High-Performance Electrocatalysts for Oxygen Reducti and Cobalt

Science 332, 443-447 DOI: 10.1126/science.1200832

Citation Report

#	Article	IF	CITATIONS
12	Electrochemical performance of annealed cobalt–benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2011, 13, 21600.	1.3	176
13	Titanium nitride catalyst cathode in a Li–air fuel cell with an acidic aqueous solution. Chemical Communications, 2011, 47, 10701.	2.2	70
14	Unveiling N-Protonation and Anion-Binding Effects on Fe/N/C Catalysts for O ₂ Reduction in Proton-Exchange-Membrane Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 16087-16097.	1.5	300
15	Effect of an Ammonia Treatment on Structure, Composition, and Oxygen Reduction Reaction Activity of Fe–N–C Catalysts. Journal of Physical Chemistry C, 2011, 115, 23417-23427.	1.5	137
16	Highly Durable Graphene Nanosheet Supported Iron Catalyst for Oxygen Reduction Reaction in PEM Fuel Cells. Journal of the Electrochemical Society, 2011, 159, B86-B89.	1.3	52
17	Nitrogen-doped graphene nanosheet-supported non-precious iron nitride nanoparticles as an efficient electrocatalyst for oxygen reduction. RSC Advances, 2011, 1, 1349.	1.7	91
18	Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano, 2011, 5, 6202-6209.	7.3	672
19	Three-Dimensional Nitrogen-Doped Carbon Nanotubes/Graphene Structure Used as a Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 24592-24597.	1.5	167
20	Recent progress in synergistic catalysis over heterometallic nanoparticles. Journal of Materials Chemistry, 2011, 21, 13705.	6.7	395
21	Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 20002-20010.	1.5	197
22	Fe–N-modified multi-walled carbon nanotubes for oxygen reduction reaction in acid. Physical Chemistry Chemical Physics, 2011, 13, 21437.	1.3	72
23	From 1D to 3D Single-Crystal-to-Single-Crystal Structural Transformations Based on Linear Polyanion [Mn4(H2O)18WZnMn2(H2O)2(ZnW9O34)2]4–. Inorganic Chemistry, 2011, 50, 12387-12389.	1.9	28
24	Synthesis–structure–performance correlation for polyaniline–Me–C non-precious metal cathode catalysts for oxygen reduction in fuel cells. Journal of Materials Chemistry, 2011, 21, 11392.	6.7	545
25	In situ ion exchange preparation of Pt/carbon nanotubes electrode: Effect of two-step oxidation of carbon nanotubes. Journal of Power Sources, 2011, 196, 9955-9960.	4.0	11
26	Catalytic Activity for Oxygen Reduction Reaction on Tantalum Oxide-Based Compounds (1) Effect of Preparation Conditions of Thin Film Model Catalysts Using Reactive Sputtering Method on Oxygen Reduction Activity. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 545-551.	0.2	2
27	One-pot hybrid physical–chemical vapor deposition for formation of carbonaceous thin film with catalytic activity for oxygen reduction. Electrochemistry Communications, 2011, 13, 1451-1454.	2.3	13
28	Study of spillover effects with the rotating disk electrode. Electrochimica Acta, 2011, 58, 691-698.	2.6	13
29	A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 2011, 4, 3167.	15.6	1,651

#	Article	IF	CITATIONS
30	Recent advances in catalysts for direct methanol fuel cells. Energy and Environmental Science, 2011, 4, 2736.	15.6	868
31	Heat-Treated Nonprecious Catalyst Using Fe and Nitrogen-Rich 2,3,7,8-Tetra(pyridin-2-yl)pyrazino[2,3- <i>g</i>]quinoxaline Coordinated Complex for Oxygen Reduction Reaction in PEM Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 18856-18862.	1.5	44
32	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	6.6	958
33	Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nature Communications, 2011, 2, 416.	5.8	1,262
34	Metal Nitride/Graphene Nanohybrids: General Synthesis and Multifunctional Titanium Nitride/Graphene Electrocatalyst. Advanced Materials, 2011, 23, 5445-5450.	11.1	171
36	Nonpreciousâ€Metal Catalysts for Low ost Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 11570-11572.	7.2	184
37	Synthesis of nitrogen-doped onion-like carbon and its use in carbon-based CoFe binary non-precious-metal catalysts for oxygen-reduction. Carbon, 2011, 49, 3972-3982.	5.4	225
38	One-step route to a hybrid TiO2/TixW1â^'xN nanocomposite byin situselective carbothermal nitridation. Science and Technology of Advanced Materials, 2012, 13, 035001.	2.8	8
39	Control of graphene nanoribbon vacancies by Fe and N dopants: Implications for catalysis. Applied Physics Letters, 2012, 101, 064102.	1.5	37
40	Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 2012, 85, .	1.1	81
41	Nitrogen doping of graphene nanoflakes by thermal plasma as catalyst for oxygen reduction in Proton Exchange Membrane fuel cells. , 2012, , .		3
42	A Possible Interpretation for the High Catalytic Activity of Heat-Treated Non-Precious Metal Nx/C Catalysts for O2 Reduction in Terms of Their Formal Potentials. Electrochemical and Solid-State Letters, 2012, 15, B90.	2.2	52
44	Nitrogen-Doped Graphene-Rich Catalysts Derived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O ₂ Battery Cathodes. ACS Nano, 2012, 6, 9764-9776.	7.3	486
45	Double-pillared cobalt Pacman complexes: synthesis, structures and oxygen reduction catalysis. Dalton Transactions, 2012, 41, 65-72.	1.6	46
46	Oxygen Electroreduction on PtCo ₃ , PtCo and Pt ₃ Co Alloy Nanoparticles for Alkaline and Acidic PEM Fuel Cells. Journal of the Electrochemical Society, 2012, 159, B394-B405.	1.3	148
47	Graphyne As a Promising Metal-Free Electrocatalyst for Oxygen Reduction Reactions in Acidic Fuel Cells: A DFT Study. Journal of Physical Chemistry C, 2012, 116, 20472-20479.	1.5	105
48	Ordered Mesoporous Carbon Nitrides with Graphitic Frameworks as Metal-Free, Highly Durable, Methanol-Tolerant Oxygen Reduction Catalysts in an Acidic Medium. Langmuir, 2012, 28, 991-996.	1.6	138
49	Determination of Iron Active Sites in Pyrolyzed Iron-Based Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 2761-2768.	5.5	133

#	Article	IF	CITATIONS
50	Co/CoO Nanoparticles Assembled on Graphene for Electrochemical Reduction of Oxygen. Angewandte Chemie - International Edition, 2012, 51, 11770-11773.	7.2	391
53	Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?. Angewandte Chemie - International Edition, 2012, 51, 12613-12615.	7.2	352
54	DNAâ€Ðirected Growth of Pd Nanocrystals on Carbon Nanotubes towards Efficient Oxygen Reduction Reactions. Chemistry - A European Journal, 2012, 18, 15693-15698.	1.7	51
55	Controlled Preparation and Reactive Silverâ€lon Sorption of Electrically Conductive Poly(<i>N</i> â€butylaniline)–Lignosulfonate Composite Nanospheres. Chemistry - A European Journal, 2012, 18, 16571-16579.	1.7	17
56	1D Coaxial Platinum/Titanium Nitride Nanotube Arrays with Enhanced Electrocatalytic Activity for the Oxygen Reduction Reaction: Towards Li–Air Batteries. ChemSusChem, 2012, 5, 1712-1715.	3.6	40
57	High Electrocatalytic Performance of NH3-Activated Iron-Adsorbed Polyaniline for Oxygen Reduction Reactions. Catalysis Letters, 2012, 142, 1244-1250.	1.4	14
58	Wet chemical synthesis of nitrogen-doped graphene towards oxygen reduction electrocatalysts without high-temperature pyrolysis. Journal of Materials Chemistry, 2012, 22, 6575.	6.7	274
59	Supported sub-5nm Pt–Fe intermetallic compounds for electrocatalytic application. Journal of Materials Chemistry, 2012, 22, 6047.	6.7	70
60	Phosphorus–nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon. Journal of Materials Chemistry, 2012, 22, 12107.	6.7	210
61	The combination of a polymer–carbon composite electrode with a high-absorptivity ruthenium dye achieves an efficient dye-sensitized solar cell based on a thiolate–disulfide redox couple. Physical Chemistry Chemical Physics, 2012, 14, 7131.	1.3	35
62	Oxygen-enriched carbon material for catalyzing oxygen reduction towards hybrid electrolyte Li-air battery. Journal of Materials Chemistry, 2012, 22, 21051.	6.7	60
63	Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy and Environmental Science, 2012, 5, 5305-5314.	15.6	115
64	Oxygen Reduction Activity of Pyrolyzed Polyanilines Studied by XPS and ¹⁵ N Solid-State NMR with Principal Component Analysis. Journal of the Electrochemical Society, 2012, 159, F309-F315.	1.3	18
65	Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano, 2012, 6, 7084-7091.	7.3	812
66	First Principles Tafel Kinetics for Resolving Key Parameters in Optimizing Oxygen Electrocatalytic Reduction Catalyst. Journal of Physical Chemistry C, 2012, 116, 12696-12705.	1.5	81
67	DFT Study of Polyaniline and Metal Composites as Nonprecious Metal Catalysts for Oxygen Reduction in Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 22737-22742.	1.5	39
68	PtCu ₃ , PtCu and Pt ₃ Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media. Journal of the Electrochemical Society, 2012, 159, B444-B454.	1.3	215
69	Controllable Synthesis of Highly Conductive Polyaniline Coated Silica Nanoparticles Using Self-Stabilized Dispersion Polymerization. ACS Applied Materials & Interfaces, 2012, 4, 4603-4609.	4.0	44

#	Article	IF	CITATIONS
70	Multitechnique Characterization of a Polyaniline–Iron–Carbon Oxygen Reduction Catalyst. Journal of Physical Chemistry C, 2012, 116, 16001-16013.	1.5	378
71	Fe/N/C Composite in Li–O ₂ Battery: Studies of Catalytic Structure and Activity toward Oxygen Evolution Reaction. Journal of the American Chemical Society, 2012, 134, 16654-16661.	6.6	258
72	Using pyridine as nitrogen-rich precursor to synthesize Co-N-S/C non-noble metal electrocatalysts for oxygen reduction reaction. Applied Catalysis B: Environmental, 2012, 125, 197-205.	10.8	50
73	A comparative study of pyrolyzed and doped cobalt-polypyrrole eletrocatalysts for oxygen reduction reaction. Applied Surface Science, 2012, 258, 4048-4053.	3.1	25
74	Oxygen reduction on Pd nanoparticle/multi-walled carbon nanotube composites. Journal of Electroanalytical Chemistry, 2012, 666, 67-75.	1.9	47
75	Nanostructured carbon for energy storage and conversion. Nano Energy, 2012, 1, 195-220.	8.2	895
76	A novel non-precious metal catalyst synthesized via pyrolysis of polyaniline-coated tungsten carbide particles for oxygen reduction reaction. Journal of Power Sources, 2012, 219, 249-252.	4.0	15
77	Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media. Journal of Power Sources, 2012, 220, 306-316.	4.0	105
78	A comparative DFT study of the catalytic activity of MnO2 (211) and (2-2-1) surfaces for an oxygen reduction reaction. Chemical Physics Letters, 2012, 539-540, 89-93.	1.2	38
79	Highly active and durable templated non-PGM cathode catalysts derived from iron and aminoantipyrine. Electrochemistry Communications, 2012, 22, 53-56.	2.3	94
80	Improved electrocatalytic effect of carbon nanomaterials by covalently anchoring with CoTAPP via diazonium salt reactions. Electrochemistry Communications, 2012, 22, 141-144.	2.3	43
81	Electrosynthesis of Iron, Cobalt, and Zinc Microcrystals and Magnetic Enhancement of the Oxygen Reduction Reaction. Chemistry of Materials, 2012, 24, 3878-3885.	3.2	57
82	Metal organic frameworks for electrochemical applications. Energy and Environmental Science, 2012, 5, 9269.	15.6	767
83	A Nitrogenâ€Doped Polyaniline Carbon with High Electrocatalytic Activity and Stability for the Oxygen Reduction Reaction in Fuel Cells. ChemSusChem, 2012, 5, 1698-1702.	3.6	40
84	Nanostructured Metalâ€Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small, 2012, 8, 3550-3566.	5.2	559
86	Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Physical Chemistry Chemical Physics, 2012, 14, 11673.	1.3	622
87	Instantaneous one-pot synthesis of Fe–N-modified graphene as an efficient electrocatalyst for the oxygen reduction reaction in acidic solutions. Chemical Communications, 2012, 48, 10213.	2.2	106
89	Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Nanoscale, 2012, 4, 417-420.	2.8	103

CITATION REPORT ARTICLE IF CITATIONS Fabrication of poly(N-ethylaniline)/lignosulfonate composites and their carbon microspheres. 3.6 13 International Journal of Biological Macromolecules, 2012, 51, 946-952. Preparation of non-precious metal catalysts for PEMFC cathode from pyrolyzed vitamin B12. 3.8 International Journal of Hydrogen Energy, 2012, 37, 13755-13762. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs. International Journal of Hydrogen 3.8 41 Energy, 2012, 37, 17892-17898. Templated non-PGM cathode catalysts derived from iron and poly(ethyleneimine) precursors. Applied Catalysis B: Environmental, 2012, 127, 300-306. Study on the oxygen adsorption property of nitrogen-containing metal-free carbon-based cathode 2.6 17 catalysts for oxygen reduction reaction. Electrochimica Acta, 2012, 82, 291-295. Templated bi-metallic non-PGM catalysts for oxygen reduction. Electrochimica Acta, 2012, 80, 213-218. 2.6 N-doped graphene/carbon composite as non-precious metal electrocatalyst for oxygen reduction 2.6 97 reaction. Electrochimica Acta, 2012, 81, 313-320. Carbon catalyst codoped with boron and nitrogen for oxygen reduction reaction in acid media. 2.6 Electrochimica Acta, 2012, 85, 399-410. The road from animal electricity to green energy: combining experiment and theory in 15.6 224 electrocatalysis. Energy and Environmental Science, 2012, 5, 9246. Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction 1.3 reaction in alkaline media. Physical Chemistry Chemical Physics, 2012, 14, 2557. Metalâ&"air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chemical Society 100 18.7 2,322 Reviews, 2012, 41, 2172. Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen 640 Reduction Reaction. ACS Nano, 2012, 6, 9541-9550. Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced 102 7.3 260 Electrochemical and Photocatalytic Activities. ACS Nano, 2012, 6, 712-719. Enhancement of the Catalytic Activity of Fe Phthalocyanine for the Reduction of O₂ Anchored to Au(111) via Conjugated Self-Assembled Monolayers of Aromatic Thiols As Compared to Cu Phthalocyanine. Journal of Physical Chemistry C, 2012, 116, 15329-15341. 1.5 Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen 104 7.3 578 Reduction Reaction. ACS Nano, 2012, 6, 8288-8297. Integrated Synthesis of Poly(<i>o</i>â€phenylenediamine)â€Derived Carbon Materials for High 11.1 Performance Supercapacitors. Advanced Materials, 2012, 24, 6524-6529. A direct borohydride fuel cell with a polymer fiber membrane and non-noble metal catalysts. 106 1.6 49 Scientific Reports, 2012, 2, 567.

Reduction Reaction by Porphyrin-Based Catalysts for Fuel Cells. Electrocatalysis, 2012, 3, 238-251. 1.5

#

90

92

93

94

96

98

#	Article	IF	CITATIONS
109	OHâ^'-Binding Effects on Metallophthalocyanine Catalysts for O2 Reduction Reaction in Anion Exchange Membrane Fuel Cells. Electrocatalysis, 2012, 3, 252-264.	1.5	31
110	Synthesis and Characterization of Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction. Electrocatalysis, 2012, 3, 298-303.	1.5	22
111	Self-Supporting Oxygen Reduction Electrocatalysts Made from a Nitrogen-Rich Network Polymer. Journal of the American Chemical Society, 2012, 134, 19528-19531.	6.6	370
112	The Role of Nanotechnology in Automotive Industries. , 0, , .		17
113	Activity, Selectivity, and Anion-Exchange Membrane Fuel Cell Performance of Virtually Metal-Free Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2012, 116, 4340-4346.	1.5	106
114	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	5.5	728
115	Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy and Environmental Science, 2012, 5, 6744.	15.6	991
116	Facile Synthesis and Evaluation of Nanofibrous Iron–Carbon Based Non-Precious Oxygen Reduction Reaction Catalysts for Li–O ₂ Battery Applications. Journal of Physical Chemistry C, 2012, 116, 9427-9432.	1.5	67
117	Interplay between nitrogen dopants and native point defects in graphene. Physical Review B, 2012, 85, .	1.1	133
118	Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chemical Science, 2012, 3, 3200.	3.7	215
119	3D Nitrogen-Doped Graphene Aerogel-Supported Fe ₃ O ₄ Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2012, 134, 9082-9085.	6.6	1,967
120	An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nature Nanotechnology, 2012, 7, 394-400.	15.6	1,533
121	Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 2012, 486, 43-51.	13.7	4,828
122	Pyrolyzed Cobalt Corrole as a Potential Nonâ€Precious Catalyst for Fuel Cells. Advanced Functional Materials, 2012, 22, 3500-3508.	7.8	97
123	Facile Synthesis of Manganeseâ€Oxideâ€Containing Mesoporous Nitrogenâ€Doped Carbon for Efficient Oxygen Reduction. Advanced Functional Materials, 2012, 22, 4584-4591.	7.8	306
124	Recent Progress in Nonâ€Precious Catalysts for Metalâ€Air Batteries. Advanced Energy Materials, 2012, 2, 816-829.	10.2	652
126	Edgeâ€Planeâ€Rich Nitrogenâ€Doped Carbon Nanoneedles and Efficient Metalâ€Free Electrocatalysts. Angewandte Chemie - International Edition, 2012, 51, 7171-7175.	7.2	83
127	Mesoporous Nitrogen Doped Carbon Supported Platinum PEM Fuel Cell Electrocatalyst Made From Ionic Liquids. ChemCatChem, 2012, 4, 479-483.	1.8	56

#	Article	IF	CITATIONS
128	Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline. Chemical Papers, 2012, 66, .	1.0	127
129	Preparation of nitrogen-doped carbon nanotube arrays and their catalysis towards cathodic oxygen reduction in acidic and alkaline media. Carbon, 2012, 50, 2620-2627.	5.4	167
130	Non-platinum cathode catalysts for alkaline membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 4406-4412.	3.8	186
131	N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me=Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions. Applied Catalysis B: Environmental, 2012, 119-120, 123-131.	10.8	71
132	Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2012, 379, 89-93.	5.0	84
133	A powerful approach to fabricate nitrogen-doped graphene sheets with high specific surface area. Electrochemistry Communications, 2012, 14, 39-42.	2.3	93
134	Heat-treated hemin supported on graphene nanoplatelets for the oxygen reduction reaction. Electrochemistry Communications, 2012, 19, 73-76.	2.3	41
135	Enhancement of oxygen reduction at Fe tetrapyridyl porphyrin by pyridyl-N coordination to transition metal ions. Electrochimica Acta, 2012, 63, 16-21.	2.6	20
136	An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochimica Acta, 2012, 72, 120-128.	2.6	63
137	Increasing the electrochemically available active sites for heat-treated hemin catalysts supported on carbon black. Electrochimica Acta, 2012, 75, 185-190.	2.6	24
138	Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 2012, 77, 324-329.	2.6	26
139	Status of advanced light-duty transportation technologies in the US. Energy Policy, 2012, 41, 348-364.	4.2	28
140	A terracotta bio-battery. Bioresource Technology, 2012, 116, 86-91.	4.8	66
141	Stainless steel mesh supported nitrogen-doped carbon nanofibers for binder-free cathode in microbial fuel cells. Biosensors and Bioelectronics, 2012, 34, 282-285.	5.3	53
142	Carbon supported cobalt oxide nanoparticles–iron phthalocyanine as alternative cathode catalyst for oxygen reduction in microbial fuel cells. Journal of Power Sources, 2012, 208, 170-175.	4.0	108
143	Highly active non-precious metal catalyst based on poly(vinylpyrrolidone)–wrapped carbon nanotubes complexed with iron–cobalt metal ions for oxygen reduction reaction. Journal of Power Sources, 2012, 214, 15-20.	4.0	37
144	Iron- and nitrogen-functionalized graphene as a non-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuel cell. Journal of Power Sources, 2012, 213, 265-269.	4.0	175
145	Spectroscopic characterization of Cobalt–Phthalocyanine electrocatalysts for fuel cell applications. Solid State Ionics, 2012, 216, 78-82.	1.3	29

	CITATION R	EPORT	
#	Article	IF	CITATIONS
146	Hollow nitrogen-containing core/shell fibrous carbon nanomaterials as support to platinum nanocatalysts and their TEM tomography study. Nanoscale Research Letters, 2012, 7, 165.	3.1	26
147	Brennstoffzellen ohne Edelmetallkatalysator. Chemie in Unserer Zeit, 2012, 46, 8-8.	0.1	0
148	Nitrogenâ€Enriched Coreâ€Shell Structured Fe/Fe ₃ Câ€C Nanorods as Advanced Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2012, 24, 1399-1404.	11.1	517
149	The role of polyaniline in the formation of iron-containing nanocomposites. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
150	Influence of pyrolysis temperature on oxygen reduction reaction activity of carbon-incorporating iron nitride/nitrogen-doped graphene nanosheets catalyst. International Journal of Hydrogen Energy, 2013, 38, 3956-3962.	3.8	32
151	Boron-doped electrocatalysts derived from carbon dioxide. Journal of Materials Chemistry A, 2013, 1, 8665.	5.2	38
152	One-step chemical reduction of graphene oxide with oligothiophene for improved electrocatalytic oxygen reduction reactions. Carbon, 2013, 61, 164-172.	5.4	70
153	Can Boron and Nitrogen Co-doping Improve Oxygen Reduction Reaction Activity of Carbon Nanotubes?. Journal of the American Chemical Society, 2013, 135, 1201-1204.	6.6	855
154	Nitrogenâ€Doped Carbon with Mesopore Confinement Efficiently Enhances the Tolerance, Sensitivity, and Stability of a Pt Catalyst for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2013, 30, 864-872.	1.2	27
155	Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synthetic Metals, 2013, 177, 1-47.	2.1	618
156	Facile synthesis of hybrid graphene and carbon nanotubes as a metal-free electrocatalyst with active dual interfaces for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 9603.	5.2	40
157	Fluorine-Doped Carbon Blacks: Highly Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2013, 3, 1726-1729.	5.5	337
158	Recent progress in nonâ€precious metal catalysts for PEM fuel cell applications. Canadian Journal of Chemical Engineering, 2013, 91, 1881-1895.	0.9	71
159	Multi-Metallic Nanoparticles as More Efficient Catalysts for Fuel Cell Reactions. , 2013, , 333-346.		0
160	Fuel Cell Catalysis from a Materials Perspective. , 2013, , 271-305.		5
161	Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution. Journal of Power Sources, 2013, 243, 65-71.	4.0	165
162	Enhancement of electrocatalytic activity for oxygen reduction reaction in alkaline and acid media from electrospun nitrogen-doped carbon nanofibers by surface modification. RSC Advances, 2013, 3, 15655.	1.7	32
163	Edgeâ€Selectively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537

#	Article	IF	CITATIONS
164	Light-controlled synthesis of uniform platinum nanodendrites with markedly enhanced electrocatalytic activity. Nano Research, 2013, 6, 720-725.	5.8	29
165	Electrocatalysis in Fuel Cells. Lecture Notes in Energy, 2013, , .	0.2	85
166	Interconnected Pt-Nanodendrite/DNA/Reduced-Graphene-Oxide Hybrid Showing Remarkable Oxygen Reduction Activity and Stability. ACS Nano, 2013, 7, 9223-9231.	7.3	79
167	A density functional theory study of oxygen reduction reaction on Me–N4 (Me = Fe, Co, or Ni) clusters between graphitic pores. Journal of Materials Chemistry A, 2013, 1, 10790.	5.2	253
168	Non-precious Ir–V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 11457.	5.2	48
169	In situ study of the catalytic mechanism for the oxygen reduction reaction on a polypyrrole modified carbon supported cobalt hydroxide cathode in direct borohydride fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9070-9074.	1.3	8
170	Fe–N–carbon black for the oxygen reduction reaction in sulfuric acid. Carbon, 2013, 57, 443-451.	5.4	92
171	Hierarchical interconnected macro-/mesoporous Co-containing N-doped carbon for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2013, 1, 12074.	5.2	59
172	Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 9889.	5.2	223
173	A Class of High Performance Metal-Free Oxygen Reduction Electrocatalysts based on Cheap Carbon Blacks. Scientific Reports, 2013, 3, 2505.	1.6	160
174	Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. Journal of Materials Chemistry A, 2013, 1, 13179.	5.2	105
175	Noncovalent hybrid of CoMn2O4 spinel nanocrystals and poly (diallyldimethylammonium chloride) functionalized carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2013, 65, 277-286.	5.4	80
176	High stability pyrolyzed vitamin B12 as a non-precious metal catalyst of oxygen reduction reaction in microbial fuel cells. RSC Advances, 2013, 3, 15375.	1.7	12
177	Probing the structure, the composition and the ORR activity of Pt3Co/C nanocrystallites during a 3422h PEMFC ageing test. Applied Catalysis B: Environmental, 2013, 142-143, 801-808.	10.8	109
178	Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2013, 702, 56-59.	1.9	30
179	The impact of chloride ions and the catalyst loading on the reduction of H2O2 on high-surface-area platinum catalysts. Electrochimica Acta, 2013, 110, 790-795.	2.6	34
180	Ordered mesoporous porphyrinic carbons with very high electrocatalytic activity for the oxygen reduction reaction. Scientific Reports, 2013, 3, 2715.	1.6	282
181	Structural and electronic characterization of Co nanostructures on Au(332). Surface Science, 2013, 617, 87-93.	0.8	6

#	Article	IF	CITATIONS
182	Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochimica Acta, 2013, 113, 735-740.	2.6	36
183	Highâ€Performance Oxygen Reduction Electrocatalysts based on Cheap Carbon Black, Nitrogen, and Trace Iron. Advanced Materials, 2013, 25, 6879-6883.	11.1	285
185	Functionalization of Monolayer h-BN by a Metal Support for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 21359-21370.	1.5	109
186	Doped-carbon electrocatalysts with trimodal porosity from a homogeneous polypeptide gel. Journal of Materials Chemistry A, 2013, 1, 13576.	5.2	51
187	Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 16002-16005.	6.6	1,119
188	Theoretical predictions for hexagonal BN based nanomaterials as electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2013, 15, 2809.	1.3	95
189	Green synthesis of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction. Nanoscale, 2013, 5, 12558.	2.8	136
190	Iron- and Nitrogen-Functionalized Graphene Nanosheet and Nanoshell Composites as a Highly Active Electrocatalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 26501-26508.	1.5	71
191	The atomic structures of carbon nitride sheets for cathode oxygen reduction catalysis. Journal of Chemical Physics, 2013, 138, 164706.	1.2	19
192	Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F943-F952.	1.3	89
193	Superior capacitive and electrocatalytic properties of carbonized nanostructured polyaniline upon a low-temperature hydrothermal treatment. Carbon, 2013, 64, 472-486.	5.4	72
194	Synergistic increase of oxygen reduction favourable Fe–N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets. Physical Chemistry Chemical Physics, 2013, 15, 18482.	1.3	42
195	Spaceâ€Confinementâ€Induced Synthesis of Pyridinic―and Pyrrolicâ€Nitrogenâ€Doped Graphene for the Catalysis of Oxygen Reduction. Angewandte Chemie - International Edition, 2013, 52, 11755-11759.	7.2	620
196	Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. Journal of the American Chemical Society, 2013, 135, 15443-15449.	6.6	719
197	Nanostructured Fe–Ag electrocatalysts for the oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2013, 1, 13337.	5.2	33
198	Hybrid chitosan derivative–carbon support for oxygen reduction reactions. RSC Advances, 2013, 3, 5378.	1.7	21
199	Polyanilineâ€Coupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie - International Edition, 2013, 52, 12105-12109.	7.2	117
200	A Pt-free catalyst for oxygen reduction reaction based on Fe–N multiwalled carbon nanotube composites. Electrochimica Acta, 2013, 107, 126-132.	2.6	56

#	Article	IF	CITATIONS
201	Activating Ag by even more inert Au: a peculiar effect on electrocatalysis toward oxygen reduction in alkaline media. Chemical Communications, 2013, 49, 11023.	2.2	19
202	Molybdenum Nitride/N-Doped Carbon Nanospheres for Lithium-O ₂ Battery Cathode Electrocatalyst. ACS Applied Materials & Interfaces, 2013, 5, 3677-3682.	4.0	90
203	Toward understanding the active site for oxygen reduction reaction on phosphorus-encapsulated single-walled carbon nanotubes. RSC Advances, 2013, 3, 5577.	1.7	23
204	Ion-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chemical Communications, 2013, 49, 3022.	2.2	116
205	Fluorine-doped BP 2000: highly efficient metal-free electrocatalysts for acidic oxygen reduction reaction with superlow H2O2 yield. Chemical Communications, 2013, 49, 10296.	2.2	50
206	A class of carbon supported transition metal–nitrogen complex catalysts for dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1475-1480.	5.2	17
207	Mechanism of oxygen reduction reaction catalyzed by Fe(Co)–Nx/C. Physical Chemistry Chemical Physics, 2013, 15, 19330.	1.3	55
208	Graphene sheets fabricated from disposable paper cups as a catalyst support material for fuel cells. Journal of Materials Chemistry A, 2013, 1, 183-187.	5.2	49
209	Probing carbon edge exposure of iron phthalocyanine-based oxygen reduction catalysts by soft X-ray absorption spectroscopy. Journal of Power Sources, 2013, 223, 30-35.	4.0	18
210	Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor. Journal of Power Sources, 2013, 225, 129-136.	4.0	47
211	A novel method for synthesis of phosphomolybdic acid-modified Pd/C catalysts for oxygen reduction reaction. Journal of Power Sources, 2013, 225, 27-33.	4.0	17
212	Ligand Effects on the Overpotential for Dioxygen Reduction by Tris(2-pyridylmethyl)amine Derivatives. Inorganic Chemistry, 2013, 52, 628-634.	1.9	70
213	Preparation and Electromagnetic Properties of Core/Shell Polystyrene@Polypyrrole@Nickel Composite Microspheres. ACS Applied Materials & Interfaces, 2013, 5, 883-891.	4.0	92
214	Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active FeNC catalysts. Electrochimica Acta, 2013, 87, 619-628.	2.6	114
215	Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement. Journal of Physical Chemistry Letters, 2013, 4, 393-401.	2.1	36
216	Recent progress in nanostructured electrocatalysts for PEM fuel cells. Journal of Materials Chemistry A, 2013, 1, 4631.	5.2	172
217	High Stability, High Activity Pt/ITO Oxygen Reduction Electrocatalysts. Journal of the American Chemical Society, 2013, 135, 530-533.	6.6	163
218	Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochimica Acta, 2013, 87, 709-716.	2.6	114

