal of Applied Electrochemistry, 2015, 45, 1217-1222. SOFC fuelled with reformed urea. Applied Energy, 2015, 154, 242-253. 5.1 Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten 31 4.094 carbides/carbon nanotubes. Journal of Power Sources, 2015, 280, 550-554. Synthesis and hydrogen storage properties of lithium borohydride urea complex. International Journal of Hydrogen Energy, 2015, 40, 429-434. 3.8 Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. 33 2.6 159 Electrochimica Acta, 2015, 153, 456-460. Component Analysis of Deposits in Selective Catalytic Reduction System for Automotive Diesel Engine. 34 0.1 MATEC Web of Conferences, 2016, 51, 03006. Nanostructured LaNiO₃ Perovskite Electrocatalyst for Enhanced Urea Oxidation. ACS 35 5.5217 Catalysis, 2016, 6, 5044-5051. Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation 130 Reaction. AĆS Applied Materials & amp; Interfaces, 2016, 8, 12176-12185. Reducing CO2 footprint through synergies in carbon free energy vectors and low carbon fuels. 37 4.5 10 Energy, 2016, 112, 976-983. Urea removal from aqueous solutionsâ€"a review. Journal of Applied Electrochemistry, 2016, 46, 1.5 1011-1029.

	CITATION	i Report	
#	Article	IF	CITATIONS
39	Ureaâ€Based Fuel Cells and Electrocatalysts for Urea Oxidation. Energy Technology, 2016, 4, 1329-1337.	1.8	189
40	Human Urineâ€Fueled Lightâ€Driven NADH Regeneration for Redox Biocatalysis. ChemSusChem, 2016, 9, 1559-1564.	3.6	39
41	Proton-conducting electrolytes for direct methanol and direct urea fuel cells – A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2016, 57, 1347-1358.	8.2	150
42	Optimal Co–Ir bimetallic catalysts supported on γ-Al 2 O 3 for hydrogen generation from hydrous hydrazine. International Journal of Hydrogen Energy, 2016, 41, 984-995.	3.8	42
43	Urea synthesis using chemical looping process – Techno-economic evaluation of a novel plant configuration for a green production. International Journal of Greenhouse Gas Control, 2016, 44, 42-51.	2.3	49
44	Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis. Electrochimica Acta, 2017, 227, 210-216.	2.6	59
45	High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. Journal of Materials Chemistry A, 2017, 5, 3208-3213.	5.2	295
46	NiCo2O4 nanosheets grown on current collectors as binder-free electrodes for hydrogen production via urea electrolysis. International Journal of Hydrogen Energy, 2017, 42, 3987-3993.	3.8	64
47	MnO ₂ /MnCo ₂ O ₄ /Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. Journal of Materials Chemistry A, 2017, 5, 7825-7832.	5.2	152
48	Highly active Ni–Fe double hydroxides as anode catalysts for electrooxidation of urea. New Journal of Chemistry, 2017, 41, 4190-4196.	1.4	79
49	Hollow Sodium Nickel Fluoride Nanocubes Deposited MWCNT as An Efficient Electrocatalyst for Urea Oxidation. Electrochimica Acta, 2017, 240, 175-185.	2.6	69
50	Palladium Copper Chromium Ternary Nanoparticles Constructed Inâ€situ within a Basic Resin: Enhanced Activity in the Dehydrogenation of Formic Acid. ChemCatChem, 2017, 9, 3456-3462.	1.8	53
51	Electrocatalytic oxidation of urea on a sintered Ni–Pt electrode. Journal of Applied Electrochemistry, 2017, 47, 133-138.	1.5	47
52	A glassy carbon electrode modified with carbon nanotubes and reduced graphene oxide decorated with platinum-gold nanoparticles for voltammetric aptasensing of urea. Mikrochimica Acta, 2017, 184, 4685-4694.	2.5	6
53	Influence of nitrogen doping on the electrocatalytic activity of Ni-incorporated carbon nanofibers toward urea oxidation. International Journal of Hydrogen Energy, 2017, 42, 21741-21750.	3.8	41
54	NiO nanoparticles on graphene nanosheets at different calcination temperatures as effective electrocatalysts for urea electro-oxidation in alkaline medium. Journal of Colloid and Interface Science, 2017, 508, 291-302.	5.0	59
