Skin-like pressure and strain sensors based on transpar nanotubes

Nature Nanotechnology 6, 788-792 DOI: 10.1038/nnano.2011.184

Citation Report

#	Article	IF	CITATIONS
12	Observation of Magnetic Induction Distribution by Scanning Interference Electron Microscopy. Japanese Journal of Applied Physics, 1994, 33, L1352-L1354.	1.5	16
13	Effect of Void Volume and Silver Loading on Strain Response of Electrical Resistance in Silver Flakes/Polyurethane Composite for Stretchable Conductors. Japanese Journal of Applied Physics, 2012, 51, 11PD01.	1.5	3
14	A novel fully printed and flexible capacitive pressure sensor. , 2012, , .		47
15	Numerical model of a novel tactile sensor based on finite element analysis. , 2012, , .		2
16	Flexible, transparent dielectric capacitors with nanostructured electrodes. Applied Physics Letters, 2012, 101, 103106.	3.3	36
17	An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotechnology, 2012, 7, 825-832.	31.5	1,270
18	Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing. Nanotechnology, 2012, 23, 085501.	2.6	25
19	Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters, 2012, 12, 6366-6371.	9.1	182
20	Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotechnology, 2012, 7, 803-809.	31.5	782
21	Nano meets beetles from wing to tiptoe: Versatile tools for smart and reversible adhesions. Nano Today, 2012, 7, 496-513.	11.9	51
22	Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers. Nano Letters, 2012, 12, 6066-6070.	9.1	109
23	Conductive Rubber Nanocomposites as Tensile and Pressure Sensors. Applied Mechanics and Materials, 2012, 217-219, 130-133.	0.2	3
24	Photothermal-assisted fabrication of iron fluoride–graphene composite paper cathodes for high-energy lithium-ion batteries. Chemical Communications, 2012, 48, 9909.	4.1	84
25	Miniaturized platform with on-chip strain sensors for compression testing of arrayed materials. Lab on A Chip, 2012, 12, 4178.	6.0	18
26	Manipulating Connectivity and Electrical Conductivity in Metallic Nanowire Networks. Nano Letters, 2012, 12, 5966-5971.	9.1	76
27	Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2012, 2, 870.	3.3	517
28	Flexible and transparent all-graphene circuits for quaternary digital modulations. Nature Communications, 2012, 3, 1018.	12.8	87
29	Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Materials, 2012, 4, e19-e19.	7.9	217

#	Article	IF	CITATIONS
30	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	14.6	596
31	Poly(vinyl alcohol) reinforced with large-diameter carbon nanotubes via spray winding. Composites Part A: Applied Science and Manufacturing, 2012, 43, 587-592.	7.6	30
32	Controlling Semiconducting and Insulating States of SnO ₂ Reversibly by Stress and Voltage. ACS Nano, 2012, 6, 7209-7215.	14.6	16
33	Enhancing the Humidity Sensitivity of Ga ₂ O ₃ /SnO ₂ Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor. Small, 2012, 8, 3599-3604.	10.0	25
34	Evaluation of Solution-Processable Carbon-Based Electrodes for All-Carbon Solar Cells. ACS Nano, 2012, 6, 10384-10395.	14.6	154
35	Organic Transistors with Ordered Nanoparticle Arrays as a Tailorable Platform for Selective, <i>In Situ</i> Detection. ACS Nano, 2012, 6, 3100-3108.	14.6	60
36	Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain. Solar Energy Materials and Solar Cells, 2012, 107, 355-365.	6.2	154
37	Stretchable and conformable metal–polymer piezoresistive hybrid system. Sensors and Actuators A: Physical, 2012, 186, 191-197.	4.1	46
38	Rapid Electromechanical Transduction on a Single-Walled Carbon Nanotube Film: Sensing Fast Mechanical Loading via Detection of Electrical Signal Change. Industrial & Engineering Chemistry Research, 2012, 51, 14714-14721.	3.7	6
39	Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes. ACS Nano, 2012, 6, 881-887.	14.6	45
40	Dispersion of single walled carbon nanotubes in amidine solvents. Nanotechnology, 2012, 23, 344011.	2.6	5
41	Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials, 2012, 24, 373-382.	6.7	503
42	Silicon nanomembranes for fingertip electronics. Nanotechnology, 2012, 23, 344004.	2.6	196
43	Flexible Tactile Sensor Using the Reversible Deformation of Poly(3-hexylthiophene) Nanofiber Assemblies. Langmuir, 2012, 28, 17593-17596.	3.5	84
44	Multifunctional graphene woven fabrics. Scientific Reports, 2012, 2, 395.	3.3	156
45	Transparent Triboelectric Nanogenerators and Self-Powered Pressure Sensors Based on Micropatterned Plastic Films. Nano Letters, 2012, 12, 3109-3114.	9.1	1,676
46	A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nature Materials, 2012, 11, 795-801.	27.5	1,453
47	Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. ACS Nano, 2012, 6, 5157-5163.	14.6	139

#	Article	IF	CITATIONS
48	Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Singleâ€Walled Carbon Nanotube Architecture. Advanced Functional Materials, 2012, 22, 5238-5244.	14.9	148
49	Super‧tretchable Springâ€Like Carbon Nanotube Ropes. Advanced Materials, 2012, 24, 2896-2900.	21.0	193
50	An Extremely Simple Thermocouple Made of a Single Layer of Metal. Advanced Materials, 2012, 24, 3275-3279.	21.0	53
51	Carbonâ€Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives. Advanced Materials, 2012, 24, 3344-3349.	21.0	94
52	Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced Materials, 2012, 24, 5117-5122.	21.0	1,139
53	Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nature Communications, 2012, 3, 916.	12.8	292
54	Transparent, Optical, Pressureâ€6ensitive Artificial Skin for Largeâ€Area Stretchable Electronics. Advanced Materials, 2012, 24, 3223-3227.	21.0	410
55	Strong and Stable Doping of Carbon Nanotubes and Graphene by MoO _{<i>x</i>} for Transparent Electrodes. Nano Letters, 2012, 12, 3574-3580.	9.1	146
56	Recent advances in flexible and stretchable electronics, sensors and power sources. Science China Chemistry, 2012, 55, 718-725.	8.2	54
57	Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy. Advanced Materials, 2012, 24, 1073-1077.	21.0	158
58	Multiâ€Functional Integration of Organic Fieldâ€Effect Transistors (OFETs): Advances and Perspectives. Advanced Materials, 2013, 25, 313-330.	21.0	287
59	Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013, 38, 1961-1977.	24.7	539
60	Development of a Stretchable Conductor Array With Embedded Metal Nanowires. IEEE Nanotechnology Magazine, 2013, 12, 561-565.	2.0	16
61	Large cale, Ultrapliable, and Free tanding Nanomembranes. Advanced Materials, 2013, 25, 2167-2173.	21.0	53
62	User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 2013, 12, 899-904.	27.5	1,044
63	Topographic substrates as strain relief features in stretchable organic thin film transistors. Organic Electronics, 2013, 14, 1636-1642.	2.6	55
64	Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Applied Physics Letters, 2013, 103, .	3.3	96
65	Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500, 59-63.	27.8	729

		CITATION REPORT	
#	Article	IF	Citations
66	An ultra-lightweight design for imperceptible plastic electronics. Nature, 2013, 499, 458-463.	27.8	2,133
67	Aligned carbon nanotubes: from controlled synthesis to electronic applications. Nanoscale, 2013, 5, 9483.	5.6	50
68	Atomic Oxygen Chemisorption on Carbon Nanotubes Revisited with Theory and Experiment. Journal of Physical Chemistry C, 2013, 117, 1948-1954.	3.1	8
69	Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure. Scientific Reports, 2013, 3, 2286.	3.3	259
70	Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Research, 2013, 6, 602-610.	10.4	61
71	Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets. Advanced Materials, 2013, 25, 2707-2712.	21.0	159
72	High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nature Photonics, 2013, 7, 752-758.	31.4	641
73	Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System. ACS Nano, 2013, 7, 9213-9222.	14.6	667
74	Flexible Sensors Based on Nanoparticles. ACS Nano, 2013, 7, 8366-8378.	14.6	435
75	Stimuli-responsive transformation in carbon nanotube/expanding microsphere–polymer composites. Nanotechnology, 2013, 24, 185703.	2.6	25
76	Soft Elastomeric Capacitor Network for Strain Sensing Over Large Surfaces. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1647-1654.	5.8	81
77	Mechanics of finger-tip electronics. Journal of Applied Physics, 2013, 114, 164511.	2.5	19
78	Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes. Nature Communications, 2013, 4, 2491.	12.8	65
79	Design and evaluation of a skin-like sensor with high stretchability for contact pressure measurement. Sensors and Actuators A: Physical, 2013, 204, 114-121.	4.1	25
80	Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano, 2013, 7, 8266-8274.	14.6	529
81	Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes. Scientific Reports, 2013, 3, 2048.	3.3	50
82	Swelling of Polymer Dielectric Thin Films for Organic-Transistor-Based Aqueous Sensing Applications. Chemistry of Materials, 2013, 25, 5018-5022.	6.7	8
83	Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3265-70.	7.1	137

ARTICLE IF CITATIONS # Piezotronics and piezo-phototronics $\hat{a} \in F$ rom single nanodevices to array of devices and then to 11.9 141 84 integrated functional system. Nano Today, 2013, 8, 619-642. Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile 12.6 Imaging. Science, 2013, 340, 952-957. Flexible biological sensors based on carbon nanotube films. Nanotechnologies in Russia, 2013, 8, 87 0.7 23 721-726. Carbon nanotube based pressure sensor for flexible electronics. Materials Research Bulletin, 2013, 48, 5036-5039. A high-shear, low Reynolds number microfluidic rheometer. Microfluidics and Nanofluidics, 2013, 14, 89 2.2 33 885-894. Edge-functionalized graphene as reinforcement of epoxy-based conductive composite for electrical 7.8 interconnects. Composites Science and Technology, 2013, 88, 84-91. 91 Light-emitting electronic skin. Nature Photonics, 2013, 7, 769-771. 31.4 82 Polymer dielectric layer functionality in organic field-effect transistor based ammonia gas sensor. 2.6 74 Organic Electronics, 2013, 14, 3453-3459. 93 Transparent elastic capacitive pressure sensors based on silver nanowire electrodes., 2013,,. 2 Friction in Totally Optical Robotic Finger Oriented on Shear Force Measurement. IEEE Sensors 94 Journal, 2013, 13, 548-555. Self-assembled dendron nanotubes with a surface peptideâ€"fluorophore conjugate as a sensory 95 2.8 6 vehicle. New Journal of Chemistry, 2013, 37, 3598. An elastic-spring-substrated nanogenerator as an active sensor for self-powered balance. Energy and 30.8 Environmental Science, 2013, 6, 1164. Three-Dimensional Metalâ€"Grapheneâ€"Nanotube Multifunctional Hybrid Materials. ACS Nano, 2013, 7, 97 14.6 202 58-64. Graphene-based transparent strain sensor. Carbon, 2013, 51, 236-242. A review of fabrication and applications of carbon nanotube film-based flexible electronics. 99 1.037 5.6 Nanoscale, 2013, 5, 1727. Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. Journal of Materials Chemistry A, 2013, 1, 3580. Highly Transparent and Flexible Nanopaper Transistors. ACS Nano, 2013, 7, 2106-2113. 101 14.6 401 High performance piezoelectric devices based on aligned arrays of nanofibers of 12.8 1,001 poly(vinylidenefluoride-co-trifluoroethylene). Nature Communications, 2013, 4, 1633.

#	Article	IF	CITATIONS
103	Highly Electrically Conductive Agâ€Doped Graphene Fibers as Stretchable Conductors. Advanced Materials, 2013, 25, 3249-3253.	21.0	257
104	Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale, 2013, 5, 2403.	5.6	44
105	Reversible Sliding in Networks of Nanowires. Nano Letters, 2013, 13, 2381-2386.	9.1	71
106	Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Applied Physics Letters, 2013, 102, .	3.3	284
107	Robust Flexible Capacitive Surface Sensor for Structural Health Monitoring Applications. Journal of Engineering Mechanics - ASCE, 2013, 139, 879-885.	2.9	103
108	Natural Materials for Organic Electronics. Springer Series in Materials Science, 2013, , 295-318.	0.6	9
109	A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8, 421-425.	31.5	851
110	Review of graphene-based strain sensors. Chinese Physics B, 2013, 22, 057701.	1.4	178
111	A transparent and stretchable graphene-based actuator for tactile display. Nanotechnology, 2013, 24, 145501.	2.6	70
112	Metallic Single-walled Carbon Nanotubes for Electrically Conductive Materials and Devices. RSC Nanoscience and Nanotechnology, 2013, , 182-211.	0.2	1
113	Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications, 2013, 4, 1859.	12.8	1,713
114	Tunable Touch Sensor and Combined Sensing Platform: Toward Nanoparticle-based Electronic Skin. ACS Applied Materials & Interfaces, 2013, 5, 5531-5541.	8.0	149
115	Roomâ€Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conductingâ€Polymerâ€Assisted Joining for a Flexible Touchâ€Panel Application. Advanced Functional Materials, 2013, 23, 4171-4176.	14.9	449
116	Green chemistry for organic solar cells. Energy and Environmental Science, 2013, 6, 2053.	30.8	244
117	Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Materials & Design, 2013, 45, 548-554.	5.1	48
118	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€6kin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	21.0	2,001
119	Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports, 2013, 3, 3048.	3.3	573
120	All-Inkjet Printed Strain Sensors. IEEE Sensors Journal, 2013, 13, 4874-4879.	4.7	80

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
121	Large area all-elastomer capacitive tactile arrays. , 2013, , .		1
122	Spontaneous Assembly of Carbon-Based Chains in Polymer Matrixes through Surface Charge Templates. Langmuir, 2013, 29, 15503-15510.	3.5	18
123	A Highly Stretchable, Fiberâ€Shaped Supercapacitor. Angewandte Chemie - International Edition, 2013, 52, 13453-13457.	13.8	458
124	Soft wearable motion sensing suit for lower limb biomechanics measurements. , 2013, , .		87
125	Soft-matter electronics with stencil lithography. , 2013, , .		16
126	All-elastomer in-plane MEMS capacitive tactile sensor for normal force detection. , 2013, , .		8
127	Breakthroughs in Photonics 2012: Large-Area Ultrathin Photonics. IEEE Photonics Journal, 2013, 5, 0700805-0700805.	2.0	2
128	A Skin-Like Pressure Sensor Array Based on Silver Nanowires and Conductive Elastomer. , 2013, , .		0
129	Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing. Sensors, 2013, 13, 6578-6604.	3.8	44
130	STRETCHABILITY AND SELF-HEALING OF WRINKLED GMR MULTILAYERS ON ELASTOMERIC MEMBRANES. Spin, 2013, 03, 1340005.	1.3	10
131	Biaxially Stretchable Transparent Conductors That Use Metallic Single-Walled Carbon Nanotube Films. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
132	Soft-matter capacitive sensor for measuring shear and pressure deformation. , 2013, , .		60
133	Recent advances in flexible sensors for wearable and implantable devices. Journal of Applied Polymer Science, 2013, 130, 1429-1441.	2.6	382
134	Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. Journal of Applied Physics, 2013, 114, .	2.5	29
135	Simultaneous soft sensing of tissue contact angle and force for millimeter-scale medical robots. , 2013, , .		11
136	Planar patterned stretchable electrode arrays based on flexible printed circuits. Journal of Micromechanics and Microengineering, 2013, 23, 105004.	2.6	12
137	Capuchin: A Free-Climbing Robot. International Journal of Advanced Robotic Systems, 2013, 10, 194.	2.1	18
138	High Dynamic Range Organic Temperature Sensor. Advanced Materials, 2013, 25, 1291-1295.	21.0	68

# 140	ARTICLE Estimation of Displacement and Rotation by Magnetic Tactile Sensor Using Stepwise Regression Analysis. Journal of Sensors, 2014, 2014, 1-7.	IF 1.1	CITATIONS
141	Stretchable capacitive tactile skin on humanoid robot fingers — First experiments and results. , 2014, , .		20
142	Application of stretchable strain sensor for pneumatic artificial muscle. , 2014, , .		7
143	Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites. Journal of Applied Physics, 2014, 115, 154307.	2.5	21
144	Carbon Nanotubes in Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 439-474.	0.1	1
145	Stretching Silver: Printed Metallic Nano Inks in Stretchable Conductor Applications. IEEE Nanotechnology Magazine, 2014, 8, 6-13.	1.3	19
146	Wearable soft sensing suit for human gait measurement. International Journal of Robotics Research, 2014, 33, 1748-1764.	8.5	325
147	Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mechanics Letters, 2014, 1, 120-126.	4.1	27
148	Skin-inspired electronic devices. Materials Today, 2014, 17, 321-331.	14.2	487
149	A Micro-Fabricated Force Sensor Using an All Thin Film Piezoelectric Active Sensor. Sensors, 2014, 14, 22199-22207.	3.8	48
150	Sensitive and stable strain sensors based on the wavy structured electrodes. , 2014, , .		5
151	Fabrication of silver nanorods embedded in PDMS film and its application for strain sensing. Journal Physics D: Applied Physics, 2014, 48, 445303.	2.8	9
152	Static characterization of a soft elastomeric capacitor for non destructive evaluation applications. , 2014, , .		1
153	Electrical conduction of nanoparticle monolayer for accurate tracking of mechanical stimulus in finger touch sensing. Nanoscale, 2014, 6, 13809-13816.	5.6	16
154	Dynamic characterization of a soft elastomeric capacitor for structural health monitoring applications. Proceedings of SPIE, 2014, , .	0.8	1
155	Plex. , 2014, , .		10
156	All-organic self-contact transistors. Applied Physics Letters, 2014, 105, .	3.3	17
157	Relaxation dynamics of carbon nanotubes of enriched chiralities. Physical Review B, 2014, 90, .	3.2	8

#	Article	IF	CITATIONS
158	A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature Communications, 2014, 5, 5898.	12.8	120
159	Fabricâ€Based Integrated Energy Devices for Wearable Activity Monitors. Advanced Materials, 2014, 26, 6329-6334.	21.0	311
160	Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Communications, 2014, 5, 5747.	12.8	1,145
161	An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Advanced Materials, 2014, 26, 943-950.	21.0	163
162	Reverseâ€Micelleâ€Induced Porous Pressureâ€Sensitive Rubber for Wearable Human–Machine Interfaces. Advanced Materials, 2014, 26, 4825-4830.	21.0	564
163	A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Materials, 2014, 6, e132-e132.	7.9	126
164	One-step fabrication of free-standing flexible membranes reinforced with self-assembled arrays of carbon nanotubes. Applied Physics Letters, 2014, 105, 153101.	3.3	6
165	Highâ€Performance, Stretchable, Wireâ€&haped Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 618-622.	13.8	173
166	Transparent, Lowâ€Power Pressure Sensor Matrix Based on Coplanarâ€Gate Graphene Transistors. Advanced Materials, 2014, 26, 4735-4740.	21.0	185
167	Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Applied Physics Letters, 2014, 104, .	3.3	58
168	Flexible and sensitive foot pad for sole distributed force detection. , 2014, , .		6
169	Ultrasensitive Piezoresistive Pressure Sensors Based on Interlocked Micropillar Arrays. BioNanoScience, 2014, 4, 349-355.	3.5	29
171	Highly Sensitive Non lassical Strain Gauge Using Organic Heptazole Thinâ€Film Transistor Circuit on a Flexible Substrate. Advanced Functional Materials, 2014, 24, 4413-4419.	14.9	44
172	Capacitive Epidermal Electronics for Electrically Safe, Longâ€Term Electrophysiological Measurements. Advanced Healthcare Materials, 2014, 3, 642-648.	7.6	231
173	Effects of oxygen plasma treatment and e-beam evaporation on AgNWs/PDMS based stretchable electrode. Smart Materials and Structures, 2014, 23, 104001.	3.5	2
174	Stretch sensors for human body motion. Proceedings of SPIE, 2014, , .	0.8	24
175	Spatially digitized tactile pressure sensors with tunable sensitivity and sensing range. Nanotechnology, 2014, 25, 425504.	2.6	10
176	Development of multi-fingered dexterous hand for grasping manipulation. Science China Information Sciences, 2014, 57, 1-10.	4.3	13

#	Article	IF	CITATIONS
177	Micropillar Arrays for High Sensitivity Sensors. Materials Research Society Symposia Proceedings, 2014, 1685, 1.	0.1	1
178	Graphene inductors for high-frequency applications - design, fabrication, characterization, and study of skin effect. , 2014, , .		11
179	GaN wire-based Langmuir–Blodgett films for self-powered flexible strain sensors. Nanotechnology, 2014, 25, 375502.	2.6	14
180	Novel nanocomposite technologies for dynamic monitoring of structures: a comparison between cement-based embeddable and soft elastomeric surface sensors. Smart Materials and Structures, 2014, 23, 045023.	3.5	93
181	Real-time resistance, transmission and figure-of-merit analysis for transparent conductors under stretching-mode strain. Solar Energy Materials and Solar Cells, 2014, 124, 247-255.	6.2	15
182	A Flexible Reduced Graphene Oxide Fieldâ€Effect Transistor for Ultrasensitive Strain Sensing. Advanced Functional Materials, 2014, 24, 117-124.	14.9	132
183	Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9, 397-404.	31.5	1,246
184	Stretchable and Reversibly Deformable Radio Frequency Antennas Based on Silver Nanowires. ACS Applied Materials & Interfaces, 2014, 6, 4248-4253.	8.0	260
185	3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nature Communications, 2014, 5, 3329.	12.8	485
186	Bipolar strain sensor based on an ultra-thin film of single-walled carbon nanotubes. Journal of the Korean Physical Society, 2014, 64, 488-491.	0.7	2
187	Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science, 2014, 344, 70-74.	12.6	982
188	Silkâ€Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Advanced Materials, 2014, 26, 1336-1342.	21.0	1,225
189	Recent advances in flexible and stretchable electronic devices via electrospinning. Journal of Materials Chemistry C, 2014, 2, 1209-1219.	5.5	144
190	Rapid Prototyping for Softâ€Matter Electronics. Advanced Functional Materials, 2014, 24, 3351-3356.	14.9	173
191	Flexible and Transparent Nanocomposite of Reduced Graphene Oxide and P(VDFâ€TrFE) Copolymer for High Thermal Responsivity in a Fieldâ€Effect Transistor. Advanced Functional Materials, 2014, 24, 3438-3445.	14.9	110
192	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials, 2014, 26, 4253-4259.	21.0	200
193	Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring. Advanced Functional Materials, 2014, 24, 4666-4670.	14.9	923
194	Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Advanced Materials, 2014, 26, 2022-2027.	21.0	1,009

#	Article	IF	CITATIONS
195	Harnessing large deformation and instabilities of soft dielectrics: Theory, experiment, and application. Applied Physics Reviews, 2014, 1, 021304.	11.3	144
196	Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1703-1707.	7.1	234
197	Tuning the threshold voltage of carbon nanotube transistors by n-type molecular doping for robust and flexible complementary circuits. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4776-4781.	7.1	179
198	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.	6.7	170
199	Stretchable Silverâ€Zinc Batteries Based on Embedded Nanowire Elastic Conductors. Advanced Energy Materials, 2014, 4, 1301396.	19.5	127
200	Highly reproducible printable graphite strain gauges for flexible devices. Sensors and Actuators A: Physical, 2014, 206, 75-80.	4.1	90
201	Fabrication of flexible transparent conductive coatings based on single-walled carbon nanotubes. Inorganic Materials, 2014, 50, 23-28.	0.8	48
202	Stretchable and Wearable Electrochromic Devices. ACS Nano, 2014, 8, 316-322.	14.6	399
203	Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nature Communications, 2014, 5, 3121.	12.8	367
204	Silver Nanowire Percolation Network Soldered with Graphene Oxide at Room Temperature and Its Application for Fully Stretchable Polymer Light-Emitting Diodes. ACS Nano, 2014, 8, 1590-1600.	14.6	599
205	A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nature Communications, 2014, 5, 3132.	12.8	1,731
206	Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab on A Chip, 2014, 14, 1107.	6.0	123
207	An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, 5, 3002.	12.8	1,225
208	Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications, 2014, 5, 3005.	12.8	1,155
209	Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale, 2014, 6, 2345.	5.6	895
210	Stretching and conformal bonding of organic solar cells to hemispherical surfaces. Energy and Environmental Science, 2014, 7, 370-378.	30.8	62
211	Direct Writing on Paper of Foldable Capacitive Touch Pads with Silver Nanowire Inks. ACS Applied Materials & amp; Interfaces, 2014, 6, 21721-21729.	8.0	220
212	Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Advanced Materials, 2014, 26, 3451-3458.	21.0	1,030

#	Article	IF	CITATIONS
213	Robust Mechanochromic Elastic Oneâ€Đimensional Photonic Hydrogels for Touch Sensing and Flexible Displays. Advanced Optical Materials, 2014, 2, 652-662.	7.3	83
214	Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Applied Materials & Interfaces, 2014, 6, 18369-18379.	8.0	522
215	Ionic skin. Advanced Materials, 2014, 26, 7608-7614.	21.0	992
216	Copper nanowire based transparent conductive films with high stability and superior stretchability. Journal of Materials Chemistry C, 2014, 2, 5309-5316.	5.5	113
217	Flexible nanocomposites with all-optical tactile sensing capability. RSC Advances, 2014, 4, 2820-2825.	3.6	20
218	Ultrathin self-powered artificial skin. Energy and Environmental Science, 2014, 7, 3994-3999.	30.8	36
219	Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films. RSC Advances, 2014, 4, 43270-43277.	3.6	16
220	Stretchable and Transparent Electrodes using Hybrid Structures of Graphene–Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters, 2014, 14, 6322-6328.	9.1	168
221	Transparent and flexible capacitor fabricated using a metal wire network as a transparent conducting electrode. RSC Advances, 2014, 4, 31108-31112.	3.6	22
222	Tactile-Direction-Sensitive and Stretchable Electronic Skins Based on Human-Skin-Inspired Interlocked Microstructures. ACS Nano, 2014, 8, 12020-12029.	14.6	516
223	Biaxially Stretchable, Integrated Array of High Performance Microsupercapacitors. ACS Nano, 2014, 8, 11639-11650.	14.6	143
224	Programmability of nanowire networks. Nanoscale, 2014, 6, 9632-9639.	5.6	33
225	High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale, 2014, 6, 10734-10739.	5.6	99
226	A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. Journal of Materials Chemistry C, 2014, 2, 4415-4422.	5.5	179
227	A specially structured conductive nickel-deposited poly(ethylene terephthalate) nonwoven membrane intertwined with microbial pili-like poly(vinyl alcohol-co-ethylene) nanofibers and its application as an alcohol sensor. RSC Advances, 2014, 4, 40788-40793.	3.6	10
228	Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology, 2014, 25, 285203.	2.6	46
229	Stretchable Energyâ€Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Advanced Materials, 2014, 26, 7324-7332.	21.0	481
230	Capacitive Energy Harvesting Using Highly Stretchable Silicone–Carbon Nanotube Composite Electrodes. Advanced Energy Materials, 2014, 4, 1300659.	19.5	30

#	Article	IF	CITATIONS
231	Sensitive, High-Strain, High-Rate Bodily Motion Sensors Based on Graphene–Rubber Composites. ACS Nano, 2014, 8, 8819-8830.	14.6	708
232	Fully Printed, Highly Sensitive Multifunctional Artificial Electronic Whisker Arrays Integrated with Strain and Temperature Sensors. ACS Nano, 2014, 8, 3921-3927.	14.6	286
233	Functionalization of Single-Walled Carbon Nanotubes via the Piers–Rubinsztajn Reaction. Macromolecules, 2014, 47, 6527-6530.	4.8	25
234	Highly Stable Carbon Nanotube Topâ€Gate Transistors with Tunable Threshold Voltage. Advanced Materials, 2014, 26, 4588-4593.	21.0	53
235	Elastomer-Infiltrated Vertically Aligned Carbon Nanotube Film-Based Wavy-Configured Stretchable Conductors. ACS Applied Materials & Interfaces, 2014, 6, 12909-12914.	8.0	25
236	Stretchable Energy Storage and Conversion Devices. Small, 2014, 10, 3443-3460.	10.0	126
237	Interactions between Carbon Nanoparticles in a Droplet of Organic Solvent. Journal of Physical Chemistry C, 2014, 118, 16074-16086.	3.1	6
238	Design, Fabrication, and Characterization of Liquid Metal Microheaters. Journal of Microelectromechanical Systems, 2014, 23, 1156-1163.	2.5	38
239	Electret Film-Enhanced Triboelectric Nanogenerator Matrix for Self-Powered Instantaneous Tactile Imaging. ACS Applied Materials & Interfaces, 2014, 6, 3680-3688.	8.0	118
240	A graphene force sensor with pressure-amplifying structure. Carbon, 2014, 78, 601-608.	10.3	60
241	Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Composites Part A: Applied Science and Manufacturing, 2014, 66, 135-141.	7.6	88
242	Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nature Communications, 2014, 5, 4496.	12.8	757
243	Microflotronics: A Flexible, Transparent, Pressure‧ensitive Microfluidic Film. Advanced Functional Materials, 2014, 24, 6195-6203.	14.9	66
244	A Flexible Bimodal Sensor Array for Simultaneous Sensing of Pressure and Temperature. Advanced Materials, 2014, 26, 796-804.	21.0	375
245	Microfluidic tactile sensors for three-dimensional contact force measurements. Lab on A Chip, 2014, 14, 4344-4353.	6.0	47
246	Development of a Skin-Like Tactile Sensor Array for Curved Surface. IEEE Sensors Journal, 2014, 14, 55-61.	4.7	51
247	Soluble Polymer-Based, Blown Bubble Assembly of Single- and Double-Layer Nanowires with Shape Control. ACS Nano, 2014, 8, 3522-3530.	14.6	24
248	Manipulating Nanowire Assembly for Flexible Transparent Electrodes. Angewandte Chemie - International Edition, 2014, 53, 13477-13482.	13.8	97

			-
#	ARTICLE	IF	CITATIONS
249	Highly Stretchable Carbon Nanotube Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2014, 14, 682-686.	9.1	152
250	Knitted Fabrics Made from Highly Conductive Stretchable Fibers. Nano Letters, 2014, 14, 1944-1951.	9.1	153
251	Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening. ACS Applied Materials & Interfaces, 2014, 6, 16368-16374.	8.0	16
252	Dual functional transparent film for proximity and pressure sensing. Nano Research, 2014, 7, 1488-1496.	10.4	122
253	A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 2014, 6, 11932-11939.	5.6	529
254	Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy, 2014, 8, 110-117.	16.0	36
255	Polymerâ€Waveguideâ€Based Flexible Tactile Sensor Array for Dynamic Response. Advanced Materials, 2014, 26, 4474-4480.	21.0	130
256	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	12.1	112
257	Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A, 2014, 2, 11054.	10.3	167
258	Recent advances in solution-processed inorganic nanofilm photodetectors. Chemical Society Reviews, 2014, 43, 1400-1422.	38.1	142
259	Fiberâ€Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Advanced Materials, 2014, 26, 5310-5336.	21.0	1,689
260	Flexible and stretchable thin-film transistors based on molybdenum disulphide. Physical Chemistry Chemical Physics, 2014, 16, 14996.	2.8	56
261	Fiber-Based Generator for Wearable Electronics and Mobile Medication. ACS Nano, 2014, 8, 6273-6280.	14.6	543
262	Using in-Situ Polymerization of Conductive Polymers to Enhance the Electrical Properties of Solution-Processed Carbon Nanotube Films and Fibers. ACS Applied Materials & Interfaces, 2014, 6, 9966-9974.	8.0	43
263	Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon, 2014, 80, 396-404.	10.3	143
264	All-solid-state flexible thin-film supercapacitors with high electrochemical performance based on a two-dimensional V2O5·H2O/graphene composite. Journal of Materials Chemistry A, 2014, 2, 10876.	10.3	82
265	Negative differential conductance materials for flexible electronics. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
266	Composite Films of Poly(3-hexylthiophene) Grafted Single-Walled Carbon Nanotubes for Electrochemical Detection of Metal Ions. ACS Applied Materials & Interfaces, 2014, 6, 7686-7694.	8.0	39

#	ARTICLE	IF	CITATIONS
267	Stretchable Carbon Nanotube/Ion–Gel Supercapacitors with High Durability Realized through Interfacial Microroughness. ACS Applied Materials & Interfaces, 2014, 6, 13578-13586.	8.0	86
268	Miniature wire-shaped solar cells, electrochemical capacitors and lithium-ion batteries. Materials Today, 2014, 17, 276-284.	14.2	53
269	Water Surface Assisted Synthesis of Large cale Carbon Nanotube Film for Highâ€Performance and Stretchable Supercapacitors. Advanced Materials, 2014, 26, 4724-4729.	21.0	148
270	Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors. Small, 2014, 10, 3625-3631.	10.0	540
271	Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014, 9, 244-260.	11.9	246
272	Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano, 2014, 8, 4689-4697.	14.6	726
273	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	21.0	1,314
274	Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 2014, 77, 199-207.	10.3	303
275	Do Carbon Nanotubes contribute to Electrochemical Biosensing?. Electrochimica Acta, 2014, 128, 102-112.	5.2	43
276	Enhanced electrical conductivity and mechanical stability of flexible pressure-sensitive GNPs/CB/SR composites: Synergistic effects of GNPs and CB. Journal of Materials Research, 2015, 30, 3394-3402.	2.6	14
277	Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. Journal of Materials Research, 2015, 30, 3584-3594.	2.6	51
278	Paperâ€Based Active Tactile Sensor Array. Advanced Materials, 2015, 27, 7130-7136.	21.0	131
279	Shape ontrolled, Selfâ€Wrapped Carbon Nanotube 3D Electronics. Advanced Science, 2015, 2, 1500103.	11.2	32
280	Recent Progress in Electronic Skin. Advanced Science, 2015, 2, 1500169.	11.2	789
281	Scalable Microaccordion Mesh for Deformable and Stretchable Metallic Films. Physical Review Applied, 2015, 4, .	3.8	14
282	Hydrodynamic Sensing Based on Surface-Modified Flexible Nanocomposite Film. Chinese Physics Letters, 2015, 32, 114301.	3.3	2
283	Silver nanowires decorated with silver nanoparticles for low-haze flexible transparent conductive films. Scientific Reports, 2015, 5, 16371.	3.3	67
284	Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna. Scientific Reports, 2015, 5, 13615.	3.3	18

ARTICLE IF CITATIONS # Multi-physical simulation and decoupling of a flexible resistance-type three-dimensional force sensor. 285 1 ,2015,,. Flexible CNT-array double helices Strain Sensor with high stretchability for Motion Capture. 3.3 Scientific Reports, 2015, 5, 15554. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors. AIP 287 1.3 16 Advances, 2015, 5, 117233. Nearly isotropic piezoresistive response due to charge detour conduction in nanoparticle thin films. 288 Scientific Reports, 2015, 5, 11939. High resolution skin-like sensor capable of sensing and visualizing various sensations and three 289 3.3 29 dimensional shape. Scientific Reports, 2015, 5, 12997. Fully transparent organic transistors with junction-free metallic network electrodes. Applied Physics Letters, 2015, 107, 033302. 290 3.3 Scalable Sub-micron Patterning of Organic Materials Toward High Density Soft Electronics. Scientific 291 3.3 12 Reports, 2015, 5, 14520. Soft Pressure Sensing Sleeve for Direct Cardiac Compression Device., 2015, , . Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device 293 1.3 30 characterization. AIP Advances, 2015, 5, . 294 A Fully Transparent Resistive Memory for Harsh Environments. Scientific Reports, 2015, 5, 15087. 3.3 Revealing bending and force in a soft body through a plant root inspired approach. Scientific Reports, 295 3.3 45 2015, 5, 8788. Nanoscale Sensor Technologies for Disease Detection via Volatolomics. Small, 2015, 11, 6142-6164. 10.0 159 Transfer Printing of Metallic Microstructures on Adhesionâ€Promoting Hydrogel Substrates. Advanced 297 21.0 44 Materials, 2015, 27, 3398-3404. Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting 14.9 Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705. A novel all-elastomer MEMS tactile sensor for high dynamic range shear and normal force sensing. 300 2.6 50 Journal of Micromechanics and Microengineering, 2015, 25, 095009. Bubbleâ€Decorated Honeycombâ€Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Advanced 14.9 189 Functional Materials, 2015, 25, 6545-6551. Highly Sensitive and Multimodal Allâ€Carbon Skin Sensors Capable of Simultaneously Detecting Tactile 302 21.0 367 and Biological Stimuli. Advanced Materials, 2015, 27, 4178-4185. Flexible Transparent Films Based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for Highâ€Performance Gas Sensing. Small, 2015, 11, 5409-5415.

		CITATION R	EPORT	
#	Article		IF	CITATIONS
304	New Dielectric Elastomers with Variable Moduli. Advanced Functional Materials, 2015,	25, 4827-4836.	14.9	63
305	Flexible Transparent Iontronic Film for Interfacial Capacitive Pressure Sensing. Advance 2015, 27, 6055-6062.	d Materials,	21.0	354
306	Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Static and Dynamic Strain Mapping. Advanced Electronic Materials, 2015, 1, 1500142	Skin for	5.1	226
307	Cellular Polypropylene Piezoelectret for Human Body Energy Harvesting and Health Mo Advanced Functional Materials, 2015, 25, 4788-4794.	pnitoring.	14.9	159
308	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angev - International Edition, 2015, 54, 9760-9774.	wandte Chemie	13.8	135
309	Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. A Functional Materials, 2015, 25, 4228-4236.	Advanced	14.9	560
310	Oxide Nanomembrane Hybrids with Enhanced Mechano―and Thermo‧ensitivity fo Epidermal Electronics. Advanced Healthcare Materials, 2015, 4, 992-997.	r Semitransparent	7.6	49
311	Thicknessâ€Gradient Films for High Gauge Factor Stretchable Strain Sensors. Advance 27, 6230-6237.	d Materials, 2015,	21.0	300
312	A Stretchable and Highly Sensitive Grapheneâ€Based Fiber for Sensing Tensile Strain, I Torsion. Advanced Materials, 2015, 27, 7365-7371.	3ending, and	21.0	673
313	Multifunctional Carbon Nanostructures for Advanced Energy Storage Applications. Na 2015, 5, 755-777.	nomaterials,	4.1	73
314	Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Sensors. Sensors, 2015, 15, 23459-23476.	Electronic	3.8	38
315	Piezoresistive Tactile Sensor Discriminating Multidirectional Forces. Sensors, 2015, 15	, 25463-25473.	3.8	61
316	Structure Analysis and Decoupling Research of a Novel Flexible Tactile Sensor Array. Jo Sensors, 2015, 2015, 1-10.	urnal of	1.1	4
317	Stretchable Strain Sensor Based on Areal Change of Carbon Nanotube Electrode. IEEE Journal, 2015, 15, 2212-2218.	Sensors	4.7	37
318	Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and pressure sensor. Nanoscale, 2015, 7, 6208-6215.	robust flexible	5.6	323
319	Flexible pressure sensing film based on ultra-sensitive SWCNT/PDMS spheres for moni pulse signals. Journal of Materials Chemistry B, 2015, 3, 5436-5441.	toring human	5.8	48
320	Nanoscale pressure sensors realized from suspended graphene membrane devices. Ap Letters, 2015, 106, .	plied Physics	3.3	25
321	Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2015, 7, 6317-6324.	y for Human	8.0	533

#	Article	IF	CITATIONS
322	Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems. Nano Energy, 2015, 15, 587-597.	16.0	79
323	A facile fabrication technique for stretchable interconnects and transducers via laser carbonization. , 2015, , .		1
324	Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS Applied Materials & Interfaces, 2015, 7, 13467-13475.	8.0	77
325	Flexible strain sensors based on electrostatically actuated graphene flakes. Journal of Micromechanics and Microengineering, 2015, 25, 075016.	2.6	8
326	Conductive, flexible transparent electrodes based on mechanically rubbed nonconductive polymer containing silver nanowires. RSC Advances, 2015, 5, 51086-51091.	3.6	9
327	Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion. ACS Nano, 2015, 9, 5929-5936.	14.6	634
328	Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Advanced Materials, 2015, 27, 2324-2331.	21.0	468
329	Highly Stretchy Black Gold E‧kin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Advanced Electronic Materials, 2015, 1, 1400063.	5.1	405
330	A Highly Sensitive and Reliable Strain Sensor Using a Hierarchical 3D and Ordered Network of Carbon Nanotubes. Small, 2015, 11, 2990-2994.	10.0	28
331	Mechanics of curvilinear electronics and optoelectronics. Current Opinion in Solid State and Materials Science, 2015, 19, 171-189.	11.5	36
332	Flexible Capacitive Tactile Sensors Based on Carbon Nanotube Thin Films. IEEE Sensors Journal, 2015, 15, 3225-3233.	4.7	43
334	Cost-Efficient Open Source Desktop Size Radial Stretching System With Force Sensor. IEEE Access, 2015, 3, 556-561.	4.2	21
335	Highly Sensitive Pressure Sensor Array With Photothermally Reduced Graphene Oxide. IEEE Electron Device Letters, 2015, 36, 180-182.	3.9	23
336	Skin force sensor using piezoresistive PEDOT:PSS with arabitol on flexible PDMS. , 2015, , .		1
337	Nanotechnologies for biomedical science and translational medicine. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14436-14443.	7.1	76
338	Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes–Elastomer Composite. ACS Applied Materials & Interfaces, 2015, 7, 27432-27439.	8.0	189
339	A low-cost fabrication technique for direct sewing stretchable interconnetions for wearable electronics. , 2015, , .		10
340	Gum Sensor: A Stretchable, Wearable, and Foldable Sensor Based on Carbon Nanotube/Chewing Gum Membrane. ACS Applied Materials & Interfaces, 2015, 7, 26195-26205.	8.0	85

#	Article	IF	CITATIONS
341	Algorithm for decomposition of additive strain from dense network of thin film sensors. Proceedings of SPIE, 2015, , .	0.8	0
342	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today, 2015, 10, 737-758.	11.9	111
343	An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.	5.5	93
344	Optimization and device application potential of oxide–metal–oxide transparent electrode structure. RSC Advances, 2015, 5, 65094-65099.	3.6	17
345	Design and response performance of capacitance meter for stretchable strain sensor. , 2015, , .		5
346	Stretchable transparent conductors based on copper nanowires and polyurethane. , 2015, , .		0
347	Soft Tactile Skin Using an Embedded Ionic Liquid and Tomographic Imaging. Journal of Mechanisms and Robotics, 2015, 7, .	2.2	86
348	Highly Sensitive Tactile Sensing Array Realized Using a Novel Fabrication Process With Membrane Filters. Journal of Microelectromechanical Systems, 2015, 24, 2062-2070.	2.5	19
349	Thermally Stable, Biocompatible, and Flexible Organic Fieldâ€Effect Transistors and Their Application in Temperature Sensing Arrays for Artificial Skin. Advanced Functional Materials, 2015, 25, 2138-2146.	14.9	184
350	Ultrasensitive self-powered pressure sensing system. Extreme Mechanics Letters, 2015, 2, 28-36.	4.1	78
351	Stretchable Graphene Thermistor with Tunable Thermal Index. ACS Nano, 2015, 9, 2130-2137.	14.6	293
352	Mechanical properties of two-dimensional graphyne sheet, analogous system of BN sheet and graphyne-like BN sheet. Solid State Communications, 2015, 212, 46-52.	1.9	45
353	Nâ€Type Conjugated Polymerâ€Enabled Selective Dispersion of Semiconducting Carbon Nanotubes for Flexible CMOSâ€Like Circuits. Advanced Functional Materials, 2015, 25, 1837-1844.	14.9	32
354	Liquidâ€Phase Metal Inclusions for a Conductive Polymer Composite. Advanced Materials, 2015, 27, 1928-1932.	21.0	315
355	Biomimetic Microfingerprints for Anti ounterfeiting Strategies. Advanced Materials, 2015, 27, 2083-2089.	21.0	243
356	Stretchable Selfâ€Powered Fiberâ€Based Strain Sensor. Advanced Functional Materials, 2015, 25, 1798-1803.	14.9	155
357	pn-Heterojunction Effects of Perylene Tetracarboxylic Diimide Derivatives on Pentacene Field-Effect Transistor. ACS Applied Materials & Interfaces, 2015, 7, 2025-2031.	8.0	17
358	Highly Stretchable and Sensitive Unidirectional Strain Sensor via Laser Carbonization. ACS Applied Materials & Amp; Interfaces, 2015, 7, 4463-4470.	8.0	332

#	Article	IF	CITATIONS
359	Imperceptible magnetoelectronics. Nature Communications, 2015, 6, 6080.	12.8	184
360	Enhanced Tolerance to Stretch-Induced Performance Degradation of Stretchable MnO ₂ -Based Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 2569-2574.	8.0	65
361	Nanomaterialâ€Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced Materials, 2015, 27, 1480-1511.	21.0	594
362	Stretchable Conductive Composites Based on Metal Wools for Use as Electrical Vias in Soft Devices. Advanced Functional Materials, 2015, 25, 1418-1425.	14.9	35
363	Polythiophene Nanofibril Bundles Surfaceâ€Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer. Advanced Materials, 2015, 27, 1255-1261.	21.0	166
364	Eardrumâ€Inspired Active Sensors for Selfâ€Powered Cardiovascular System Characterization and Throatâ€Attached Antiâ€Interference Voice Recognition. Advanced Materials, 2015, 27, 1316-1326.	21.0	487
365	Material Approaches to Stretchable Strain Sensors. ChemPhysChem, 2015, 16, 1155-1163.	2.1	163
366	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. Journal of Materials Chemistry C, 2015, 3, 2319-2325.	5.5	39
367	Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites. ACS Nano, 2015, 9, 336-344.	14.6	81
368	Chemical modification of carbon nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with diphenyl dichalcogenides. Nanoscale, 2015, 7, 6007-6013.	5.6	18
369	Synthesis of monodispersed polystyrene–silver core–shell particles and their application in the fabrication of stretchable large-scale anisotropic conductive films. Journal of Materials Chemistry C, 2015, 3, 3318-3328.	5.5	22
370	Conductive Fiberâ€Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Advanced Materials, 2015, 27, 2433-2439.	21.0	929
371	Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays. Nanotechnology, 2015, 26, 115501.	2.6	25
372	A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range. Scientific Reports, 2015, 5, 8603.	3.3	415
373	Materials and Fractal Designs for 3D Multifunctional Integumentary Membranes with Capabilities in Cardiac Electrotherapy. Advanced Materials, 2015, 27, 1731-1737.	21.0	141
374	Solutionâ€Processed Largeâ€Area Nanocrystal Arrays of Metal–Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring. Small, 2015, 11, 3351-3356.	10.0	75
375	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	12.2	29
376	A flexible high-sensitivity piezoresistive sensor comprising a Au nanoribbon-coated polymer sponge. Journal of Materials Chemistry C, 2015, 3, 9247-9252.	5.5	46

#	Article	IF	CITATIONS
377	Microfluidic devices using flexible organic electronic materials. , 2015, , 397-412.		0
378	The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect. Nanoscale, 2015, 7, 14047-14054.	5.6	49
379	Flexible pressure sensors for burnt skin patient monitoring. Proceedings of SPIE, 2015, , .	0.8	1
380	Flexible self-healing nanocomposites for recoverable motion sensor. Nano Energy, 2015, 17, 1-9.	16.0	82
381	Transparent and conformal 'piezoionic' touch sensor. Proceedings of SPIE, 2015, , .	0.8	16
382	Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications, 2015, 6, 7461.	12.8	677
383	Graphene for Transparent Conductors. , 2015, , .		38
384	Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Letters, 2015, 15, 5240-5247.	9.1	527
385	A transparent flexible z-axis sensitive multi-touch panel based on colloidal ITO nanocrystals. Nanoscale, 2015, 7, 12631-12640.	5.6	15
386	Soft electronics for soft robotics. Proceedings of SPIE, 2015, , .	0.8	10
387	Metal nanowire percolation micro-grids embedded in elastomers for stretchable and transparent conductors. Journal of Materials Chemistry C, 2015, 3, 8241-8247.	5.5	31
389	Dynamic Characterization of a Soft Elastomeric Capacitor for Structural Health Monitoring. Journal of Structural Engineering, 2015, 141, .	3.4	67
390	Soft Tactile Sensors for Human-Machine Interaction. , 2015, , 1-28.		0
391	Tunable strain gauges based on two-dimensional silver nanowire networks. Nanotechnology, 2015, 26, 195504.	2.6	17
392	Highly ordered alignment of conducting nano-crystallites on organic semiconductor single crystal surfaces. Thin Solid Films, 2015, 579, 38-43.	1.8	3
393	Hybrids of silver nanowires and silica nanoparticles as morphology controlled conductive filler applied in flexible conductive nanocomposites. Composites Part A: Applied Science and Manufacturing, 2015, 73, 195-203.	7.6	38
394	Raman and Photoluminescence spectroscopy of polycarbonate matrices irradiated with different energy 28Si+ ions. Vacuum, 2015, 116, 82-89.	3.5	46
395	Sensitivity improvement of graphene/Al2O3/PVDF–TrFE stacked touch device through Al seed assisted dielectric scaling. Microelectronic Engineering, 2015, 147, 79-84.	2.4	11

#	Article	IF	CITATIONS
396	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	21.0	372
397	Surface-modified piezoresistive nanocomposite flexible pressure sensors with high sensitivity and wide linearity. Nanoscale, 2015, 7, 8636-8644.	5.6	84
398	Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano, 2015, 9, 6252-6261.	14.6	821
399	A Pressure Sensing System for Heart Rate Monitoring with Polymer-Based Pressure Sensors and An Anti-Interference Post Processing Circuit. Sensors, 2015, 15, 3224-3235.	3.8	76
400	Smart sensing skin for detection and localization of fatigue cracks. Smart Materials and Structures, 2015, 24, 065004.	3.5	43
402	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	12.8	536
403	High-Resolution Dynamic Pressure Sensor Array Based on Piezo-phototronic Effect Tuned Photoluminescence Imaging. ACS Nano, 2015, 9, 3143-3150.	14.6	122
404	Bioâ€Inspired Chemical Fabrication of Stretchable Transparent Electrodes. Small, 2015, 11, 3444-3449.	10.0	58
405	Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nature Communications, 2015, 6, 6269.	12.8	473
406	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.	5.7	19
406 407	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59. Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.	5.7 0.7	19 14
406 407 408	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59. Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180. Stretchable Thinâ€Film Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.	5.7 0.7 21.0	19 14 419
406 407 408 409	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.Stretchable Thinâ€Film Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.	5.7 0.7 21.0 5.8	19 14 419 44
406 407 408 409	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.Stretchable ThinâFilm Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.	 5.7 0.7 21.0 5.8 14.6 	19 14 419 44 133
406 407 408 409 410	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.Stretchable Thinâ€Film Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7, 9252-9260.	 5.7 0.7 21.0 5.8 14.6 5.6 	19 14 419 44 133 126
406 407 408 409 410 411	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.Stretchable ThinâcFilm Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foams with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7, 9252-9260.Elastomeric Electronic Skin for Prosthetic Tactile Sensation. Advanced Functional Materials, 2015, 25, 2287-2295.	5.7 0.7 21.0 5.8 14.6 5.6	19 14 419 44 133 126 321
406 407 408 409 410 411 412	A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. Journal of Materiomics, 2015, 1, 52-59.Flexible and printable sensors. Nanotechnologies in Russia, 2015, 10, 165-180.Stretchable ThinâcFilm Electrodes for Flexible Electronics with High Deformability and Stretchability. Advanced Materials, 2015, 27, 3349-3376.Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.Synergistic effects from graphene and carbon nanotubes endow ordered hierarchical structure foars with a combination of compressibility, super-elasticity and stability and potential application as pressure sensors. Nanoscale, 2015, 7, 9252-9260.Elastomeric Electronic Skin for Prosthetic Tactile Sensation. Advanced Functional Materials, 2015, 25, 2287-2295.Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & amp; Interfaces, 2015, 7, 6716-6723.	 5.7 0.7 21.0 5.8 14.6 5.6 14.9 8.0 	19 14 419 44 133 126 321 21