#	Article	IF	CITATIONS
219	FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction. Applied Catalysis B: Environmental, 2013, 130-131, 143-151.	10.8	169
220	Mesoporous carbons supported non-noble metal Fe–N X electrocatalysts for PEM fuel cell oxygen reduction reaction. Journal of Applied Electrochemistry, 2013, 43, 159-169.	1.5	78
221	B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. Journal of Materials Chemistry A, 2013, 1, 3694.	5.2	398
224	Iron Encapsulated within Podâ€like Carbon Nanotubes for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 371-375.	7.2	1,152
225	A Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Nâ€Doped Ketjenblack Incorporated into Fe/Fe ₃ Câ€Functionalized Melamine Foam. Angewandte Chemie - International Edition, 2013, 52, 1026-1030.	7.2	324
226	Insight into the Origin of the Positive Effects of Imidazolium Salt on Electrocatalytic Activity: Ionic Carbon Nanotubes as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2013, 8, 232-237.	1.7	8
227	Nanoporous PdTi Alloys as Nonâ€Platinum Oxygenâ€Reduction Reaction Electrocatalysts with Enhanced Activity and Durability. ChemSusChem, 2013, 6, 78-84.	3.6	52
228	Non-precious cathode electrocatalyst for magnesium air fuel cells: Activity and durability of iron-polyphthalocyanine absorbed on carbon black. Journal of Power Sources, 2013, 242, 157-165.	4.0	42
229	A mechanistic study of 4-aminoantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochimica Acta, 2013, 90, 656-665.	2.6	102
230	Performance of polyaniline-derived Fe-N-C catalysts for oxygen reduction reaction in alkaline electrolyte. Chinese Journal of Catalysis, 2013, 34, 1992-1997.	6.9	29
231	Synthesis of high dispersed intermetallic Ag4Sn/C and its enhanced oxygen reduction reaction activity. Journal of Power Sources, 2013, 240, 606-611.	4.0	29
232	Creating a Solid Base for Technology Road Mapping Using an Integrated Technology Monitoring and Assessment Tool. Procedia, Social and Behavioral Sciences, 2013, 75, 370-382.	0.5	4
233	A gas-diffusion cathode coated with oxide-catalyst for polymer electrolyte fuel cells using neither platinum catalyst nor carbon catalyst-support. Electrochimica Acta, 2013, 105, 224-229.	2.6	4
234	Pt-W C nano-composites as an efficient electrochemical catalyst for oxygen reduction reaction. Nano Energy, 2013, 2, 28-39.	8.2	56
235	Catalytic activity of Co–N _x /C electrocatalysts for oxygen reduction reaction: a density functional theory study. Physical Chemistry Chemical Physics, 2013, 15, 148-153.	1.3	303
236	Nitrogen and Sulfur Dualâ€Doped Nonâ€Noble Catalyst Using Fluidic Acrylonitrile Telomer as Precursor for Efficient Oxygen Reduction. Advanced Materials, 2013, 25, 4794-4799.	11.1	179
237	A mini review on carbon-based metal-free electrocatalysts for oxygen reduction reaction. Chinese Journal of Catalysis, 2013, 34, 1986-1991.	6.9	42
238	Theoretical studies on the stabilities and reactivities of Ta3N5 (1 0 0) surfaces. Chemical Physics Letters, 2013, 561-562, 57-62.	1.2	20

#	Article	IF	CITATIONS
239	Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 6657-6662.	3.8	143
240	Stability of iron species in heat-treated polyaniline–iron–carbon polymer electrolyte fuel cell cathode catalysts. Electrochimica Acta, 2013, 110, 282-291.	2.6	138
241	An all cis-polyaniline nanotube film: Facile synthesis and applications. Electrochimica Acta, 2013, 99, 38-45.	2.6	16
242	Carbonaceous thin film coated on nanoparticle as fuel cell catalyst formed by one-pot hybrid physical–chemical vapor deposition of iron phthalocyanine. Electrochimica Acta, 2013, 90, 366-374.	2.6	10
243	Tri-metallic transition metal–nitrogen–carbon catalysts derived by sacrificial support method synthesis. Electrochimica Acta, 2013, 109, 433-439.	2.6	71
244	Enhanced ORR activity of cobalt porphyrin co-deposited with transition metal oxides on Au and C electrodes. The ORR threshold data. Journal of Electroanalytical Chemistry, 2013, 705, 8-12.	1.9	13
245	Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. International Journal of Hydrogen Energy, 2013, 38, 5655-5664.	3.8	36
246	Nitrogen-Doped Fullerene as a Potential Catalyst for Hydrogen Fuel Cells. Journal of the American Chemical Society, 2013, 135, 3315-3318.	6.6	167
247	Calcined polyaniline–iron composite as a high efficient cathodic catalyst in microbial fuel cells. Bioresource Technology, 2013, 131, 321-324.	4.8	23
248	Challenges of non-aqueous Li–O2 batteries: electrolytes, catalysts, and anodes. Energy and Environmental Science, 2013, 6, 1125.	15.6	453
249	Strongly Coupled Inorganic/Nanocarbon Hybrid Materials for Advanced Electrocatalysis. Journal of the American Chemical Society, 2013, 135, 2013-2036.	6.6	856
250	Porous carbon supported Fe–N–C for applications as cathodic electrocatalysts in fuel cells. Microporous and Mesoporous Materials, 2013, 170, 150-154.	2.2	17
251	Onion-like graphitic nanoshell structured Fe–N/C nanofibers derived from electrospinning for oxygen reduction reaction in acid media. Electrochemistry Communications, 2013, 30, 1-4.	2.3	51
252	A carbon-nanotube-supported graphene-rich non-precious metal oxygen reduction catalyst with enhanced performance durability. Chemical Communications, 2013, 49, 3291.	2.2	196
253	Efficient oxygen reduction by a Fe/Co/C/N nano-porous catalyst in neutral media. Journal of Materials Chemistry A, 2013, 1, 1450-1456.	5.2	64
254	Palladium nanoparticles supported on nitrogen-doped HOPG: a surface science and electrochemical study. Physical Chemistry Chemical Physics, 2013, 15, 2923.	1.3	52
255	Platinum Systems Electrodeposited in the Presence of Iron or Palladium on a Gold Surface Effectively Catalyze Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 7540-7551.	1.5	17
256	Oxygen reduction reaction on active sites of heteroatom-doped graphene. RSC Advances, 2013, 3, 5498.	1.7	59

ARTICLE IF CITATIONS Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen 257 4.0 450 reduction reaction. Journal of Power Sources, 2013, 236, 238-249. The Controversial Role of the Metal in Fe- or Co-Based Electrocatalysts for the Oxygen Reduction 0.2 Reaction in Acid Medium. Lecture Notes in Energy, 2013, , 271-338. Fe–N doped carbon nanotube/graphene composite: facile synthesis and superior electrocatalytic 259 5.2115 activity. Journal of Materials Chemistry A, 2013, 1, 3302. Electronic structure of N-doped graphene with native point defects. Physical Review B, 2013, 87, . 113 Organometallic Catalysts for Use in a Fuel Cell. ChemCatChem, 2013, 5, 1368-1373. 261 1.8 35 Metal Carbides in Fuel Cell Cathode. Lecture Notes in Energy, 2013, , 665-687. 0.2 Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts. Energy and 263 15.6 99 Environmental Science, 2013, 6, 2957. Electrochemical behavior of N and Ar implanted highly oriented pyrolytic graphite substrates and 264 2.6 activity toward oxygen reduction reaction. Electrochimica Acta, 2013, 88, 477-487. 265 PEM Fuel Cells, Materials and Design Development Challenges., 2013, , 341-367. 4 Tungsten doped Co–Se nanocomposites as an efficient non precious metal catalyst for oxygen reduction. Electrochimica Acta, 2013, 91, 179-184. Fuel Cell Electrocatalyst Using Polybenzimidazoleâ€Modified Carbon Nanotubes As Support Materials. 267 11.1 160 Advanced Materials, 2013, 25, 1666-1681. Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. 1.0 111 Chemical Papers, 2013, 67, . Metalâ€" organic frameworks as platforms for clean energy. Energy and Environmental Science, 2013, 6, 269 15.6 858 1656. A stable and active iron catalyst supported on graphene nano-flakes for the oxygen reduction 270 2.2 reaction in polymer electrolyte membrane fuel cells. Catalysis Today, 2013, 211, 162-167. Effect of carbon nanotube diameter for the synthesis of Fe/N/multiwall carbon nanotubes and 271 4.0 39 repercussions for the oxygen reduction reaction. Journal of Power Sources, 2013, 240, 494-502. Catalytic Properties of Transition Metal–N₄ Moieties in Graphene for the Oxygen Reduction Reaction: Evidence of Spin-Dependent Mechanisms. Journal of Physical Chemistry C, 2013, 117, 165 9812-9818. Enhanced electrochemical oxygen reduction reaction by restacking of N-doped single graphene layers. 273 1.7 30 RSC Advances, 2013, 3, 4246. High-Loading Cobalt Oxide Coupled with Nitrogen-Doped Graphene for Oxygen Reduction in 274 1.5 Anion-Exchange-Membrane Alkaline Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 8697-8707.

ARTICLE IF CITATIONS # Heat-Treated Non-precious-Metal-Based Catalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, 275 0.2 27 213-246. Recent Development of Non-precious Metal Catalysts. Lecture Notes in Energy, 2013, , 247-269. 276 0.2 Theoretical Study of Oxygen Reduction Reaction Catalysts: From Pt to Non-precious Metal Catalysts. 277 0.2 2 Lecture Notes in Energy, 2013, , 339-373. Metal-Free Electrocatalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 375-389. 278 0.2 Non-Pt Cathode Electrocatalysts for Anion-Exchange-Membrane Fuel Cells. Lecture Notes in Energy, 279 0.2 2 2013, , 437-481. 280 Dealloyed Pt-Based Coreâ€"Shell Catalysts for Oxygen Reduction. Lecture Notes in Energy, 2013, , 533-560. 0.2 Efficient Oxygen Evolution Reaction Catalysts for Cell Reversal and Start/Stop Tolerance. Lecture 281 0.2 13 Notes in Energy, 2013, , 637-663. Novel non-noble metal electrocatalysts synthesized by heat-treatment of iron terpyridine complexes 4.0 29 for the oxygen reduction reaction. Journal of Power Sources, 2013, 240, 381-389 One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst 283 5.8 142 for the oxygen reduction reaction. Nano Research, 2013, 6, 293-301. Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angewandte Chemie - International 284 7.2 Edition, 2013, 52, 8526-8544. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO₂ 285 23.0 1.786 Fixation. Chemical Reviews, 2013, 113, 6621-6658. Main Cell Components, Material Properties, and Processes., 2013, , 73-117. 286 Doping of chalcogens (sulfur and/or selenium) in nitrogen-doped graphene–CNT self-assembly for 287 1.7 56 enhanced oxygen reduction activity in acid media. RSC Advances, 2013, 3, 12417. Biomass-derived activated carbon as high-performance non-precious electrocatalyst for oxygen reduction. RSC Advances, 2013, 3, 12039. 1.7 76 Microorganismâ€Derived Heteroatomâ€Doped Carbon Materials for Oxygen Reduction and 289 7.8 213 Supercapacitors. Advanced Functional Materials, 2013, 23, 1305-1312. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. 514 Scientific Reports, 2013, 3, . Nanoporous transition metal oxynitrides as catalysts for the oxygen reduction reaction. 291 2.6 22 Electrochimica Acta, 2013, 103, 151-160. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Advances, 2013, 3, 9978.

		CITATION REPORT		
#	Article		IF	CITATIONS
293	Catalytically active single-atom niobium in graphitic layers. Nature Communications, 20	13, 4, 1924.	5.8	261
294	Additional doping of phosphorus and/or sulfur into nitrogen-doped carbon for efficient reduction reaction in acidic media. Physical Chemistry Chemical Physics, 2013, 15, 180.	oxygen 2-1805.	1.3	166
295	Optimized Synthesis of Fe/N/C Cathode Catalysts for PEM Fuel Cells: A Matter of Ironâ€ Coordination Strength. Angewandte Chemie - International Edition, 2013, 52, 6867-68		7.2	195
296	Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced or reduction electrocatalysis. Journal of Materials Chemistry A, 2013, 1, 7463.	kygen	5.2	47
297	Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen r Nature Communications, 2013, 4, 1922.	eduction.	5.8	749
298	Doping nitrogen anion enhanced photocatalytic activity on TiO2 hybridized with graph under solar light. Separation and Purification Technology, 2013, 106, 97-104.	ene composite	3.9	44
299	Facile chemical synthesis of nitrogen-doped graphene sheets and their electrochemical Journal of Power Sources, 2013, 241, 460-466.	capacitance.	4.0	67
300	Combined method to prepare core–shell structured catalyst for proton exchange met cells. International Journal of Hydrogen Energy, 2013, 38, 3323-3329.	nbrane fuel	3.8	37
301	Highly active carbon nanotube-supported Pd electrocatalyst for oxidation of formic acic etching copper template method. International Journal of Hydrogen Energy, 2013, 38, 1	prepared by 391-1396.	3.8	14
302	Evaluating the interfacial reaction kinetics of the bipolar membrane interface in the bipo fuel cell. Physical Chemistry Chemical Physics, 2013, 15, 11217.	olar membrane	1.3	15
303	Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon n catalyst. Nature Communications, 2013, 4, 2076.	anotube-based	5.8	630
304	A Highly Active and Supportâ€Free Oxygen Reduction Catalyst Prepared from Ultrahigh Porous Polyporphyrin. Angewandte Chemie - International Edition, 2013, 52, 8349-835	â€Surfaceâ€Area 3.	7.2	157
305	Structure-Dependent Electrocatalytic Properties of Cu ₂ O Nanocrystals for Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 13872-13878.	Oxygen	1.5	92
306	Conversion of CuO Nanoplates into Porous Hybrid Cu ₂ O/Polypyrrole Nano through a Pyrroleâ€Induced Reductive Transformation Reaction. Chemistry - an Asian Jo 1120-1127.	flakes urnal, 2013, 8,	1.7	23
307	Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction. Accounts Research, 2013, 46, 1878-1889.	of Chemical	7.6	975
308	Easy and controlled synthesis of nitrogen-doped carbon. Carbon, 2013, 55, 98-107.		5.4	41
309	A solid-state NMR study of the carbonization of polyaniline. Carbon, 2013, 55, 160-167		5.4	36
310	Efficient Metal-Free Electrocatalysts for Oxygen Reduction: Polyaniline-Derived N- and C Mesoporous Carbons. Journal of the American Chemical Society, 2013, 135, 7823-7826	Doped	6.6	661

#	Article	IF	CITATIONS
311	On the Origin of Electrocatalytic Oxygen Reduction Reaction on Electrospun Nitrogen–Carbon Species. Journal of Physical Chemistry C, 2013, 117, 11619-11624.	1.5	112
312	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
313	Polyaniline oupled Multifunctional 2D Metal Oxide/Hydroxide Graphene Nanohybrids. Angewandte Chemie, 2013, 125, 12327-12331.	1.6	45
314	Fe–N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions. Journal of Solid State Electrochemistry, 2013, 17, 565-573.	1.2	33
315	Transition Metal Ion-Chelating Ordered Mesoporous Carbons as Noble Metal-Free Fuel Cell Catalysts. Chemistry of Materials, 2013, 25, 856-861.	3.2	55
316	Bio-inspired nanocatalysts for the oxygen reduction reaction. Nature Communications, 2013, 4, 2904.	5.8	94
317	A compartment-less nonenzymatic glucose–air fuel cell with nitrogen-doped mesoporous carbons and Au nanowires as catalysts. Energy and Environmental Science, 2013, 6, 3600.	15.6	40
318	Large-Scale Synthesis of Silver Manganese Oxide Nanofibers and Their Oxygen Reduction Properties. Journal of Physical Chemistry C, 2013, 117, 25352-25359.	1.5	38
319	Stable platinum nanoclusters on genomic DNA–graphene oxide with a high oxygen reduction reaction activity. Nature Communications, 2013, 4, 2221.	5.8	169
320	Nano-nitride Cathode Catalysts of Ti, Ta, and Nb for Polymer Electrolyte Fuel Cells: Temperature-Programmed Desorption Investigation of Molecularly Adsorbed Oxygen at Low Temperature. Journal of Physical Chemistry C, 2013, 117, 496-502.	1.5	46
321	Evidence for oxygen reduction reaction activity of a Ni(OH)2/graphene oxide catalyst. Journal of Materials Chemistry A, 2013, 1, 15501.	5.2	40
322	The Effect of Metal Catalyst on the Electrocatalytic Activity of Nitrogen-Doped Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 25213-25221.	1.5	36
323	Functionalization of Graphene for Efficient Energy Conversion and Storage. Accounts of Chemical Research, 2013, 46, 31-42.	7.6	739
324	Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes. Journal of Chemical Physics, 2013, 139, 204306.	1.2	47
325	Effect of Micro-Patterned Membranes on the Cathode Performances for PEM Fuel Cells under Low Humidity. Journal of the Electrochemical Society, 2013, 160, F417-F428.	1.3	26
326	Enhanced Electrochemical Activity for Oxygen Reduction Reaction from Nitrogen-Doped Carbon Nanofibers by Iron Doping. ECS Solid State Letters, 2013, 2, M37-M39.	1.4	14
327	Oxygen Electroreduction on Ti- and Fe-Containing Carbon Fibers. Journal of the Electrochemical Society, 2013, 160, F769-F778.	1.3	14
328	Pt–Pb hollow sphere networks: self-sacrifice-templating method and enhanced activity for formic acid electrooxidation. RSC Advances, 2013, 3, 1763.	1.7	15

ARTICLE IF CITATIONS Multifunctional Co₃S₄/Graphene Composites for Lithium Ion Batteries and 329 1.7 219 Oxygen Reduction Reaction. Chemistry - A European Journal, 2013, 19, 5183-5190. Modeling Non-Precious Metal Catalyst Structures and Their Relationship to ORR. ECS Transactions, 0.3 2013, 58, 1869-1875. The mycological effect on morphological, electrochemical and redox properties of the polyaniline 333 0.8 6 surface. Surface and Interface Analysis, 2013, 45, 1792-1798. Cobalt Molybdenum Oxynitrides: Synthesis, Structural Characterization, and Catalytic Activity for 334 139 the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 10753-10757. Electrochemical and Mass Change Study of the Growth of Poly-(o-Phenylenediamine) Films on Au 335 1.38 Substrates. Journal of the Electrochemical Society, 2013, 160, H344-H354. A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Scientific Reports, 2013, 3, 2580. 1.6 Functionalized Single-Walled Carbon Nanotube-Based Fuel Cell Benchmarked Against US DOE 2017 338 1.6 76 Technical Targets. Scientific Reports, 2013, 3, 2257. Using 2-Mercaptobenzothiazole as a Nitrogen and Sulfur Precursor to Synthesize Highly Active 339 0.8 Co-N-S/C Electrocatalysts for Oxygen Reduction. Analytical Sciences, 2013, 29, 619-623. Nitrogen-doped Carbon Nanofibers as Highly Active Metal-free Electrocatalysts for Oxygen Reduction 340 9 0.7 Reactions in Acidic Media. Chemistry Letters, 2013, 42, 413-415. Ordered Mesoporous Feâ€Porphyrinâ€Like Architectures as Excellent Cathode Materials for the Oxygen 341 Reduction Reaction in Both Alkaline and Acidic Media. Chemistry - A European Journal, 2013, 19, 1.7 49 16170-16175. Mechanistic Studies On Fe-PEI Derived Non-PGM Catalysts for Oxygen Reduction. ECS Meeting 343 0 0.0 Abstracts, 2013, , . Synthesis of Cobalt Nanoparticle Embedded Carbon Nanofiber Catalysts With High Oxygen Reduction 0.0 Réaction Activity. ECS Meeting Abstracts, 2013, , . Nitrogenâ€Doped Carbon Nanosheets with Sizeâ€Defined Mesopores as Highly Efficient Metalâ€Free Catalyst 347 7.2 457 for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2014, 53, 1570-1574. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Research, 2014, 7, 1519-1527. 348 5.8 44 Seaweedâ€Derived Heteroatomâ€Doped Highly Porous Carbon as an Electrocatalyst for the Oxygen 349 136 3.6 Reduction Reaction. ChemSusChem, 2014, 7, 1755-1763. Large Platinum Structures as Promising Catalysts for the Oxygenâ€Reduction Reaction. ChemElectroChem, 2014, 1, 625-636. Carbon Nanotubes/Heteroatomâ€Doped Carbon Coreâ€"Sheath Nanostructures as Highly Active, 351 Metalâ€Free Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Angewandte Chemie -7.2 168 International Edition, 2014, 53, 4102-4106. Mapping Platinum Species in Polymer Electrolyte Fuel Cells by Spatially Resolved XAFS Techniques. Angewandte Chemie - International Edition, 2014, 53, 14110-14114.

			0
#	ARTICLE A resin-based methodology to synthesize N-doped graphene-like metal-free catalyst for oxygen	IF	CITATIONS
353	reduction. Electrochimica Acta, 2014, 142, 182-186.	2.6	17
354	Highly active electrocatalyst for oxygen reduction reaction from pyrolyzing carbon-supported iron tetraethylenepentamine complex. Applied Catalysis B: Environmental, 2014, 160-161, 676-683.	10.8	13
355	Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts. APL Materials, 2014, 2, 121102.	2.2	11
356	Reduced Grapheneâ€Oxideâ€Supported Titanium Oxynitride as Oxygen Reduction Reaction Catalyst in Acid Media. ChemElectroChem, 2014, 1, 544-548.	1.7	12
357	Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science, 2014, 346, 1502-1506.	6.0	277
358	Direct observation of closed magnetic flux trapped in the high-latitude magnetosphere. Science, 2014, 346, 1506-1510.	6.0	46
359	Grooves of Bundled Singleâ€Walled Carbon Nanotubes Dramatically Enhance the Activity of the Oxygen Reduction Reaction. ChemCatChem, 2014, 6, 3169-3173.	1.8	9
360	New Cu _x S _y /nanoporous carbon composites as efficient oxygen reduction catalysts in alkaline medium. Journal of Materials Chemistry A, 2014, 2, 20164-20176.	5.2	34
361	Quasi-in-Situ Single-Grain Photoelectron Microspectroscopy of Co/PPy Nanocomposites under Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 19621-19629.	4.0	17
362	Electrocatalysts and Catalyst Layers for Oxygen Reduction Reaction. , 2014, , 67-132.		15
363	Carbonized Nanoscale Metal–Organic Frameworks as High Performance Electrocatalyst for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 12660-12668.	7.3	509
364	Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17023-17028.	3.3	183
365	Controllable Synthesis and Enhanced Electrocatalysis of Ironâ€based Catalysts Derived From Electrospun Nanofibers. Small, 2014, 10, 4072-4079.	5.2	31
366	Electrochemical Preparation of Nâ€Đoped Cobalt Oxide Nanoparticles with High Electrocatalytic Activity for the Oxygenâ€Reduction Reaction. Chemistry - A European Journal, 2014, 20, 3457-3462.	1.7	39
367	Blood Ties: Co ₃ O ₄ Decorated Blood Derived Carbon as a Superior Bifunctional Electrocatalyst. Advanced Functional Materials, 2014, 24, 7655-7665.	7.8	113
369	Advances in Carbonâ€Incorporated Nonâ€Noble Transition Metal Catalysts for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells. Journal of the Chinese Chemical Society, 2014, 61, 93-100.	0.8	15
370	Oxygen Electrochemistry as a Cornerstone for Sustainable Energy Conversion. Angewandte Chemie - International Edition, 2014, 53, 102-121.	7.2	1,186
371	Combinatorial High-Throughput Optical Screening of High Performance Pd Alloy Cathode for Hybrid Li–Air Battery. ACS Combinatorial Science, 2014, 16, 670-677.	3.8	14

#	Article	IF	CITATIONS
372	Enhancement of Activity and Durability through Cr Doping of TiO ₂ Supports in Pt Electrocatalysts for Oxygen Reduction Reactions. ChemCatChem, 2014, 6, 3239-3245.	1.8	11
373	A new approach to nanoporous graphene sheets via rapid microwave-induced plasma for energy applications. Nanotechnology, 2014, 25, 495604.	1.3	23
375	Phosphorus-doped carbon nanotubes supported low Pt loading catalyst for the oxygen reduction reaction in acidic fuel cells. Journal of Power Sources, 2014, 268, 171-175.	4.0	61
376	Co/Co3O4/C–N, a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy, 2014, 8, 118-125.	8.2	106
377	Biotemplated Palladium Catalysts Can Be Stabilized on Different Support Materials. ChemElectroChem, 2014, 1, 1867-1873.	1.7	12
378	Mechanistic Study of ORR by Cu(II) Based Electrocatalyst Using Simultaneous Electrochemical EPR Spectroscopy. ECS Transactions, 2014, 61, 1-11.	0.3	11
380	Tuning nondoped carbon nanotubes to an efficient metal-free electrocatalyst for oxygen reduction reaction by localizing the orbital of the nanotubes with topological defects. Nanoscale, 2014, 6, 14262-14269.	2.8	41
381	Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. Carbon, 2014, 75, 381-389.	5.4	101
382	Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 245, 772-778.	4.0	83
383	Non-noble Fe–NX electrocatalysts supported on the reduced graphene oxide for oxygen reduction reaction. Carbon, 2014, 76, 386-400.	5.4	77
384	A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 33-50.	5.6	826
385	Preparation of highly active and stable polyaniline-cobalt-carbon nanotube electrocatalyst for oxygen reduction reaction in polymer electrolyte membrane fuel cell. Electrochimica Acta, 2014, 119, 144-154.	2.6	42
386	Synthesis and characterization of carbon incorporated Fe–N/carbons for methanol-tolerant oxygen reduction reaction of polymer electrolyte fuel cells. Journal of Power Sources, 2014, 250, 279-285.	4.0	49
387	Spinel ZnCo2O4/N-doped carbon nanotube composite: A high active oxygen reduction reaction electrocatalyst. Journal of Power Sources, 2014, 257, 170-173.	4.0	69
388	Comparative investigation on the properties of carbon-supported cobalt-polypyrrole pyrolyzed at various conditions as electrocatalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 15937-15947.	3.8	9
389	Synthesis of boron and nitrogen co-doped graphene nano-platelets using a two-step solution process and catalytic properties for oxygen reduction reaction. Solid State Sciences, 2014, 33, 1-5.	1.5	23
390	A high activity nitrogen-doped carbon catalyst for oxygen reduction reaction derived from polyaniline-iron coordination polymer. Journal of Power Sources, 2014, 266, 222-225.	4.0	32
391	Nitrogen-doped graphene/carbon nanotube self-assembly for efficient oxygen reduction reaction in acid media. Applied Catalysis B: Environmental, 2014, 144, 760-766.	10.8	94

#	Article	IF	CITATIONS
392	Nitrogen-doped graphene prepared by a transfer doping approach forÂthe oxygen reduction reaction application. Journal of Power Sources, 2014, 245, 801-807.	4.0	102
393	Platinum Electro-dissolution in Acidic Media upon Potential Cycling. Electrocatalysis, 2014, 5, 96-112.	1.5	91
394	Fe/Co/C–N nanocatalysts for oxygen reduction reaction synthesized by directly pyrolyzing Fe/Co-doped polyaniline. Journal of Materials Science, 2014, 49, 729-736.	1.7	19
395	Carbon-supported Fe/Co-N electrocatalysts synthesized through heat treatment of Fe/Co-doped polypyrrole-polyaniline composites for oxygen reduction reaction. Science China Chemistry, 2014, 57, 739-747.	4.2	40
396	Elucidating Oxygen Reduction Active Sites in Pyrolyzed Metal–Nitrogen Coordinated Non-Precious-Metal Electrocatalyst Systems. Journal of Physical Chemistry C, 2014, 118, 8999-9008.	1.5	461
397	Mechanisms for Enhanced Performance of Platinumâ€Based Electrocatalysts in Proton Exchange Membrane Fuel Cells. ChemSusChem, 2014, 7, 361-378.	3.6	86
398	Amide-functionalized carbon supports for cobalt oxide toward oxygen reduction reaction in Zn-air battery. Applied Catalysis B: Environmental, 2014, 148-149, 212-220.	10.8	31
399	Cobaltâ€Embedded Nitrogenâ€Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values. Angewandte Chemie - International Edition, 2014, 53, 4372-4376.	7.2	857
400	Electrocatalytic oxygen reduction kinetics on Fe-center of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 13733-13740.	1.3	102
402	Facile Preparation of Graphene/Polyaniline Composite and Its Application for Electrocatalysis Hexavalent Chromium Reduction. Electrochimica Acta, 2014, 132, 496-503.	2.6	56
403	The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: A density functional theory study. Journal of Power Sources, 2014, 255, 65-69.	4.0	83
404	Metal-free catalysts for oxygen reduction in alkaline electrolytes: Influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochimica Acta, 2014, 128, 271-278.	2.6	129
405	Metalâ^'Organic Frameworkâ€Derived Nitrogenâ€Doped Coreâ€Shellâ€Structured Porous Fe/Fe ₃ C@C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Advanced Energy Materials, 2014, 4, 1400337.	10.2	512
406	Synthesis and electrocatalytic activity of phosphorus-doped carbon xerogel for oxygen reduction. Electrochimica Acta, 2014, 127, 53-60.	2.6	84
407	Synthesis and electrocatalytic activity of phosphorus and Co co-doped mesoporous carbon for oxygen reduction. Electrochemistry Communications, 2014, 42, 46-49.	2.3	37
408	Porous polyaniline-derived FeN _x C/C catalysts with high activity and stability towards oxygen reduction reaction using ferric chloride both as an oxidant and iron source. Journal of Materials Chemistry A, 2014, 2, 1242-1246.	5.2	150
410	A radar-like iron based nanohybrid as an efficient and stable electrocatalyst for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 6703-6707.	5.2	18
411	Nanocarbon Electrocatalysts for Oxygen Reduction in Alkaline Media for Advanced Energy Conversion and Storage. Advanced Energy Materials, 2014, 4, 1301415.	10.2	351