55	Photo-assisted electrochemical oxidation of the urea onto TiO2-nanotubes modified by hematite. Journal of Saudi Chemical Society, 2017, 21, 990-997.	2.4	13
56	Se-Ni(OH)2-shelled vertically oriented NiSe nanowires as a superior electrocatalyst toward urea oxidation reaction of fuel cells. Electrochimica Acta, 2017, 248, 243-249.	2.6	77

#	Article	IF	CITATIONS
57	Freestanding and binder free PVdF-HFP/Ni-Co nanofiber membrane as a versatile platform for the electrocatalytic oxidation and non-enzymatic detection of urea. Sensors and Actuators B: Chemical, 2017, 241, 541-551.	4.0	75
58	Concurrent Deposition and Exfoliation of Nickel Hydroxide Nanoflakes Using Liquid Crystal Template and Their Activity for Urea Electrooxidation in Alkaline Medium. Electrocatalysis, 2017, 8, 16-26.	1.5	22
59	Ni x Co 3-x O 4 nanowire arrays grown on carbon fiber cloth as efficient electrocatalysts for urea oxidation. Energy Procedia, 2017, 142, 1414-1420.	1.8	15
60	Enhanced electrocatalytic activity of NiO nanoparticles supported on graphite planes towards urea electro-oxidation in NaOH solution. International Journal of Hydrogen Energy, 2017, 42, 24117-24130.	3.8	56
61	Discovery of cobweb-like MoC ₆ and its application for nitrogen fixation. Journal of Materials Chemistry A, 2018, 6, 9623-9628.	5.2	83
62	Ni(OH) ₂ as Hole Mediator for Visible Light-Induced Urea Splitting. Journal of Physical Chemistry C, 2018, 122, 13995-14003.	1.5	17
63	Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of Materials Chemistry A, 2018, 6, 4346-4353.	5.2	181
64	Porous Ni 2 P nanoflower supported on nickel foam as an efficient three-dimensional electrode for urea electro-oxidation in alkaline medium. International Journal of Hydrogen Energy, 2018, 43, 9316-9325.	3.8	80
65	Insight into the synergistic effect between nickel and tungsten carbide for catalyzing urea electrooxidation in alkaline electrolyte. Applied Catalysis B: Environmental, 2018, 232, 365-370.	10.8	68
66	Solar desalination coupled with water remediation and molecular hydrogen production: a novel solar water-energy nexus. Energy and Environmental Science, 2018, 11, 344-353.	15.6	111
67	Influence of support material on the electrocatalytic activity of nickel oxide nanoparticles for urea electro-oxidation reaction. Journal of Colloid and Interface Science, 2018, 513, 536-548.	5.0	61
68	Oxygen Vacancies Confined in Nickel Molybdenum Oxide Porous Nanosheets for Promoted Electrocatalytic Urea Oxidation. ACS Catalysis, 2018, 8, 1-7.	5.5	372
69	Urea oxidation in a paper-based microfluidic fuel cell using Escherichia coli anode electrode. Journal of Physics: Conference Series, 2018, 1119, 012004.	0.3	10
70	Tungsten Carbide and Cobalt Modified Nickel Nanoparticles Supported on Multiwall Carbon Nanotubes as Highly Efficient Electrocatalysts for Urea Oxidation in Alkaline Electrolyte. ACS Applied Materials & Interfaces, 2018, 10, 41338-41343.	4.0	25
71	Conducting Polymer-Mixed Oxide Composite Electrocatalyst for Enhanced Urea Oxidation. Journal of the Electrochemical Society, 2018, 165, J3310-J3317.	1.3	30
72	Metal-Cluster-Directed Surface Charge Manipulation of Two-Dimensional Nanomaterials for Efficient Urea Electrocatalytic Conversion. ACS Applied Nano Materials, 2018, 1, 6649-6655.	2.4	11
73	Microwave Discharge Electrodeless Lamps (MDELs). Part XI. Photolytic, Chemical Oxidation, and Photocatalytic Treatment of Aqueous Urea Solution with a Novel MDEL Photoreactor. Journal of Oleo Science, 2018, 67, 917-924.	0.6	5
74	Hydrogen-rich syngas production of urea blended with biobutanol by a thermodynamic analysis. International Journal of Hydrogen Energy, 2018, 43, 17562-17573.	3.8	5

#	Article	IF	CITATIONS
75	<i>In situ</i> growth of single-layered α-Ni(OH) ₂ nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. Journal of Materials Chemistry A, 2018, 6, 13867-13873.	5.2	80