#	Article	IF	CITATIONS
415	Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology, 2015, 26, 375501.	2.6	646
416	Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nature Communications, 2015, 6, 8356.	12.8	453
417	Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12332-12337.	7.1	89
418	Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano, 2015, 9, 9974-9985.	14.6	361
419	Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(<i>m</i> -phenylene isophthalamide) Polymer Core/Shell Structures. ACS Nano, 2015, 9, 10252-10257.	14.6	58
420	Porous dielectric elastomer based ultra-sensitive capacitive pressure sensor and its application to wearable sensing device. , 2015, , .		13
421	Characteristics evaluation of stretchable strain sensor for control of pneumatic artificial muscle. , 2015, , .		0
422	Conductive Polymer Fibers for Sensor Devices. , 2015, , 63-78.		1
423	Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters, 2015, 10, 1013.	5.7	119
424	Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Letters, 2015, 15, 5716-5723.	9.1	56
425	Stretchable and Conductive Polymer Films Prepared by Solution Blending. ACS Applied Materials & Interfaces, 2015, 7, 18415-18423.	8.0	172
426	Stretchable and transparent electrodes based on in-plane structures. Nanoscale, 2015, 7, 14577-14594.	5.6	86
427	Patchable thin-film strain gauges based on pentacene transistors. Organic Electronics, 2015, 26, 355-358.	2.6	9
428	Functional Nanomaterial Devices. , 2015, , 155-193.		0
429	Impedance characteristics of surface pressure-sensitive carbon black/silicone rubber composites. Sensors and Actuators A: Physical, 2015, 233, 118-124.	4.1	34
430	Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air. Physical Chemistry Chemical Physics, 2015, 17, 31110-31116.	2.8	50
431	Internal Electron Tunneling Enabled Ultrasensitive Position/Force Peapod Sensors. Nano Letters, 2015, 15, 7281-7287.	9.1	11
432	Network of flexible capacitive strain gauges for the reconstruction of surface strain. Measurement Science and Technology, 2015, 26, 055103.	2.6	16

#	Article	IF	CITATIONS
433	Application of Graphene-Based Transparent Conductors (TCs). , 2015, , 179-203.		2
434	Toward Paper-Based Sensors: Turning Electrical Signals into an Optical Readout System. ACS Applied Materials & Interfaces, 2015, 7, 19201-19209.	8.0	45
435	A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nature Communications, 2015, 6, 8011.	12.8	749
436	Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities. ACS Nano, 2015, 9, 8801-8810.	14.6	450
437	Improving the Sensitivity of Elastic Capacitive Pressure Sensors Using Silver Nanowire Mesh Electrodes. IEEE Nanotechnology Magazine, 2015, 14, 619-623.	2.0	20
438	Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors. ACS Applied Materials & Interfaces, 2015, 7, 19700-19708.	8.0	273
439	Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes. Nanoscale, 2015, 7, 16434-16441.	5.6	42
440	Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon, 2015, 95, 1020-1026.	10.3	103
441	Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Applied Materials & Interfaces, 2015, 7, 21150-21158.	8.0	267
443	Small and light strain sensors based on graphene coated human hairs. Nanoscale, 2015, 7, 16361-16365.	5.6	61
444	Design and fabrication of a flexible MEMS-based electro-mechanical sensor array for breast cancer diagnosis. Journal of Micromechanics and Microengineering, 2015, 25, 075025.	2.6	46
445	A flexible strain sensor made of graphene nanoplatelets/polydimethylsiloxane nanocomposite. Microelectronic Engineering, 2015, 142, 7-11.	2.4	45
446	Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics. Applied Physics Letters, 2015, 107, .	3.3	29
447	Dynamic Electrochemical Properties of Extremely Stretchable Electrochemical Capacitor Using Reduced Graphene Oxide/Single-Wall Carbon Nanotubes Composite. Journal of the Electrochemical Society, 2015, 162, A2351-A2355.	2.9	4
448	Organic Electronics Materials and Devices. , 2015, , .		35
449	A tactile sensor using a graphene film formed by the reduced graphene oxide flakes and its detection of surface morphology. Carbon, 2015, 94, 982-987.	10.3	43
450	Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics. Nature Communications, 2015, 6, 8874.	12.8	149
451	Tactile imaging and distributed strain sensing in highly flexible carbon nanofiber/polyurethane nanocomposites. Carbon, 2015, 95, 485-493.	10.3	73

~			~	
C^{+}		ON	REDC	DT
\sim	плі		NLFC	

#	Article	IF	CITATIONS
452	Soft Anisotropic Conductors as Electric Vias for Ga-Based Liquid Metal Circuits. ACS Applied Materials & amp; Interfaces, 2015, 7, 26923-26929.	8.0	66
453	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.8	155
454	Tensile strain sensing of buckypaper and buckypaper composites. Materials and Design, 2015, 88, 414-419.	7.0	32
456	Detection Analysis of Small Notches Damages Using a New Tactile Optical Device. IEEE/ASME Transactions on Mechatronics, 2015, 20, 313-320.	5.8	16
457	Solvent Effects on Polymer Sorting of Carbon Nanotubes with Applications in Printed Electronics. Small, 2015, 11, 126-133.	10.0	69
458	Bio-based soft elastomeric capacitor for structural health monitoring applications. Structural Health Monitoring, 2015, 14, 158-167.	7.5	14
459	A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires. Nanoscale, 2015, 7, 2926-2932.	5.6	249
460	High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized CFT electrodes for wearable/stretchable electronics. Nano Energy, 2015, 11, 662-670.	16.0	134
461	Impact of geometry on stretchable meandered interconnect uniaxial tensile extension fatigue reliability. Microelectronics Reliability, 2015, 55, 143-154.	1.7	28
462	Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Scientific Reports, 2014, 4, 6074.	3.3	128
463	Zinc Oxide Nanowire-Poly(Methyl Methacrylate) Dielectric Layers for Polymer Capacitive Pressure Sensors. ACS Applied Materials & Interfaces, 2015, 7, 45-50.	8.0	64
464	Bulk dispersion of singleâ€walled carbon nanotubes in silicones using diblock copolymers. Journal of Polymer Science Part A, 2015, 53, 265-273.	2.3	5
465	Facile strain analysis of largely bending films by a surface-labelled grating method. Scientific Reports, 2014, 4, 5377.	3.3	33
466	A flexible pressure-sensitive array based on soft substrate. Sensors and Actuators A: Physical, 2015, 222, 80-86.	4.1	24
467	Transparent and Stretchable Interactive Human Machine Interface Based on Patterned Graphene Heterostructures. Advanced Functional Materials, 2015, 25, 375-383.	14.9	496
468	Design and operation of silver nanowire based flexible and stretchable touch sensors. Journal of Materials Research, 2015, 30, 79-85.	2.6	48
469	Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems, 2015, 63, 230-243.	5.1	155
470	A flexible tactile and shear sensing array fabricated using a novel buckypaper patterning technique. Sensors and Actuators A: Physical, 2015, 231, 21-27.	4.1	36

	CITATION	CITATION REPORT	
#	Article	IF	Citations
471	Flexible transparent conductors based on metal nanowire networks. Materials Today, 2015, 18, 143-154.	14.2	209
472	Flexible and all-solid-state supercapacitors with long-time stability constructed on PET/Au/polyaniline hybrid electrodes. Journal of Materials Chemistry A, 2015, 3, 617-623.	10.3	44
473	An Imperceptible Plastic Electronic Wrap. Advanced Materials, 2015, 27, 34-40.	21.0	145
474	Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2, 140-156.	12.2	995
475	Stretchable and High-Performance Supercapacitors with Crumpled Graphene Papers. Scientific Reports, 2014, 4, 6492.	3.3	207
476	Recent Advances in Wearable Sensors for Health Monitoring. IEEE Sensors Journal, 2015, 15, 3119-3126.	4.7	250
477	Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 2015, 8, 31-54.	30.8	232
478	Application of Plant Oil-Based Products inÂStructural Health Monitoring. , 2016, , 191-206.		0
479	Estimation method using genetic programming for location and depth on distributed tactile sensor. International Journal of Applied Electromagnetics and Mechanics, 2016, 52, 1221-1229.	0.6	0
480	Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Nanomaterials, 2016, 6, 168.	4.1	16
481	Integration of a Thin Film PDMS-Based Capacitive Sensor for Tactile Sensing in an Electronic Skin. Journal of Sensors, 2016, 2016, 1-7.	1.1	33
482	Annealing Effects of Parylene-Caulked Polydimethylsiloxane as a Substrate of Electrodes. Sensors, 2016, 16, 2181.	3.8	1
483	The Design and Characterization of a Flexible Tactile Sensing Array for Robot Skin. Sensors, 2016, 16, 2001.	3.8	52
484	Soft Manipulators and Grippers: A Review. Frontiers in Robotics and Al, 0, 3, .	3.2	403
485	Silver Nanowire-Based Stretchable and Transparent Electrodes. Journal of Japan Institute of Electronics Packaging, 2016, 19, 228-233.	0.1	1
486	A soft compressive sensor using dielectric elastomers. Smart Materials and Structures, 2016, 25, 035045.	3.5	33
487	Selfâ€essembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 2016, 28, 1298-1304.	2.9	73
488	Cytocompatible, Photoreversible, and Selfâ€Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation. Macromolecular Bioscience, 2016, 16, 1381-1390.	4.1	16

#	Article	IF	CITATIONS
489	Selfâ€Powered Piezoionic Strain Sensor toward the Monitoring of Human Activities. Small, 2016, 12, 5074-5080.	10.0	105
490	Theoretical Study of Cellular Piezoelectret Generators. Advanced Functional Materials, 2016, 26, 1964-1974.	14.9	58
491	Electroluminescence of Giant Stretchability. Advanced Materials, 2016, 28, 4480-4484.	21.0	230
492	Selfâ€Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating. Advanced Materials, 2016, 28, 7149-7154.	21.0	141
493	Highly Conductive Stretchable Electrodes Prepared by In Situ Reduction of Wavy Graphene Oxide Films Coated on Elastic Tapes. Advanced Electronic Materials, 2016, 2, 1600022.	5.1	40
494	Stretchable, Skinâ€Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials, 2016, 26, 1678-1698.	14.9	2,340
495	Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials, 2016, 28, 4306-4337.	21.0	595
496	Highly Stretchable Conductors Made by Laser Draw asting of Ultralong Metal Nanowires. Advanced Electronic Materials, 2016, 2, 1600003.	5.1	3
497	Evaluation of mesotherapy as a transdermal drug delivery tool. Skin Research and Technology, 2016, 22, 158-163.	1.6	5
498	Polypyrrole oated PDMS Fibrous Membrane: Flexible Strain Sensor with Distinctive Resistance Responses at Different Strain Ranges. Macromolecular Materials and Engineering, 2016, 301, 707-713.	3.6	31
499	Single-Step Fluorocarbon Plasma Treatment-Induced Wrinkle Structure for High-Performance Triboelectric Nanogenerator. Small, 2016, 12, 229-236.	10.0	134
500	Pursuing prosthetic electronic skin. Nature Materials, 2016, 15, 937-950.	27.5	1,821
501	Sensor Devices Inspired by the Five Senses: A Review. Electroanalysis, 2016, 28, 1201-1241.	2.9	33
502	Modeling and simulation of electromechanical-contact based elastomeric pressure sensor. , 2016, , .		1
503	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. Advanced Functional Materials, 2016, 26, 2078-2084.	14.9	328
504	Nanoparticle Based Curve Arrays for Multirecognition Flexible Electronics. Advanced Materials, 2016, 28, 1369-1374.	21.0	153
505	Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials, 2016, 28, 4415-4440.	21.0	643
506	Selfâ€Assembly of Singleâ€Crystal Silver Microflakes on Reduced Graphene Oxide and their Use in Ultrasensitive Sensors. Advanced Materials Interfaces, 2016, 3, 1500658.	3.7	3

#	Article	IF	CITATIONS
507	Flexible and Stretchable Strain Sensing Actuator for Wearable Soft Robotic Applications. Advanced Materials Technologies, 2016, 1, 1600018.	5.8	188
508	Lowâ€Cost and Largeâ€Area Strain Sensors Based on Plasmonic Fano Resonances. Advanced Optical Materials, 2016, 4, 715-721.	7.3	30
509	Integration: An Effective Strategy to Develop Multifunctional Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1501867.	19.5	138
510	The electronic and optical properties of silicene/g-ZnS heterobilayers: a theoretical study. Journal of Materials Chemistry C, 2016, 4, 7004-7012.	5.5	34
511	49-4L: <i>Late-News Paper</i> : All-Ink-Jet-Printed Wearable Information Display Directly Fabricated onto an Elastomeric Substrate. Digest of Technical Papers SID International Symposium, 2016, 47, 672-675.	0.3	2
512	Highly Flexible Wrinkled Carbon Nanotube Thin Film Strain Sensor to Monitor Human Movement. Advanced Materials Technologies, 2016, 1, 1600053.	5.8	154
513	Deformation Effect on the Electrical Properties of a Flexible Organic Semiconductor composed of Poly(dimethylsiloxane) and Multiwalled Carbon Nanotubes. Advanced Electronic Materials, 2016, 2, 1500421.	5.1	0
514	Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small, 2016, 12, 5042-5048.	10.0	377
515	Fabrication and characterisation of highly stretchable elastomeric strain sensors for prosthetic hand applications. Sensors and Actuators A: Physical, 2016, 247, 514-521.	4.1	44
516	Highly Sensitive Detection of the Lattice Distortion in Single Bent ZnO Nanowires by Second-Harmonic Generation Microscopy. ACS Photonics, 2016, 3, 1308-1314.	6.6	26
517	Enhancing the Sensitivity of Percolative Graphene Films for Flexible and Transparent Pressure Sensor Arrays. Advanced Functional Materials, 2016, 26, 5061-5067.	14.9	87
518	A Highly Stretchable ZnO@Fiberâ€Based Multifunctional Nanosensor for Strain/Temperature/UV Detection. Advanced Functional Materials, 2016, 26, 3074-3081.	14.9	239
519	An Universal and Easyâ€ŧoâ€Use Model for the Pressure of Arbitrary‧hape 3D Multifunctional Integumentary Cardiac Membranes. Advanced Healthcare Materials, 2016, 5, 889-892.	7.6	13
520	Mechanically Durable and Highly Stretchable Transistors Employing Carbon Nanotube Semiconductor and Electrodes. Advanced Materials, 2016, 28, 4441-4448.	21.0	234
521	An Epidermal Stimulation and Sensing Platform for Sensorimotor Prosthetic Control, Management of Lower Back Exertion, and Electrical Muscle Activation. Advanced Materials, 2016, 28, 4462-4471.	21.0	240
522	A Strainâ€Insensitive Stretchable Electronic Conductor: PEDOT:PSS/Acrylamide Organogels. Advanced Materials, 2016, 28, 1636-1643.	21.0	241
523	Stretchable Eâ€ S kin Apexcardiogram Sensor. Advanced Materials, 2016, 28, 6359-6364.	21.0	182
524	Soft capacitive tactile sensing arrays fabricated via direct filament casting. Smart Materials and Structures, 2016, 25, 075009.	3.5	37

#	Article	IF	Citations
525	Mutual capacitance of liquid conductors in deformable tactile sensing arrays. Applied Physics Letters, 2016, 108, .	3.3	40
526	Ultra-smooth glassy graphene thin films for flexible transparent circuits. Science Advances, 2016, 2, e1601574.	10.3	59
527	Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment. Scientific Reports, 2016, 5, 18257.	3.3	109
528	Stretchable Triboelectric Fiber for Self-powered Kinematic Sensing Textile. Scientific Reports, 2016, 6, 35153.	3.3	111
529	Piezopotential-Programmed Multilevel Nonvolatile Memory As Triggered by Mechanical Stimuli. ACS Nano, 2016, 10, 11037-11043.	14.6	37
530	Assemblies of Microfluidic Channels and Micropillars Facilitate Sensitive and Compliant Tactile Sensing. IEEE Sensors Journal, 2016, 16, 8908-8915.	4.7	18
531	Control of artificial human finger using wearable device and adaptive network-based fuzzy inference system. , 2016, , .		3
532	Effects of cation on electrical responses of ionic polymer-metal composite sensors at various ambient humidities. Journal of Applied Physics, 2016, 120, .	2.5	25
533	A flexible, wave-shaped P(VDF-TrFE)/metglas piezoelectric composite for wearable applications. Journal of Applied Physics, 2016, 120, .	2.5	31
534	Force-Sensing Sleeve for Laparoscopic Surgery1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.7	9
535	Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation. Journal of Chemical Physics, 2016, 144, 194903.	3.0	11
536	Stretchable strain sensor for distributed strain measurement and design of measurement circuit. International Journal of Applied Electromagnetics and Mechanics, 2016, 52, 1681-1688.	0.6	0
537	Contact localization through spatially overlapping piezoresistive signals. , 2016, , .		6
538	A soft microfabricated capacitive sensor for high dynamic range strain sensing. , 2016, , .		5
539	Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin. Measurement Science and Technology, 2016, 27, 124016.	2.6	28
540	PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression. Microsystems and Nanoengineering, 2016, 2, 16065.	7.0	64
541	Shapeable magnetoelectronics. Applied Physics Reviews, 2016, 3, 011101.	11.3	141
542	Numerical study of electrical transport in co-percolative metal nanowire-graphene thin-films. Journal of Applied Physics, 2016, 120, 175106.	2.5	3

ARTICLE IF CITATIONS # An easily fabricated high performance ionic polymer based sensor network. Applied Physics Letters, 543 3.3 20 2016, 109, . Liquid metal actuation by electrical control of interfacial tension. Applied Physics Reviews, 2016, 3, 544 11.3 129 031103. A flexible touch-pressure sensor array with wireless transmission system for robotic skin. Review of 545 1.3 28 Scientific Instruments, 2016, 87, 065007. The rise of plastic bioelectronics. Nature, 2016, 540, 379-385. 546 1,280 Mapping the process dependent conductivity of carbon nanotube thin-films using a non-invasive 547 1.3 2 contact probing system. Review of Scientific Instruments, 2016, 87, 023903. Multi-physical model of cation and water transport in ionic polymer-metal composite sensors. 549 2.5 Journal of Applied Physics, 2016, 119, . A CMOS-compatible large-scale monolithic integration of heterogeneous multi-sensors on flexible 550 6 silicon for IoT applications., 2016,,. Pressure-sensing properties of single-walled carbon nanotubes covered with a corona-poled 3.3 piezoelectric polymer. Applied Physics Letters, 2016, 109, 033104. 552 Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , . 0.1 90 Liquid Metals for Soft and Stretchable Electronics. Microsystems and Nanosystems, 2016, , 3-30. 0.1 High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. Microsystems 554 2 0.1 and Nanosystems, 2016, , 151-171. Sensor Skins: An Overview. Microsystems and Nanosystems, 2016, , 173-191. 0.1 First principles study on B/N pairs co-doping zigzag single-walled carbon nanotubes. Chemical Physics 556 2.6 7 Letters, 2016, 653, 144-148. 3D printed bionic nanodevices. Nano Today, 2016, 11, 330-350. 11.9 A wearable piezocapacitive pressure sensor with a single layer of silver nanowire-based elastomeric 558 10.3 120 composite electrodes. Journal of Materials Chemistry Ă, 2016, 4, 10435-10443. A highly sensitive pressure sensor using conductive composite elastomers with wavy structures. Proceedings of SPIE, 2016, , . A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability. 560 5.6 141 Nanoscale, 2016, 8, 12105-12112. Hierarchical graphene–polyaniline nanocomposite films for high-performance flexible electronic gas 5.6 sensors. Nanoscale, 2016, 8, 12073-12080.

#	Article	IF	CITATIONS
562	Rapid-Response, Widely Stretchable Sensor of Aligned MWCNT/Elastomer Composites for Human Motion Detection. ACS Sensors, 2016, 1, 817-825.	7.8	165
563	Lightweight, highly bendable and foldable electrochromic films based on all-solution-processed bilayer nanowire networks. Journal of Materials Chemistry C, 2016, 4, 5849-5857.	5.5	34
564	Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs. ACS Nano, 2016, 10, 4550-4558.	14.6	49
565	Experimental and theoretical analyses of the age-dependent large-strain behavior of Sylgard 184 (10:1) silicone elastomer. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 425-437.	3.1	75
566	Modeling and Experimental Investigation of the Maximum Stresses Due to Bending in a Tubular-Shaped Artificial Skin Sensor. IEEE Sensors Journal, 2016, 16, 1549-1556.	4.7	7
567	A Nanocomposite-Based Stretchable Deformation Sensor Matrix for a Soft-Bodied Swallowing Robot. IEEE Sensors Journal, 2016, 16, 3848-3855.	4.7	14
568	Ultra-sensitive transparent and stretchable pressure sensor with single electrode. , 2016, , .		8
569	A wireless strain sensor for wound monitoring with direct laser-defined patterning on a commercial dressing. , 2016, , .		2
570	Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status. Microsystems and Nanosystems, 2016, , 227-254.	0.1	1
571	Transparent, stretchable, and conductive SWNT films using supramolecular functionalization and layer-by-layer self-assembly. RSC Advances, 2016, 6, 29254-29263.	3.6	15
572	Printing of CNT/silicone rubber for a wearable flexible stretch sensor. Proceedings of SPIE, 2016, , .	0.8	1
573	Kirigami Nanocomposites as Wide-Angle Diffraction Gratings. ACS Nano, 2016, 10, 6156-6162.	14.6	69
574	Distributed thin film sensor array for damage detection and localization. , 2016, , .		1
575	Silver Nanowires Binding with Sputtered ZnO to Fabricate Highly Conductive and Thermally Stable Transparent Electrode for Solar Cell Applications. ACS Applied Materials & Interfaces, 2016, 8, 12764-12771.	8.0	74
576	Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films. ACS Nano, 2016, 10, 5204-5211.	14.6	220
577	From stretchable to reconfigurable inorganic electronics. Extreme Mechanics Letters, 2016, 9, 245-268.	4.1	52
578	Sensitive Electronic-Skin Strain Sensor Array Based on the Patterned Two-Dimensional α-In ₂ Se ₃ . Chemistry of Materials, 2016, 28, 4278-4283.	6.7	146
579	Strain Sensors with Adjustable Sensitivity by Tailoring the Microstructure of Graphene Aerogel/PDMS Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 24853-24861.	8.0	195

#	Article	IF	CITATIONS
580	Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Science and Technology of Advanced Materials, 2016, 17, 493-516.	6.1	125
581	Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles. ACS Applied Materials & Interfaces, 2016, 8, 25563-25570.	8.0	223
582	Carbon Nanotube Based Gas Sensors toward Breath Analysis. ChemPlusChem, 2016, 81, 1248-1265.	2.8	70
583	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials, 2016, 28, 9881-9919.	21.0	407
584	Engineering Crack Formation in Carbon Nanotube-Silver Nanoparticle Composite Films for Sensitive and Durable Piezoresistive Sensors. Nanoscale Research Letters, 2016, 11, 422.	5.7	33
585	One-Pot Synthesis of Superfine Core–Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer. ACS Applied Materials & Interfaces, 2016, 8, 28709-28717.	8.0	30
586	Performance quantification of strain sensors for flexible manipulators. , 2016, , .		3
587	Biosensors in Tissue and Organ Fabrication. Learning Materials in Biosciences, 2016, , 31-57.	0.4	8
588	Flexible, eco-friendly and highly sensitive paper antenna based electromechanical sensor for wireless human motion detection and structural health monitoring. Extreme Mechanics Letters, 2016, 9, 324-330.	4.1	40
589	Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Applied Materials & Interfaces, 2016, 8, 26458-26462.	8.0	387
590	Solvent-free fabrication of multi-walled carbon nanotube based flexible pressure sensors for ultra-sensitive touch pad and electronic skin applications. RSC Advances, 2016, 6, 95836-95845.	3.6	25
591	Direct Observation of Conducting Filaments in Tungsten Oxide Based Transparent Resistive Switching Memory. ACS Applied Materials & Interfaces, 2016, 8, 27885-27891.	8.0	80
592	Transparent ITO mechanical crack-based pressure and strain sensor. Journal of Materials Chemistry C, 2016, 4, 9947-9953.	5.5	87
593	Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Advanced Materials, 2016, 28, 10244-10249.	21.0	327
594	A highly sensitive flexible capacitive pressure sensor with micro-array dielectric layer. , 2016, , .		0
595	Design of tactile sensor assembly and concentrated path of thermal sensing for bionic arm. , 2016, , .		0
596	Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Materials, 2016, 8, e315-e315.	7.9	90
597	Silver nanowire networks embedded in a cure-controlled optical adhesive film for a transparent and highly conductive electrode. Journal of Materials Chemistry C, 2016, 4, 9834-9840.	5.5	31

#	Article	IF	CITATIONS
598	Enhancing the sensitivity of graphene/polyurethane nanocomposite flexible piezo-resistive pressure sensors with magnetite nano-spacers. Carbon, 2016, 108, 450-460.	10.3	87
599	A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network. RSC Advances, 2016, 6, 74418-74425.	3.6	13
600	Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing. Chemical Communications, 2016, 52, 10948-10951.	4.1	81
601	Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection. Chemistry of Materials, 2016, 28, 5916-5924.	6.7	54
603	A Stretchable Nanogenerator with Electric/Light Dualâ€Mode Energy Conversion. Advanced Energy Materials, 2016, 6, 1600829.	19.5	74
604	"Bottom-up―transparent electrodes. Journal of Colloid and Interface Science, 2016, 482, 267-289.	9.4	17
605	Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. ACS Applied Materials & Interfaces, 2016, 8, 22374-22381.	8.0	176
606	Transparent and Flexible Self-Charging Power Film and Its Application in a Sliding Unlock System in Touchpad Technology. ACS Nano, 2016, 10, 8078-8086.	14.6	93
607	Omnidirectionally and Highly Stretchable Conductive Electrodes Based on Noncoplanar Zigzag Mesh Silver Nanowire Arrays. Advanced Electronic Materials, 2016, 2, 1600158.	5.1	41
608	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	14.6	500
609	Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature. Advanced Healthcare Materials, 2016, 5, 119-127.	7.6	101
610	Nanomaterialâ€Based Soft Electronics for Healthcare Applications. ChemNanoMat, 2016, 2, 1006-1017.	2.8	65
611	Advanced Materials for Self-Healing Applications. , 2016, , 316-349.		0
612	Cephalopodâ€Inspired Miniaturized Suction Cups for Smart Medical Skin. Advanced Healthcare Materials, 2016, 5, 80-87.	7.6	175
613	Paper Skin Multisensory Platform for Simultaneous Environmental Monitoring. Advanced Materials Technologies, 2016, 1, 1600004.	5.8	93
614	Application of 3D Printing for Smart Objects with Embedded Electronic Sensors and Systems. Advanced Materials Technologies, 2016, 1, 1600013.	5.8	167
615	Thin-film organic semiconductor devices: from flexibility to ultraflexibility. Science China Materials, 2016, 59, 589-608.	6.3	32
616	Graphene–Elastomer Composites with Segregated Nanostructured Network for Liquid and Strain Sensing Application. ACS Applied Materials & Interfaces, 2016, 8, 24143-24151.	8.0	120

# 617	ARTICLE Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength. ACS Applied Materials & Interfaces, 2016, 8, 24887-24892.	IF 8.0	CITATIONS
618	Inducing Elasticity through Oligoâ€6iloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers. Advanced Functional Materials, 2016, 26, 7254-7262.	14.9	138
619	Stretchable Organic Semiconductor Devices. Advanced Materials, 2016, 28, 9243-9265.	21.0	188
620	Highly Sensitive, Transparent, and Durable Pressure Sensors Based on Seaâ€Urchin Shaped Metal Nanoparticles. Advanced Materials, 2016, 28, 9364-9369.	21.0	166
621	Polymerâ€Enhanced Highly Stretchable Conductive Fiber Strain Sensor Used for Electronic Data Gloves. Advanced Materials Technologies, 2016, 1, 1600136.	5.8	122
622	Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Letters, 2016, 16, 5846-5851.	9.1	81
623	Polyurethane/Cotton/Carbon Nanotubes Core-Spun Yarn as High Reliability Stretchable Strain Sensor for Human Motion Detection. ACS Applied Materials & Interfaces, 2016, 8, 24837-24843.	8.0	251
624	Studying dispersions of ferroelectric nanopowders in dioctyl phthalate as dielectric media for capacitive electronic components. Technical Physics Letters, 2016, 42, 659-662.	0.7	0
625	Flexible pressure sensor with a "V-type―array microelectrode on a grating PDMS substrate. Sensor Review, 2016, 36, 397-404.	1.8	6
626	Transparent Pd Wire Network-Based Areal Hydrogen Sensor with Inherent Joule Heater. ACS Applied Materials & Interfaces, 2016, 8, 23419-23424.	8.0	28
627	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Interfaces, 2016, 8, 34027-34033.	8.0	55
628	Nanomaterial-based stretchable and transparent electrodes. Journal of Information Display, 2016, 17, 131-141.	4.0	33
629	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	14.6	118
630	Skin-inspired organic electronic materials and devices. MRS Bulletin, 2016, 41, 897-904.	3.5	53
631	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	12.4	933
632	Rapid Fabrication of Soft, Multilayered Electronics for Wearable Biomonitoring. Advanced Functional Materials, 2016, 26, 8496-8504.	14.9	119
633	3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors. Small, 2016, 12, 6076-6082.	10.0	91
634	Ultrafast Formation of Free-Standing 2D Carbon Nanotube Thin Films through Capillary Force Driving Compression on an Air/Water Interface. Chemistry of Materials, 2016, 28, 7125-7133.	6.7	54

#	Article	IF	CITATIONS
635	Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Applied Materials & Interfaces, 2016, 8, 20364-20370.	8.0	187
636	Soft piezoresistive pressure sensing matrix from copper nanowires composite aerogel. Science Bulletin, 2016, 61, 1624-1630.	9.0	31
637	Ultra‣tretchable and Force‣ensitive Hydrogels Reinforced with Chitosan Microspheres Embedded in Polymer Networks. Advanced Materials, 2016, 28, 8037-8044.	21.0	274
638	Wideâ€Range Strain Sensors Based on Highly Transparent and Supremely Stretchable Graphene/Agâ€Nanowires Hybrid Structures. Small, 2016, 12, 5058-5065.	10.0	72
639	Nanomaterial-based vaccine adjuvants. Journal of Materials Chemistry B, 2016, 4, 5496-5509.	5.8	96
640	Printing Ultrasensitive Artificially Intelligent Sensors Array with a Single Selfâ€Propelled Droplet Containing Nanoparticles. Advanced Functional Materials, 2016, 26, 6359-6370.	14.9	20
641	Extremely stretchable conductors based on hierarchically-structured metal nanowire network. RSC Advances, 2016, 6, 56896-56902.	3.6	5
642	Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite. ACS Applied Materials & Interfaces, 2016, 8, 18954-18961.	8.0	176
643	Largeâ€Area Compliant, Lowâ€Cost, and Versatile Pressureâ€5ensing Platform Based on Microcrackâ€Designed Carbon Black@Polyurethane Sponge for Human–Machine Interfacing. Advanced Functional Materials, 2016, 26, 6246-6256.	14.9	481
644	Mitigation of Electrical Failure of Silver Nanowires under Current Flow and the Application for Long Lifetime Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2016, 2, 1600167.	5.1	60
645	Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology, 2016, 27, 45LT02.	2.6	32
646	Adhesion of Morphologically Distinct Crystals to and Selective Release from Elastomeric Surfaces. Chemistry of Materials, 2016, 28, 8513-8522.	6.7	4
647	Metal-Oxide Decorated Multilayered Three-Dimensional (3D) Porous Carbon Thin Films for Supercapacitor Electrodes. Industrial & Engineering Chemistry Research, 2016, 55, 12569-12581.	3.7	27
648	Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy, 2016, 30, 450-459.	16.0	157
649	Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems and Nanoengineering, 2016, 2, 16043.	7.0	385
650	A high-resolution strain-gauge nanolaser. Nature Communications, 2016, 7, 11569.	12.8	60
651	Band narrowing and Mott localization in isotropically superstrained graphene. Physical Review B, 2016, 94, .	3.2	7
652	Highly Sensitive Pressure Sensor Based on Bioinspired Porous Structure for Realâ€Time Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600356.	5.1	264
#	Article	IF	CITATIONS
-----	---	------	-----------
653	Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11682-11687.	7.1	175
654	A flexible capacitive tactile sensor for robot skin. , 2016, , .		5
655	Stretchable and compressible strain sensors based on carbon nanotube meshes. Nanoscale, 2016, 8, 19352-19358.	5.6	54
656	Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. Advanced Materials, 2016, 28, 2099-2147.	21.0	323
657	Recent Advances in Flexible and Stretchable Bioâ€Electronic Devices Integrated with Nanomaterials. Advanced Materials, 2016, 28, 4203-4218.	21.0	894
658	An Allâ€Elastomeric Transparent and Stretchable Temperature Sensor for Bodyâ€Attachable Wearable Electronics. Advanced Materials, 2016, 28, 502-509.	21.0	715
659	Printed Carbon Nanotube Electronics and Sensor Systems. Advanced Materials, 2016, 28, 4397-4414.	21.0	369
660	Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials, 2016, 2, 1500407.	5.1	245
661	Bioinspired Electronic Whisker Arrays by Pencilâ€Drawn Paper for Adaptive Tactile Sensing. Advanced Electronic Materials, 2016, 2, 1600093.	5.1	59
662	Poisson Ratio and Piezoresistive Sensing: A New Route to Highâ€Performance 3D Flexible and Stretchable Sensors of Multimodal Sensing Capability. Advanced Functional Materials, 2016, 26, 2900-2908.	14.9	127
663	Capacitance Characterization of Elastomeric Dielectrics for Applications in Intrinsically Stretchable Thin Film Transistors. Advanced Functional Materials, 2016, 26, 4680-4686.	14.9	77
664	Selfâ€Powered Highâ€Resolution and Pressureâ€Sensitive Triboelectric Sensor Matrix for Realâ€Time Tactile Mapping. Advanced Materials, 2016, 28, 2896-2903.	21.0	344
665	Stretchable Figures of Merit in Deformable Electronics. Advanced Materials, 2016, 28, 4180-4183.	21.0	106
666	A Stretchable Electronic Fabric Artificial Skin with Pressureâ€, Lateral Strainâ€, and Flexionâ€Sensitive Properties. Advanced Materials, 2016, 28, 722-728.	21.0	400
667	Ultrahigh Detective Heterogeneous Photosensor Arrays with Inâ€Pixel Signal Boosting Capability for Largeâ€Area and Skinâ€Compatible Electronics. Advanced Materials, 2016, 28, 3078-3086.	21.0	76
668	Sandwiched Composite Fluorocarbon Film for Flexible Electret Generator. Advanced Electronic Materials, 2016, 2, 1500408.	5.1	48
669	Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. Journal of Applied Polymer Science, 2016, 133, .	2.6	34
670	Enhanced Field-Emission Performance from Carbon Nanotube Emitters on Nickel Foam Cathodes. Journal of Electronic Materials, 2016, 45, 2299-2304.	2.2	18

#	Article	IF	CITATIONS
671	Graphene Oxide-Assisted Liquid Phase Exfoliation of Graphite into Graphene for Highly Conductive Film and Electromechanical Sensors. ACS Applied Materials & Interfaces, 2016, 8, 16521-16532.	8.0	98
672	High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte. RSC Advances, 2016, 6, 55225-55232.	3.6	68
673	Development, fabrication, and modeling of highly sensitive conjugated polymer based piezoresistive sensors in electronic skin applications. , 2016, , .		0
674	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	2.7	23
675	Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano, 2016, 10, 7696-7704.	14.6	83
676	Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. , 2016, , .		17
677	A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles. Nanotechnology, 2016, 27, 205502.	2.6	22
678	Fabrication techniques and applications of flexible graphene-based electronic devices. Journal of Semiconductors, 2016, 37, 041001.	3.7	25
679	Printing of stretchable silk membranes for strain measurements. Lab on A Chip, 2016, 16, 2459-2466.	6.0	99
680	Fatigue in organic semiconductors: Spectroscopic evolution of microstructure due to cyclic loading in poly(3-heptylthiophene). Synthetic Metals, 2016, 217, 144-151.	3.9	12
681	Percolation threshold-inspired design of hierarchical multiscale hybrid architectures based on carbon nanotubes and silver nanoparticles for stretchable and printable electronics. Journal of Materials Chemistry C, 2016, 4, 6666-6674.	5.5	58
682	Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Applied Materials & Interfaces, 2016, 8, 16922-16931.	8.0	404
683	Fabrication of copper nanowire/polydimethylsiloxane stretchable conductors by a high intensity pulsed light method. , 2016, , .		0
684	From land to water: bringing dielectric elastomer sensing to the underwater realm. Proceedings of SPIE, 2016, , .	0.8	7
685	Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. Small, 2016, 12, 1593-1604.	10.0	77
686	Stretch not flex: programmable rubber keyboard. Smart Materials and Structures, 2016, 25, 015012.	3.5	29
687	Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Humanâ€Activity Monitoringand Personal Healthcare. Advanced Materials, 2016, 28, 4338-4372.	21.0	1,594
688	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	21.0	173

		CITATION REPORT		
#	Article		IF	CITATIONS
689	Stretchable and Multimodal All Graphene Electronic Skin. Advanced Materials, 2016, 28,	2601-2608.	21.0	493
690	Macroscopic Ultrathin Film as Bioâ€Inspired Interfacial Reactor for Fabricating 2D Freest CNTs/AuNPs Hybrid Nanosheets with Enhanced Electrical Performance. Advanced Materi 2016, 3, 1600170.	anding Janus als Interfaces,	3.7	30
691	Fabrication of Highly Transparent and Flexible NanoMesh Electrode via Selfâ€assembly o Gold Nanowires. Advanced Electronic Materials, 2016, 2, 1600121.	f Ultrathin	5.1	112
692	Transfer function and working principle of a pressure/temperature sensor based on carbo black/silicone rubber composites. Journal of Applied Polymer Science, 2016, 133, .	þn	2.6	18
693	Nonmonotonic piezoresistive effect in elastomeric composite films. Journal of Applied Pc Science, 2016, 133, .	lymer	2.6	1
694	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 47	72-478.	31.5	680
695	Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Natu 529, 509-514.	re, 2016,	27.8	3,508
696	Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors. Horizons, 2016, 3, 208-213.	Materials	12.2	121
697	Electromechanical Behavior of Chemically Reduced Graphene Oxide and Multi-walled Car Nanotube Hybrid Material. Nanoscale Research Letters, 2016, 11, 4.	bon	5.7	35
698	Waterproof Electronic-Bandage with Tunable Sensitivity for Wearable Strain Sensors. AC Materials & Mat	S Applied	8.0	70
699	Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor ar Energy, 2016, 19, 401-414.	ray. Nano	16.0	179
700	Shape-Controlled Deterministic Assembly of Nanowires. Nano Letters, 2016, 16, 2644-26	550.	9.1	57
701	Influence of Ambient Humidity on the Voltage Response of Ionic Polymer–Metal Comp Journal of Physical Chemistry B, 2016, 120, 3215-3225.	osite Sensor.	2.6	34
702	Biocompatible and Ultra-Flexible Inorganic Strain Sensors Attached to Skin for Long-Term Monitoring. IEEE Electron Device Letters, 2016, 37, 496-499.	n Vital Signs	3.9	59
703	Self-Powered Analogue Smart Skin. ACS Nano, 2016, 10, 4083-4091.		14.6	153
704	Highly Sensitive and Transparent Strain Sensor Based on Thin Elastomer Film. IEEE Electric Letters, 2016, 37, 667-670.	on Device	3.9	29
705	Roadmap for the Development of at-Home Telemonitoring Systems to Augment Occupa IEEE Transactions on Human-Machine Systems, 2016, 46, 569-580.	tional Therapy.	3.5	7
706	Liquid-Wetting-Solid Strategy To Fabricate Stretchable Sensors for Human-Motion Detec Sensors, 2016, 1, 303-311.	tion. ACS	7.8	64

#	ARTICLE	IF	Citations
707	Enhanced performance in capacitive force sensors using carbon nanotube/polydimethylsiloxane nanocomposites with high dielectric properties. Nanoscale, 2016, 8, 5667-5675.	5.6	45
708	Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography. Nanoscale, 2016, 8, 4984-4990.	5.6	4
709	Modeling and Development of a Flexible Carbon Black-Based Capacitive Strain Sensor. IEEE Sensors Journal, 2016, 16, 3059-3067.	4.7	35
710	Smart, stretchable and wearable supercapacitors: prospects and challenges. CrystEngComm, 2016, 18, 4218-4235.	2.6	75
711	Spin-Coated Thin Films of Polycyclic Aromatic Hydrocarbons Exhibiting High SCLC Hole Mobilities. Journal of Physical Chemistry C, 2016, 120, 841-852.	3.1	16
712	Simple method for high-performance stretchable composite conductors with entrapped air bubbles. Nanoscale Research Letters, 2016, 11, 14.	5.7	8
713	A Novel Force Sensing Method Based on Stress Imaging Analysis. IEEE Sensors Journal, 2016, 16, 1997. 1926-1936.	4.7	2
714	Stretchable Strain Sensor With Anisotropy and Application for Joint Angle Measurement. IEEE Sensors Journal, 2016, 16, 3572-3579.	4.7	40
715	Polymorphism as an emerging design strategy for high performance organic electronics. Journal of Materials Chemistry C, 2016, 4, 3915-3933.	5.5	188
716	Mechanics and thermal management of stretchable inorganic electronics. National Science Review, 2016, 3, 128-143.	9.5	112
717	Highly stretchable hybrid nanomembrane supercapacitors. RSC Advances, 2016, 6, 24756-24759.	3.6	24
718	Direct-write polymeric strain sensors with arbitary contours on flexible substrates. , 2016, , .		2
719	An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy, 2016, 23, 7-14.	16.0	467
720	Graphene coated nonwoven fabrics as wearable sensors. Journal of Materials Chemistry C, 2016, 4, 3224-3230.	5.5	108
721	Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. ACS Sensors, 2016, 1, 543-551.	7.8	97
722	Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS Applied Materials & amp; Interfaces, 2016, 8, 9297-9304.	8.0	44
723	Enhancing the Scratch Resistance by Introducing Chemical Bonding in Highly Stretchable and Transparent Electrodes. Nano Letters, 2016, 16, 594-600.	9.1	62
724	A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Science Advances, 2016, 2, e1501101.	10.3	139

ARTICLE IF CITATIONS Investigation of the dynamics of growth of polymer materials obtained by combined pervaporation 725 2.7 5 and micro-moulding. Soft Matter, 2016, 12, 1810-1819. Spontaneous Internalization of Cell Penetrating Peptide-Modified Nanowires into Primary Neurons. 9.1 Nano Letters, 2016, 16, 1509-1513. Flexible electronics under strain: a review of mechanical characterization and durability 727 3.7 295 enhancement strategies. Journal of Materials Science, 2016, 51, 2771-2805. Approaches to Stretchable Polymer Active Channels for Deformable Transistors. Macromolecules, 4.8 2016, 49, 433-444. Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum 729 8.0 86 Dots. ACS Applied Materials & amp; Interfaces, 2016, 8, 466-471. ELECTRICAL AND DIELECTRIC PROPERTIES OF RUBBER. Rubber Chemistry and Technology, 2016, 89, 32-53. 1.2 Micro/nanostructured surfaces for self-powered and multifunctional electronic skins. Journal of 731 5.8 116 Materials Chemistry B, 2016, 4, 2999-3018. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological 10.1 signals. Biosensors and Bioelectronics, 2016, 77, 907-913. A novel strain sensor based on graphene composite films with layered structure. Composites Part A: 733 83 7.6 Applied Science and Manufacturing, 2016, 80, 95-103. An intelligent skin based self-powered finger motion sensor integrated with triboelectric 734 16.0 178 nanogenerator. Nano Energy, 2016, 19, 532-540. Flexible, Cuttable, and Self-Waterproof Bending Strain Sensors Using Microcracked Gold 735 107 8.0 Nanofilms@Paper Substrate. ACS Applied Materials & amp; Interfaces, 2017, 9, 4151-4158. Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Advanced 14.9 Functional Materials, 2017, 27, 1605657. Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced 737 14.9 522 Functional Materials, 2017, 27, 1606066. Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable 8.0 63 Transparent Electrode. ACS Applied Materials & amp; Interfaces, 2017, 9, 5486-5494. 739 Spatially Pressureâ€Mapped Thermochromic Interactive Sensor. Advanced Materials, 2017, 29, 1606120. 21.0 86 A washable, stretchable, and self-powered human-machine interfacing Triboelectric nanogenerator 740 for wireless communications and soft robotics pressure sensor arrays. Extreme Mechanics Letters, 2017, 13, 25-35. Full Dynamicâ€Range Pressure Sensor Matrix Based on Optical and Electrical Dualâ€Mode Sensing. 741 21.0 176 Advanced Materials, 2017, 29, 1605817. The glass transition and interfacial dynamics of single strand fibers of polymers. Soft Matter, 2017, 13, 742 1190-1199.