#	Article	IF	CITATIONS
412	In situ nitrogen-doped nanoporous carbon nanocables as an efficient metal-free catalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 10154.	5.2	73
413	Feâ€N Oxygen Reduction Fuel Cell Catalyst Derived from Carbendazim: Synthesis, Structure, and Reactivity. Advanced Energy Materials, 2014, 4, 1301735.	10.2	350
414	Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine. Applied Catalysis B: Environmental, 2014, 158-159, 60-69.	10.8	49
415	Covalent Grafting of Carbon Nanotubes with a Biomimetic Heme Model Compound To Enhance Oxygen Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 6659-6663.	7.2	215
416	Non-precious Metal Oxygen Reduction Reaction Catalysts Synthesized Via Cyanuric Chloride and N-Ethylamine. Electrocatalysis, 2014, 5, 396-401.	1.5	7
417	A Review on Aromatic Conducting Polymers-Based Catalyst Supporting Matrices for Application in Microbial Fuel Cells. Polymer Reviews, 2014, 54, 401-435.	5.3	74
418	Graphynes as Promising Cathode Material of Fuel Cell: Improvement of Oxygen Reduction Efficiency. Journal of Physical Chemistry C, 2014, 118, 12035-12040.	1.5	66
419	Strongly Veined Carbon Nanoleaves as a Highly Efficient Metalâ€Free Electrocatalyst. Angewandte Chemie - International Edition, 2014, 53, 6905-6909.	7.2	156
420	Towards a unified way of comparing the electrocatalytic activity MN4 macrocyclic metal catalysts for O2 reduction on the basis of the reversible potential of the reaction. Electrochemistry Communications, 2014, 41, 24-26.	2.3	62
421	Synthesis of Nanoporous Carbon–Cobaltâ€Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chemistry - A European Journal, 2014, 20, 4217-4221.	1.7	253
422	Effect of Furfuryl Alcohol on Metal Organic Framework-based Fe/N/C Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells. Electrochimica Acta, 2014, 119, 192-205.	2.6	72
423	Facile Single-Step Synthesis of Nitrogen-Doped Reduced Graphene Oxide-Mn ₃ O ₄ Hybrid Functional Material for the Electrocatalytic Reduction of Oxygen. ACS Applied Materials & Interfaces, 2014, 6, 2692-2699.	4.0	214
424	Highâ€Performance Electrocatalysts for Oxygen Reduction Derived from Cobalt Porphyrinâ€Based Conjugated Mesoporous Polymers. Advanced Materials, 2014, 26, 1450-1455.	11.1	425
425	Tungsten nitride decorated carbon nanotubes hybrid as efficient catalyst supports for oxygen reduction reaction. Applied Catalysis B: Environmental, 2014, 147, 897-903.	10.8	85
426	Activity and stability in proton exchange membrane fuel cells of iron-based cathode catalysts synthesized with addition of carbon fibers. Electrochimica Acta, 2014, 115, 170-182.	2.6	54
427	Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 576.	15.6	922
428	Nitrogen-self-doped graphene-based non-precious metal catalyst with superior performance to Pt/C catalyst toward oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 3231.	5.2	74
429	Surface and electrochemical characterisation of a Pt-Cu/C nano-structured electrocatalyst, prepared by galvanic displacement. Applied Catalysis B: Environmental, 2014, 150-151, 249-256.	10.8	49

#	Article	IF	CITATIONS
430	Well-Coupled Graphene and Pd-Based Bimetallic Nanocrystals Nanocomposites for Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 2086-2094.	4.0	67
431	Prussian Blue-Carbon Hybrid as a Non-Precious Electrocatalyst for the Oxygen Reduction Reaction in Alkaline Medium. Electrochimica Acta, 2014, 119, 92-98.	2.6	29
432	Improved electrocatalytic activity of carbon materials by nitrogen doping. Applied Catalysis B: Environmental, 2014, 147, 633-641.	10.8	118
433	Nitrogen-doped graphene-supported Co/CoNx nanohybrid as a highly efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. RSC Advances, 2014, 4, 62272-62280.	1.7	13
434	A two-dimensional hybrid with molybdenum disulfide nanocrystals strongly coupled on nitrogen-enriched graphene via mild temperature pyrolysis for high performance lithium storage. Nanoscale, 2014, 6, 14679-14685.	2.8	61
435	Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20714-20722.	5.2	54
436	P-modified and carbon shell coated Co nanoparticles for efficient alkaline oxygen reduction catalysis. Chemical Communications, 2014, 50, 15940-15943.	2.2	23
437	A Novel Membraneless Direct Hydrazine/Air Fuel Cell. Fuel Cells, 2014, 14, 827-833.	1.5	27
438	Nanoâ€Intermetallic AuCu ₃ Catalyst for Oxygen Reduction Reaction: Performance and Mechanism. Small, 2014, 10, 2662-2669.	5.2	54
439	Multifunctional Electroactive Heteroatomâ€Đoped Carbon Aerogels. Small, 2014, 10, 4352-4361.	5.2	57
440	Highâ€Performance Liquidâ€Catalyst Fuel Cell for Direct Biomassâ€intoâ€Electricity Conversion. Angewandte Chemie - International Edition, 2014, 53, 13558-13562.	7.2	62
441	Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Research, 2014, 7, 1861-1872.	5.8	97
442	Sulfur, Trace Nitrogen and Iron Codoped Hierarchically Porous Carbon Foams as Synergistic Catalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 21454-21460.	4.0	56
444	Pt/C trapped in activated graphitic carbon layers as a highly durable electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2014, 50, 15431-15434.	2.2	64
445	Analyzing Structural Changes of Fe–N–C Cathode Catalysts in PEM Fuel Cell by Mößbauer Spectroscopy of Complete Membrane Electrode Assemblies. Journal of Physical Chemistry Letters, 2014, 5, 3750-3756.	2.1	85
446	Density Functional Theory Study of Pt ₃ M Alloy Surface Segregation with Adsorbed O/OH and Pt ₃ Os as Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2014, 118, 26703-26712.	1.5	37
447	A novel cathode catalyst for aluminum-air fuel cells: Activity and durability of polytetraphenylporphyrin iron (II) absorbed on carbon black. International Journal of Hydrogen Energy, 2014, 39, 20171-20182.	3.8	39
448	Carbonization of self-assembled nanoporous hemin with a significantly enhanced activity for the oxygen reduction reaction. Faraday Discussions, 2014, 176, 393-408.	1.6	30

ARTICLE IF CITATIONS Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for 449 2.8 509 oxygen reduction and evolution reactions. Nanoscale, 2014, 6, 15080-15089. Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction. Chemical Science, 2014, 5, 3315. One-step solution-phase synthesis of Co3O4/RGO/acetylene black as a high-performance catalyst for 451 1.7 14 oxygen reduction reaction. RSC Advances, 2014, 4, 18286. A high-performance electrocatalyst for oxygen reduction based on reduced graphene oxide modified with oxide nanoparticles, nitrogen dopants, and possible metal-N-C sites. Journal of Materials Chemistry A, 2014, 2, 1631-1635. Metal (metal = Fe, Co), N codoped nanoporous carbon for efficient electrochemical oxygen reduction. 453 1.7 24 RSC Advances, 2014, 4, 37779-37785. Electronic and structural study of Pt-modified Au vicinal surfaces: a model system for $Pta \in Au$ catalysts. Physical Chemistry Chemical Physics, 2014, 16, 13329-13339. 454 1.3 Electrodeposited Ultrafine TaOx/CB Catalysts for PEFC Cathode Application: Their Oxygen Reduction 455 2.6 17 Reaction Kinetics. Electrochimica Acta, 2014, 149, 76-85. One-step, seedless wet-chemical synthesis of gold@palladium nanoflowers supported on reduced graphene oxide with enhanced electrocatalytic properties. Journal of Materials Chemistry A, 2014, 2, 5.2 456 60 . 18177-18183 Unexplained transport resistances for low-loaded fuel-cell catalyst layers. Journal of Materials 457 5.2 258 Chemistry A, 2014, 2, 17207-17211. Egg derived nitrogen-self-doped carbon/carbon nanotube hybrids as noble-metal-free catalysts for 84 oxygen reduction. Journal of Power Sources, 2014, 271, 522-529. Degradation of Fe/N/C catalysts upon high polarization in acid medium. Physical Chemistry Chemical 459 182 1.3 Physics, 2014, 16, 18454-18462. Two and three dimensional network polymers for electrocatalysis. Physical Chemistry Chemical 460 1.3 Physics, 2014, 16, 11150-11161. Graphene and its composites with nanoparticles for electrochemical energy applications. Nano Today, 461 6.2 230 2014, 9, 668-683. Ordered Hierarchically Micro- and Mesoporous Fe–N_{<i>x</i>}-Embedded Graphitic Architectures as Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Catalysis, 2014, 4, 5.5 1793-1800. Metal-Free Ketjenblack Incorporated Nitrogen-Doped Carbon Sheets Derived from Gelatin as Oxygen 463 155 4.5Reduction Catalysts. Nano Letters, 2014, 14, 1870-1876. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for 464 5.8 921 oxygen reduction. Nature Communications, 2014, 5, 4973. Conversion of polystyrene foam to a high-performance doped carbon catalyst with ultrahigh surface 465 area and hierarchical porous structures for oxygen reduction. Journal of Materials Chemistry A, 5.252 2014, 2, 12240-12246. Engineering self-assembled N-doped graphene–carbon nanotube composites towards efficient oxygen reduction electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13605-13609. 1.3

#	Article	IF	CITATIONS
467	Layer-separated distribution of nitrogen doped graphene by wrapping on carbon nitride tetrapods for enhanced oxygen reduction reactions in acidic medium. Chemical Communications, 2014, 50, 13769-13772.	2.2	24
468	Hollow nitrogen-doped carbon spheres as efficient and durable electrocatalysts for oxygen reduction. Chemical Communications, 2014, 50, 9473-9476.	2.2	88
469	Fe–N/C catalysts synthesized by heat-treatment of iron triazine carboxylic acid derivative complex for oxygen reduction reaction. RSC Advances, 2014, 4, 12168.	1.7	38
470	A high-performance electrocatalytic air cathode derived from aniline and iron for use in microbial fuel cells. RSC Advances, 2014, 4, 12789-12794.	1.7	11
471	Particle size dependence on oxygen reduction reaction activity of electrodeposited TaO _x catalysts in acidic media. Physical Chemistry Chemical Physics, 2014, 16, 895-898.	1.3	39
472	Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nature Communications, 2014, 5, 5285.	5.8	202
473	Ideal N-doped carbon nanoarchitectures evolved from fibrils for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 19765-19770.	5.2	21
474	DFT study of the oxygen reduction reaction on iron, cobalt and manganese macrocycle active sites. International Journal of Hydrogen Energy, 2014, 39, 21538-21546.	3.8	28
475	Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy and Environmental Science, 2014, 7, 1719-1724.	15.6	276
476	Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 11606-11613.	5.2	461
477	Boron-doped carbon–iron nanocomposites as efficient oxygen reduction electrocatalysts derived from carbon dioxide. Chemical Communications, 2014, 50, 6349.	2.2	43
478	MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 14064-14070.	5.2	407
479	Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chemical Communications, 2014, 50, 1469-1471.	2.2	49
480	Synthesis and oxygen reduction properties of three-dimensional sulfur-doped graphene networks. Chemical Communications, 2014, 50, 6382.	2.2	126
481	An animal liver derived non-precious metal catalyst for oxygen reduction with high activity and stability. RSC Advances, 2014, 4, 32811.	1.7	37
482	Cobalt and nitrogen co-embedded onion-like mesoporous carbon vesicles as efficient catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 11672.	5.2	112
483	Nanostructured carbon-based cathode catalysts for nonaqueous lithium–oxygen batteries. Physical Chemistry Chemical Physics, 2014, 16, 13568-13582.	1.3	104
484	Effect of iron-carbide formation on the number of active sites in Fe–N–C catalysts for the oxygen reduction reaction in acidic media. Journal of Materials Chemistry A, 2014, 2, 2663-2670.	5.2	108

#	Article	IF	CITATIONS
485	From filter paper to porous carbon composite membrane oxygen reduction catalyst. Chemical Communications, 2014, 50, 11151.	2.2	39
486	Mesoporous carbon material co-doped with nitrogen and iron (Fe–N–C): high-performance cathode catalyst for oxygen reduction reaction in alkaline electrolyte. Journal of Materials Chemistry A, 2014, 2, 8617-8622.	5.2	87
487	Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone–Wales Defect and Curvature Effect. Journal of the American Chemical Society, 2014, 136, 13629-13640.	6.6	273
488	Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2014, 320, 73-82.	3.1	30
489	Synthesis and characterization of Mn-based composite oxides with enhanced electrocatalytic activity for oxygen reduction. Journal of Materials Chemistry A, 2014, 2, 13345-13351.	5.2	17
490	Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2014, 142, 317-323.	2.6	29
491	Electrocatalysis of oxygen reduction on carbon nanotubes with different surface functional groups in acid and alkaline solutions. International Journal of Hydrogen Energy, 2014, 39, 16964-16975.	3.8	29
492	Constant-Charge Reaction Theory for Potential-Dependent Reaction Kinetics at the Solid–Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 3629-3635.	1.5	26
493	Non-precious electrocatalysts synthesized from metal–organic frameworks. Journal of Materials Chemistry A, 2014, 2, 12270.	5.2	73
494	Synthesis of Fe nanoparticles on polyaniline covered carbon nanotubes for oxygen reduction reaction. Journal of Power Sources, 2014, 272, 661-671.	4.0	42
495	ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 442-450.	15.6	719
496	Production of novel FeOOH/reduced graphene oxide hybrids and their performance as oxygen reduction reaction catalysts. Carbon, 2014, 80, 127-134.	5.4	42
497	Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 4095-4103.	15.6	537
498	A Comparison of Atomistic and Continuum Approaches to the Study of Bonding Dynamics in Electrocatalysis: Microcantilever Stress and in Situ EXAFS Observations of Platinum Bond Expansion Due to Oxygen Adsorption during the Oxygen Reduction Reaction. Analytical Chemistry, 2014, 86, 8368-8375.	3.2	12
499	Pyrolyzed Fe–N–C Composite as an Efficient Non-precious Metal Catalyst for Oxygen Reduction Reaction in Acidic Medium. ACS Catalysis, 2014, 4, 3928-3936.	5.5	291
500	Fe-N-C Electrocatalysts for Oxygen Reduction Reaction Synthesized by Using Aniline Salt and Fe 3+ /H 2 O 2 Catalytic System. Electrochimica Acta, 2014, 146, 809-818.	2.6	26
501	Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nature Communications, 2014, 5, 5253.	5.8	77
502	<scp><scp>H₂</scp></scp> and <scp><scp>O₂</scp></scp> Activation—A Remarkable Insight into Hydrogenase. Chemical Record, 2014, 14, 397-409.	2.9	31

#	ARTICLE	IF	CITATIONS
503	Monoclinic hafnium oxynitride supported on reduced graphene oxide to catalyse the oxygen reduction reaction in acidic media. Physical Chemistry Chemical Physics, 2014, 16, 20415-20419.	1.3	17
504	Copper(<scp>ii</scp>) complexes supported by click generated mixed NN, NO, and NS 1,2,3-triazole based ligands and their catalytic activity in azide–alkyne cycloaddition. Dalton Transactions, 2014, 43, 7069-7077.	1.6	33
505	One‣tep Hydrothermal Synthesis of Nitrogenâ€Doped Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reactions. Chemistry - an Asian Journal, 2014, 9, 2915-2920.	1.7	16
506	Single Crystal (Mn,Co)3O4 Octahedra for Highly Efficient Oxygen Reduction Reactions. Electrochimica Acta, 2014, 144, 31-41.	2.6	35
507	Bio-inspired highly active catalysts for oxygen reduction reaction in alkaline electrolyte. International Journal of Hydrogen Energy, 2014, 39, 12613-12619.	3.8	8
508	Ni–Mn based alloys as versatile catalyst for different electrochemical reactions. Journal of Power Sources, 2014, 269, 597-607.	4.0	18
509	Phosphate-Tolerant Oxygen Reduction Catalysts. ACS Catalysis, 2014, 4, 3193-3200.	5.5	116
512	Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts. Journal of Power Sources, 2014, 271, 87-96.	4.0	40
513	Glycerol-stabilized NaBH4 reduction at room-temperature for the synthesis of a carbon-supported PtxFe alloy with superior oxygen reduction activity for a microbial fuel cell. Electrochimica Acta, 2014, 141, 331-339.	2.6	42
514	A one-pot method to synthesize high performance multielement co-doped reduced graphene oxide catalysts for oxygen reduction. Electrochemistry Communications, 2014, 47, 49-53.	2.3	22
515	Highly durable Pt-free fuel cell catalysts prepared by multi-step pyrolysis of Fe phthalocyanine and phenolic resin. Catalysis Science and Technology, 2014, 4, 1400-1406.	2.1	42
516	High performance Pt-free cathode catalysts for polymer electrolyte membrane fuel cells prepared from widely available chemicals. Journal of Materials Chemistry A, 2014, 2, 11561-11564.	5.2	57
517	Fe-Based Metallopolymer Nanowall-Based Composites for Li–O ₂ Battery Cathode. ACS Applied Materials & Interfaces, 2014, 6, 7164-7170.	4.0	9
518	Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via ⁵⁷ Fe Mössbauer Spectroscopy and Other Techniques. Journal of the American Chemical Society, 2014, 136, 978-985.	6.6	460
519	Oxygen Reduction on Graphene–Carbon Nanotube Composites Doped Sequentially with Nitrogen and Sulfur. ACS Catalysis, 2014, 4, 2734-2740.	5.5	174
520	Electrospun Iron–Polyaniline–Polyacrylonitrile Derived Nanofibers as Non–Precious Oxygen Reduction Reaction Catalysts for PEM Fuel Cells. Electrochimica Acta, 2014, 139, 111-116.	2.6	66
521	Hierarchically porous N-doped carbon nanoflakes: Large-scale facile synthesis and application as an oxygen reduction reaction electrocatalyst with high activity. Carbon, 2014, 78, 60-69.	5.4	44
522	Ordered mesoporous Fe (or Co)–N–graphitic carbons as excellent non-precious-metal electrocatalysts for oxygen reduction. Carbon, 2014, 78, 49-59.	5.4	84

ARTICLE IF CITATIONS # Noble-Metal-Free Fe–N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline 523 6.6 941 and Acidic Conditions. Journal of the American Chemical Society, 2014, 136, 11027-11033. Structuring Porous Ironâ€Nitrogenâ€Doped Carbon in a Core/Shell Geometry for the Oxygen Reduction 524 10.2 Reaction. Advanced Energy Materials, 2014, 4, 1400840. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. 525 2.8 229 Nanoscale, 2014, 6, 11336-11343. Possible Oxygen Reduction Reactions for Graphene Edges from First Principles. Journal of Physical Chemistry Ć, 2014, 118, 17616-17625. CNTs@Fe–N–C core–shell nanostructures as active electrocatalyst for oxygen reduction. Journal of 527 5.2 47 Materials Chemistry A, 2014, 2, 11768. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion 528 15.6 1,151 applications. Energy and Environmental Science, 2014, 7, 3519-3542. Biomoleculeâ€Doped PEDOT with Threeâ€Dimensional Nanostructures as Efficient Catalyst for Oxygen 529 5.2 40 Reduction Reaction. Small, 2014, 10, 2087-2095. Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction. Journal of 530 5.2 Materials Chemistry A, 2014, 2, 15704-15716. Polyaniline nanosheet derived B/N co-doped carbon nanosheets as efficient metal-free catalysts for 531 5.2 124 oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 7742. Activation of oxygen evolving perovskites for oxygen reduction by functionalization with 2.2 Fe–N_x/C groups. Chemical Communications, 2014, 50, 14760-14762. Enhanced Hydrogen Dissociation by Individual Co Atoms Supported on Ag(111). Journal of Physical 533 1.5 14 Chemistry Ć, 2014, 118, 5827-5832. Highly Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous Nitrogen-Doped Carbon. 534 5.5 351 AČS Ćatalysis, 2014, 4, 3749-3754. Metalâ€"Nitrogen Doping of Mesoporous Carbon/Graphene Nanosheets by Selfâ€Templating for Oxygen 535 3.6 52 Reduction Electrocatalysts. ChemSusChem, 2014, 7, 3002-3006. Effects of microstructural functional polyaniline layers on SPEEK/HPW proton exchange membranes. 1.3 46 Journal of Applied Polymer Science, 2014, 131, . Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for 537 15.6 845 hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 1919-1923. Morphology and composition controlled platinum–cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst. Nano Energy, 2014, 10, 135-143. Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of 539 5.5215 O₂ on Fe/N-Doped Graphene. ACS Catalysis, 2014, 4, 4170-4177. Theoretical insight into highly durable iron phthalocyanine derived non-precious catalysts for 540 5.2 oxygen reduction reactions. Journal of Materials Chemistry A, 2014, 2, 19707-19716.

#	Article	IF	CITATIONS
541	Embedded cobalt oxide nano particles on carbon could potentially improve oxygen reduction activity of cobalt phthalocyanine and its application in microbial fuel cells. RSC Advances, 2014, 4, 44065-44072.	1.7	22
542	Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 9079.	5.2	61
543	Role of two carbon phases in oxygen reduction reaction on the Co–PPy–C catalyst. International Journal of Hydrogen Energy, 2014, 39, 15887-15893.	3.8	23
545	Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy and Environmental Science, 2014, 7, 1212-1249.	15.6	559
546	Flexible nitrogen-doped graphene/carbon nanotube/Co ₃ O ₄ paper and its oxygen reduction activity. Nanoscale, 2014, 6, 7534-7541.	2.8	75
548	Effect of transition metal (M: Fe, Co or Mn) for the oxygen reduction reaction with non-precious metal catalysts in acid medium. International Journal of Hydrogen Energy, 2014, 39, 5309-5318.	3.8	73
549	Nitrogen-Doped Graphene Nanoribbons as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. ACS Applied Materials & Interfaces, 2014, 6, 4214-4222.	4.0	156
550	A density functional theory study of catalytic sites for oxygen reduction in Fe/N/C catalysts used in H2/O2 fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 13654.	1.3	123
553	Investigation of Non-Precious Metal CoN ₄ -Based Oxygen Reduction Catalyst by Electrochemical and X-ray Absorption Spectroscopy Techniques. Journal of the Electrochemical Society, 2014, 161, H155-H160.	1.3	12
554	Reaction Pathway for Oxygen Reduction on FeN ₄ Embedded Graphene. Journal of Physical Chemistry Letters, 2014, 5, 452-456.	2.1	307
555	A comparison of N-containing carbon nanostructures (CN) and N-coordinated iron–carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media. Journal of Catalysis, 2014, 317, 30-43.	3.1	98
556	Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Advances, 2014, 4, 28195.	1.7	143
557	The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. Journal of Power Sources, 2014, 269, 225-235.	4.0	73
558	Mesoporous Mn3O4–CoO core–shell spheres wrapped by carbon nanotubes: a high performance catalyst for the oxygen reduction reaction and CO oxidation. Journal of Materials Chemistry A, 2014, 2, 3794.	5.2	81
559	Recent progress on graphene-based hybrid electrocatalysts. Materials Horizons, 2014, 1, 379-399.	6.4	303
560	Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Research, 2014, 7, 1054-1064.	5.8	72
561	Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon, 2014, 73, 361-370.	5.4	251
562	Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts. Angewandte Chemie - International Edition, 2014, 53, 3675-3679.	7.2	783

#	Article	IF	CITATIONS
563	A novel iron (â¡) polyphthalocyanine catalyst assembled on graphene with significantly enhanced performance for oxygen reduction reaction in alkaline medium. Journal of Power Sources, 2014, 268, 269-278.	4.0	47
564	Intrinsic Relationship between Enhanced Oxygen Reduction Reaction Activity and Nanoscale Work Function of Doped Carbons. Journal of the American Chemical Society, 2014, 136, 8875-8878.	6.6	360
565	Structure of Fe–N _{<i>x</i>} –C Defects in Oxygen Reduction Reaction Catalysts from First-Principles Modeling. Journal of Physical Chemistry C, 2014, 118, 14388-14393.	1.5	167
566	Highâ€Rate Oxygen Electroreduction over Graphiticâ€N Species Exposed on 3D Hierarchically Porous Nitrogenâ€Doped Carbons. Angewandte Chemie - International Edition, 2014, 53, 9503-9507.	7.2	355
567	Varying N content and N/C ratio of the nitrogen precursor to synthesize highly active Co-Nx/C non-precious metal catalyst. International Journal of Hydrogen Energy, 2014, 39, 14768-14776.	3.8	48
568	Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catalysis, 2014, 4, 3797-3805.	5.5	351

569 Spectroelectrochemical study of the electrosynthesis of Pt

#	Article	IF	CITATIONS
582	Nitrogen-containing carbon nanostructures: A promising carrier for catalysis of ammonia borane dehydrogenation. Carbon, 2014, 68, 462-472.	5.4	27
583	Nitrogen doping of ash-free coal and effect of ash components on properties and oxygen reduction reaction in fuel cell. Fuel, 2014, 126, 134-142.	3.4	22
584	Effects of structures of pyrolyzed corrin, corrole and porphyrin on oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 934-941.	3.8	25
585	High oxygen reduction activity of few-walled carbon nanotubes with low nitrogen content. Applied Catalysis B: Environmental, 2014, 158-159, 233-241.	10.8	62
586	Heteroatom-doped carbon nanorods with improved electrocatalytic activity toward oxygen reduction in an acidic medium. Carbon, 2014, 69, 132-141.	5.4	43
587	Influence of pyrolyzing atmosphere on the catalytic activity and structure of Co-based catalysts for oxygen reduction reaction. Electrochimica Acta, 2014, 115, 1-9.	2.6	12
588	Simultaneous formation of nitrogen and sulfur-doped transition metal catalysts for oxygen reduction reaction through pyrolyzing carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt. Journal of Power Sources, 2014, 266, 88-98.	4.0	41
589	Influence of pre-treatment on the catalytic activity of carbon and its Co-based catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 3198-3210.	3.8	12
590	Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media. Journal of Power Sources, 2014, 265, 246-253.	4.0	59
591	Nitrogen- and oxygen-containing hierarchical porous carbon frameworks for high-performance supercapacitors. Electrochimica Acta, 2014, 134, 471-477.	2.6	48
592	Influence of nitrogen and iron precursors on the synthesis of FeNx/carbons electrocatalysts toward oxygen reduction reaction in acid solution. Electrochimica Acta, 2014, 135, 147-153.	2.6	19
593	Fe–N bonding in a carbon nanotube–graphene complex for oxygen reduction: an XAS study. Physical Chemistry Chemical Physics, 2014, 16, 15787.	1.3	84
594	Graphene/Grapheneâ€Tube Nanocomposites Templated from Cageâ€Containing Metalâ€Organic Frameworks for Oxygen Reduction in Li–O ₂ Batteries. Advanced Materials, 2014, 26, 1378-1386.	11.1	398
595	Hybrid of Iron Nitride and Nitrogenâ€Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2014, 24, 2930-2937.	7.8	391
596	Catalytic Mechanisms of Sulfur-Doped Graphene as Efficient Oxygen Reduction Reaction Catalysts for Fuel Cells. Journal of Physical Chemistry C, 2014, 118, 3545-3553.	1.5	373
597	Highly Efficient Nonâ€Precious Metal Electrocatalysts Prepared from Oneâ€Pot Synthesized Zeolitic Imidazolate Frameworks. Advanced Materials, 2014, 26, 1093-1097.	11.1	296
598	Nitrogen and Phosphorus Dualâ€Doped Hierarchical Porous Carbon Foams as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reactions. Chemistry - A European Journal, 2014, 20, 3106-3112.	1.7	179
599	High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. Journal of Materials Chemistry A, 2014, 2, 8859.	5.2	95

#	ARTICLE	IF	CITATIONS
600	Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities. Journal of the American Chemical Society, 2014, 136, 9070-9077.	6.6	288
601	A density functional theory study of oxygen reduction reaction on non-PGM Fe–Nx–C electrocatalysts. Physical Chemistry Chemical Physics, 2014, 16, 13800.	1.3	170
602	Strongly Coupled NiCo ₂ O ₄ â€rGO Hybrid Nanosheets as a Methanolâ€Tolerant Electrocatalyst for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 2408-2412.	11.1	283
603	Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today, 2014, 9, 324-343.	6.2	369
604	Recent advances in zinc–air batteries. Chemical Society Reviews, 2014, 43, 5257-5275.	18.7	1,882
606	A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle. Renewable and Sustainable Energy Reviews, 2014, 37, 627-633.	8.2	93
607	Electrochemical Energy Engineering: A New Frontier of Chemical Engineering Innovation. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 429-454.	3.3	64
608	Enhanced Oxygen Reduction Activities of Pt Supported on Nitrogen-Doped Carbon Nanocapsules. Electrochimica Acta, 2014, 137, 41-48.	2.6	20
609	Electrosynthesis of Co/PPy nanocomposites for ORR electrocatalysis: a study based on quasi-in situ X-ray absorption, fluorescence and in situ Raman spectroscopy. Electrochimica Acta, 2014, 137, 535-545.	2.6	39
610	Highly stable Ti–Co–Phen/C catalyst as the cathode for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 10253-10257.	3.8	3
611	High-performance doped carbon electrocatalyst derived from soybean biomass and promoted by zinc chloride. International Journal of Hydrogen Energy, 2014, 39, 10128-10134.	3.8	53
612	Platinum–cobalt catalysts for the oxygen reduction reaction in high temperature proton exchange membrane fuel cells – Long term behavior under ex-situ and in-situ conditions. Journal of Power Sources, 2014, 266, 313-322.	4.0	43
613	The value of mixed conduction for oxygen electroreduction on graphene–chitosan composites. Carbon, 2014, 73, 234-243.	5.4	14
614	One-pot Synthesis of Gold–Platinum Core–Shell Nanoparticles on Polybenzimidazole-decorated Carbon Nanotubes. Chemistry Letters, 2014, 43, 1737-1739.	0.7	4
615	How Nanotechnologies Can Enhance Sustainability in the Agrifood Sector. , 2014, , 74-93.		2
616	4.4・5æ—é•移金属é…,化物ã,'ベーã,¹ã•ã⊷ãŸPEFC甓éžè²′金属é…,ç′é,"å…f触媒ã₽ç"ç©¶é⊸	çð‼& Elect	rochemistry
617	A carbonaceous thin film containing N-coordinated Fe and Co with catalytic activity for oxygen reduction. Tanso, 2014, 2014, 165-168.	0.1	2
621	An In Situ Sourceâ€Templateâ€Interface Reaction Route to 3D Nitrogenâ€Doped Hierarchical Porous Carbon as Oxygen Reduction Electrocatalyst. Advanced Materials Interfaces, 2015, 2, 1500199.	1.9	39