76	Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea. Separation and Purification Technology, 2019, 209, 580-587.	3.9	26
77	Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method. Nature Communications, 2019, 10, 3522.	5.8	49
78	Novel Ni foam based nickel oxalate derived porous NiO nanostructures as highly efficient electrodes for the electrooxidation of methanol/ethanol and urea. Journal of Alloys and Compounds, 2019, 806, 1419-1429.	2.8	41
79	Heterostructured Nickel obalt Selenide Immobilized onto Porous Carbon Frameworks as an Advanced Anode Material for Urea Electrocatalysis. ChemElectroChem, 2019, 6, 5191-5202.	1.7	44
80	Defective NiFe ₂ O ₄ Nanoparticles for Efficient Urea Electroâ€oxidation. Chemistry - an Asian Journal, 2019, 14, 2796-2801.	1.7	14
81	Kinetics of Aqueous Media Reactions via Ab Initio Enhanced Molecular Dynamics: The Case of Urea Decomposition. Journal of Physical Chemistry B, 2019, 123, 6851-6856.	1.2	9
82	A comparative assessment of Power-to-Fuel production pathways. Energy, 2019, 183, 1253-1265.	4.5	34
83	Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. Journal of Colloid and Interface Science, 2019, 557, 10-17.	5.0	74
84	Treatment of Errors in Dam Safety Monitoring Data. IOP Conference Series: Earth and Environmental Science, 2019, 304, 042021.	0.2	4
85	Unconventional Atomic Structure of Graphene Sheets on Solid Substrates. Small, 2019, 15, 1902637.	5.2	2
86	Ni(OH) ₂ Nanosheet Electrocatalyst toward Alkaline Urea Electrolysis for Energy aving Acidic Hydrogen Production. ChemElectroChem, 2019, 6, 5313-5320.	1.7	16
87	Preparation of metal oxide/polyaniline/N-MWCNT hybrid composite electrodes for electrocatalytic synthesis of ammonia at atmospheric pressure. Sustainable Energy and Fuels, 2019, 3, 431-438.	2.5	9
88	Shapeâ€Dependent Electrocatalytic Activity of Carbon Reinforced Ni ₂ P Hybrids Toward Urea Electrocatalysis. Energy Technology, 2019, 7, 1900548.	1.8	28
89	Self-supported Ni(OH)2/MnO2 on CFP as a flexible anode towards electrocatalytic urea conversion: The role of composition on activity, redox states and reaction dynamics. Electrochimica Acta, 2019, 318, 32-41.	2.6	33
90	Bifunctional 2D Electrocatalysts of Transition Metal Hydroxide Nanosheet Arrays for Water Splitting and Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 10035-10043.	3.2	184
91	Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical Communications, 2019, 55, 6555-6558.	2.2	53
92	Research on Urea-related Deposit in the Exhaust Pipe of SCR System. MATEC Web of Conferences, 2019, 256, 02013.	0.1	1

#	Article	IF	CITATIONS
93	Enhanced Electrocatalytic Activities by Substitutional Tuning of Nickel-Based Ruddlesden–Popper Catalysts for the Oxidation of Urea and Small Alcohols. ACS Catalysis, 2019, 9, 2664-2673.	5.5	99
94	Directed synthesis of SnO ₂ @BiVO ₄ /Co-Pi photoanode for highly efficient photoelectrochemical water splitting and ureaÂoxidation. Journal of Materials Chemistry A, 2019, 7, 6327-6336.	5.2	81
95	A facile oxidation–dehydration reaction-driven robust porous copper oxide nanobelt coating on copper foam for an energy-saving and low-cost urea oxidization reaction. Chemical Communications, 2019, 55, 13562-13565.	2.2	19
96	Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium. Journal of Power Sources, 2019, 412, 265-271.	4.0	77
97	Highly efficient total nitrogen and simultaneous total organic carbon removal for urine based on the photoelectrochemical cycle reaction of chlorine and hydroxyl radicals. Electrochimica Acta, 2019, 297, 1-9.	2.6	27
98	Urea electro-oxidation efficiently catalyzed by nickel-molybdenum oxide nanorods. Electrochimica Acta, 2019, 295, 524-531.	2.6	82
99	Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis. Energy, 2019, 166, 541-551.	4.5	10
