Kinetics and mechanism of the anilinolyses of aryl dime phosphinates

Organic and Biomolecular Chemistry 9, 717-724

DOI: 10.1039/c0ob00517g

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of difluoromethylphosphonamidates by direct addition of amine. Tetrahedron Letters, 2011, 52, 3681-3685.	0.7	8
2	Reactions of 2- and 4-pyrones with secondary phosphine chalcogenides: a facile synthesis of functional phosphorylated pyrones. Tetrahedron Letters, 2013, 54, 6772-6775.	0.7	8
3	Kinetics and mechanism of the anilinolysis of aryl phenyl isothiocyanophosphates in acetonitrile. Beilstein Journal of Organic Chemistry, 2013, 9, 615-620.	1.3	5
5	Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide. Bulletin of the Korean Chemical Society, 2011, 32, 3587-3591.	1.0	6
6	Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 3743-3747.	1.0	18
7	Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 4185-4190.	1.0	12
8	Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide. Bulletin of the Korean Chemical Society, 2011, 32, 4304-4308.	1.0	7
9	Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 4361-4365.	1.0	9
10	Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 4387-4391.	1.0	6
11	Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 4403-4407.	1.0	15
12	Theoretical Study of Phosphoryl Transfer Reactions. Bulletin of the Korean Chemical Society, 2011, 32, 889-893.	1.0	27
13	Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 1138-1142.	1.0	36
14	Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 1375-1378.	1.0	29
15	Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 1939-1944.	1.0	23
16	Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 1945-1950.	1.0	23
17	Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 1997-2002.	1.0	24
18	Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 2109-2112.	1.0	22
19	Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 2306-2310.	1.0	18

#	ARTICLE	IF	CITATIONS
20	Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 2628-2632.	1.0	27
21	Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 3245-3250.	1.0	22
22	Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 3355-3360.	1.0	17
23	Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 270-274.	1.0	4
24	Pyridinolysis of Dipropyl Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 3441-3444.	1.0	6
25	Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 663-669.	1.0	13
26	Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 1037-1041.	1.0	3
27	Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 1055-1058.	1.0	7
28	Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 843-847.	1.0	8
29	Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2012, 33, 1879-1884.	1.0	9
30	Kinetics and Mechanism of Pyridinolysis of O,O-Diethyl S-Aryl Phosphorothioates. Bulletin of the Korean Chemical Society, 2014, 35, 1329-1332.	1.0	1
31	Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile. Bulletin of the Korean Chemical Society, 2010, 31, 3856-3859.	1.0	36
32	Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 709-712.	1.0	29
33	Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide. Bulletin of the Korean Chemical Society, 2011, 32, 1625-1629.	1.0	16
34	Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide. Bulletin of the Korean Chemical Society, 2011, 32, 2339-2344.	1.0	16
35	Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 2805-2808.	1.0	13
36	Kinetics and Mechanism of the Anilinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Dimethyl Sulfoxide. Bulletin of the Korean Chemical Society, 2011, 32, 3783-3786.	1.0	11
37	Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 3880-3886.	1.0	10

3

#	Article	IF	CITATIONS
38	Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 3947-3951.	1.0	16
39	Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile. Bulletin of the Korean Chemical Society, 2011, 32, 4179-4184.	1.0	7
40	Kinetics and Mechanism of the Anilinolysis of Aryl Ethyl Isothiocyanophosphates in Acetonitrile. Bulletin of the Korean Chemical Society, 2013, 34, 1829-1834.	1.0	3
41	Nucleofugality of diphenylphosphinate and kinetic stabilities of secondary and tertiary benzylic diphenylphosphinates in aqueous solvents. International Journal of Chemical Kinetics, 0, , .	1.0	0
43	Microwave-assisted, ionic liquid-catalyzed aminolysis and alcoholysis of phosphinic derivatives: the interconversion of phosphinates and phosphinic amides. Green Chemistry, 2023, 25, 10372-10380.	4.6	0