#	Article	IF	CITATIONS
622	Future Catalyst Approaches for Electrochemical Energy Storage and Conversion. Electrochemical Energy Storage and Conversion, 2015, , 55-75.	0.0	0
627	A simple preparation of very high methanol tolerant cathode electrocatalyst for direct methanol fuel cell based on polymer-coated carbon nanotube/platinum. Scientific Reports, 2015, 5, 12236.	1.6	55
628	3D coral-like nitrogen-sulfur co-doped carbon-sulfur composite for high performance lithium-sulfur batteries. Scientific Reports, 2015, 5, 13340.	1.6	104
629	Electrospun interconnected Fe-N/C nanofiber networks as efficient electrocatalysts for oxygen reduction reaction in acidic media. Scientific Reports, 2015, 5, 17396.	1.6	65
630	Non-precious metal catalysts with TBAH as carbon source for ORR. Emerging Materials Research, 2015, 4, 76-80.	0.4	1
632	Electro-Catalytic Oxygen Reduction Activity of Graphene-Covered Nickel Particles Prepared by Microwave-assisted Catalytic Decomposition. Electrochemistry, 2015, 83, 339-341.	0.6	6
634	Ultra high performance N-doped carbon catalysts for the ORR derived from the reaction between organic-nitrate anions inside a layered nanoreactor. RSC Advances, 2015, 5, 92577-92584.	1.7	11
635	Nickel Cobaltite Nanostructures for Photoelectric and Catalytic Applications. Small, 2015, 11, 4267-4283.	5.2	127
636	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	7.8	490
640	Oxygen Reduction Mediated by Single Nanodroplets Containing Attomoles of Vitaminâ€B ₁₂ : Electrocatalytic Nanoâ€Impacts Method. Angewandte Chemie - International Edition, 2015, 54, 7082-7085.	7.2	54
641	Sâ€Đoping of an Fe/N/C ORR Catalyst for Polymer Electrolyte Membrane Fuel Cells with High Power Density. Angewandte Chemie - International Edition, 2015, 54, 9907-9910.	7.2	396
642	Stability of Feâ€Nâ€C Catalysts in Acidic Medium Studied by Operando Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 12753-12757.	7.2	321
643	Synthesis of Mesoporous FeN/C Materials with High Catalytic Performance in the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2937-2944.	1.8	20
644	Nitrogenâ€Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 3808-3817.	1.8	69
645	Electrocatalytic Dioxygen Reduction by Carbon Electrodes Noncovalently Modified with Iron Porphyrin Complexes: Enhancements from a Single Proton Relay. Chemistry - A European Journal, 2015, 21, 18072-18075.	1.7	43
648	Ultrafine Molybdenum Carbide Nanoparticles Composited with Carbon as a Highly Active Hydrogenâ€Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2015, 54, 14723-14727.	7.2	396
649	Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogenâ€Ðoped Hollow Carbon Spheres for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1826-1832.	1.8	62
650	Electrodeposition and Ageing of Mnâ€Based Binary Composite Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2015, 2, 1541-1550.	1.7	18

#	Article	IF	CITATIONS
651	A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1813-1820.	1.7	14
652	Hybrid Organic/Inorganic Nanostructures for Highly Sensitive Photoelectrochemical Detection of Dissolved Oxygen in Aqueous Media. Advanced Functional Materials, 2015, 25, 4531-4538.	7.8	64
653	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie, 2015, 127, 8297-8301.	1.6	142
655	Transition Metal (Fe, Co and Ni) Carbide and Nitride Nanomaterials: Structure, Chemical Synthesis and Applications. ChemNanoMat, 2015, 1, 376-398.	1.5	71
656	Structural Origin of the Activity in Mn ₃ O ₄ –Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 3331-3339.	3.6	56
657	Reduction of Charge and Discharge Polarization by Cobalt Nanoparticlesâ€Embedded Carbon Nanofibers for Li–O ₂ Batteries. ChemSusChem, 2015, 8, 2496-2502.	3.6	23
658	Preparation of carbon alloy catalysts from humic acid and their activities for the oxygen reduction reaction. Tanso, 2015, 2015, 94-100.	0.1	1
659	Design of Oxide Cathode Catalysts for Polymer Electrolyte Fuel Cells. Hyomen Kagaku, 2015, 36, 339-344.	0.0	0
660	Defectâ€Rich CoP/Nitrogenâ€Doped Carbon Composites Derived from a Metal–Organic Framework: Highâ€Performance Electrocatalysts for the Hydrogen Evolution Reaction. ChemCatChem, 2015, 7, 1920-1925.	1.8	88
661	Synergistic Effect between Metal–Nitrogen–Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Waterâ€Oxidation Performance. Angewandte Chemie - International Edition, 2015, 54, 10530-10534.	7.2	301
663	Scalable Production of Edgeâ€Functionalized Graphene Nanoplatelets via Mechanochemical Ballâ€Milling. Advanced Functional Materials, 2015, 25, 6961-6975.	7.8	135
664	Threeâ€Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction. Advanced Energy Materials, 2015, 5, 1500936.	10.2	168
665	Catalysis of Vanadium Ion Redox Reactions on Carbonaceous Material with Metal–N ₄ Sites. ChemCatChem, 2015, 7, 2305-2308.	1.8	11
666	Oxygen Reduction Mediated by Single Nanodroplets Containing Attomoles of Vitaminâ€B ₁₂ : Electrocatalytic Nanoâ€Impacts Method. Angewandte Chemie, 2015, 127, 7188-7191.	1.6	8
668	Metalâ€Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO ₂ Electroreduction to CO and Hydrocarbons. Angewandte Chemie - International Edition, 2015, 54, 10758-10762.	7.2	504
669	Order of Activity of Nitrogen, Iron Oxide, and FeN _{<i>x</i>} Complexes towards Oxygen Reduction in Alkaline Medium. ChemSusChem, 2015, 8, 4016-4021.	3.6	26
670	Sulfurâ€Doped Carbon Aerogel as a Metalâ€Free Oxygen Reduction Catalyst. ChemCatChem, 2015, 7, 2924-2931.	1.8	50
671	Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions. ChemCatChem, 2015, 7, 2788-2805.	1.8	83

#	Article	IF	CITATIONS
672	Chitosan Wasteâ€Derived Co and N Coâ€doped Carbon Electrocatalyst for Efficient Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1806-1812.	1.7	49
673	Nitrogenâ€Doped Carbon with Nonâ€Precious Metals as Efficient Catalyst for Oxygen Reduction and Na ₂ CO ₃ Electrolysis. ChemElectroChem, 2015, 2, 2089-2095.	1.7	5
674	The Effect of Different Phosphorus Chemical States on an Onionâ€like Carbon Surface for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 2872-2876.	3.6	29
675	A Discussion on the Activity Origin in Metalâ€Free Nitrogenâ€Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem, 2015, 8, 2772-2788.	3.6	111
676	From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Advanced Materials, 2015, 27, 5010-5016.	11.1	1,224
678	On the Role of Metals in Nitrogenâ€Doped Carbon Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 10102-10120.	7.2	583
679	Iron Carbide Nanoparticles Encapsulated in Mesoporous Feâ€Nâ€Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie - International Edition, 2015, 54, 8179-8183.	7.2	544
680	Coordination Chemistry of [Co(acac) ₂] with Nâ€Doped Graphene: Implications for Oxygen Reduction Reaction Reactivity of Organometallic Coâ€O ₄ â€N Species. Angewandte Chemie - International Edition, 2015, 54, 12622-12626.	7.2	93
682	Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Catalysts, 2015, 5, 1034-1045.	1.6	23
683	Recent Progress on Fe/N/C Electrocatalysts for the Oxygen Reduction Reaction in Fuel Cells. Catalysts, 2015, 5, 1167-1192.	1.6	68
684	Titanium-Niobium Oxides as Non-Noble Metal Cathodes for Polymer Electrolyte Fuel Cells. Catalysts, 2015, 5, 1289-1303.	1.6	20
685	Effect of ZIF-8 Crystal Size on the O2 Electro-Reduction Performance of Pyrolyzed Fe–N–C Catalysts. Catalysts, 2015, 5, 1333-1351.	1.6	42
686	Surfactant-Template Preparation of Polyaniline Semi-Tubes for Oxygen Reduction. Catalysts, 2015, 5, 1202-1210.	1.6	15
687	A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	7
689	A review of cathode materials and structures for rechargeable lithium–air batteries. Energy and Environmental Science, 2015, 8, 2144-2198.	15.6	415
690	Enhancement in Kinetics of the Oxygen Reduction Reaction on a Nitrogen-Doped Carbon Catalyst by Introduction of Iron via Electrochemical Methods. Langmuir, 2015, 31, 5529-5536.	1.6	37
691	Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon, 2015, 93, 130-142.	5.4	130
692	Cobalt Corrole on Carbon Nanotube as a Synergistic Catalyst for Oxygen Reduction Reaction in Acid Media. Electrochimica Acta, 2015, 171, 81-88.	2.6	64

#	Article	IF	CITATIONS
693	A new class of electroactive Fe- and P-functionalized graphene for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 11031-11039.	5.2	96
694	Controllable synthesis of porous iron–nitrogen–carbon nanofibers with enhanced oxygen reduction electrocatalysis in acidic medium. RSC Advances, 2015, 5, 50324-50327.	1.7	3
695	Applications of neutron imaging and future possibilities. Neutron News, 2015, 26, 19-22.	0.1	13
696	Effect of acid-leaching on carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C) for oxygen reduction reaction in alkaline electrolyte: active site studies. RSC Advances, 2015, 5, 50344-50352.	1.7	10
697	Nitrogen-Doped Carbon Nanotubes and Graphene Nanohybrid for Oxygen Reduction Reaction in Acidic, Alkaline and Neutral Solutions. Journal of Nano Research, 2015, 30, 50-58.	0.8	7
698	Dual-site polydopamine spheres/CoFe layered double hydroxides for electrocatalytic oxygen reduction reaction. Electrochimica Acta, 2015, 170, 248-255.	2.6	31
699	15N solid-state nuclear magnetic resonance study of pyrolyzed metal-polyaniline cathode catalysts for oxygen reduction in fuel cells. Journal of Power Sources, 2015, 290, 8-13.	4.0	9
700	Graphene Quantum Dots Supported by Graphene Nanoribbons with Ultrahigh Electrocatalytic Performance for Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 7588-7591.	6.6	262
701	MIL-100 derived nitrogen-embodied carbon shells embedded with iron nanoparticles. Nanoscale, 2015, 7, 10817-10822.	2.8	40
	,		
702	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463.	1.7	7
702 703	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for	1.7	7 91
	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463.	1.7	
703	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463. Graphene Oxide. , 2015, , .	1.7	91
703 704	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ –PANI–rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463. Graphene Oxide. , 2015, , . GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction		91 0
703 704 705	Electrocatalytic activity of Mn/Cu doped Fe ₂ 0 ₃ â€"PANIâ€"rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463. Graphene Oxide., 2015, , . GO/rGO as Advanced Materials for Energy Storage and Conversion., 2015, , 97-127. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metalâ€" organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chemical Communications, 2015, 51, 10479-10482. Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol	2.2	91 0 116
703 704 705 706	Electrocatalytic activity of Mn/Cu doped Fe ₂ O ₃ â€"PANIâ€"rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463. Graphene Oxide., 2015, , . GO/rGO as Advanced Materials for Energy Storage and Conversion., 2015, , 97-127. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metalâ€" organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chemical Communications, 2015, 51, 10479-10482. Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells. Electrochimica Acta, 2015, 164, 235-242. pH Effect on Electrochemistry of Nitrogen-Doped Carbon Catalyst for Oxygen Reduction Reaction.	2.2 2.6	91 0 116 49
 703 704 705 706 707 	Electrocatalytic activity of Mn/Cu doped Fe ₂ 0 ₃ â€"PANIâ€"rGO composites for fuel cell applications. RSC Advances, 2015, 5, 39455-39463. Graphene Oxide. , 2015, , . GO/rGO as Advanced Materials for Energy Storage and Conversion. , 2015, , 97-127. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metalâ€" organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chemical Communications, 2015, 51, 10479-10482. Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells. Electrochimica Acta, 2015, 164, 235-242. pH Effect on Electrochemistry of Nitrogen-Doped Carbon Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 4325-4332. Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating	2.2 2.6 5.5	91 0 116 49 142

#	Article	IF	CITATIONS
711	Nitrogen-doped Graphene-Supported Transition-metals Carbide Electrocatalysts for Oxygen Reduction Reaction. Scientific Reports, 2015, 5, 10389.	1.6	77
712	Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE. Electrochimica Acta, 2015, 182, 963-970.	2.6	34
713	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
714	Hierarchical Nanostructured Pt ₈ Ti-TiO ₂ /C as an Efficient and Durable Anode Catalyst for Direct Methanol Fuel Cells. ACS Catalysis, 2015, 5, 7321-7327.	5.5	37
715	Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano, 2015, 9, 12496-12505.	7.3	499
716	Atomically thin MoSe ₂ /graphene and WSe ₂ /graphene nanosheets for the highly efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 24397-24404.	5.2	106
717	Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage. 2D Materials, 2015, 2, 044001.	2.0	69
718	Carboxylated, Feâ€Filled Multiwalled Carbon Nanotubes as Versatile Catalysts for O ₂ Reduction and H ₂ Evolution Reactions at Physiological pH. Chemistry - A European Journal, 2015, 21, 12769-12777.	1.7	25
719	An oxygen reduction sensor based on a novel type of porous carbon composite membrane electrode. Chinese Chemical Letters, 2015, 26, 1322-1326.	4.8	5
720	High surface area porous carbon for ultracapacitor application by pyrolysis of polystyrene containing pendant carboxylic acid groups prepared via click chemistry. Materials Today Communications, 2015, 4, 166-175.	0.9	14
721	Cheap carbon black-based high-performance electrocatalysts for oxygen reduction reaction. Chemical Communications, 2015, 51, 1972-1975.	2.2	55
722	Nitrogen- and Phosphorus-Doped Biocarbon with Enhanced Electrocatalytic Activity for Oxygen Reduction. ACS Catalysis, 2015, 5, 920-927.	5.5	139
723	Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 6195-6206.	1.7	63
724	Origins for the Synergetic Effects of AuCu ₃ in Catalysis for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 907-912.	1.5	13
725	Homogeneous deposition-assisted synthesis of iron–nitrogen composites on graphene as highly efficient non-precious metal electrocatalysts for microbial fuel cell power generation. Journal of Power Sources, 2015, 278, 773-781.	4.0	59
726	N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon, 2015, 86, 108-117.	5.4	145
727	Spectroscopic studies of heat-treated FeNxCy/C involved in electrochemical oxygen reduction under acid media. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 139, 313-320.	2.0	2
728	Anchoring Cobalt Nanocrystals through the Plane of Graphene: Highly Integrated Electrocatalyst for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 544-549.	3.2	95

#	Article	IF	CITATIONS
729	Covalent Entrapment of Cobalt–Iron Sulfides in N-Doped Mesoporous Carbon: Extraordinary Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Interfaces, 2015, 7, 1207-1218.	4.0	281
730	Nitrogen-doped active carbon as a metal-free catalyst for acetylene hydrochlorination. RSC Advances, 2015, 5, 7461-7468.	1.7	61
731	Metalâ€Catalystâ€Free Carbohydrazide Fuel Cells with Threeâ€Dimensional Graphene Anodes. ChemSusChem, 2015, 8, 1147-1150.	3.6	27
732	NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 280, 640-648.	4.0	112
733	Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained from the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors. Electrochimica Acta, 2015, 159, 184-197.	2.6	129
734	Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 162, 224-229.	2.6	11
735	Carbonaceous Oxygen Reduction Catalyst Formed from Phthalonitrile Derivatives Using Cobalt Chloride as Template Source. Journal of the Electrochemical Society, 2015, 162, F442-F448.	1.3	2
736	Synthesis and electromagnetic, microwave absorbing properties of polyaniline/graphene oxide/Fe ₃ O ₄ nanocomposites. RSC Advances, 2015, 5, 19345-19352.	1.7	72
737	Promotional effect of phosphorus doping on the activity of the Fe-N/C catalyst for the oxygen reduction reaction. Electrochimica Acta, 2015, 155, 335-340.	2.6	50
738	Surfactant-free synthesis of coral-like platinum nanochains for oxygen reduction reaction. Electrochimica Acta, 2015, 157, 101-107.	2.6	3
739	Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy, 2015, 12, 785-793.	8.2	167
740	Singleâ€5hell Carbonâ€Encapsulated Iron Nanoparticles: Synthesis and High Electrocatalytic Activity for Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 4535-4538.	7.2	268
741	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society Reviews, 2015, 44, 2060-2086.	18.7	4,323
742	Grapheneâ€Supported Substoichiometric Sodium Tantalate as a Methanolâ€Tolerant, Nonâ€Nobleâ€Metal Catalyst for the Electroreduction of Oxygen. ChemCatChem, 2015, 7, 911-915.	1.8	29
743	Graphene Polymer Nanocomposites for Fuel Cells. , 2015, , 91-130.		3
744	The role of iron in the preparation and oxygen reduction reaction activity of nitrogen-doped carbon. Chemical Communications, 2015, 51, 2450-2453.	2.2	69
745	An efficient electrocatalyst for oxygen reduction reaction derived from a Co-porphyrin-based covalent organic framework. Electrochemistry Communications, 2015, 52, 53-57.	2.3	103
746	Synthesis–structure–performance correlation for poly-aniline–Me–C non-precious metal cathode based on mesoporous carbon catalysts for oxygen reduction reaction in low temperature fuel cells. Renewable Energy, 2015, 77, 558-570.	4.3	14

#	Article	IF	CITATIONS
747	Influence of the reaction temperature on the oxygen reduction reaction on nitrogen-doped carbon nanotube catalysts. Catalysis Today, 2015, 249, 236-243.	2.2	22
748	Original Mechanochemical Synthesis of Non-Platinum Group Metals Oxygen Reduction Reaction Catalysts Assisted by Sacrificial Support Method. Electrochimica Acta, 2015, 179, 154-160.	2.6	78
749	Facile Synthesis of Carbon Supported Pd ₃ Au@Super-Thin Pt Core/Shell Electrocatalyst with a Remarkable Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2015, 119, 4052-4061.	1.5	20
750	Alloyed Co–Mo Nitride as High-Performance Electrocatalyst for Oxygen Reduction in Acidic Medium. ACS Catalysis, 2015, 5, 1857-1862.	5.5	172
751	Bamboo-like Carbon Nanotube/Fe ₃ C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction. Journal of the American Chemical Society, 2015, 137, 1436-1439.	6.6	786
752	Catalytic reaction on FeN4/C site of nitrogen functionalized carbon nanotubes as cathode catalyst for hydrogen fuel cells. Catalysis Communications, 2015, 62, 79-82.	1.6	13
753	High Surface Iron/Cobaltâ€Containing Nitrogenâ€Doped Carbon Aerogels as Nonâ€Precious Advanced Electrocatalysts for Oxygen Reduction. ChemElectroChem, 2015, 2, 584-591.	1.7	63
754	From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction. Dalton Transactions, 2015, 44, 6748-6754.	1.6	80
755	A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. Journal of Materials Chemistry A, 2015, 3, 1410-1416.	5.2	73
756	Enhancements of Catalyst Distribution and Functioning Upon Utilization of Conducting Polymers as Supporting Matrices in DMFCs: A Review. Polymer Reviews, 2015, 55, 1-56.	5.3	74
757	Nitrogenâ€Đoped Annealed Nanodiamonds with Varied sp ² /sp ³ Ratio as Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 2840-2845.	1.8	38
758	Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells. Electrochimica Acta, 2015, 158, 175-186.	2.6	114
759	Boron- and Nitrogen-Substituted Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction Reaction. Chemistry of Materials, 2015, 27, 1181-1186.	3.2	219
760	Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015, 44, 2168-2201.	18.7	1,858
761	CMK3/graphene-N-Co – a low-cost and high-performance catalytic system. Journal of Materials Chemistry A, 2015, 3, 2978-2984.	5.2	22
762	Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy, 2015, 80, 509-521.	4.5	181
763	Polymer Electrolyte Membrane Fuel Cells: Role of Carbon Nanotubes/Graphene in Cathode Catalysis. , 2015, , 361-390.		4
764	Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. Journal of Materials Chemistry A, 2015, 3, 6340-6350.	5.2	100

#	Article	IF	CITATIONS
766	Sponge-like carbon containing nitrogen and iron provides a non-precious oxygen reduction catalyst. Journal of Solid State Electrochemistry, 2015, 19, 1181-1186.	1.2	6
767	Efficient Bifunctional Fe/C/N Electrocatalysts for Oxygen Reduction and Evolution Reaction. Journal of Physical Chemistry C, 2015, 119, 2583-2588.	1.5	150
768	Fog-like fluffy structured N-doped carbon with a superior oxygen reduction reaction performance to a commercial Pt/C catalyst. Nanoscale, 2015, 7, 3780-3785.	2.8	34
769	Oxygen reduction reaction on neighboring Fe–N ₄ and quaternary-N sites of pyrolized Fe/N/C catalyst. Physical Chemistry Chemical Physics, 2015, 17, 3059-3071.	1.3	48
770	Nitrogen-doped Fe/Fe ₃ C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chemical Communications, 2015, 51, 2710-2713.	2.2	377
771	O2 Dissociation on M@Pt Core–Shell Particles for 3d, 4d, and 5d Transition Metals. Journal of Physical Chemistry C, 2015, 119, 11031-11041.	1.5	37
772	Properties of Pyrolyzed Carbon-Supported Cobalt-Polypyrrole as Electrocatalyst toward Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2015, 162, F359-F365.	1.3	11
773	Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. Journal of Materials Chemistry A, 2015, 3, 4361-4367.	5.2	47
774	Effect of N and S co-doping of multiwalled carbon nanotubes for the oxygen reduction. Electrochimica Acta, 2015, 157, 158-165.	2.6	54
775	N-doped graphitic layer encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline media. Nanoscale, 2015, 7, 5607-5611.	2.8	53
776	Activity of Co–N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions. Journal of Power Sources, 2015, 278, 296-307.	4.0	73
778	Controlling the Nitrogen Content of Metal-Nitrogen-Carbon Based Non-Precious-Metal Electrocatalysts via Selenium Addition. Journal of the Electrochemical Society, 2015, 162, F475-F482.	1.3	28
779	Fe–P: A New Class of Electroactive Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 3165-3168.	6.6	287
780	Varying the morphology of Fe-N-C electrocatalysts by templating Iron Phthalocyanine precursor with different porous SiO 2 to promote the Oxygen Reduction Reaction. Electrochimica Acta, 2015, 177, 43-50.	2.6	51
781	Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 6136-6142.	2.8	269
782	Nitrogen-doped carbon-TiO 2 composite as support of Pd electrocatalyst for formic acid oxidation. Journal of Power Sources, 2015, 284, 186-193.	4.0	35
783	Synthesis of Nanostructured Carbon through Ionothermal Carbonization of Common Organic Solvents and Solutions. Angewandte Chemie - International Edition, 2015, 54, 5507-5512.	7.2	70
784	New Approach to Fully Ordered fct-FePt Nanoparticles for Much Enhanced Electrocatalysis in Acid. Nano Letters, 2015, 15, 2468-2473.	4.5	385

#	Article	IF	CITATIONS
785	A Pt-free Electrocatalyst Based on Pyrolized Vinazene-Carbon Composite for Oxygen Reduction Reaction. Electrochimica Acta, 2015, 161, 305-311.	2.6	14
786	Oxygen Reduction Nanocomposite Electrocatalysts Based on Polyindole, Cobalt, and Acetylene Black. Theoretical and Experimental Chemistry, 2015, 50, 371-377.	0.2	3
787	Effect of boron–nitrogen bonding on oxygen reduction reaction activity of BN Co-doped activated porous carbons. RSC Advances, 2015, 5, 24661-24669.	1.7	39
788	Enhanced electrocatalytic activity of PANI and CoFe 2 O 4 /PANI composite supported on graphene for fuel cell applications. Journal of Power Sources, 2015, 284, 383-391.	4.0	47
789	Effect of Doping with Nickel Ions on the Electrical Properties of Poly(aniline-co-o-anthranilic acid) and Doped Copolymer as Precursor of NiO Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 955-963.	1.9	27
790	Platinum Multicubes Prepared by Ni ²⁺ â€Mediated Shape Evolution Exhibit High Electrocatalytic Activity for Oxygen Reduction. Angewandte Chemie - International Edition, 2015, 54, 5666-5671.	7.2	84
791	Nanostructured Carbon Materials for Energy Conversion and Storage. RSC Catalysis Series, 2015, , 445-506.	0.1	0
792	Doped Nanostructured Carbon Materials as Catalysts. RSC Catalysis Series, 2015, , 268-311.	0.1	3
793	Ultrathin YSZ Coating on Pt Cathode for High Thermal Stability and Enhanced Oxygen Reduction Reaction Activity. Advanced Energy Materials, 2015, 5, 1402251.	10.2	89
794	Effects of boron oxidation state on electrocatalytic activity of carbons synthesized from CO ₂ . Journal of Materials Chemistry A, 2015, 3, 5843-5849.	5.2	27
795	Investigation of hollow nitrogen-doped carbon spheres as non-precious Fe–N ₄ based oxygen reduction catalysts. Journal of Materials Chemistry A, 2015, 3, 15473-15481.	5.2	57
796	Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands. Scientific Reports, 2015, 5, 9286.	1.6	109
797	Cobalt-carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. Journal of Materials Chemistry A, 2015, 3, 14284-14290.	5.2	77
798	<i>In Situ</i> Self-Sacrificed Template Synthesis of Fe-N/G Catalysts for Enhanced Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 18170-18178.	4.0	56
799	Iron encapsulated nitrogen and sulfur co-doped few layer graphene as a non-precious ORR catalyst for PEMFC application. RSC Advances, 2015, 5, 66494-66501.	1.7	34
800	Nitrogen-doped ordered mesoporous carbon sphere with short channel as an efficient metal-free catalyst for oxygen reduction reaction. RSC Advances, 2015, 5, 70010-70016.	1.7	29
801	A N-, Fe- and Co-tridoped carbon nanotube/nanoporous carbon nanocomposite with synergistically enhanced activity for oxygen reduction in acidic media. Journal of Materials Chemistry A, 2015, 3, 17866-17873.	5.2	20
802	Bottom-up synthesis of high-performance nitrogen-enriched transition metal/graphene oxygen reduction electrocatalysts both in alkaline and acidic solution. Nanoscale, 2015, 7, 14707-14714.	2.8	29

#	Article	IF	CITATIONS
803	Cobalt modified two-dimensional polypyrrole synthesized in a flat nanoreactor for the catalysis of oxygen reduction. Chemical Engineering Science, 2015, 135, 45-51.	1.9	27
804	Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2015, 137, 10652-10658.	6.6	265
805	One Dimensional Graphitic Carbon Nitrides as Effective Metal-Free Oxygen Reduction Catalysts. Scientific Reports, 2015, 5, 12389.	1.6	81
806	Efficient oxygen reduction reaction using mesoporous Ni-doped Co ₃ O ₄ nanowire array electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 18372-18379.	5.2	54
807	A nickel nanoparticle/carbon quantum dot hybrid as an efficient electrocatalyst for hydrogen evolution under alkaline conditions. Journal of Materials Chemistry A, 2015, 3, 18598-18604.	5.2	87
808	Synthesis, Preparation, and Performance of Blends and Composites of π-Conjugated Polymers and their Copolymers in DMFCs. Polymer Reviews, 2015, 55, 630-677.	5.3	32
809	A copper complex covalently grafted on carbon nanotubes and reduced graphene oxide promotes oxygen reduction reaction activity and catalyst stability. RSC Advances, 2015, 5, 66487-66493.	1.7	36
810	Effects of particle proximity and composition of Pt–M (MÂ=ÂMn, Fe, Co) nanoparticles on electrocatalysis in methanol oxidation reaction. Journal of Power Sources, 2015, 294, 75-81.	4.0	54
811	M ₃ C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Nano, 2015, 9, 7407-7418.	7.3	445
812	Honeycomb-like mesoporous nitrogen-doped carbon supported Pt catalyst for methanol electrooxidation. Carbon, 2015, 93, 1050-1058.	5.4	84
813	General synthesis of binary PtM and ternary PtM ₁ M ₂ alloy nanoparticles on graphene as advanced electrocatalysts for methanol oxidation. Journal of Materials Chemistry A, 2015, 3, 15882-15888.	5.2	31
814	Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron-nitrogen-doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 174, 933-939.	2.6	34
815	Hydrogel-derived non-precious electrocatalysts for efficient oxygen reduction. Scientific Reports, 2015, 5, 11739.	1.6	22
816	A graphene-directed assembly route to hierarchically porous Co–N _x /C catalysts for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 16867-16873.	5.2	151
817	Effect of the Transition Metal on Metal–Nitrogen–Carbon Catalysts for the Hydrogen Evolution Reaction. Journal of the Electrochemical Society, 2015, 162, H719-H726.	1.3	90
818	MOF derived Co ₃ O ₄ nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR. Journal of Materials Chemistry A, 2015, 3, 17392-17402.	5.2	351
819	Nano-structured non-platinum catalysts for automotive fuel cell application. Nano Energy, 2015, 16, 293-300.	8.2	190
820	Porous cobalt–nitrogen-doped hollow graphene spheres as a superior electrocatalyst for enhanced oxygen reduction in both alkaline and acidic solutions. Journal of Materials Chemistry A, 2015, 3, 16419-16423	5.2	29