100	Rational design of NiCo2S4 nanowire arrays on nickle foam as highly efficient and durable electrocatalysts toward urea electrooxidation. Chemical Engineering Journal, 2019, 359, 1652-1658.	6.6	79
101	Nickel diselenide nanoflakes give superior urea electrocatalytic conversion. Electrochimica Acta, 2019, 297, 833-841.	2.6	59
102	Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction?. Small Methods, 2019, 3, 1800291.	4.6	210
103	3D NiO nanowalls grown on Ni foam for highly efficient electro-oxidation of urea. Catalysis Today, 2019, 327, 398-404.	2.2	49
104	Photocatalytic oxidation of urea on TiO2 in water and urine: mechanism, product distribution, and effect of surface platinization. Environmental Science and Pollution Research, 2019, 26, 1044-1053.	2.7	25
105	Electrocatalytic urea mineralization in aqueous alkaline medium using Nillcyclam-modified nanoparticulate TiO2 anodes and its relationship with the simultaneous electrogeneration of H2 on Pt counterelectrodes. Arabian Journal of Chemistry, 2020, 13, 1641-1660.	2.3	0
106	Ni3S2 nanowires supported on Ni foam as efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production. Catalysis Today, 2020, 355, 596-601.	2.2	46
107	3D Hierarchical NiCo Layered Double Hydroxide Nanosheet Arrays Decorated with Noble Metal Nanoparticles for Enhanced Urea Electrocatalysis. ChemElectroChem, 2020, 7, 163-174.	1.7	57
108	Mushroom consumption and incident risk of prostate cancer in Japan: A pooled analysis of the Miyagi Cohort Study and the Ohsaki Cohort Study. International Journal of Cancer, 2020, 146, 2712-2720.	2.3	25
109	Design of ultrafine nickel oxide nanostructured material for enhanced electrocatalytic oxidation of urea: Physicochemical and electrochemical analyses. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124092.	2.3	35
110	Plasmon-enhanced hierarchical photoelectrodes with mechanical flexibility for hydrogen generation from urea solution and human urine. Journal of Applied Electrochemistry, 2020, 50, 63-69.	1.5	5

#	Article	IF	CITATIONS
111	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
112	Exhaustive denitrification via chlorine oxide radical reactions for urea based on a novel photoelectrochemical cell. Water Research, 2020, 170, 115357.	5.3	44
113	Thermodynamic assessment of effect of ammonia, hydrazine and urea on water gas shift reaction. International Journal of Hydrogen Energy, 2022, 47, 3237-3247.	3.8	4
114	Nanostructured βâ^'NiS Catalyst for Enhanced and Stable Electroâ^'oxidation of Urea. Catalysts, 2020, 10, 1280.	1.6	29
115	Partial S substitution activates NiMoO ₄ for efficient and stable electrocatalytic urea oxidation. Chemical Communications, 2020, 56, 11038-11041.	2.2	52
116	In situ characterizations of photoelectrochemical cells for solar fuels and chemicals. MRS Energy & Sustainability, 2020, 7, 1.	1.3	11
117	Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis. Advanced Energy and Sustainability Research, 2020, 1, 2000015.	2.8	45
118	Nickel Selenide Quantum Dot Applications in Electrocatalysis and Sensors. Electroanalysis, 2020, 32, 2603-2614.	1.5	6
119	The effect of a ruthenium precursor on the low-temperature ammonia synthesis activity over Ru/CeO ₂ . Dalton Transactions, 2020, 49, 17143-17146.	1.6	21
120	Evaluation of Stainless Steel as an Electrocatalyst for Electrooxidation of Urea - Rich Wastewater. Materials Science Forum, 2020, 1008, 186-190.	0.3	0
121	Development of Nanosized Mn3O4-Co3O4 on Multiwalled Carbon Nanotubes for Cathode Catalyst in Urea Fuel Cell. Energies, 2020, 13, 2322.	1.6	13
122	Urea Electrooxidation: Current Development and Understanding of Niâ€Based Catalysts. ChemElectroChem, 2020, 7, 3211-3228.	1.7	101
123	Evaluation of Industrial Urea Energy Consumption (EC) Based on Life Cycle Assessment (LCA). Sustainability, 2020, 12, 3793.	1.6	17