#	Article	IF	CITATIONS
743	Ultrafast Self-Healing Nanocomposites via Infrared Laser and Their Application in Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 3040-3049.	8.0	103
744	Noncovalently functionalized multi-walled carbon nanotube with core-dualshell nanostructure for improved piezoresistive sensitivity of poly(dimethyl siloxane) nanocomposites. Composites Part A: Applied Science and Manufacturing, 2017, 94, 124-132.	7.6	20
745	Highly sensitive and stable flexible pressure sensors with micro-structured electrodes. Journal of Alloys and Compounds, 2017, 699, 824-831.	5.5	49
746	Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy, 2017, 32, 389-396.	16.0	125
747	Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors. Nanotechnology, 2017, 28, 095501.	2.6	44
748	Ultrasensitive, Stretchable Strain Sensors Based on Fragmented Carbon Nanotube Papers. ACS Applied Materials & Interfaces, 2017, 9, 4835-4842.	8.0	184
749	Texture and sliding motion sensation with a triboelectric-nanogenerator transducer. Sensors and Actuators A: Physical, 2017, 256, 89-94.	4.1	12
750	Self-powered multifunctional UV and IR photodetector as an artificial electronic eye. Journal of Materials Chemistry C, 2017, 5, 1436-1442.	5.5	45
751	Self-powered wireless smart patch for healthcare monitoring. Nano Energy, 2017, 32, 479-487.	16.0	90
752	Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography. Scientific Reports, 2017, 7, 39837.	3.3	90
753	Materials and devices for transparent stretchable electronics. Journal of Materials Chemistry C, 2017, 5, 2202-2222.	5.5	118
755	Patterning of Stretchable Organic Electrochemical Transistors. Chemistry of Materials, 2017, 29, 3126-3132.	6.7	116
756	Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)- <i>block</i> -poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules, 2017, 50, 1442-1452.	4.8	83
757	Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry C, 2017, 5, 2318-2328.	5.5	236
758	Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 7505-7514.	8.0	36
759	Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. Nanotechnology, 2017, 28, 115501.	2.6	34
760	Ultrasensitive 2D ZnO Piezotronic Transistor Array for High Resolution Tactile Imaging. Advanced Materials, 2017, 29, 1606346.	21.0	79
761	A Highly Stretchable and Fatigueâ€Free Transparent Electrode Based on an Inâ€Plane Buckled Au Nanotrough Network. Advanced Electronic Materials, 2017, 3, 1600534.	5.1	35

#	Δρτιςι ε	IF	CITATIONS
762	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569	16.0	119
763	Recent Advancements in Flexible and Stretchable Electrodes for Electromechanical Sensors: Strategies, Materials, and Features. ACS Applied Materials & Interfaces, 2017, 9, 12147-12164.	8.0	359
764	Experimental study of thin film sensor networks for wind turbine blade damage detection. AIP Conference Proceedings, 2017, , .	0.4	3
765	A highly stretchable, transparent, and conductive polymer. Science Advances, 2017, 3, e1602076.	10.3	962
766	Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions. ACS Applied Materials & Interfaces, 2017, 9, 11176-11183.	8.0	75
767	Area-Selective Lift-Off Mechanism Based on Dual-Triggered Interfacial Adhesion Switching: Highly Facile Fabrication of Flexible Nanomesh Electrode. ACS Nano, 2017, 11, 3506-3516.	14.6	33
768	Shape-transformable liquid metal nanoparticles in aqueous solution. Chemical Science, 2017, 8, 3832-3837.	7.4	181
769	Strategies for stretchable polymer semiconductor layers. MRS Bulletin, 2017, 42, 98-102.	3.5	12
770	Flexible and stretchable sensors for fluidic elastomer actuated soft robots. MRS Bulletin, 2017, 42, 138-142.	3.5	76
771	Elastic substrates for stretchable devices. MRS Bulletin, 2017, 42, 103-107.	3.5	39
772	A flexible two dimensional force sensor using PDMS nanocomposite. Microelectronic Engineering, 2017, 174, 64-69.	2.4	38
773	Understanding the Dispersive Action of Nanocellulose for Carbon Nanomaterials. Nano Letters, 2017, 17, 1439-1447.	9.1	219
774	An Ultrasensitive, Viscoâ€Poroelastic Artificial Mechanotransducer Skin Inspired by Piezo2 Protein in Mammalian Merkel Cells. Advanced Materials, 2017, 29, 1605973.	21.0	147
775	Highly conductive and transparent carbon nanotube-based electrodes for ultrathin and stretchable organic solar cells. Chinese Physics B, 2017, 26, 028801.	1.4	9
776	Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering Reports, 2017, 115, 1-37.	31.8	557
778	Carbon doped PDMS: conductance stability over time and implications for additive manufacturing of stretchable electronics. Journal of Micromechanics and Microengineering, 2017, 27, 035010.	2.6	32
779	Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale, 2017, 9, 3834-3842.	5.6	138
780	3D Graphite–Polymer Flexible Strain Sensors with Ultrasensitivity and Durability for Realâ€Time Human Vital Sign Monitoring and Musical Instrument Education. Advanced Materials Technologies, 2017, 2, 1700070.	5.8	48

#	Article	IF	CITATIONS
781	Secondary Sensitivity Control of Silverâ€Nanowireâ€Based Resistiveâ€Type Strain Sensors by Geometric Modulation of the Elastomer Substrate. Small, 2017, 13, 1700070.	10.0	53
782	Carbon nanomaterials in tribology. Carbon, 2017, 119, 150-171.	10.3	329
783	Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale, 2017, 9, 6716-6723.	5.6	108
784	Graphene and Carbon Nanotube Auxetic Rubber Bionic Composites with Negative Variation of the Electrical Resistance and Comparison with Their Nonbionic Counterparts. Advanced Functional Materials, 2017, 27, 1606526.	14.9	38
785	Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Applied Materials & amp; Interfaces, 2017, 9, 14207-14215.	8.0	239
786	Ultrasensitive Vertical Piezotronic Transistor Based on ZnO Twin Nanoplatelet. ACS Nano, 2017, 11, 4859-4865.	14.6	45
787	Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.	21.0	1,222
788	Poly(phenylmethylsiloxane) functionalized multiwalled carbon nanotube/poly(dimethylsiloxane) nanocomposites with high piezoresistivity, low modulus and high conductivity. Journal of Materials Science: Materials in Electronics, 2017, 28, 6897-6906.	2.2	5
789	Plasticized Polymer Interlayer for Low-Temperature Fabrication of a High-Quality Silver Nanowire-Based Flexible Transparent and Conductive Film. ACS Applied Materials & Interfaces, 2017, 9, 15114-15121.	8.0	23
790	Wearable carbon nanotube-based fabric sensors for monitoring human physiological performance. Smart Materials and Structures, 2017, 26, 055018.	3.5	57
791	Transparent Flexible Multifunctional Nanostructured Architectures for Non-optical Readout, Proximity, and Pressure Sensing. ACS Applied Materials & Interfaces, 2017, 9, 15015-15021.	8.0	58
792	Carbon-Based Pressure Sensors With Wavy Configuration. IEEE Electron Device Letters, 2017, 38, 979-982.	3.9	7
793	Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Materials, 2017, 16, 834-840.	27.5	578
794	Stand-Alone Stretchable Absolute Pressure Sensing System for Industrial Applications. IEEE Transactions on Industrial Electronics, 2017, 64, 8739-8746.	7.9	20
795	A novel means of fabricating microporous structures for the dielectric layers of capacitive pressure sensor. Microelectronic Engineering, 2017, 179, 60-66.	2.4	55
796	Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 18022-18030.	8.0	143
797	Drop casting of stiffness gradients for chip integration into stretchable substrates. Journal of Micromechanics and Microengineering, 2017, 27, 045018.	2.6	10
798	Characterization of the spatial elastoresistivity of inkjet-printed carbon nanotube thin films for strain-state sensing. Proceedings of SPIE, 2017, , .	0.8	3

#	Article	IF	CITATIONS
799	Fully Printed Silverâ€Nanoparticleâ€Based Strain Gauges with Record High Sensitivity. Advanced Electronic Materials, 2017, 3, 1700067.	5.1	75
800	Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Applied Materials & Interfaces, 2017, 9, 17369-17378.	8.0	114
801	Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Applied Materials & amp; Interfaces, 2017, 9, 17499-17507.	8.0	139
802	Solidâ€State Hybrid Fibrous Supercapacitors Produced by Deadâ€End Tube Membrane Ultrafiltration. Advanced Functional Materials, 2017, 27, 1606461.	14.9	31
803	Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nature Communications, 2017, 8, 14997.	12.8	633
804	A general strategy for high performance stretchable conductors based on carbon nanotubes and silver nanowires. RSC Advances, 2017, 7, 20167-20171.	3.6	5
805	High Sensitivity Flexible Capacitive Pressure Sensor Using Polydimethylsiloxane Elastomer Dielectric Layer Micro-Structured by 3-D Printed Mold. IEEE Journal of the Electron Devices Society, 2017, 5, 219-223.	2.1	71
806	Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion. Nanoscale, 2017, 9, 604-612.	5.6	78
807	A flexible transparent colorimetric wrist strap sensor. Nanoscale, 2017, 9, 869-874.	5.6	104
808	Development and Experimental Validation of a Non-Linear, All-Elastomer In-Plane Capacitive Pressure Sensor Model. IEEE Sensors Journal, 2017, 17, 274-285.	4.7	2
809	Flexible electronic eardrum. Nano Research, 2017, 10, 2683-2691.	10.4	35
810	Ultra-thin, transparent and flexible tactile sensors based on graphene films with excellent anti-interference. RSC Advances, 2017, 7, 30506-30512.	3.6	11
811	Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the	6.0	117
	surface of the skill by eccline sweat glands. Lab off A Chip, 2017, 17, 2372-2360.		
812	Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053.	5.8	89
812 813	Surface of the skill by eccline sweat glands. Lab off A Chip, 2017, 17, 2372-2380. Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053. Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosanâ€Based Water Ink for Plants Growth Monitoring. Advanced Materials Technologies, 2017, 2, 1700021.	5.8	89 65
812 813 814	Surface of the skill by eccline sweat glands. Lab off A Chip, 2017, 17, 2372-2380. Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053. Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosanâ€Based Water Ink for Plants Growth Monitoring. Advanced Materials Technologies, 2017, 2, 1700021. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640.	5.8 5.8 5.6	89 65 160
812813814815	Surface of the skin by eccline sweat glands. Lab of A Chip, 2017, 17, 2372-2380. Wearable Sensing Systems with Mechanically Soft Assemblies of Nanoscale Materials. Advanced Materials Technologies, 2017, 2, 1700053. Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosanâ€Based Water Ink for Plants Growth Monitoring. Advanced Materials Technologies, 2017, 2, 1700021. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640. Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure. Nanoscale, 2017, 9, 11017-11026.	5.8 5.8 5.6 5.6	89 65 160 179

		CITATION R	EPORT	
#	Article		IF	CITATIONS
817	Highly Stretchable Miniature Strain Sensor for Large Dynamic Strain Measurement. , 2017	7, 1, 1-4.		9
818	Self-powered pressure sensor for ultra-wide range pressure detection. Nano Research, 20 3557-3570.	17, 10,	10.4	117
819	Flexible Dual-Mode Tactile Sensor Derived from Three-Dimensional Porous Carbon Archite Applied Materials & Interfaces, 2017, 9, 22685-22693.	cture. ACS	8.0	41
820	Low-dimensional carbon based sensors and sensing network for wearable health and envi monitoring. Carbon, 2017, 121, 353-367.	ronmental	10.3	93
821	Ultra-thin glass sheet integrated transparent diaphragm pressure transducer. Sensors and A: Physical, 2017, 263, 102-112.	l Actuators	4.1	22
822	Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks. Nanoscale, 2017, 9, 8938-8944.	on	5.6	19
823	Crumpled sheets of reduced graphene oxide as a highly sensitive, robust and versatile stra sensor. Nanoscale, 2017, 9, 9581-9588.	ain/pressure	5.6	29
824	Development of haptic based piezoresistive artificial fingertip: Toward efficient tactile ser systems for humanoids. Materials Science and Engineering C, 2017, 77, 1098-1103.	sing	7.3	18
825	Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial So a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.	ources Using	14.6	47
826	Dark current reduction strategies using edge-on aligned donor polymers for high detectiv responsivity organic photodetectors. Polymer Chemistry, 2017, 8, 3612-3621.	ity and	3.9	35
827	Self-adapted and tunable graphene strain sensors for detecting both subtle and large hun Nanoscale, 2017, 9, 8266-8273.	1an motions.	5.6	100
828	Review of Flexible Temperature Sensing Networks for Wearable Physiological Monitoring. Healthcare Materials, 2017, 6, 1601371.	Advanced	7.6	217
829	Highly Sensitive, Durable, and Multifunctional Sensor Inspired by a Spider. ACS Applied M Interfaces, 2017, 9, 19955-19962.	aterials &	8.0	89
830	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4	, 1700107.	11.2	361
831	Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Ex Detectability. ACS Applied Materials & Interfaces, 2017, 9, 20098-20105.	cellent	8.0	154
832	Conductive thermoplastic polyurethane composites with tunable piezoresistivity by mode filler dimensionality for flexible strain sensors. Composites Part A: Applied Science and Manufacturing, 2017, 101, 41-49.	ulating the	7.6	155
833	Soft-Matter Printed Circuit Board with UV Laser Micropatterning. ACS Applied Materials & Interfaces, 2017, 9, 22055-22062.	amp;	8.0	81
834	Piezoelectricity in two-dimensional covalent organic frameworks. Journal of Applied Physic 225112.	cs, 2017, 121,	2.5	0

#	Article	IF	CITATIONS
835	High performance wire-shaped supercapacitive electrodes based onactivated carbon fibers core/manganese dioxide shell structures. Ceramics International, 2017, 43, 7916-7921.	4.8	5
836	Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nature Communications, 2017, 8, 14950.	12.8	167
837	Stretchable Capacitive Sensors of Torsion, Strain, and Touch Using Double Helix Liquid Metal Fibers. Advanced Functional Materials, 2017, 27, 1605630.	14.9	257
838	A highly sensitive graphene woven fabric strain sensor for wearable wireless musical instruments. Materials Horizons, 2017, 4, 477-486.	12.2	194
839	Low Hysteresis Carbon Nanotube Transistors Constructed via a General Dry-Laminating Encapsulation Method on Diverse Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 14292-14300.	8.0	13
840	Development of high-flexible triboelectric generators using plastic metal as electrodes. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	8
841	Advanced Materials for Health Monitoring with Skinâ€Based Wearable Devices. Advanced Healthcare Materials, 2017, 6, 1700024.	7.6	221
842	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	14.9	119
843	Enhancing the Performance of Stretchable Conductors for Eâ€Textiles by Controlled Ink Permeation. Advanced Materials, 2017, 29, 1605848.	21.0	223
844	Microtopographyâ€Guided Conductive Patterns of Liquidâ€Driven Graphene Nanoplatelet Networks for Stretchable and Skinâ€Conformal Sensor Array. Advanced Materials, 2017, 29, 1606453.	21.0	101
845	Performance Study of Flexible Capacitive Pressure Sensor Based on Dielectric Structures. Lecture Notes in Electrical Engineering, 2017, , 515-523.	0.4	0
846	Separation of Semiconducting Carbon Nanotubes for Flexible and Stretchable Electronics Using Polymer Removable Method. Accounts of Chemical Research, 2017, 50, 1096-1104.	15.6	128
847	Biaxial Stretchability and Transparency of Ag Nanowire 2D Mass-Spring Networks Prepared by Floating Compression. ACS Applied Materials & Interfaces, 2017, 9, 10865-10873.	8.0	39
848	Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Applied Materials & Interfaces, 2017, 9, 10128-10135.	8.0	272
849	Fabrication of cost effective and high sensitivity resistive strain gauge using DIW technique. Sensors and Actuators A: Physical, 2017, 258, 123-130.	4.1	25
850	PVDF based flexible piezoelectric nanogenerators using conjugated polymer:PCBM blend systems. Sensors and Actuators A: Physical, 2017, 259, 112-120.	4.1	14
851	Ultrafast pressure sensing with transient tunnelling currents. Nanoscale, 2017, 9, 4544-4549.	5.6	2
852	Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Science Advances, 2017, 3, e1602200.	10.3	283

		CITATION REPORT		
# 853	ARTICLE Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small, 2017, 2	13, 1602790.	IF 10.0	Citations
854	Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embed colorless polyimide. Physica B: Condensed Matter, 2017, 514, 8-12.	ded in	2.7	6
855	Room-Temperature-Processable Wire-Templated Nanoelectrodes for Flexible and Trans Electronics. ACS Nano, 2017, 11, 3681-3689.	parent All-Wire	14.6	52
856	Flexible piezoresistive sensors based on "dynamic bridging effect―of silver nanow graphene. Carbon, 2017, 113, 395-403.	vires toward	10.3	108
857	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advancec Materials, 2017, 3, 1600260.	l Electronic	5.1	358
858	Localization in an idealized heterogeneous elastic sheet. Soft Matter, 2017, 13, 1764-	1772.	2.7	14
859	Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Advand Materials, 2017, 27, 1605286.	ced Functional	14.9	151
860	Conductive Polymer-Coated Carbon Nanotubes To Construct Stretchable and Transpar Electrochemical Sensors. Analytical Chemistry, 2017, 89, 2032-2038.	rent	6.5	84
861	Oneâ€Dimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials,	2017, 3, 1600314.	5.1	271
862	Flexible capacitive pressure sensor based on multiâ€walled carbon nanotube electrode Nano Letters, 2017, 12, 45-48.	s. Micro and	1.3	15
863	A review: additive manufacturing for active electronic components. Virtual and Physica 2017, 12, 31-46.	ıl Prototyping,	10.4	119
864	Digital microelectromechanical sensor with an engineered polydimethylsiloxane (PDMS structure. Nanoscale, 2017, 9, 1257-1262.	5) bridge	5.6	12
865	Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Enc Materials. Advanced Functional Materials, 2017, 27, 1604545.	apsulation	14.9	42
866	Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Monitoring. ACS Applied Materials & amp; Interfaces, 2017, 9, 1770-1780.	Motion	8.0	331
867	Electromagnetic functionalized ultrafine polymer/Î ³ -Fe2O3 fibers prepared by magnetic spinning and their application as strain sensors with ultrahigh stretchability. Composit Technology, 2017, 139, 1-7.	c-mechanical es Science and	7.8	21
868	Stretchable Substrates for the Assembly of Polymeric Microstructures. Small, 2017, 13	, 1603350.	10.0	10
869	Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered hum physiological monitoring. Nano Energy, 2017, 32, 42-49.	ian	16.0	123
870	A highly sensitive and wide-range pressure sensor based on a carbon nanocoil network an electrophoretic method. Journal of Materials Chemistry C, 2017, 5, 11892-11900.	fabricated by	5.5	32

#	Article	IF	CITATIONS
871	Pursuing Polymer Dielectric Interfacial Effect in Organic Transistors for Photosensing Performance Optimization. Advanced Science, 2017, 4, 1700442.	11.2	59
872	Selfâ€Healing Sensors Based on Dual Noncovalent Network Elastomer for Human Motion Monitoring. Macromolecular Rapid Communications, 2017, 38, 1700406.	3.9	34
873	Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning. ACS Applied Materials & Interfaces, 2017, 9, 37493-37500.	8.0	110
874	Wearable and visual pressure sensors based on Zn ₂ GeO ₄ @polypyrrole nanowire aerogels. Journal of Materials Chemistry C, 2017, 5, 11018-11024.	5.5	34
875	Capillary assisted deposition of carbon nanotube film for strain sensing. Applied Physics Letters, 2017, 111, 173105.	3.3	14
876	Hydroxyapatite Nanowire-Based All-Weather Flexible Electrically Conductive Paper with Superhydrophobic and Flame-Retardant Properties. ACS Applied Materials & Interfaces, 2017, 9, 39534-39548.	8.0	54
877	Characterization of Carbon Black Filled PDMS-Composite Membranes for Sensor Applications. Key Engineering Materials, 0, 753, 18-27.	0.4	9
878	Theoretical investigation into the possibility of multiorbital magnetically ordered states in isotropically superstrained graphene. Physical Review B, 2017, 96, .	3.2	4
879	Nature-Inspired Structural Materials for Flexible Electronic Devices. Chemical Reviews, 2017, 117, 12893-12941.	47.7	578
880	Highly stretchable, sensitive strain sensors with a wide linear sensing region based on compressed anisotropic graphene foam/polymer nanocomposites. Nanoscale, 2017, 9, 17396-17404.	5.6	70
881	Largeâ€Area Allâ€Textile Pressure Sensors for Monitoring Human Motion and Physiological Signals. Advanced Materials, 2017, 29, 1703700.	21.0	558
882	Low-cost highly sensitive strain sensors for wearable electronics. Journal of Materials Chemistry C, 2017, 5, 10571-10577.	5.5	21
883	Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer. Small, 2017, 13, 1702422.	10.0	50
884	Ultrathin, Washable, and Largeâ€Area Graphene Papers for Personal Thermal Management. Small, 2017, 13, 1702645.	10.0	177
885	Paper/Carbon Nanotube-Based Wearable Pressure Sensor for Physiological Signal Acquisition and Soft Robotic Skin. ACS Applied Materials & Interfaces, 2017, 9, 37921-37928.	8.0	230
886	Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Scientific Reports, 2017, 7, 12949.	3.3	144
887	Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials. Nanoscale, 2017, 9, 16915-16921.	5.6	13
888	Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites. Advanced Functional Materials, 2017, 27, 1702891.	14.9	209

#	Article	IF	CITATIONS
889	Stretchable conductors by kirigami patterning of aramid-silver nanocomposites with zero conductance gradient. Applied Physics Letters, 2017, 111, .	3.3	39
890	Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications. ACS Nano, 2017, 11, 8364-8369.	14.6	90
891	Improving the performance and stability of flexible pressure sensors with an air gap structure. RSC Advances, 2017, 7, 48354-48359.	3.6	15
892	Biaxially stretchable carbon nanotube transistors. Journal of Applied Physics, 2017, 122, 124901.	2.5	15
893	Tailored MoS ₂ nanorods: a simple microwave assisted synthesis. Materials Research Express, 2017, 4, 115012.	1.6	25
894	Highly Stretchable Variableâ€Transmittance Skin for Ultrasensitive and Wearable Strain Sensing. Advanced Materials Technologies, 2017, 2, 1700161.	5.8	21
895	Controllable assembly of silver nanoparticles based on the coffee-ring effect for high-sensitivity flexible strain gauges. Sensors and Actuators A: Physical, 2017, 264, 188-194.	4.1	7
896	Ag/alginate nanofiber membrane for flexible electronic skin. Nanotechnology, 2017, 28, 445502.	2.6	30
897	Percolation of carbon nanomaterials for high-k polymer nanocomposites. Chinese Chemical Letters, 2017, 28, 2036-2044.	9.0	22
898	Organic liquid-crystal devices based on ionic conductors. Materials Horizons, 2017, 4, 1102-1109.	12.2	76
899	Flexible tensile strain sensor based on lead-free 0.5Ba (Ti _{0.8} Zr _{0.2}) O ₃ –0.5(Ba _{0.7} Ca _{0.3}) TiO ₃ piezoelectric nanofibers. Smart Materials and Structures, 2017, 26, 097001.	3.5	17
900	A Flexible Capacitive Pressure Sensor for Wearable Respiration Monitoring System. IEEE Sensors Journal, 2017, , 1-1.	4.7	75
901	Multi-dimensional flexible reduced graphene oxide/polymer sponges for multiple forms of strain sensors. Carbon, 2017, 125, 199-206.	10.3	83
902	A crack-based nickel@graphene-wrapped polyurethane sponge ternary hybrid obtained by electrodeposition for highly sensitive wearable strain sensors. Journal of Materials Chemistry C, 2017, 5, 10167-10175.	5.5	61
903	Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing. Scientific Reports, 2017, 7, 10854.	3.3	37
904	Stretchable conductive elastomer for wireless wearable communication applications. Scientific Reports, 2017, 7, 10958.	3.3	35
905	A Highly Stretchable Nanofiber-Based Electronic Skin with Pressure-, Strain-, and Flexion-Sensitive Properties for Health and Motion Monitoring. ACS Applied Materials & amp; Interfaces, 2017, 9, 42951-42960.	8.0	147
906	Vertically Aligned Carbon Nanotubes as Platform for Biomimetically Inspired Mechanical Sensing, Bioactive Surfaces, and Electrical Cell Interfacing. Advanced Biology, 2017, 1, e1700101.	3.0	19

#	Article	IF	CITATIONS
907	Electronic Textile by Dyeing Method for Multiresolution Physical Kineses Monitoring. Advanced Electronic Materials, 2017, 3, 1700253.	5.1	69
908	Deformable and Transparent Ionic and Electronic Conductors for Soft Energy Devices. Advanced Energy Materials, 2017, 7, 1701369.	19.5	63
909	Flexible Bimodal Sensor for Simultaneous and Independent Perceiving of Pressure and Temperature Stimuli. Advanced Materials Technologies, 2017, 2, 1700183.	5.8	46
910	Foodâ€Based Edible and Nutritive Electronics. Advanced Materials Technologies, 2017, 2, 1700181.	5.8	61
911	Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy, 2017, 41, 301-307.	16.0	104
912	Triboelectrification-enabled touch sensing for self-powered position mapping and dynamic tracking by a flexible and area-scalable sensor array. Nano Energy, 2017, 41, 387-393.	16.0	69
913	Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters, 2017, 111, .	3.3	55
914	A Superhydrophobic Smart Coating for Flexible and Wearable Sensing Electronics. Advanced Materials, 2017, 29, 1702517.	21.0	348
915	A flexible and highly sensitive capacitive pressure sensor based on conductive fibers with a microporous dielectric for wearable electronics. Journal of Materials Chemistry C, 2017, 5, 10068-10076.	5.5	123
916	An extremely simple macroscale electronic skin realized by deep machine learning. Scientific Reports, 2017, 7, 11061.	3.3	38
917	Reducing the contact resistance in bottom-contact-type organic field-effect transitors using an AgO <i> _x </i> interface layer. Applied Physics Express, 2017, 10, 091601.	2.4	12
918	Analysis of the Efficiency of Surfactant-Mediated Stabilization Reactions of EGaln Nanodroplets. Langmuir, 2017, 33, 9703-9710.	3.5	64
919	Healable and flexible transparent heaters. Nanoscale, 2017, 9, 14990-14997.	5.6	36
920	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	21.0	501
921	Large area and ultra-thin compliant strain sensors for prosthetic devices. Sensors and Actuators A: Physical, 2017, 266, 56-64.	4.1	36
922	Crack-induced Ag nanowire networks for transparent, stretchable, and highly sensitive strain sensors. Scientific Reports, 2017, 7, 7959.	3.3	98
923	Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline. Frontiers of Materials Science, 2017, 11, 276-283.	2.2	0
924	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170

#	Article	IF	CITATIONS
925	Flexible and wearable 3D graphene sensor with 141 KHz frequency signal response capability. Applied Physics Letters, 2017, 111, .	3.3	16
926	Formation of large-area stretchable 3D graphene–nickel particle foams and their sensor applications. RSC Advances, 2017, 7, 35016-35026.	3.6	12
927	A Biâ€Sheath Fiber Sensor for Giant Tensile and Torsional Displacements. Advanced Functional Materials, 2017, 27, 1702134.	14.9	100
928	Ultrastretchable Analog/Digital Signal Transmission Line with Carbon Nanotube Sheets. ACS Applied Materials & Interfaces, 2017, 9, 26286-26292.	8.0	13
929	3D Printed "Earable―Smart Devices for Real-Time Detection of Core Body Temperature. ACS Sensors, 2017, 2, 990-997.	7.8	105
930	Graphene-Based Three-Dimensional Capacitive Touch Sensor for Wearable Electronics. ACS Nano, 2017, 11, 7950-7957.	14.6	270
931	Piezoresistance of flexible tunneling-percolation networks. Physical Review B, 2017, 96, .	3.2	1
932	Toward Soft Skinâ€Like Wearable and Implantable Energy Devices. Advanced Energy Materials, 2017, 7, 1700648.	19.5	175
933	Wearable and Transparent Capacitive Strain Sensor with High Sensitivity Based on Patterned Ag Nanowire Networks. ACS Applied Materials & Interfaces, 2017, 9, 26407-26416.	8.0	158
934	Batch Fabrication of Customizable Siliconeâ€Textile Composite Capacitive Strain Sensors for Human Motion Tracking. Advanced Materials Technologies, 2017, 2, 1700136.	5.8	301
935	Recent progresses on flexible tactile sensors. Materials Today Physics, 2017, 1, 61-73.	6.0	227
936	Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network. ACS Applied Materials & Interfaces, 2017, 9, 26279-26285.	8.0	134
937	Autonomous Selection of Closing Posture of a Robotic Hand Through Embodied Soft Matter Capacitive Sensors. IEEE Sensors Journal, 2017, 17, 5669-5677.	4.7	55
938	Electrical, Elastic, and Piezoresistive Properties of Nanocomposites of Poly(dimethylsiloxane) and Poly(phenylmethylsiloxane)-Functionalized Graphene Nanoplatelets. Journal of Electronic Materials, 2017, 46, 5737-5745.	2.2	4
939	An Overview of the Development of Flexible Sensors. Advanced Materials, 2017, 29, 1700375.	21.0	483
941	Fabric sensory sleeves for soft robot state estimation. , 2017, , .		17
942	Toward Flexible Wireless Pressure‣ensing Device via Ionic Hydrogel Microsphere for Continuously Mapping Human‣kin Signals. Advanced Materials Interfaces, 2017, 4, 1700496.	3.7	32
943	Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano, 2017, 11, 7925-7937.	14.6	52

#	Article	IF	CITATIONS
944	Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure. ACS Applied Materials & Interfaces, 2017, 9, 26314-26324.	8.0	234
945	Bio-inspired interlocking random 3-D structures for tactile and thermal sensing. Scientific Reports, 2017, 7, 5834.	3.3	12
946	Self-powered, highly sensitive pressure sensor based on thin-film solar cell and pressure-responsive porous elastomer film. , 2017, , .		0
947	High resolution flexible strain sensors for biological signal measurements. , 2017, , .		12
948	Flexible transparent electrodes made of core-shell-structured carbon/metal hybrid nanofiber mesh films fabricated via electrospinning and electroplating. Current Applied Physics, 2017, 17, 1401-1408.	2.4	12
949	Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. Journal of Alloys and Compounds, 2017, 727, 721-727.	5.5	16
950	QoS in Body Area Networks. ACM Transactions on Sensor Networks, 2017, 13, 1-46.	3.6	22
951	A Single Dropletâ€Printed Doubleâ€5ide Universal Soft Electronic Platform for Highly Integrated Stretchable Hybrid Electronics. Advanced Functional Materials, 2017, 27, 1701912.	14.9	42
952	Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy, 2017, 40, 65-72.	16.0	120
953	Graphene welded carbon nanotube crossbars for biaxial strain sensors. Carbon, 2017, 123, 786-793.	10.3	44
954	1D copper nanowires for flexible printable electronics and high ampacity wires. Nanoscale, 2017, 9, 13104-13111.	5.6	35
955	Fabrication of highly sensitive capacitive pressure sensors with electrospun polymer nanofibers. Applied Physics Letters, 2017, 111, .	3.3	33
956	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. Chemical Reviews, 2017, 117, 11239-11268.	47.7	418
957	Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring. Advanced Materials, 2017, 29, 1701985.	21.0	431
958	Bulge test method for measuring the hyperelastic parameters of soft membranes. Acta Mechanica, 2017, 228, 4187-4197.	2.1	13
959	CNT fibers p-doped with F4TCNQ (2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane). , 2017, , .		1
960	Vacuum filling of complex microchannels with liquid metal. Lab on A Chip, 2017, 17, 3043-3050.	6.0	169
961	2D reentrant auxetic structures of graphene/CNT networks for omnidirectionally stretchable supercapacitors. Nanoscale, 2017, 9, 13272-13280.	5.6	73

#	Article	IF	CITATIONS
962	A wearable, fibroid, self-powered active kinematic sensor based on stretchable sheath-core structural triboelectric fibers. Nano Energy, 2017, 39, 673-683.	16.0	71
963	Human skin interactive self-powered wearable piezoelectric bio-e-skin by electrospun poly- <scp>l</scp> -lactic acid nanofibers for non-invasive physiological signal monitoring. Journal of Materials Chemistry B, 2017, 5, 7352-7359.	5.8	104
964	Design of a soft 3-axis load cell for human-robot interactions. , 2017, , .		2
965	Bionic ion channel and single-ion conductor design for artificial skin sensors. Journal of Materials Chemistry B, 2017, 5, 7126-7132.	5.8	32
966	The cooperative actuation of multistep electrochemical molecular machines in polypyrrole films senses the imposed energetic conditions: Influence of the potential scan rate. Electrochimica Acta, 2017, 258, 1293-1303.	5.2	11
967	High electrochemical performance flexible solid-state supercapacitor based on Co-doped reduced graphene oxide and silk fibroin composites. Energy, 2017, 141, 1982-1988.	8.8	22
968	Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in Current Chemistry, 2017, 375, 90.	5.8	40
969	Unprecedented sensitivity towards pressure enabled by graphene foam. Nanoscale, 2017, 9, 19346-19352.	5.6	40
970	Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber. ACS Applied Materials & Interfaces, 2017, 9, 43239-43249.	8.0	15
971	Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. ACS Applied Materials & Interfaces, 2017, 9, 43822-43829.	8.0	42
972	An Implantable Transparent Conductive Film with Water Resistance and Ultrabendability for Electronic Devices. ACS Applied Materials & amp; Interfaces, 2017, 9, 42302-42312.	8.0	20
973	iSoft. , 2017, , .		41
974	A polymer transistor array with a pressure-sensitive elastomer for electronic skin. Journal of Materials Chemistry C, 2017, 5, 12039-12043.	5.5	16
975	Field-effect enhanced triboelectric colloidal quantum dot flexible sensor. Applied Physics Letters, 2017, 111, .	3.3	12
976	Flexible and Transparent Strain Sensors with Embedded Multiwalled Carbon Nanotubes Meshes. ACS Applied Materials & Interfaces, 2017, 9, 40681-40689.	8.0	114
977	Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Advanced Electronic Materials, 2017, 3, 1700077.	5.1	61
978	Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process. Journal of Materials Science: Materials in Electronics, 2017, 28, 4279-4287.	2.2	14
979	Crack-based strain sensor with diverse metal films by inserting an inter-layer. RSC Advances, 2017, 7, 34810-34815.	3.6	51

#	Article	IF	CITATIONS
980	Capacitive behavior of carbon nanotube thin film induced by deformed ZnO microspheres. Nanotechnology, 2017, 28, 395101.	2.6	3
981	Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block. ACS Applied Materials & Interfaces, 2017, 9, 22885-22892.	8.0	113
982	Multi-vinyl linked benzothiadiazole conjugated polymers: high performance, low crystalline material for transistors. Chemical Communications, 2017, 53, 8176-8179.	4.1	8
983	Chemical sintering of direct-written silver nanowire flexible electrodes under room temperature. Nanotechnology, 2017, 28, 285703.	2.6	34
984	Stretchable Polymer Dielectrics for Low-Voltage-Driven Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 25522-25532.	8.0	76
985	Transparent Conducting Electrodes from Conducting Polymer Nanofibers and Their Application as Thinâ€Film Heaters. Macromolecular Materials and Engineering, 2017, 302, 1700188.	3.6	11
986	Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors. Nanoscale, 2017, 9, 10897-10905.	5.6	75
987	A wearable and highly sensitive strain sensor based on a polyethylenimine–rGO layered nanocomposite thin film. Journal of Materials Chemistry C, 2017, 5, 7746-7752.	5.5	64
988	A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. Journal of Materials Chemistry C, 2017, 5, 7035-7042.	5.5	100
989	Integrated Simultaneous Detection of Tactile and Bending Cues for Soft Robotics. Soft Robotics, 2017, 4, 400-410.	8.0	34
990	Production of Flexible Transparent Conducting Films of Selfâ€Fused Nanowires via Oneâ€Step Supersonic Spraying. Advanced Functional Materials, 2017, 27, 1602548.	14.9	54
991	Highly sensitive flexible tactile sensors based on microstructured multiwall carbon nanotube arrays. Scripta Materialia, 2017, 129, 61-64.	5.2	60
992	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	21.0	98
993	Wearable strain sensor made of carbonized cotton cloth. Journal of Materials Science: Materials in Electronics, 2017, 28, 3535-3541.	2.2	30
994	Strain induced polymorphism and band structure modulation in low-temperature 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene single crystal. Science China Chemistry, 2017, 60, 275-283.	8.2	4
995	A flexible self-powered T-ZnO/PVDF/fabric electronic-skin with multi-functions of tactile-perception, atmosphere-detection and self-clean. Nano Energy, 2017, 31, 37-48.	16.0	172
996	Flaw sensitivity of highly stretchable materials. Extreme Mechanics Letters, 2017, 10, 50-57.	4.1	151
997	Array of Organic Field-Effect Transistor for Advanced Sensing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 92-101.	3.6	14

		CITATION REPORT		
#	Article		IF	CITATIONS
998	Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems, 2017, , .		0.1	10
999	Carbon Nanotubes for Defect Monitoring in Fiber-Reinforced Polymer Composites. , 2017, , 71-99.			4
1000	Carbon Nanotubes for Sensing Applications. , 2017, , 129-150.			12
1001	Wearable Carbon Nanotube Devices for Sensing. , 2017, , 179-199.			7
1002	Flexible Electronic Devices for Biomedical Applications. Microsystems and Nanosystems, 2017, , 34	41-366.	0.1	4
1003	Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Natu Materials, 2017, 16, 303-308.	ıre	27.5	652
1004	Wearable human–machine interface based on PVDF piezoelectric sensor. Transactions of the Ins of Measurement and Control, 2017, 39, 398-403.	ititute	1.7	56
1005	Organic strain sensor comprised of heptazole-based thin film transistor and Schottky diode. Organ Electronics, 2017, 40, 24-29.	hic	2.6	7
1006	Extremely Stretchable Strain Sensors Based on Conductive Selfâ€Healing Dynamic Cross‣inks ⊢ for Humanâ€Motion Detection. Advanced Science, 2017, 4, 1600190.	ydrogels	11.2	728
1007	Soft Robotics: Trends, Applications and Challenges. Biosystems and Biorobotics, 2017, , .		0.3	22
1008	Soft Robotics Mechanosensing. Biosystems and Biorobotics, 2017, , 11-21.		0.3	9
1009	A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transpa conductor. Journal of Materials Chemistry A, 2017, 5, 3221-3229.	rent	10.3	26
1010	Simple CNT nanocomposite piezoresistive press sensor. , 2017, , .			1
1011	Flexible and highly sensitive multi-dimensional strain sensor with intersecting metal nanowire array , 2017, , .	/S.		1
1012	HOPG/ZnO/HOPG pressure sensor. Journal of Physics: Conference Series, 2017, 939, 012018.		0.4	0
1013	A wireless smart UV accumulation patch based on conductive polymer and CNT composites. RSC Advances, 2017, 7, 54741-54746.		3.6	6
1014	Development of a conformable electronic skin based on silver nanowires and PDMS. IOP Conferen Series: Materials Science and Engineering, 2017, 207, 012040.	ce	0.6	8
1015	Soft-matter sensor for proximity, tactile and pressure detection. , 2017, , .			20

#	Article	IF	CITATIONS
1016	High performance flexible tactile sensor array using a large area plastic nano-grating substrate. , 2017, , .		1
1017	Biochar: A "green―carbon source for pressure sensors. , 2017, , .		0
1018	Fabrication of a sensitive pressure sensor using carbon nanotube micro-yarns. , 2017, , .		2
1019	Novel force-sensing system for minimally invasive surgical instruments. , 2017, 2017, 4447-4450.		6
1020	Transparent Electronic Skin Device Based on Microstructured Silver Nanowire Electrode. Chinese Journal of Chemical Physics, 2017, 30, 603-608.	1.3	4
1021	Dielectric Elastomer Sensors. , 0, , .		13
1023	Highly flexible and stretchable optical strain sensing for human motion detection. Optica, 2017, 4, 1285.	9.3	143
1024	Smart Sensor Systems for Wearable Electronic Devices. Polymers, 2017, 9, 303.	4.5	185
1025	Characterizing the Conductivity and Enhancing the Piezoresistivity of Carbon Nanotube-Polymeric Thin Films. Materials, 2017, 10, 724.	2.9	5
1026	A Micro-Pressure Sensing Method Based on the Micropatterned Electrodes Filled with the Microspheres. Materials, 2017, 10, 1439.	2.9	14
1027	Arrayed Force Sensors Made of Paper, Elastomer, and Hydrogel Particles. Micromachines, 2017, 8, 356.	2.9	6
1028	Large-Scale and Flexible Self-Powered Triboelectric Tactile Sensing Array for Sensitive Robot Skin. Polymers, 2017, 9, 586.	4.5	19
1029	Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers. Sensors, 2017, 17, 748.	3.8	68
1030	The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166.	3.8	235
1031	A Stretchable Pressure-Sensitive Array Based on Polymer Matrix. Sensors, 2017, 17, 1571.	3.8	18
1032	Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors, 2017, 17, 2314.	3.8	75
1033	Decoupling research on a flexible tactile sensor array with novel structure. IOP Conference Series: Materials Science and Engineering, 2017, 224, 012045.	0.6	0
1034	Clothing-based wearable sensors for unobtrusive interactions with mobile devices. , 2017, , .		6

ARTICLE IF CITATIONS Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor. Journal of Sensors, 2017, 2017, 1035 1.1 7 1-9. Reinforced standing multi-walled carbon nanotube film for stretchable strain sensor., 2017, , . Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene. 1037 3.8 12 Sensors, 2017, 17, 1069. Giant and Linear Piezoâ€Phototronic Response in Layered GaSe Nanosheets. Advanced Electronic 5.1 Materials, 2018, 4, 1700447. Highly stretchable and conductive fibers enabled by liquid metal dip-coating. Smart Materials and 1039 3.5 37 Structures, 2018, 27, 035019. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology, 2018, 29, 185501. 1040 2.6 Flexible Normalâ€Tangential Force Sensor with Opposite Resistance Responding for Highly Sensitive 1041 14.9 167 Artificial Skin. Advanced Functional Materials, 2018, 28, 1707503. Soft Robotics. Angewandte Chemie - International Edition, 2018, 57, 4258-4273. 1042 13.8 534 Novel Patterning Method for Nanomaterials and Its Application to Flexible Organic Light-Emitting 1043 8.0 22 Diodes. ACS Applied Materials & amp; Interfaces, 2018, 10, 9704-9717. Electrical Resistance of Carbon Nanotube Yarns Under Compressive Transverse Pressure. IEEE 1044 Electron Device Letters, 2018, 39, 584-587. Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative 1046 electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. Journal of 7.8 75 Power Sources, 2018, 382, 122-127. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics. 15.6 Accounts of Chemical Research, 2018, 51, 850-859. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Science Advances, 1051 10.3 229 2018, 4, eaaq0118. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and Highâ€Aspectâ€Ratio 5.1 265 Microstructures. Advanced Electronic Materials, 2018, 4, 1700586. High-performance solution-processable flexible and transparent conducting electrodes with 1053 22 5.5embedded Cu mesh. Journal of Materials Chemistry C, 2018, 6, 4389-4395. Design of Novel Wearable, Stretchable, and Waterproof Cableâ€Type Supercapacitors Based on 1054 Highâ€Performance Nickel Cobalt Sulfideâ€Coated Etchingâ€Annealed Yarn Electrodes. Small, 2018, 14, 59 e1704373. Non-enzymatic electrochemical lactate sensing by NiO and Ni(OH)2 electrodes: A mechanistic 1055 5.243 investigation. Electrochimica Acta, 2018, 276, 240-246. Skin-Inspired Electronics: An Emerging Paradigm. Accounts of Chemical Research, 2018, 51, 1033-1045.

#	Article	IF	CITATIONS
1057	Transparent and flexible tactile sensors based on graphene films designed for smart panels. Journal of Materials Science, 2018, 53, 9589-9597.	3.7	26
1058	Vertical CNT–Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors. Journal of Materials Chemistry C, 2018, 6, 5132-5139.	5.5	63
1059	Piezoelectric Polyacrylonitrile Nanofiber Film-Based Dual-Function Self-Powered Flexible Sensor. ACS Applied Materials & Interfaces, 2018, 10, 15855-15863.	8.0	132
1060	Methylxanthine Drug Monitoring with Wearable Sweat Sensors. Advanced Materials, 2018, 30, e1707442.	21.0	226
1061	Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials, 2018, 171, 83-96.	11.4	227
1062	Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode. Solid-State Electronics, 2018, 145, 29-33.	1.4	54
1063	A flexible transparent one-structure tribo-piezo-pyroelectric hybrid energy generator based on bio-inspired silver nanowires network for biomechanical energy harvesting and physiological monitoring. Nano Energy, 2018, 48, 383-390.	16.0	118
1064	Network cracks-based wearable strain sensors for subtle and large strain detection of human motions. Journal of Materials Chemistry C, 2018, 6, 5140-5147.	5.5	164
1065	Design, Modeling, and Validation of a Soft Magnetic 3-D Force Sensor. IEEE Sensors Journal, 2018, 18, 3852-3863.	4.7	39
1066	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	14.6	207
1067	A Supercompressible, Elastic, and Bendable Carbon Aerogel with Ultrasensitive Detection Limits for Compression Strain, Pressure, and Bending Angle. Advanced Materials, 2018, 30, e1706705.	21.0	255
1068	EGaIn–Metal Interfacing for Liquid Metal Circuitry and Microelectronics Integration. Advanced Materials Interfaces, 2018, 5, 1701596.	3.7	158
1069	Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range. ACS Nano, 2018, 12, 4045-4054.	14.6	360
1070	Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 7371-7380.	8.0	189
1071	Skin-interfaced systems for sweat collection and analytics. Science Advances, 2018, 4, eaar3921.	10.3	303
1072	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	5.6	91
1073	Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 2018, 555, 83-88.	27.8	1,588
1074	Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 2018, 10, 6806-6811.	5.6	208

#	Article	IF	CITATIONS
1075	A Novel Finger Kinematic Tracking Method Based on Skin-Like Wearable Strain Sensors. IEEE Sensors Journal, 2018, 18, 3010-3015.	4.7	30
1076	Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review). Materials Science and Engineering C, 2018, 86, 151-172.	7.3	99
1077	Low-cost ultra-stretchable strain sensors for monitoring human motion and bio-signals. Sensors and Actuators A: Physical, 2018, 271, 182-191.	4.1	72
1078	Flexible Pressure Sensor With High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron Device Letters, 2018, 39, 288-291.	3.9	87
1079	Visually Imperceptible Liquidâ€Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing. Advanced Materials, 2018, 30, e1706937.	21.0	161
1080	Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics. Nanoscale, 2018, 10, 5264-5271.	5.6	144
1081	A Highly Stretchable Transparent Selfâ€Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Advanced Materials, 2018, 30, e1706738.	21.0	315
1082	Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties. Polymer, 2018, 144, 111-120.	3.8	125
1083	Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin. Nano Letters, 2018, 18, 2054-2059.	9.1	172
1084	Microstructural origin of resistance–strain hysteresis in carbon nanotube thin film conductors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1986-1991.	7.1	107
1085	Influence of Permittivity on the Sensitivity of Porous Elastomer-Based Capacitive Pressure Sensors. IEEE Sensors Journal, 2018, 18, 1870-1876.	4.7	51
1086	Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles. Small, 2018, 14, 1703432.	10.0	112
1087	Room-temperature processing of silver submicron fiber mesh for flexible electronics. Npj Flexible Electronics, 2018, 2, .	10.7	11
1088	Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. Npj Digital Medicine, 2018, 1, 2.	10.9	157
1089	Highly Stretchable Core–Sheath Fibers via Wet-Spinning for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 6624-6635.	8.0	228
1090	Fabrication of Grid-Type Transparent Conducting Electrodes Based on Controlled Mechanical Fracture. Macromolecular Research, 2018, 26, 157-163.	2.4	7
1091	Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nature Communications, 2018, 9, 244.	12.8	1,034
1092	Recent progress of flexible and wearable strain sensors for human-motion monitoring. Journal of Semiconductors, 2018, 39, 011012.	3.7	93

#	Article	IF	CITATIONS
1093	Highly Sensitive and Wearable In ₂ O ₃ Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS Nano, 2018, 12, 1170-1178.	14.6	185
1094	Versatile, Highâ€Power, Flexible, Stretchable Carbon Nanotube Sheet Heating Elements Tolerant to Mechanical Damage and Severe Deformation. Advanced Functional Materials, 2018, 28, 1706007.	14.9	57
1095	Characterization and optimization of flexible dual mode sensor based on Carbon Micro Coils. Materials Research Express, 2018, 5, 015604.	1.6	5
1096	Cellulose Nanopapers. , 2018, , 121-173.		15
1097	Giant Electrostriction of Soft Nanocomposites Based on Liquid Crystalline Graphene. ACS Nano, 2018, 12, 1688-1695.	14.6	21
1098	Improved Performance of Zinc Oxide Thin Film Transistor Pressure Sensors and a Demonstration of a Commercial Chip Compatibility with the New Force Sensing Technology. Advanced Materials Technologies, 2018, 3, 1700279.	5.8	43
1099	Molecular Dual-Rotators with Large Consecutive Emission Chromism for Visualized and High-Pressure Sensing. ACS Omega, 2018, 3, 717-723.	3.5	1
1100	Orientational Ag nanoparticle alignment from a facile â€~TEGâ€sol' method. Micro and Nano Letters, 2018, 13, 69-71.	1.3	0
1101	Mechanoâ€Based Transductive Sensing for Wearable Healthcare. Small, 2018, 14, e1702933.	10.0	91
1102	Highly Exfoliated MWNT–rGO Ink-Wrapped Polyurethane Foam for Piezoresistive Pressure Sensor Applications. ACS Applied Materials & Interfaces, 2018, 10, 5185-5195.	8.0	208
1103	A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins. Nanotechnology, 2018, 29, 115502.	2.6	94
1104	Multigram Synthesis of Cuâ€Ag Core–Shell Nanowires Enables the Production of a Highly Conductive Polymer Filament for 3D Printing Electronics. Particle and Particle Systems Characterization, 2018, 35, 1700385.	2.3	73
1105	Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate. Nanoscale, 2018, 10, 5105-5113.	5.6	67
1106	Enhanced Piezocapacitive Effect in CaCu ₃ Ti ₄ O ₁₂ –Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Applied Nano Materials, 2018, 1, 274-283.	5.0	54
1107	Self-powered nanofiber-based screen-print triboelectric sensors for respiratory monitoring. Nano Research, 2018, 11, 3771-3779.	10.4	115
1108	Flexible Sensors for Biomedical Application. Energy, Environment, and Sustainability, 2018, , 287-314.	1.0	7
1109	Recent Developments in Grapheneâ€Based Tactile Sensors and E‣kins. Advanced Materials Technologies, 2018, 3, 1700248.	5.8	153
1110	Ultrastretchable Strain Sensors Using Carbon Blackâ€Filled Elastomer Composites and Comparison of Capacitive Versus Resistive Sensors. Advanced Materials Technologies, 2018, 3, 170 <u>0284</u> .	5.8	219

#	Article	IF	CITATIONS
1111	Carbon Nanofiber versus Grapheneâ€Based Stretchable Capacitive Touch Sensors for Artificial Electronic Skin. Advanced Science, 2018, 5, 1700587.	11.2	100
1112	A High Aspect Ratio Serpentine Structure for Use As a Strainâ€Insensitive, Stretchable Transparent Conductor. Small, 2018, 14, 1702818.	10.0	32
1113	Improved antistatic properties and mechanism of silicone rubber/low-melting-point-alloy composites induced by high-temperature cyclic stretching. Journal of Alloys and Compounds, 2018, 739, 9-18.	5.5	7
1114	Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 2018, 270, 177-194.	4.1	475
1115	Research Advances of Bio-Inspired Carbon Nanotubes-Based Sensors. MRS Advances, 2018, 3, 1-11.	0.9	8
1116	Transparent and Waterproof Ionic Liquid-Based Fibers for Highly Durable Multifunctional Sensors and Strain-Insensitive Stretchable Conductors. ACS Applied Materials & Interfaces, 2018, 10, 4305-4314.	8.0	85
1117	Room-Temperature Joining of Silver Nanoparticles Using Potassium Chloride Solution for Flexible Electrode Application. Journal of Physical Chemistry C, 2018, 122, 2704-2711.	3.1	31
1118	Flexible three-axial tactile sensors with microstructure-enhanced piezoelectric effect and specially-arranged piezoelectric arrays. Smart Materials and Structures, 2018, 27, 025018.	3.5	49
1119	A Light Harvesting, Selfâ€Powered Monolith Tactile Sensor Based on Electric Field Induced Effects in MAPbI ₃ Perovskite. Advanced Materials, 2018, 30, 1705778.	21.0	51
1120	Immobilization of Ag nanowire into zinc phthalocyanine doped copolyester elastomer for optoelectric flexible strain sensor. Chemical Physics Letters, 2018, 693, 55-59.	2.6	6
1121	Highly conductive and transparent copper nanowire electrodes on surface coated flexible and heat-sensitive substrates. RSC Advances, 2018, 8, 2109-2115.	3.6	20
1122	Facile fabrication of Ag nanowires for capacitive flexible pressure sensors by liquid polyol reduction method. Materials Research Express, 2018, 5, 015041.	1.6	6
1123	Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. ACS Nano, 2018, 12, 627-634.	14.6	57
1124	Printable Skinâ€Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Advanced Materials, 2018, 30, e1800291.	21.0	178
1125	Scalable fabrication of free-standing, stretchable CNT/TPE ultrathin composite films for skin adhesive epidermal electronics. Journal of Materials Chemistry C, 2018, 6, 6666-6671.	5.5	29
1126	A Transferâ€Printed, Stretchable, and Reliable Strain Sensor Using PEDOT:PSS/Ag NW Hybrid Films Embedded into Elastomers. Advanced Materials Technologies, 2018, 3, 1800030.	5.8	42
1127	An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy, 2018, 49, 603-613.	16.0	124
1128	Highly Sensitive and Optically Transparent Resistive Pressure Sensors Based on a Graphene/Polyaniline-Embedded PVB Film. IEEE Transactions on Electron Devices, 2018, 65, 1939-1945.	3.0	18

$\mathcal{O} = \mathcal{O}$	 D	_
	REDU	ND T
CITAT	NLFU	

#	Article	IF	CITATIONS
1129	Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Nano Letters, 2018, 18, 2903-2911.	9.1	146
1130	Electroluminescent Pressure-Sensing Displays. ACS Applied Materials & Interfaces, 2018, 10, 13757-13766.	8.0	56
1131	Stretchable Conductive Composites from Cu–Ag Nanowire Felt. ACS Nano, 2018, 12, 3689-3698.	14.6	57
1132	Interfacial aspects of carbon composites. Composite Interfaces, 2018, 25, 539-605.	2.3	51
1133	Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks. ACS Applied Materials & Interfaces, 2018, 10, 12816-12823.	8.0	236
1134	Highly stretchable, mechanically stable, and weavable reduced graphene oxide yarn with high NO ₂ sensitivity for wearable gas sensors. RSC Advances, 2018, 8, 7615-7621.	3.6	27
1135	Piezoresistive effect observed in flexible amorphous carbon films. Journal Physics D: Applied Physics, 2018, 51, 175304.	2.8	3
1136	Spray-Processed Composites with High Conductivity and Elasticity. ACS Applied Materials & Interfaces, 2018, 10, 13953-13962.	8.0	10
1137	Tunable electronic properties of silicene/GaP heterobilayer: Effects of electric field or biaxial tensile strain. Chemical Physics Letters, 2018, 700, 114-121.	2.6	10
1138	Stretchable V ₂ O ₅ /PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators. Nanoscale, 2018, 10, 7719-7725.	5.6	26
1139	Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Research, 2018, 11, 5799-5811.	10.4	99
1140	Smart Passivation Materials with a Liquid Metal Microcapsule as Selfâ€Healing Conductors for Sustainable and Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1800110.	14.9	80
1141	Softâ€Robotik. Angewandte Chemie, 2018, 130, 4336-4353.	2.0	20
1142	Effect of finger geometries on strain response of interdigitated capacitor based soft strain sensors. Applied Physics Letters, 2018, 112, .	3.3	8
1143	Stretchable 3D polymer for simultaneously mechanical energy harvesting and biomimetic force sensing. Nano Energy, 2018, 47, 442-450.	16.0	41
1144	Graphene/Ag-NWs Electrodes for Highly Transparent and Extremely Stretchable Supercapacitor. IEEE Nanotechnology Magazine, 2018, 17, 65-68.	2.0	11
1145	Mechanical Imaging of Soft Tissues With a Highly Compliant Tactile Sensing Array. IEEE Transactions on Biomedical Engineering, 2018, 65, 687-697.	4.2	23
1146	Soft electronics on asymmetrical porous conducting membranes by molecular layer-by-layer assembly. Sensors and Actuators B: Chemical, 2018, 254, 916-925.	7.8	17