	CITATION	CITATION REPORT	
# 821	ARTICLE Microscale characterization of coupled degradation mechanism of graded materials in lithium batteries of electric vehicles. Renewable and Sustainable Energy Reviews, 2015, 50, 1445-1461.	IF 8.2	Citations
822	From Hemoglobin to Porous N–S–Fe-Doped Carbon for Efficient Oxygen Electroreduction. Journal of Physical Chemistry C, 2015, 119, 13545-13550.	1.5	26
823	Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nature Communications, 2015, 6, 7343.	5.8	583
824	Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2015, 3, 14188-14194.	5.2	72
825	Microwave-Assisted Synthesis of Co-Coordinated Hollow Mesoporous Carbon Cubes for Oxygen Reduction Reactions. Langmuir, 2015, 31, 7644-7651.	1.6	15
826	Understanding nano effects in catalysis. National Science Review, 2015, 2, 183-201.	4.6	246
827	Graphene-based electrode materials for microbial fuel cells. Science China Materials, 2015, 58, 496-509.	3.5	60
828	Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. ACS Catalysis, 2015, 5, 4643-4667.	5.5	1,022
830	A Density Functional Theory Study on Mechanism of Electrochemical Oxygen Reduction on FeN ₄ -Graphene. Journal of the Electrochemical Society, 2015, 162, F796-F801.	1.3	33
831	Degradation by Hydrogen Peroxide of Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2015, 162, H403-H414.	1.3	161
832	Two-dimensional iron-phthalocyanine (Fe-Pc) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale, 2015, 7, 11633-11641.	2.8	164
833	Unification of catalytic oxygen reduction and hydrogen evolution reactions: highly dispersive Co nanoparticles encapsulated inside Co and nitrogen co-doped carbon. Chemical Communications, 2015, 51, 8942-8945.	2.2	110
834	Heterometalâ€Embedded Organic Conjugate Frameworks from Alternating Monomeric Iron and Cobalt Metalloporphyrins and Their Application in Design of Porous Carbon Catalysts. Advanced Materials, 2015, 27, 3431-3436.	11.1	231
835	Interconnected Coâ€Entrapped, Nâ€Doped Carbon Nanotube Film as Active Hydrogen Evolution Cathode over the Whole pH Range. ChemSusChem, 2015, 8, 1850-1855.	3.6	73
836	Template-free synthesis of hierarchical yolk-shell Co and N codoped porous carbon microspheres with enhanced performance for oxygen reduction reaction. Journal of Power Sources, 2015, 288, 128-135.	4.0	46
837	Highly efficient oxygen reduction on porous nitrogen-doped nanocarbons directly synthesized from cellulose nanocrystals and urea. Electrochimica Acta, 2015, 170, 234-241.	2.6	34
838	High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diffusion Layer Using an Atomic Layer Deposition Technique. Electrochimica Acta, 2015, 177, 168-173.	2.6	18
839	N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media. International Journal of Hydrogen Energy, 2015, 40, 4531-4539.	3.8	55

#	Article	IF	CITATIONS
840	Oxygen-deficient BaTiO3â^' perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2015, 13, 423-432.	8.2	221
841	Shape Fixing via Salt Recrystallization: A Morphology-Controlled Approach To Convert Nanostructured Polymer to Carbon Nanomaterial as a Highly Active Catalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5414-5420.	6.6	364
842	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	1.6	67
843	Development of Nitrogen-Doped Carbon Catalysts Using Melamine-Based Polymer as a Nitrogen Precursor for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2015, 162, F744-F749.	1.3	17
844	Efficient Oxygen Electroreduction: Hierarchical Porous Fe–N-doped Hollow Carbon Nanoshells. ACS Catalysis, 2015, 5, 3887-3893.	5.5	117
845	MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 169, 142-149.	2.6	77
846	Electrochemical stability of the polymer-derived nitrogen-doped carbon: an elusive goal?. Materials for Renewable and Sustainable Energy, 2015, 4, 1.	1.5	22
847	Mesoporous N-Doped Carbons Prepared with Thermally Removable Nanoparticle Templates: An Efficient Electrocatalyst for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 5555-5562.	6.6	628
848	Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy and Environmental Science, 2015, 8, 1837-1866.	15.6	1,483
849	Pyrolyzed titanium dioxide/polyaniline as an efficient non-noble metal electrocatalyst for oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36, 414-424.	6.9	11
850	Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum C–N–Fe coordination for oxygen reduction reaction. Energy and Environmental Science, 2015, 8, 1799-1807.	15.6	138
851	Influence of the synergistic effect between Co–N–C and ceria on the catalytic performance for selective oxidation of ethylbenzene. Physical Chemistry Chemical Physics, 2015, 17, 14012-14020.	1.3	99
852	Theoretical studies on the mechanism of oxygen reduction reaction on clean and O-substituted Ta ₃ N ₅ (100) surfaces. Catalysis Science and Technology, 2015, 5, 2769-2776.	2.1	34
853	Carbon-Coated Core–Shell Fe–Cu Nanoparticles as Highly Active and Durable Electrocatalysts for a Zn–Air Battery. ACS Nano, 2015, 9, 6493-6501.	7.3	167
854	A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2015, 285, 334-348.	4.0	457
855	Cu-Deficient Plasmonic Cu2–xS Nanoplate Electrocatalysts for Oxygen Reduction. ACS Catalysis, 2015, 5, 2534-2540.	5.5	81
856	Bio-inspired multinuclear copper complexes covalently immobilized on reduced graphene oxide as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2015, 51, 7455-7458.	2.2	77
857	Electrochemical Impedance Spectroscopy of Oxygen Reduction Reaction (ORR) in a Rotating Disk Electrode Configuration: Effect of Ionomer Content and Carbon-Support. Journal of the Electrochemical Society, 2015, 162, F489-F498.	1.3	144

#	Article	IF	CITATIONS
858	Enhanced Electrocatalytic Performance for Oxygen Reduction via Active Interfaces of Layer-By-Layered Titanium Nitride/Titanium Carbonitride Structures. Scientific Reports, 2014, 4, 6712.	1.6	59
859	Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7767-7772.	5.2	78
860	Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium. Chemical Science, 2015, 6, 3211-3216.	3.7	63
861	Gelatin-derived sustainable carbon-based functional materials for energy conversion and storage with controllability of structure and component. Science Advances, 2015, 1, e1400035.	4.7	144
862	N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Science Advances, 2015, 1, e1400129.	4.7	583
863	Controlled synthesis of high metal-loading, Pt-based electrocatalysts with enhanced activity and durability toward oxygen reduction reaction. RSC Advances, 2015, 5, 8787-8792.	1.7	18
864	One-step synthesis of cobalt and nitrogen co-doped carbon nanotubes and their catalytic activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 12718-12722.	5.2	50
866	Carbon for the oxygen reduction reaction: a defect mechanism. Journal of Materials Chemistry A, 2015, 3, 11736-11739.	5.2	261
867	Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition. Electrochimica Acta, 2015, 170, 1-8.	2.6	18
868	Thermally Induced Strains on the Catalytic Activity and Stability of Pt–M ₂ O ₃ /C (M=Y or Gd) Catalysts towards Oxygen Reduction Reaction. ChemCatChem, 2015, 7, 1573-1582.	1.8	27
869	Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11725-11729.	5.2	79
870	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
871	Fe/N/C Electrocatalysts for Oxygen Reduction Reaction in PEM Fuel Cells Using Nitrogen-Rich Ligand as Precursor. Journal of Physical Chemistry C, 2015, 119, 11311-11319.	1.5	37
872	Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction. Nanoscale, 2015, 7, 9394-9398.	2.8	50
873	A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale, 2015, 7, 10334-10339.	2.8	61
874	N-doped carbon nanocages with high catalytic activity and durability for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 12427-12435.	5.2	25
875	High pressure pyrolyzed non-precious metal oxygen reduction catalysts for alkaline polymer electrolyte membrane fuel cells. Nanoscale, 2015, 7, 7644-7650.	2.8	66
876	N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2. Applied Catalysis B: Environmental, 2015, 176-177, 212-224.	10.8	117

#	Article	IF	CITATIONS
877	Meso/Macroporous Nitrogenâ€Doped Carbon Architectures with Iron Carbide Encapsulated in Graphitic Layers as an Efficient and Robust Catalyst for the Oxygen Reduction Reaction in Both Acidic and Alkaline Solutions. Advanced Materials, 2015, 27, 2521-2527.	11.1	521
878	Highly active Pt catalysts promoted by molybdenum-doped SnO2 for methanol electrooxidation. International Journal of Hydrogen Energy, 2015, 40, 5889-5896.	3.8	22
879	Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. Journal of Electroanalytical Chemistry, 2015, 746, 9-17.	1.9	74
880	A high-performance Fe and nitrogen doped catalyst derived from diazoniapentaphene salt and phenolic resin mixture for oxygen reduction reaction. Catalysis Science and Technology, 2015, 5, 1764-1774.	2.1	27
881	Optimization of catalyst layer composition for PEMFC using graphene-based oxygen reduction reaction catalysts. Journal of Power Sources, 2015, 286, 166-174.	4.0	19
882	High-performance recyclable V–N–C catalysts for the direct hydroxylation of benzene to phenol using molecular oxygen. RSC Advances, 2015, 5, 31965-31971.	1.7	22
883	Myoglobin-based non-precious metal carbon catalysts for an oxygen reduction reaction. Journal of Porphyrins and Phthalocyanines, 2015, 19, 510-516.	0.4	7
884	Structure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2015, 300, 279-284.	4.0	68
885	Solid phase polymerization of phenylenediamine toward a self-supported FeN _x /C catalyst with high oxygen reduction activity. Chemical Communications, 2015, 51, 16707-16709.	2.2	13
886	Aminothiazole-derived N,S,Fe-doped graphene nanosheets as high performance electrocatalysts for oxygen reduction. Chemical Communications, 2015, 51, 17092-17095.	2.2	85
887	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1384-F1396.	1.3	211
888	Electrocatalytic performances of N-doped graphene with anchored iridium species in oxygen reduction reaction. 2D Materials, 2015, 2, 034019.	2.0	20
889	Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites. ACS Catalysis, 2015, 5, 6563-6572.	5.5	260
890	Surface-Regulated Nano-SnO ₂ /Pt ₃ Co/C Cathode Catalysts for Polymer Electrolyte Fuel Cells Fabricated by a Selective Electrochemical Sn Deposition Method. Journal of the American Chemical Society, 2015, 137, 12856-12864.	6.6	55
891	Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction. Chemical Communications, 2015, 51, 17285-17288.	2.2	56
892	Mechanically Tough and Chemically Stable Anion Exchange Membranes from Rigid-Flexible Semi-Interpenetrating Networks. Chemistry of Materials, 2015, 27, 6689-6698.	3.2	149
893	Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe–N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2015, 7, 21511-21520.	4.0	262
894	Nanocrystal Bismuth Telluride Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the Electrochemical Society, 2015, 162, H785-H791.	1.3	10

#	Article	IF	CITATIONS
895	Recent advances in surface and interface engineering for electrocatalysis. Chinese Journal of Catalysis, 2015, 36, 1476-1493.	6.9	48
896	Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. Journal of Physical Chemistry C, 2015, 119, 25917-25928.	1.5	433
898	Exchange current density of the hydrogen oxidation reaction on Pt/C in polymer solid base electrolyte. Electrochemistry Communications, 2015, 61, 57-60.	2.3	15
899	Heteroatom-Doped Graphitic Carbon Catalysts for Efficient Electrocatalysis of Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 7244-7253.	5.5	500
900	Review—Recent Progress in Electrocatalysts for Oxygen Reduction Suitable for Alkaline Anion Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F1504-F1539.	1.3	129
902	Rising Again: Opportunities and Challenges for Platinum-Free Electrocatalysts. Chemistry of Materials, 2015, 27, 7218-7235.	3.2	131
903	A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 19201-19206.	2.8	55
904	Bimetal–Organic Framework Self-Adjusted Synthesis of Support-Free Nonprecious Electrocatalysts for Efficient Oxygen Reduction. ACS Catalysis, 2015, 5, 7068-7076.	5.5	442
905	Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature Communications, 2015, 6, 8618.	5.8	461
906	Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped grapheneÂmaterials. Nature Materials, 2015, 14, 937-942.	13.3	1,714
907	Strong-coupled Co-g-C ₃ N ₄ /SWCNTs composites as high-performance electrocatalysts for oxygen reduction reaction. RSC Advances, 2015, 5, 65303-65307.	1.7	18
908	Design of an active and durable catalyst for oxygen reduction reactions using encapsulated Cu with N-doped carbon shells (Cu@N-C) activated by CO ₂ treatment. Journal of Materials Chemistry A, 2015, 3, 22031-22034.	5.2	77
909	Review—Electromobility: Batteries or Fuel Cells?. Journal of the Electrochemical Society, 2015, 162, A2605-A2622.	1.3	424
910	Bimetallic porous porphyrin polymer-derived non-precious metal electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23799-23808.	5.2	93
912	Catalytic and filterable polyester-filter membrane electrode with a high performance carbon foam–Fe–Co catalyst improved electricity generation and waste-water treatment in MBR–MFC. RSC Advances, 2015, 5, 48946-48953.	1.7	16
913	Sulfur-doped carbon spheres as efficient metal-free electrocatalysts for oxygen reduction reaction. Electrochimica Acta, 2015, 178, 806-812.	2.6	80
914	Mo@Pt core–shell nanoparticles as an efficient electrocatalyst for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2015, 757, 94-99.	1.9	17
915	Polydopamine-derived porous carbon fiber/cobalt composites for efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2015, 3, 23299-23306.	5.2	67

#	Article	IF	CITATIONS
916	Carbon-based electrocatalysts for advanced energy conversion and storage. Science Advances, 2015, 1, e1500564.	4.7	567
917	Highly Enhanced Fluorescence of CdSeTe Quantum Dots Coated with Polyanilines via In-Situ Polymerization and Cell Imaging Application. ACS Applied Materials & Interfaces, 2015, 7, 19126-19133.	4.0	16
918	Polyaniline nanorods/PVC composites with antistatic properties. Russian Journal of Physical Chemistry A, 2015, 89, 1445-1448.	0.1	8
919	Effect of pyrolysis conditions on nitrogen-doped ordered mesoporous carbon electrocatalysts. Chinese Journal of Catalysis, 2015, 36, 1197-1204.	6.9	39
920	Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2. Electrochimica Acta, 2015, 180, 564-573.	2.6	26
921	In situ formation of N- and Fe-doped carbon nanotube/mesoporous carbon nanocomposite with excellent activity for oxygen reduction in acidic media. RSC Advances, 2015, 5, 76599-76606.	1.7	5
922	A Density Functional Theory Study on Mechanism of Electrochemical Oxygen Reduction on FeN ₃ -Graphene. Journal of the Electrochemical Society, 2015, 162, F1262-F1267.	1.3	18
923	High-performance oxygen reduction electrocatalysts derived from uniform cobalt–adenine assemblies. Nano Energy, 2015, 17, 120-130.	8.2	62
924	Electrodeposition Synthesis of Polyaniline-Modified TiO2Nanotube Arrays with Enhanced Photoelectrochemical Property. Transactions of the Indian Ceramic Society, 2015, 74, 152-156.	0.4	2
925	Metal-free, carbon-based catalysts for oxygen reduction reactions. Frontiers of Chemical Science and Engineering, 2015, 9, 280-294.	2.3	22
926	A bio-inspired Co3O4-polypyrrole-graphene complex as an efficient oxygen reduction catalyst in one-step ball milling. Nano Research, 2015, 8, 3461-3471.	5.8	44
927	Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews, 2015, 115, 9869-9921.	23.0	770
928	Synthesis of conductive magnetic nickel microspheres and their applications in anisotropic conductive film and water treatment. RSC Advances, 2015, 5, 77860-77865.	1.7	10
929	Polyaniline and iron based catalysts as air cathodes for enhanced oxygen reduction in microbial fuel cells. RSC Advances, 2015, 5, 79348-79354.	1.7	19
930	Highly efficient nonprecious metal catalyst prepared with metal–organic framework in a continuous carbon nanofibrous network. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10629-10634.	3.3	359
931	Nanosheets Co ₃ O ₄ Interleaved with Graphene for Highly Efficient Oxygen Reduction. ACS Applied Materials & amp; Interfaces, 2015, 7, 21373-21380.	4.0	96
932	Growth mechanism and active site probing of Fe ₃ C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 21451-21459.	5.2	65
933	Oxygen reduction reaction on M-S4 embedded graphene: A density functional theory study. Chemical Physics Letters, 2015, 641, 112-116.	1.2	16

щ		IF	CITATIONS
# 934	ARTICLE Selenourea-assisted synthesis of selenium-modified iridium catalysts: evaluation of their activity toward reduction of oxygen. Electrochimica Acta, 2015, 185, 162-171.	1r 2.6	CITATIONS
935	Two-Dimensional π-Conjugated Metal Bis(dithiolene) Complex Nanosheets as Selective Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2015, 119, 28028-28037.	1.5	76
936	Heat-treated 3,5-diamino-1,2,4-triazole/graphene hybrid functions as an oxygen reduction electrocatalyst with high activity and stability. Electrochimica Acta, 2015, 180, 173-177.	2.6	28
937	Oxygen reduction catalytic characteristics of vanadium carbide and nitrogen doped vanadium carbide. Journal of Power Sources, 2015, 300, 483-490.	4.0	46
938	Atomic Mechanism of Electrocatalytically Active Co–N Complexes in Graphene Basal Plane for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2015, 7, 27405-27413.	4.0	139
939	Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction. Nanoscale, 2015, 7, 20290-20298.	2.8	112
940	Iron–nitrogen co-doped hollow carbon sphere with mesoporous structure for enhanced oxygen reduction reaction. RSC Advances, 2015, 5, 103302-103307.	1.7	13
941	Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review. ACS Catalysis, 2015, 5, 7288-7298.	5.5	78
942	C and N Hybrid Coordination Derived Co–C–N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 15070-15073.	6.6	377
943	An Advanced Nitrogenâ€Ðoped Graphene/Cobaltâ€Embedded Porous Carbon Polyhedron Hybrid for Efficient Catalysis of Oxygen Reduction and Water Splitting. Advanced Functional Materials, 2015, 25, 872-882.	7.8	683
944	Ionic Liquids as Precursors for Efficient Mesoporous Ironâ€Nitrogenâ€Doped Oxygen Reduction Electrocatalysts. Angewandte Chemie - International Edition, 2015, 54, 1494-1498.	7.2	162
945	Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 3559-3567.	5.2	123
946	Enhanced catalytic activity for the oxygen reduction reaction with co-doping of phosphorus and iron in carbon. Journal of Power Sources, 2015, 277, 161-168.	4.0	46
948	Graphene supported heterogeneous catalysts: An overview. International Journal of Hydrogen Energy, 2015, 40, 948-979.	3.8	412
949	A Templateâ€Free Method for Preparation of Cobalt Nanoparticles Embedded in Nâ€Đoped Carbon Nanofibers with a Hierarchical Pore Structure for Oxygen Reduction. Chemistry - A European Journal, 2015, 21, 2165-2172.	1.7	54
950	An oxygen reduction catalyst derived from a robust Pd-reducing bacterium. Nano Energy, 2015, 12, 33-42.	8.2	53
951	Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction. Carbon, 2015, 82, 77-86.	5.4	86
952	Fe/N/C hollow nanospheres by Fe(<scp>iii</scp>)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale, 2015, 7, 1501-1509.	2.8	242

#	Article	IF	Citations
954	Defective TiO ₂ -supported Cu nanoparticles as efficient and stable electrocatalysts for oxygen reduction in alkaline media. Nanoscale, 2015, 7, 1224-1232.	2.8	40
955	Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon, 2015, 82, 562-571.	5.4	224
956	Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 2015, 11, 366-376.	8.2	395
957	Cobalt-porphyrin noncovalently functionalized graphene as nonprecious-metal electrocatalyst for oxygen reduction reaction in an alkaline medium. Journal of Solid State Electrochemistry, 2015, 19, 497-506.	1.2	34
958	Dimensionality-dependent oxygen reduction activity on doped graphene: Is graphene a promising substrate for electrocatalysis?. Nano Energy, 2015, 11, 526-532.	8.2	22
959	Potential of metal-free "graphene alloy―as electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1795-1810.	5.2	133
960	Fe ₃ C-based oxygen reduction catalysts: synthesis, hollow spherical structures and applications in fuel cells. Journal of Materials Chemistry A, 2015, 3, 1752-1760.	5.2	116
961	One-step synthesis of carbon-supported foam-like platinum with enhanced activity and durability. Journal of Materials Chemistry A, 2015, 3, 21562-21568.	5.2	7
962	Heteroatom-doped highly porous carbon from human urine. Scientific Reports, 2014, 4, 5221.	1.6	119
963	Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2015, 274, 1173-1179.	4.0	78
964	Fe–N supported on graphitic carbon nano-networks grown from cobalt as oxygen reduction catalysts for low-temperature fuel cells. Applied Catalysis B: Environmental, 2015, 166-167, 75-83.	10.8	69
965	Fe-containing polyimide-based high-performance ORR catalysts in acidic medium: a kinetic approach to study the durability of catalysts. Catalysis Science and Technology, 2015, 5, 475-483.	2.1	76
966	Nitrogen-doped ordered mesoporous carbon: synthesis and active sites for electrocatalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2015, 165, 566-571.	10.8	172
967	Core–shell Co@Co3O4nanoparticle-embedded bamboo-like nitrogen-doped carbon nanotubes (BNCNTs) as a highly active electrocatalyst for the oxygen reduction reaction. Nanoscale, 2015, 7, 7056-64.	2.8	95
968	Metal–Organic Frameworkâ€Derived Bambooâ€like Nitrogenâ€Doped Graphene Tubes as an Active Matrix for Hybrid Oxygenâ€Reduction Electrocatalysts. Small, 2015, 11, 1443-1452.	5.2	209
969	Graphene-supported platinum catalyst prepared with ionomer as surfactant for anion exchange membrane fuel cells. Journal of Power Sources, 2015, 275, 506-515.	4.0	26
970	Electrooxidation of methanol and ethanol in acidic medium using a platinum electrode modified with lanthanum-doped tantalum oxide film. Electrochimica Acta, 2015, 151, 544-551.	2.6	27
971	A metal–organic framework route to in situ encapsulation of Co@Co ₃ O ₄ @C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy and Environmental Science, 2015, 8, 568-576.	15.6	571

4		IF	CITATIONS
#	ARTICLE Synthesis of FeCo nanocrystals encapsulated in nitrogen-doped graphene layers for use as highly		CITATIONS
972	efficient catalysts for reduction reactions. Nanoscale, 2015, 7, 450-454.	2.8	78
973	The role of trace Fe in Fe–N-doped amorphous carbon with excellent electrocatalytic performance for oxygen reduction reaction. Catalysis Communications, 2015, 60, 37-41.	1.6	12
974	Mesostructured Intermetallic Compounds of Platinum and Nonâ€Transition Metals for Enhanced Electrocatalysis of Oxygen Reduction Reaction. Advanced Functional Materials, 2015, 25, 230-237.	7.8	127
975	Template-free synthesis of hollow nitrogen-doped carbon as efficient electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2015, 274, 645-650.	4.0	53
976	Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes. Renewable and Sustainable Energy Reviews, 2015, 42, 66-77.	8.2	19
977	On the relationship between N content, textural properties and catalytic performance for the oxygen reduction reaction of N/CNT. Applied Catalysis B: Environmental, 2015, 162, 420-429.	10.8	44
978	Activity and stability studies of platinized multi-walled carbon nanotubes as fuel cell electrocatalysts. Applied Catalysis B: Environmental, 2015, 162, 289-299.	10.8	35
979	A Threeâ€Component Nanocomposite with Synergistic Reactivity for Oxygen Reduction Reaction in Alkaline Solution. Advanced Energy Materials, 2015, 5, 1401186.	10.2	34
980	M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction. Scientific Reports, 2014, 4, 4386.	1.6	93
981	In-situ synthesis of core/shell structured polypyrrole/hydroquinone nano-beads and electrochemical capacitance investigations. Materials Letters, 2015, 138, 279-283.	1.3	11
982	Enhanced adsorptive degradation of Congo red in aqueous solutions using polyaniline/Fe0 composite nanofibers. Chemical Engineering Journal, 2015, 260, 716-729.	6.6	83
983	Synthesis highly active and durable non-precious-metal catalyst with 2,2-pyridylbenzimidazole as novel nitrogen coordination compound for oxygen reduction reaction. Catalysis Communications, 2015, 58, 112-116.	1.6	8
984	Non-precious Metal Oxygen Reduction Nanocomposite Electrocatalysts Based on Poly(phenylenediamines) with Cobalt. Electrocatalysis, 2015, 6, 117-125.	1.5	9
985	Dual-doped carbon composite for efficient oxygen reduction via electrospinning and incipient impregnation. Journal of Power Sources, 2015, 274, 595-603.	4.0	29
986	Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Scientific Reports, 2014, 4, 6439.	1.6	33
987	Heat-treatment of metal–organic frameworks for green energy applications. CrystEngComm, 2015, 17, 10-22.	1.3	89
988	Metal-organic Frameworks Derived CoS2-Co/N-doped Porous Carbon with Extremely High Electrocatalytic Stability for the Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2016, 11, 9575-9584.	0.5	11
989	Preparation of Nano-Ag4Bi2O5 with Co-precipitation Method and Study of Its Application for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2016, , 10581-10591.	0.5	1

#	Article	IF	CITATIONS
990	Palladium Nanoparticles Synthesized by Pulsed Electrolysis in Room-Temperature Ionic Liquid. International Journal of Electrochemical Science, 2016, , 4539-4549.	0.5	3
991	Heteroatom-Doped Carbon Nanostructures Derived from Conjugated Polymers for Energy Applications. Polymers, 2016, 8, 366.	2.0	41
992	Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction. Materials, 2016, 9, 759.	1.3	26
993	Oxygen Reduction Electrocatalysts Based on Coupled Iron Nitride Nanoparticles with Nitrogen-Doped Carbon. Catalysts, 2016, 6, 86.	1.6	30
994	What Can We Learn in Electrocatalysis, from Nanoparticulated Precious and/or Non-Precious Catalytic Centers Interacting with Their Support?. Catalysts, 2016, 6, 145.	1.6	17
995	Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts, 2016, 6, 159.	1.6	49
996	The Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction. Materials, 2016, 9, 1.	1.3	571
997	A Layer-Structured Metal-Organic Framework-Derived Mesoporous Carbon for Efficient Oxygen Reduction Reaction. Chinese Journal of Chemical Physics, 2016, 29, 693-698.	0.6	3
998	Preparation of Nitrogen-Doped Carbon Catalyst to Oxygen Reduction Reaction and Influence of Protective Gas Flowing on Its Activity. Chinese Journal of Chemical Physics, 2016, 29, 255-259.	0.6	1
999	Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone. Journal of Materials Chemistry A, 2016, 4, 12768-12773.	5.2	55
1000	Pyridinicâ€Nitrogenâ€Dominated Graphene Aerogels with Fe–N–C Coordination for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2016, 26, 5708-5717.	7.8	360
1001	Separationâ€Free Polyaniline/TiO ₂ 3D Hydrogel with High Photocatalytic Activity. Advanced Materials Interfaces, 2016, 3, 1500502.	1.9	81
1002	Nanofibrous Co ₃ O ₄ /PPy Hybrid with Synergistic Effect as Bifunctional Catalyst for Lithiumâ€Oxygen Batteries. Advanced Materials Interfaces, 2016, 3, 1600030.	1.9	33
1003	Efficient Oxygen Reduction Electrocatalysts Based on Gold Nanocluster–Graphene Composites. ChemElectroChem, 2016, 3, 1253-1260.	1.7	22
1004	Porous Mn ₂ O ₃ : A Lowâ€Cost Electrocatalyst for Oxygen Reduction Reaction in Alkaline Media with Comparable Activity to Pt/C. Chemistry - A European Journal, 2016, 22, 9909-9913.	1.7	49
1005	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie - International Edition, 2016, 55, 4977-4982.	7.2	258
1006	Cobaltâ€Nanocrystalâ€Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutralâ€pH Water. Angewandte Chemie - International Edition, 2016, 55, 6725-6729.	7.2	58
1007	Co@Co ₃ O ₄ @PPD Core@bishell Nanoparticleâ€Based Composite as an Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 2580-2587.	5.2	86

#	Article	IF	CITATIONS
1008	Cobalt-Carbon Core-Shell Nanoparticles Aligned on Wrinkle of N-Doped Carbon Nanosheets with Pt-Like Activity for Oxygen Reduction. Small, 2016, 12, 2839-2845.	5.2	83
1009	CO Poisoning Effects on FeNC and CN _{<i>x</i>} ORR Catalysts: A Combined Experimental–Computational Study. Journal of Physical Chemistry C, 2016, 120, 15173-15184.	1.5	57
1010	Quantifying Graphitic Edge Exposure in Graphene-Based Materials and Its Role in Oxygen Reduction Reactions. ACS Catalysis, 2016, 6, 5215-5221.	5.5	44
1011	Electrochemical Reduction of Oxygen on Hydrophobic Ultramicroporous PolyHIPE Carbon. ACS Catalysis, 2016, 6, 5618-5628.	5.5	67
1012	Cumulative effect of transition metals on nitrogen and fluorine co-doped graphite nanofibers: an efficient and highly durable non-precious metal catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 14650-14664.	2.8	61
1013	A 3D hierarchical assembly of optimized heterogeneous carbon nanosheets for highly efficient electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 11625-11629.	5.2	12
1014	A Hydrogenâ€Bonded Organicâ€Frameworkâ€Derived Mesoporous Nâ€Doped Carbon for Efficient Electroreduction of Oxygen. ChemElectroChem, 2016, 3, 1116-1123.	1.7	24
1015	Scalable and Costâ€Effective Synthesis of Highly Efficient Fe ₂ Nâ€Based Oxygen Reduction Catalyst Derived from Seaweed Biomass. Small, 2016, 12, 1295-1301.	5.2	148
1016	Iron–Nitrogenâ€Đoped Vertically Aligned Carbon Nanotube Electrocatalyst for the Oxygen Reduction Reaction. Advanced Functional Materials, 2016, 26, 738-744.	7.8	218
1017	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€N arbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2016, 128, 1377-1381.	1.6	59
1018	Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-Based Catalysts. Catalysis Letters, 2016, 146, 1621-1633.	1.4	42
1019	Traditional earth-abundant coal as new energy materials to catalyze the oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2016, 211, 568-575.	2.6	18
1020	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	15.6	216
1021	Fluorineâ€Doped and Partially Oxidized Tantalum Carbides as Nonprecious Metal Electrocatalysts for Methanol Oxidation Reaction in Acidic Media. Advanced Materials, 2016, 28, 2163-2169.	11.1	63
1022	Superaerophilic Carbonâ€Nanotubeâ€Array Electrode for Highâ€Performance Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 7155-7161.	11.1	231
1023	Low‶emperature Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. Advanced Materials, 2016, 28, 7115-7122.	11.1	156
1024	Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14101-14110.	3.8	54
1025	Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities. ACS Applied Materials & amp; Interfaces, 2016, 8, 18891-18903.	4.0	36