124	Porous Two-Dimensional Materials for Photocatalytic and Electrocatalytic Applications. Matter, 2020, 2, 1377-1413.	5.0	254
125	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
126	An efficient and non-precious anode electrocatalyst of NiO-modified carbon nanofibers towards electrochemical urea oxidation in alkaline media. Ceramics International, 2020, 46, 20376-20384.	2.3	19
127	Hydrogen-rich syngas production and carbon dioxide formation using aqueous urea solution in biogas steam reforming by thermodynamic analysis. International Journal of Hydrogen Energy, 2020, 45, 11593-11604.	3.8	7
128	Carbon Anchored Epitaxially Grown Nickel Cobaltâ€Based Carbonate Hydroxide for Urea Electrooxidation Reaction with a High Activity and Durability. ChemCatChem, 2020, 12, 2283-2294.	1.8	31

#	Article	IF	CITATIONS
129	Prussian blue analogue-derived porous bimetallic oxides Fe3O4–NiO/NF as urea oxidation electrocatalysis. Chemical Papers, 2020, 74, 4473-4480.	1.0	12
130	A free-standing NiCr-CNT@C anode mat by electrospinning for a high-performance urea/H2O2 fuel cell. Electrochimica Acta, 2020, 354, 136657.	2.6	13
131	Transitioning of localized renewable energy system towards sustainable hydrogen development planning: P-graph approach. Applied Energy, 2020, 263, 114635.	5.1	28
132	Organic bases catalyze the synthesis of urea from ammonium salts derived from recovered environmental ammonia. Scientific Reports, 2020, 10, 2834.	1.6	19
133	Influences of tungsten incorporation, morphology and calcination temperature on the electrocatalytic activity of Ni/C nanostructures toward urea elimination from wastewaters. International Journal of Hydrogen Energy, 2020, 45, 8082-8093.	3.8	17
134	Metal–organic framework–derived Ni@C and NiO@C as anode catalysts for urea fuel cells. Scientific Reports, 2020, 10, 278.	1.6	42
135	Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chinese Journal of Catalysis, 2020, 41, 783-798.	6.9	174
136	Electrochemical fabrication of carbon fiber-based nickel hydroxide/carbon nanotube composite electrodes for improved electro-oxidation of the urea present in alkaline solutions. Separation and Purification Technology, 2021, 258, 118002.	3.9	19
137	Seasonal and temporal factors leading to ureaâ€nitrogen accumulation in surface waters of agricultural drainage ditches. Journal of Environmental Quality, 2021, 50, 185-197.	1.0	2
138	Superior catalytic activity of α-Ni(OH) ₂ for urea electrolysis. Catalysis Science and Technology, 2021, 11, 4294-4300.	2.1	18
139	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	4.6	96
140	Electrochemically active site-rich nanocomposites of two-dimensional materials as anode catalysts for direct oxidation fuel cells: new age beyond graphene. Nanoscale Advances, 2021, 3, 3681-3707.	2.2	13
141	Challenges in the use of hydrogen for maritime applications. Energy and Environmental Science, 2021, 14, 815-843.	15.6	159
142	Electrooxidation of Urea in Alkaline Solution Using Nickel Hydroxide Activated Carbon Paper Electrodeposited from DMSO Solution. Catalysts, 2021, 11, 102.	1.6	10
143	Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 1703-1713.	3.2	85
144	Recent advances and challenges in management of urea wastewater: A mini review. IOP Conference Series: Materials Science and Engineering, 2021, 1046, 012021.	0.3	16
145	Techno-economic comparison of 100% renewable urea production processes. Applied Energy, 2021, 284, 116401.	5.1	24
146	High-Pressure Sorption of Hydrogen in Urea. Journal of Physical Chemistry C, 2021, 125, 7756-7762.	1.5	2

щ		IF	CITATIONS
# 147	ARTICLE Using metadynamics to build neural network potentials for reactive events: the case of urea decomposition in water. Catalysis Today, 2022, 387, 143-149.	2.2	CITATIONS
148	Insights into the Ni/C-Based Thin-Film Catalyst Layer Design for Urea Oxidation Reaction in a Three-Electrode System. ACS Applied Energy Materials, 2021, 4, 4224-4233.	2.5	14