#	Article	IF	CITATIONS
1147	Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Advanced Functional Materials, 2018, 28, 1702284.	14.9	49
1148	Flexible, Transparent, Sensitive, and Crosstalkâ€Free Capacitive Tactile Sensor Array Based on Graphene Electrodes and Air Dielectric. Advanced Electronic Materials, 2018, 4, 1700427.	5.1	100
1149	Boron-assisted growth of silica nanowire arrays and silica microflowers for bendable capacitor application. Chinese Chemical Letters, 2018, 29, 954-958.	9.0	5
1150	Helical gold nanotube film as stretchable micro/nanoscale strain sensor. Journal of Materials Science, 2018, 53, 2181-2192.	3.7	13
1151	Dip-coating processed sponge-based electrodes for stretchable Zn-MnO2 batteries. Nano Research, 2018, 11, 1554-1562.	10.4	51
1152	Wearable sensors: modalities, challenges, and prospects. Lab on A Chip, 2018, 18, 217-248.	6.0	778
1153	Nanomaterialâ€Enabled Wearable Sensors for Healthcare. Advanced Healthcare Materials, 2018, 7, 1700889.	7.6	412
1154	Surface Strain Redistribution on Structured Microfibers to Enhance Sensitivity of Fiberâ€Shaped Stretchable Strain Sensors. Advanced Materials, 2018, 30, 1704229.	21.0	208
1155	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	7.6	157
1156	The effect of surfactants on electrohydrodynamic jet printing and the performance of organic field-effect transistors. Physical Chemistry Chemical Physics, 2018, 20, 1210-1220.	2.8	27
1157	A Selfâ€Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Advanced Functional Materials, 2018, 28, 1705551.	14.9	387
1158	Highly sensitive, durable and stretchable plastic strain sensors using sandwich structures of PEDOT:PSS and an elastomer. Materials Chemistry Frontiers, 2018, 2, 355-361.	5.9	58
1159	Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 1067-1076.	8.0	84
1160	Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors. ACS Applied Materials & Interfaces, 2018, 10, 1389-1398.	8.0	38
1161	Highly Stretchable and Reliable, Transparent and Conductive Entangled Graphene Mesh Networks. Advanced Materials, 2018, 30, 1704626.	21.0	53
1162	Development of wearable and flexible insole type capacitive pressure sensor for continuous gait signal analysis. Organic Electronics, 2018, 53, 213-220.	2.6	54
1163	A Breathable and Screenâ€Printed Pressure Sensor Based on Nanofiber Membranes for Electronic Skins. Advanced Materials Technologies, 2018, 3, 1700241.	5.8	163
1164	Stretchable Ti ₃ C ₂ T _{<i>x</i>} MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano, 2018, 12, 56-62.	14.6	696

#	Article	IF	CITATIONS
1165	A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy, 2018, 44, 43-52.	16.0	44
1166	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	16.0	216
1167	Graphene-based inline pressure sensor integrated with microfluidic elastic tube. Journal of Micromechanics and Microengineering, 2018, 28, 014001.	2.6	6
1168	A Highly Selective 3D Spiked Ultraflexible Neural (SUN) Interface for Decoding Peripheral Nerve Sensory Information. Advanced Healthcare Materials, 2018, 7, 1700987.	7.6	36
1169	RGO-coated elastic fibres as wearable strain sensors for full-scale detection of human motions. Smart Materials and Structures, 2018, 27, 015014.	3.5	25
1170	Design of a wearable and shape-memory fibriform sensor for the detection of multimodal deformation. Nanoscale, 2018, 10, 118-123.	5.6	58
1171	Flexible Piezoresistive Pressure Sensor Using Wrinkled Carbon Nanotube Thin Films for Human Physiological Signals. Advanced Materials Technologies, 2018, 3, 1700158.	5.8	136
1172	AgNW coated on poplar fibres for flexible capacitors. IOP Conference Series: Materials Science and Engineering, 2018, 460, 012022.	0.6	1
1173	Stretchable, Transparent, and Selfâ€Patterned Hydrogelâ€Based Pressure Sensor for Human Motions Detection. Advanced Functional Materials, 2018, 28, 1802576.	14.9	430
1174	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , .		1
1174 1175	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	21.0	1 445
1174 1175 1176	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices. , 0, , .	21.0	1 445 4
1174 1175 1176 1177	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices. , 0, , . Carbon Nanotube-Coated Thread as Sensor for Wearable Mechanomyography of Leg Muscles. , 2018, , .	21.0	1 445 4
1174 1175 1176 1177 1178	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices. , 0, , . Carbon Nanotube-Coated Thread as Sensor for Wearable Mechanomyography of Leg Muscles. , 2018, , . Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Physical Chemistry Chemical Physics, 2018, 20, 26396-26404.	21.0	1 445 4 4 18
11174 11175 11176 11177 11178	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices. , 0, , . Carbon Nanotube-Coated Thread as Sensor for Wearable Mechanomyography of Leg Muscles. , 2018, , . Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Physical Chemistry Chemical Physics, 2018, 20, 26396-26404. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978.	21.0 2.8 5.6	1 445 4 4 18 46
 1174 1175 1176 1177 1178 1179 1180 	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film., 2018, ,. Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices., 0, ,. Carbon Nanotube-Coated Thread as Sensor for Wearable Mechanomyography of Leg Muscles., 2018, ,. Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Physical Chemistry Chemical Physics, 2018, 20, 26396-26404. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978. Highly sensitive metal-grid strain sensors <i>via</i> water-based solution processing. RSC Advances, 2018, 8, 42153-42159.	21.0 2.8 5.6 3.6	1 445 4 4 18 46 8
 1174 1175 1176 1177 1178 1179 1180 1181 	Chameleon Skin Inspired Au Nanodisk Patterned Strain Responsive PDMS Film. , 2018, , . Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368. Smart Materials for Wearable Healthcare Devices. , 0, , . Carbon Nanotube-Coated Thread as Sensor for Wearable Mechanomyography of Leg Muscles. , 2018, , . Manipulation of spin and magnetic anisotropy in bilayer magnetic molecular junctions. Physical Chemistry Chemical Physics, 2018, 20, 26396-26404. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10, 19972-19978. Highly sensitive metal-grid strain sensors <1>via Visible colorimetric fluoride and hydroxide sensing by asymmetric tris-urea receptors: combined experimental and theoretical studies. RSC Advances, 2018, 8, 39394-39407.	21.0 2.8 5.6 3.6 3.6	1 445 4 4 3 4 4 6 8 8

# 1184	ARTICLE A Tactile Sensor Decoupling Process. Sensors, 2018, 18, 3515.	IF 3.8	CITATIONS 0
1185	Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 44173-44182.	8.0	36
1186	Cosmetically Adaptable Transparent Strain Sensor for Sensitively Delineating Patterns in Small Movements of Vital Human Organs. ACS Applied Materials & Interfaces, 2018, 10, 44126-44133.	8.0	23
1187	Stretchable organic optoelectronic sensorimotor synapse. Science Advances, 2018, 4, eaat7387.	10.3	359
1188	Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-like Electronic Nanosystems. ACS Nano, 2018, 12, 11731-11739.	14.6	142
1189	A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Science Robotics, 2018, 3, .	17.6	568
1190	Recent Advances in Smart Wearable Sensing Systems. Advanced Materials Technologies, 2018, 3, 1800444.	5.8	128
1191	Liquid Metal-Microelectronics Integration for a Sensorized Soft Robot Skin. , 2018, , .		20
1192	Ultra-Stretchable Conductive Iono-Elastomer And Motion Strain Sensor System Developed Therefrom. Technology and Innovation, 2018, 19, 613-626.	0.2	9
1193	Effective weight control via an implanted self-powered vagus nerve stimulation device. Nature Communications, 2018, 9, 5349.	12.8	242
1194	Breathable Materials for Triboelectric Effect-Based Wearable Electronics. Applied Sciences (Switzerland), 2018, 8, 2485.	2.5	22
1195	Wearable Flexible Touch Interface Using Smart Threads. , 2018, , .		3
1196	EIS. , 2018, 2, 1-22.		13
1197	A High Compressibility Pressure—Sensitive Structure Based on CB@PU Yarn Network. Sensors, 2018, 18, 4141.	3.8	8
1198	Real-time Marker Recognition Using Vision-based Tactile Sensor. , 2018, , .		3
1199	Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. Nanotechnology in the Life Sciences, 2018, , 369-392.	0.6	23
1200	Advances on Sensors Based on Carbon Nanotubes. Chemosensors, 2018, 6, 62.	3.6	120
1201	Breathable and Skin-Mountable Strain Sensor with Tunable Stretchability, Sensitivity, and Linearity via Surface Strain Delocalization for Versatile Skin Activities' Recognition. ACS Applied Materials & Interfaces, 2018, 10, 42826-42836.	8.0	60

#	Article	IF	CITATIONS
1202	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	8.0	105
1203	Assembly of Highly Aligned Carbon Nanotubes Using an Electro-Fluidic Assembly Process. ACS Nano, 2018, 12, 12315-12323.	14.6	18
1204	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
1205	Bioinspired and bristled microparticles for ultrasensitive pressure and strain sensors. Nature Communications, 2018, 9, 5161.	12.8	138
1206	A Freestanding Stretchable and Multifunctional Transistor with Intrinsic Selfâ€Healing Properties of all Device Components. Small, 2019, 15, e1803939.	10.0	71
1207	Sensitive and Wearable Optical Microfiber Sensor for Human Health Monitoring. Advanced Materials Technologies, 2018, 3, 1800296.	5.8	78
1208	Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 36483-36492.	8.0	57
1209	Stretchable CNTsâ€Ecoflex Composite as Variableâ€Transmittance Skin for Ultrasensitive Strain Sensing. Advanced Materials Technologies, 2018, 3, 1800248.	5.8	35
1210	Ultrathin Trilayer Assemblies as Long-Lived Barriers against Water and Ion Penetration in Flexible Bioelectronic Systems. ACS Nano, 2018, 12, 10317-10326.	14.6	57
1211	Conductive twisted polyimide composite nanofiber ropes with improved tensile strength, thermal stability and high flexibility. Journal Physics D: Applied Physics, 2018, 51, 485102.	2.8	7
1212	Coaxial carbon nanotube/polymer fibers as wearable piezoresistive sensors. Sensors and Actuators A: Physical, 2018, 284, 85-95.	4.1	39
1213	Ultra-highly sensitive, low hysteretic and flexible pressure sensor based on porous MWCNTs/Ecoflex elastomer composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 20978-20983.	2.2	32
1214	Flexible, Degradable, and Cost-Effective Strain Sensor Fabricated by a Scalable Papermaking Procedure. ACS Sustainable Chemistry and Engineering, 2018, 6, 15749-15755.	6.7	48
1215	Conformal Physical Vapor Deposition Assisted by Atomic Layer Deposition and Its Application for Stretchable Conductors. Advanced Materials Interfaces, 2018, 5, 1801379.	3.7	4
1216	Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors, 2018, 18, 3300.	3.8	17
1217	Vertical Gold Nanowires Stretchable Electrochemical Electrodes. Analytical Chemistry, 2018, 90, 13498-13505.	6.5	58
1218	Hygroscopic Auxetic On-Skin Sensors for Easy-to-Handle Repeated Daily Use. ACS Applied Materials & Interfaces, 2018, 10, 40141-40148.	8.0	69
1219	Solution-Processed Resistive Pressure Sensors Based on Sandwich Structures Using Silver Nanowires and Conductive Polymer. IEEE Sensors Journal, 2018, 18, 9919-9924.	4.7	19

#	Article	IF	CITATIONS
1220	Triboelectric Self-Powered Wearable Flexible Patch as 3D Motion Control Interface for Robotic Manipulator. ACS Nano, 2018, 12, 11561-11571.	14.6	179
1221	Electrical Adaptiveness and Electromechanical Response in Gel Composites of Carbon Nanomaterials. ChemElectroChem, 2018, 5, 3589-3596.	3.4	7
1222	Selfâ€Healable and Mechanically Reinforced Multidimensional arbon/Polyurethane Dielectric Nanocomposite Incorporates Various Functionalities for Capacitive Strain Sensor Applications. Macromolecular Chemistry and Physics, 2018, 219, 1800369.	2.2	17
1223	Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing. Sensors and Actuators A: Physical, 2018, 284, 260-265.	4.1	67
1224	Twoâ€Layered and Stretchable eâ€Textile Patches for Wearable Healthcare Electronics. Advanced Healthcare Materials, 2018, 7, e1801033.	7.6	86
1225	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	11.2	83
1226	Solutionâ€Grown Serpentine Silver Nanofiber Meshes for Stretchable Transparent Conductors. Advanced Electronic Materials, 2018, 4, 1800346.	5.1	15
1227	6.10 Electrically Conductive Nanocomposites. , 2018, , 248-314.		3
1228	Washable Smart Threads for Strain Sensing Fabrics. IEEE Sensors Journal, 2018, 18, 9137-9144.	4.7	45
1229	Highly responsive flexible strain sensor using polystyrene nanoparticle doped reduced graphene oxide for human health monitoring. Carbon, 2018, 140, 286-295.	10.3	76
1230	Industrial Grade, Bendingâ€Insensitive, Transparent Nanoforce Touch Sensor via Enhanced Percolation Effect in a Hierarchical Nanocomposite Film. Advanced Functional Materials, 2018, 28, 1804721.	14.9	50
1231	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	14.6	130
1232	Highly Stretchable, Self-Healable Elastomers from Hydrogen-Bonded Interpolymer Complex (HIPC) and Their Use as Sensitive, Stable Electric Skin. ACS Omega, 2018, 3, 11368-11382.	3.5	19
1233	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	12.8	57
1234	Pressure/Temperature Sensing Bimodal Electronic Skin with Stimulus Discriminability and Linear Sensitivity. Advanced Materials, 2018, 30, e1803388.	21.0	271
1235	High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Science Advances, 2018, 4, eaat5780.	10.3	167
1236	Electronic biosensing with flexible organic transistor devices. Flexible and Printed Electronics, 2018, 3, 034003.	2.7	26
1237	Recent Progress on Highâ€Capacitance Polymer Gate Dielectrics for Flexible Lowâ€Voltage Transistors. Advanced Functional Materials, 2018, 28, 1802201.	14.9	139

#	Article	IF	CITATIONS
1238	Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels. ACS Applied Materials & Interfaces, 2018, 10, 32640-32648.	8.0	107
1239	Laser-microengineered flexible electrodes with enhanced sensitivity for wearable pressure sensors. Sensors and Actuators A: Physical, 2018, 281, 124-129.	4.1	31
1240	Crack-enhanced mechanosensitivity of cost-effective piezoresistive flexible strain sensors suitable for motion detection. Smart Materials and Structures, 2018, 27, 105049.	3.5	17
1241	Integration of Biomaterials into Sensors Based on Organic Thinâ€Film Transistors. Macromolecular Rapid Communications, 2018, 39, e1800084.	3.9	24
1242	Triboelectrification-enabled thin-film tactile matrix for self-powered high-resolution imaging. Nano Energy, 2018, 50, 497-503.	16.0	30
1243	Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensors for Intelligent Human–Machine Interaction. ACS Nano, 2018, 12, 5190-5196.	14.6	386
1244	Highly Oriented Electrospun P(VDFâ€TrFE) Fibers via Mechanical Stretching for Wearable Motion Sensing. Advanced Materials Technologies, 2018, 3, 1800033.	5.8	46
1245	Conductive Hydrogels as Smart Materials for Flexible Electronic Devices. Chemistry - A European Journal, 2018, 24, 16930-16943.	3.3	215
1246	Wearable and flexible sensors for user-interactive health-monitoring devices. Journal of Materials Chemistry B, 2018, 6, 4043-4064.	5.8	255
1247	Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing. Advanced Materials, 2018, 30, e1707251.	21.0	135
1248	Fabrication of a Flexible and Stretchable Nanostructured Gold Electrode Using a Facile Ultraviolet-Irradiation Approach for the Detection of Nitric Oxide Released from Cells. Analytical Chemistry, 2018, 90, 7158-7163.	6.5	59
1249	Reliable peripheral anchor-assisted transfer printing of ultrathin SiO2 for a transparent and flexible IGZO-based inverter. Microelectronic Engineering, 2018, 197, 15-22.	2.4	5
1250	Nanoink bridge-induced capillary pen printing for chemical sensors. Nanotechnology, 2018, 29, 335304.	2.6	12
1251	Piezoresistive stretchable strain sensors with human machine interface demonstrations. Sensors and Actuators A: Physical, 2018, 279, 46-52.	4.1	96
1252	An ultrasensitive strain sensor with a wide strain range based on graphene armour scales. Nanoscale, 2018, 10, 11524-11530.	5.6	77
1253	Recent Advances in Materials, Devices, and Systems for Neural Interfaces. Advanced Materials, 2018, 30, e1800534.	21.0	148
1254	Freestanding Organic Charge-Transfer Conformal Electronics. Nano Letters, 2018, 18, 4346-4354.	9.1	10
1255	Electronic skins for soft, compact, reversible assembly of wirelessly activated fully soft robots. Science Robotics, 2018, 3, .	17.6	176

#	Article	IF	CITATIONS
1256	Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Composites Science and Technology, 2018, 163, 162-170.	7.8	65
1257	Flexible hemispheric microarrays of highly pressure-sensitive sensors based on breath figure method. Nanoscale, 2018, 10, 10691-10698.	5.6	102
1258	Flexible pressure sensors using highly-oriented and free-standing carbon nanotube sheets. Carbon, 2018, 139, 586-592.	10.3	45
1259	Manganese phytate dotted polyaniline shell enwrapped carbon nanotube: Towards the reinforcements in fire safety and mechanical property of polymer. Journal of Colloid and Interface Science, 2018, 529, 345-356.	9.4	58
1260	Design of ultraflexible organic differential amplifier circuits for wearable sensor technologies. , 2018, , .		17
1261	Capacitively Coupled Hybrid Ion Gel and Carbon Nanotube Thinâ€Film Transistors for Low Voltage Flexible Logic Circuits. Advanced Functional Materials, 2018, 28, 1802610.	14.9	37
1262	Ultra-stretchable and highly sensitive strain sensor based on gradient structure carbon nanotubes. Nanoscale, 2018, 10, 13599-13606.	5.6	80
1263	Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range. ACS Sensors, 2018, 3, 1276-1282.	7.8	103
1264	Thermal analysis of epidermal electronic devices integrated with human skin considering the effects of interfacial thermal resistance. AIP Advances, 2018, 8, .	1.3	10
1265	Inflammation-free and gas-permeable on-skin triboelectric nanogenerator using soluble nanofibers. Nano Energy, 2018, 51, 260-269.	16.0	46
1266	Mechanochemical synthesis of porous carbon at room temperature with a highly ordered sp2 microstructure. Carbon, 2018, 139, 325-333.	10.3	36
1267	Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection. Nano Energy, 2018, 51, 496-503.	16.0	131
1268	A Composite Elastic Conductor with High Dynamic Stability Based on 3D alabash Bunch Conductive Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800137.	5.1	57
1269	A sandpaper-inspired flexible and stretchable resistive sensor for pressure and strain measurement. Organic Electronics, 2018, 62, 581-590.	2.6	24
1270	Microporous Polypyrrole oated Graphene Foam for Highâ€Performance Multifunctional Sensors and Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1707013.	14.9	195
1271	Joint angle measurement by stretchable strain sensor. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 14623-14628.	4.9	8
1272	Tackling Grand Challenges of the 21st Century with Electroanalytical Chemistry. Journal of the American Chemical Society, 2018, 140, 10629-10638.	13.7	37
1273	Sweat effects on the thermal analysis of epidermal electronic devices integrated with human skin. International Journal of Heat and Mass Transfer, 2018, 127, 97-104.	4.8	20

#	Article	IF	CITATIONS
1274	Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate. Optics Express, 2018, 26, 16797.	3.4	14
1275	A Flexible Capacitive Pressure Sensor Based on Ionic Liquid. Sensors, 2018, 18, 2395.	3.8	37
1276	A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Letters, 2018, 18, 5610-5617.	9.1	212
1277	A location- and sharpness-specific tactile electronic skin based on staircase-like nanowire patches. Nanoscale Horizons, 2018, 3, 640-647.	8.0	49
1278	Shape estimation based on Kalman filtering: Towards fully soft proprioception. , 2018, , .		22
1279	Stretchable Tactile and Bio-potential Sensors for Human-Machine Interaction: A Review. Lecture Notes in Computer Science, 2018, , 155-163.	1.3	3
1280	Simultaneous Monitoring of Sweat and Interstitial Fluid Using a Single Wearable Biosensor Platform. Advanced Science, 2018, 5, 1800880.	11.2	371
1281	Lowâ€Power Monolithically Stacked Organic Photodiodeâ€Blocking Diode Imager by Turnâ€On Voltage Engineering. Advanced Electronic Materials, 2018, 4, 1800311.	5.1	18
1282	Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 2018, 39, e1800246.	3.9	112
1283	Innovative evolution of buckling structures for flexible electronics. Composite Structures, 2018, 204, 487-499.	5.8	15
1284	Graphene based strain sensor with LCP substrate. IOP Conference Series: Materials Science and Engineering, 2018, 307, 012051.	0.6	1
1285	Directional sensing based on flexible aligned carbon nanotube film nanocomposites. Nanoscale, 2018, 10, 14938-14946.	5.6	37
1286	High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale, 2018, 10, 14966-14975.	5.6	48
1287	An interlocked flexible piezoresistive sensor with 3D micropyramidal structures for electronic skin applications. Soft Matter, 2018, 14, 6912-6920.	2.7	29
1288	Ionic Skin with Biomimetic Dielectric Layer Templated from <i>Calathea Zebrine</i> Leaf. Advanced Functional Materials, 2018, 28, 1802343.	14.9	216
1289	A One-Step Method of Hydrogel Modification by Single-Walled Carbon Nanotubes for Highly Stretchable and Transparent Electronics. ACS Applied Materials & Interfaces, 2018, 10, 28069-28075.	8.0	75
1290	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	14.9	357
1291	Wearable Sensors for Upper Limb Monitoring. , 2018, , 113-134.		5

#	Article	IF	CITATIONS
1292	Robotic Flexible Electronics with Self-Bendable Films. Soft Robotics, 2018, 5, 710-717.	8.0	13
1293	3D printed resistive soft sensors. , 2018, , .		9
1294	Membrane-Interface-Elastomer Structures for Stretchable Electronics. CheM, 2018, 4, 1673-1684.	11.7	17
1295	Self-Cleaning, Chemically Stable, Reshapeable, Highly Conductive Nanocomposites for Electrical Circuits and Flexible Electronic Devices. ACS Applied Materials & Interfaces, 2018, 10, 25697-25705.	8.0	10
1296	Chaotic printing: using chaos to fabricate densely packed micro- and nanostructures at high resolution and speed. Materials Horizons, 2018, 5, 813-822.	12.2	28
1297	Decoupling Research of a Novel Three-Dimensional Force Flexible Tactile Sensor Based on an Improved BP Algorithm. Micromachines, 2018, 9, 236.	2.9	14
1298	3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers, 2018, 10, 629.	4.5	183
1299	Tactile-Sensing Based on Flexible PVDF Nanofibers via Electrospinning: A Review. Sensors, 2018, 18, 330.	3.8	158
1300	Using Micro-Molding and Stamping to Fabricate Conductive Polydimethylsiloxane-Based Flexible High-Sensitivity Strain Gauges. Sensors, 2018, 18, 618.	3.8	23
1301	Stretchable, Flexible, Scalable Smart Skin Sensors for Robotic Position and Force Estimation. Sensors, 2018, 18, 953.	3.8	24
1302	Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors. Sensors, 2018, 18, 1001.	3.8	19
1303	Vibro-Perception of Optical Bio-Inspired Fiber-Skin. Sensors, 2018, 18, 1531.	3.8	4
1304	Three-Dimensional Interfacial Stress Sensor Based on Graphene Foam. IEEE Sensors Journal, 2018, 18, 7956-7963.	4.7	21
1305	Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nature Communications, 2018, 9, 2786.	12.8	195
1306	Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Advances, 2018, 8, .	1.3	7
1307	Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications. ACS Nano, 2018, 12, 7546-7553.	14.6	162
1308	Recent advances in organic sensors for health self-monitoring systems. Journal of Materials Chemistry C, 2018, 6, 8569-8612.	5.5	110
1309	An any-resolution pressure localization scheme using a soft capacitive sensor skin. , 2018, , .		11
#	Article	IF	CITATIONS
------	---	------	-----------
1310	A Highly Skinâ€Conformal and Biodegradable Grapheneâ€Based Strain Sensor. Small Methods, 2018, 2, 1700374.	8.6	41
1311	Low-cost scalable printing of carbon nanotube electrodes on elastomeric substrates: Towards the industrial production of EAP transducers. Sensors and Actuators A: Physical, 2018, 279, 712-724.	4.1	16
1312	Electrically Conductive TPU Nanofibrous Composite with High Stretchability for Flexible Strain Sensor. Nanoscale Research Letters, 2018, 13, 86.	5.7	61
1313	Design Guidelines of Stretchable Pressure Sensorsâ€Based Triboelectrification. Advanced Engineering Materials, 2018, 20, 1700997.	3.5	21
1314	Transparent Surfaces Inspired by Nature. Advanced Optical Materials, 2018, 6, 1800091.	7.3	34
1315	Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C, 2018, 6, 11878-11892.	5.5	194
1316	An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nature Nanotechnology, 2018, 13, 1057-1065.	31.5	736
1317	Multi-functional stretchable and flexible sensor array to determine the location, shape, and pressure: Application in a smart robot. Science China Technological Sciences, 2018, 61, 1137-1143.	4.0	24
1318	Photosynthetic Bioelectronic Sensors for Touch Perception, UVâ€Detection, and Nanopower Generation: Toward Selfâ€Powered Eâ€Skins. Advanced Materials, 2018, 30, e1802290.	21.0	62
1319	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Advanced Materials, 2018, 30, e1802560.	21.0	140
1320	Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature Nanotechnology, 2018, 13, 1048-1056.	31.5	695
1321	Wearable and Implantable Epidermal Paper-Based Electronics. ACS Applied Materials & Interfaces, 2018, 10, 31061-31068.	8.0	55
1322	Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. ACS Applied Materials & Interfaces, 2018, 10, 31655-31663.	8.0	82
1323	Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network. ACS Applied Materials & Interfaces, 2018, 10, 31716-31724.	8.0	97
1324	Bionic Single-Electrode Electronic Skin Unit Based on Piezoelectric Nanogenerator. ACS Nano, 2018, 12, 8588-8596.	14.6	226
1325	Single rackâ€Activated Ultrasensitive Impedance Strain Sensor. Advanced Materials Interfaces, 2018, 5, 1800616.	3.7	21
1326	Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials, 2018, 11, 768.	2.9	84
1327	A Triple-Mode Flexible E-Skin Sensor Interface for Multi-Purpose Wearable Applications. Sensors, 2018, 18, 78.	3.8	30

#	Article	IF	CITATIONS
1328	Stretchable Transparent Conductive Films from Long Carbon Nanotube Metals. Small, 2018, 14, e1802625.	10.0	39
1329	Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Applied Materials & Interfaces, 2018, 10, 27902-27910.	8.0	88
1330	Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.	3.9	20
1331	Stretchable, Printable and Electrically Conductive Composites for Wearable RF Antennas. , 2018, , .		5
1332	Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring. Sensors, 2018, 18, 1338.	3.8	47
1333	Pâ€136: Resistive Type 2D Mapping Positional Strain Sensor Array for Advanced Tactile Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1909-1912.	0.3	0
1334	Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2018, 10, 20897-20909.	8.0	398
1335	High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS Applied Materials & Interfaces, 2018, 10, 19906-19913.	8.0	40
1336	Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. Journal of Materials Chemistry A, 2018, 6, 12250-12258.	10.3	45
1337	Computational Study of Thermal Transport in Nanowire-Graphene Thin Films. IEEE Nanotechnology Magazine, 2018, 17, 829-836.	2.0	4
1338	Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs. ACS Applied Materials & amp; Interfaces, 2018, 10, 21184-21190.	8.0	52
1339	Micropatterned Elastic Goldâ€Nanowire/Polyacrylamide Composite Hydrogels for Wearable Pressure Sensors. Advanced Materials Technologies, 2018, 3, 1800051.	5.8	59
1340	Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices. IScience, 2018, 4, 302-311.	4.1	119
1341	Nonlocal vibrations and potential instability of monolayers from double-walled carbon nanotubes subjected to temperature gradients. International Journal of Mechanical Sciences, 2018, 144, 576-599.	6.7	23
1342	Soft human–machine interfaces: design, sensing and stimulation. International Journal of Intelligent Robotics and Applications, 2018, 2, 313-338.	2.8	55
1343	Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. Journal of Materials Chemistry C, 2018, 6, 6840-6846.	5.5	64
1344	FEM and experimental studies of flexible pressure sensors with micro-structured dielectric layers. Journal of Micromechanics and Microengineering, 2018, 28, 105001.	2.6	13
1345	PDMS with designer functionalities—Properties, modifications strategies, and applications. Progress in Polymer Science, 2018, 83, 97-134.	24.7	478

#	Article	IF	CITATIONS
1346	Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chemical Society Reviews, 2018, 47, 4781-4859.	38.1	205
1347	Piezoresistive E‧kin Sensors Produced with Laser Engraved Molds. Advanced Electronic Materials, 2018, 4, 1800182.	5.1	56
1348	Recent Advances in Biointegrated Optoelectronic Devices. Advanced Materials, 2018, 30, e1800156.	21.0	76
1349	Facile and highly efficient fabrication of robust Ag nanowire–elastomer composite electrodes with tailored electrical properties. Journal of Materials Chemistry C, 2018, 6, 7207-7218.	5.5	49
1350	Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors. Nanotechnology, 2018, 29, 355304.	2.6	56
1351	The piezoresistance of a device with polyphenylenevinylene derivative PSS-PPV film. Microsystem Technologies, 2019, 25, 423-430.	2.0	2
1352	Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosensors and Bioelectronics, 2019, 123, 167-177.	10.1	274
1353	Lithium-ion battery fiber constructed by diverse-dimensional carbon nanomaterials. Journal of Materials Science, 2019, 54, 582-591.	3.7	20
1354	De Novo Synthesis and Assembly of Flexible and Biocompatible Physical Sensing Platforms. Advanced Materials Technologies, 2019, 4, 1800141.	5.8	6
1355	Nonlocal second-order strain gradient elasticity model and its application in wave propagating in carbon nanotubes. Microsystem Technologies, 2019, 25, 2215-2227.	2.0	8
1356	Recyclable and Flexible Starch-Ag Networks and Its Application in Joint Sensor. Nanoscale Research Letters, 2019, 14, 127.	5.7	3
1357	Piezoresistive Behaviour of Additively Manufactured Multi-Walled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Materials, 2019, 12, 2613.	2.9	27
1358	Textileâ€Only Capacitive Sensors for Facile Fabric Integration without Compromise of Wearability. Advanced Materials Technologies, 2019, 4, 1900485.	5.8	57
1359	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	3.5	30
1360	A water-resilient carbon nanotube based strain sensor for monitoring structural integrity. Journal of Materials Chemistry A, 2019, 7, 19996-20005.	10.3	36
1361	Reversible humidity-driven tuning of the light scattering properties of PS:PEG-based porous polymer films: Understanding derived from the cross-sensitivity of a luminescent oxygen sensor. Sensors and Actuators B: Chemical, 2019, 298, 126883.	7.8	2
1362	Simple and efficient pressure sensor based on PDMS wrapped CNT arrays. Carbon, 2019, 155, 71-76.	10.3	66
1363	Mechanoresponsive Polymerized Liquid Metal Networks. Advanced Materials, 2019, 31, e1903864.	21.0	154

#	Article	IF	CITATIONS
1364	Ultraminiature and Flexible Sensor Based on Interior Corner Flow for Direct Pressure Sensing in Biofluids. Small, 2019, 15, e1900950.	10.0	11
1365	Energy Scavenging and Powering E-Skin Functional Devices. Proceedings of the IEEE, 2019, 107, 2118-2136.	21.3	34
1366	Hydrophobic, Structureâ€Tunable Cu Nanowire@Graphene Core–Shell Aerogels for Piezoresistive Pressure Sensing. Advanced Materials Technologies, 2019, 4, 1900470.	5.8	17
1367	An ultraflexible organic differential amplifier for recording electrocardiograms. Nature Electronics, 2019, 2, 351-360.	26.0	114
1368	Liquid Assembly of Floating Nanomaterial Sheets for Transparent Electronics. Advanced Materials Technologies, 2019, 4, 1900398.	5.8	4
1369	Patterned, Flexible, and Stretchable Silver Nanowire/Polymer Composite Films as Transparent Conductive Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 31210-31219.	8.0	98
1370	Self-Healing Metal Interconnect for Flexible Electronic Device. , 2019, , .		1
1371	A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks. Soft Robotics, 2019, 6, 611-620.	8.0	35
1372	Superhydrophobic, Transparent, and Stretchable 3D Hierarchical Wrinkled Filmâ€Based Sensors for Wearable Applications. Advanced Materials Technologies, 2019, 4, 1900230.	5.8	60
1373	Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information. Nanoscale Research Letters, 2019, 14, 263.	5.7	172
1374	Stretchable Conductive Fibers of Ultrahigh Tensile Strain and Stable Conductance Enabled by a Worm-Shaped Graphene Microlayer. Nano Letters, 2019, 19, 6592-6599.	9.1	126
1375	Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15398-15406.	7.1	66
1376	Electrical percolation of silicone rubber filled by carbon black and carbon nanotubes researched by the Monte Carlo simulation. Journal of Applied Polymer Science, 2019, 136, 48222.	2.6	9
1377	A stretchable and breathable form of epidermal device based on elastomeric nanofibre textiles and silver nanowires. Journal of Materials Chemistry C, 2019, 7, 9748-9755.	5.5	37
1378	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	4.0	18
1379	Nucleotide-Regulated Tough and Rapidly Self-Recoverable Hydrogels for Highly Sensitive and Durable Pressure and Strain Sensors. Chemistry of Materials, 2019, 31, 5881-5889.	6.7	85
1380	Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring. ACS Applied Materials & amp; Interfaces, 2019, 11, 29014-29021.	8.0	148
1381	Directly 3D-printed monolithic soft robotic gripper with liquid metal microchannels for tactile sensing. Flexible and Printed Electronics, 2019, 4, 035001.	2.7	19

#	Article	IF	CITATIONS
1382	Stability of Selected Hydrogen Bonded Semiconductors in Organic Electronic Devices. Chemistry of Materials, 2019, 31, 6315-6346.	6.7	55
1383	UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags. ACS Applied Materials & Interfaces, 2019, 11, 27318-27326.	8.0	59
1384	Stretchable and Resilient Conductive Films on Polydimethylsiloxane from Reactive Polymer-Single-Walled Carbon Nanotube Complexes for Wearable Electronics. ACS Applied Nano Materials, 2019, 2, 4968-4973.	5.0	7
1385	Water-proof and thermally inert flexible pressure sensors based on zero temperature coefficient of resistance hybrid films. Journal of Materials Chemistry C, 2019, 7, 9648-9654.	5.5	20
1386	Fabrication and Evaluation of a Stretchable Thermal Sensing Cushion With Multi-Arch Structure. IEEE Sensors Journal, 2019, 19, 6421-6429.	4.7	4
1387	Flexible and Stretchable Electronic Skin with High Durability and Shock Resistance via Embedded 3D Printing Technology for Human Activity Monitoring and Personal Healthcare. Advanced Materials Technologies, 2019, 4, 1900315.	5.8	64
1388	Strain sensor based on a flexible polyimide ionogel for application in high- and low-temperature environments. Journal of Materials Chemistry C, 2019, 7, 9625-9632.	5.5	50
1389	Polymerâ€Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Advanced Materials, 2019, 31, e1902987.	21.0	128
1390	Deformable and Stretchable Electrodes for Soft Electronic Devices. Macromolecular Research, 2019, 27, 625-639.	2.4	32
1391	Auxetic elastomers: Mechanically programmable meta-elastomers with an unusual Poisson's ratio overcome the gauge limit of a capacitive type strain sensor. Extreme Mechanics Letters, 2019, 31, 100516.	4.1	46
1392	A Selfâ€Conformable Smart Skin with Sensing and Variable Stiffness Functions. Advanced Intelligent Systems, 2019, 1, 1900054.	6.1	14
1393	Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Lowâ€∓emperature Tolerant Strain Sensors. Advanced Functional Materials, 2019, 29, 1904507.	14.9	560
1394	PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Advanced Science, 2019, 6, 1900813.	11.2	563
1395	Flexible Grapheneâ€, Grapheneâ€Oxideâ€, and Carbonâ€Nanotubeâ€Based Supercapacitors and Batteries. Annale Der Physik, 2019, 531, 1800507.	2.4	44
1396	Water Splitting-Assisted Electrocatalytic Oxidation of Glucose with a Metal–Organic Framework for Wearable Nonenzymatic Perspiration Sensing. Analytical Chemistry, 2019, 91, 10764-10771.	6.5	62
1397	Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane. Nanotechnology, 2019, 30, 455501.	2.6	89
1398	Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 17581-17593.	10.3	130
1399	Mechanocombinatorially Screening Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2019, 31, e1903130.	21.0	82

#	Article	IF	CITATIONS
1400	High-performance strain sensor based on a 3D conductive structure for wearable electronics. Journal Physics D: Applied Physics, 2019, 52, 395401.	2.8	16
1401	Giant Poisson's Effect for Wrinkleâ€Free Stretchable Transparent Electrodes. Advanced Materials, 2019, 31, e1902955.	21.0	38
1402	Highâ€Transconductance Stretchable Transistors Achieved by Controlled Gold Microcrack Morphology. Advanced Electronic Materials, 2019, 5, 1900347.	5.1	70
1403	Mechanically Tunable Single-Walled Carbon Nanotube Films as a Universal Material for Transparent and Stretchable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 27327-27334.	8.0	52
1404	Whisky tasting using a bimetallic nanoplasmonic tongue. Nanoscale, 2019, 11, 15216-15223.	5.6	23
1405	Strainâ€Isolation Bridge Structure to Improve Stretchability of Highly Sensitive Strain Sensors. Advanced Materials Technologies, 2019, 4, 1900309.	5.8	18
1406	Optical active fiber sensing technique based on the lasing wavelength demodulation for monitoring the human respiration and pulse. Sensors and Actuators A: Physical, 2019, 296, 45-51.	4.1	12
1407	Electronic Skin for Closed-Loop Systems. ACS Nano, 2019, 13, 12287-12293.	14.6	103
1408	Electronic Skin: Recent Progress and Future Prospects for Skinâ€Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Advanced Materials, 2019, 31, e1904765.	21.0	936
1409	A High Stretchable and Self–Healing Silicone Rubber with Double Reversible Bonds. ChemistrySelect, 2019, 4, 10719-10725.	1.5	23
1410	Skin-On Interfaces. , 2019, , .		32
1411	Tailor-Made Engineering of Bioinspired Inks for Writing Barcode-like Multifunctional Sensory Electronics. ACS Sensors, 2019, 4, 2588-2592.	7.8	10
1412	A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper. ACS Applied Materials & Interfaces, 2019, 11, 40613-40619.	8.0	146
1413	Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Reality & Intelligent Hardware, 2019, 1, 411-427.	3.2	42
1414	A wearable and sensitive graphene-cotton based pressure sensor for human physiological signals monitoring. Scientific Reports, 2019, 9, 14457.	3.3	34
1415	Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin. ACS Applied Materials & Interfaces, 2019, 11, 40716-40725.	8.0	173
1416	Devices for promising applications. , 2019, , 247-314.		0
1417	Large-Area Soft e-Skin: The Challenges Beyond Sensor Designs. Proceedings of the IEEE, 2019, 107, 2016-2033.	21.3	214

#	Article	IF	CITATIONS
1418	Reaction Mechanism of Pt Atomic Layer Deposition on Various Textile Surfaces. Chemistry of Materials, 2019, 31, 8995-9002.	6.7	13
1419	Charge-Transfer-Modulated Transparent Supercapacitor Using Multidentate Molecular Linker and Conductive Transparent Nanoparticle Assembly. ACS Nano, 2019, 13, 12719-12731.	14.6	29
1420	Practical and Durable Flexible Strain Sensors Based on Conductive Carbon Black and Silicone Blends for Large Scale Motion Monitoring Applications. Sensors, 2019, 19, 4553.	3.8	15
1421	Improve stress corrosion cracking resistance and mechanical properties of Alâ€Znâ€Mgâ€Cuâ€Zr alloy with heterogeneous lamellae structure produced by high pressure torsion. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 1273-1281.	0.9	1
1422	Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Research, 2019, 12, 2982-2987.	10.4	39
1423	Integration of commercial pressure measurement technologies. , 2019, , 699-708.		0
1424	Design and implementation of a boxing robot based on fuzzy control. Journal of Physics: Conference Series, 2019, 1303, 012065.	0.4	2
1425	High-Performance Paper-Based Capacitive Flexible Pressure Sensor and Its Application in Human-Related Measurement. Nanoscale Research Letters, 2019, 14, 183.	5.7	40
1426	Design and applications of stretchable and self-healable conductors for soft electronics. Nano Convergence, 2019, 6, 25.	12.1	83
1427	Effect of Nano-Materials on Autogenous Shrinkage Properties of Cement Based Materials. Symmetry, 2019, 11, 1144.	2.2	19
1428	A Flexible Strain Sensor of Ba(Ti, Nb)O ₃ /Mica with a Broad Working Temperature Range. Advanced Materials Technologies, 2019, 4, 1900578.	5.8	19
1429	Flexible and Ultrasensitive Piezoelectric Composites Based on Highly (00l)â€Assembled BaTiO ₃ Microplatelets for Wearable Electronics Application. Advanced Materials Technologies, 2019, 4, 1900689.	5.8	9
1430	Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Science Advances, 2019, 5, eaav3097.	10.3	179
1431	Flexible Out-of-Plane Wind Sensors with a Self-Powered Feature Inspired by Fine Hairs of the Spider. ACS Applied Materials & Interfaces, 2019, 11, 44865-44873.	8.0	29
1432	Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nano-Micro Letters, 2019, 11, 92.	27.0	56
1433	Bioinspired Dynamic Cross-Linking Hydrogel Sensors with Skin-like Strain and Pressure Sensing Behaviors. Chemistry of Materials, 2019, 31, 9522-9531.	6.7	195
1434	Ultra-Sensitive Flexible Tactile Sensor Based on Graphene Film. Micromachines, 2019, 10, 730.	2.9	9
1435	Development of a Highly Stretchable Strain Sensor Based on Patterned and Rolled Carbon Nanotubes. , 2019, , .		2

		CEPORI	
#	Article	IF	Citations
1436	Single-digit-micrometer thickness wood speaker. Nature Communications, 2019, 10, 5084.	12.8	45
1437	Research on the Flexible Three-Dimensional Force Sensor Based on Microstructure. , 2019, , .		0
1438	Flexible Integrated Sensors: Transverse Piezoresistance and Longitudinal Thermal Resistance of One Single Carbon Fiber Beam. Advanced Materials Technologies, 2019, 4, 1900802.	5.8	15
1439	Maximizing Percolation Effect using Sub-100 nm Nano-Valley for High Performance Wearable Transparent Pressure Sensor. , 2019, , .		0
1440	Flexible Piezoresistive Sensor with the Microarray Structure Based on Self-Assembly of Multi-Walled Carbon Nanotubes. Sensors, 2019, 19, 4985.	3.8	21
1441	Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 45301-45309.	8.0	47
1442	Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes based Composite Dielectric Layer. Micromachines, 2019, 10, 715.	2.9	45
1443	Ultracompliant Carbon Nanotube Direct Bladder Device. Advanced Healthcare Materials, 2019, 8, e1900477.	7.6	18
1444	A Highly Responsive Organic Image Sensor Based on a Twoâ€Terminal Organic Photodetector with Photomultiplication. Advanced Materials, 2019, 31, e1903687.	21.0	123
1445	Carbon Black from Diesel Soot for Highâ€Performance Wearable Pressure Sensors. Advanced Materials Technologies, 2019, 4, 1900475.	5.8	28
1446	Design Strategy for Porous Composites Aimed at Pressure Sensor Application. Small, 2019, 15, e1903487.	10.0	99
1447	097 Novel Genomic Signature Predicts Response to Ruxolitinib Cream in Psoriasis. Journal of Investigative Dermatology, 2019, 139, S231.	0.7	0
1448	Investigation of the sensing mechanism of dual-gate low-voltage organic transistor based pressure sensor. Organic Electronics, 2019, 75, 105431.	2.6	15
1450	Knittable and Washable Multifunctional MXeneâ€Coated Cellulose Yarns. Advanced Functional Materials, 2019, 29, 1905015.	14.9	239
1451	Selfâ€Healing and Stretchable 3Dâ€Printed Organic Thermoelectrics. Advanced Functional Materials, 2019, 29, 1905426.	14.9	115
1452	Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 272-280.	2.1	26
1453	Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites. ACS Applied Materials & Interfaces, 2019, 11, 42561-42570.	8.0	23
1454	Stretchable and Highly Sensitive Optical Strain Sensors for Human-Activity Monitoring and Healthcare. ACS Applied Materials & amp; Interfaces, 2019, 11, 33589-33598.	8.0	96

		CITATION REPORT		
#	Article		IF	CITATIONS
1455	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019,	1, 1900090.	6.1	80
1456	A graphene rheostat for highly durable and stretchable strain sensor. InformaÄnÃ-Mato 396-406.	eriály, 2019, 1,	17.3	35
1457	A transparent, stretchable, stable, self-adhesive ionogel-based strain sensor for human monitoring. Journal of Materials Chemistry C, 2019, 7, 11244-11250.	motion	5.5	90
1458	Carbon growth process on the cobalt-based oxides. Fullerenes Nanotubes and Carbon Nanostructures, 2019, 27, 823-829.		2.1	1
1459	An Enhanced Hybrid Battery Model. IEEE Transactions on Energy Conversion, 2019, 34	l, 1848-1858.	5.2	13
1460	Flexible and Optical Fiber Sensors Composited by Graphene and PDMS for Motion Det 2019, 11, 1433.	ection. Polymers,	4.5	65
1461	Wide Range-Sensitive, Bending-Insensitive Pressure Detection and Application to Wea Device. , 2019, , .	rable Healthcare		2
1462	A Highly Sensitive Capacitive Pressure Sensor with Microdome Structure for Robot Tac , 2019, , .	tile Detection.		12
1463	Highly sensitive capacitive pressure sensors based on elastomer composites with carb hybrids. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105614.	on filler	7.6	59
1464	One-step growth of large-area silicon nanowire fabrics for high-performance multifunc wearable sensors. Nano Research, 2019, 12, 2723-2728.	tional	10.4	11
1465	Recent progress of solution-processed Cu nanowires transparent electrodes and their RSC Advances, 2019, 9, 26961-26980.	applications.	3.6	16
1466	High Resolution Micro-patterning of Stretchable Polymer Electrodes through Directed Localization. Scientific Reports, 2019, 9, 13066.	Wetting	3.3	13
1467	Human-interactive drone system remotely controlled by printed strain/pressure sensor carbon-based nanocomposites. Composites Science and Technology, 2019, 182, 1077	s consisting of 784.	7.8	19
1468	A low-cost and highly integrated sensing insole for plantar pressure measurement. Ser Bio-Sensing Research, 2019, 26, 100298.	ising and	4.2	33
1469	Flexible Multimodal Sensors for Electronic Skin: Principle, Materials, Device, Array Arch Data Acquisition Method. Proceedings of the IEEE, 2019, 107, 2065-2083.	itecture, and	21.3	59
1470	Stretchable Conductive Adhesives with Superior Electrical Stability as Printable Interco Washable Textile Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 3704	nnects in 3-37050.	8.0	35
1471	Flexible Ultralow-Power Sensor Interfaces for E-Skin. Proceedings of the IEEE, 2019, 10	07, 2084-2105.	21.3	41
1472	Soft and Stretchable Polymeric Optical Waveguide-Based Sensors for Wearable and Bi Applications. Sensors, 2019, 19, 3771.	omedical	3.8	60

#	Article	IF	CITATIONS
1473	Single-Walled Carbon Nanotube Based Triboelectric Flexible Touch Sensors. Journal of Electronic Materials, 2019, 48, 7411-7416.	2.2	8
1474	Multipoint-Detection Strain Sensor with a Single Electrode Using Optical Ultrasound Generated by Carbon Nanotubes. Sensors, 2019, 19, 3877.	3.8	5
1475	Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 39560-39573.	8.0	75
1476	Versatile Electronic Skins with Biomimetic Micronanostructures Fabricated Using Natural Reed Leaves as Templates. ACS Applied Materials & Interfaces, 2019, 11, 38084-38091.	8.0	50
1477	Pressure-conductive rubber sensor based on liquid-metal-PDMS composite. Sensors and Actuators A: Physical, 2019, 299, 111610.	4.1	36
1478	Facile Strategy for Fabrication of Flexible, Breathable, and Washable Piezoelectric Sensors via Welding of Nanofibers with Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2019, 11, 38023-38030.	8.0	52
1479	Magnetic Sensing Properties of PVD Carbon Films Containing Vertically Aligned Crystallites. Sensors, 2019, 19, 4248.	3.8	0
1480	3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage. ACS Nano, 2019, 13, 12500-12510.	14.6	27
1481	Transparent stretchable capacitive touch sensor grid using ionic liquid electrodes. Extreme Mechanics Letters, 2019, 33, 100574.	4.1	11
1482	High Temperature Sensitivity Pressure Sensors Based on Filter Paper as a Mold. Journal of the Electrochemical Society, 2019, 166, B1286-B1292.	2.9	6
1483	Investigation of strain sensing mechanisms on ultra-thin carbon nanotube networks with different densities. Carbon, 2019, 155, 421-431.	10.3	16
1484	Sensitivity-Tunable Strain Sensors Based on Carbon Nanotube@Carbon Nanocoil Hybrid Networks. ACS Applied Materials & Interfaces, 2019, 11, 38160-38168.	8.0	28
1485	Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale, 2019, 11, 4258-4266.	5.6	131
1486	Ultrasensitive, flexible, and low-cost nanoporous piezoresistive composites for tactile pressure sensing. Nanoscale, 2019, 11, 2779-2786.	5.6	72
1487	A Biodegradable and Stretchable Proteinâ€Based Sensor as Artificial Electronic Skin for Human Motion Detection. Small, 2019, 15, e1805084.	10.0	143
1488	Using Artificial Skin Devices as Skin Replacements: Insights into Superficial Treatment. Small, 2019, 15, e1805453.	10.0	53
1489	Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydrate Polymers, 2019, 211, 322-328.	10.2	90
1490	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	47.7	822

#	Article	IF	CITATIONS
1491	Large-Scale Fabrication of Highly Elastic Conductors on a Broad Range of Surfaces. ACS Applied Materials & Interfaces, 2019, 11, 7138-7147.	8.0	72
1492	Aligning One-Dimensional Nanomaterials by Solution Processes. ACS Omega, 2019, 4, 1816-1823.	3.5	24
1493	A Monocharged Electret Nanogeneratorâ€Based Selfâ€Powered Device for Pressure and Tactile Sensor Applications. Advanced Functional Materials, 2019, 29, 1807618.	14.9	29
1494	Emerging Technologies of Flexible Pressure Sensors: Materials, Modeling, Devices, and Manufacturing. Advanced Functional Materials, 2019, 29, 1808509.	14.9	316
1495	Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets. Journal of Colloid and Interface Science, 2019, 542, 54-62.	9.4	248
1496	Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. ACS Applied Materials & Interfaces, 2019, 11, 7755-7763.	8.0	264
1497	Exploring the Performance Limit of Carbon Nanotube Network Film Fieldâ€Effect Transistors for Digital Integrated Circuit Applications. Advanced Functional Materials, 2019, 29, 1808574.	14.9	35
1498	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	2.0	5
1499	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	13.8	120
1500	Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics. Nanoscale, 2019, 11, 3046-3101.	5.6	57
1501	Transparent, pressure-sensitive, and healable e-skin from a UV-cured polymer comprising dynamic urea bonds. Journal of Materials Chemistry A, 2019, 7, 3101-3111.	10.3	31
1502	Morphological/nanostructural control toward intrinsically stretchable organic electronics. Chemical Society Reviews, 2019, 48, 1741-1786.	38.1	117
1503	3D printing of ionic conductors for high-sensitivity wearable sensors. Materials Horizons, 2019, 6, 767-780.	12.2	165
1504	Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS Applied Materials & Interfaces, 2019, 11, 21904-21914.	8.0	228
1505	A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors. RSC Advances, 2019, 9, 14352-14359.	3.6	7
1506	Semi‣iquidâ€Metalâ€{Niâ€EGaIn)â€Based Ultraconformable Electronic Tattoo. Advanced Materials Technologies, 2019, 4, 1900183.	5.8	113
1507	3Dâ€Printed Flexible Tactile Sensor Mimicking the Texture and Sensitivity of Human Skin. Advanced Materials Technologies, 2019, 4, 1900147.	5.8	30
1508	Ionic liquids-filled patterned cavities improve transmittance of transparent and stretchable electronic polydimethylsiloxane films. Journal of Materials Science, 2019, 54, 11134-11144.	3.7	9