#	Article	IF	CITATIONS
1026	Graphene layer encapsulated metal nanoparticles as a new type of nonâ€precious metal catalysts for oxygen reduction. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 382-385.	0.8	11
1027	Efficient Electron Transfer Processes and Enhanced Electrocatalytic Activity of Cobalt(II) Porphyrin Anchored on Graphene Oxide. Israel Journal of Chemistry, 2016, 56, 169-174.	1.0	5
1028	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	11.1	663
1029	Platinfreie Nanomaterialien für die Sauerstoffreduktion. Angewandte Chemie, 2016, 128, 2698-2726.	1.6	87
1030	Earthâ€Abundant Nanomaterials for Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 2650-2676.	7.2	926
1031	Studies of selectivity of oxygen reduction reaction in acidic electrolyte on electrodes modified by products of pyrolysis of polyacrylonitrile and metalloporphyrins. Russian Journal of Electrochemistry, 2016, 52, 1007-1014.	0.3	3
1032	Sugar-based catalysts for oxygen reduction reaction. Effects of the functionalization of the nitrogen precursors on the electrocatalytic activity. Electrochimica Acta, 2016, 222, 781-792.	2.6	17
1033	Electro-polymerization fabrication of PANI@GF electrode and its energy-effective electrocatalytic performance in electro-Fenton process. Chinese Journal of Catalysis, 2016, 37, 2079-2085.	6.9	11
1034	Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects. Journal of Physical Chemistry C, 2016, 120, 29225-29232.	1.5	123
1035	Fe–N-doped carbon-based composite as an efficient and durable electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 114553-114559.	1.7	29
1036	The Role of Transition Metal and Nitrogen in Metal–N–C Composites for Hydrogen Evolution Reaction at Universal pHs. Journal of Physical Chemistry C, 2016, 120, 29047-29053.	1.5	69
1037	Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction. Scientific Reports, 2016, 6, 20132.	1.6	29
1038	Oxygen Reduction Catalytic Activity of Carbon-based Cathode Catalyst Prepared from Polyimide Nano-Particles Containing Fe-Phenanthroline Complex. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 255-258.	0.1	7
1039	Sensitivity of Density Functional Theory Methodology for Oxygen Reduction Reaction Predictions on Fe–N ₄ -Containing Graphitic Clusters. Journal of Physical Chemistry C, 2016, 120, 28545-28562.	1.5	31
1040	Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+. Electrochimica Acta, 2016, 222, 323-330.	2.6	1
1042	Facile synthesis of nitrogen and sulfur dual-doped graphitized carbon microspheres and their high performance in the oxygen reduction reaction. RSC Advances, 2016, 6, 38880-38886.	1.7	4
1043	Nitrogen and sulfur co-doped mesoporous carbon as cathode catalyst for H2/O2 alkaline membrane fuel cell – effect of catalyst/bonding layer loading. International Journal of Hydrogen Energy, 2016, 41, 9159-9166.	3.8	17
1044	One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction. Journal of Power Sources, 2016, 313, 128-133.	4.0	15

#	Article	IF	CITATIONS
1045	Coupled cobalt oxide/hollow carbon sphere as an efficient electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 34159-34164.	1.7	14
1046	Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media. Chemistry - an Asian Journal, 2016, 11, 10-21.	1.7	190
1047	Ionic liquid-derived Fe–N/C catalysts for highly efficient oxygen reduction reaction without any supports, templates, or multi-step pyrolysis. Journal of Materials Chemistry A, 2016, 4, 6630-6638.	5.2	48
1048	N/S-Me (Fe, Co, Ni) doped hierarchical porous carbons for fuel cell oxygen reduction reaction with high catalytic activity and long-term stability. Applied Energy, 2016, 175, 468-478.	5.1	62
1049	Electrocatalytic oxygen reduction on nitrogen-doped carbon nanoparticles derived from cyano-aromatic molecules via a solution plasma approach. Carbon, 2016, 98, 411-420.	5.4	76
1050	Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 34219-34224.	1.7	22
1051	Co@N-CNTs derived from triple-role CoAl-layered double hydroxide as an efficient catalyst for oxygen reduction reaction. Carbon, 2016, 107, 162-170.	5.4	60
1052	Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts. Nano Energy, 2016, 29, 54-64.	8.2	116
1053	One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol. Nanotechnology, 2016, 27, 145602.	1.3	14
1054	A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts. Journal of Power Sources, 2016, 323, 189-200.	4.0	37
1055	Process engineering in electrochemical energy devices innovation. Chinese Journal of Chemical Engineering, 2016, 24, 39-47.	1.7	11
1056	Well-dispersed FeN4 decorated mesoporous carbons for efficient oxygen reduction in acid media. Carbon, 2016, 105, 282-290.	5.4	22
1057	Highly active and porous graphene encapsulating carbon nanotubes as a non-precious oxygen reduction electrocatalyst for hydrogen-air fuel cells. Nano Energy, 2016, 26, 267-275.	8.2	65
1058	Fe–N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions. ACS Nano, 2016, 10, 5922-5932.	7.3	403
1059	Supramolecular polymers-derived nonmetal N, S-codoped carbon nanosheets for efficient oxygen reduction reaction. RSC Advances, 2016, 6, 52937-52944.	1.7	25
1060	Titanium Dioxideâ€Grafted Copper Complexes: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media. Chemistry - A European Journal, 2016, 22, 382-389.	1.7	42
1061	Rhodamine B removal using polyanilineâ€supported zeroâ€valent iron powder in the presence of dissolved oxygen. Environmental Progress and Sustainable Energy, 2016, 35, 48-55.	1.3	14
1062	Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts?. Carbon, 2016, 102, 346-356.	5.4	41

#	Article	IF	CITATIONS
1063	Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?. Nano Energy, 2016, 29, 111-125.	8.2	232
1064	Noble Metal-Free Oxygen Reduction Reaction Catalysts Derived from Prussian Blue Nanocrystals Dispersed in Polyaniline. ACS Applied Materials & Interfaces, 2016, 8, 8436-8444.	4.0	76
1065	Co–N Decorated Hierarchically Porous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid. ACS Applied Materials & Interfaces, 2016, 8, 6488-6495.	4.0	166
1066	Diamond@carbon-onion hybrid nanostructure as a highly promising electrocatalyst for the oxygen reduction reaction. RSC Advances, 2016, 6, 27528-27534.	1.7	12
1067	Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 4150-4158.	3.8	43
1068	Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy, 2016, 29, 268-274.	8.2	55
1069	Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catalysis, 2016, 6, 3136-3146.	5.5	201
1070	Sodium chloride-assisted green synthesis of a 3D Fe–N–C hybrid as a highly active electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 7781-7787.	5.2	88
1071	Size-Dependent Hydrogen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base. Journal of the Electrochemical Society, 2016, 163, F499-F506.	1.3	110
1072	Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy, 2016, 29, 65-82.	8.2	269
1073	Shrimp-shell derived carbon nanodots as precursors to fabricate Fe,N-doped porous graphitic carbon electrocatalysts for efficient oxygen reduction in zinc–air batteries. Inorganic Chemistry Frontiers, 2016, 3, 910-918.	3.0	27
1074	Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy, 2016, 29, 149-165.	8.2	177
1075	Iron incorporation on graphene nanoflakes for the synthesis of a non-noble metal fuel cell catalyst. Applied Catalysis B: Environmental, 2016, 193, 9-15.	10.8	11
1076	Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts. Journal of Materials Chemistry A, 2016, 4, 7422-7429.	5.2	71
1077	Electrochemistry of N4 Macrocyclic Metal Complexes. , 2016, , .		32
1078	Nano-Fe ₃ O ₄ grown on porous carbon and its effect on the oxygen reduction reaction for DMFCs with a polymer fiber membrane. RSC Advances, 2016, 6, 37012-37017.	1.7	20
1079	3D multi-physics modeling of a gas diffusion electrode for oxygen reduction reaction for electrochemical energy conversion in PEM fuel cells. Applied Energy, 2016, 175, 435-450.	5.1	21
1080	Iron–polypyrrole electrocatalyst with remarkable activity and stability for ORR in both alkaline and acidic conditions: a comprehensive assessment of catalyst preparation sequence. Journal of Materials Chemistry A, 2016, 4, 8645-8657.	5.2	90

#	Article	IF	CITATIONS
1081	A hollow spherical doped carbon catalyst derived from zeolitic imidazolate framework nanocrystals impregnated/covered with iron phthalocyanines. Journal of Materials Chemistry A, 2016, 4, 7859-7868.	5.2	37
1082	Heat-Treated Non-precious Metal Catalysts for Oxygen Reduction. , 2016, , 41-68.		12
1083	Proton transfer dynamics control the mechanismÂof O2 reduction by a non-precious metalÂelectrocatalyst. Nature Materials, 2016, 15, 754-759.	13.3	126
1084	Chemical Nature of Catalytic Active Sites for the Oxygen Reduction Reaction on Nitrogen-Doped Carbon-Supported Non-Noble Metal Catalysts. Journal of Physical Chemistry C, 2016, 120, 9884-9896.	1.5	87
1085	Catalysts for oxygen reduction reaction based on nanocrystals of a Pt or Pt–Pd alloy shell supported on a Au core. Journal of Solid State Electrochemistry, 2016, 20, 1753-1764.	1.2	18
1086	Non-noble Metal (NNM) Catalysts for Fuel Cells: Tuning the Activity by a Rational Step-by-Step Single Variable Evolution. , 2016, , 69-101.		8
1087	Facile synthesis of highly active and durable PdM/C (M = Fe, Mn) nanocatalysts for the oxygen reduction reaction in an alkaline medium. Journal of Materials Chemistry A, 2016, 4, 8337-8349.	5.2	51
1088	Oxygen Electroreduction on M-N4 Macrocyclic Complexes. , 2016, , 1-39.		2
1089	Fe/IRMOF-3 derived porous carbons as non-precious metal electrocatalysts with high activity and stability towards oxygen reduction reaction. Electrochimica Acta, 2016, 205, 53-61.	2.6	42
1090	Palladium–Platinum Core–Shell Electrocatalysts for Oxygen Reduction Reaction Prepared with the Assistance of Citric Acid. ACS Catalysis, 2016, 6, 3428-3432.	5.5	52
1091	An efficient bifunctional two-component catalyst for oxygen reduction and oxygen evolution in reversible fuel cells, electrolyzers and rechargeable air electrodes. Energy and Environmental Science, 2016, 9, 2020-2024.	15.6	221
1092	Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach. Carbon, 2016, 106, 179-187.	5.4	185
1093	Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-N-C catalysts for oxygen reduction in acid. Nano Energy, 2016, 25, 110-119.	8.2	434
1094	Co-, N-, and S-Tridoped Carbon Derived from Nitrogen- and Sulfur-Enriched Polymer and Cobalt Salt for Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 13341-13347.	4.0	44
1095	Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 10820-10827.	5.2	54
1096	Synergistic Enhancement of Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Electrolytes with Pentabasic (Fe, B, N, S, P)â€Đoped Reduced Graphene Oxide. Chinese Journal of Chemistry, 2016, 34, 878-886.	2.6	12
1097	Preparation of Cobalt Sulfide Nanoparticle-Decorated Nitrogen and Sulfur Co-Doped Reduced Graphene Oxide Aerogel Used as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2016, 12, 5920-5926.	5.2	65
1098	Highâ€Performance Direct Methanol Fuel Cells with Preciousâ€Metalâ€Free Cathode. Advanced Science, 2016, 3, 1600140.	5.6	105

#	Article	IF	CITATIONS
1099	Highly Efficient Oxygen Reduction Electrocatalyst Derived from a New Three-Dimensional PolyPorphyrin. ACS Applied Materials & Interfaces, 2016, 8, 25875-25880.	4.0	36
1100	Theoretical Investigation on the Reaction Pathways of the Oxygen Reduction Reaction on Graphene Codoped with Manganese and Phosphorus as a Potential Nonprecious Metal Catalyst. ChemCatChem, 2016, 8, 3353-3360.	1.8	10
1101	Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2016, 4, 16272-16287.	5.2	55
1102	Single Co atom catalyst stabilized in C/N containing matrix. Chinese Journal of Catalysis, 2016, 37, 1443-1445.	6.9	15
1103	A Carbon-Support-Free Titanium Oxynitride Catalyst for Proton Exchange Membrane Fuel Cell Cathodes. Electrochimica Acta, 2016, 214, 165-172.	2.6	27
1104	Oneâ€Pot Microwaveâ€Assisted Synthesis of Reduced Graphene Oxide/Iron Oxide Nanocomposite Catalyst for the Oxygen Reduction Reaction. ChemistrySelect, 2016, 1, 3640-3646.	0.7	22
1105	Sustainable Hydrothermal Carbonization Synthesis of Iron/Nitrogenâ€Doped Carbon Nanofiber Aerogels as Electrocatalysts for Oxygen Reduction. Small, 2016, 12, 6398-6406.	5.2	77
1106	Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310.	2.6	42
1107	ZIF-67-derived Co-NC@CoP-NC nanopolyhedra as an efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15836-15840.	5.2	199
1108	High-Performance Non-Noble Electrocatalysts for Oxygen Reduction Using Fluidic Acrylonitrile Telomer as Precursor. Electrochimica Acta, 2016, 211, 814-821.	2.6	1
1109	In situ formation of nitrogen-doped carbon nanoparticles on hollow carbon spheres as efficient oxygen reduction electrocatalysts. Nanoscale, 2016, 8, 18134-18142.	2.8	52
1110	Fe3C nanoparticle decorated Fe/N doped graphene for efficient oxygen reduction reaction electrocatalysis. Journal of Power Sources, 2016, 332, 305-311.	4.0	104
1111	Synthesis of nitrogen-doped reduced graphene oxide as metal-free electrocatalyst for oxygen reduction reactions. International Journal of Nanomanufacturing, 2016, 12, 252.	0.3	0
1112	Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers. Advanced Functional Materials, 2016, 26, 8255-8265.	7.8	65
1113	Electrodeposition of dendritic palladium nanostructures on carbon support for direct formic acid fuel cells. International Journal of Hydrogen Energy, 2016, 41, 18602-18609.	3.8	19
1114	A Robust Versatile Hybrid Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 29356-29364.	4.0	36
1115	High-performance electrocatalyst for oxygen reduction reaction derived from copolymer networks and iron(<scp>ii</scp>) acetate. RSC Advances, 2016, 6, 97259-97265.	1.7	9
1116	Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction. Nanoscale, 2016, 8, 19249-19255.	2.8	47

#	Article	IF	CITATIONS
1117	In Situ Confinement Pyrolysis Transformation of ZIFâ€8 to Nitrogenâ€Enriched Mesoâ€Microporous Carbon Frameworks for Oxygen Reduction. Advanced Functional Materials, 2016, 26, 8334-8344.	7.8	281
1118	Heteroatom-doped graphene †Idli': A green and foody approach towards development of metal free bifunctional catalyst for rechargeable zinc-air battery. Nano Energy, 2016, 30, 118-129.	8.2	50
1119	A mesoporous Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells. Chinese Journal of Catalysis, 2016, 37, 1103-1108.	6.9	29
1120	Engendering anion immunity in oxygen consuming cathodes based on Fe-Nx electrocatalysts: Spectroscopic and electrochemical advanced characterizations. Applied Catalysis B: Environmental, 2016, 198, 318-324.	10.8	53
1121	N-, Fe-Doped carbon sphere/oriented carbon nanofiber nanocomposite with synergistically enhanced electrochemical activities. RSC Advances, 2016, 6, 92739-92747.	1.7	1
1122	Investigation of a microporous iron(<scp>iii</scp>) porphyrin framework derived cathode catalyst in PEM fuel cells. Journal of Materials Chemistry A, 2016, 4, 15621-15630.	5.2	15
1123	Towards a comprehensive understanding of FeCo coated with N-doped carbon as a stable bi-functional catalyst in acidic media. NPG Asia Materials, 2016, 8, e312-e312.	3.8	82
1124	Electrocatalytically Active Graphene supported MMo Carbides (M Ni, Co) for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 216, 246-252.	2.6	27
1125	High porosity and surface area self-doped carbon derived from polyacrylonitrile as efficient electrocatalyst towards oxygen reduction. Journal of Power Sources, 2016, 324, 134-141.	4.0	31
1126	Highly stable precious metal-free cathode catalyst for fuel cell application. Journal of Power Sources, 2016, 327, 557-564.	4.0	76
1127	A Facile Route to Bimetal and Nitrogenâ€Codoped 3D Porous Graphitic Carbon Networks for Efficient Oxygen Reduction. Small, 2016, 12, 4193-4199.	5.2	150
1128	Dual-site oxygen reduction reaction mechanism on CoN4 and CoN2 embedded graphene: Theoretical insights. Carbon, 2016, 108, 541-550.	5.4	81
1129	Single Cobalt Atoms with Precise N oordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2016, 55, 10800-10805.	7.2	1,836
1130	Single Cobalt Atoms with Precise Nâ€Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2016, 128, 10958-10963.	1.6	373
1131	Electrochemical deposition and dissolution of Fe species for N-doped carbon to understand the degradation mechanism of Pt-free oxygen reduction catalysts. Electrochimica Acta, 2016, 214, 307-312.	2.6	14
1132	<i>N</i> â€Doped Subâ€3â€nm Co Nanoparticles as Highly Efficient and Durable Aerobic Oxidative Coupling Catalysts. Chemistry - an Asian Journal, 2016, 11, 2594-2601.	1.7	12
1133	Metallomacrocycles for the Creation of Non-Noble Metal and Noble Metal Electrocatalysts toward Oxygen Reduction Reactions. , 2016, , 179-243.		0
1134	Cobalt silicate hierarchical hollow spheres for lithium-ion batteries. Nanotechnology, 2016, 27, 365401.	1.3	21

#	Article	IF	CITATIONS
1135	Metal–Organic Framework-Induced Synthesis of Ultrasmall Encased NiFe Nanoparticles Coupling with Graphene as an Efficient Oxygen Electrode for a Rechargeable Zn–Air Battery. ACS Catalysis, 2016, 6, 6335-6342.	5.5	210
1136	Limitations and Improvement Strategies for Early-Transition-Metal Nitrides as Competitive Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 6165-6174.	5.5	130
1137	Single-Molecule Imaging of Iron-Phthalocyanine-Catalyzed Oxygen Reduction Reaction by <i>in Situ</i> Scanning Tunneling Microscopy. ACS Nano, 2016, 10, 8746-8750.	7.3	78
1138	ls Ammonium Peroxydisulfate Indispensable for Preparation of Anilineâ€Derived Iron–Nitrogen–Carbon Electrocatalysts?. ChemSusChem, 2016, 9, 2301-2306.	3.6	14
1139	Fe/N/C catalysts systhesized using graphene aerogel for electrocatalytic oxygen reduction reaction in an acidic condition. Korean Journal of Chemical Engineering, 2016, 33, 2582-2588.	1.2	7
1140	Effects of halogen doping on nanocarbon catalysts synthesized by a solution plasma process for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2016, 18, 21843-21851.	1.3	38
1141	Fe@Nâ€Graphene Nanoplateletâ€Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2016, 3, 1500205.	5.6	47
1142	Boosting oxygen reduction/evolution reaction activities with layered perovskite catalysts. Chemical Communications, 2016, 52, 10739-10742.	2.2	83
1143	A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass. Nanoscale Research Letters, 2016, 11, 268.	3.1	20
1144	Recent Progress in Synthesis, Characterization and Evaluation of Nonâ€Precious Metal Catalysts for the Oxygen Reduction Reaction. Fuel Cells, 2016, 16, 4-22.	1.5	108
1145	Cobalt/nitrogen co-doped porous carbon nanosheets as highly efficient catalysts for the oxygen reduction reaction in both basic and acidic media. RSC Advances, 2016, 6, 82341-82347.	1.7	18
1146	Spatially Non-Uniform Degradation of Pt/C Cathode Catalysts in Polymer Electrolyte Fuel Cells Imaged by Combination of Nano XAFS and STEM-EDS Techniques. Topics in Catalysis, 2016, 59, 1722-1731.	1.3	9
1147	Hierarchically porous Fe-N-doped carbon nanotubes as efficient electrocatalyst for oxygen reduction. Carbon, 2016, 109, 632-639.	5.4	74
1148	2D Nanoporous Feâ [~] 'N/C Nanosheets as Highly Efficient Non-Platinum Electrocatalysts for Oxygen Reduction Reaction in Zn-Air Battery. Small, 2016, 12, 5710-5719.	5.2	95
1149	Multifunctional high-activity and robust electrocatalyst derived from metal–organic frameworks. Journal of Materials Chemistry A, 2016, 4, 17288-17298.	5.2	123
1150	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie, 2016, 128, 12658-12662.	1.6	42
1151	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 12470-12474.	7.2	178
1152	Composites of a Prussian Blue Analogue and Gelatinâ€Derived Nitrogenâ€Doped Carbon‣upported Porous Spinel Oxides as Electrocatalysts for a Zn–Air Battery. Advanced Energy Materials, 2016, 6, 1601052.	10.2	98

#	Article	IF	CITATIONS
1153	Iron and nitrogen co-doped hierarchical porous graphitic carbon for a high-efficiency oxygen reduction reaction in a wide range of pH. Journal of Materials Chemistry A, 2016, 4, 14364-14370.	5.2	50
1154	Highly Active and Stable Graphene Tubes Decorated with FeCoNi Alloy Nanoparticles via a Templateâ€Free Graphitization for Bifunctional Oxygen Reduction and Evolution. Advanced Energy Materials, 2016, 6, 1601198.	10.2	224
1155	Highly Active Carbon/αâ€MnO ₂ Hybrid Oxygen Reduction Reaction Electrocatalysts. ChemElectroChem, 2016, 3, 1760-1767.	1.7	42
1156	Elucidating Proton Involvement in the Rate-Determining Step for Pt/Pd-Based and Non-Precious-Metal Oxygen Reduction Reaction Catalysts Using the Kinetic Isotope Effect. Journal of Physical Chemistry Letters, 2016, 7, 3542-3547.	2.1	50
1157	A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy and Environmental Science, 2016, 9, 3079-3084.	15.6	260
1158	Mechanistic Insights into the Oxygen Reduction Reaction on Metal–N–C Electrocatalysts under Fuel Cell Conditions. ChemElectroChem, 2016, 3, 1580-1590.	1.7	31
1159	Chemical Leaching of Pt–Cu/C Catalysts for Electrochemical Oxygen Reduction: Activity, Particle Structure, and Relation to Electrochemical Leaching. ChemElectroChem, 2016, 3, 1768-1780.	1.7	4
1160	A Review on Metalâ€Free Doped Carbon Materials Used as Oxygen Reduction Catalysts in Solid Electrolyte Proton Exchange Fuel Cells. Fuel Cells, 2016, 16, 522-529.	1.5	42
1161	Nitrogen-doped carbon nanofiber catalyst for ORR in PEM fuel cell stack: Performance, durability and market application aspects. International Journal of Hydrogen Energy, 2016, 41, 17616-17630.	3.8	36
1162	Synthesis of nitrogen-doped ordered mesoporous carbon electrocatalyst: Nanoconfinement effect in SBA-15 template. International Journal of Hydrogen Energy, 2016, 41, 18027-18032.	3.8	32
1163	Polyaniline (PANi) based electrode materials for energy storage and conversion. Journal of Science: Advanced Materials and Devices, 2016, 1, 225-255.	1.5	350
1164	Defectiveâ€Activatedâ€Carbonâ€Supported Mn–Co Nanoparticles as a Highly Efficient Electrocatalyst for Oxygen Reduction. Advanced Materials, 2016, 28, 8771-8778.	11.1	175
1165	Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. Journal of Materials Chemistry A, 2016, 4, 15327-15332.	5.2	116
1166	Fabrication of functionalized 3D graphene with controllable micro/meso-pores as a superior electrocatalyst for enhanced oxygen reduction in both acidic and alkaline solutions. RSC Advances, 2016, 6, 79459-79469.	1.7	2
1167	Coordination compound-derived ordered mesoporous N-free Fe–P _x –C material for efficient oxygen electroreduction. Journal of Materials Chemistry A, 2016, 4, 14291-14297.	5.2	20
1168	Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion. Scientific Reports, 2016, 6, 23276.	1.6	43
1169	Impacts of Perchloric Acid, Nafion, and Alkali Metal Ions on Oxygen Reduction Reaction Kinetics in Acidic and Alkaline Solutions. Journal of Physical Chemistry C, 2016, 120, 27452-27461.	1.5	25
1170	Active Site Structures in Nitrogen-Doped Carbon-Supported Cobalt Catalysts for the Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 32875-32886.	4.0	120

#	Article	IF	Citations
1171	Iron nanoparticles with a square pyramidal structure in mesoporous carbons as an effective catalyst toward oxygen reduction. RSC Advances, 2016, 6, 111366-111373.	1.7	3
1172	Ultrafine N-doped carbon nanoparticles with controllable size to enhance electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 110758-110764.	1.7	10
1173	Cobalt diselenide nanoparticles embedded within porous carbon polyhedra as advanced electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 330, 132-139.	4.0	34
1174	Tuning the Catalytic Activity of a Metal–Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 26769-26774.	4.0	63
1175	Vanadium Carbide Based Composite for High Performance Oxygen Reduction Reaction and Lithium Ion Batteries. ChemistrySelect, 2016, 1, 2682-2686.	0.7	13
1176	Nickelâ€Nitrogenâ€Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small, 2016, 12, 6083-6089.	5.2	228
1177	Nitrogen(N)-doped activated carbon materials with a narrow pore size distribution derived from coal liquefaction residues as low-cost and high-activity oxygen reduction catalysts in alkaline solution. RSC Advances, 2016, 6, 90076-90081.	1.7	18
1178	A Non-precious Metal, Ni Molecular Catalyst for a Fuel Cell Cathode. Chemistry Letters, 2016, 45, 137-139.	0.7	2
1179	A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. International Journal of Hydrogen Energy, 2016, 41, 20276-20293.	3.8	91
1180	Effect of the pyrolysis atmosphere and nature of iron precursor on the structure and activity of Fe/N based electrocatalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22560-22569.	3.8	13
1181	A nitrogen and cobalt co-doped titanium dioxide framework as a stable catalyst support for polymer electrolyte fuel cells. RSC Advances, 2016, 6, 88736-88750.	1.7	4
1182	Bioinspired Iron- and Copper-incorporated Carbon Electrocatalysts for Oxygen Reduction Reaction. Chemistry Letters, 2016, 45, 1213-1215.	0.7	12
1183	Highly active and durable Pt–Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. International Journal of Hydrogen Energy, 2016, 41, 18592-18601.	3.8	45
1184	Estimation of the Inherent Kinetic Parameters for Oxygen Reduction over a Pt-Free Cathode Catalyst by Resolving the Quasi-Four-Electron Reduction. Journal of Physical Chemistry C, 2016, 120, 22515-22525.	1.5	34
1185	Ultrastable nitrogen-doped carbon encapsulating molybdenum phosphide nanoparticles as highly efficient electrocatalyst for hydrogen generation. Nanoscale, 2016, 8, 17256-17261.	2.8	83
1186	Defect Graphene as a Trifunctional Catalyst for Electrochemical Reactions. Advanced Materials, 2016, 28, 9532-9538.	11.1	961
1187	The use of different types of reduced graphene oxide in the preparation of Fe-N-C electrocatalysts: capacitive behavior and oxygen reduction reaction activity in alkaline medium. Journal of Solid State Electrochemistry, 2016, 20, 3507-3523.	1.2	34
1188	The role of chelating ligands and central metals in the oxygen reduction reaction activity: a DFT study. Russian Journal of Electrochemistry, 2016, 52, 555-559.	0.3	2

C	 REPOR	-
	REDUI	
CITA	ICLI OF	C I .