149	Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates. Surface and Coatings Technology, 2021, 411, 127000.	2.2	22
150	Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Topics in Catalysis, 2021, 64, 532-558.	1.3	19
151	Advances in Catalytic Electrooxidation of Urea: A Review. Energy Technology, 2021, 9, 2100017.	1.8	75
152	Nickel/nickel oxide nanocrystal nitrogen-doped carbon composites as efficient electrocatalysts for urea oxidation. Journal of Alloys and Compounds, 2021, 870, 159408.	2.8	18
153	Rational construction of hierarchical Ni(OH)2–NiS in-plane edge hybrid nanosheet structures on the carbon cloth as a robust catalyst for electro-oxidation of urea. Journal of Alloys and Compounds, 2021, 870, 159486.	2.8	17
154	Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction. ChemElectroChem, 2021, 8, 3643-3650.	1.7	14
155	Deciphering and Suppressing Overâ€Oxidized Nitrogen in Nickelâ€Catalyzed Urea Electrolysis. Angewandte Chemie, 2021, 133, 26860-26866.	1.6	18
156	Deciphering and Suppressing Overâ€Oxidized Nitrogen in Nickelâ€Catalyzed Urea Electrolysis. Angewandte Chemie - International Edition, 2021, 60, 26656-26662.	7.2	81
157	Facile synthesis of amorphous nickel iron borate grown on carbon paper as stable electrode materials for promoted electrocatalytic urea oxidation. Catalysis Today, 2022, 397-399, 197-205.	2.2	8
158	Co, Fe-ions intercalated Ni(OH)2 network-like nanosheet arrays as highly efficient non-noble catalyst for electro-oxidation of urea. International Journal of Hydrogen Energy, 2021, 46, 34318-34332.	3.8	15
159	Dimensionally stable anode (Doped-MMO) mediated electro-oxidation and multi-response optimization study for remediation of urea wastewater. Chemosphere, 2021, 285, 131498.	4.2	7
160	Bimetallic Ni-Co@hexacyano nano-frameworks anchored on carbon nanotubes for highly efficient overall water splitting and urea decontamination. Chemical Engineering Journal, 2021, 426, 130773.	6.6	119
161	Boosting eco-friendly hydrogen generation by urea-assisted water electrolysis using spinel M ₂ GeO ₄ (M = Fe, Co) as an active electrocatalyst. Environmental Science: Nano, 2021, 8, 3110-3121.	2.2	24
162	Iron doped Ni3S2 nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting. Chemical Engineering Journal, 2020, 396, 125315.	6.6	97
163	Concise Chemistry of Urea Formaldehyde Resins and Formaldehyde Emission. Insights in Chemistry and Biochemistry, 2020, 1, .	0.6	4
164	Efficient Hydrogen Generation and Total Nitrogen Removal for Urine Treatment in a Neutral Solution Based on a Self-Driving Nano Photoelectrocatalytic System Nanomaterials, 2021, 11, 2777	1.9	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
165	Thermogravimetric Experiment of Urea at Constant Temperatures. Materials, 2021, 14	, 6190.	1.3	5
166	Constructing Hierarchical Fluffy CoO–Co ₄ N@NiFe-LDH Nanorod Arrays Effective Overall Water Splitting and Urea Electrolysis. ACS Sustainable Chemistry and 2021, 9, 14180-14192.	for Highly Engineering,	3.2	48
167	Review on COx-free hydrogen from methane cracking: Catalysts, solar energy integrati applications. Energy Conversion and Management: X, 2021, 12, 100117.	on and	0.9	4
168	Transition metal atoms M (M = Mn, Fe, Cu, Zn) doped nickel-cobalt sulfides on the Ni f oxygen evolution reaction and urea oxidation reaction. Journal of Alloys and Compoun 162269.		2.8	36
169	Ni–Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electro electrolysis. Scientific Reports, 2021, 11, 22003.	de for urea	1.6	20
170	Renewable Ammonia as an Energy Fuel for Ocean Exploration and Transportation. Mar Society Journal, 2020, 54, 126-136.	ine Technology	0.3	5
171	Nickel–Cobalt Modified Boron-Doped Diamond as an Electrode for a Urea/H ₂ O ₂ Fuel Cell. Bulletin of the Chemical Society of Japa 2922-2928.	ın, 2021, 94,	2.0	4