#	Article	IF	CITATIONS
1509	Stretchable and Temperature‣ensitive Polymer Optical Fibers for Wearable Health Monitoring. Advanced Functional Materials, 2019, 29, 1902898.	14.9	139
1510	Stretchable Transparent Conductors: from Micro/Macromechanics to Applications. Advanced Materials, 2019, 31, e1900756.	21.0	52
1511	Large-area, kirigami topology structure-induced highly stretchable and flexible interconnects: Directly printing preparation and mechanic mechanism. Science China Materials, 2019, 62, 1412-1422.	6.3	13
1512	Flexible and Pressure-Responsive Sensors from Cellulose Fibers Coated with Multiwalled Carbon Nanotubes. ACS Applied Electronic Materials, 2019, 1, 1179-1188.	4.3	46
1513	Isoindigo-Based Binary Polymer Blends for Solution-Processing of Semiconducting Nanofiber Networks. ACS Applied Polymer Materials, 2019, 1, 1778-1786.	4.4	13
1514	Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles. ACS Nano, 2019, 13, 7905-7912.	14.6	103
1515	A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 2019, 7, 8771-8795.	5.5	303
1516	Force sensor fabrication by AgNWs film using 532†nm pulses laser. Applied Surface Science, 2019, 484, 1019-1026.	6.1	6
1517	A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure–temperature detection. Nanoscale, 2019, 11, 14242-14249.	5.6	41
1518	Fine printing method of silver nanowire electrodes with alignment and accumulation. Nanotechnology, 2019, 30, 37LT03.	2.6	15
1519	A strain-gauge random laser. APL Materials, 2019, 7, .	5.1	6
1520	Enhancing the Intrinsic Stretchability of Micropatterned Gold Film by Covalent Linkage of Carbon Nanotubes for Wearable Electronics. ACS Applied Electronic Materials, 2019, 1, 1295-1303.	4.3	12
1521	Colorimetric and plasmonic pressure sensors based on polyacrylamide/Au nanoparticles. Sensors and Actuators A: Physical, 2019, 295, 503-511.	4.1	24
1522	Highly Conducting MXene–Silver Nanowire Transparent Electrodes for Flexible Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 25330-25337.	8.0	156
1523	Wrinkles with changing orientation and complexity in a single piece of thin film. Journal of Applied Physics, 2019, 125, .	2.5	6
1524	Highly conductive carbon nanotubes and flexible cellulose nanofibers composite membranes with semi-interpenetrating networks structure. Carbohydrate Polymers, 2019, 222, 115013.	10.2	20
1525	Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices. ACS Applied Materials & Interfaces, 2019, 11, 23639-23648.	8.0	155
1526	Stretchable and Self-Healable Conductive Hydrogels for Wearable Multimodal Touch Sensors with Thermoresponsive Behavior. ACS Applied Materials & amp; Interfaces, 2019, 11, 26134-26143.	8.0	81

#	Article	IF	CITATIONS
1527	Nano-Cracked Strain Sensor with High Sensitivity and Linearity by Controlling the Crack Arrangement. Sensors, 2019, 19, 2834.	3.8	26
1528	Gas-Permeable, Irritation-Free, Transparent Hydrogel Contact Lens Devices with Metal-Coated Nanofiber Mesh for Eye Interfacing. ACS Nano, 2019, 13, 7920-7929.	14.6	59
1529	A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. Journal of Materials Chemistry B, 2019, 7, 4638-4648.	5.8	223
1530	Investigating the Self-Healing of Dynamic Covalent Thermoset Polyimine and Its Nanocomposites. Journal of Applied Mechanics, Transactions ASME, 2019, 86, .	2.2	7
1531	Resistance Change Mechanism of Electronic Component Mounting through Contact Pressure Using Elastic Adhesive. Micromachines, 2019, 10, 396.	2.9	2
1532	All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. ACS Applied Materials & Interfaces, 2019, 11, 25034-25042.	8.0	240
1533	Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers, 2019, 7, 51.	4.0	69
1534	Flexible Water-proof Bio-Integrated Electronics. , 2019, , .		0
1535	Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition. Topics in Current Chemistry Collections, 2019, , 99-128.	0.5	0
1536	Highly stretchable and sensitive strain sensors based on single-walled carbon nanotube-coated nylon textile. Korean Journal of Chemical Engineering, 2019, 36, 800-806.	2.7	15
1537	Transparent, Highly Stretchable, Rehealable, Sensing, and Fully Recyclable Ionic Conductors Fabricated by One‣tep Polymerization Based on a Small Biological Molecule. Advanced Functional Materials, 2019, 29, 1902467.	14.9	154
1538	A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Research, 2019, 12, 1789-1795.	10.4	75
1539	Development of strain sensor using conductive poly(vinylidene fluoride) (PVDF) nanocomposite membrane reinforced with ionic liquid (IL) & carbon nanofiber (CNF). Composites Part B: Engineering, 2019, 173, 106990.	12.0	44
1540	Effect of capillary bridges on the interfacial adhesion of wearable electronics to epidermis. International Journal of Solids and Structures, 2019, 174-175, 85-97.	2.7	5
1541	Surface-Embedding of Functional Micro-/Nanoparticles for Achieving Versatile Superhydrophobic Interfaces. Matter, 2019, 1, 661-673.	10.0	119
1542	Multi‣ayered, Hierarchical Fabricâ€Based Tactile Sensors with High Sensitivity and Linearity in Ultrawide Pressure Range. Advanced Functional Materials, 2019, 29, 1902484.	14.9	130
1543	Barrier materials for flexible bioelectronic implants with chronic stability—Current approaches and future directions. APL Materials, 2019, 7, 050902.	5.1	27
1544	Piezoresistive thin film pressure sensor based on carbon nanotube-polyimide nanocomposites. Sensors and Actuators A: Physical, 2019, 295, 336-342.	4.1	23

	Сітаті	on Report	
# 1545	ARTICLE Intelligent Position, Pressure and Depth Sensing in a Soft Optical Waveguide Skin. , 2019, , .	IF	CITATIONS 3
1546	Self-Standing Metallic Mesh with MnO ₂ Multiscale Microstructures for High-Capacity Flexible Transparent Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 24047-24056.	8.0	30
1547	A critical review on flexible Cu(In, Ga)Se2 (CIGS) solar cells. Materials Chemistry and Physics, 2019, 234, 329-344.	4.0	42
1548	Modulation of mechanical properties and stable light energy harvesting by poling in polymer integrated perovskite films: a wide range, linear and highly sensitive tactile sensor. Journal of Materials Chemistry A, 2019, 7, 14192-14198.	10.3	11
1549	Soft ionic liquid multi-point touch sensor. RSC Advances, 2019, 9, 10733-10738.	3.6	8
1550	Radio frequency heating of metallic and semiconducting single-walled carbon nanotubes. Nanoscale, 2019, 11, 9617-9625.	5.6	22
1551	Towards ultra-wide operation range and high sensitivity: Graphene film based pressure sensors for fingertips. Biosensors and Bioelectronics, 2019, 139, 111296.	10.1	26
1552	Tunable Piezoresistivity from Magnetically Aligned Ni(Core)@Ag(Shell) Particles in an Elastomer Matrix. ACS Applied Materials & Interfaces, 2019, 11, 20360-20369.	8.0	13
1553	A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957.	5.6	150
1554	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	38.1	367
1555	Highly Sensitive, Stretchable Strain Sensor Based on Ag@COOHâ€Functionalized CNTs for Stroke and Pronunciation Recognition. Advanced Electronic Materials, 2019, 5, 1900227.	5.1	31
1556	Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Nanoscale Advances, 2019, 1, 2337-2347.	4.6	32
1557	Highly Aligned, Anisotropic Carbon Nanofiber Films for Multidirectional Strain Sensors with Exceptional Selectivity. Advanced Functional Materials, 2019, 29, 1901623.	14.9	137
1558	Ultrawide Sensing Range and Highly Sensitive Flexible Pressure Sensor Based on a Percolative Thin Film with a Knoll-like Microstructured Surface. ACS Applied Materials & Interfaces, 2019, 11, 20500-20508.	8.0	45
1559	Calcium Gluconate Derived Carbon Nanosheet Intrinsically Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics. ACS Applied Materials & Interfaces, 2019, 11, 20272-20280.	8.0	25
1560	Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Applied Materials & Interfaces, 2019, 11, 20453-20464.	8.0	98
1561	Piezo-impedance response of carbon nanotube/polydimethylsiloxane nanocomposites. APL Materials, 2019, 7, .	5.1	29
1562	A high-sensitivity and low-hysteresis flexible pressure sensor based on carbonized cotton fabric. Sensors and Actuators A: Physical, 2019, 294, 45-53.	4.1	27

#	Article	IF	CITATIONS
1563	A stretchable dual-mode sensor array for multifunctional robotic electronic skin. Nano Energy, 2019, 62, 164-170.	16.0	152
1564	Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Applied Materials & amp; Interfaces, 2019, 11, 21218-21226.	8.0	151
1565	Mechanism and Applications of Electrical Stimulation Disturbance on Motoneuron Excitability Studied Using Flexible Intramuscular Electrode. Advanced Biology, 2019, 3, e1800281.	3.0	14
1566	Highly conductive 1D-2D composite film for skin-mountable strain sensor and stretchable triboelectric nanogenerator. Nano Energy, 2019, 62, 319-328.	16.0	93
1567	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	19.5	74
1568	Ultraflexible Transparent Bioâ€Based Polymer Conductive Films Based on Ag Nanowires. Small, 2019, 15, e1805094.	10.0	23
1569	A Liquidâ€Metal–Elastomer Nanocomposite for Stretchable Dielectric Materials. Advanced Materials, 2019, 31, e1900663.	21.0	204
1570	Tuning the Electromechanical Properties of PEDOT:PSS Films for Stretchable Transistors And Pressure Sensors. Advanced Electronic Materials, 2019, 5, 1900191.	5.1	57
1571	Flexible Capacitive Pressure Sensor Enhanced by Tilted Micropillar Arrays. ACS Applied Materials & Interfaces, 2019, 11, 17796-17803.	8.0	292
1572	Ultraviolet- and Microwave-Protecting, Self-Cleaning e-Skin for Efficient Energy Harvesting and Tactile Mechanosensing. ACS Applied Materials & amp; Interfaces, 2019, 11, 17501-17512.	8.0	42
1573	Multifunctional sensing platform with pulsed-laser-deposited silver nanoporous structures. Sensors and Actuators A: Physical, 2019, 293, 136-144.	4.1	6
1574	Flexible Sensors—From Materials to Applications. Technologies, 2019, 7, 35.	5.1	139
1575	Design and Assembly of Reconfigurable 3D Radioâ€Frequency Antennas Based on Mechanically Triggered Switches. Advanced Electronic Materials, 2019, 5, 1900256.	5.1	14
1576	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	21.3	77
1577	High-sensitive and stretchable resistive strain gauges: Parametric design and DIW fabrication. Composite Structures, 2019, 223, 110955.	5.8	20
1578	High-efficient and environmentally friendly enrichment of semiconducting single-walled carbon nanotubes by combining short-time electrochemical pre-oxidation and combustion. Nanotechnology, 2019, 30, 355603.	2.6	0
1579	Serpentine. , 2019, , .		9
1580	Soft Wearable Pressure Sensors for Beatâ€ŧoâ€Beat Blood Pressure Monitoring. Advanced Healthcare Materials, 2019, 8, e1900109.	7.6	142

#	Article	IF	CITATIONS
1581	Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and Microengineering, 2019, 29, 093001.	2.6	11
1582	Green full polymer flexible transparent electrodes showing versatile switching behaviors based on either counterion transport or nanoarea crystallization. Journal of Materials Chemistry A, 2019, 7, 12825-12832.	10.3	4
1583	Strong and Stretchable Polypyrrole Hydrogels with Biphase Microstructure as Electrodes for Substrateâ€Free Stretchable Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900133.	3.7	48
1584	Bioinspired Pretextured Reduced Graphene Oxide Patterns with Multiscale Topographies for High-Performance Mechanosensors. ACS Applied Materials & Interfaces, 2019, 11, 18645-18653.	8.0	15
1585	Printable Thermoelectric Materials and Applications. Frontiers in Materials, 2019, 6, .	2.4	10
1586	Wearable and Skinâ€Mountable Fiberâ€Optic Strain Sensors Interrogated by a Freeâ€Running, Dualâ€Comb Fiber Laser. Advanced Optical Materials, 2019, 7, 1900086.	7.3	76
1587	Functional nanocomposites for 3D printing of stretchable and wearable sensors. Applied Nanoscience (Switzerland), 2019, 9, 2071-2083.	3.1	51
1588	Junction-free copper wires with submicron linewidth for large-area high-performance transparent electrodes. Journal of Materials Chemistry C, 2019, 7, 6144-6151.	5.5	4
1589	Channel length scaling of over 100% biaxially stretchable carbon nanotube transistors. Applied Physics Letters, 2019, 114, .	3.3	4
1590	Materials and Design Strategies of Stretchable Electrodes for Electronic Skin and its Applications. Proceedings of the IEEE, 2019, 107, 2185-2197.	21.3	55
1591	Carbon nanomaterials based films for strain sensing application—A review. Nano Structures Nano Objects, 2019, 18, 100312.	3.5	59
1592	Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Selfâ€Healing Substrate. Macromolecular Materials and Engineering, 2019, 304, 1900074.	3.6	187
1593	Flexible and High Performance Piezoresistive Pressure Sensors Based on Hierarchical Flower-Shaped SnSe ₂ Nanoplates. ACS Applied Energy Materials, 2019, 2, 2803-2809.	5.1	25
1594	Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11, 8020-8026.	5.6	30
1595	A Flexible e-skin based on micro-structured PZT thin films prepared <i>via</i> a low-temperature PLD method. Journal of Materials Chemistry C, 2019, 7, 4760-4769.	5.5	27
1596	Reprocessable 3D-Printed Conductive Elastomeric Composite Foams for Strain and Gas Sensing. ACS Applied Polymer Materials, 2019, 1, 885-892.	4.4	87
1597	Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS. ACS Applied Nano Materials, 2019, 2, 2222-2229.	5.0	58
1599	Extremely Versatile Deformability beyond Materiality: A New Material Platform through Simple Cutting for Rugged Batteries. Advanced Engineering Materials, 2019, 21, 1900206.	3.5	15

#	Article	IF	CITATIONS
1600	A Facile One‣tep Approach for Constructing Multidimensional Ordered Nanowire Micropatterns via Fibrous Elastocapillary Coalescence. Advanced Materials, 2019, 31, e1900534.	21.0	15
1601	Bioinspired Hairy Skin Electronics for Detecting the Direction and Incident Angle of Airflow. ACS Applied Materials & Interfaces, 2019, 11, 13608-13615.	8.0	28
1602	Self-Powered Direct Muscle Stimulation Using a Triboelectric Nanogenerator (TENG) Integrated with a Flexible Multiple-Channel Intramuscular Electrode. ACS Nano, 2019, 13, 3589-3599.	14.6	130
1603	Skin-Mountable Biosensors and Therapeutics: A Review. Annual Review of Biomedical Engineering, 2019, 21, 299-323.	12.3	45
1605	Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process. Composites Part B: Engineering, 2019, 167, 573-581.	12.0	84
1606	Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: A general method towards fast fabrication of flexible electronics. Science China Materials, 2019, 62, 982-994.	6.3	68
1607	Flexible 64 × 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 11699-11705.	8.0	33
1608	Engineered Tissue Development in Biofabricated 3D Geometrical Confinement–A Review. ACS Biomaterials Science and Engineering, 2019, 5, 3688-3702.	5.2	18
1609	Highly Stretchable Strain Sensors Comprising Double Network Hydrogels Fabricated by Microfluidic Devices. Advanced Materials Technologies, 2019, 4, 1800739.	5.8	46
1610	Highly Ordered 3D Porous Graphene Sponge for Wearable Piezoresistive Pressure Sensor Applications. Chemistry - A European Journal, 2019, 25, 6378-6384.	3.3	39
1611	Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers. Polymer Bulletin, 2019, 76, 6487-6501.	3.3	13
1612	Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth. Carbon, 2019, 147, 295-302.	10.3	68
1613	Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials, 2019, 9, 374.	4.1	238
1614	Elastomer Composites with a Tailored Interface Network toward Tunable Piezoresistivity: Effect of Elastomer Particle Size. ACS Applied Polymer Materials, 2019, 1, 714-721.	4.4	22
1615	Stretchable Micromotion Sensor with Enhanced Sensitivity Using Serpentine Layout. ACS Applied Materials & Interfaces, 2019, 11, 12261-12271.	8.0	56
1616	Stretchable Nanocomposite Conductors Enabled by 3D Segregated Dualâ€Filler Network. Advanced Materials Technologies, 2019, 4, 1900060.	5.8	25
1617	Recent advances in triboelectric nanogenerator based self-charging power systems. Energy Storage Materials, 2019, 23, 617-628.	18.0	160
1618	High-Performance Liquid Alloy Patterning of Epidermal Strain Sensors for Local Fine Skin Movement Monitoring. Soft Robotics, 2019, 6, 414-421.	8.0	20

#	Article	IF	CITATIONS
1619	Multifunctional WS ₂ &M-AgNPs superhydrophobic conductive sponges for application in various sensors. New Journal of Chemistry, 2019, 43, 5287-5296.	2.8	6
1620	AgNWs-graphene transparent conductor for heat and sensing applications. Materials Research Express, 2019, 6, 066312.	1.6	8
1621	E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser. Sensors, 2019, 19, 899.	3.8	26
1622	Structure-Property Relationships in Graphene-Based Strain and Pressure Sensors for Potential Artificial Intelligence Applications. Sensors, 2019, 19, 1250.	3.8	64
1623	Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes. ACS Applied Materials & amp; Interfaces, 2019, 11, 14997-15006.	8.0	284
1624	Integrated Soft Ionotronic Skin with Stretchable and Transparent Hydrogel–Elastomer Ionic Sensors for Hand-Motion Monitoring. Soft Robotics, 2019, 6, 368-376.	8.0	98
1626	Ultravioletâ€protective thin film based on PVA–melanin/rodâ€coated silver nanowires and its application as a transparent capacitor. Journal of Applied Polymer Science, 2019, 136, 47805.	2.6	15
1627	Wet 3â€Ð printing of epoxy crossâ€linked chitosan/carbon microtube composite. Polymers for Advanced Technologies, 2019, 30, 1732-1737.	3.2	0
1628	Characteristics of 9,10-diphenylanthracene field-effect transistors obtained by exposing the silver electrodes to oxidative conditions. Japanese Journal of Applied Physics, 2019, 58, SBBG10.	1.5	6
1629	Scalable Processing Ultrathin Polymer Dielectric Films with a Generic Solution Based Approach for Wearable Soft Electronics. Advanced Materials Technologies, 2019, 4, 1800681.	5.8	36
1630	Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‣olid‣tate Stretchable Microâ€5upercapacitor Arrays. Advanced Science, 2019, 6, 1900529.	11.2	250
1631	Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460.	12.7	135
1632	Conjugated polymers and composites for stretchable organic electronics. Journal of Materials Chemistry C, 2019, 7, 5534-5552.	5.5	114
1633	Hydrophilic/Hydrophobic Interphase-Mediated Bubble-like Stretchable Janus Ultrathin Films toward Self-Adaptive and Pneumatic Multifunctional Electronics. ACS Nano, 2019, 13, 4368-4378.	14.6	46
1634	Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics. Frontiers in Robotics and AI, 2019, 6, 30.	3.2	67
1635	Construction of sandwich-like porous structure of graphene-coated foam composites for ultrasensitive and flexible pressure sensors. Nanoscale, 2019, 11, 10229-10238.	5.6	111
1636	Low-resistance stretchable electrodes using a thick silver layer and a PDMS-PDMS bonding technique. AIP Advances, 2019, 9, .	1.3	4
1637	Buckled carbon nanotube network thin-film fabricated using chemically swelled elastomer substrates. Nanotechnology, 2019, 30, 285501.	2.6	4

#	Article	IF	CITATIONS
1638	Pressure Sensors Based on IPMC Actuator. Engineering Materials, 2019, , 161-182.	0.6	0
1639	2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating. Nano Energy, 2019, 60, 724-733.	16.0	60
1640	Aggregate-driven reconfigurations of carbon nanotubes in thin networks under strain: in-situ characterization. Scientific Reports, 2019, 9, 5513.	3.3	3
1641	Simple and facile microfabrication of a flexible interdigitated capacitor for sensing applications. Flexible and Printed Electronics, 2019, 4, 015005.	2.7	7
1642	Screenâ€Printed Soft Capacitive Sensors for Spatial Mapping of Both Positive and Negative Pressures. Advanced Functional Materials, 2019, 29, 1809116.	14.9	75
1643	Bifunctional Fe3O4@AuNWs particle as wearable bending and strain sensor. Inorganic Chemistry Communication, 2019, 104, 98-104.	3.9	19
1644	Stretchable Piezoelectric Sensing Systems for Selfâ€Powered and Wireless Health Monitoring. Advanced Materials Technologies, 2019, 4, 1900100.	5.8	96
1645	PEDOT:PSS/Polyacrylamide Nanoweb: Highly Reliable Soft Conductors with Swelling Resistance. ACS Applied Materials & Interfaces, 2019, 11, 10099-10107.	8.0	13
1646	A Path Beyond Metal and Silicon:Polymer/Nanomaterial Composites for Stretchable Strain Sensors. Advanced Functional Materials, 2019, 29, 1806306.	14.9	147
1647	Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Advanced Materials, 2019, 31, e1803309.	21.0	203
1648	Buckled Structures: Fabrication and Applications in Wearable Electronics. Small, 2019, 15, e1804805.	10.0	83
1649	Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 8567-8575.	8.0	89
1650	Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions. Nanoscale, 2019, 11, 3916-3924.	5.6	21
1651	Heterogeneous Surface Orientation of Solution-Deposited Gold Films Enables Retention of Conductivity with High Strain—A New Strategy for Stretchable Electronics. Chemistry of Materials, 2019, 31, 1920-1927.	6.7	20
1652	Reliable interfaces for EGaIn multi-layer stretchable circuits and microelectronics. Lab on A Chip, 2019, 19, 897-906.	6.0	72
1653	Robust Hyperbranched Polyester-Based Anti-Smudge Coatings for Self-Cleaning, Anti-Graffiti, and Chemical Shielding. ACS Applied Materials & amp; Interfaces, 2019, 11, 14305-14312.	8.0	74
1654	Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Composites Science and Technology, 2019, 174, 50-57.	7.8	61
1655	A New Blood Pulsation Simulator Platform Incorporating Cardiovascular Physiology for Evaluating Radial Pulse Waveform. Journal of Healthcare Engineering, 2019, 2019, 1-9.	1.9	15

#	Article	IF	CITATIONS
1656	Biomimetic strain sensors based on patterned polydimethylsiloxane and Ir nanoparticles decorated multi-walled carbon nanotubes. Sensors and Actuators A: Physical, 2019, 289, 57-64.	4.1	19
1657	Metal Mesh as a Transparent Omnidirectional Strain Sensor. Advanced Materials Technologies, 2019, 4, 1800698.	5.8	26
1658	Controllable Preparation of Ordered and Hierarchically Buckled Structures for Inflatable Tumor Ablation, Volumetric Strain Sensor, and Communication via Inflatable Antenna. ACS Applied Materials & Interfaces, 2019, 11, 10862-10873.	8.0	15
1659	Silver nanowire as an efficient filler for high conductive polyurethane composites. Materials Science and Technology, 2019, 35, 462-468.	1.6	4
1660	Continuous Silver over Dielectric Nanoyurt Arrays for Transparent Conductive Film. ACS Photonics, 2019, 6, 605-611.	6.6	2
1661	Carbon Nanotubeâ€Modified Fabric for Wearable Smart Electronicâ€skin with Exclusive Normalâ€Tangential Force Sensing Ability. Advanced Materials Technologies, 2019, 4, 1800680.	5.8	28
1662	Soft Modular Electronic Blocks (SMEBs): A Strategy for Tailored Wearable Healthâ€Monitoring Systems. Advanced Science, 2019, 6, 1801682.	11.2	30
1663	Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chemical Society Reviews, 2019, 48, 1787-1825.	38.1	226
1664	Conductive films based on sandwich structures of carbon nanotubes/silver nanowires for stretchable interconnects. Nanotechnology, 2019, 30, 235201.	2.6	21
1665	Polyimide/Graphene Nanocomposite Foamâ€Based Windâ€Driven Triboelectric Nanogenerator for Selfâ€Powered Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800723.	5.8	86
1666	DNA-Powered Stimuli-Responsive Single-Walled Carbon Nanotube Junctions. Chemistry of Materials, 2019, 31, 1537-1542.	6.7	15
1667	PEDOT:PSS/Grafted-PDMS Electrodes for Fully Organic and Intrinsically Stretchable Skin-like Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 10373-10379.	8.0	69
1668	Bioinspired Self-Healing Liquid Films for Ultradurable Electronics. ACS Nano, 2019, 13, 3225-3231.	14.6	36
1669	Textileâ€Based Wireless Pressure Sensor Array for Humanâ€Interactive Sensing. Advanced Functional Materials, 2019, 29, 1808786.	14.9	122
1670	High Sensitivity Flexible Electronic Skin Based on Graphene Film. Sensors, 2019, 19, 794.	3.8	17
1671	Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small, 2019, 15, e1805120.	10.0	144
1672	Structural Design for Stretchable Microstrip Antennas. ACS Applied Materials & Interfaces, 2019, 11, 8867-8877.	8.0	61
1673	Toward wearable electronics: A lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability. Energy Storage Materials, 2019, 22, 402-409.	18.0	33

	CITATION R	EPORT	
#	Article	IF	Citations
1674	Flexible Electronics toward Wearable Sensing. Accounts of Chemical Research, 2019, 52, 523-533.	15.6	713
1675	Ultrastretchable and Stable Strain Sensors Based on Antifreezing and Self-Healing Ionic Organohydrogels for Human Motion Monitoring. ACS Applied Materials & Interfaces, 2019, 11, 9405-9414.	8.0	285
1676	Self-healing electronic skins for aquatic environments. Nature Electronics, 2019, 2, 75-82.	26.0	424
1677	3. Self-Healing Materials: Design and Applications. , 2019, , 87-112.		0
1678	Multifunctional Carbon Nanotubes Enhanced Structural Composites with Improved Toughness and Damage Monitoring. Journal of Composites Science, 2019, 3, 109.	3.0	10
1679	A Fully-Stretchable and Highly-Sensitive Strain Sensor Based Liquid-State Conductive Composite. , 2019, , .		0
1680	Highly Flexible and Stretchable Structure Based on Au/Graphene Film and Polyurethane Yarn. , 2019, , .		1
1681	Large area flexible pressure/strain sensors and arrays using nanomaterials and printing techniques. Nano Convergence, 2019, 6, 28.	12.1	45
1682	Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels. Polymers, 2019, 11, 1873.	4.5	30
1683	56.3: Flexible and Transparent Optical Fingerprint Capture System Based on Multilayerâ€Coated Gratings of Polydimethylsiloxane. Digest of Technical Papers SID International Symposium, 2019, 50, 617-617.	0.3	0
1684	A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range. Journal of Materials Chemistry A, 2019, 7, 27334-27346.	10.3	130
1685	Magnetic-Assisted Transparent and Flexible Percolative Composite for Highly Sensitive Piezoresistive Sensor via Hot Embossing Technology. ACS Applied Materials & Interfaces, 2019, 11, 48331-48340.	8.0	33
1686	Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications. Journal of Semiconductors, 2019, 40, 111605.	3.7	26
1687	Nanotechnology Characterization Tools for Environment, Health, and Safety. , 2019, , .		2
1688	Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method. ACS Applied Materials & Interfaces, 2019, 11, 48594-48603.	8.0	130
1689	Digitally printed stretchable electronics: a review. Journal of Materials Chemistry C, 2019, 7, 14035-14068.	5.5	93
1690	Design and Analysis of Compact MIMO Antenna for UWB Applications. , 2019, , .		1
1691	Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 2019, 3, .	10.7	38

#	Article	IF	CITATIONS
1692	Real-time pressure monitoring system for microfluidic devices using deformable colloidal crystal membrane. Lab on A Chip, 2019, 19, 3954-3961.	6.0	6
1693	Fiber all-optical light control with low-dimensional materials (LDMs): thermo-optic effect and saturable absorption. Nanoscale Advances, 2019, 1, 4190-4206.	4.6	5
1694	A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection. Journal of Materials Science and Technology, 2019, 35, 176-180.	10.7	21
1695	Highly Conductive and Stretchable Ag Nanodendrite-Based Composites for Application in Nanoelectronics. ACS Applied Nano Materials, 2019, 2, 351-359.	5.0	7
1696	Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors. Accounts of Chemical Research, 2019, 52, 82-90.	15.6	52
1697	Highly Stretchable, Sensitive, and Transparent Strain Sensors with a Controllable In-Plane Mesh Structure. ACS Applied Materials & Interfaces, 2019, 11, 5316-5324.	8.0	44
1698	Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 2282-2294.	8.0	105
1699	Touchpoint-Tailored Ultrasensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Applied Materials & Interfaces, 2019, 11, 2551-2558.	8.0	108
1700	Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors. Advanced Materials, 2019, 31, e1805921.	21.0	438
1701	A durable, stretchable, and disposable electrochemical biosensor on three-dimensional micro-patterned stretchable substrate. Sensors and Actuators B: Chemical, 2019, 283, 312-320.	7.8	35
1702	A flexible pressure sensor by induced ordered nano cracks filled with multilayer graphene oxide composite film as a conductive fine-wire network for higher sensitivity. Flexible and Printed Electronics, 2019, 4, 015003.	2.7	14
1703	Hierarchical Reduced Graphene Oxide Ridges for Stretchable, Wearable, and Washable Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 1283-1293.	8.0	40
1704	Crack propagation design in transparent polymeric conductive films via carbon nanotube fiber-reinforcement and its application for highly sensitive and mechanically durable strain sensors. Smart Materials and Structures, 2019, 28, 025008.	3.5	14
1705	Recent Advances in Transparent Electronics with Stretchable Forms. Advanced Materials, 2019, 31, e1804690.	21.0	114
1706	Interconnected polypyrrole nanostructure for high-performance all-solid-state flexible supercapacitor. Electrochimica Acta, 2019, 298, 918-923.	5.2	26
1707	Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nature Nanotechnology, 2019, 14, 156-160.	31.5	195
1708	Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Polymers, 2019, 11, 11.	4.5	118

#	Article	IF	CITATIONS
1710	Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Materials Horizons, 2019, 6, 326-333.	12.2	327
1711	High Performance, Tunable Electrically Small Antennas through Mechanically Guided 3D Assembly. Small, 2019, 15, e1804055.	10.0	60
1712	Fabrication and Application of Highly Stretchable Conductive Fiberâ€Based Electrode of Epoxy/NBR Electrospun Fibers Sprayâ€Coated with AgNW/PU Composites. Macromolecular Chemistry and Physics, 2019, 220, 1800387.	2.2	19
1713	Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications. Nanotechnology, 2019, 30, 074001.	2.6	42
1714	Ultrafast response of spray-on nanocomposite piezoresistive sensors to broadband ultrasound. Carbon, 2019, 143, 743-751.	10.3	33
1715	Flexible Electronics: Stretchable Electrodes and Their Future. Advanced Functional Materials, 2019, 29, 1805924.	14.9	510
1716	Studies on effect of ethyl 4-amino cinnamate functionalized multiwall carbon nanotubes (f-MWCNTs) on properties of millable polyurethane rubber (MPU) nanocomposites. Polymer-Plastics Technology and Materials, 2019, 58, 1141-1156.	1.3	0
1717	Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy, 2019, 56, 25-32.	16.0	113
1718	In situ spatial strain monitoring of a single-lap joint using inkjet-printed carbon nanotube embedded thin films. Structural Health Monitoring, 2019, 18, 1479-1490.	7.5	14
1719	A comparative analysis of capacitive-based flexible PDMS pressure sensors. Sensors and Actuators A: Physical, 2019, 285, 427-436.	4.1	64
1720	Laser Direct Writing of Ultrahigh Sensitive SiCâ€Based Strain Sensor Arrays on Elastomer toward Electronic Skins. Advanced Functional Materials, 2019, 29, 1806786.	14.9	147
1721	Transparent AgNW-CoNPs conducting film for heat sensor. Microelectronic Engineering, 2019, 205, 37-43.	2.4	16
1722	Efficient metallic nanowire welding using the Eddy current method. Nanotechnology, 2019, 30, 065708.	2.6	7
1723	Design of Helically Double-Leveled Gaps for Stretchable Fiber Strain Sensor with Ultralow Detection Limit, Broad Sensing Range, and High Repeatability. ACS Applied Materials & Interfaces, 2019, 11, 4345-4352.	8.0	91
1724	Allâ€inâ€One Iontronic Sensing Paper. Advanced Functional Materials, 2019, 29, 1807343.	14.9	85
1725	A compact pulsatile simulator based on cam-follower mechanism for generating radial pulse waveforms. BioMedical Engineering OnLine, 2019, 18, 1.	2.7	49
1726	A Generic Soft Encapsulation Strategy for Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1806630.	14.9	83
1727	Ab Initio Design of Graphene Block Enables Ultrasensitivity, Multimeter‣ike Range Switchable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800531.	5.8	13

#	Article	IF	Citations
1728	Highly conductive, transparent and metal-free electrodes with a PEDOT:PSS/SWNT bilayer for high-performance organic thin film transistors. Organic Electronics, 2019, 67, 26-33.	2.6	20
1729	Development of a Highly Sensitive, Broad-Range Hierarchically Structured Reduced Graphene Oxide/PolyHIPE Foam for Pressure Sensing. ACS Applied Materials & Interfaces, 2019, 11, 4318-4327.	8.0	83
1730	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	2.6	32
1731	Micropatterned elastic ionic polyacrylamide hydrogel for low-voltage capacitive and organic thin-film transistor pressure sensors. Nano Energy, 2019, 58, 96-104.	16.0	123
1732	Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11, 5264-5275.	8.0	19
1733	Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Interfaces, 2019, 11, 6541-6549.	8.0	30
1734	Recent Development on the Synthesis Techniques and Properties of Graphene Derivatives. , 2019, , 77-107.		6
1735	Three-dimensional printing of a tunable graphene-based elastomer for strain sensors with ultrahigh sensitivity. Carbon, 2019, 143, 63-72.	10.3	99
1736	Molecule–Graphene Hybrid Materials with Tunable Mechanoresponse: Highly Sensitive Pressure Sensors for Health Monitoring. Advanced Materials, 2019, 31, e1804600.	21.0	159
1737	Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites. Journal of Alloys and Compounds, 2019, 777, 67-72.	5.5	25
1738	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. Advanced Materials, 2019, 31, e1803883.	21.0	45
1739	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	38.1	400
1740	Extremely elastic and conductive N-doped graphene sponge for monitoring human motions. Nanoscale, 2019, 11, 1159-1168.	5.6	29
1741	Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 2019, 20, 187-224.	6.1	245
1742	Recent Developments in Carbon Sensors for At-Source Electroanalysis. Analytical Chemistry, 2019, 91, 27-43.	6.5	31
1743	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	21.0	779
1744	A Facile Realization Scheme for Tactile Sensing with a Structured Silver Nanowireâ€₽DMS Composite. Advanced Materials Technologies, 2019, 4, 1800504.	5.8	38
1745	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. Advanced Science, 2019, 6, 1801283.	11.2	119

#	Article	IF	CITATIONS
1746	Highly stretchable sensors for wearable biomedical applications. Journal of Materials Science, 2019, 54, 5187-5223.	3.7	49
1747	Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 2019, 360, 762-777.	12.7	190
1748	Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Composites Science and Technology, 2019, 171, 218-225.	7.8	62
1749	Flexible electronic skin with nanostructured interfaces via flipping over electroless deposited metal electrodes. Journal of Colloid and Interface Science, 2019, 534, 618-624.	9.4	14
1750	Stretchable and multifunctional strain sensors based on 3D graphene foams for active and adaptive tactile imaging. Science China Materials, 2019, 62, 555-565.	6.3	25
1751	Scalable Elasticoluminescent Strain Sensor for Precise Dynamic Stress Imaging and Onsite Infrastructure Diagnosis. Advanced Materials Technologies, 2019, 4, 1800336.	5.8	70
1752	A flexible and highly sensitive graphene-based strain sensor for structural health monitoring. Cluster Computing, 2019, 22, 8217-8224.	5.0	41
1753	Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 2019, 48, 1465-1491.	38.1	855
1754	Solution-processed highly adhesive graphene coatings for corrosion inhibition of metals. Nano Research, 2019, 12, 19-23.	10.4	23
1755	Highly sensitive pressure sensor based on graphene hybrids. Arabian Journal of Chemistry, 2020, 13, 1917-1923.	4.9	11
1756	A Soft and Transparent Visuo-Haptic Interface Pursuing Wearable Devices. IEEE Transactions on Industrial Electronics, 2020, 67, 717-724.	7.9	40
1757	Rational Design of Capacitive Pressure Sensors Based on Pyramidal Microstructures for Specialized Monitoring of Biosignals. Advanced Functional Materials, 2020, 30, 1903100.	14.9	265
1758	Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials. Advanced Materials, 2020, 32, e1902417.	21.0	95
1759	Assembled wearable mechanical sensor prepared based on cotton fabric. Journal of Materials Science, 2020, 55, 796-805.	3.7	15
1760	Bio-based coatings with liquid repellency for various applications. Chemical Engineering Journal, 2020, 382, 123042.	12.7	40
1761	Cold direct pen writing of reduced graphene oxide foams for ultrasensitive micro-contact force probing. Carbon, 2020, 157, 140-146.	10.3	17
1762	Mechanoluminescent, Air-Dielectric MoS ₂ Transistors as Active-Matrix Pressure Sensors for Wide Detection Ranges from Footsteps to Cellular Motions. Nano Letters, 2020, 20, 66-74.	9.1	80
1763	Allâ€Printed Flexible and Stretchable Electronics with Pressing or Freezing Activatable Liquidâ€Metal–Silicone Inks. Advanced Functional Materials, 2020, 30, 1906683.	14.9	138

#	Article	IF	CITATIONS
1764	Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Advanced Materials, 2020, 32, e1904020.	21.0	155
1765	Recuperative thickening for sludge retention time and throughput management in anaerobic digestion with thermal hydrolysis pretreatment. Water Environment Research, 2020, 92, 465-477.	2.7	10
1766	Carbon Nanocomposite Based Mechanical Sensing and Energy Harvesting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 247-267.	4.9	25
1767	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	21.0	243
1768	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	21.0	575
1769	Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Advanced Materials, 2020, 32, e1902133.	21.0	232
1770	Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials. Carbon Letters, 2020, 30, 55-61.	5.9	11
1771	Mechanicallyâ€Guided Structural Designs in Stretchable Inorganic Electronics. Advanced Materials, 2020, 32, e1902254.	21.0	183
1772	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	14.2	110
1773	Heartbeat-Sensing Mechanoluminescent Device Based on a Quantitative Relationship between Pressure and Emissive Intensity. Matter, 2020, 2, 181-193.	10.0	133
1774	Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. Journal Physics D: Applied Physics, 2020, 53, 063001.	2.8	19
1775	Textileâ€Based Strain Sensor for Human Motion Detection. Energy and Environmental Materials, 2020, 3, 80-100.	12.8	159
1776	Flexible electronics based on oneâ€dimensional and twoâ€dimensional hybrid nanomaterials. InformaÄnÃ- Materiály, 2020, 2, 33-56.	17.3	81
1777	An ambient-stable and stretchable ionic skin with multimodal sensation. Materials Horizons, 2020, 7, 477-488.	12.2	103
1778	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices. , 2020, , 199-252.		2
1779	Morphologically modulated laser-patterned reduced graphene oxide strain sensors for human fatigue recognition. Smart Materials and Structures, 2020, 29, 015009.	3.5	13
1780	Sensors based on CNT yarns. , 2020, , 213-241.		0
1781	Nonâ€oxidized graphene/elastomer composite films for wearable strain and pressure sensors with ultraâ€high flexibility and sensitivity. Polymers for Advanced Technologies, 2020, 31, 214-225.	3.2	20

#	Δρτιςι ε	IF	CITATIONS
π 1782	Disruptive, Soft, Wearable Sensors, Advanced Materials, 2020, 32, e1904664.	21.0	272
1702		2110	
1783	Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science, 2020, 100, 101181.	24.7	146
1784	Multiscale Soft–Hard Interface Design for Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1902278.	21.0	65
1785	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	21.0	198
1786	Improvement of organic field-effect transistor characteristics via oxidation treatment of Ag nano-ink electrode surfaces. Japanese Journal of Applied Physics, 2020, 59, SCCA03.	1.5	2
1787	Compressible and Electrically Conducting Fibers for Largeâ€Area Sensing of Pressures. Advanced Functional Materials, 2020, 30, 1904274.	14.9	30
1788	Historical market genes, marketization and economic growth in China. Economic Modelling, 2020, 86, 327-333.	3.8	31
1789	Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices. Journal of Materials Science and Technology, 2020, 45, 241-247.	10.7	39
1790	Review—Energy Autonomous Wearable Sensors for Smart Healthcare: A Review. Journal of the Electrochemical Society, 2020, 167, 037516.	2.9	74
1791	Highly Sensitive Graphene/Polydimethylsiloxane Composite Films near the Threshold Concentration with Biaxial Stretching. Polymers, 2020, 12, 71.	4.5	10
1792	Graphene-based wearable piezoresistive physical sensors. Materials Today, 2020, 36, 158-179.	14.2	262
1793	Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 4944-4953.	8.0	250
1794	Multifunctional materials for implantable and wearable photonic healthcare devices. Nature Reviews Materials, 2020, 5, 149-165.	48.7	403
1795	A Survey of Tactile-Sensing Systems and Their Applications in Biomedical Engineering. Advances in Materials Science and Engineering, 2020, 2020, 1-17.	1.8	48
1796	Highly Morphologyâ€Controllable and Highly Sensitive Capacitive Tactile Sensor Based on Epidermisâ€Dermisâ€Inspired Interlocked Asymmetricâ€Nanocone Arrays for Detection of Tiny Pressure. Small, 2020, 16, e1904774.	10.0	166
1797	Reversible Polymorphic Transition and Hysteresisâ€Driven Phase Selectivity in Single rystalline C8â€BTBT Rods. Small, 2020, 16, e1906109.	10.0	16
1798	State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2020, 3, 43-52.	3.2	42
1799	Bioinspired Triboelectric Nanogenerators as Selfâ€Powered Electronic Skin for Robotic Tactile Sensing. Advanced Functional Materials, 2020, 30, 1907312.	14.9	198

#	Article	IF	CITATIONS
1800	Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity. Journal of Colloid and Interface Science, 2020, 561, 93-103.	9.4	56
1801	Foldable and washable fully textile-based pressure sensor. Smart Materials and Structures, 2020, 29, 055010.	3.5	26
1802	Recent innovations in artificial skin. Biomaterials Science, 2020, 8, 776-797.	5.4	38
1803	A synergistic self-assembled 3D PEDOT:PSS/graphene composite sponge for stretchable microsupercapacitors. Journal of Materials Chemistry A, 2020, 8, 554-564.	10.3	72
1804	A multidimensional hierarchical structure designed for lateral strain-isolated ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 922-929.	5.5	9
1805	A Stretchable Capacitive Strain Sensor Having Adjustable Elastic Modulus Capability for Wideâ€Range Force Detection. Advanced Engineering Materials, 2020, 22, 1901239.	3.5	12
1806	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	17.3	159
1807	High-performance transparent conducting films of long single-walled carbon nanotubes synthesized from toluene alone. Nano Research, 2020, 13, 112-120.	10.4	29
1808	Fundamental of smart coatings and thin films: synthesis, deposition methods, and industrial applications. , 2020, , 3-35.		7
1809	Customized Kirigami Electrodes for Flexible and Deformable Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 780-788.	8.0	50
1810	A review on stretchable magnetic field sensorics. Journal Physics D: Applied Physics, 2020, 53, 083002.	2.8	37
1811	Self-standing Substrates. Engineering Materials, 2020, , .	0.6	2
1812	Amorphous Oxide Semiconductor Transistors with Air Dielectrics for Transparent and Wearable Pressure Sensor Arrays. Advanced Materials Technologies, 2020, 5, 1900928.	5.8	42
1813	Carbon nanotube electronics for IoT sensors. Nano Futures, 2020, 4, 012001.	2.2	40
1814	Reel-to-reel fabrication of strain sensing threads and realization of smart insole. Sensors and Actuators A: Physical, 2020, 301, 111741.	4.1	17
1815	Serpentine-pattern effects on the biaxial stretching of percolative graphene nanoflake films. Nanotechnology, 2020, 31, 085303.	2.6	3
1816	Architectural design of flexible anisotropic piezoresistive composite for multiple-loading recognization. Composites Part B: Engineering, 2020, 182, 107631.	12.0	8
1817	Core–Sheath Stretchable Conductive Fibers for Safe Underwater Wearable Electronics. Advanced Materials Technologies, 2020, 5, 1900880.	5.8	46

#	Article	IF	CITATIONS
1818	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	14.9	70
1819	Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Advanced Materials, 2020, 32, e1902684.	21.0	75
1820	Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO. Nano Energy, 2020, 68, 104329.	16.0	72
1821	Multi-modal strain and temperature sensor by hybridizing reduced graphene oxide and PEDOT:PSS. Composites Science and Technology, 2020, 187, 107959.	7.8	46
1822	Contact Modulated Ionic Transfer Doping in Allâ€5olidâ€5tate Organic Electrochemical Transistor for Ultraâ€High Sensitive Tactile Perception at Low Operating Voltage. Advanced Functional Materials, 2020, 30, 2006186.	14.9	42
1823	Centimeter-long III-Nitride nanowires and continuous-wave pumped lasing enabled by graphically epitaxial lift-off. Nano Energy, 2020, 78, 105404.	16.0	14
1824	Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range. Sensors and Actuators A: Physical, 2020, 315, 112304.	4.1	27
1825	Near–hysteresis-free soft tactile electronic skins for wearables and reliable machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25352-25359.	7.1	104
1826	Surface Morphology Analysis of Knit Structure-Based Triboelectric Nanogenerator for Enhancing the Transfer Charge. Nanoscale Research Letters, 2020, 15, 181.	5.7	15
1827	Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications. EcoMat, 2020, 2, e12059.	11.9	212
1828	Solution processed all-carbon transistors via directed assembly and transfer printing of CNT channel and electrodes. Applied Physics Letters, 2020, 117, .	3.3	3
1829	Electrical properties of carbon nanotube/liquid metal/rubber nanocomposites. AIP Advances, 2020, 10, 105106.	1.3	3
1830	Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22507-22543.	10.3	56
1831	Recent Progress in Pressure Sensors for Wearable Electronics: From Design to Applications. Applied Sciences (Switzerland), 2020, 10, 6403.	2.5	18
1832	Investigation on the Coupling Effect Induced by Bilayer Structure of Thin Au Film and Graphene Nanoplates for Strain Gauge. , 2020, , .		0
1833	A robust stretchable pressure sensor for electronic skins. Organic Electronics, 2020, 86, 105926.	2.6	4
1834	A Skinâ€Inspired Substrate with Spaghettiâ€Like Multiâ€Nanofiber Network of Stiff and Elastic Components for Stretchable Electronics. Advanced Functional Materials, 2020, 30, 2003540.	14.9	25
1835	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	7.3	5

#	Article	IF	CITATIONS
1836	High-sensitivity, fast-response flexible pressure sensor for electronic skin using direct writing printing. RSC Advances, 2020, 10, 26188-26196.	3.6	11
1837	Self-transformed parallel structures in strain sensitive Au thin film micropattern embedded on soft elastomer. Journal of Micromechanics and Microengineering, 2020, 30, 115004.	2.6	2
1838	CNT-coated magnetic self-assembled elastomer micropillar arrays for sensing broad-range pressures. Nanotechnology, 2020, 31, 435501.	2.6	4
1839	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	17.3	343
1840	Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors, 2020, 20, 3927.	3.8	65
1841	Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo. Advanced Materials Interfaces, 2020, 7, 2000743.	3.7	57
1842	Fabrication and Patterning Methods of Flexible Sensors Using Carbon Nanomaterials on Polymers. Advanced Intelligent Systems, 2020, 2, 1900179.	6.1	13
1843	Elastomeric high-κ composites of low dielectric loss tangent: Experiment and simulation. Composites Part B: Engineering, 2020, 201, 108337.	12.0	11
1844	Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 55083-55093.	8.0	79
1845	Emerging flexible sensors based on nanomaterials: recent status and applications. Journal of Materials Chemistry A, 2020, 8, 25499-25527.	10.3	106
1846	A Singleâ€Mode, Selfâ€Adapting, and Selfâ€Powered Mechanoreceptor Based on a Potentiometric–Triboelectric Hybridized Sensing Mechanism for Resolving Complex Stimuli. Advanced Materials, 2020, 32, e2005970.	21.0	41
1847	Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Strain Sensor. ACS Applied Materials & Interfaces, 2020, 12, 53247-53256.	8.0	105
1848	Facile synthesis of Ag nanowires enhanced PVB for transparent conductive film. Journal of Materials Research and Technology, 2020, 9, 14509-14516.	5.8	4
1849	Inner egg shell membrane based bio-compatible capacitive and piezoelectric function dominant self-powered pressure sensor array for smart electronic applications. RSC Advances, 2020, 10, 29214-29227.	3.6	20
1850	Microengineering Pressure Sensor Active Layers for Improved Performance. Advanced Functional Materials, 2020, 30, 2003491.	14.9	290
1851	Stretchable and Shelf-Stable All-Polymer Supercapacitors Based on Sealed Conductive Hydrogels. ACS Applied Energy Materials, 2020, 3, 8850-8857.	5.1	8
1852	Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. Sensors, 2020, 20, 4407.	3.8	35
1853	High- <i>k</i> , Ultrastretchable Self-Enclosed Ionic Liquid-Elastomer Composites for Soft Robotics and Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2020, 12, 37561-37570.	8.0	51

#	Article	IF	Citations
1854	A potentiometric mechanotransduction mechanism for novel electronic skins. Science Advances, 2020, 6, eaba1062.	10.3	68
1855	Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Materials Science and Engineering C, 2020, 117, 111298.	7.3	69
1856	Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring. ACS Applied Electronic Materials, 2020, 2, 2282-2300.	4.3	64
1857	Skin-Integrated Wearable Systems and Implantable Biosensors: A Comprehensive Review. Biosensors, 2020, 10, 79.	4.7	120
1858	Device Development for Detecting Thumb Opposition Impairment Using Carbon Nanotube-Based Strain Sensors. Sensors, 2020, 20, 3998.	3.8	5
1859	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	5.5	18
1860	A Carbon Flower Based Flexible Pressure Sensor Made from Largeâ€Area Coating. Advanced Materials Interfaces, 2020, 7, 2000875.	3.7	23
1861	Size-dependent performances in homogeneous, controllable, and large-area silicon wire array photocathode. Journal of Power Sources, 2020, 473, 228580.	7.8	13
1862	Modeling of a square-shape ZnO, ZnS and AlN membrane for mems capacitive pressure-sensor applications. International Journal for Simulation and Multidisciplinary Design Optimization, 2020, 11, 14.	1.1	2
1863	Highly stretchable sensing array for independent detection of pressure and strain exploiting structural and resistive control. Scientific Reports, 2020, 10, 12666.	3.3	31
1864	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems, 2020, 2, 2000113.	6.1	46
1865	Water Passivation of Perovskite Nanocrystals Enables Airâ€6table Intrinsically Stretchable Colorâ€Conversion Layers for Stretchable Displays. Advanced Materials, 2020, 32, e2001989.	21.0	51
1866	Stretchable Array of Resistive Pressure Sensors Ignoring the Effect of Strain-Induced Deformation. , 2020, , .		1
1867	Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical Reviews, 2020, 120, 9482-9553.	47.7	49
1868	An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability. Journal of Materials Chemistry A, 2020, 8, 17498-17506.	10.3	53
1869	A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Science Advances, 2020, 6, eabb7043.	10.3	155
1870	Multifunctional Selfâ€Powered E‣kin with Tactile Sensing and Visual Warning for Detecting Robot Safety. Advanced Materials Interfaces, 2020, 7, 2000536.	3.7	29
1871	Selfâ€Powered Wireless Monitoring of Obstacle Position and State in Gas Pipe via Flowâ€Driven Triboelectric Nanogenerators. Advanced Materials Technologies, 2020, 5, 2000466.	5.8	23