#	Article	IF	CITATIONS
1189	Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy. Advanced Materials, 2016, 28, 8379-8387.	11.1	264
1190	Cobalt–Nitrogen Coâ€doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells. ChemElectroChem, 2016, 3, 1455-1465.	1.7	66
1191	Influence of different transition metals on the properties of Me–N–C (MeÂ=ÂFe, Co, Cu, Zn) catalysts synthesized using SBA-15 as tubular nano-silica reactor for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22570-22588.	3.8	67
1192	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	3.2	46
1193	Electrospun cobalt embedded porous nitrogen doped carbon nanofibers as an efficient catalyst for water splitting. Journal of Materials Chemistry A, 2016, 4, 12818-12824.	5.2	87
1194	Identifying the Catalytic Active Sites in Heteroatomâ€Doped Graphene for the Oxygen Reduction Reaction. Fuel Cells, 2016, 16, 568-576.	1.5	12
1195	Cobalt Oxide and Cobaltâ€Graphitic Carbon Core–Shell Based Catalysts with Remarkably High Oxygen Reduction Reaction Activity. Advanced Science, 2016, 3, 1600060.	5.6	109
1196	Nonâ€Pt Nanostructured Catalysts for Oxygen Reduction Reaction: Synthesis, Catalytic Activity and its Key Factors. Advanced Energy Materials, 2016, 6, 1600458.	10.2	160
1197	An Efficient Electrocatalyst Derived from Bamboo Leaves for the Oxygen Reduction Reaction. ChemElectroChem, 2016, 3, 1466-1470.	1.7	14
1198	Synthesis and Activity of A Single Active Site N-doped Electro-catalyst for Oxygen Reduction. Electrochimica Acta, 2016, 213, 927-932.	2.6	14
1199	Effect of Iron Precursors on the Structure and Oxygen Reduction Activity of Iron–Nitrogen–Carbon Catalysts. Electrochimica Acta, 2016, 211, 933-940.	2.6	23
1200	Evaluation of Pt Au/MWCNT (Multiwalled Carbon Nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell. Energy, 2016, 109, 446-455.	4.5	40
1201	Optimization of a Fe–N–C electrocatalyst supported on mesoporous carbon functionalized with polypyrrole for oxygenÂreduction reaction under both alkaline and acidicÂconditions. International Journal of Hydrogen Energy, 2016, 41, 19610-19628.	3.8	34
1202	Evidences of the presence of different types of active sites for the oxygen reduction reaction with Fe/N/C based catalysts. Journal of Power Sources, 2016, 327, 204-211.	4.0	28
1203	Non-precious Mn _{1.5} Co _{1.5} O ₄ –FeN _x /C nanocomposite as a synergistic catalyst for oxygen reduction in alkaline media. RSC Advances, 2016, 6, 69167-69176.	1.7	4
1204	Reactive Multifunctional Templateâ€Induced Preparation of Feâ€Nâ€Doped Mesoporous Carbon Microspheres Towards Highly Efficient Electrocatalysts for Oxygen Reduction. Advanced Materials, 2016, 28, 7948-7955.	11.1	342
1205	Electrospun Nitrogenâ€Doped Carbon Nanofibers Encapsulating Cobalt Nanoparticles as Efficient Oxygen Reduction Reaction Catalysts. ChemElectroChem, 2016, 3, 1437-1445.	1.7	35
1206	A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework. Chinese Journal of Catalysis, 2016, 37, 1127-1133.	6.9	17

#	Article	IF	CITATIONS
1207	Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2016, 389, 157-164.	3.1	39
1208	Investigation of the durability of a poly-p-phenylenediamine/carbon black composite for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1096-1102.	6.9	7
1209	Key Structural Kinetics for Carbon Effects on the Performance and Durability of Pt/Carbon Cathode Catalysts in Polymer Electrolyte Fuel Cells Characterized by In Situ Time-Resolved X-ray Absorption Fine Structure. Journal of Physical Chemistry C, 2016, 120, 24250-24264.	1.5	21
1210	Cu ₂ ZnSnS ₄ Nanocrystals as Highly Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2016, 120, 24265-24270.	1.5	17
1211	Highly doped and exposed Cu(<scp>i</scp>)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy and Environmental Science, 2016, 9, 3736-3745.	15.6	374
1212	Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. Electrochimica Acta, 2016, 220, 29-35.	2.6	22
1213	Charting the Outer Helmholtz Plane and the Role of Nitrogen Doping in the Oxygen Reduction Reaction Conducted in Alkaline Media Using Nonprecious Metal Catalysts. Journal of Physical Chemistry C, 2016, 120, 24511-24520.	1.5	5
1214	A metal–organic framework-derived bifunctional oxygenÂelectrocatalyst. Nature Energy, 2016, 1, .	19.8	1,974
1215	Performance of Fe–N/C Oxygen Reduction Electrocatalysts toward NO ₂ [–] , NO, and NH ₂ OH Electroreduction: From Fundamental Insights into the Active Center to a New Method for Environmental Nitrite Destruction. Journal of the American Chemical Society, 2016, 138, 16056-16068.	6.6	111
1216	Heat treated carbon supported iron(<scp>ii</scp>)phthalocyanine oxygen reduction catalysts: elucidation of the structure–activity relationship using X-ray absorption spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 33142-33151.	1.3	39
1217	Co-generation of hydrogen and power/current pulses from supercapacitive MFCs using novel HER iron-based catalysts. Electrochimica Acta, 2016, 220, 672-682.	2.6	31
1218	In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn–air batteries. Nanoscale, 2016, 8, 20048-20055.	2.8	122
1219	A comparative DFT study of oxygen reduction reaction on mononuclear and binuclear cobalt and iron phthalocyanines. Russian Journal of Physical Chemistry A, 2016, 90, 2413-2417.	0.1	14
1220	An advanced electrocatalyst of Pt decorated SnO2/C nanofibers for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2016, 781, 198-203.	1.9	19
1221	Resolving Electrode Morphology's Impact on Platinum Group Metal-Free Cathode Performance Using Nano-CT of 3D Hierarchical Pore and Ionomer Distribution. ACS Applied Materials & Interfaces, 2016, 8, 32764-32777.	4.0	99
1222	Probing the electro-catalytic ORR activity of cobalt-incorporated nitrogen-doped CNTs. Journal of Catalysis, 2016, 344, 455-464.	3.1	36
1223	Dynamic Fluctuation in Heat Treatment Time Dependence of Activity and Reaction Kinetics of Active Centers in Fe/N/C Oxygen Reduction Reaction Catalyst. ChemistrySelect, 2016, 1, 5440-5444.	0.7	2
1224	Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Science Advances, 2016, 2, e1501122.	4.7	1,078

#	Article	IF	CITATIONS
1225	Heteroatom (N or N‣)â€Ðoping Induced Layered and Honeycomb Microstructures of Porous Carbons for CO ₂ Capture and Energy Applications. Advanced Functional Materials, 2016, 26, 8651-8661.	7.8	182
1226	A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy, 2016, 30, 503-510.	8.2	140
1227	Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Science Advances, 2016, 2, e1501178.	4.7	36
1228	A General Approach to Preferential Formation of Active Fe–N _{<i>x</i>} Sites in Fe–N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2016, 138, 15046-15056.	6.6	663
1229	Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors. ACS Applied Materials & 2016, 2016, 8, 30212-30224.	4.0	61
1230	Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts. Nature Communications, 2016, 7, 12582.	5.8	261
1231	Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy, 2016, 30, 443-449.	8.2	114
1232	High-performance oxygen reduction catalyst derived from porous, nitrogen-doped carbon nanosheets. Nanotechnology, 2016, 27, 405401.	1.3	9
1233	Insight into the different ORR catalytic activity of Fe/N/C between acidic and alkaline media: Protonation of pyridinic nitrogen. Electrochemistry Communications, 2016, 73, 71-74.	2.3	116
1234	In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nature Communications, 2016, 7, 13285.	5.8	349
1235	Nanoporous Graphene Enriched with Fe/Coâ€N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 2016, 26, 2150-2162.	7.8	305
1236	Recent Progress in Cobaltâ€Based Heterogeneous Catalysts for Electrochemical Water Splitting. Advanced Materials, 2016, 28, 215-230.	11.1	2,083
1237	Directed Growth of Metalâ€Organic Frameworks and Their Derived Carbonâ€Based Network for Efficient Electrocatalytic Oxygen Reduction. Advanced Materials, 2016, 28, 2337-2344.	11.1	448
1238	A Highly Efficient Metalâ€Free Oxygen Reduction Electrocatalyst Assembled from Carbon Nanotubes and Graphene. Advanced Materials, 2016, 28, 4606-4613.	11.1	216
1239	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie, 2016, 128, 1150-1154.	1.6	96
1240	Pomegranateâ€Inspired Design of Highly Active and Durable Bifunctional Electrocatalysts for Rechargeable Metal–Air Batteries. Angewandte Chemie, 2016, 128, 5061-5066.	1.6	20
1241	Cobaltâ€Nanocrystalâ€Assembled Hollow Nanoparticles for Electrocatalytic Hydrogen Generation from Neutralâ€pH Water. Angewandte Chemie, 2016, 128, 6837-6841.	1.6	14
1242	Pyrolysis of Animal Bones with Vitamin B12: A Facile Route to Efficient Transition Metal–Nitrogen–Carbon (TMâ€ <i>N</i> â€C) Electrocatalysts for Oxygen Reduction. Chemistry - A Furopean Journal 2016, 22, 2896-2901	1.7	45

# 1243	ARTICLE Magnetic Nâ€Enriched Fe ₃ C/Graphitic Carbon instead of Pt as an Electrocatalyst for the Oxygen Reduction Reaction. Chemistry - A European Journal, 2016, 22, 4863-4869.	IF 1.7	Citations 45
1244	Manganese Oxide Nanorodâ€Decorated Mesoporous ZSMâ€5 Composite as a Preciousâ€Metalâ€Free Electrode Catalyst for Oxygen Reduction. ChemSusChem, 2016, 9, 1010-1019.	3.6	12
1245	Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol over Nitrogenâ€Đoped Carbon‧upported Iron Catalysts. ChemSusChem, 2016, 9, 1339-1347.	3.6	144
1246	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	11.1	718
1247	Metalâ€Organic Frameworkâ€Derived Honeycombâ€Like Open Porous Nanostructures as Preciousâ€Metalâ€Free Catalysts for Highly Efficient Oxygen Electroreduction. Advanced Materials, 2016, 28, 6391-6398.	11.1	414
1248	Engineering Multimetallic Nanocrystals for Highly Efficient Oxygen Reduction Catalysts. Advanced Energy Materials, 2016, 6, 1600236.	10.2	108
1249	Interacting Carbon Nitride and Titanium Carbide Nanosheets for Highâ€Performance Oxygen Evolution. Angewandte Chemie - International Edition, 2016, 55, 1138-1142.	7.2	597
1250	Investigation of Oxygen Reduction Activity of Catalysts Derived from Co and Co/Zn Methylâ€Imidazolate Frameworks in Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2016, 3, 1541-1545.	1.7	47
1251	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016, 6, 4720-4728.	5.5	513
1252	Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale, 2016, 8, 13311-13320.	2.8	94
1253	Structural and mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. Energy and Environmental Science, 2016, 9, 2418-2432.	15.6	472
1254	Magnetic Co@g-C ₃ N ₄ Core–Shells on rGO Sheets for Momentum Transfer with Catalytic Activity toward Continuous-Flow Hydrogen Generation. Langmuir, 2016, 32, 6272-6281.	1.6	67
1255	Trapping oxygen in hierarchically porous carbon nano-nets: graphitic nitrogen dopants boost the electrocatalytic activity. RSC Advances, 2016, 6, 56765-56771.	1.7	8
1256	Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 26, 603-609.	8.2	120
1257	Manganous oxide nanoparticles encapsulated in few-layer carbon as an efficient electrocatalyst for oxygen reduction in alkaline media. Journal of Materials Chemistry A, 2016, 4, 11775-11781.	5.2	27
1258	A low cost, disposable cable-shaped Al–air battery for portable biosensors. Journal of Micromechanics and Microengineering, 2016, 26, 055011.	1.5	19
1259	An Fe–N–C hybrid electrocatalyst derived from a bimetal–organic framework for efficient oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 11357-11364.	5.2	142
1260	Covalent versus Charge Transfer Modification of Graphene/Carbon-Nanotubes with Vitamin B1: Co/N/S–C Catalyst toward Excellent Oxygen Reduction. ACS Applied Materials & Interfaces, 2016, 8, 16045-16052.	4.0	31

#	Article	IF	CITATIONS
" 1261	Performance, methanol tolerance and stability of Fe-aminobenzimidazole derived catalyst for direct	4.0	83
	methanol fuel cells. Journal of Power Sources, 2016, 319, 235-246.		
1262	A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis, 2016, 37, 539-548.	6.9	36
1263	Fe/N/C catalyst with high activity for oxygen reduction reaction derived from surfactant modified porous carbon-supported melamine-formaldehyde resin. International Journal of Hydrogen Energy, 2016, 41, 11090-11098.	3.8	20
1264	Ultra-small Fe2N nanocrystals embedded into mesoporous nitrogen-doped graphitic carbon spheres as a highly active, stable, and methanol-tolerant electrocatalyst for the oxygen reduction reaction. Nano Energy, 2016, 24, 121-129.	8.2	131
1265	Metal–organic framework-derived hybrid of Fe ₃ C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highly efficient oxygen reduction and water oxidation. Catalysis Science and Technology, 2016, 6, 6365-6371.	2.1	63
1266	Effect of External Electric Fields on the Multifunctional Applications of Graphene. , 2016, , 253-272.		0
1267	Nitrogen-doped activated graphene/SWCNT hybrid for oxygen reduction reaction. Current Applied Physics, 2016, 16, 1242-1249.	1.1	17
1268	A reactive-template strategy for high yield synthesis of N-doped graphene and its modification by introduction of cobalt species for significantly enhanced oxygen reduction reaction. Electrochimica Acta, 2016, 210, 328-336.	2.6	32
1269	Facile synthesis of N-doped carbon nanosheet-encased cobalt nanoparticles as efficient oxygen reduction catalysts in alkaline and acidic media. Ionics, 2016, 22, 2203-2212.	1.2	14
1270	Nonprecious Bimetallic (Fe,Mo)–N/C Catalyst for Efficient Oxygen Reduction Reaction. ACS Catalysis, 2016, 6, 4449-4454.	5.5	127
1271	Facile electrochemical polymerization of polypyrrole film applied as cathode material in dual rotating disk photo fuel cell. Journal of Power Sources, 2016, 324, 368-377.	4.0	22
1272	A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 16649-16655.	4.0	13
1273	Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. Journal of Materials Chemistry A, 2016, 4, 11559-11581.	5.2	54
1274	The particle size effect of N-doped mesoporous carbons as oxygen reduction reaction catalysts for PEMFC. Korean Journal of Chemical Engineering, 2016, 33, 1831-1836.	1.2	9
1275	Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants. Journal of Power Sources, 2016, 324, 556-571.	4.0	34
1276	Emerging new generation electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 11156-11178.	5.2	174
1277	Synthesis of hollow porous ZnCo2O4 microspheres as high-performance oxygen reduction reaction electrocatalyst. International Journal of Hydrogen Energy, 2016, 41, 13024-13031.	3.8	28
1278	Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chemical Science, 2016, 7, 5758-5764.	3.7	571

#	Article	IF	CITATIONS
1279	The surface sulfur doping induced enhanced performance of cobalt catalysts in oxygen evolution reactions. Chemical Communications, 2016, 52, 9450-9453.	2.2	47
1280	Catalytic properties of graphitic and pyridinic nitrogen doped on carbon black for oxygen reduction reaction. Chinese Journal of Catalysis, 2016, 37, 1119-1126.	6.9	68
1281	Phosphorus and cobalt co-doped reduced graphene oxide bifunctional electrocatalyst for oxygen reduction and evolution reactions. RSC Advances, 2016, 6, 64155-64164.	1.7	18
1282	Monodisperse cobalt sulfides embedded within nitrogen-doped carbon nanoflakes: an efficient and stable electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 11342-11350.	5.2	85
1283	Performance analysis of Fe–N–C catalyst for DMFC cathodes: Effect of water saturation in the cathodic catalyst layer. International Journal of Hydrogen Energy, 2016, 41, 22605-22618.	3.8	42
1284	Bimodal Porous Iron/Nitrogen-Doped Highly Crystalline Carbon Nanostructure as a Cathode Catalyst for the Oxygen Reduction Reaction in an Acid Medium. ACS Catalysis, 2016, 6, 5095-5102.	5.5	70
1285	Graphitic Nanoshell/Mesoporous Carbon Nanohybrids as Highly Efficient and Stable Bifunctional Oxygen Electrocatalysts for Rechargeable Aqueous Na–Air Batteries. Advanced Energy Materials, 2016, 6, 1501794.	10.2	120
1286	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€Nâ€Carbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 1355-1359.	7.2	216
1287	Porous Core–Shell Fe ₃ C Embedded N-doped Carbon Nanofibers as an Effective Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 4118-4125.	4.0	256
1288	The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres. Journal of Materials Chemistry A, 2016, 4, 2581-2589.	5.2	195
1289	Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells. Journal of Power Sources, 2016, 307, 561-568.	4.0	128
1290	Efficient oxygen electroreduction over ordered mesoporous Co–N-doped carbon derived from cobalt porphyrin. RSC Advances, 2016, 6, 15167-15174.	1.7	28
1291	Synergistic effect between strongly coupled CoAl layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochimica Acta, 2016, 192, 196-204.	2.6	28
1292	Microscale measurements of oxygen concentration across the thickness of diffusion media in operating polymer electrolyte fuel cells. Journal of Power Sources, 2016, 306, 674-684.	4.0	17
1293	Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.	8.2	650
1294	Synergistic incorporation of hybrid heterobimetal–nitrogen atoms into carbon structures for superior oxygen electroreduction performance. Catalysis Science and Technology, 2016, 6, 2085-2091.	2.1	12
1295	Mesoporous NiCo ₂ O ₄ Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 28274-28282.	4.0	100
1296	N–Co–O Triply Doped Highly Crystalline Porous Carbon: An Acid-Proof Nonprecious Metal Oxygen Evolution Catalyst. ACS Applied Materials & Interfaces, 2016, 8, 3535-3542.	4.0	16

	CITATION REPORT		
Article		IF	CITATIONS
Investigation on the reduction of the oxides of Pd and graphite in alkaline medium and simultaneous evolution of oxygen reduction reaction and peroxide generation features Electrochimica Acta, 2016, 191, 81-89.		2.6	25
Three-dimensional (3D) interconnected networks fabricated via in-situ growth of N-dographene/carbon nanotubes on Co-containing carbon nanofibers for enhanced oxyger Nano Research, 2016, 9, 317-328.		5.8	70
Towards Effective Utilization of Nitrogen-Containing Active Sites: Nitrogen-doped Carl Wrapped CNTs Electrocatalysts for Superior Oxygen Reduction. Electrochimica Acta, 2		2.6	56
Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based three-dimensional porous carbon nanostructures. Chemical Society Reviews, 2016, 45	on , 517-531.	18.7	800
Oxygen-reduction reaction strongly electrocatalyzed by Pt electrodeposited onto grap graphene nanoribbons. Journal of Power Sources, 2016, 302, 247-258.	hene or	4.0	53
A hybrid-assembly approach towards nitrogen-doped graphene aerogel supported cob as high performance oxygen reduction electrocatalysts. Journal of Colloid and Interfac 2016, 464, 83-88.		5.0	27
High-performance non-spinel cobalt–manganese mixed oxide-based bifunctional ele rechargeable zinc–air batteries. Nano Energy, 2016, 20, 315-325.	ctrocatalysts for	8.2	187
Recovery of Polymer Electrolyte Fuel Cell exposed to sulphur dioxide. International Jou Hydrogen Energy, 2016, 41, 5598-5604.	rnal of	3.8	17
Iron oxide/oxyhydroxide decorated graphene oxides for oxygen reduction reaction cata comparison study. RSC Advances, 2016, 6, 29848-29854.	alysis: a	1.7	38
Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electroc highly exposed active sites. Nanoscale, 2016, 8, 8480-8485.	atalysts with	2.8	33
Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nar composite for the oxygen reduction. Chinese Chemical Letters, 2016, 27, 597-601.	noribbons/CNTs	4.8	51
Co-supported catalysts on nitrogen and sulfur co-doped vertically-aligned carbon nancoxygen reduction reaction. RSC Advances, 2016, 6, 32676-32684.	otubes for	1.7	7
The Active Site Structure of Transition Metal Ion helating Ordered Mesoporous Car Catalysts. Fuel Cells, 2016, 16, 23-31.	bon Fuel Cell	1.5	10
Carbonâ€5upported Zirconium Oxide as a Cathode for Microbial Fuel Cell Applications 2016, 81, 80-85.	. ChemPlusChem,	1.3	47
Highly Active and Durable Non-Precious Metal Catalyst for the Oxygen Reduction Reac Medium. Journal of the Electrochemical Society, 2016, 163, F539-F547.	tion in Acidic	1.3	32
Iron polyphthalocyanine sheathed multiwalled carbon nanotubes: A high-performance electrocatalyst for oxygen reduction reaction. Nano Research, 2016, 9, 1497-1506.		5.8	112

1313	Efficient Bi-Functional Electrocatalysts of Strontium Iron Oxy-Halides for Oxygen Evolution and Reduction Reactions in Alkaline Media. Journal of the Electrochemical Society, 2016, 163, H450-H458.	1.3	22
1314	Platinum catalysts protected by N-doped carbon for highly efficient and durable polymer-electrolyte membrane fuel cells. Electrochimica Acta, 2016, 193, 191-198.	2.6	14

#

1297

1298

1299

1301

1303

1305

1307

1309

1311

#	Article	IF	CITATIONS
1315	Co@Co ₃ O ₄ core–shell particle encapsulated N-doped mesoporous carbon cage hybrids as active and durable oxygen-evolving catalysts. Dalton Transactions, 2016, 45, 5575-5582.	1.6	53
1316	Synthesis of highly monodispersed PtCuNi nanocrystals with high electro-catalytic activities towards oxygen reduction reaction. Catalysis Today, 2016, 278, 247-254.	2.2	26
1317	Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chemical Reviews, 2016, 116, 3594-3657.	23.0	3,233
1318	Electrochemical Oxygen Reduction Activity of Cobalt-Nitrogen-Carbon Composite Catalyst Prepared by Single Precursor Pyrolysis under Autogenic Pressure. Journal of the Electrochemical Society, 2016, 163, F428-F436.	1.3	13
1319	Facile electrospinning preparation of phosphorus and nitrogen dual-doped cobalt-based carbon nanofibers as bifunctional electrocatalyst. Journal of Power Sources, 2016, 311, 68-80.	4.0	67
1320	One-pot synthesis of triazine-framework derived catalysts with high performance for polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6, 21617-21623.	1.7	2
1321	MoS ₂ nanosheets grown on amorphous carbon nanotubes for enhanced sodium storage. Journal of Materials Chemistry A, 2016, 4, 4375-4379.	5.2	78
1322	Mesoporous Hybrid Shells of Carbonized Polyaniline/Mn ₂ O ₃ as Non-Precious Efficient Oxygen Reduction Reaction Catalyst. ACS Applied Materials & Interfaces, 2016, 8, 6040-6050.	4.0	103
1323	Facile synthesis of cobalt and nitrogen co-doped graphene networks from polyaniline for oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2016, 4, 3678-3682.	5.2	34
1324	Nitrogen and Sulfur Dual-Doped Carbon Microtubes with Enhanced Performances for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, H343-H349.	1.3	17
1325	Electrocatalysis enhancement of iron-based catalysts induced by synergy of methanol and oxygen-containing groups. Nano Energy, 2016, 21, 265-275.	8.2	12
1326	Treatment of Biogas for Feeding High Temperature Fuel Cells. Green Energy and Technology, 2016, , .	0.4	19
1327	Conducting Polymer-Based Catalysts. Journal of the American Chemical Society, 2016, 138, 2868-2876.	6.6	165
1328	A facile synthesis of Fe ₃ C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale, 2016, 8, 5441-5445.	2.8	53
1329	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	4.0	71
1330	Sulfur-doping achieves efficient oxygen reduction in pyrolyzed zeolitic imidazolate frameworks. Journal of Materials Chemistry A, 2016, 4, 4457-4463.	5.2	65
1331	Optimization of cobalt/nitrogen embedded carbon nanotubes as an efficient bifunctional oxygen electrode for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2016, 4, 4864-4870.	5.2	72
1332	Mechanism for Forming B,C,N,O Rings from NH ₃ BH ₃ and CO ₂ via Reaction Discovery Computations. Journal of Physical Chemistry A, 2016, 120, 1135-1144.	1.1	15

#	Article	IF	CITATIONS
1333	Reactivity of boron- and nitrogen-doped carbon nanotubes functionalized by (Pt, Eu) atoms toward O2 and CO: A density functional study. International Journal of Modern Physics C, 2016, 27, 1650075.	0.8	2
1334	Evaluation and Enhancement of the Oxygen Reduction Reaction Activity on Hafnium Oxide Nanoparticles Assisted by L(+)-lysine. Electrochimica Acta, 2016, 201, 279-285.	2.6	12
1335	Electrocatalytic hydrogen peroxide formation on mesoporous non-metal nitrogen-doped carbon catalyst. Journal of Energy Chemistry, 2016, 25, 251-257.	7.1	107
1336	Efficient oxygen reduction reaction electrocatalysts synthesized from an iron-coordinated aromatic polymer framework. Journal of Materials Chemistry A, 2016, 4, 3858-3864.	5.2	20
1337	Synthesis of hollow carbon nanostructures as a non-precious catalyst for oxygen reduction reaction. Electrochimica Acta, 2016, 191, 805-812.	2.6	30
1338	Formation of square prism-shaped poly(o-phenylenediamine) fibers triggered by high ionic strength. RSC Advances, 2016, 6, 21895-21899.	1.7	5
1339	Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry?. Journal of Materials Chemistry A, 2016, 4, 4998-5001.	5.2	72
1340	Metallic Cobalt Encapsulated in Bamboo-Like and Nitrogen-Rich Carbonitride Nanotubes for Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 6439-6448.	4.0	110
1341	Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe ₃ C Nanoparticles Boost the Activity of Fe–N _{<i>x</i>} . Journal of the American Chemical Society, 2016, 138, 3570-3578.	6.6	1,549
1342	One-pot synthesis of boron-doped ordered mesoporous carbons as efficient electrocatalysts for the oxygen reduction reaction. RSC Advances, 2016, 6, 24728-24737.	1.7	26
1343	Density Functional Theory Study of Iron Phthalocyanine Porous Layer Deposited on Graphene Substrate: A Pt-Free Electrocatalyst for Hydrogen Fuel Cells. Journal of Physical Chemistry C, 2016, 120, 5384-5391.	1.5	41
1344	Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption. ACS Applied Materials & amp; Interfaces, 2016, 8, 6464-6471.	4.0	46
1345	Noble-metal-free Co ₃ S ₄ –S/G porous hybrids as an efficient electrocatalyst for oxygen reduction reaction. Chemical Science, 2016, 7, 4167-4173.	3.7	98
1346	Study of Co-electrospun Nafion and Polyaniline Nanofibers as Potential Catalyst Support for Fuel Cell Electrodes. Electrochimica Acta, 2016, 198, 156-164.	2.6	20
1347	Carbon dioxide activated carbon nanofibers with hierarchical micro-/mesoporosity towards electrocatalytic oxygen reduction. Journal of Materials Chemistry A, 2016, 4, 5553-5560.	5.2	35
1348	PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds. Coordination Chemistry Reviews, 2016, 315, 153-177.	9.5	110
1349	Structural effects of a carbon matrix in non-precious metal O ₂ -reduction electrocatalysts. Chemical Society Reviews, 2016, 45, 2396-2409.	18.7	175
1350	Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons. Journal of Materials Chemistry A, 2016, 4, 5869-5876.	5.2	17

ARTICLE IF CITATIONS Graphene-supported non-precious metal electrocatalysts for oxygen reduction reactions: the active 1351 5.2 17 center and catalytic mechanism. Journal of Materials Chemistry A, 2016, 4, 7148-7154. Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts. 5.4 Carbon, 2016, 101, 191-202. Further Understanding of Nitrogen-Doped Carbon Catalytic Property towards Oxygen Reduction 1353 0.9 11 Reaction (ORR). Materials Today: Proceedings, 2016, 3, 691-695. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane 1354 908 Fuel Cells. Journal of Physical Chemistry Letters, 2016, 7, 1127-1137. On an Easy Way To Prepare Metalâ€"Nitrogen Doped Carbon with Exclusive Presence of MeN₄-type Sites Active for the ORR. Journal of the American Chemical Society, 2016, 138, 1355 420 6.6 635-640. Porous carbon-coated cobalt sulfide nanocomposites derived from metal organic frameworks (MOFs) as an advanced oxygen reduction electrocatalyst. New Journal of Chemistry, 2016, 40, 1679-1684. 1.4 Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: A highly active metal-free 1357 5.4 65 electrocatalyst for oxygen reduction. Carbon, 2016, 99, 272-279. Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and 4.6 electricity in a H₂–NO fuel céll. Green Chemistry, 2016, 18, 1547-1559. A novel iron (II) tetranitrophthalocyanine/graphene composite as the high-performance catalyst for 1359 2.3 26 the oxygen reduction reaction in an alkaline medium. Applied Materials Today, 2016, 3, 1-10. Graphene decorated with multiple nanosized active species as dual function electrocatalysts for 2.6 lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media. Journal of Power Sources, 1361 4.029 2016, 307, 152-159. Catalytic performance and mechanism of N-CoTi@CoTiO 3 catalysts for oxygen reduction reaction. 8.2 Nano Energy, 2016, 20, 134-143. Iron/Polyindole-based Electrocatalysts to Enhance Oxygen Reduction in Microbial Fuel Cells. 1363 2.6 101 Electrochimica Acta, 2016, 190, 388-395. Catalytic Activity for Oxygen Reduction Reaction on CoN₂-Graphene: A Density Functional Theory Study. Journal of the Electrochemical Society, 2016, 163, F160-F165. 1364 1.3 Cobalt and Nitrogen Co-Doped Tungsten Carbide Catalyst for Oxygen Reduction and Hydrogen 1365 2.6 56 Evolution Reactions. Electrochimica Acta, 2016, 190, 1113-1123. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional 1366 460 catalysts for oxygen electrode reactions. Journal of Materials Chemistry A, 2016, 4, 1694-1701. Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition 1367 Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. Journal of Physical Chemistry C, 2016, 120, 1.5148 1586-1596. A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived 1368 4.6 from polyquaternium for superior oxygen reduction reactivity. Green Chemistry, 2016, 18, 2699-2709.