172	Solar remediation of wastewater and saline water with concurrent production of value chemicals. Journal of Environmental Chemical Engineering, 2022, 10, 106919.	-added	3.3	9
173	Photo-assisted electrolysis of urea using Ni-modified WO3/g-C3N4 as a bifunctional ca International Journal of Hydrogen Energy, 2022, 47, 5797-5806.	talyst.	3.8	13
174	A review of Ni based powder catalyst for urea oxidation in assisting water splitting read 100030.	tion. , 2022, 1,		90
175	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	mechanistic	6.4	35
176	Three-dimensional crystalline-Ni5P4@amorphous-NiOx core–shell nanosheets as bifu electrode for urea electro-oxidation and hydrogen evolution. Fuel, 2022, 315, 123279.	inctional	3.4	24
177	Near-Infrared-Driven Photoelectrocatalytic Oxidation of Urea on La-Ni-Based Perovskite Electronic Journal, 0, , .	2s. SSRN	0.4	0
178	A review of hetero-structured Ni-based active catalysts for urea electrolysis. Journal of Chemistry A, 2022, 10, 9308-9326.	Materials	5.2	67
179	Solar-assisted urea oxidation at silicon photoanodes promoted by an amorphous and c adaptive Ni–Mo–O catalytic layer. Journal of Materials Chemistry A, 2022, 10, 197		5.2	14
180	NiOâ€MnOx/Polyaniline/Graphite Electrodes for Urea Electrocatalysis: Synergetic Effec Polymorphs of MnOx and NiO ChemistrySelect, 2022, 7, .	t between	0.7	24
181	Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices 2022, 14, .	. ChemCatChem,	1.8	21
182	Synergistic interaction of Nb atoms anchored on g-C3N4 and H+ promoting high-effici reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1139-1147.	ency nitrogen	6.9	14

#	Article	IF	CITATIONS
183	Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 2022, 7, 284-291.	8.8	105
184	Fe Doped Ni ₃ S ₂ Nanosheet Arrays for Efficient and Stable Electrocatalytic Overall Urea Splitting. ACS Applied Energy Materials, 2022, 5, 1183-1192.	2.5	17
185	Hydrothermal Synthesis of MnWO4@GO Composite as Non-Precious Electrocatalyst for Urea Oxidation. Nanomaterials, 2022, 12, 85.	1.9	5
186	Tragacanth Gum Hydrogel-Derived Trimetallic Nanoparticles Supported on Porous Carbon Catalyst for Urea Electrooxidation. Gels, 2022, 8, 292.	2.1	10
187	Concentrating photo-thermo-organized single-atom and 2D-raft Cu catalyst for full-spectrum solar harmonic conversion of aqueous urea and urine into hydrogen. Applied Catalysis B: Environmental, 2022, 315, 121493.	10.8	7
188	Enhancement of biohydrogen production by employing a packed-filter bioreactor (PFBR) utilizing sulfite-rich organic effluent obtained from a washing process of beverage manufactures. Biomass and Bioenergy, 2022, 161, 106451.	2.9	8
189	NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosensors and Bioelectronics, 2022, 211, 114380.	5.3	19
190	Near-infrared-driven photoelectrocatalytic oxidation of urea on La-Ni-based perovskites. Chemical Engineering Journal, 2022, 446, 137240.	6.6	13
191	Sulfurization-functionalized 2D metal-organic frameworks for high-performance urea fuel cell. Applied Catalysis B: Environmental, 2022, 315, 121586.	10.8	39
192	Method for evaluating the performance of catalytic reactions using renewable-energy-derived materials. Scientific Reports, 2022, 12, .	1.6	0
193	Low-carbon transition in smart city with sustainable airport energy ecosystems and hydrogen-based renewable-grid-storage-flexibility. , 2022, 1, 100001.		53
194	Photocatalyzed Production of Urea as a Hydrogen–Storage Material by TiO2–Based Materials. Photochem, 2022, 2, 539-562.	1.3	1
195	Uniqueness and similarity in flame propagation of pre-dissociated NH3Â+Âair and NH3Â+ÂH2Â+Âair mixtures: An experimental and modelling study. Fuel, 2022, 327, 125159.	3.4	9
196	Solarâ€Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. ChemSusChem, 2022, 15, .	3.6	9