#	Article	IF	CITATIONS
1872	Extrusion 3D Printing of Polymeric Materials with Advanced Properties. Advanced Science, 2020, 7, 2001379.	11.2	171
1873	Intrinsically Stretchable and Selfâ€Healing Electroconductive Composites Based on Supramolecular Organic Polymer Embedded with Copper Microparticles. Advanced Electronic Materials, 2020, 6, 2000527.	5.1	8
1874	Flexible Ecoflex®/Graphene Nanoplatelet Foams for Highly Sensitive Low-Pressure Sensors. Sensors, 2020, 20, 4406.	3.8	22
1875	Blood Pressure Sensors: Materials, Fabrication Methods, Performance Evaluations and Future Perspectives. Sensors, 2020, 20, 4484.	3.8	27
1876	Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn–Air Battery. ACS Applied Materials & Interfaces, 2020, 12, 38031-38044.	8.0	24
1877	Printable Transparent Microelectrodes toward Mechanically and Visually Imperceptible Electronics. Advanced Intelligent Systems, 2020, 2, 2000093.	6.1	20
1878	Facile Approach to Fabricating Stretchable Organic Transistors with Laser-Patterned Ag Nanowire Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 50675-50683.	8.0	16
1879	Bending Sensors Based on Thin Films of Semitransparent Bithiopheneâ€Fulleropyrrolidine Bisadducts. ChemPlusChem, 2020, 85, 2455-2464.	2.8	3
1880	Printable Liquid Metal Microparticle Ink for Ultrastretchable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 50852-50859.	8.0	54
1881	Preparation of Flexible Electrodes Based on Silver Nanoparticles-Carbon Nanotubes (AgNPs-CNTs) and Elastomer Composites for Soft Electronics. Journal of Nanoscience and Nanotechnology, 2020, 20, 5563-5569.	0.9	0
1882	Wide application feasibility report on graphene. Emerging Materials Research, 2020, 9, 1168-1194.	0.7	1
1883	Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Applied Physics Reviews, 2020, 7, .	11.3	194
1884	1D Nanomaterialâ€Based Highly Stretchable Strain Sensors for Human Movement Monitoring and Human–Robotic Interactive Systems. Advanced Electronic Materials, 2020, 6, 2000547.	5.1	28
1885	Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing ability. Materials Horizons, 2020, 7, 2994-3004.	12.2	103
1886	Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy, 2020, 78, 105385.	16.0	49
1887	Plasmene nanosheets as optical skin strain sensors. Nanoscale Horizons, 2020, 5, 1515-1523.	8.0	17
1888	Mechanically driven strategies to improve electromechanical behaviour of printed stretchable electronic systems. Scientific Reports, 2020, 10, 12037.	3.3	4
1889	Crack-based and Hair-like Sensors Inspired from Arthropods: A Review. Journal of Bionic Engineering, 2020, 17, 867-898.	5.0	20

#	Article	IF	CITATIONS
1890	Flexible 3D Architectured Piezo/Thermoelectric Bimodal Tactile Sensor Array for Eâ€6kin Application. Advanced Energy Materials, 2020, 10, 2001945.	19.5	96
1891	Highâ€Dynamicâ€Range Pressure Mapping Interactions by Dual Piezoâ€Phototronic Transistor with Piezoâ€Nanowire Channels and Piezoâ€OLED Gates. Advanced Functional Materials, 2020, 30, 2004724.	14.9	14
1892	On the Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets to Enhance the Functional Properties of SLS 3D-Printed Elastomeric Structures. Polymers, 2020, 12, 1841.	4.5	21
1893	Highly stretchable supramolecular conductive self-healable gels for injectable adhesive and flexible sensor applications. Journal of Materials Chemistry A, 2020, 8, 19954-19964.	10.3	52
1894	Nano-toughening of transparent wearable sensors with high sensitivity and a wide linear sensing range. Journal of Materials Chemistry A, 2020, 8, 20531-20542.	10.3	33
1895	Conical Microstructure Flexible High-Sensitivity Sensing Unit Adopting Chemical Corrosion. Sensors, 2020, 20, 4613.	3.8	3
1896	Buckle-Delamination-Enabled Stretchable Silver Nanowire Conductors. ACS Applied Materials & Interfaces, 2020, 12, 41696-41703.	8.0	36
1897	Degradable self-adhesive epidermal sensors prepared from conductive nanocomposite hydrogel. Nanoscale, 2020, 12, 18771-18781.	5.6	44
1898	Stretchâ€Healable Molecular Nanofibers. Advanced Theory and Simulations, 2020, 3, 2000094.	2.8	1
1899	Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines, 2020, 11, 1103.	2.9	9
1900	Inkjet Printing of PEDOT:PSS Based Conductive Patterns for 3D Forming Applications. Polymers, 2020, 12, 2915.	4.5	28
1901	Flexible Strain Sensor with Tunable Sensitivity via Microscale Electrical Breakdown in Graphene/Polyimide Thin Films. ACS Applied Materials & Interfaces, 2020, 12, 58317-58325.	8.0	35
1902	Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Science Translational Medicine, 2020, 12, .	12.4	93
1903	Designing Tunable Capacitive Pressure Sensors Based on Material Properties and Microstructure Geometry. ACS Applied Materials & Interfaces, 2020, 12, 58301-58316.	8.0	65
1904	Integrating Carbon Fiber Based Piezoresistive Composites for Flow Characterization in In-vitro Cell Research Equipment. Procedia CIRP, 2020, 91, 864-868.	1.9	1
1905	Aerosol jet printed capacitive strain gauge for soft structural materials. Npj Flexible Electronics, 2020, 4, .	10.7	23
1906	Fabrication of a Sensitive Strain and Pressure Sensor from Gold Nanoparticle-Assembled 3D-Interconnected Graphene Microchannel-Embedded PDMS. ACS Applied Materials & Interfaces, 2020, 12, 51854-51863.	8.0	41
1907	Biostable conductive nanocomposite for implantable subdermal antenna. APL Materials, 2020, 8, .	5.1	9

#	Article	IF	CITATIONS
1908	High-performance printed electronics based on inorganic semiconducting nano to chip scale structures. Nano Convergence, 2020, 7, 33.	12.1	77
1909	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	8.0	79
1910	Heterogeneous integration of rigid, soft, and liquid materials for self-healable, recyclable, and reconfigurable wearable electronics. Science Advances, 2020, 6, .	10.3	118
1911	Design and Optimization of Piezoresistive PEO/PEDOT:PSS Electrospun Nanofibers for Wearable Flex Sensors. Nanomaterials, 2020, 10, 2166.	4.1	22
1912	Performance of OLED under mechanical strain: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 20688-20729.	2.2	52
1913	Surface Chemistry of Gallium-Based Liquid Metals. Matter, 2020, 3, 1477-1506.	10.0	98
1914	Using a nanosecond laser to pattern copper nanowire-based flexible electrodes: From simulation to practical application. Applied Surface Science, 2020, 520, 146216.	6.1	11
1915	2D-SnSe ₂ Nanosheet Functionalized Piezo-resistive Flexible Sensor for Pressure and Human Breath Monitoring. ACS Sustainable Chemistry and Engineering, 2020, 8, 7741-7749.	6.7	54
1916	A Stretchable Pressure and Strain Sensor Using Conductive Silk Hydrogels. , 2020, , .		1
1917	In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement. Advanced Electronic Materials, 2020, 6, 2000269.	5.1	23
1918	Unveiling Viscoelastic Response of Capacitive-type Pressure Sensor by Controlling Cross-Linking Density and Surface Structure of Elastomer. ACS Applied Polymer Materials, 2020, 2, 2190-2198.	4.4	24
1919	Degradable and highly sensitive CB-based pressure sensor with applications for speech recognition and human motion monitoring. Journal of Materials Science, 2020, 55, 10084-10094.	3.7	14
1920	Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Science Advances, 2020, 6, eaaz8693.	10.3	419
1921	Selective crack formation on stretchable silver nano-particle based thin films for customized and integrated strain-sensing system. Thin Solid Films, 2020, 707, 138068.	1.8	7
1922	Fabrication and Piezoresistive/Piezoelectric Sensing Characteristics of Carbon Nanotube/PVA/Nano-ZnO Flexible Composite. Scientific Reports, 2020, 10, 8895.	3.3	30
1923	Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nature Electronics, 2020, 3, 316-326.	26.0	117
1924	Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano, 2020, 14, 6449-6469.	14.6	82
1925	Self-cross-linked arrays enabled flexible mechanical sensors for monitoring the body tremor. Npj Flexible Electronics, 2020, 4, .	10.7	12

#	Article	IF	CITATIONS
1926	Carbon Nanotube/Polysiloxane Foams with Tunable Absorption Bands for Electromagnetic Wave Shielding. ACS Applied Nano Materials, 2020, 3, 5944-5954.	5.0	16
1927	Plasma-jet-induced programmable wettability on stretchable carbon nanotube films. Materials Today Physics, 2020, 14, 100227.	6.0	10
1928	Inkjetâ€Printed Iontronics for Transparent, Elastic, and Strainâ€Insensitive Touch Sensing Matrix. Advanced Intelligent Systems, 2020, 2, 2000088.	6.1	15
1929	Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Composites Science and Technology, 2020, 197, 108255.	7.8	66
1930	Large‣cale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors. Advanced Materials, 2020, 32, e2001258.	21.0	37
1931	Fabrication of a Postfunctionalizable, Biorepellent, Electroactive Polyurethane Interface on a Gold Surface by Surface-Assisted Polymerization. Langmuir, 2020, 36, 6828-6836.	3.5	7
1932	Skin-inspired electronics: emerging semiconductor devices and systems. Journal of Semiconductors, 2020, 41, 041601.	3.7	63
1933	Dodecylamine-mediated synthesis and growth mechanism of copper nanowires with an aspect ratio of over 10000. Materials Letters, 2020, 274, 128029.	2.6	6
1934	Enhanced bendability of nanostructured metal electrodes: effect of nanoholes and their arrangement. Nanoscale, 2020, 12, 12898-12908.	5.6	8
1935	Fully Integrated Mechanoluminescent Devices with Nanometer-Thick Perovskite Film as Self-Powered Flexible Sensor for Dynamic Pressure Sensing. ACS Applied Nano Materials, 2020, 3, 6749-6756.	5.0	25
1936	Bio-based omniphobic polyurethane coating providing anti-smudge and anti-corrosion protection. Progress in Organic Coatings, 2020, 148, 105844.	3.9	19
1937	Ionically Conductive Hydrogel with Fast Selfâ€Recovery and Low Residual Strain as Strain and Pressure Sensors. Macromolecular Rapid Communications, 2020, 41, e2000185.	3.9	62
1938	Topological adhesion. I. Rapid and strong topohesives. Extreme Mechanics Letters, 2020, 39, 100803.	4.1	43
1939	High specific energy flexible CuO thin film cathode for thermal batteries. Journal of Power Sources, 2020, 463, 228237.	7.8	23
1940	Skin-Interfaced Sensors in Digital Medicine: from Materials to Applications. Matter, 2020, 2, 1414-1445.	10.0	134
1941	Soft Materials for Wearable/Flexible Electrochemical Energy Conversion, Storage, and Biosensor Devices. Materials, 2020, 13, 2733.	2.9	29
1942	Transparent Supercapacitors: From Optical Theories to Optoelectronics Applications. Energy and Environmental Materials, 2020, 3, 265-285.	12.8	12
1943	3-D graphene aerogel sphere-based flexible sensors for healthcare applications. Sensors and Actuators A: Physical, 2020, 312, 112144.	4.1	35

#	Article	IF	CITATIONS
1944	Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Advanced Materials Technologies, 2020, 5, 2000430.	5.8	45
1945	Bioâ€Inspired Stretchable, Adhesive, and Conductive Structural Color Film for Visually Flexible Electronics. Advanced Functional Materials, 2020, 30, 2000151.	14.9	153
1946	Low-cost foil/paper based touch mode pressure sensing element as artificial skin module for prosthetic hand. , 2020, , .		12
1947	High-performance capacitive strain sensors with highly stretchable vertical graphene electrodes. Journal of Materials Chemistry C, 2020, 8, 5541-5546.	5.5	39
1948	Buckling Instability Control of 1D Nanowire Networks for a Largeâ€Area Stretchable and Transparent Electrode. Advanced Functional Materials, 2020, 30, 1910214.	14.9	42
1949	All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7063-7070.	7.1	110
1950	A novel liquid metal sensor with three microchannels embedded in elastomer. Smart Materials and Structures, 2020, 29, 045011.	3.5	5
1951	Flexible Broadâ€Range Pressure Sensors Enabled by Deformationâ€Induced Conductive Channels in 3D Graphene Foam@Polydimethylsiloxane Composite for Precise Vibrational Signal Detection. Chinese Journal of Chemistry, 2020, 38, 719-724.	4.9	7
1952	Winding-Locked Carbon Nanotubes/Polymer Nanofibers Helical Yarn for Ultrastretchable Conductor and Strain Sensor. ACS Nano, 2020, 14, 3442-3450.	14.6	164
1953	Highly Transparent and Flexible Iontronic Pressure Sensors Based on an Opaque to Transparent Transition. Advanced Science, 2020, 7, 2000348.	11.2	121
1954	Polyvinyl Alcohol/SiO ₂ Hybrid Dielectric for Transparent Flexible/Stretchable All arbonâ€Nanotube Thinâ€Filmâ€Transistor Integration. Advanced Electronic Materials, 2020, 6, 1901133.	5.1	22
1955	Highly sensitive and flexible wearable pressure sensor with dielectric elastomer and carbon nanotube electrodes. Sensors and Actuators A: Physical, 2020, 305, 111941.	4.1	51
1956	Highly Flexible Multilayered e-Skins for Thermal-Magnetic-Mechanical Triple Sensors and Intelligent Grippers. ACS Applied Materials & Interfaces, 2020, 12, 15675-15685.	8.0	34
1957	Highly Conductive Self-Healing Biocomposites Based on Protein Mediated Self-Assembly of PEDOT:PSS Films. ACS Applied Bio Materials, 2020, 3, 2507-2515.	4.6	14
1958	MXene Printing and Patterned Coating for Device Applications. Advanced Materials, 2020, 32, e1908486.	21.0	239
1959	Identification and Control of a Nonlinear Soft Actuator and Sensor System. IEEE Robotics and Automation Letters, 2020, 5, 3783-3790.	5.1	17
1960	Flexible Micropillar Array for Pressure Sensing in High Density Using Image Sensor. Advanced Materials Interfaces, 2020, 7, 1902205.	3.7	11
1961	Geometrically Structured Nanomaterials for Nanosensors, NEMS, and Nanosieves. Advanced Materials, 2020, 32, e1907082.	21.0	26
#	Article	IF	CITATIONS
------	---	------	-----------
1962	Low cost flexible pressure sensor using laser scribed GO/RGO periodic structure for electronic skin applications. Superlattices and Microstructures, 2020, 140, 106470.	3.1	10
1964	High Performance Flexible Transparent Electrode via Oneâ€Step Multifunctional Treatment for Ag Nanonetwork Composites Semiâ€Embedded in Lowâ€Temperatureâ€Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1903919.	19.5	58
1965	Opto-electronic coupling in semiconductors: towards ultrasensitive pressure sensing. Journal of Materials Chemistry C, 2020, 8, 4713-4721.	5.5	22
1967	Periodically inlaid carbon fiber bundles in the surface of honeycomb woven fabric for fabrication of normal pressure sensor. Journal of Materials Science, 2020, 55, 6551-6565.	3.7	16
1968	Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires. Applied Materials Today, 2020, 19, 100610.	4.3	19
1969	Robust Physically Linked Double-Network Ionogel as a Flexible Bimodal Sensor. ACS Applied Materials & Interfaces, 2020, 12, 14272-14279.	8.0	118
1970	Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors, 2020, 20, 3624.	3.8	33
1971	Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nature Electronics, 2020, 3, 571-578.	26.0	513
1972	One-Rupee Ultrasensitive Wearable Flexible Low-Pressure Sensor. ACS Omega, 2020, 5, 16944-16950.	3.5	27
1973	A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Porous Three-Dimensional PDMS/Microsphere Composite. Polymers, 2020, 12, 1412.	4.5	59
1974	Electron-Induced Perpendicular Graphene Sheets Embedded Porous Carbon Film for Flexible Touch Sensors. Nano-Micro Letters, 2020, 12, 136.	27.0	41
1975	Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure. Macromolecular Materials and Engineering, 2020, 305, 2000287.	3.6	17
1976	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	12.8	106
1977	Real time chemical and mechanical human motion monitoring with aerogel-based wearable sensors. Lab on A Chip, 2020, 20, 2689-2695.	6.0	10
1978	Highâ€Resolution Monolithic Integrated Tribotronic InGaZnO Thinâ€Film Transistor Array for Tactile Detection. Advanced Functional Materials, 2020, 30, 2002613.	14.9	30
1979	Self-powered user-interactive electronic skin for programmable touch operation platform. Science Advances, 2020, 6, eaba4294.	10.3	112
1980	Facile preparation of patterned silver electrodes with high conductivity, flatness and adjustable work function by laser direct writing followed by transfer process. Applied Surface Science, 2020, 530, 147237.	6.1	8
1981	Orientation-dependent impedance response of highly aligned carbon nanotube sheets. Sensors and Actuators A: Physical, 2020, 313, 112187.	4.1	3

#	Article	IF	CITATIONS
1982	Deepâ€Learningâ€Enabled MXeneâ€Based Artificial Throat: Toward Sound Detection and Speech Recognition. Advanced Materials Technologies, 2020, 5, 2000262.	5.8	45
1983	Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100%. Nature Communications, 2020, 11, 3367.	12.8	123
1984	Self-Powered, Self-Healed, and Shape-Adaptive Ultraviolet Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 9755-9765.	8.0	34
1985	Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Advanced Materials Technologies, 2020, 5, 1900939.	5.8	44
1986	Recent Progress in 3D Printed Mold-Based Sensors. Sensors, 2020, 20, 703.	3.8	37
1987	Liquidâ€State Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	5.1	14
1988	Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors. Journal of Materials Science: Materials in Electronics, 2020, 31, 4788-4796.	2.2	9
1989	Patterning and applications of nanoporous structures in organic electronics. Nano Today, 2020, 31, 100843.	11.9	22
1990	Ultrathin, Biocompatible, and Flexible Pressure Sensor with a Wide Pressure Range and Its Biomedical Application. ACS Sensors, 2020, 5, 481-489.	7.8	72
1991	Wireless Epidermal Electromyogram Sensing System. Electronics (Switzerland), 2020, 9, 269.	3.1	12
1992	A Highly Sensitive Piezoresistive Pressure Sensor Based on Graphene Oxide/Polypyrrole@Polyurethane Sponge. Sensors, 2020, 20, 1219.	3.8	43
1993	The low resistance and high sensitivity in stretchable electrode assembled by liquid-phase exfoliated graphene. Polymer, 2020, 192, 122301.	3.8	7
1994	Sustainable manufacturing of sensors onto soft systems using self-coagulating conductive Pickering emulsions. Science Robotics, 2020, 5, .	17.6	50
1995	3D-printed sensors: Current progress and future challenges. Sensors and Actuators A: Physical, 2020, 305, 111916.	4.1	184
1996	Ultrathin Nanofibrous Membranes Containing Insulating Microbeads for Highly Sensitive Flexible Pressure Sensors. ACS Applied Materials & Interfaces, 2020, 12, 13348-13359.	8.0	69
1997	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	7.8	82
1998	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	8.0	67
1999	Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution. Nanomaterials, 2020, 10, 218.	4.1	18

#	Article	IF	CITATIONS
2000	Failure criterion for highly stretchable elastomers under triaxial loading. Extreme Mechanics Letters, 2020, 35, 100645.	4.1	2
2001	A Skin-Conformal, Stretchable, and Breathable Fiducial Marker Patch for Surgical Navigation Systems. Micromachines, 2020, 11, 194.	2.9	4
2002	1D@0D hybrid dimensional heterojunction-based photonics logical gate and isolator. Applied Materials Today, 2020, 19, 100589.	4.3	19
2003	Visually aided tactile enhancement system based on ultrathin highly sensitive crack-based strain sensors. Applied Physics Reviews, 2020, 7, .	11.3	30
2004	Interactive Colorâ€Changing Electronic Skin Based on Flexible and Piezoelectrically Tunable Quantum Dots Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 1901715.	7.3	10
2005	Lead Zirconate Titanate (a piezoelectric ceramic)-Based thermal and tactile bimodal organic transistor sensors. Organic Electronics, 2020, 80, 105673.	2.6	14
2006	Highly sensitive, piezoresistive, silicone/carbon fiber-based auxetic sensor for low strain values. Sensors and Actuators A: Physical, 2020, 305, 111939.	4.1	43
2007	Thin film chemiresistive gas sensor on single-walled carbon nanotubes-functionalized with polyethylenimine (PEI) for \$\${hbox {NO}}_{2}\$\$ gas sensing. Bulletin of Materials Science, 2020, 43, 1.	1.7	29
2008	Bioinspired Microspines for a High-Performance Spray Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Piezoresistive Sensor. ACS Nano, 2020, 14, 2145-2155.	14.6	330
2009	lonoelastomer junctions between polymer networks of fixed anions and cations. Science, 2020, 367, 773-776.	12.6	188
2010	Ti ₃ C ₂ T _{<i>x</i>} MXene-Reduced Graphene Oxide Composite Electrodes for Stretchable Supercapacitors. ACS Nano, 2020, 14, 3576-3586.	14.6	277
2011	Flexible TPU strain sensors with tunable sensitivity and stretchability by coupling AgNWs with rGO. Journal of Materials Chemistry C, 2020, 8, 4040-4048.	5.5	70
2012	Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science and Technology, 2020, 43, 175-188.	10.7	225
2013	Superelastic EGaln Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 6112-6118.	8.0	113
2014	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.		0
2015	E-skin and wearable systems for health care. , 2020, , 133-178.		9
2016	Wearable strain sensor based on highly conductive carbon nanotube/polyurethane composite fibers. Nanotechnology, 2020, 31, 205701.	2.6	20
2017	Scalable Electrically Conductive Spray Coating Based on Block Copolymer Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 8687-8694.	8.0	12

#	Article	IF	CITATIONS
2018	Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nature Electronics, 2020, 3, 59-69.	26.0	150
2019	Highly Sensitive and Stretchable Carbon Nanotube/Fluoroelastomer Nanocomposite with a Doubleâ€Percolated Network for Wearable Electronics. Advanced Electronic Materials, 2020, 6, 1901067.	5.1	41
2020	Wearable Device Oriented Flexible and Stretchable Energy Harvester Based on Embedded Liquid-Metal Electrodes and FEP Electret Film. Sensors, 2020, 20, 458.	3.8	9
2021	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	5.8	372
2022	Microstructured hybrid nanocomposite flexible piezoresistive sensor and its sensitivity analysis by mechanical finite-element simulation. Nanotechnology, 2020, 31, 185502.	2.6	17
2023	A Highly Accurate, Stretchable Touchpad for Robust, Linear, and Stable Tactile Feedback. Advanced Materials Technologies, 2020, 5, 1900864.	5.8	8
2024	Cyber–Physiochemical Interfaces. Advanced Materials, 2020, 32, e1905522.	21.0	64
2025	Interfaceless Strain and Pressure‣ensitive Stretchable Capacitor Based on Selfâ€Bonding and Surface Morphology Control of a Reversibly Crosslinkable Silicone Elastomer. Advanced Materials Technologies, 2020, 5, 1900757.	5.8	5
2026	A flexible bifunctional sensor based on porous copper nanowire@IonGel composite films for high-resolution stress/deformation detection. Journal of Materials Chemistry C, 2020, 8, 4081-4092.	5.5	22
2027	Mechanically Interlocked Hydrogel–Elastomer Hybrids for Onâ€5kin Electronics. Advanced Functional Materials, 2020, 30, 1909540.	14.9	120
2028	Covalent interactions between carbon nanotubes and P3HT by thiol–ene click chemistry towards improved thermoelectric performance. Materials Chemistry Frontiers, 2020, 4, 1174-1181.	5.9	10
2029	Review—Recent Progress in Flexible and Stretchable Piezoresistive Sensors and Their Applications. Journal of the Electrochemical Society, 2020, 167, 037561.	2.9	105
2030	Gas-Permeable, Ultrathin, Stretchable Epidermal Electronics with Porous Electrodes. ACS Nano, 2020, 14, 5798-5805.	14.6	181
2031	Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	1.3	10
2032	3D printed accordion-like materials: A design route to achieve ultrastretchability. Additive Manufacturing, 2020, 34, 101215.	3.0	8
2033	All printed wide range humidity sensor array combining MoSe2 and PVOH in series. Journal of Materials Science: Materials in Electronics, 2020, 31, 7683-7697.	2.2	12
2034	Structuring the reduced graphene oxide/polyHIPE foam for piezoresistive sensing via emulsion-templated polymerization. Composites Part A: Applied Science and Manufacturing, 2020, 134, 105898.	7.6	30
2035	Constructing Electrophoretic Displays on Foldable Paper-Based Electrodes by a Facile Transferring Method. ACS Applied Electronic Materials, 2020, 2, 1335-1342.	4.3	13

ARTICLE IF CITATIONS Electronic Skins for Robotics and Wearables., 2020,,. 2036 1 Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's 28 Poisson's ratio effect. Journal of Materials Chemistry A, 2020, 8, 10310-10317. Flexible Liquidâ€Filled Fiber Adapter Enabled Wearable Optical Sensors. Advanced Materials 2038 5.8 18 Technologies, 2020, 5, 2000079. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Organic Electronics, 2020, 84, 105759. Multimodal Capacitive and Piezoresistive Sensor for Simultaneous Measurement of Multiple Forces. 2040 8.0 66 ACS Applied Materials & amp; Interfaces, 2020, 12, 22179-22190. Intrinsic elastic conductors with internal buckled electron pathway for flexible electromagnetic 6.3 interference shielding and tumor ablation. Science China Material's, 2020, 63, 1318-1329 3D Printed, Customizable, and Multifunctional Smart Electronic Eyeglasses for Wearable Healthcare 2042 8.0 68 Systems and Human–Machine Interfaces. ACS Applied Materials & amp; Interfaces, 2020, 12, 21424-21432. Attributes, Fabrication, and Applications of Galliumâ€Based Liquid Metal Particles. Advanced Science, 2043 11.2 246 2020, 7, 2000192. Water-Borne Fabrication of Stretchable and Durable Microfibers for High-Performance Underwater 2044 8.0 19 Strain Sensors. ACS Applied Materials & amp; Interfaces, 2020, 12, 20965-20972. Engineered Microneedles for Interstitial Fluid Cellâ€Free DNA Capture and Sensing Using Iontophoretic 2045 14.9 Dualâ \in Extraction Wearable Patch. Advanced Functional Materials, 2020, 30, 2000591. Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics. Advanced 2046 14.9 34 Functional Materials, 2020, 30, 2001518. Capabilities and limitations of 3D printed microserpentines and integrated 3D electrodes for 2047 stretchable and conformable biosensor applications. Microsystems and Nanoengineering, 2020, 6, 15. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness. Journal of 2048 10.3 90 Materials Chemistry Ă, 2020, 8, 9373-9381. Recent Advances in Printed Capacitive Sensors. Micromachines, 2020, 11, 367. 2049 2050 Nano Carbon Black-Based High Performance Wearable Pressure Sensors. Nanomaterials, 2020, 10, 664. 4.1 40 Large Wavelength Response to Pressure Enabled in InGaN/GaN Microcrystal LEDs with 3D 2051 Architectures. ACS Photonics, 2020, 7, 1122-1128. Recent Process of Flexible Transistorâ€Structured Memory. Small, 2021, 17, e1905332. 2052 10.0 69 Advances in Responsively Conductive Polymer Composites and Sensing Applications. Polymer Reviews, 2021, 61, 157-193.

#	Article	IF	CITATIONS
2054	Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12746-12757.	2.2	59
2055	Flexible Capacitive Curvature Sensor with One-Time Calibration for Amphibious Gait Monitoring. Soft Robotics, 2021, 8, 164-174.	8.0	21
2056	Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chemical Engineering Journal, 2021, 404, 126064.	12.7	71
2057	Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. Nano Energy, 2021, 80, 105580.	16.0	63
2058	An <i>in situ</i> and rapid self-healing strategy enabling a stretchable nanocomposite with extremely durable and highly sensitive sensing features. Materials Horizons, 2021, 8, 250-258.	12.2	24
2059	Ultrathin Biocompatible Electrospun Fiber Films for Self-Powered Human Motion Sensor. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 855-868.	4.9	25
2060	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	9.4	86
2061	A new approach for an ultra-thin piezoresistive sensor based on solidified carbon ink film. Journal of Materials Science, 2021, 56, 607-614.	3.7	20
2062	Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy, 2021, 79, 105405.	16.0	47
2063	Transparent Soft Actuators/Sensors and Camouflage Skins for Imperceptible Soft Robotics. Advanced Materials, 2021, 33, e2002397.	21.0	131
2064	Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human-machine interactive. Nano Energy, 2021, 80, 105446.	16.0	25
2065	Fabrication of advanced polydimethylsiloxane-based functional materials: Bulk modifications and surface functionalizations. Chemical Engineering Journal, 2021, 408, 127262.	12.7	56
2066	Nanoengineered highly sensitive and stable soft strain sensor built from cracked carbon nanotube network/composite bilayers. Carbon, 2021, 173, 849-856.	10.3	17
2067	Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 2021, 173, 736-743.	10.3	39
2068	4D Printing of Stretchable Supercapacitors via Hybrid Composite Materials. Advanced Materials Technologies, 2021, 6, .	5.8	30
2069	Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sensors and Actuators A: Physical, 2021, 321, 112425.	4.1	113
2070	Strong and highly stretchable ionic conductive elastomer based on hydrogen bonding. Composites Science and Technology, 2021, 201, 108559.	7.8	7
2071	Interdigitated Sensor Based on a Silicone Foam for Subtle Robotic Manipulation. Macromolecular Rapid Communications, 2021, 42, 2000560.	3.9	9

#	Article	IF	Citations
2072	Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. Small, 2021, 17, e2004143.	10.0	9
2073	Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Composites Communications, 2021, 23, 100586.	6.3	27
2074	High-resolution integrated piezoresistive sensors for microfluidic monitoring. Lab on A Chip, 2021, 21, 83-92.	6.0	3
2075	Progress and Roadmap for Intelligent Selfâ€Healing Materials in Autonomous Robotics. Advanced Materials, 2021, 33, e2002800.	21.0	75
2076	First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials, 2021, 33, e2003464.	21.0	155
2077	Flexible and bio-compatible temperature sensors based on carbon nanotube composites. Measurement: Journal of the International Measurement Confederation, 2021, 172, 108889.	5.0	16
2078	Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. ACS Applied Materials & Interfaces, 2021, 13, 1353-1366.	8.0	108
2079	Highly Stretchable Soundâ€inâ€Display Electronics Based on Strainâ€insensitive Metallic Nanonetworks. Advanced Science, 2021, 8, 2001647.	11.2	23
2080	Solution-processed deposition based on plant polyphenol for silver conductive coating and its application on human motions detecting sensor. Composites Science and Technology, 2021, 201, 108550.	7.8	8
2081	Surface Modification of Galliumâ€Based Liquid Metals: Mechanisms and Applications in Biomedical Sensors and Soft Actuators. Advanced Intelligent Systems, 2021, 3, 2000159.	6.1	39
2082	Stretchable electrodes for highly flexible electronics. , 2021, , 479-500.		2
2083	Scalable fabrication of hierarchically structured graphite/polydimethylsiloxane composite films for large-area triboelectric nanogenerators and self-powered tactile sensing. Nano Energy, 2021, 80, 105521.	16.0	55
2084	Nanoimprint assisted free standing porous vanadium oxide nanosheet based ammonia sensor. Applied Surface Science, 2021, 541, 148271.	6.1	15
2085	Stretchable Electronics Based on PDMS Substrates. Advanced Materials, 2021, 33, e2003155.	21.0	319
2086	Recent Advances of PEDOT in Flexible Energy Conversion and Storage Devices. Acta Chimica Sinica, 2021, 79, 853.	1.4	3
2087	Self-healable tactile sensors. , 2021, , 263-289.		0
2088	Production of novel carbon nanostructures by electrochemical reduction of polychlorinated organic rings under mild conditions for supercapacitors. New Journal of Chemistry, 2021, 45, 14765-14778.	2.8	4
2089	Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Separation and Purification Technology, 2021, 254, 117577.	7.9	73

#	Article	IF	CITATIONS
2090	Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS Applied Materials & Interfaces, 2021, 13, 2128-2144.	8.0	214
2091	Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications. Small Methods, 2021, 5, e2001041.	8.6	101
2092	Optical Micro/Nanofiber-Enabled Compact Tactile Sensor for Hardness Discrimination. ACS Applied Materials & Interfaces, 2021, 13, 4560-4566.	8.0	41
2093	Theoretical and experimental study of a monocharged electret for pressure sensor applications. Journal of Applied Physics, 2021, 129, .	2.5	2
2094	Thermoplastic polyurethane flexible capacitive proximity sensor reinforced by CNTs for applications in the creative industries. Scientific Reports, 2021, 11, 1104.	3.3	32
2095	Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes. Journal Physics D: Applied Physics, 2021, 54, 155101.	2.8	22
2096	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	5.8	22
2097	Unconventional Imageâ€Sensing and Lightâ€Emitting Devices for Extended Reality. Advanced Functional Materials, 2021, 31, 2009281.	14.9	23
2098	Ultralow-power flexible transparent carbon nanotube synaptic transistors for emotional memory. Nanoscale, 2021, 13, 11360-11369.	5.6	22
2099	Fabrication of Stretchable and Transparent Core–Shell Polymeric Nanofibers Using Coaxial Electrospinning and Their Application to Phototransistors. Advanced Electronic Materials, 2021, 7, 2001000.	5.1	15
2100	Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers*. Chinese Physics B, 2021, 30, 018401.	1.4	1
2101	Long-term cyclic use of a sample collector for toilet-based urine analysis. Scientific Reports, 2021, 11, 2170.	3.3	10
2102	Fiber-Based Sensors and Energy Systems for Wearable Electronics. Applied Sciences (Switzerland), 2021, 11, 531.	2.5	21
2103	Intelligent Wearable Electronics: A New Paradigm in Smart Electronics. EAI/Springer Innovations in Communication and Computing, 2021, , 169-197.	1.1	4
2104	Polymer-based electro-active smart composites as stretchable strain sensors. , 2021, , 291-320.		0
2105	Development of stretchable metallic glass electrodes. Nanoscale, 2021, 13, 1800-1806.	5.6	6
2106	Perovskites for tactile sensors. , 2021, , 141-158.		1
2107	The piezoresistive performances of the devices with fullerene-doped MEH-PPV films. Microsystem Technologies, 2021, 27, 2661-2670.	2.0	2

#	Article	IF	CITATIONS
2108	Facile Synthesis of Sprayed CNTs Layer-Embedded Stretchable Sensors with Controllable Sensitivity. Polymers, 2021, 13, 311.	4.5	13
2109	Wearable triboelectric sensors for biomedical monitoring and human-machine interface. IScience, 2021, 24, 102027.	4.1	125
2110	A hierarchical porous carbon-nanotube skeleton for sensing films with ultrahigh sensitivity, stretchability, and mechanical compliance. Journal of Materials Chemistry A, 2021, 9, 4317-4325.	10.3	11
2111	Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors Using Sacrificial Metal 3D Printing. ACS Applied Materials & Interfaces, 2021, 13, 1094-1104.	8.0	36
2112	Facile fabrication and low-temperature bonding of Cu@Sn–Bi core–shell particles for conductive pastes. RSC Advances, 2021, 11, 26408-26414.	3.6	1
2113	Extending Porous Silicone Capacitive Pressure Sensor Applications into Athletic and Physiological Monitoring. Sensors, 2021, 21, 1119.	3.8	9
2114	Thermal Release Transfer of Organic Semiconducting Film for High-Performance Flexible Organic Electronics. ACS Applied Electronic Materials, 2021, 3, 988-998.	4.3	3
2115	High conductivity in thin, flexible, and stretchable interconnect with polymer composite in a sandwich structure. MRS Advances, 2021, 6, 14-20.	0.9	1
2116	Piezoresistive Electronic-Skin Sensors Produced With Self-Channeling Laser Microstructured Silicon Molds. IEEE Transactions on Electron Devices, 2021, 68, 786-792.	3.0	15
2117	High-Resolution and High-Sensitivity Flexible Capacitive Pressure Sensors Enhanced by a Transferable Electrode Array and a Micropillar–PVDF Film. ACS Applied Materials & Interfaces, 2021, 13, 7635-7649.	8.0	99
2118	Transparent, stretchable and high-performance supercapacitors based on freestanding Ni-mesh electrode. IOP Conference Series: Earth and Environmental Science, 2021, 675, 012105.	0.3	3
2119	Carbon Nanotubes-Coated Conductive Elastomer: Electrical and Near Infrared Light Dual-Stimulated Shape Memory, Self-Healing, and Wearable Sensing. Industrial & Engineering Chemistry Research, 2021, 60, 2954-2961.	3.7	21
2120	Ultraâ€ S ensitive and Stretchable Ionic Skins for Highâ€Precision Motion Monitoring. Advanced Functional Materials, 2021, 31, 2010199.	14.9	60
2122	Facile Post Treatment of Ag Nanowire/Polymer Composites for Flexible Transparent Electrodes and Thin Film Heaters. Polymers, 2021, 13, 586.	4.5	20
2123	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	14.9	100
2124	Recycled Iontronic from Discarded Chewed Gum for Personalized Healthcare Monitoring and Intelligent Information Encryption. ACS Applied Materials & Interfaces, 2021, 13, 6731-6738.	8.0	29
2125	Additive manufacturing and applications of nanomaterial-based sensors. Materials Today, 2021, 48, 135-154.	14.2	46
2126	Flexible pressure sensors with microstructures. Nano Select, 2021, 2, 1874-1901.	3.7	16

#	Article	IF	CITATIONS
2128	Recent Advances and Opportunities of Active Materials for Haptic Technologies in Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2008831.	14.9	63
2129	Stable Flexible Piezoresistive Sensors with Viscoelastic Ni Nanowiresâ€PDMS Composites and Ni Foam Electrodes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1031-1037.	1.2	1
2130	Construction of porous polymer films on rGO coated cotton fabric for selfâ€powered pressure sensors in human motion monitoring. Cellulose, 2021, 28, 4439-4453.	4.9	8
2131	Electrohydrodynamics-Printed Silver Nanoparticle Flexible Pressure Sensors With Improved Gauge Factor. IEEE Sensors Journal, 2021, 21, 5836-5844.	4.7	15
2132	Mechanoluminescence Rebrightening the Prospects of Stress Sensing: A Review. Advanced Materials, 2021, 33, e2005925.	21.0	181
2133	Flexible Highâ€Resolution Triboelectric Sensor Array Based on Patterned Laserâ€Induced Graphene for Selfâ€Powered Realâ€Time Tactile Sensing. Advanced Functional Materials, 2021, 31, 2100709.	14.9	152
2134	Flexible Noncontact Sensing for Human–Machine Interaction. Advanced Materials, 2021, 33, e2100218.	21.0	185
2135	The Jahn-Teller Effect for Amorphization of Molybdenum Trioxide towards High-Performance Fiber Supercapacitor. Research, 2021, 2021, 6742715.	5.7	14
2136	Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements. Materials Today Communications, 2021, 26, 102023.	1.9	12
2137	Flexible Electronics and Healthcare Applications. Frontiers in Nanotechnology, 2021, 3, .	4.8	16
2139	Silver Nanowire Synthesis and Strategies for Fabricating Transparent Conducting Electrodes. Nanomaterials, 2021, 11, 693.	4.1	42
2140	Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing. Nature Communications, 2021, 12, 1416.	12.8	68
2141	A Review on Materials and Technologies for Organic Largeâ€Area Electronics. Advanced Materials Technologies, 2021, 6, 2001016.	5.8	27
2142	Polymer Molecular Engineering Enables Rapid Electron/Ion Transport in Ultraâ€Thick Electrode for Highâ€Energyâ€Density Flexible Lithiumâ€Ion Battery. Advanced Functional Materials, 2021, 31, .	14.9	27
2143	Visualising the knowledge structure and evolution of wearable device research. Journal of Medical Engineering and Technology, 2021, 45, 207-222.	1.4	3
2144	Scalable Microfabrication of Folded Paryleneâ€Based Conductors for Stretchable Electronics. Advanced Electronic Materials, 2021, 7, 2001236.	5.1	10
2145	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	14.2	107
2146	Design and engineering of <scp>highâ€performance</scp> triboelectric nanogenerator for ubiquitous unattended devices. EcoMat, 2021, 3, e12093.	11.9	39

#	Article	IF	CITATIONS
2147	Highly Flexible, Stretchable, and Self-Powered Strain-Temperature Dual Sensor Based on Free-Standing PEDOT:PSS/Carbon Nanocoils–Poly(vinyl) Alcohol Films. ACS Sensors, 2021, 6, 1120-1128.	7.8	40
2148	Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications. Advanced Materials Technologies, 2021, 6, 2001023.	5.8	131
2149	Flexible piezo-resistive pressure sensor based on conducting PANI on paper substrate. Synthetic Metals, 2021, 273, 116697.	3.9	38
2150	Endoluminal Motion Recognition of a Magnetically-Guided Capsule Endoscope Based on Capsule-Tissue Interaction Force. Sensors, 2021, 21, 2395.	3.8	4
2151	Ultraâ€Wide Range Pressure Sensor Based on a Microstructured Conductive Nanocomposite for Wearable Workout Monitoring. Advanced Healthcare Materials, 2021, 10, e2001461.	7.6	33
2152	Role of the interface on electron transport in electroâ€conductive polymerâ€matrix composite: A review. Polymer Composites, 2021, 42, 2614-2628.	4.6	20
2153	Batteryâ€Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled Onâ€Đemand Drug Delivery. Advanced Functional Materials, 2021, 31, 2100852.	14.9	135
2154	Self-powered trajectory-tracking microsystem based on electrode-miniaturized triboelectric nanogenerator. Nano Energy, 2021, 82, 105730.	16.0	30
2155	A Low-Cost Pressure Sensor Matrix for Activity Monitoring in Stroke Patients Using Artificial Intelligence. IEEE Sensors Journal, 2021, 21, 9546-9552.	4.7	23
2156	Calibrate Silicon Nanowires Field Effect Transistor Sensor with its Photoresponse. , 2021, , .		2
2157	Recent Progress in Flexible Tactile Sensors for Humanâ€Interactive Systems: From Sensors to Advanced Applications. Advanced Materials, 2021, 33, e2005902.	21.0	216
2158	Biosensors Based Medical Devices For Disease Monitoring Therapy. International Journal of Advanced Research in Science, Communication and Technology, 0, , 263-278.	0.0	0
2159	A Three-Dimensional Printable Liquid Metal-Like Ag Nanoparticle Ink for Making a Super-Stretchable and Highly Cyclic Durable Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 18021-18032.	8.0	17
2160	Effective removal of manganese in graphene oxide via competitive ligands and the properties of reduced graphene oxide hydrogels and films. Diamond and Related Materials, 2021, 114, 108314.	3.9	2
2161	Achieving Remote Stress and Temperature Dualâ€Modal Imaging by Doubleâ€Lanthanideâ€Activated Mechanoluminescent Materials. Advanced Functional Materials, 2021, 31, 2101567.	14.9	61
2162	Self-Healable, Recyclable, and Ultrastrong Adhesive Ionogel for Multifunctional Strain Sensor. ACS Applied Materials & amp; Interfaces, 2021, 13, 20653-20661.	8.0	62
2163	Strain Sensor with High Sensitivity and Large Response Range Based on Self-Assembled Elastic-Sliding Conductive Networks. ACS Applied Electronic Materials, 2021, 3, 1758-1770.	4.3	14
2164	Bioâ€Inspired Largeâ€Area Soft Sensing Skins to Measure UAV Wing Deformation in Flight. Advanced Functional Materials, 2021, 31, 2100679.	14.9	11

#	Article	IF	Citations
2165	Using Folding Structure to Enhance Measurement Range, Sensitivity of the Flexible Sensors: A Simple, Ecoâ€Friendly, and Effective Method. Advanced Materials Technologies, 2021, 6, 2001216.	5.8	9
2166	Electret Nanogenerators for Self-Powered, Flexible Electronic Pianos. Sustainability, 2021, 13, 4142.	3.2	1
2167	A Sensitive and Response-Stable Strain Sensor with 30% Sensing Regions. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 597-601.	0.5	1
2168	Dielectric elastomer actuators. Journal of Applied Physics, 2021, 129, .	2.5	88
2169	All-Fabric Ultrathin Capacitive Sensor with High Pressure Sensitivity and Broad Detection Range for Electronic Skin. ACS Applied Materials & Interfaces, 2021, 13, 24062-24069.	8.0	56
2170	A review of geometric and structural design for reliable flexible electronics. Journal of Micromechanics and Microengineering, 2021, 31, 074001.	2.6	8
2171	Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nature Communications, 2021, 12, 2950.	12.8	114
2172	Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors. ACS Sensors, 2021, 6, 1940-1948.	7.8	20
2173	Flexible Wearable Sensors for Cardiovascular Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2100116.	7.6	170
2174	Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021, 1, 2000080.	9.9	80
2175	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	14.6	102
2176	Liquid Metalâ€Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications. Advanced Intelligent Systems, 2021, 3, 2000235.	6.1	33
2178	Soft Wearable Healthcare Materials and Devices. Advanced Healthcare Materials, 2021, 10, e2100577.	7.6	71
2179	Interfacial Liquid Film Transfer Printing of Versatile Flexible Electronic Devices with High Yield Ratio. Advanced Materials Interfaces, 2021, 8, 2100287.	3.7	9
2180	Highly Sensitive Capacitive Pressure Sensor Based on a Micropyramid Array for Health and Motion Monitoring. Advanced Electronic Materials, 2021, 7, 2100174.	5.1	89
2181	Sensing mechanism of a carbon nanocomposite-printed fabric as a strain sensor. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106350.	7.6	25
2182	Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nature Biomedical Engineering, 2021, 5, 759-771.	22.5	65
2183	Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon, 2021, 176, 139-147.	10.3	29

#	Article	IF	CITATIONS
2184	Differential cardiopulmonary monitoring system for artifact-canceled physiological tracking of athletes, workers, and COVID-19 patients. Science Advances, 2021, 7, .	10.3	55
2185	Polyacrylamide Hydrogel Composite E-skin Fully Mimicking Human Skin. ACS Applied Materials & Interfaces, 2021, 13, 32084-32093.	8.0	56
2186	Recent Advancement for the Synthesis of MXene Derivatives and Their Sensing Protocol. Advanced Materials Technologies, 2021, 6, 2001197.	5.8	16
2187	Stretchable Strain Sensor with Controllable Negative Resistance Sensitivity Coefficient Based on Patterned Carbon Nanotubes/Silicone Rubber Composites. Micromachines, 2021, 12, 716.	2.9	4
2188	Host–Guest Molecular Interaction Enabled Separation of Large-Diameter Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 10120-10130.	13.7	44
2189	Capacitive sensors of mechanical strain. IOP Conference Series: Materials Science and Engineering, 2021, 1155, 012097.	0.6	0
2190	Recent advanced applications of ion-gel in ionic-gated transistor. Npj Flexible Electronics, 2021, 5, .	10.7	54
2191	Bioinspired soft caterpillar robot with ultra-stretchable bionic sensors based on functional liquid metal. Nano Energy, 2021, 84, 105896.	16.0	51
2192	Mechanics of encapsulated three-dimensional structures for simultaneous sensing of pressure and shear stress. Journal of the Mechanics and Physics of Solids, 2021, 151, 104400.	4.8	10
2193	Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Communications Materials, 2021, 2, .	6.9	63
2194	Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotubes on hair band for human motion detection. Progress in Natural Science: Materials International, 2021, 31, 379-386.	4.4	13
2195	Highly Sensitive, Flexible, Stable, and Hydrophobic Biofoam Based on Wheat Flour for Multifunctional Sensor and Adjustable EMI Shielding Applications. ACS Applied Materials & Interfaces, 2021, 13, 30020-30029.	8.0	33
2196	Advanced Flexible Skin-Like Pressure and Strain Sensors for Human Health Monitoring. Micromachines, 2021, 12, 695.	2.9	53
2197	Inkjet-Deposited Single-Wall Carbon Nanotube Micropatterns on Stretchable PDMS-Ag Substrate–Electrode Structures for Piezoresistive Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 27284-27294.	8.0	19
2198	Continuous Production of Conductive Fiber by Depressing Plateau-Rayleigh Instability for Wearable Smart Textile. , 2021, , .		1
2199	Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors. Science China Materials, 2021, 64, 2764-2776.	6.3	15
2200	Recent progress of flexible/wearable self-charging power units based on triboelectric nanogenerators. Nano Energy, 2021, 84, 105880.	16.0	70
2201	Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy, 2021, 84, 105865.	16.0	53

		CITATION REPORT		
#	Article		IF	CITATIONS
2202	Recent Advances in Graphene Electronic Skin and its Future Prospects. ChemNanoMat	, 2021, 7, 982-997.	2.8	13
2203	Dielectrophoretic Assembly of Carbon Nanotube Chains in Aqueous Solution. Advance Materials, 2021, 3, 312-320.	d Fiber	16.1	4
2204	Rational Design of Soft Yet Elastic Lamellar Graphene Aerogels via Bidirectional Freezir Ultrasensitive Pressure and Bending Sensors. Advanced Functional Materials, 2021, 31	ng for ., 2103703.	14.9	85
2205	The nonlinear synergistic enhancement electric conductive effect in polymer-matrix co containing hybrid fillers of carbon nanotubes and graphene nanoplatelets. Computatic Science, 2021, 194, 110458.	mposites onal Materials	3.0	6
2206	Real-time monitoring of plant stresses via chemiresistive profiling of leaf volatiles by a sensor. Matter, 2021, 4, 2553-2570.	wearable	10.0	93
2207	Broadband Transparent Electrode in Visible/Near-Infrared Regions. ACS Photonics, 202	1, 8, 2203-2210.	6.6	4
2208	Microâ€Nano Processing of Active Layers in Flexible Tactile Sensors via Template Meth Small, 2021, 17, e2100804.	ods: A Review.	10.0	82
2209	Multilayered Composites with Modulus Gradient for Enhanced Pressure—Temperatur Performance. Sensors, 2021, 21, 4752.	re Sensing	3.8	5
2210	Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine textu recognition. Nano Energy, 2021, 85, 106001.	re	16.0	65
2211	Enhanced skin adhesive property of α-cyclodextrin/nonanyl group-modified poly(vinyl inclusion complex film. Carbohydrate Polymers, 2021, 263, 117993.	alcohol)	10.2	6
2212	Air-stable n-type transistors based on assembled aligned carbon nanotube arrays and t in complementary metal-oxide-semiconductor electronics. Nano Research, 2022, 15, 8	heir application 64-871.	10.4	10
2213	Stretchable, Rehealable, Recyclable, and Reconfigurable Integrated Strain Sensor for Jo Respiration Monitoring. Research, 2021, 2021, 9846036.	int Motion and	5.7	19
2214	Anti-freezing, moisturizing, resilient and conductive organohydrogel for sensitive press Journal of Colloid and Interface Science, 2021, 594, 584-592.	sure sensors.	9.4	54
2215	Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers, 2021, 13	, 2478.	4.5	22
2216	Engineered Mechanosensors Inspired by Biological Mechanosensilla. Advanced Materia Technologies, 2021, 6, 2100352.	als	5.8	14
2218	Design of non-dimensional parameters in stretchable microstrip antennas with coupled mechanics-electromagnetics. Materials and Design, 2021, 205, 109721.	ł	7.0	10
2219	Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable p sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 2021, 85, 10	ressure 5973.	16.0	116
2220	Electromechanical sorting method for improving the sensitivity of micropyramid carbo film flexible force sensor. Composites Part B: Engineering, 2021, 217, 108818.	n nanotube	12.0	15

#	Article	IF	CITATIONS
2221	Recent Advances in Flexible Organic Synaptic Transistors. Advanced Electronic Materials, 2021, 7, 2100336.	5.1	43
2222	Recent Progress in Essential Functions of Soft Electronic Skin. Advanced Functional Materials, 2021, 31, 2104686.	14.9	192
2223	Recycling of Nanowire Percolation Network for Sustainable Soft Electronics. Advanced Electronic Materials, 2021, 7, 2100588.	5.1	10
2224	A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots. Advanced Materials Technologies, 2021, 6, 2100437.	5.8	18
2225	Flexible strain sensors: from devices to array integration. Flexible and Printed Electronics, 2021, 6, 043002.	2.7	4
2226	Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nature Communications, 2021, 12, 4880.	12.8	116
2227	Multidimensional Aligned Nanowires Array: Toward Bendable and Stretchable Strain Sensors. Coatings, 2021, 11, 975.	2.6	2
2228	Highly stretchable and rehealable wearable strain sensor based on dynamic covalent thermoset and liquid metal. Smart Materials and Structures, 2021, 30, 105001.	3.5	9
2229	Uniform pressure responses for nanomaterials-based biological on-skin flexible pressure sensor array. Carbon, 2021, 181, 169-176.	10.3	27
2230	A Soft Pressure Sensor Array Based on a Conducting Nanomembrane. Micromachines, 2021, 12, 933.	2.9	4
2231	Implantable application of polymerâ€based biosensors. Journal of Polymer Science, 2022, 60, 328-347.	3.8	24
2232	Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites. Micromachines, 2021, 12, 935.	2.9	8
2233	Stretchable and self-healable hydrogel artificial skin. National Science Review, 2022, 9, .	9.5	40
2234	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	14.9	38
2235	Solutionâ€Processable Carbon Nanotube Nanohybrids for Multiplexed Photoresponsive Devices. Advanced Functional Materials, 0, , 2105719.	14.9	9
2236	Application of intrinsically conducting polymers in flexible electronics. SmartMat, 2021, 2, 263-285.	10.7	87
2237	Electrochemical Biosensors Based on Microâ€fabricated Devices for Pointâ€ofâ€Care Testing: A Review. Electroanalysis, 2022, 34, 168-183.	2.9	11
2238	Recent Advances in Flexible Tactile Sensors for Intelligent Systems. Sensors, 2021, 21, 5392.	3.8	47

#	Article	IF	CITATIONS
2239	A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	24
2240	Skin-electrode iontronic interface for mechanosensing. Nature Communications, 2021, 12, 4731.	12.8	72
2241	Ultrasensitive Strain Sensors Based on Cuâ€Al Alloy Films with Voided Cluster Boundaries. Advanced Materials Technologies, 2021, 6, 2100524.	5.8	8
2242	Fully Soft Pressure Sensor Based on Bionic Spine–Pillar Structure for Robotics Motion Monitoring. Soft Robotics, 2022, 9, 518-530.	8.0	12
2243	Strain Sensing by Electrical Capacitive Variation: From Stretchable Materials to Electronic Interfaces. Advanced Electronic Materials, 2021, 7, 2100190.	5.1	17
2244	A biomimetic fish finlet with a liquid metal soft sensor for proprioception and underwater sensing. Bioinspiration and Biomimetics, 2021, 16, 065007.	2.9	5
2245	Flexible and wearable capacitive pressure sensor for blood pressure monitoring. Sensing and Bio-Sensing Research, 2021, 33, 100434.	4.2	48
2246	Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machine‣earningâ€Assisted Design. Advanced Materials Technologies, 0, , 2100634.	5.8	7
2247	Microâ€Crack Assisted Wrinkled PEDOT: PSS to Detect and Distinguish Tensile Strain and Pressure Based on a Triboelectric Nanogenerator. Advanced Materials Technologies, 2022, 7, 2100423.	5.8	14
2248	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	4.1	103
2249	Skin-like Transparent Polymer-Hydrogel Hybrid Pressure Sensor with Pyramid Microstructures. Polymers, 2021, 13, 3272.	4.5	12
2250	Sensing and Biosensing in the World of Autonomous Machines and Intelligent Systems. Frontiers in Sensors, 2021, 2, .	3.3	5
2251	Enhanced Structural, Optical, and Electrical Properties of PVP/ZnO Nanocomposites. Iranian Journal of Science and Technology, Transaction A: Science, 0, , 1.	1.5	5
2252	Graphite-polydimethylsiloxane composite strain sensors for in-situ structural health monitoring. Sensors and Actuators A: Physical, 2021, 332, 113139.	4.1	11
2253	Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87, 106155.	16.0	27
2254	Graphene functionalized hybrid nanomaterials for industrial-scale applications: A systematic review. Journal of Molecular Structure, 2021, 1239, 130518.	3.6	37
2255	Nearly total optical transmission of linearly polarized light through transparent electrode composed of GaSb monolithic high-contrast grating integrated with gold. Nanophotonics, 2021, 10, 3823-3830.	6.0	4
2256	Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 43831-43854.	8.0	81

#	Article	IF	CITATIONS
2257	Innovative Wearable Sensors Based on Hybrid Materials for Real-Time Breath Monitoring. , 0, , .		2
2258	Exploring Brain Information Storage/Reading for Neuronal Connectivity Using Macromolecular Electrochemical Sensing Motors. Advanced Intelligent Systems, 2022, 4, 2100058.	6.1	2
2259	Flexible microhyperboloids facets giant sensitive ultra-low pressure sensor. Sensors and Actuators A: Physical, 2021, 328, 112767.	4.1	20
2260	E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines, 2021, 12, 1091.	2.9	23
2261	Highly stretchable porous composite hydrogels with stable conductivity for strain sensing. Composites Science and Technology, 2021, 213, 108968.	7.8	25
2262	A Flexible Force-sensitive Film with Ultra-high Sensitivity and Wide Linear Range and Its Sensor. Journal of Alloys and Compounds, 2021, , 162026.	5.5	4
2263	A highly stretchable optical strain sensor monitoring dynamically large strain for deformation-controllable soft actuator. Smart Materials and Structures, 2021, 30, 105020.	3.5	8
2264	Monolayer PtTe2: A promising candidate for NO2 sensor with ultrahigh sensitivity and selectivity. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114925.	2.7	11
2265	PEDOT:PSS/CNT composites based ultra-stretchable thermoelectrics and their application as strain sensors. Composites Communications, 2021, 27, 100822.	6.3	52
2266	Recent advances in 3D printing technologies for wearable (bio)sensors. Additive Manufacturing, 2021, 46, 102088.	3.0	66
2267	Effect of pyrrolic-N defects on the capacitance and magnetization of nitrogen-doped multiwalled carbon nanotubes. Carbon, 2021, 183, 743-762.	10.3	22
2268	MnO <i>_x</i> -Electrodeposited Fabric-Based Stretchable Supercapacitors with Intrinsic Strain Sensing. ACS Applied Materials & Interfaces, 2021, 13, 47581-47592.	8.0	20
2269	A biomimetic skin-like sensor with multiple sensory capabilities based on hybrid ionogel. Sensors and Actuators A: Physical, 2021, 330, 112855.	4.1	8
2270	A liquid power-ultrasound based green fabrication process for flexible strain sensors at room temperature and normal pressure. Sensors and Actuators A: Physical, 2021, 329, 112822.	4.1	7
2271	Stretchable organic optoelectronic devices: Design of materials, structures, and applications. Materials Science and Engineering Reports, 2021, 146, 100631.	31.8	48
2272	Flexible pressure sensor based on cigarette filter and highly conductive MXene sheets. Composites Communications, 2021, 27, 100889.	6.3	14
2273	Stretchable conductive elastomer composites based on a processing of Ag+ swelling, in situ reduction, and drying shrinkage. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106565.	7.6	3
2274	High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel. Composites Communications, 2021, 27, 100837.	6.3	25

# 2275	ARTICLE Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics. Composites Part B: Engineering, 2021, 225, 109275.	lF 12.0	Citations 27
2276	Wavy graphene foam reinforced elastomeric composites for large-strain stretchable conductors. Composites Part B: Engineering, 2021, 224, 109179.	12.0	10
2277	A highly stretchable and breathable polyurethane fibrous membrane sensor for human motion monitoring and voice signal recognition. Sensors and Actuators A: Physical, 2021, 331, 112974.	4.1	11
2278	Biomimetic-inspired highly sensitive flexible capacitive pressure sensor with high-aspect-ratio microstructures. Current Applied Physics, 2021, 31, 29-37.	2.4	21
2279	Stretchable electrochromic devices based on embedded WO3@AgNW Core-Shell nanowire elastic conductors. Chemical Engineering Journal, 2021, 426, 130840.	12.7	45
2280	High resolution screen-printing of carbon black/carbon nanotube composite for stretchable and wearable strain sensor with controllable sensitivity. Sensors and Actuators A: Physical, 2021, 332, 113098.	4.1	16
2281	Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing. Chemical Engineering Journal, 2022, 427, 131896.	12.7	48
2282	Soft gold nanowire sponges for strain-insensitive conductors, wearable energy storage and catalytic converters. Journal of Materials Chemistry C, 2021, 9, 15329-15336.	5.5	8
2283	A bio-inspired self-recoverable polyampholyte hydrogel with low temperature sensing. Journal of Materials Chemistry B, 2021, 9, 2010-2015.	5.8	12
2284	Eco-friendly biogenic hydrogel for wearable skin-like iontronics. Journal of Materials Chemistry A, 2021, 9, 4692-4699.	10.3	24
2285	Aligned Carbon Nanotube-Based Sensors for Strain Monitoring of Composites. IEEE Sensors Journal, 2021, 21, 14718-14725.	4.7	2
2286	Highly Sensitive Strain Sensors Based on Molecules–Gold Nanoparticles Networks for Highâ€Resolution Human Pulse Analysis. Small, 2021, 17, e2007593.	10.0	47
2287	Graphite Nanoplatelet–Carbon Nanotube Hybrids for Electrical Conducting Polymer Composites. Inorganic Materials Series, 2021, , 129-203.	0.7	0
2288	Flexible, Robust, and Durable Aramid Fiber/CNT Composite Paper as a Multifunctional Sensor for Wearable Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 5486-5497.	8.0	55
2289	Transparent low-voltage-driven soft actuators with silver nanowires Joule heaters. Polymer Chemistry, 2021, 12, 5251-5256.	3.9	8
2290	Multilayered electronic transfer tattoo that can enable the crease amplification effect. Science Advances, 2021, 7, .	10.3	112
2291	Enhanced piezocapacitive response in zinc oxide tetrapod–poly(dimethylsiloxane) composite dielectric layer for flexible and ultrasensitive pressure sensor. Nanoscale, 2021, 13, 6076-6086.	5.6	22
2292	Gold Nanoparticle Thin Film-Based Strain Sensors for Monitoring Human Pulse. ACS Applied Nano Materials, 2021, 4, 1712-1718.	5.0	19

#	Article	IF	CITATIONS
2293	A Soft Wearable and Fully-Textile Piezoresistive Sensor for Plantar Pressure Capturing. Micromachines, 2021, 12, 110.	2.9	26
2294	Nanotechnology-enabled polymer-based flexible electronics and their potential applications. , 2021, , 321-340.		1
2295	Flexible Graphene Textile Temperature Sensing RFID Coils Based on Spray Printing. IEEE Sensors Journal, 2021, 21, 26382-26388.	4.7	25
2296	Recent advances in stretchable field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 7796-7828.	5.5	15
2297	Next-Generation Wearable Biosensors Developed with Flexible Bio-Chips. Micromachines, 2021, 12, 64.	2.9	12
2298	Design of Flexible Pressure Sensor Based on Conical Microstructure PDMS-Bilayer Graphene. Sensors, 2021, 21, 289.	3.8	29
2299	Flexible Nano Smart sensors. , 2021, , 199-230.		1
2300	Spontaneously-buckled microstructure of copper nanowire conductors for a highly stretchable heater. Journal of Materials Chemistry C, 2021, 9, 13886-13895.	5.5	4
2301	Study on the forming and sensing properties of laser-sintered TPU/CNT composites for plantar pressure sensors. International Journal of Advanced Manufacturing Technology, 2021, 112, 2211-2222.	3.0	15
2302	Poly(NIPAM- <i>co</i> -thienoviologen) for multi-responsive smart windows and thermo-controlled photodynamic antimicrobial therapy. Journal of Materials Chemistry A, 2021, 9, 18369-18376.	10.3	14
2303	Stretchable transistors and functional circuits for human-integrated electronics. Nature Electronics, 2021, 4, 17-29.	26.0	153
2304	Graphene, an epoch-making material in RFID technology: a detailed overview. New Journal of Chemistry, 2021, 45, 18700-18721.	2.8	8
2305	Enhanced Sensitivity of Iontronic Graphene Tactile Sensors Facilitated by Spreading of Ionic Liquid Pinned on Graphene Grid. Advanced Functional Materials, 2020, 30, 1908993.	14.9	35
2306	Wireless Monitoring of Small Strains in Intelligent Robots via a Joule Heating Effect in Stretchable Graphene–Polymer Nanocomposites. Advanced Functional Materials, 2020, 30, 1910809.	14.9	68
2307	Stretchable and Transparent Conductive PEDOT:PSSâ€Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Advanced Functional Materials, 2020, 30, 2001251.	14.9	88
2308	Wearable Sensorsâ€Enabled Human–Machine Interaction Systems: From Design to Application. Advanced Functional Materials, 2021, 31, 2008936.	14.9	322
2309	Iceâ€Templated, Largeâ€Area Silver Nanowire Pattern for Flexible Transparent Electrode. Advanced Functional Materials, 2021, 31, 2010155.	14.9	113
2310	Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures. Advanced Materials Interfaces, 2020, 7, 1901932.	3.7	16

#	Article	IF	CITATIONS
2311	Highâ€Performance Flexible Bioelectrocatalysis Bioassay System Based on a Triphase Interface. Advanced Materials Interfaces, 2020, 7, 1902172.	3.7	6
2312	Bioinspired Prosthetic Interfaces. Advanced Materials Technologies, 2020, 5, 1900856.	5.8	42
2313	Dynamic electroâ€mechanical analysis of highly conductive particleâ€elastomer composites. Journal of Applied Polymer Science, 2021, 138, 50377.	2.6	4
2314	Recent Advances in Design of Flexible Electrodes for Miniaturized Supercapacitors. Small Methods, 2020, 4, 1900824.	8.6	56
2315	Low-Cost Multifunctional Ionic Liquid Pressure and Temperature Sensor. Smart Innovation, Systems and Technologies, 2019, , 184-192.	0.6	2
2316	Textile Pressure Force Mapping. Human-computer Interaction Series, 2017, , 31-47.	0.6	8
2317	Toward 3D Printed Prosthetic Hands that Can Satisfy Psychosocial Needs: Grasping Force Comparisons Between a Prosthetic Hand and Human Hands. Lecture Notes in Computer Science, 2017, , 304-313.	1.3	9
2318	Mapping the Stiffness of Nanomaterials and Thin Films by Acoustic AFM Techniques. , 2014, , 1023-1051.		2
2319	A Multi-scale Flexible Tactile-Pressure Sensor. Lecture Notes in Electrical Engineering, 2017, , 49-54.	0.4	1
2320	Highly Sensitive Flexible Pressure Sensor with Microstructural Dielectric Layer. Lecture Notes in Electrical Engineering, 2017, , 1087-1094.	0.4	1
2321	Soft Tactile Sensors for Human-Machine Interaction. , 2015, , 317-355.		2
2322	Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy, 2020, 74, 104932.	16.0	64
2323	High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Science Bulletin, 2020, 65, 1363-1370.	9.0	38
2325	Rational Polymer Design of Stretchable Poly(ionic liquid) Membranes for Dual Applications. Macromolecules, 2021, 54, 896-905.	4.8	19
2326	Achieving High-Resolution Electrohydrodynamic Printing of Nanowires on Elastomeric Substrates through Surface Modification. ACS Applied Electronic Materials, 2021, 3, 192-202.	4.3	28
2327	An overlapped electron-cloud model for the contact electrification in piezo-assisted triboelectric nanogenerators <i>via</i> control of piezoelectric polarization. Journal of Materials Chemistry A, 2020, 8, 25857-25866.	10.3	16
2328	Structural health and condition monitoring via electrical impedance tomography in self-sensing materials: a review. Smart Materials and Structures, 2020, 29, 123001.	3.5	52
2330	Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin. Journal of Applied Mechanics, Transactions ASME, 2020, 87, .	2.2	15

#	Article	IF	CITATIONS
2331	Fabrication and Characterization of Highly Deformable Artificial Muscle Fibers Based on Liquid Crystal Elastomers. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	6
2332	Inkjet-printed, intrinsically stretchable conductors and interconnects. , 2017, , .		2
2333	Deformation Capture via Soft and Stretchable Sensor Arrays. ACM Transactions on Graphics, 2019, 38, 1-16.	7.2	36
2334	Development of a Multifunctional Stretchable Sensor Network for Smart Structures. , 0, , .		4
2335	Transparent electrode employing deep–subwavelength monolithic high-contrast grating integrated with metal. Optics Express, 2020, 28, 28383.	3.4	4
2336	Out-of-plane Strain Measurement of A Silicone Elastomer by means of A Cholesteric Liquid Crystal Sensor. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2020, 33, 81-84.	0.3	4
2338	MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors. Journal of Sensor Science and Technology, 2016, 25, 247-251.	0.2	3
2339	Effect of Void Volume and Silver Loading on Strain Response of Electrical Resistance in Silver Flakes/Polyurethane Composite for Stretchable Conductors. Japanese Journal of Applied Physics, 2012, 51, 11PD01.	1.5	14
2340	Stretchable, healable, adhesive, transparent, anti-drying and anti-freezing organohydrogels toward multi-functional sensors and information platforms. Journal of Materials Chemistry C, 2021, 9, 15530-15541.	5.5	16
2341	A Sensorless Haptic Force Estimation Method and Its Application to Uncertain Robotic Manipulators. , 2021, , .		1
2344	2D materials inks toward smart flexible electronics. Materials Today, 2021, 50, 116-148.	14.2	57
2345	Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Research, 2022, 15, 3614-3620.	10.4	17
2346	Hybrid strategy of graphene/carbon nanotube hierarchical networks for highly sensitive, flexible wearable strain sensors. Scientific Reports, 2021, 11, 21006.	3.3	16
2347	A Superâ€5tretchable and Highly Sensitive Carbon Nanotube Capacitive Strain Sensor for Wearable Applications and Soft Robotics. Advanced Materials Technologies, 2022, 7, 2100769.	5.8	36
2348	Highly Sensitive Strain Sensor from Topological‣tructure Modulated Dielectric Elastic Nanocomposites. Advanced Materials Technologies, 2022, 7, 2101190.	5.8	5
2349	Fabrication and application of arrays related to two-dimensional materials. Rare Metals, 2022, 41, 262-286.	7.1	17
2350	Soft wearable sensors for monitoring symptoms of COVID-19 and other respiratory diseases: a review. Progress in Biomedical Engineering, 2022, 4, 012001.	4.9	12
2351	Optimization of the Discrete Structure in a Pressure Sensor Based on a Multiple-Contact Mechanism to Improve Sensitivity and Nonlinearity. IEEE Sensors Journal, 2021, 21, 21259-21267.	4.7	3

2382Exclude arganic electrochemical transistors for chemical and biological sensing. Nano Research, 2022, 15, 2433 2464.1044292383Locate Vourself (DN) Guide to Using Carbon Nanotubes for Stretchable Electronics and Sensors. 2014, 2151.02384Conductive Polymer Fibers for Sensor Devices, 2014, 1-15.02385Research on Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer Sensor, 2014, 191197.0.52386Science, 2014, 191197.02387Fiber Based Contractor and Strah Sensor for Wearable Electronics and Healthy Monitoring, 2015,.02388Researchement Electronicgies of Mechanical Properties of Polymers used for Flexible and Stretchable0.12389Izectronic Packaging, Journal of the Microelectronics and Packaging Society, 2016, 31, 1928.0.12380Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite Surructures, 2016, 1927-90.0.02380Stretchable Strain Sensor Fibricated by Screen Printing of Silver Paste on the Surface Modified Amaparent Elestonic Fibers and Polymer (BLS). Advances in Intelligent Systems and Optical Fibers (Brillouin Scattering) for SHM of Composite02380Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Amaparent Elestonic Flexible Sensors for Measurement of both positive and negative pressures, 2018, 0, 9008-1020.0.42380Soft capacitive sensors for measurement of both positive and negative pressures, 2019, 245-284.02380Soft capacitive sensors for measurement of both positive and negative pressures, 2019, 7245-284.0	#	Article	IF	CITATIONS
2:100Abe-th Yourself (DN) Guide to Liang Carbon Nanotubes for Structubile Electronics and Sensor.0.802:314Conductive Polymer Fibers for Sensor Devices., 2014, .1:15.02:335Proparation and force-enantitive properties of carbon nanotube/polydimethyldilozane composites0.542:336Science, 2014, .1:91.157.02:337Ebe-thouse and brance devices for Measuring Clothing Pressure. Lecture Notes in Computer1.302:338Evaluation of Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer1.302:339Pabe-thouse denerator and Strain Sensor for Wearable Electronics and Healthy Monitoring, 2015,02:339Measurement Technologies of Mechanical Properties of Polymers used for Florible and Structhable0.112:339Use of Distributed Sensor Networks with Optical Fibers (Briflouin Scattering) for SHM of Composite002:340Structhable Nanoenabled Biosensors, 2016, .325 350.0.0002:340Use of Distributed Sensor Networks with Optical Fibers (Briflouin Scattering) for SHM of Composite002:341Stretchable Strain Sensor Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elestomeric Polymerithane Films. Materials Sciences and Applications, 2018, .0, 1008-1020.0.442:345Soft capacitive sensors for measurement of both positive and negative pressures, .2018,12:346Soft capacitive sensors for measurement of both positive and negative pressures, .2019, .245-284.12:347Renoparticles Based Flexible Wea	2352	Flexible organic electrochemical transistors for chemical and biological sensing. Nano Research, 2022, 15, 2433-2464.	10.4	29
2324Conductive Polymer Fibers for Sensor Devices., 2014, , 1-15.o2325Reprintion and force sensitive argument is of cabon name tube/polydimethylsilosane composites0.542336Ivaluation of Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer1.302347Fiber-Based Cenerator and Strain Sensor for Wearable Electronics and Healthy Monitoring, 2015,02348Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable0.112349Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable0.112340Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite002340Istretchable Strain Sensor Sensor Babricated by Screen Printing of Silver Paste on the Surface Modified Tamparent Elestoneric Polymerta endors with Optical Fibers (Brillouin Scattering) for SHM of Composite002340Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Tamparent Elestoneric Polymertane Films. Materials Sciences and Applications, 2018, 9,01008-1020.0.402341Soft capacitive sensors for measurement of both positive and negative pressures., 2018,102342Singer Poperties and Physical Model of Ionic Polymer., 2019, .503-545.002343Sensing Properties and Physical Model of Ionic Polymer., 2019, .503-545.0.212344Singer Poperties and Physical Model of Ionic Polymer., 2019, .503-545.0.212345Stretchable Wende	2353	A Do-It-Yourself (DIY) Guide to Using Carbon Nanotubes for Stretchable Electronics and Sensors. Lecture Notes in Nanoscale Science and Technology, 2013, , 225-244.	0.8	0
2335Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites0.542336Evaluation of Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer1.302337Fbor-Based Cenerator and Strain Sensor for Wearable Electronics and Healthy Monitoring., 2015,02338Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable0.112339Iteetronic Packaging. Journal of the Microelectronics and Packaging Society, 2016, 23, 19-28.0.11234012 Wearable Nanoenabled Biosensors., 2016, 1325-350.002340Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite002341Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07,0.002343Stretchable Strain Sensors Fobricated by Screen Printing of Silver Paste on the Surface Modified Tarasparent Elastometic Polymethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442345Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Consuring, 2019, 593-593.002346Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.002347Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Swo-Dimensional Films Filled by Neede-Like Particles. Like Particle	2354	Conductive Polymer Fibers for Sensor Devices. , 2014, , 1-15.		0
2336Evaluation of Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer1.302337Fiber-Based Cenerator and Strain Sensor for Wearable Electronics and Healthy Monitoring., 2015,02338Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable0.112349I Wearable Nanoenabled Biosensors., 2016,, 325-350.002360Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite002361Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07, 0.00.002363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Tansparent Electronice Polyurethame Films. Materials Sciences and Applications, 2018, 91 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures., 2018, 91 1008-1020.0.442365Piecoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.602364Sensing Properties and Physical Model of Ionic Polymer., 2019, 503-545.002365Fiects of Brownian Motions on Electrical Conductivity and Optical Transparency of Woodlinensional Films Filled by Needle-Like Particles. Ukrainal Journal of Physics, 2019, 64, 354.0.212366Fifeets of Brownian Motions on Electrical Conductivity and Optical Transparency of Woodlinensional Films Filled by Needle-Like Particles. Ukrainal Journal of Physics, 2019, 64, 354.0.2123	2355	Preparation and force-sensitive properties of carbon nanotube/polydimethylsiloxane composites films. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 237306.	0.5	4
2357Fiber-Based Cenerator and Strain Sensor for Wearable Electronics and Healthy Monitoring , 2015, , .02368Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging Journal of the Microelectronics and Packaging Society, 2016, 23, 19-28.0.11235912 Wearable Nanoenabled Biosensors , 2016, 325-350.02360Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite Structures , 2016, 27-60.02361Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07, 615-620.0.02363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Plins. Materials Sciences and Applications, 2018, 09, 1008-1020.0.42364Soft capacitive sensors for measurement of both positive and negative pressures , 2018, 09, 1008-1020.0.42365Nanoparticles-Based Honitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.62366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019, 503-545.02368Anovel flexible wheless pressure sensor for diagnosis of the osteofascial compartment syndrome. 2019, 9.02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of WooDimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.22369The unvestigation of transp	2356	Evaluation of Stretchable Conductor for Measuring Clothing Pressure. Lecture Notes in Computer Science, 2014, , 191-197.	1.3	0
2358Resurement Technologies of Mechanical Properties of Polymers used for Flexible and Strutchable0.11236912 Wearable Nanoenabled Biosensors, 2016, 325-350.02360Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite02361Structures, 2016, 27-60.0.02362Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07,0.002363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures, 2018,0.602365Pezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.402366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019, 245-284.002367Sensing Properties and Physical Model of Ionic Polymer, 2019, 503-545.002368Schowlin Motions on Electrical Conductivity and Optical Transparency of Two Dimensional Films Filled by Needel Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212369Effects of Brownian IMotions on Electrical Conductivity and Optical Transparency of Two Dimensional Films Filled by Needel Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212370The Investigation of transparent electrodes made with ultrasonic spray coater, 2019,0.2	2357	Fiber-Based Generator and Strain Sensor for Wearable Electronics and Healthy Monitoring. , 2015, , .		0
235912 Wearable Nanoenabled Biosensors., 2016,, 325-350.02360Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite02361Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07,0.002363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures., 2018,12365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019,, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome 2019,0.212369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212379The Investigation of transparent electrodes made with ultrasonic spray coater., 2019,00	2358	Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging. Journal of the Microelectronics and Packaging Society, 2016, 23, 19-28.	0.1	1
2360Structures, 2016, 27-60.02361Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07, 615 620.0.002362Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures., 2018,12365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,0.22369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.22361The investigation of transparent electrodes made with ultrasonic spray coater., 2019,0	2359	12 Wearable Nanoenabled Biosensors. , 2016, , 325-350.		0
2362Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07, 0.00.002363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures., 2018,0.442365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019,, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019,, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,,0.212369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212369The investigation of transparent electrodes made with ultrasonic spray coater., 2019,0.21	2360	Use of Distributed Sensor Networks with Optical Fibers (Brillouin Scattering) for SHM of Composite Structures. , 2016, , 27-60.		0
2363Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.0.442364Soft capacitive sensors for measurement of both positive and negative pressures., 2018,12365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019,, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019,, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,,02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019,0	2362	Investigation of Pressure Sensor Based on Carbonized Leaf Vein Fibers. Material Sciences, 2017, 07, 615-620.	0.0	0
2364Soft capacitive sensors for measurement of both positive and negative pressures., 2018,12365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019,, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019,, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,,02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019,0	2363	Stretchable Strain Sensors Fabricated by Screen Printing of Silver Paste on the Surface Modified Transparent Elastomeric Polyurethane Films. Materials Sciences and Applications, 2018, 09, 1008-1020.	0.4	4
2365Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, 923-930.0.602366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019,0	2364	Soft capacitive sensors for measurement of both positive and negative pressures. , 2018, , .		1
2366Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications., 2019,, 245-284.12367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.02368Anovel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,,02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019,,0	2365	Piezoelectric-Based Monitoring of Restless Legs Syndrome (RLS). Advances in Intelligent Systems and Computing, 2019, , 923-930.	0.6	0
2367Sensing Properties and Physical Model of Ionic Polymer., 2019,, 503-545.o2368A novel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome., 2019,,o2369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.o.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019,o	2366	Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. , 2019, , 245-284.		1
2368A novel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome. ,02369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater. , 2019, , .0	2367	Sensing Properties and Physical Model of Ionic Polymer. , 2019, , 503-545.		0
2369Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.0.212371The investigation of transparent electrodes made with ultrasonic spray coater., 2019, , .0	2368	A novel flexible wireless pressure sensor for diagnosis of the osteofascial compartment syndrome. , 2019, , .		0
2371 The investigation of transparent electrodes made with ultrasonic spray coater. , 2019, , . 0	2369	Effects of Brownian Motions on Electrical Conductivity and Optical Transparency of Two-Dimensional Films Filled by Needle-Like Particles. Ukrainian Journal of Physics, 2019, 64, 354.	0.2	1
	2371	The investigation of transparent electrodes made with ultrasonic spray coater. , 2019, , .		0

#	Article	IF	CITATIONS
2372	Self-supported Materials for Flexible/Stretchable Sensors. Engineering Materials, 2020, , 269-296.	0.6	0
2373	Integrated Testing System for Multiple Sensors in Intelligent Packaging. Lecture Notes in Electrical Engineering, 2020, , 423-428.	0.4	0
2374	Wearable Devices for Monitoring Work related Musculoskeletal and Gait Disorders. , 2020, , .		1
2375	Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chemical Engineering Journal, 2022, 433, 133202.	12.7	54
2376	Stretchable Transparent Electrode <i>via</i> Wettability Self-Assembly in Mechanically Induced Self-Cracking. ACS Applied Materials & amp; Interfaces, 2021, 13, 52880-52891.	8.0	8
2377	A theoretical model of a flexible capacitive pressure sensor with microstructured electrodes for highly sensitive electronic skin. Journal Physics D: Applied Physics, 2022, 55, 094001.	2.8	10
2378	Self-Sensing Pneumatic Compressing Actuator. Frontiers in Neurorobotics, 2020, 14, 572856.	2.8	4
2379	Tribological properties of vertically aligned carbon nanotube arrays and carbon nanotube sponge. AlP Advances, 2020, 10, 125209.	1.3	1
2380	Soft and Stretchable Electronics Design. , 2023, , 258-286.		2
2381	Sensing mechanisms and applications of flexible pressure sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178102.	0.5	13
2382	Relationship Between Curing Characteristics and Mechanical Properties of HTV Silicone Rubber. , 2020, , 3-6.		0
2383	Photoproteins Tapping Solar Energy to Power Sensors. Green Energy and Technology, 2020, , 127-140.	0.6	0
2384	Flexible resistive strain sensors for application in wearable electronics. AIP Conference Proceedings, 2020, , .	0.4	0
2385	Printed Electronics-Enabled Wearable/Portable Physical and Chemical Sensors for Personal Digital Healthcare Usage. , 2021, , .		0
2386	Graphene Flake Self-Assembly Enhancement via Stretchable Platforms and External Mechanical Stimuli. ACS Omega, 2021, 6, 30607-30617.	3.5	2
2387	A Highly Elastic Conductive Film Prepared by Bidirectional AS-LBL Method. European Polymer Journal, 2021, 162, 110868.	5.4	0
2388	Scalably Nanomanufactured Atomically Thin Materialsâ€Based Wearable Health Sensors. Small Structures, 2022, 3, 2100120.	12.0	16
2389	Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors. Nano Letters, 2022, 22, 1433-1442.	9.1	24

#	Article	IF	CITATIONS
2390	Phosphorescence-based temperature and tactile multi-functional flexible sensing skin. Sensors and Actuators A: Physical, 2021, 332, 113205.	4.1	2
2391	Durable and highly sensitive flexible sensors for wearable electronic devices with PDMS-MXene/TPU composite films. Ceramics International, 2022, 48, 4977-4985.	4.8	29
2392	A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy, 2022, 91, 106695.	16.0	40
2393	A high performing piezoelectric and triboelectric nanogenerator based on a large deformation of the novel lantern-shaped structure. Nano Energy, 2022, 92, 106699.	16.0	15
2394	Metal-organic framework-based materials for flexible supercapacitor application. Coordination Chemistry Reviews, 2022, 452, 214300.	18.8	112
2395	Optofluidic systems enabling detection in real samples: A review. Analytica Chimica Acta, 2022, 1192, 339307.	5.4	11
2396	Allâ€inorganic flexible highâ€ŧemperature strain sensor based on SrRuO 3 /muscovite heteroepitaxy. Journal of the American Ceramic Society, 0, , .	3.8	3
2397	Flexible sensors based on assembled carbon nanotubes. Aggregate, 2021, 2, e143.	9.9	18
2398	Shaping the future of robotics through materials innovation. Nature Materials, 2021, 20, 1582-1587.	27.5	65
2399	Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials, 2021, 11, 3119.	4.1	35
2400	Flexible Copper Nanowire Electronics for Wireless Dynamic Pressure Sensing. ACS Applied Electronic Materials, 2021, 3, 5468-5474.	4.3	12
2401	Strain Sensing Behavior of 3D Printable and Wearable Conductive Polymer Composites Filled with Silaneâ€Modified MWCNTs. Macromolecular Rapid Communications, 2022, 43, e2100663.	3.9	2
2402	Flexible and Stable Carbon Nanotube Film Strain Sensors with Self-Derived Integrated Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 55600-55610.	8.0	8
2403	Programmable Sensitivity Screening of Strain Sensors by Local Electrical and Mechanical Properties Coupling. ACS Nano, 2021, 15, 20590-20599.	14.6	13
2404	Flexible strain sensor based on embedded three-dimensional annular cracks with high mechanical robustness and high sensitivity. Applied Materials Today, 2021, 25, 101247.	4.3	11
2405	Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021, 13, 59142-59153.	8.0	70
2406	Vapor-Phase Polymerization of PEDOT for Wearable Fabric Pressure Sensors. Journal of Electronic Materials, 2022, 51, 1128-1136.	2.2	1
2407	Arbitrary-shape-adaptable strain sensor array with optimized circuit layout via direct-ink-writing: Scalable design and hierarchical printing. Materials and Design, 2022, 214, 110388.	7.0	13

			0
#	ARTICLE Interfacially confined preparation of copper Porphyrin-contained nanofilms towards	IF	CITATIONS
2408	High-performance Strain-Pressure monitoring. Journal of Colloid and Interface Science, 2022, 612, 516-524.	9.4	6
2409	Intrinsically stretchable carbon nanotube synaptic transistors with associative learning ability and mechanical deformation response. Carbon, 2022, 189, 386-394.	10.3	6
2410	A Facile Fabrication of Porous and Breathable Dielectric Film for Capacitive Pressure Sensor. , 2020, , .		6
2411	Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials, 2022, 12, 334.	4.1	32
2412	Highly sensitive, flexible and biocompatible temperature sensor utilizing ultra-long Au@AgNW-based polymeric nanocomposites. Nanoscale, 2022, 14, 1742-1754.	5.6	20
2413	Recent progress in flexible capacitive sensors: Structures and properties. Nano Materials Science, 2023, 5, 265-277.	8.8	24
2414	Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses. Sensors, 2022, 22, 975.	3.8	12
2415	Quantifying the Piezoresistive Mechanism in High-Performance Printed Graphene Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 7141-7151.	8.0	14
2416	Trained laser-patterned carbon as high-performance mechanical sensors. Npj Flexible Electronics, 2022, 6, .	10.7	5
2417	Designing wearable microgrids: towards autonomous sustainable on-body energy management. Energy and Environmental Science, 2022, 15, 82-101.	30.8	48
2418	Porous Polydimethylsiloxane Elastomer Hybrid with Zinc Oxide Nanowire for Wearable, Wide-Range, and Low Detection Limit Capacitive Pressure Sensor. Nanomaterials, 2022, 12, 256.	4.1	16
2419	Capacitive Sensor Combining Proximity and Pressure Sensing for Accurate Grasping of a Prosthetic Hand. ACS Applied Electronic Materials, 2022, 4, 869-877.	4.3	18
2420	Multifunctional Slippery Polydimethylsiloxane/Carbon Nanotube Composite Strain Sensor with Excellent Liquid Repellence and Anti-Icing/Deicing Performance. Polymers, 2022, 14, 409.	4.5	26
2421	Advances in flexible organic field-effect transistors and their applications for flexible electronics. Npj Flexible Electronics, 2022, 6, .	10.7	194
2422	Selective Growth of Singleâ€walled Carbon Nanotubes using Cobalt Disilicide. ChemNanoMat, 2022, 8, .	2.8	4
2423	Recent advances in flexible and wearable sensors for monitoring chemical molecules. Nanoscale, 2022, 14, 1653-1669.	5.6	48
2424	MXene-containing pressure sensor based on nanofiber film and spacer fabric with ultrahigh sensitivity and Joule heating effect. Textile Reseach Journal, 2022, 92, 1999-2009.	2.2	8
2425	Multifunctional pressure/temperature/bending sensor made of carbon fibre-multiwall carbon nanotubes for artificial electronic application. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106796.	7.6	10

#	Article	IF	CITATIONS
2426	Nanoarchitectonics of Stretchable Organic Electronics Materials. RSC Nanoscience and Nanotechnology, 2022, , 518-545.	0.2	0
2427	A review of silver nanowire-based composites for flexible electronic applications. Flexible and Printed Electronics, 2022, 7, 014009.	2.7	42
2428	Sweatâ€Permeable, Biodegradable, Transparent and Selfâ€powered Chitosanâ€Based Electronic Skin with Ultrathin Elastic Gold Nanofibers. Advanced Functional Materials, 2022, 32, .	14.9	80
2429	Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial <i>Cinnamomum camphora</i> Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS Applied Materials & amp; Interfaces, 2022, 14, 2132-2145.	8.0	24
2430	Triboelectric Uv Patterning for Wearable One-Terminal Tactile Sensor Array to Perceive Dynamic Contact Motions. SSRN Electronic Journal, 0, , .	0.4	0
2431	Energy Autonomous Electronic Skin with Direct Temperature-Pressure Perception. SSRN Electronic Journal, 0, , .	0.4	0
2432	Wearable physical sensors. , 2022, , 183-218.		0
2433	Highly stretchable and sensitive strain sensors with ginkgo-like sandwich architectures. Nanoscale Advances, 2022, 4, 1681-1693.	4.6	6
2434	Nanomaterials for soft wearable electronics. , 2022, , .		2
2435	Flexible neuromorphic transistors for bio-inspired perception application. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.5	0
2436	Soft stretchable conductive nanocomposites for biointegrated electronics. , 2023, , 306-321.		1
2437	Controlled Transformation of Liquid Metal Microspheres in Aqueous Solution Triggered by Growth of GaOOH. ACS Omega, 2022, 7, 7912-7919.	3.5	11
2438	Flexible Electronics and Devices as Human–Machine Interfaces for Medical Robotics. Advanced Materials, 2022, 34, e2107902.	21.0	211
2439	Revolution in Flexible Wearable Electronics for Temperature and Pressure Monitoring—A Review. Electronics (Switzerland), 2022, 11, 716.	3.1	29
2440	Modulating vectored non-covalent interactions for layered assembly with engineerable properties. Bio-Design and Manufacturing, 2022, 5, 529-539.	7.7	6
2441	Ultrasensitive Pressure Sensor Sponge Using Liquid Metal Modulated Nitrogen-Doped Graphene Nanosheets. Nano Letters, 2022, 22, 2817-2825.	9.1	45
2442	Facile Fabrication of an Ultrasensitive Allâ€Fabric Wearable Pressure Sensor Based on Phosphoreneâ€Gold Nanocomposites. Advanced Materials Interfaces, 2022, 9, .	3.7	9
2443	Artificial fast-adapting mechanoreceptor based on carbon nanotube percolating network. Scientific Reports, 2022, 12, 2818.	3.3	1

#	Article	IF	Citations
2444	Ultrathin flexible terahertz metamaterial bandstop filter based on laser-induced graphene. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1229.	2.1	5
2445	Development of an automatic measurement system for medical pills based on a PDMS capacitive sensor. Measurement: Journal of the International Measurement Confederation, 2022, 192, 110899.	5.0	1
2446	Manipulating the shape of flexible magnetic nanodisks with meronlike magnetic states. Physical Review B, 2022, 105, .	3.2	6
2447	Soft Capacitive Pressure Sensors: Trends, Challenges, and Perspectives. ACS Nano, 2022, 16, 3442-3448.	14.6	78
2448	Multilayer flexible electronics: Manufacturing approaches and applications. Materials Today Physics, 2022, 23, 100647.	6.0	23
2449	Toward stretchable batteries: 3D-printed deformable electrodes and separator enabled by nanocellulose. Materials Today, 2022, 54, 18-26.	14.2	35
2450	Paper and Salt: Biodegradable NaCl-Based Humidity Sensors for Sustainable Electronics. Frontiers in Electronics, 2022, 3, .	3.2	4
2451	Electrical Stability and Piezoresistive Sensing Performance of High Strain-Range Ultra-Stretchable CNT-Embedded Sensors. Polymers, 2022, 14, 1366.	4.5	13
2452	Challenges and limitation of wearable sensors used in firefighters' protective clothing. Journal of Fire Sciences, 2022, 40, 214-245.	2.0	6
2453	Flameâ€Retardant PEDOT:PSS/LDHs/Leather Flexible Strain Sensor for Human Motion Detection. Macromolecular Rapid Communications, 2022, 43, e2100873.	3.9	17
2454	Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Science Advances, 2022, 8, eabl5511.	10.3	101
2455	Safety Issues of Nanomaterials for Dermal Pharmaceutical Products. Pharmaceutical Nanotechnology, 2022, 10, 334-341.	1.5	0
2456	Strategies for body-conformable electronics. Matter, 2022, 5, 1104-1136.	10.0	90
2457	Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus. Chemical Engineering Journal, 2022, 441, 136046.	12.7	13
2458	Diver-Robot communication using wearable sensing diver glove. , 2021, , .		2
2459	Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. Applied Physics Letters, 2021, 119, .	3.3	3
2460	Flexible and Stretchable Strategies for Electronic Skins: Materials, Structure, and Integration. ACS Applied Electronic Materials, 2022, 4, 1-26.	4.3	20
2461	Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano, 2022, 16, 541-553.	14.6	43

#	Article	IF	CITATIONS
2462	Wearable E-Textile and CNT Sensor Wireless Measurement System for Real-Time Penile Erection Monitoring. Sensors, 2022, 22, 231.	3.8	4
2464	Stable Doping of Single-Walled Carbon Nanotubes for Flexible Transparent Conductive Films. ACS Nano, 2022, 16, 1063-1071.	14.6	24
2465	Fabrication and characterization of low-sheet-resistance and stable stretchable electrodes employing metal and metal nanowire hybrid structure. Flexible and Printed Electronics, 2021, 6, 045013.	2.7	0
2466	A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Science Advances, 2021, 7, eabl8313.	10.3	55
2467	E-Skin Development and Prototyping via Soft Tooling and Composites with Silicone Rubber and Carbon Nanotubes. Materials, 2022, 15, 256.	2.9	6
2469	Wrinkled, Cracked and Bridged Carbon Networks for Highly Sensitive and Stretchable Strain Sensors. SSRN Electronic Journal, 0, , .	0.4	0
2470	Gold Nanomaterialsâ€Implemented Wearable Sensors for Healthcare Applications. Advanced Functional Materials, 2022, 32, .	14.9	70
2471	Near 90% Transparent ITOâ€Based Flexible Electrode with Doubleâ€6ided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices. Small, 2022, 18, e2201716.	10.0	4
2472	Highly sensitive, stretchable, piezoresistive auxetic sensor based on graphite powders sandwiched between silicon rubber layers. Polymer Bulletin, 2023, 80, 3745-3760.	3.3	8
2473	Study of capacitance type flexible electronic devices based on polyacrylamide and reduced graphene oxide composite hydrogel. European Polymer Journal, 2022, 171, 111200.	5.4	16
2474	Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings, 2022, 12, 558.	2.6	28
2475	Large-area flexible MWCNT/PDMS pressure sensor for ergonomic design with aid of deep learning. Nanotechnology, 2022, 33, 345502.	2.6	4
2476	Flexible microstructured pressure sensors: design, fabrication and applications. Nanotechnology, 2022, 33, 322002.	2.6	27
2477	Energy autonomous electronic skin with direct temperature-pressure perception. Nano Energy, 2022, 98, 107273.	16.0	37
2480	Porous Pure MXene Fibrous Network for Highly Sensitive Pressure Sensors. Langmuir, 2022, 38, 5494-5501.	3.5	8
2481	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	9.5	40
2482	Wrinkle-structured MXene film assists flexible pressure sensors with superhigh sensitivity and ultrawide detection range. Nanocomposites, 2022, 8, 81-94.	4.2	10
2483	From liquid metal to stretchable electronics: Overcoming the surface tension. Science China Materials, 2022, 65, 2072-2088.	6.3	22

#	Article	IF	CITATIONS
2484	Strain-Dependent Photoacoustic Characteristics of Free-Standing Carbon-Nanocomposite Transmitters. Sensors, 2022, 22, 3432.	3.8	1
2485	Progress of flexible strain sensors for physiological signal monitoring. Biosensors and Bioelectronics, 2022, 211, 114298.	10.1	59
2486	Research on the High Sensitivity Detection Method of Carbon Nanotube/Polydimethylsiloxane Composites Structure. Micromachines, 2022, 13, 719.	2.9	1
2487	Copper Nanowire-Sealed Titanium Dioxide/Poly(dimethylsiloxane) Electrode with an In-Plane Wavy Structure for a Stretchable Capacitive Strain Sensor. ACS Applied Nano Materials, 2022, 5, 7150-7160.	5.0	6
2488	Textile-Based Flexible Capacitive Pressure Sensors: A Review. Nanomaterials, 2022, 12, 1495.	4.1	22
2489	Analysis of the Electronic-Ionic polymer membrane. Materials Today: Proceedings, 2022, , .	1.8	0
2490	A Repeatable Self-Adhesive Liquid-Free Double-Network Ionic Conductor with Tunable Multifunctionality. ACS Applied Materials & Interfaces, 2022, 14, 22418-22425.	8.0	12
2491	Pristine carbon nanotubes are efficient absorbers at radio frequencies. Nanotechnology, 2022, , .	2.6	2
2492	Facile Fabrication of Highly Sensitive Thermoplastic Polyurethane Sensors with Surface- and Interface-Impregnated 3D Conductive Networks. ACS Applied Materials & Interfaces, 2022, 14, 22615-22625.	8.0	21
2493	Recent Advances in Wearable Potentiometric pH Sensors. Membranes, 2022, 12, 504.	3.0	18
2494	Electrospun nanofibrous yarn based piezoresistive flexible strain sensor for human motion detection and speech recognition. Journal of Thermoplastic Composite Materials, 2023, 36, 2459-2481.	4.2	6
2495	Triboelectric UV patterning for wearable one-terminal tactile sensor array to perceive dynamic contact motions. Nano Energy, 2022, 98, 107320.	16.0	15
2496	Stretchable conductive film based on silver nanowires and carbon nanotubes for real-time inducing and monitoring of cell-released NO. Sensors and Actuators B: Chemical, 2022, 366, 131983.	7.8	4
2497	Multi-factor-controlled ReRAM devices and their applications. Journal of Materials Chemistry C, 2022, 10, 8895-8921.	5.5	22
2498	Sustainableâ€Macromoleculeâ€Assisted Preparation of Crossâ€linked, Ultralight, Flexible Graphene Aerogel Sensors toward Lowâ€Frequency Strain/Pressure to Highâ€Frequency Vibration Sensing. Small, 2022, 18, e2202047.	10.0	20
2499	Triboelectrification-Induced Electricity in Self-Healing Hydrogel for Mechanical Energy Harvesting and Ultra-sensitive Pressure Monitoring. ACS Omega, 2022, 7, 18816-18825.	3.5	5
2500	Mechanics and Strategies for Wrinkling Suppression: A Review. Frontiers in Mechanical Engineering, 2022, 8, .	1.8	1
2501	Marangoni-flow-assisted assembly of single-walled carbon nanotube films for human motion sensing. Fundamental Research, 2022, , .	3.3	1

#	Article	IF	CITATIONS
2502	Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels. Cellulose, 2022, 29, 5725-5743.	4.9	8
2503	Self-Sensing Magnetic Response Flexible Actuators. SSRN Electronic Journal, 0, , .	0.4	0
2504	Polymer nanocomposites for defense applications. , 2022, , 373-414.		0
2505	Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications. Sensors, 2022, 22, 4083.	3.8	14
2506	Highly stretchable electroluminescent device based on copper nanowires electrode. Scientific Reports, 2022, 12, .	3.3	8
2507	Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers, 2022, 14, 2219.	4.5	5
2508	A non-array customizable tactile sensor based on spraying process. Sensor Review, 2022, 42, 412-427.	1.8	1
2509	Plasticized PVCâ€Gel Single Layerâ€Based Stretchable Triboelectric Nanogenerator for Harvesting Mechanical Energy and Tactile Sensing. Advanced Science, 2022, 9, .	11.2	23
2510	Functional optical design of thickness-optimized transparent conductive dielectric-metal-dielectric plasmonic structure. Scientific Reports, 2022, 12, .	3.3	9
2511	Ultraâ€Thin and Conformable Electrodes Composed of Singleâ€Walled Carbon Nanotube Networks for Skinâ€Contact Dielectric Elastomer Actuators. Advanced Electronic Materials, 2023, 9, .	5.1	8
2512	Exploring the Capabilities of a Piezoresistive Graphene-Loaded Waterborne Paint for Discrete Strain and Spatial Sensing. Sensors, 2022, 22, 4241.	3.8	3
2513	Study of the Pattern Preparation and Performance of the Resistance Grid of Thin-Film Strain Sensors. Micromachines, 2022, 13, 892.	2.9	4
2514	Tough, transparent, biocompatible and stretchable thermoplastic copolymer with high stability and processability for soft electronics. Materials Today, 2022, 57, 43-56.	14.2	16
2515	Integrated, self-powered, and omni-transparent flexible electroluminescent display system. Nano Energy, 2022, 99, 107392.	16.0	20
2517	Transparent Conducting Films Based on Carbon Nanotubes: Rational Design toward the Theoretical Limit. Advanced Science, 2022, 9, .	11.2	32
2518	Moldable and transferrable conductive nanocomposites for epidermal electronics. Npj Flexible Electronics, 2022, 6, .	10.7	16
2519	Waste Silicone Rubber in Three-Dimensional Conductive Networks as a Temperature and Movement Sensor. ACS Applied Materials & Interfaces, 2022, 14, 29250-29260.	8.0	9
2520	Recent Development of Morphology ontrolled Hybrid Nanomaterials for Triboelectric Nanogenerator: A Review. Chemical Record, 2022, 22, .	5.8	12