197	Construction of hierarchical nanostructures and NiO nanosheets@nanorods for efficient urea electrooxidation. Chinese Chemical Letters, 2023, 34, 107831.	4.8	0
198	Electronic structure engineering for electrochemical water oxidation. Journal of Materials Chemistry A, 2022, 10, 20218-20241.	5.2	75
199	Sprouts-like Fe(OH)2 hetero-nanostructures assembly on selenium layered nickel foam (NiF–Se) as an efficient and durable catalyst for electro-oxidation of urea. International Journal of Hydrogen Energy, 2022, 47, 31420-31434.	3.8	2
200	Thermodynamic analysis of a multigeneration system using solid oxide cells for renewable power-to-X conversion. International Journal of Hydrogen Energy, 2023, 48, 12056-12071.	3.8	5

#	Article	IF	CITATIONS
201	Industrial status, technological progress, challenges, and prospects of hydrogen energy. Natural Gas Industry B, 2022, 9, 427-447.	1.4	28
202	Hierarchically wood-derived integrated electrode with tunable superhydrophilic/superaerophobic surface for efficient urea electrolysis. Journal of Energy Chemistry, 2023, 76, 566-575.	7.1	22
203	Unveiling the quantification minefield in electrocatalytic urea synthesis. Chemical Engineering Journal, 2023, 453, 139836.	6.6	17
204	Controllable synthesis of urea-assisted Co3O4 nanostructures as an effective catalyst for urea electrooxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130576.	2.3	7
205	Efficient H2 production and TN removal for urine disposal using a novel photoelectrocatalytic system of Co3O4/BiVO4 - MoNiCuOx/Cu. Applied Catalysis B: Environmental, 2023, 324, 122229.	10.8	14
206	Nickel-doped TiO2 and thiophene-naphthalenediimide copolymer based inorganic/organic nano-heterostructure for the enhanced photoelectrochemical urea oxidation reaction. International Journal of Hydrogen Energy, 2023, 48, 7361-7373.	3.8	10
207	Unconventional Phase Synergies with Doping Engineering Over Ni Electrocatalyst Featuring Regulated Electronic State for Accelerated Urea Oxidation. ChemSusChem, 2023, 16, .	3.6	8
208	Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production. International Journal of Hydrogen Energy, 2023, 48, 7219-7259.	3.8	20
209	Crystallization of NiCo MOF-74 on a Porous NiO Film as an Anode for the Urea/H ₂ O ₂ Fuel Cell. ACS Applied Energy Materials, 2023, 6, 2497-2507.	2.5	8
210	3D Hierarchicalâ€Architectured Nanoarray Electrode for Boosted and Sustained Urea Electroâ€Oxidation. Small, 2023, 19, .	5.2	11
211	Low-cost synthesis of non-noble Ni-based MXene (Ni3C) nanosheets decorated nickel foam as a bifunctional electrocatalyst for alkaline-acid urea-nitrate fuel cell. Materials Chemistry and Physics, 2023, 302, 127719.	2.0	2
212	Amorphous nickel tungstate nanocatalyst boosts urea electrooxidation. Chemical Engineering Journal, 2023, 460, 141826.	6.6	9
213	Facile, Controllable, and Ultrathin NiFe-LDH In Situ Grown on a Ni Foam by Ultrasonic Self-Etching for Highly Efficient Urine Conversion. Environmental Science & Technology, 2023, 57, 2939-2948.	4.6	11
214	Directed Ureaâ€ŧoâ€Nitrite Electrooxidation via Tuning Intermediate Adsorption on Co, Ge Coâ€Doped Ni Sites. Advanced Functional Materials, 2023, 33, .	7.8	21
215	Advancing direct seawater electrocatalysis for green and affordable hydrogen. One Earth, 2023, 6, 267-277.	3.6	19
216	Short Review of Self-Powered Nitrogen Removal via Abiotic Electrochemical Catalysis. Processes, 2023, 11, 1096.	1.3	1
220	Amorphous vanadium-doped cobalt oxyborate as an efficient electrocatalyst for urea-assisted H ₂ production from urine sewage. Dalton Transactions, 2023, 52, 9546-9552.	1.6	1
231	NiFe-LDHs as an Effective Electrocatalyst for Electrooxidation of Urea. Springer Proceedings in Materials, 2024, , 263-267.	0.1	0

#	Article	IF	CITATIONS
	Urea catalytic oxidation for energy and environmental applications. Chemical Society Reviews, 2024, 53, 1552-1591.	18.7	2