#	Article	IF	CITATIONS
2521	Transparent and Breathable Ion Gelâ€Based Sensors toward Multimodal Sensing Ability. Advanced Materials Technologies, 2022, 7, .	5.8	7
2522	A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring. Materials Research Express, 2022, 9, 065605.	1.6	7
2523	CNTs based capacitive stretchable pressure sensor with stable performance. Sensors and Actuators A: Physical, 2022, 343, 113672.	4.1	14
2524	A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy, 2022, 100, 107486.	16.0	17
2525	Progress, Challenges, and Prospects of Soft Robotics for Space Applications. Advanced Intelligent Systems, 2023, 5, .	6.1	31
2526	Antimicrobial second skin using copper nanomesh. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
2527	Why is graphene an extraordinary material? A review based on a decade of research. Frontiers of Materials Science, 2022, 16, .	2.2	11
2528	Screen-printed capacitive pressure sensors with high sensitivity and accuracy on flexible substrates. Flexible and Printed Electronics, 0, , .	2.7	1
2529	Measurement of Parachute Canopy Textile Deformation Using Mechanically Invisible Stretchable Lightguides. Advanced Materials Technologies, 2022, 7, .	5.8	4
2530	Easy-Scalable Flexible Sensors Made of Carbon Nanotube-Doped Polydimethylsiloxane: Analysis of Manufacturing Conditions and Proof of Concept. Sensors, 2022, 22, 5147.	3.8	8
2531	Effect of Fabrication Method on the Thermo Mechanical and Electrical Properties of Graphene Doped PVDF Nanocomposites. Nanomaterials, 2022, 12, 2315.	4.1	0
2532	Time-evolution of electrical resistance-strain hysteresis curve of embroidered stretch sensors and their application in reliable human motion tracking. Journal of Mechanical Science and Technology, 2022, 36, 3573-3584.	1.5	1
2533	Carbon Nanotube Coated Fibrous Tubes for Highly Stretchable Strain Sensors Having High Linearity. Nanomaterials, 2022, 12, 2458.	4.1	6
2534	Fully implantable batteryless soft platforms with printed nanomaterial-based arterial stiffness sensors for wireless continuous monitoring of restenosis in real time. Nano Today, 2022, 46, 101557.	11.9	10
2535	Scientific zero to one: Some common properties of highly-influential papers. Malaysian Journal of Library and Information Science, 2021, 26, 1-32.	0.4	0
2536	Design, Fabrication, and Dynamic Environmental Test of a Piezoresistive Pressure Sensor. Micromachines, 2022, 13, 1142.	2.9	4
2537	Recent Progress in Flexible Pressure Sensor Arrays. Nanomaterials, 2022, 12, 2495.	4.1	26
2538	Flexible piezoresistive pressure sensor based on wrinkled layers with fast response for wearable applications. Measurement: Journal of the International Measurement Confederation, 2022, 201, 111645.	5.0	18

		15	C
#	ARTICLE	IF	CITATIONS
2539	Electronic Skins. Macromolecular Materials and Engineering, 2022, 307, .	3.6	11
2540	Highly sensitive, piezoresistive, silicon/graphite powder-based, auxetic sensor with linear sensing performance. Sensors and Actuators A: Physical, 2022, 345, 113776.	4.1	8
2541	Wide range pressure sensor construction based on tension-compression conversion and gradient stiffness design strategy. Composites Part A: Applied Science and Manufacturing, 2022, 161, 107082.	7.6	9
2543	Speckle-based high-resolution multimodal soft sensing. Scientific Reports, 2022, 12, .	3.3	6
2544	Single-input single-output multi-touch soft sensor systems using band-pass filters. Npj Flexible Electronics, 2022, 6, .	10.7	9
2545	Anti-smudge and self-cleaning characteristics of waterborne polyurethane coating and its construction. Journal of Colloid and Interface Science, 2022, 628, 1070-1081.	9.4	29
2546	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	47.7	69
2547	Recent advances in flexible force sensors and their applications: a review. Flexible and Printed Electronics, 2022, 7, 033002.	2.7	6
2548	A single-layer less-wires stretchable wearable keyboard based on pressure switch conductive textile. Smart Materials and Structures, 2022, 31, 105008.	3.5	0
2549	Soft, Pressure-Tolerant, Flexible Electronic Sensors for Sensing under Harsh Environments. ACS Sensors, 2022, 7, 2400-2409.	7.8	14
2550	Recent Advances in Stretchable and Wearable Capacitive Electrophysiological Sensors for Long-Term Health Monitoring. Biosensors, 2022, 12, 630.	4.7	26
2551	Emerging Iontronic Sensing: Materials, Mechanisms, and Applications. Research, 2022, 2022, .	5.7	23
2552	Inkjet Printing of Functional Inks for Smart Products. , 0, , .		2
2553	Stretchable, selfâ€healable, and breathable biomimetic iontronics with superior humidityâ€sensing performance for wireless respiration monitoring. SmartMat, 2023, 4, .	10.7	45
2554	Minimizing the wiring in distributed strain sensing using a capacitive sensor sheet with variable-resistance electrodes. Scientific Reports, 2022, 12, .	3.3	1
2555	Emerging Strategies Based on Sensors for Chronic Wound Monitoring and Management. Chemosensors, 2022, 10, 311.	3.6	1
2556	Femtosecond Laser-Induced Supermetalphobicity for Design and Fabrication of Flexible Tactile Electronic Skin Sensor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38328-38338.	8.0	29
2557	Highly stretchable, shape memory and antioxidant ionic conductive degradable elastomers for strain sensing with high sensitivity and stability. Materials and Design, 2022, 222, 111041.	7.0	9

#	Article	IF	CITATIONS
2558	Transparent, highly stretchable, adhesive, and sensitive ionic conductive hydrogel strain sensor for human motion monitoring. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 652, 129795.	4.7	11
2559	Ionic poly(dimethylsiloxane)–silica nanocomposites: Dispersion and self-healing. MRS Bulletin, 0, , .	3.5	3
2560	Poly(acrylic acid)/Dipeptide Double-Network Hydrogel to Achieve a Highly Stretchable Strain Sensor. Chemosensors, 2022, 10, 360.	3.6	0
2561	A self-sensing soft pneumatic actuator with closed-Loop control for haptic feedback wearable devices. Materials and Design, 2022, 223, 111149.	7.0	13
2562	Wearable, washable and ultra-high environmental tolerant solid-liquid composite sensor based on IL@PU microcapsules. Composites Communications, 2022, 35, 101329.	6.3	5
2563	Trends on Carbon Nanotube-Based Flexible and Wearable Sensors via Electrochemical and Mechanical Stimuli: A Review. IEEE Sensors Journal, 2022, 22, 20102-20125.	4.7	8
2564	Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Micro/Nano Technologies, 2022, , 1-31.	0.1	0
2565	Organic–Inorganic Nanohybrids in Flexible Electronic Devices. Materials Horizons, 2022, , 385-404.	0.6	0
2566	MEMS Platforms for in-situ Testing of Mechanical Properties of Nanostructures. , 2023, , 142-161.		2
2567	Low-temperature fabrication of Pr-doped In ₂ O ₃ electrospun nanofibers for flexible field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 15996-16003.	5.5	1
2568	Integrated temperature and pressure dual-mode sensors based on elastic PDMS foams decorated with thermoelectric PEDOT:PSS and carbon nanotubes for human energy harvesting and electronic-skin. Journal of Materials Chemistry A, 2022, 10, 18256-18266.	10.3	47
2569	Materials development in stretchable iontronics. Soft Matter, 2022, 18, 6487-6510.	2.7	8
2570	A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Advances, 2022, 4, 3987-3995.	4.6	21
2571	Mechanical properties and structures under the deformation of thiophene copolymers with cyclic siloxane units. Polymer Chemistry, 2022, 13, 5536-5544.	3.9	1
2572	Silver-Reduced Poly(Ethylene Glycol) Diacrylate Composites with Microline Arrays for Directional Bending Sensors. ACS Applied Materials & Interfaces, 2022, 14, 44869-44877.	8.0	0
2573	Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: Exploring potential application in soft actuators and sensors. Journal of Industrial and Engineering Chemistry, 2022, 116, 171-179.	5.8	7
2574	A review on graphene/rubber nanocomposites. International Polymer Processing, 2022, 37, 505-522.	0.5	2
2576	Intrinsically stretchable and self-healable tribotronic transistor for bioinspired e-skin. Materials Today Physics, 2022, 28, 100877.	6.0	6

#	Article	IF	CITATIONS
2577	Highâ€Performance MXeneâ€Based Flexible and Wearable Pressure Sensor Based on a Microâ€Pyramid Structured Active Layer. Advanced Materials Technologies, 2023, 8, .	5.8	6
2578	Wrinkled, cracked and bridged carbon networks for highly sensitive and stretchable strain sensors. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107221.	7.6	7
2579	An ultra-sensitive wearable multifunctional flexible sensor with a self-assembled dual 3D conductive network and yeast-foamed silicone rubber foam. Journal of Materials Chemistry A, 2022, 10, 22551-22560.	10.3	9
2580	A facile strategy for fabricating self-healable, adhesive and highly sensitive flexible ionogel-based sensors. Journal of Materials Chemistry C, 2022, 10, 17309-17320.	5.5	4
2581	Bioinspired Strategies for Stretchable Conductors. Chemical Research in Chinese Universities, 2023, 39, 30-41.	2.6	3
2582	Porous Dielectric Elastomer Based Flexible Multiaxial Tactile Sensor for Dexterous Robotic or Prosthetic Hands. Advanced Materials Technologies, 2023, 8, .	5.8	10
2583	Chemical sensing by interfacial voltage. Cell Reports Physical Science, 2022, 3, 101119.	5.6	0
2584	Roles of Lowâ€Ðimensional Nanomaterials in Pursuing Human–Machine–Thing Natural Interaction. Advanced Materials, 2023, 35, .	21.0	4
2585	Updated Perspectives on the Role of Biomechanics in COPD: Considerations for the Clinician. International Journal of COPD, 0, Volume 17, 2653-2675.	2.3	3
2586	Chemically derived graphene quantum dots for high-strain sensing. Journal of Materials Science and Technology, 2023, 141, 110-115.	10.7	11
2587	Diverâ€Robot Communication Using Wearable Sensing: Remote Pool Experiments. Marine Technology Society Journal, 2022, 56, 26-35.	0.4	1
2588	An artificial remote tactile device with 3D depth-of-field sensation. Science Advances, 2022, 8, .	10.3	9
2589	Advanced Functional Composite Materials toward Eâ€ S kin for Health Monitoring and Artificial Intelligence. Advanced Materials Technologies, 2023, 8, .	5.8	24
2590	Engineering the Comfortâ€ofâ€Wear for Next Generation Wearables. Advanced Electronic Materials, 2023, 9, .	5.1	14
2591	3D-Printed Soft Wearable Electronics: Techniques, Materials, and Applications. , 2023, , 1-49.		0
2592	Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chemical Engineering Journal, 2023, 453, 139763.	12.7	6
2593	Review of Bioinspired Vision-Tactile Fusion Perception (VTFP): From Humans to Humanoids. IEEE Transactions on Medical Robotics and Bionics, 2022, 4, 875-888.	3.2	6
2594	Stretchable strain sensor of composite hydrogels with high fatigue resistance and low hysteresis. Journal of Materials Chemistry A, 2022, 10, 25564-25574.	10.3	21

#	Article	IF	CITATIONS
2595	Engineering Auxetic Cylinders and Intestine to Improve Longitudinal Intestinal Lengthening and Tailoring Procedure. Bioengineering, 2022, 9, 658.	3.5	1
2596	Hierarchically Oriented Jellyfish‣ike Gold Nanowires Film for Elastronics. Advanced Functional Materials, 0, , 2209760.	14.9	1
2597	A review on the active thermal management researches of epidermal electronic devices. AIP Advances, 2022, 12, .	1.3	2
2598	Highly Efficient Flexocatalysis of Twoâ€Dimensional Semiconductors. Advanced Materials, 2023, 35, .	21.0	13
2599	Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. International Journal of Molecular Sciences, 2022, 23, 14252.	4.1	8
2600	Curvilinear soft electronics by micromolding of metal nanowires in capillaries. Science Advances, 2022, 8, .	10.3	13
2601	Elastomeric Core/Conductive Sheath Fibers for Tensile and Torsional Strain Sensors. Sensors, 2022, 22, 8934.	3.8	0
2602	Pd-conformally coated, one-end-embedded gold nanowire percolation network for intrinsically stretchable, epidermal tattoo fuel cell. Biosensors and Bioelectronics, 2023, 221, 114924.	10.1	4
2603	Broadband THz absorption using nanosheets of Bi ₂ Te ₃ grown on a transparent conductor. Journal of Materials Chemistry C, 2023, 11, 1448-1456.	5.5	3
2604	Design and Application of Flexible Resistive Tactile Sensor Based on Short-Circuit Effect. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-8.	4.7	3
2605	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	38.1	18
2606	A super water-resistant MXene sponge flexible sensor for bifunctional sensing of physical and chemical stimuli. Lab on A Chip, 2023, 23, 485-494.	6.0	4
2607	Optimization of Processing Parameters and Adhesive Properties of Aluminum Oxide Thin-Film Transition Layer for Aluminum Substrate Thin-Film Sensor. Micromachines, 2022, 13, 2115.	2.9	0
2608	Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Science Advances, 2022, 8, .	10.3	11
2609	A new 3D, microfluidic-oriented, multi-functional, and highly stretchable soft wearable sensor. Scientific Reports, 2022, 12, .	3.3	7
2610	Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator. Micromachines, 2022, 13, 2065.	2.9	4
2611	High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels Used as Smart Wearable Devices. Polymers, 2022, 14, 5316.	4.5	4
2612	Smart Clothing with Builtâ€In Soft Sensing Network for Measuring Temporal and Spatial Distribution of Pressure under Impact Scenarios. , 2023, 2,		1

#	Article	IF	CITATIONS
2613	SiO ₂ Nanoparticles Incorporated Poly(Vinylidene) Fluoride Composite for Efficient Piezoelectric Energy Harvesting and Dualâ€Mode Sensing. Energy Technology, 0, , 2201143.	3.8	0
2614	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	14.6	21
2615	Nonpatterned Soft Piezoresistive Films with Filamentous Conduction Paths for Mimicking Multiple-Resolution Receptors of Human Skin. ACS Applied Materials & Interfaces, 2022, 14, 55088-55097.	8.0	3
2616	Stretchable and Highly Sensitive Strain Sensor Based on a 2D MXene and 1D Whisker Carbon Nanotube Binary Composite Film. ACS Applied Materials & Interfaces, 2022, 14, 55812-55820.	8.0	5
2617	Enhanced stretchability towards a flexible and wearable reflective display coating using chalcogenide phase change materials. Optics Express, 2023, 31, 75.	3.4	2
2618	Highly Stretchable, Transparent and Adhesive Ionogel Based on Chitosan-Poly(acrylic acid) Double Networks for Flexible Strain Sensors. Gels, 2022, 8, 797.	4.5	6
2619	In Situ Fabrication of Benzoquinone Crystal Layer on the Surface of Nestâ€Structural Ionohydrogel for Flexible "Allâ€inâ€One―Supercapattery. Advanced Materials, 2023, 35, .	21.0	4
2620	Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS Applied Materials & Interfaces, 2023, 15, 1798-1807.	8.0	14
2621	Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS Nano, 2022, 16, 19651-19664.	14.6	5
2622	The Low-Temperature Sol-Gel Synthesis of Metal-Oxide Films on Polymer Substrates and the Determination of Their Optical and Dielectric Properties. Nanomaterials, 2022, 12, 4333.	4.1	1
2623	A Flexible Pressure Sensor Based on Silicon Nanomembrane. Biosensors, 2023, 13, 131.	4.7	6
2624	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	8.6	25
2625	Heterogeneous Structure Omnidirectional Strain Sensor Arrays With CognitivelyÂLearned Neural Networks. Advanced Materials, 2023, 35, .	21.0	14
2626	Self-Patterning of Highly Stretchable and Electrically Conductive Liquid Metal Conductors by Direct-Write Super-Hydrophilic Laser-Induced Graphene and Electroless Copper Plating. ACS Applied Materials & Interfaces, 2023, 15, 4713-4723.	8.0	6
2627	Flexible-to-Stretchable Mechanical and Electrical Interconnects. ACS Applied Materials & Interfaces, 2023, 15, 6005-6012.	8.0	7
2628	Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. Micro/Nano Technologies, 2023, , 19-48.	0.1	1
2629	A review of wearable carbon-based sensors for strain detection: fabrication methods, properties, and mechanisms. Textile Reseach Journal, 2023, 93, 2918-2940.	2.2	5
2630	Carbon nanotubes field-effect transistor pressure sensor based on three-dimensional conformal force-sensitive gate modulation. Carbon, 2023, 204, 456-464.	10.3	10
CITATION REPORT ARTICLE IF CITATIONS lonic conductive hydrogels formed through hydrophobic association for flexible strain sensing. 4.1 21 Sensors and Actuators A: Physical, 2023, 350, 114148. A highly stretchable triboelectric nanogenerator with both stretch-insensitive sensing and 16.0 stretch-sensitive sensing. Nano Energy, 2023, 107, 108170. Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT:PSS/cellulose nanofibrils hydrogels 10.2 42 for wearable strain sensors. Carbohydrate Polymers, 2023, 305, 120567. Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383. Application of Sensors in the System of Shell Structures with Flexible Wearable Electronics., 2022,,. 0 Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. 4.5 Gels, 2023, 9, 12. Edge and Interface Resistances Create Distinct Trade-Offs When Optimizing the Microstructure of 14.6 3 Printed van der Waals Thin-Film Transistors. ACS Nano, 2023, 17, 575-586. Droplets Patterning of Structurally Integrated 3D Conductive Networks-Based Flexible Strain Sensors 4.1 for Healthcare Monitoring. Nanomaterials, 2023, 13, 181. Stretchable Supercapacitor., 2023, , 597-612. 0 Bird-inspired robotics principles as a framework for developing smart aerospace materials. Journal of 2.4 Composite Materials, 2023, 57, 679-710. Smart biomaterials for skin tissue engineering and health monitoring., 2023, 211-258. 0 Triboelectric Nanogenerators for Electronic and Robotic Skins., 2023, , 1-52. Wearable strain sensors: state-of-the-art and future applications. Materials Advances, 2023, 4, 5.4 7 1444-1459. Hierarchically Structured Carbon Nanofiber-Enabled Skin-Like Strain Sensors with Full-Range Human Motion Monitoring and Autonomous Self-Healing Capability. ACS Applied Materials & amp; Interfaces, 2023, 15, 7380-7391. 8.0 Metalâ€"organic framework and MXene-based flexible supercapacitors., 2023, , 299-324. 0 Capacitive energy harvesting from 132kV high-voltage transmission lines fields in Iraq. AIP Conference 0.4 Proceedings, 2023, , . Flexible pressure sensor based on polystyrene foam with superelasticity and ultra-wide range. Smart 3.52 Materials and Structures, 2023, 32, 045006.

²⁶⁴⁸ Ionic Flexible Mechanical Sensors: Mechanisms, Structural Engineering, Applications, and Challenges. 0

#

2631

2633

2634

2635

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

#	Article	IF	CITATIONS
2649	Advances in organic transistors for artificial perception applications. , 2023, 3, 100028.		3
2650	Edible hydrogels with shrinkage tolerance in acids and stomach-friendly mechanical moduli. Applied Materials Today, 2023, 32, 101786.	4.3	0
2651	Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications. Sensors, 2023, 23, 4039.	3.8	5
2652	One-Step Patterned Contact-Resistance-Free Stretchable Strain Sensors With High Linearity and Repeatability for Body-Motion Detection. Journal of Applied Mechanics, Transactions ASME, 2023, 90, .	2.2	1
2653	Highly Adaptable Strain Capacitive Sensors with Exceptional Selectivity Using Spontaneous Micrometer-Pyramid Electrodes. ACS Applied Electronic Materials, 2023, 5, 977-984.	4.3	3
2655	Oxidized-Multiwalled Carbon Nanotubes as Non-Toxic Nanocarriers for Hydroxytyrosol Delivery in Cells. Nanomaterials, 2023, 13, 714.	4.1	4
2656	Highly Sensitive and Flexible Capacitive Pressure Sensors Based on Vertical Graphene and Micro-Pyramidal Dielectric Layer. Nanomaterials, 2023, 13, 701.	4.1	5
2657	The Effect of Pre-Stretched Substrate on the Electrical Resistance of Printed Ag Nanowires. Nanomaterials, 2023, 13, 719.	4.1	0
2658	Elastomeric polymers for conductive layers of flexible sensors: Materials, fabrication, performance, and applications. Aggregate, 2023, 4, .	9.9	5
2659	Wearable Electronics Based on Stretchable Organic Semiconductors. Small, 2023, 19, .	10.0	24
2660	A Flexible and Wearable Strain Sensor from <scp>Polypyrroleâ€Doped</scp> Elastomers with Dual Functions in Motion Monitoring and Thermotherapy ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1545-1551.	4.9	5
2661	Ultra-adhesive Poly(acrylic acid)-Based Hydrogel as a Flexible Sensor for Capturing Human-Motion Signal. ACS Applied Polymer Materials, 2023, 5, 1926-1936.	4.4	7
2662	Molecular dynamics simulation of the effect of the thermal and mechanical properties of addition liquid silicone rubber modified by carbon nanotubes with different radii. E-Polymers, 2023, 23, .	3.0	2
2663	Design and performance analysis of a rectenna system for charging a mobile phone from ambient EM waves. Heliyon, 2023, 9, e13964.	3.2	3
2664	MXene Fiber-based Wearable Textiles in Sensing and Energy Storage Applications. Fibers and Polymers, 2023, 24, 1167-1182.	2.1	4
2665	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	14.9	31
2666	Advanced Bioinspired Organic Sensors for Futureâ€Oriented Intelligent Applications. , 0, , 2200066.		2
2667	Sequentially Coated Wavy Nanowire Composite Transparent Electrode for Stretchable Solar Cells. ACS Applied Materials & Amp; Interfaces, 2023, 15, 13656-13667.	8.0	3

#	Article	IF	CITATIONS
2668	Ultrasensitive Ionic Liquid Polymer Composites with a Convex and Wrinkled Microstructure and Their Application as Wearable Pressure Sensors. ACS Applied Materials & Interfaces, 2023, 15, 13625-13636.	8.0	9
2669	Lanternâ€Inspired On‧kin Helical Interconnects for Epidermal Electronic Sensors. Advanced Functional Materials, 2023, 33, .	14.9	5
2670	Flexible and Wearable Strain/Pressure Sensors. , 2023, , 180-198.		0
2671	Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk. Nature Communications, 2023, 14, .	12.8	29
2672	A density functional theory study of van der Waals interaction in carbon nanotubes. Journal of the Chinese Chemical Society, 2023, 70, 759-769.	1.4	1
2673	Flexible Strain Sensor Enabled by Carbon Nanotubesâ€Đecorated Electrospun TPU Membrane for Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10, .	3.7	9
2674	Silver-Nanowire-Based Elastic Conductors: Preparation Processes and Substrate Adhesion. Polymers, 2023, 15, 1545.	4.5	2
2675	3D Extruded Graphene Thermoelectric Threads for Selfâ€Powered Oral Health Monitoring. Small, 2023, 19, .	10.0	8
2676	Nanoarchitectonics and Applications of Galliumâ€Based Liquid Metal Micro―and Nanoparticles. ChemNanoMat, 2023, 9, .	2.8	6
2677	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	47.7	85
2678	Pressure and gas sensing composition based on PVDF nano particulates: a review. Polymer-Plastics Technology and Materials, 2021, 60, 1719-1758.	1.3	1
2679	Dielectric elastomer artificial muscle materials advancement and soft robotic applications. SmartMat, 2023, 4, .	10.7	8
2680	Recent Advances of Capacitive Sensors: Materials, Microstructure Designs, Applications, and Opportunities. Advanced Materials Technologies, 2023, 8, .	5.8	20
2681	Broadening the Utilization of Flexible and Wearable Pressure Sensors for the Monitoring of Health and Physiological Activities. , 2023, 1, 1009-1021.		5
2682	Microwave-assisted immobilized silver nanowires on arbitrary substrates: an eco-friendly technique for next-generation transparent, flexible and robust electronics. Journal of Materials Chemistry C, 2023, 11, 6057-6070.	5.5	1
2683	Thermally Drawn Superâ€Elastic Multifunctional Fiber Sensor for Human Movement Monitoring and Joule Heating. Advanced Materials Technologies, 2023, 8, .	5.8	4
2684	Manufacturing of Highly Sensitive Piezoresistive Two-Substances Auxetic Strain Sensor Using Composite Approach. Fibers and Polymers, 2023, 24, 1789-1797.	2.1	4
2685	Nature-Driven Biocompatible Epidermal Electronic Skin for Real-Time Wireless Monitoring of Human Physiological Signals. ACS Applied Materials & Interfaces, 2023, 15, 20372-20384.	8.0	8

#	Article	IF	CITATIONS
2686	A Capacitive Pressure Sensor with Linearity and High Sensitivity over a Wide Pressure Range using Thermoplastic Microspheres. Advanced Electronic Materials, 2023, 9, .	5.1	3
2687	Versatile spider-web-like cross-linked polyimide aerogel with tunable dielectric permittivity for highly sensitive flexible sensors. Chemical Engineering Journal, 2023, 465, 143034.	12.7	10
2688	Designing Ionic Conductive Elastomers Using Hydrophobic Networks and Hydrophilic Salt Hydrates with Improved Stability in Air. Advanced Electronic Materials, 0, , .	5.1	0
2689	Large-Area Metal–Semiconductor Heterojunctions Realized via MXene-Induced Two-Dimensional Surface Polarization. ACS Nano, 2023, 17, 8324-8332.	14.6	6
2690	Soft Multimaterial Magnetic Fibers and Textiles. Advanced Materials, 2023, 35, .	21.0	12
2691	A Highâ€Resolution, Transparent, and Stretchable Polymer Conductor for Wearable Sensor Arrays. Advanced Materials Technologies, 2023, 8, .	5.8	5
2692	Choline chloride/urea etched carbon fiber to improve the elasticity of biomass-based carbon aerogel for efficient oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669, 131506.	4.7	2
2693	How Far for the Electronic Skin: From Multifunctional Material to Advanced Applications. Advanced Materials Technologies, 2023, 8, .	5.8	9
2694	Liquid dielectric layer-based microfluidic capacitive sensor for wireless pressure monitoring. Sensors and Actuators A: Physical, 2023, 357, 114393.	4.1	2
2695	Stretchable and Biocompatible Transparent Electrodes for Multimodal Biosignal Sensing from Exposed Skin. Advanced Electronic Materials, 2023, 9, .	5.1	3
2696	Recent progress in flexible micro-pressure sensors for wearable health monitoring. Nanoscale Advances, 2023, 5, 3131-3145.	4.6	12
2697	A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale, 2023, 15, 8110-8133.	5.6	2
2698	Carbon nanotube-cellulose ink for rapid solvent identification. Beilstein Journal of Nanotechnology, 0, 14, 535-543.	2.8	0
2699	Stretchable and Robust Silver Nanowire Composites on Transparent Butyl Rubber. ACS Applied Nano Materials, 2023, 6, 9351-9360.	5.0	0
2701	Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. Chemosensors, 2023, 11, 327.	3.6	1
2702	Self-assembled Growth of SnO ₂ Nanoshells on Copper Nanowires for Stable and Transparent Conductors. ACS Applied Nano Materials, 2023, 6, 10658-10667.	5.0	3
2703	Advanced polymer materialsâ€based electronic skins for tactile and nonâ€contact sensing applications. InformaÄnÃ-Materiály, 2023, 5, .	17.3	9
2704	A Sensing and Stretchable Polymerâ€Dispersed Liquid Crystal Device Based on Spiderwebâ€Inspired Silver Nanowiresâ€Micromesh Transparent Electrode. Advanced Functional Materials, 2023, 33, .	14.9	8

#	Article	IF	CITATIONS
2705	Graphene aerogel-based vibration sensor with high sensitivity and wide frequency response range. Nano Research, 2023, 16, 11342-11349.	10.4	0
2706	Al-Assisted Disease Monitoring Using Stretchable Polymer-Based Sensors. ACS Applied Materials & Interfaces, 2023, 15, 30924-30934.	8.0	3
2707	Aerosol mediated localized dissolution to enhance the electrical behavior and sensitivity of piezoresistive nanofiber-based flexible sensors. Applied Materials Today, 2023, 33, 101863.	4.3	1
2708	Low-Power-Consumption Electronic Skins Based on Carbon Nanotube/Graphene Hybrid Films for Human–Machine Interactions and Wearable Devices. ACS Applied Nano Materials, 2023, 6, 12338-12350.	5.0	2
2709	Monitoring and analysis of cardiovascular pulse waveforms using flexible capacitive and piezoresistive pressure sensors and machine learning perspective. Biosensors and Bioelectronics, 2023, 237, 115449.	10.1	12
2710	Freeze-drying assisted liquid exfoliation of BiFeO3 for pressure sensing. Frontiers of Physics, 2023, 18, .	5.0	0
2711	Bending Angle Sensor Based on Double-Layer Capacitance Suitable for Human Joint. IEEE Open Journal of Engineering in Medicine and Biology, 2023, 4, 129-140.	2.3	1
2712	Roadmap on measurement technologies for next generation structural health monitoring systems. Measurement Science and Technology, 2023, 34, 093001.	2.6	13
2713	Continuous Monitoring of Blood Pressure and Vascular Hemodynamic Properties With Miniature Extravascular Hall-Based Magnetic Sensor. JACC Basic To Translational Science, 2023, 8, 546-564.	4.1	0
2714	A critical review on intrinsic conducting polymers and their applications. Journal of Industrial and Engineering Chemistry, 2023, 125, 14-37.	5.8	4
2715	A Novel Technique To Realize a Flexible Tactile Sensor. , 2022, , .		0
2716	3D printing of polymer composites to fabricate wearable sensors: A comprehensive review. Materials Science and Engineering Reports, 2023, 154, 100734.	31.8	22
2717	The Importance of Electrode Material in Bioelectronic Electrophoretic Ion Pumps. Advanced Materials Technologies, 2023, 8, .	5.8	1
2718	Flexible, anisotropic strain sensor based on interdigital capacitance for multi-direction discrimination. Sensors and Actuators A: Physical, 2023, 359, 114459.	4.1	2
2719	Highly sensitive and stretchable strain sensor based on modified carboxylic carbon nanotubes/chitosan/polyurethane yarn. Journal of the Textile Institute, 0, , 1-14.	1.9	0
2720	Recent advances in ultrathin materials and their applications in eâ€skin. InformaÄnÃ-Materiály, 2023, 5, .	17.3	6
2721	Highly Robust and Strain-Resilient Thin Film Conductors Featuring Brittle Materials. Nano Letters, 2023, 23, 6619-6628.	9.1	3
2722	Coarse-grained modeling for predicting the piezoresistive response of CNT-elastomer nanocomposite. Frontiers in Materials, 0, 10, .	2.4	0

#	Article	IF	CITATIONS
2723	Transparent and Stretchable Piezoresistive Strain Sensors with Buckled Indium Tin Oxide Film. Advanced Electronic Materials, 2023, 9, .	5.1	2
2724	Flexible thin film thermocouples: From structure, material, fabrication to application. IScience, 2023, 26, 107303.	4.1	3
2725	Flexible pressure sensors tuned by interface structure design – Numerical and experimental study. Applied Surface Science, 2023, 638, 158021.	6.1	2
2726	Piezophotonics. Microtechnology and MEMS, 2023, , 513-528.	0.2	0
2727	Interâ€Shell Sliding in Individual Fewâ€Walled Carbon Nanotubes for Flexible Electronics. Advanced Materials, 2023, 35, .	21.0	0
2728	Fabrication of flexible and stretchable highly conductive Ag-PDMS tri-layer interconnect and its integration into Li-ion pouch cells. , 2023, , .		0
2729	Low-Profile, Large-Range Compressive Strain Sensing Using Micromanufactured CNT Micropillar Arrays. ACS Applied Materials & Interfaces, 2023, 15, 38665-38673.	8.0	2
2730	Flexible pressure and temperature sensors towards e-skin: material, mechanism, structure and fabrication. , 0, 3, .		1
2731	Enhanced the thermal/chemical stability of Cu NWs with solution-grown Al2O3 nanoshell for application in ultra-flexible temperature detection sensors. Chemical Engineering Journal, 2023, 473, 145156.	12.7	3
2732	Flexible pressure sensor enhanced by polydimethylsiloxane and microstructured conductive networks with positive resistance-pressure response and wide working range. Composites Part B: Engineering, 2023, 264, 110931.	12.0	0
2733	Soft conductive nanocomposites for recording biosignals on skin. , 0, 3, .		4
2734	Flexible Single-Mode Polymer Optical Fiber-Based Modal Interferometer for High-Sensitivity Bending Measurement. IEEE Journal of Selected Topics in Quantum Electronics, 2024, 30, 1-7.	2.9	0
2735	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	10.3	7
2736	The parylene C as a flexible substrate and passivation layer: A promising candidate for a piezoelectric, piezoresistive, and capacitive pressure sensor in low-pressure range. IEEE Sensors Journal, 2023, , 1-1.	4.7	1
2737	Three $\hat{a}{\in}\mathbf{D}$ imensional Touch Device with Two $\hat{a}{\in}\mathbf{T}$ erminals. Advanced Materials, 0, , .	21.0	0
2738	Triboelectric Nanogenerators for Electronic and Robotic Skins. , 2023, , 1877-1928.		0
2739	Recent Progress in Advanced Tactile Sensing Technologies for Soft Grippers. Advanced Functional Materials, 2023, 33, .	14.9	23
2740	Flexible and Stretchable Electrochemical Sensors for Biological Monitoring. Advanced Materials, 0, , .	21.0	5

			0
#	ARTICLE	IF	CITATIONS
2741	Wearable sensor platform in real time monitoring and early warning of metabolic disorders in human health. Analyst, The, 0, , .	3.5	0
2742	Manipulator Control System Based on Flexible Sensor Technology. Micromachines, 2023, 14, 1697.	2.9	Ο
2743	Design and Fabrication of an Ag Ultrathin Layer-Based Transparent Band Tunable Conductor and Its Thermal Stability. Nanomaterials, 2023, 13, 2108.	4.1	0
	Novel Linear Piezoâ€resistive Auxetic Metaâ€Sensors with Low Young's Modulus by a Core–Shell		
2744	Conceptual Design and Electromechanical Modelling. Macromolecular Materials and Engineering, 2023, 308, .	3.6	2
2745	Transparent Electronics for Wearable Electronics Application. Chemical Reviews, 2023, 123, 9982-10078.	47.7	20
	Handwriting Character Recognition Based on Conductor/Insulatorâ€Identifiable Fâ€Tattoo Provimity		
2746	Sensors for Blinds. Advanced Functional Materials, 2024, 34, .	14.9	0
	Flectronic exoneuron based on liquid metal for the quantitative sensing of the augmented		
2747	somatosensory system. Microsystems and Nanoengineering, 2023, 9, .	7.0	0
0540	Chemiresistive sensing with functionalized carbon nanotubes. Nature Reviews Methods Primers, 2023,	01.0	_
2748	3, .	21.2	5
9740	Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC's) and	E 9	14
2749	Materials Research and Technology, 2023, 26, 5921-5974.	5.8	14
2750	Wearable Capacitive Tactile Sensor Based on Porous Dielectric Composite of Polyurethane and Silver	45	1
2750	Nanowire. Polymers, 2023, 15, 3816.	ч. ,	1
2751	Commercially available pressure sensors for sport and health applications: A comparative review.	1.1	0
2101	Foot, 2023, 56, 102046.		
2752	Laser-Induced MXene-Functionalized Graphene Nanoarchitectonics-Based Microsupercapacitor for	14.6	4
	Health Monitoring Application. ACS Nano, 2023, 17, 20537-20550.		
2753	Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions,	8.6	0
	Fabrication Methods, and Design Strategies. Small Methods, 2024, 8, .		
2754	Flexo-photocatalysis in centrosymmetric semiconductors. Nano Research, 2024, 17, 1173-1181.	10.4	2
2755	Progress and prospects in flexible tactile sensors. Frontiers in Bioengineering and Biotechnology, 0,	4.1	2
	11,.		
2756	1D/2D heterostructure induced built-in electric field accelerate the reaction kinetics of MnO2/MXene paper-like film for advanced flexible zinc-ion batteries. Electrochimica Acta, 2023, 469, 143261.	5.2	0
2757	Recent advances in carbon nanotube patterning technologies for device applications. , 0, 2, .		0
2758	Phase separation-regulated fabrication of MXene/PVA cryogel sensor with effective electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2023, 175, 107793.	7.6	4

#	Article	IF	CITATIONS
2759	Highly Stretchable Stress–Strain Sensor from Elastomer Nanocomposites with Movable Cross-links and Ketjenblack. ACS Polymers Au, 2023, 3, 394-405.	4.1	3
2760	Hierarchically Plied Mechano-Electrochemical Energy Harvesting Using a Scalable Kinematic Sensing Textile Woven from a Graphene-Coated Commercial Cotton Yarn. Nano Letters, 2023, 23, 7623-7632.	9.1	3
2761	Flexible, stretchable, wearable electronic skins based on aligned carbon nanotube fiber arrays for motion detection and human–machine interaction. Sensors and Actuators A: Physical, 2023, 362, 114634.	4.1	0
2762	Multi-scale closure piezoresistive sensor with high sensitivity derived from polyurethane foam and polypyrrole nanofibers. Chemical Engineering Journal, 2023, 474, 145926.	12.7	2
2763	Large Curvature Sensors Based on Flexoelectric Effect in PEDOT:PSS Polymer Films. , 2023, 5, 2929-2941.		1
2764	A Laminated Gravityâ€Ðriven Liquid Metalâ€Ðoped Hydrogel of Unparalleled Toughness and Conductivity. Advanced Functional Materials, 0, , .	14.9	4
2765	Knotted fiber-based strain sensors with tunable sensitivity and a sensing region for monitoring wearable physiological signals and human motion. Journal of Materials Chemistry C, 2023, 11, 14796-14804.	5.5	1
2766	Preparation and application of fabric-based interlocking microstructured flexible piezoresistive sensors. Sensors and Actuators A: Physical, 2023, 363, 114740.	4.1	0
2767	Omnidirectional Configuration of Stretchable Strain Sensor Enabled by the Strain Engineering with Chiral Auxetic Metamaterial. ACS Nano, 2023, 17, 22035-22045.	14.6	2
2768	Water Level Monitoring Sensor Based on Iontronic Piezo-Capacitance Effect. Environmental Science and Engineering, 2023, , 279-291.	0.2	0
2769	Recent advances in smart wearable sensors as electronic skin. Journal of Materials Chemistry B, 2023, 11, 10332-10354.	5.8	0
2770	Knittle Pressure Sensor Based on Graphene/Polyvinylidene Fluoride Nanocomposite Coated on Polyester Fabric. Materials, 2023, 16, 7087.	2.9	0
2771	Printing conformal and flexible copper networks for multimodal pressure and flow sensing. Nanoscale, 2023, 15, 18660-18666.	5.6	0
2772	Intrinsically stretchable porous liquid–metal conductor for multifunctional electronics applications. Journal of Materials Chemistry C, 2023, 11, 16085-16093.	5.5	0
2773	Fabrication of wearable sensors for medical applications. , 2023, , .		0
2774	Silicone/ broadleaf wood fiber /MWCNTS composite stretchable strain sensor for smart object identification. Sensors and Actuators A: Physical, 2023, 364, 114846.	4.1	1
2775	Flexible Hybrid Wearable Sensors for Pressure and Thermal Sensing Based on a Double-Network Hydrogel. ACS Applied Bio Materials, 2023, 6, 5114-5123.	4.6	0
2776	The Emergence of Al-Based Wearable Sensors for Digital Health Technology: A Review. Sensors, 2023, 23, 9498.	3.8	5

# 2777	ARTICLE Structure and function design of carbon nanotube-based flexible strain sensors and their application. Measurement: Journal of the International Measurement Confederation, 2024, 225, 113992.	IF 5.0	CITATIONS 0
2778	Crumple-recoverable electronics based on plastic to elastic deformation transitions. Nature Electronics, 0, , .	26.0	1
2779	Artificial Neuron Devices. Chemical Reviews, 2023, 123, 13796-13865.	47.7	7
2780	Soft Biomimetic Fiber-Optic Tactile Sensors Capable of Discriminating Temperature and Pressure. ACS Applied Materials & amp; Interfaces, 2023, 15, 53264-53272.	8.0	3
2781	Stretchable and Flexible Metal–Semiconductor–Metal UV Photodetector Based on Silver-Doped ZnO Nanostructures Using a Drop-Casting Method. ACS Applied Nano Materials, 2023, 6, 22036-22048.	5.0	0
2782	Graphene-Based Transparent Flexible Strain Gauges with Tunable Sensitivity and Strain Range. ACS Applied Nano Materials, 2023, 6, 21763-21774.	5.0	1
2783	Ultrastretchable Electrically Self-Healing Conductors Based on Silver Nanowire/Liquid Metal Microcapsule Nanocomposites. Nano Letters, 2023, 23, 11174-11183.	9.1	1
2785	Chemical Resistant Yarn with Hierarchical Core–Shell Structure for Safety Monitoring and Tunable Thermal Management in High-Risk Environments. Engineering, 2024, 32, 217-225.	6.7	0
2786	Recent developments in stretchable and flexible tactile sensors towards piezoresistive systems: A review. Polymers for Advanced Technologies, 2024, 35, .	3.2	0
2787	Stretchable Electronics with Strainâ€Resistive Performance. Small, 0, , .	10.0	0
2788	Flexible liquid metal-based microfluidic strain sensors with fractal-designed microchannels for monitoring human motion and physiological signals. Biosensors and Bioelectronics, 2024, 246, 115905.	10.1	0
2789	3D Highly Stretchable Liquid Metal/Elastomer Composites with Strainâ€Enhanced Conductivity. Advanced Functional Materials, 0, , .	14.9	1
2790	High Stable Mechanoluminescence from TbBO ₃ GCs for Stress Safety Monitoring. Laser and Photonics Reviews, 0, , .	8.7	1
2791	Multi-mode Mechanoluminescence of Fluoride Glass Ceramics from Rigid to Flexible Medium Toward Multi-Scene Mechanical Sensor. Journal of Materials Chemistry A, 0, , .	10.3	0
2792	Wearable, epidermal devices for assessment of swallowing function. Npj Flexible Electronics, 2023, 7, .	10.7	0
2793	Flexible Strain Sensor Based on Copper/Graphene Composite Films. ACS Applied Nano Materials, 0, , .	5.0	0
2794	Recent Trends of Functional Composites and Structures for Electromechanical Sensors: A Review. Advanced Intelligent Systems, 0, , .	6.1	0
2795	Superstretchable Liquid-Metal Electrodes for Dielectric Elastomer Transducers and Flexible Circuits. ACS Nano, 2024, 18, 1226-1236.	14.6	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2796	Instability-Driven 3D bioprinting for engineering composite bio-inks. Engineered Regeneration, 20	23,,.	6.0	0
2797	Tailoring the temperature coefficient of resistance of flame-formed carbon nanoparticle thin films electric field-assisted deposition. Fuel Processing Technology, 2024, 253, 108027.	by	7.2	0
2798	Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chemical Society Reviews, 2024, 53, 1316-1353.		38.1	3
2799	A Review on Magnetic Smart Skin as Human–Machine Interfaces. Advanced Electronic Materials	5, 0, , .	5.1	0
2800	3D Printable Hydrogel Bioelectronic Interfaces for Healthcare Monitoring and Disease Diagnosis: Materials, Design Strategies, and Applications. Advanced Materials Technologies, 2024, 9, .		5.8	0
2801	An anti-swelling chitosan-based hydrogel driven by balance of hydrophilic segment and hydrophol segment strategy for underwater detection of human motion. European Polymer Journal, 2024, 20 112715.	bic 05,	5.4	0
2802	Recent Advances in Smart Tactile Sensory Systems with Brainâ€Inspired Neural Networks. Advanc Intelligent Systems, 2024, 6, .	ed	6.1	0
2803	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024 124, 455-553.	5	47.7	2
2804	Selfâ€Mixed Biphasic Liquid Metal Composite with Ultraâ€High Stretchability and Strainâ€Insensi Neuromorphic Circuits. Advanced Materials, 2024, 36, .	tivity for	21.0	0
2805	A flexible pressure sensor based on embedded cracks and stiffness-regulating layer with high detection limits and wide test ranges. Journal of Materials Science: Materials in Electronics, 2024,	35,.	2.2	0
2806	Tailoring hole-selective contacts via self-assembled monolayers for advancing indoor organic photovoltaic and capacitor devices. Chemical Engineering Journal, 2024, 481, 148481.		12.7	0
2807	Welded Carbon Nanotube–Graphene Hybrids with Tunable Strain Sensing Behavior for Wide-Ra Bio-Signal Monitoring. Polymers, 2024, 16, 238.	nge	4.5	0
2808	Simultaneous Visualization of Microscopic Conductivity and Deformation in Conductive Elastome ACS Nano, 2024, 18, 3438-3446.	rs.	14.6	0
2809	Highly Stretchable and Self-Adhesive Wearable Biosensor Based on Nanozyme-Catalyzed Conduct Hydrogels. ACS Applied Polymer Materials, 2024, 6, 2188-2200.	ive	4.4	1
2810	Advanced Technologies and Applications of Robotic Soft Grippers. Advanced Materials Technolog 0, , .	ies,	5.8	0
2811	Seamless Integration of Conducting Hydrogels in Daily Life: From Preparation to Wearable Application. Advanced Science, 2024, 11, .		11.2	1
2812	Polymer Nanosheets with Printed Electronics for Wearable and Implantable Devices. , 2024, , 221	-237.		0
2813	Cutting-edge shape memory nanocomposite sponges. , 2024, , 133-156.			0

#	Article	IF	CITATIONS
2814	Multi-node wearable optical sensor based on microfiber Bragg gratings. Optics Express, 2024, 32, 8496.	3.4	0
2815	Opportunities for Nanomaterials in Stretchable and Freeâ€Form Displays. Small Science, 2024, 4, .	9.9	0
2816	Soft Sensors and Actuators for Wearable Human–Machine Interfaces. Chemical Reviews, 2024, 124, 1464-1534.	47.7	0
2817	3D printed ultrahigh aspect ratio lead zirconate titanate (PZT) nanostructures for nano-Newton force sensing. Journal of the European Ceramic Society, 2024, 44, 4646-4656.	5.7	0
2818	Preparation and Properties of Highly Stretchable, Adhesive, and Sensitive Ion-Conducting Hydrogels. Integrated Ferroelectrics, 2024, 240, 99-112.	0.7	0
2819	Graphene-Impregnated Paper-Based Electronic Skins for Robotic Intelligence and Wireless Health Monitoring. ACS Applied Electronic Materials, 2024, 6, 998-1006.	4.3	0
2820	Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nature Communications, 2024, 15, .	12.8	0
2821	A multi-dimensional tactile perception system based on triboelectric sensors: Towards intelligent sorting without seeing. Nano Energy, 2024, 123, 109398.	16.0	0
2822	A highly stable and sensitive sensor with linear response enabled by embedded droplet printing and bio-inspired design. Chemical Engineering Journal, 2024, 485, 149729.	12.7	0
2823	Stretchable liquid metal based biomedical devices. Npj Flexible Electronics, 2024, 8, .	10.7	0
2824	Ultraconformable Capacitive Strain Sensor Utilizing Network Structure of Single-Walled Carbon Nanotubes for Wireless Body Sensing. ACS Applied Materials & Interfaces, 2024, 16, 10427-10438.	8.0	0
2825	A self-powered wireless sweat-analysis patch for real-time monitoring physiological status. Nano Energy, 2024, 123, 109411.	16.0	Ο
2826	Recent Advances in Multi‧cale Piezoresistive Interfaces for MXeneâ€Based Flexible Sensors. Advanced Materials Technologies, 2024, 9, .	5.8	0
2827	Current On-Skin Flexible Sensors, Materials, Manufacturing Approaches, and Study Trends for Health Monitoring: A Review. ACS Sensors, 2024, 9, 1104-1133.	7.8	Ο
2828	Liquid Metal–Polymer Conductor-Based Conformal Cyborg Devices. Chemical Reviews, 2024, 124, 2081-2137.	47.7	0
2829	Temperature/Pressure Dual-Mode Flexible Sensors: PP Nonwoven-Based and Low-Temperature Polymerized with Pyrrole. Fibers and Polymers, 2024, 25, 901-912.	2.1	Ο
2830	In silico optimization of aligned fiber electrodes for dielectric elastomer actuators. Scientific Reports, 2024, 14, .	3.3	0
2831	A wireless fluorescent flexible force sensor based on aggregation-induced emission doped liquid crystal elastomers. Soft Matter, 2024, 20, 2562-2567.	2.7	0

#	Article	IF	CITATIONS
2832	Surface Embedded Metal Nanowire–Liquid Metal–Elastomer Hybrid Composites for Stretchable Electronics. ACS Applied Materials & Interfaces, 2024, 16, 14183-14197.	8.0	0
2833	Graphene‑Assisted Assembly of Electrically and Magnetically Conductive Ceramic Nanofibrous Aerogels Enable Multifunctionality. Advanced Functional Materials, 0, , .	14.9	0
2834	Highly Stretchable, Self-Healing, and Sensitive E-Skins at â^'78 °C for Polar Exploration. Journal of the American Chemical Society, 2024, 146, 10699-10707.	13.7	0
2835	E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chemical Reviews, 2024, 124, 3220-3283.	47.7	0
2836	基于æŸ"æ€§è¶ææ–™çš"é«~çµæ•åº¦æ‹‰åŠ›ä¼æ"Ÿå™". Guangxue Xuebao/Acta Optica Sinica, 2024, 44, 02	228001.	0
2837	Ultrafast Metalâ€Free Microsupercapacitor Arrays Directly Store Instantaneous Highâ€Voltage Electricity from Mechanical Energy Harvesters. Advanced Science, 0, , .	11.2	0
2838	Enhanced sensing performance of superelastic thermally drawn liquid metal fibers through helical architecture while eliminating directional signal errors. Journal of Materials Science and Technology, 2024, 195, 136-145.	10.7	0
2839	Fingerprint-inspired biomimetic tactile sensors for the surface texture recognition. Sensors and	4.1	0