#	Article		CITATIONS
1369	Structural and Electronic Transformations of Pt/C, Pd@Pt(1 ML)/C and Pd@Pt(2 ML)/C Cathode Catalysts in Polymer Electrolyte Fuel Cells during Potential-step Operating Processes Characterized by In-situ Time-resolved XAFS. Surface Science, 2016, 648, 100-113.	0.8	21
1370	Design of a layered nanoreactor to produce nitrogen doped carbon nanosheets as highly efficient material for supercapacitors. Materials and Design, 2016, 89, 708-714.	3.3	27
1371	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
1372	Hydrangea-like NiCo ₂ S ₄ hollow microspheres as an advanced bifunctional electrocatalyst for aqueous metal/air batteries. Catalysis Science and Technology, 2016, 6, 434-437.	2.1	59
1373	Performance analysis of a non-platinum group metal catalyst based on iron-aminoantipyrine for direct methanol fuel cells. Applied Catalysis B: Environmental, 2016, 182, 297-305.	10.8	113
1374	Exploration of the Copper Active Sites in Electrooxidation of Glucose on a Copper/Nitrogen Doped Graphene Nanocomposite. Journal of Physical Chemistry C, 2016, 120, 15593-15599.	1.5	17
1375	Repercussion of the carbon matrix for the activity and stability of Fe/N/C electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 183, 185-196.	10.8	63
1376	The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy and Environmental Science, 2016, 9, 357-390.	15.6	456
1377	On the structural composition and stability of Fe–N–C catalysts prepared by an intermediate acid leaching. Journal of Solid State Electrochemistry, 2016, 20, 969-981.	1.2	39
1378	N- and S-doped mesoporous carbon as metal-free cathode catalysts for direct biorenewable alcohol fuel cells. Journal of Materials Chemistry A, 2016, 4, 83-95.	5.2	101
1379	Bifunctional Nitrogen-Doped Microporous Carbon Microspheres Derived from Poly(<i>o</i> -methylaniline) for Oxygen Reduction and Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 3601-3608.	4.0	89
1380	Superior pore network retention of carbon derived from naturally dried ginkgo leaves and its enhanced oxygen reduction performance. Catalysis Today, 2016, 260, 148-157.	2.2	31
1381	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Co–Pt core–shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	2.1	17
1382	Oxygen reduction on chemically heterogeneous iron-containing nanoporous carbon: The effects of specific surface functionalities. Microporous and Mesoporous Materials, 2016, 221, 137-149.	2.2	13
1383	Synthesis–structure–performance correlation for poly(phenylenediamine)s/iron/carbon non-precious metal catalysts for oxygen reduction reaction. Catalysis Today, 2016, 260, 112-118.	2.2	16
1384	Nanocarbon-intercalated and Fe–N-codoped graphene as a highly active noble-metal-free bifunctional electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 1930-1934.	5.2	88
1385	Transition metal–nitrogen–carbon nanostructured catalysts for the oxygen reduction reaction: From mechanistic insights to structural optimization. Nano Research, 2017, 10, 1449-1470.	5.8	144
1386	Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-N _{<i>x</i>} Sites for Advanced Oxygen Reduction in Acid Media. ACS Catalysis, 2017, 7, 1655-1663.	5.5	483

#	Article		CITATIONS
1387	Highly dispersed iron nitride nanoparticles embedded in N doped carbon as a high performance electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 2996-3005.	3.8	34
1388	Lamellar Metal Organic Framework-Derived Fe–N–C Non-Noble Electrocatalysts with Bimodal Porosity for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 5272-5278.	4.0	95
1389	Bottom-up fabrication of nitrogen-doped mesoporous carbon nanosheets as high performance oxygen reduction catalysts. Journal of Colloid and Interface Science, 2017, 492, 8-14.	5.0	10
1390	Efficient Synthesis of Nitrogen- and Sulfur-co-Doped Ketjenblack with a Single-Source Precursor for Enhancing Oxygen Reduction Reaction Activity. Chemistry - A European Journal, 2017, 23, 3674-3682.	1.7	25
1391	Co/N–C nanotubes with increased coupling sites by space-confined pyrolysis for high electrocatalytic activity. Green Energy and Environment, 2017, 2, 23-29.	4.7	10
1392	Selfâ€Templated Synthesis of Co―and Nâ€Doped Carbon Microtubes Composed of Hollow Nanospheres and Nanotubes for Efficient Oxygen Reduction Reaction. Small, 2017, 13, 1603437.	5.2	57
1393	Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction. Carbon, 2017, 115, 763-772.	5.4	119
1394	Urchin-Shaped Hollow Iron-Nitrogen-Doped Carbon Microspheres as High-Performance Electrocatalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2017, 164, F224-F228.	1.3	11
1395	Microwave and electrochemical assisted synthesis of chlorinated iron phthalocyanine nanoparticles. Pigment and Resin Technology, 2017, 46, 156-160.		5
1396	Potential application of Ni and Co stabilized zirconia as oxygen reduction reaction catalyst. Catalysis Communications, 2017, 93, 37-42.		5
1397	An Efficient Bifunctional Electrocatalyst for a Zinc–Air Battery Derived from Fe/N/C and Bimetallic Metal–Organic Framework Composites. ACS Applied Materials & Interfaces, 2017, 9, 5213-5221.		113
1398	Uniformly distributed and in situ iron–nitrogen co-doped porous carbon derived from pork liver for rapid and simultaneous detection of dopamine, uric acid, and paracetamol in human blood serum. New Journal of Chemistry, 2017, 41, 2081-2089.	1.4	17
1399	Selective Hydrodeoxygenation of 5â€Hydroxymethylfurfural to 2,5â€Dimethylfuran over Heterogeneous Iron Catalysts. ChemSusChem, 2017, 10, 1436-1447.	3.6	57
1400	Advances in Production and Applications of Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 18.	3.0	64
1401	Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochimica Acta, 2017, 230, 81-88.	2.6	51
1402	Soluble and electrically conductive polyanilineâ€modified polymers: Incorporation of biocompatible polymeric chains through ATRP technique. Journal of Applied Polymer Science, 2017, 134, .	1.3	13
1403	Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries. Nano Research, 2017, 10, 4436-4447.	5.8	98
1404	RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution. Applied Catalysis B: Environmental, 2017, 206, 115-126.	10.8	68

#	Article		CITATIONS
1405	Fe-N/C catalysts for oxygen reduction reaction supported on different carbonaceous materials. Performance in acidic and alkaline direct alcohol fuel cells. Applied Catalysis B: Environmental, 2017, 205, 637-653.	10.8	115
1406	Thermally Converted CoO Nanoparticles Embedded into Nâ€Doped Carbon Layers as Highly Efficient Bifunctional Electrocatalysts for Oxygen Reduction and Oxygen Evolution Reactions. ChemCatChem, 2017, 9, 1503-1510.	1.8	31
1407	Density Functional Theory (DFT) Calculations for Oxygen Reduction Reaction Mechanisms on Metal-, Nitrogen- co-doped Graphene (M-N2-G (M = Ti, Cu, Mo, Nb and Ru)) Electrocatalysts. Electrochimica Acta, 2017, 228, 619-627.	2.6	29
1408	Simple-Cubic Carbon Frameworks with Atomically Dispersed Iron Dopants toward High-Efficiency Oxygen Reduction. Nano Letters, 2017, 17, 2003-2009.	4.5	168
1409	Fe ₉ S ₁₀ -decorated N, S co-doped graphene as a new and efficient electrocatalyst for oxygen reduction and oxygen evolution reactions. Catalysis Science and Technology, 2017, 7, 1181-1192.	2.1	37
1410	La0.7(Sr0.3-xPdx)MnO3 as a highly efficient electrocatalyst for oxygen reduction reaction in aluminum air battery. Electrochimica Acta, 2017, 230, 418-427.	2.6	32
1411	Supramolecular gel-assisted synthesis Co 2 P particles anchored in multielement co-doped graphene as efficient bifunctional electrocatalysts for oxygen reduction and evolution. Electrochimica Acta, 2017, 231, 344-353.	2.6	60
1412	Electrocatalysts for low temperature fuel cells. Catalysis Today, 2017, 285, 3-12.	2.2	50
1413	³ Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes. Accounts of Chemical Research, 2017, 50, 915-923.		824
1414	Topochemical Reaction of Exfoliated Layered Cobalt(II) Hydroxide for the Synthesis of Ultrapure Co ₃ O ₄ as an Oxygen Reduction Catalyst. European Journal of Inorganic Chemistry, 2017, 2017, 2184-2189.	1.0	12
1415	La _{1â^'x} Ag _x MnO ₃ electrocatalyst with high catalytic activity for oxygen reduction reaction in aluminium air batteries. RSC Advances, 2017, 7, 5214-5221.	1.7	33
1416	H ₂ O ₂ â€Assisted Synthesis of Porous Nâ€Doped Graphene/Molybdenum Nitride Composites with Boosted Oxygen Reduction Reaction. Advanced Materials Interfaces, 2017, 4, 1601227.	1.9	35
1417	Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst. Journal of Power Sources, 2017, 348, 183-192.	4.0	62
1418	Using aminopyrine as a nitrogen-enriched small molecule precursor to synthesize high-performing nitrogen doped mesoporous carbon for catalyzing oxygen reduction reaction. RSC Advances, 2017, 7, 669-677.	1.7	7
1419	In situ Fe ₂ N@N-doped porous carbon hybrids as superior catalysts for oxygen reduction reaction. Nanoscale, 2017, 9, 8102-8106.	2.8	80
1420	Fe ₃ C@Fe/N Doped Graphene-Like Carbon Sheets as a Highly Efficient Catalyst in Al-Air Batteries. Journal of the Electrochemical Society, 2017, 164, F475-F483.	1.3	34
1421	2D nitrogen-doped hierarchically porous carbon: Key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 209, 447-454.	10.8	94
1422	Tuning the Adsorption Properties of Layered Double Hydroxides to Tailor Highly Active Oxygen Bifunctional Electrocatalysts. Journal of the Electrochemical Society, 2017, 164, F491-F498.	1.3	8

#	Article	IF	CITATIONS
1423	Highly uniform and monodisperse carbon nanospheres enriched with cobalt–nitrogen active sites as a potential oxygen reduction electrocatalyst. Journal of Power Sources, 2017, 346, 80-88.	4.0	42
1424	Roles of Feâ^'N _{<i>x</i>} and Feâ^'Fe ₃ C@C Species in Feâ^'N/C Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 9567-9575.	4.0	151
1425	A Facile Synthesis of Nitrogen-Doped Highly Porous Carbon Nanoplatelets: Efficient Catalysts for Oxygen Electroreduction. Scientific Reports, 2017, 7, 43366.	1.6	31
1426	Znâ€MOFâ€74 Derived Nâ€Doped Mesoporous Carbon as pHâ€Universal Electrocatalyst for Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1606190.	7.8	231
1427	Unraveling the Oxygenâ€Reduction Sites in Graphiticâ€Carbon Co–N–Câ€Type Electrocatalysts Prepared by Singleâ€Precursor Pyrolysis. ChemCatChem, 2017, 9, 1969-1978.	1.8	18
1428	Heterogeneous iron-containing carbon gels as catalysts for oxygen electroreduction: Multifunctional role of sulfur in the formation of efficient systems. Carbon, 2017, 116, 655-669.	5.4	31
1429	Cu ₂ ZnSnS ₄ –AuAg Heterodimers and Their Enhanced Catalysis for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 6712-6720.	1.5	12
1430	In situ coupling of Co _{0.85} Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 7001-7014.	5.2	211
1431	Selfâ€Assembled Fe–Nâ€Đoped Carbon Nanotube Aerogels with Singleâ€Atom Catalyst Feature as Highâ€Efficiency Oxygen Reduction Electrocatalysts. Small, 2017, 13, 1603407.	5.2	254
1432	Oxygen-induced doping on reduced PEDOT. Journal of Materials Chemistry A, 2017, 5, 4404-4412.	5.2	97
1433	The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in iron- and nitrogen-doped carbon materials. Journal of Materials Chemistry A, 2017, 5, 4199-4206.	5.2	30
1434	Design and Application of Foams for Electrocatalysis. ChemCatChem, 2017, 9, 1721-1743.	1.8	245
1435	Hollow Nitrogen-Doped Carbon Spheres with Fe ₃ O ₄ Nanoparticles Encapsulated as a Highly Active Oxygen-Reduction Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 10610-10617.	4.0	128
1436	A novel flower-like architecture of FeCo@NC-functionalized ultra-thin carbon nanosheets as a highly efficient 3D bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A, 2017, 5, 5413-5425.	5.2	124
1437	Cobalt nanoparticle decorated graphene aerogel for efficient oxygen reduction reaction electrocatalysis. International Journal of Hydrogen Energy, 2017, 42, 5930-5937.	3.8	28
1438	Soluble conjugated polymer enriched with pyridinic nitrogen atoms and its application as high-performance catalyst for oxygen reduction. Journal of Solid State Electrochemistry, 2017, 21, 1639-1651.	1.2	9
1439	Hollow-structured conjugated porous polymer derived Iron/Nitrogen-codoped hierarchical porous carbons as highly efficient electrocatalysts. Journal of Colloid and Interface Science, 2017, 497, 108-116.	5.0	28
1440	Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	36

#	Article	IF	CITATIONS
1441	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. Sustainable Energy and Fuels, 2017, 1, 823-831.	2.5	24
1442	Facile Integration of Hierarchical Pores and N,P-Codoping in Carbon Networks Enables Efficient Oxygen Reduction Reaction. Electrochimica Acta, 2017, 238, 375-383.	2.6	34
1443	Ni–Pd core–shell nanoparticles with Pt-like oxygen reduction electrocatalytic performance in both acidic and alkaline electrolytes. Journal of Materials Chemistry A, 2017, 5, 9233-9240.	5.2	61
1444	Heteroatomâ€Doped Carbon Materials for Electrocatalysis. Chemistry - A European Journal, 2017, 23, 10703-10713.	1.7	64
1445	Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. Journal of Industrial and Engineering Chemistry, 2017, 52, 35-41.	2.9	18
1446	Cobalt–zinc nitride on nitrogen doped carbon black nanohybrids as a non-noble metal electrocatalyst for oxygen reduction reaction. Nanoscale, 2017, 9, 6259-6263.	2.8	55
1447	Doped porous carbon nanostructures as non-precious metal catalysts prepared by amino acid glycine for oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 211, 235-244.	10.8	51
1448	In Situ Growth of Ceria on Cerium–Nitrogen–Carbon as Promoter for Oxygen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700272.	1.9	17
1449	"Wiring―Feâ€N _{<i>x</i>} â€Embedded Porous Carbon Framework onto 1D Nanotubes for Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. Advanced Materials, 2017, 29, 1606534.	11.1	342
1450	In Situ Formation of Hierarchical Porous Fe,Coâ^'Nâ€Đoped Carbon as a Highly Efficient Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2005-2011.	1.7	8
1451	Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon, 2017, 119, 201-210.	5.4	99
1452	Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 16178-16186.	4.0	94
1453	Nitrogen-doped porous carbon derived from Fe-MIL nanocrystals as an electrocatalyst for efficient oxygen reduction. RSC Advances, 2017, 7, 22610-22618.	1.7	26
1454	Hierarchical nitrogen-enriched porous carbon materials derived from Schiff-base networks supported FeCo 2 O 4 nanoparticles for efficient water oxidation. International Journal of Hydrogen Energy, 2017, 42, 10802-10812.	3.8	35
1455	Nitrogen-rich Fe-N-C materials derived from polyacrylonitrile as highly active and durable catalysts for the oxygen reduction reaction in both acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2017, 502, 44-51.	5.0	34
1456	Rational design of N-doped carbon nanobox-supported Fe/Fe ₂ N/Fe ₃ C nanoparticles as efficient oxygen reduction catalysts for Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 11340-11347.	5.2	63
1457	Architecture of CoN _x single clusters on nanocarbon as excellent oxygen reduction catalysts with high-efficient atomic utilization. Nanoscale, 2017, 9, 8341-8348.	2.8	47
1458	Electrochemical Oxygen Reduction Activity of Metal Embedded Nitrogen Doped Carbon Nanostructures Derived from Pyrolysis of Nitrogen-Rich Guanidinium Salt. Journal of the Electrochemical Society, 2017, 164, F781-F789.	1.3	8

#	Article		CITATIONS
1459	The active site exploration of Co-based non-precious metal electrocatalysts for oxygen reduction reaction. Ionics, 2017, 23, 1849-1859.	1.2	6
1460	Carbon nanofibers as parent materials for a graphene-based Fe-N-C catalyst for the oxygen reduction reaction. Catalysis Today, 2017, 295, 125-131.	2.2	19
1461	Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 12322-12329.	5.2	93
1462	Defect Chemistry of Nonpreciousâ€Metal Electrocatalysts for Oxygen Reactions. Advanced Materials, 2017, 29, 1606459.	11.1	1,260
1463	Metalâ€Organic Frameworkâ€Derived Nonâ€Precious Metal Nanocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2017, 7, 1700363.	10.2	297
1464	One-pot synthesis of transition metal ion-chelating ordered mesoporous carbon/carbon nanotube composites for active and durable fuel cell catalysts. Journal of Power Sources, 2017, 357, 87-96.	4.0	14
1465	Oxygen Reduction Reaction (ORR) Activity of a Phenol-Substituted Linear Felll-Porphyrin Dimer. European Journal of Inorganic Chemistry, 2017, 2017, 3229-3232.	1.0	8
1466	The synthesis and electro-catalytic activity for ORR of the structured electrode material: CP/Fe-N-CNFs. Journal of Solid State Electrochemistry, 2017, 21, 2909-2920.	1.2	6
1467	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37, 98-107.	8.2	129
1468	Well-Defined 2D Covalent Organic Polymers for Energy Electrocatalysis. ACS Energy Letters, 2017, 2, 1308-1314.	8.8	109
1469	Atomically thin SiC nanoparticles obtained via ultrasonic treatment to realize enhanced catalytic activity for the oxygen reduction reaction in both alkaline and acidic media. RSC Advances, 2017, 7, 22875-22881.	1.7	34
1470	Improve the electrocatalytic performance of non-precious metal CoDETA/C catalyst for oxygen reduction reaction by post-treatment. International Journal of Hydrogen Energy, 2017, 42, 14115-14123.	3.8	2
1471	Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 21747-21755.	4.0	98
1472	Preparation of poly(o-ethoxyaniline)-nano SiC composite and evaluation of its corrosion resistance properties. Journal of Alloys and Compounds, 2017, 717, 98-107.	2.8	20
1473	Role of Local Carbon Structure Surrounding FeN ₄ Sites in Boosting the Catalytic Activity for Oxygen Reduction. Journal of Physical Chemistry C, 2017, 121, 11319-11324.	1.5	150
1474	Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Materials Chemistry Frontiers, 2017, 1, 2155-2173.	3.2	109
1475	Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction. Nano Energy, 2017, 37, 187-194.	8.2	125
1476	Best Practices and Testing Protocols for Benchmarking ORR Activities of Fuel Cell Electrocatalysts Using Rotating Disk Electrode. Electrocatalysis, 2017, 8, 366-374.	1.5	121

#	Article	IF	CITATIONS
1477	Effect of metal species on the stability of Me-N-C catalysts during accelerated stress tests mimicking the start-up and shut-down conditions. Electrochimica Acta, 2017, 243, 183-196.	2.6	60
1478	Space-Confined Pyrolysis for the Fabrication of Fe/N/C Nanoparticles as a High Performance Oxygen Reduction Reaction Electrocatalyst. Electrochimica Acta, 2017, 244, 47-53.	2.6	40
1479	Economical nanocomposites of cobalt or nickel species and polyaniline-derived N-doped mesoporous carbons for dye-sensitized solar cells as counter electrodes. Journal of Catalysis, 2017, 351, 19-32.	3.1	20
1480	A direct four-electron process on Fe–N ₃ doped graphene for the oxygen reduction reaction: a theoretical perspective. RSC Advances, 2017, 7, 23812-23819.	1.7	33
1481	Fe, N, S-doped porous carbon as oxygen reduction reaction catalyst in acidic medium with high activity and durability synthesized using CaCl 2 as template. Chinese Journal of Catalysis, 2017, 38, 673-682.	6.9	19
1482	One-pot synthesis of Pt/CeO 2 /C catalyst for improving the ORR activity and durability of PEMFC. International Journal of Hydrogen Energy, 2017, 42, 13011-13019.	3.8	76
1483	Electrochemical oxygen reduction mechanism on FeN2-graphene. Journal of Molecular Modeling, 2017, 23, 170.	0.8	9
1484	Highly Active and Stable Fe–N–C Catalyst for Oxygen Depolarized Cathode Applications. Langmuir, 2017, 33, 9246-9253.	1.6	23
1485	Raisin bread-like iron sulfides/nitrogen and sulfur dual-doped mesoporous graphitic carbon spheres: a promising electrocatalyst for the oxygen reduction reaction in alkaline and acidic media. Journal of Materials Chemistry A, 2017, 5, 11114-11123.	5.2	55
1486	Bio-inspired iron metal–carbon black based nano-electrocatalyst for the oxygen reduction reaction. Pigment and Resin Technology, 2017, 46, 267-275.	0.5	6
1487	Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 1211-1220.	5.2	161
1488	ls iron nitride or carbide highly active for oxygen reduction reaction in acidic medium?. Catalysis Science and Technology, 2017, 7, 51-55.	2.1	50
1489	A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. Journal of Materials Chemistry A, 2017, 5, 1808-1825.	5.2	732
1490	Cu nanoparticles supported on graphitic carbon nitride as an efficient electrocatalyst for oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 1006-1010.	6.9	11
1491	Electrochemical catalytic contribution of transition metals at the center of porphyrin macrocycle structures as catalysts for oxygen reduction reaction. Journal of Industrial and Engineering Chemistry, 2017, 54, 200-204.	2.9	9
1492	CoN ₃ embedded graphene, a potential catalyst for the oxygen reduction reaction from a theoretical perspective. Physical Chemistry Chemical Physics, 2017, 19, 17670-17676.	1.3	41
1493	Metal–Organicâ€Frameworkâ€Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	11.1	678
1494	Cobaltâ€Based Active Species Molecularly Immobilized on Carbon Nanotubes for the Oxygen Reduction Reaction. ChemSusChem, 2017, 10, 3473-3481.	3.6	20

#	Article		CITATIONS
1495	MOFâ€Based Metalâ€Dopingâ€Induced Synthesis of Hierarchical Porous CuN/C Oxygen Reduction Electrocatalysts for Zn–Air Batteries. Small, 2017, 13, 1700740.	5.2	170
1496	Electrocatalysis for the Hydrogen Economy. , 2017, , 23-50.		11
1497	Current challenge and perspective of PGM-free cathode catalysts for PEM fuel cells. Frontiers in Energy, 2017, 11, 286-298.	1.2	75
1498	Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction. Chinese Journal of Catalysis, 2017, 38, 951-969.	6.9	49
1499	Hierarchical porous carbon materials prepared by direct carbonization of Al-PCP as a Pt-catalyst support for the oxygen reduction reaction. New Journal of Chemistry, 2017, 41, 7432-7437.	1.4	3
1500	A bottom-up, template-free route to mesoporous N-doped carbons for efficient oxygen electroreduction. Journal of Materials Science, 2017, 52, 9794-9805.	1.7	7
1501	Highly active and durable nitrogen doped-reduced graphene oxide/double perovskite bifunctional hybrid catalysts. Journal of Materials Chemistry A, 2017, 5, 13019-13031.	5.2	45
1502	Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from In Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 2017, 90, 950-954.	2.0	21
1503	Oxygen reduction reaction at porphyrin-based electrochemical catalysts: Mechanistic effects of pH and spin states studied by density functional theory. Catalysis Today, 2017, 295, 119-124.	2.2	14
1504	Graphene-derived Fe/Co-N-C catalyst in direct methanol fuel cells: Effects of the methanol concentration and ionomer content on cell performance. Journal of Power Sources, 2017, 358, 76-84.	4.0	38
1505	Einzelatomâ€Elektrokatalysatoren. Angewandte Chemie, 2017, 129, 14132-14148.	1.6	99
1506	Singleâ€Atom Electrocatalysts. Angewandte Chemie - International Edition, 2017, 56, 13944-13960.	7.2	1,040
1507	Lettuce–like, Hierarchically Porous and Nitrogenâ€Doped Carbon Catalyst: As a Superb nonâ€Preciousâ€Metal Oxygen Reduction Reaction Electrocatalyst in both Alkaline and Acidic Media. ChemistrySelect, 2017, 2, 4176-4186.	0.7	0
1508	Synthesis of Highly Porous Metalâ€Free Oxygen Reduction Electrocatalysts in a Selfâ€6acrificial Bacterial Cellulose Microreactor. Advanced Sustainable Systems, 2017, 1, 1700045.	2.7	9
1509	Two-dimensional graphene-like N, Co-codoped carbon nanosheets derived from ZIF-67 polyhedrons for efficient oxygen reduction reactions. Chemical Communications, 2017, 53, 7840-7843.	2.2	70
1510	Direct synthesis of a carbon nanotube interpenetrated doped porous carbon alloy as a durable Pt-free electrocatalyst for the oxygen reduction reaction in an alkaline medium. Sustainable Energy and Fuels, 2017, 1, 1524-1532.	2.5	16
1511	Origin of the high oxygen reduction reaction of nitrogen and sulfur co-doped MOF-derived nanocarbon electrocatalysts. Materials Horizons, 2017, 4, 900-907.	6.4	95
1512	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€Nâ€C Catalysts. Angewandte Chemie, 2017, 129, 8935-8938.	1.6	16

#	Article	IF	CITATIONS
1513	N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Research, 2017, 10, 3228-3237.	5.8	90
1514	Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 245, 219-226.	2.6	10
1515	Nanosized-Fe 3 PtN supported on nitrogen-doped carbon as electro-catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 15761-15769.	3.8	2
1516	Iron (II) phthalocyanine nanoclusters - Graphene sandwich composite for oxygen reduction reaction catalysts. Materials and Design, 2017, 130, 366-372.	3.3	15
1517	Unprecedented Activity of Bifunctional Electrocatalyst for High Power Density Aqueous Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21216-21224.	4.0	64
1518	Fe–N–C Catalyst Graphitic Layer Structure and Fuel Cell Performance. ACS Energy Letters, 2017, 2, 1489-1493.	8.8	104
1519	Preparation and characterization of click-driven N-vinylcarbazole-based anion exchange membranes with improved water uptake for fuel cells. RSC Advances, 2017, 7, 29794-29805.	1.7	18
1520	Design Strategies toward Advanced MOFâ€Derived Electrocatalysts for Energy onversion Reactions. Advanced Energy Materials, 2017, 7, 1700518.	10.2	539
1521	Fe/N/S-composited hierarchically porous carbons with optimized surface functionality, composition and nanoarchitecture as electrocatalysts for oxygen reduction reaction. Journal of Catalysis, 2017, 352, 208-217.	3.1	44
1522	A simple method for preparing a binder-free paper-based air cathode for microbial fuel cells. Bioresource Technology, 2017, 241, 325-331.	4.8	32
1523	Highly efficient Fe/N/C catalyst using adenosine as C/N-source for APEFC. Journal of Energy Chemistry, 2017, 26, 616-621.	7.1	10
1524	Nitrogen-Coordinated Ironâ^Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy & Fuels, 2017, 31, 6541-6547.	2.5	34
1525	A Composite of Pyrroleâ€Đoped Carbon Black Modified with Co ₃ O ₄ for Efficient Electrochemical Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 2260-2268.	1.7	11
1526	In Situ Electrostatic Modulation of Path Selectivity for the Oxygen Reduction Reaction on Fe–N Doped Carbon Catalyst. Chemistry of Materials, 2017, 29, 4649-4653.	3.2	23
1527	Unveiling the Catalytic Origin of Nanocrystalline Yttrium Ruthenate Pyrochlore as a Bifunctional Electrocatalyst for Zn–Air Batteries. Nano Letters, 2017, 17, 3974-3981.	4.5	80
1528	Achieving excellent activity and stability for oxygen reduction electrocatalysis by hollow mesoporous iron–nitrogen-doped graphitic carbon spheres. Journal of Materials Chemistry A, 2017, 5, 12243-12251.	5.2	48
1529	Facile fabrication of N/S-doped carbon nanotubes with Fe ₃ O ₄ nanocrystals enchased for lasting synergy as efficient oxygen reduction catalysts. Journal of Materials Chemistry A, 2017, 5, 13189-13195.	5.2	50
1530	Carbon Dioxide Electroreduction at Highly Porous Nitrogen and Sulfur Co-Doped Iron-Containing Heterogeneous Carbon Gel. Journal of the Electrochemical Society, 2017, 164, H484-H490.	1.3	20

#	Article	IF	Citations
1531	Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Feâ€N Catalysts. Angewandte Chemie - International Edition, 2017, 56, 8809-8812.	7.2	176
1532	Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Applied Catalysis B: Environmental, 2017, 217, 303-312.	10.8	58
1533	Novel highly active and selective Fe-N-C oxygen reduction electrocatalysts derived from in-situ polymerization pyrolysis. Nano Energy, 2017, 38, 201-209.	8.2	84
1534	Resolving the Iron Phthalocyanine Redox Transitions for ORR Catalysis in Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 2881-2886.	2.1	89
1535	One-pot synthesis of La 0.7 Sr 0.3 MnO 3 supported on flower-like CeO 2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries. Journal of Power Sources, 2017, 358, 50-60.	4.0	38
1536	From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction. Materials Research Express, 2017, 4, 076305.	0.8	5
1537	Zn Single Atom Catalyst for Highly Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2017, 27, 1700802.	7.8	296
1538	Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. Journal of Physical Chemistry C, 2017, 121, 14524-14533.	1.5	89
1539	Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. Journal of Materials Chemistry A, 2017, 5, 14763-14774.	5.2	41
1540	Anodically-grown TiO 2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction. Applied Surface Science, 2017, 412, 447-454.	3.1	18
1541	Elastic Long-Chain Multication Cross-Linked Anion Exchange Membranes. Macromolecules, 2017, 50, 3323-3332.	2.2	159
1542	Highly Crumpled Hybrids of Nitrogen/Sulfur Dual-Doped Graphene and Co ₉ S ₈ Nanoplates as Efficient Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2017, 9, 12340-12347.	4.0	105
1543	A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochimica Acta, 2017, 235, 720-729.	2.6	22
1544	Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries. Energy Storage Materials, 2017, 8, 49-58.	9.5	70
1545	Doping Copper lons into an Fe/N/C Composite Promotes Catalyst Performance for the Oxygen Reduction Reaction. ChemElectroChem, 2017, 4, 1509-1515.	1.7	8
1546	3D interconnected hierarchically porous N-doped carbon with NH3 activation for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2017, 210, 57-66.	10.8	131
1547	Protein-enriched fish "biowaste―converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochimica Acta, 2017, 236, 228-238.	2.6	70
1548	Liquidâ€Crystalâ€Mediated 3D Macrostructured Composite of Co/Co ₃ O ₄ Embedded in Graphene: Free‣tanding Electrode for Efficient Water Splitting. Particle and Particle Systems Characterization, 2017, 34, 1600386.	1.2	14

		CITATION RE	EPORT	
#	Article		lF	CITATIONS
1549	Fe, Co bimetal activated N-doped graphitic carbon layers as noble metal-free electrocataly high-performance oxygen reduction reaction. Journal of Alloys and Compounds, 2017, 71	sts for), 57-65.	2.8	52
1550	A Co-N/C hollow-sphere electrocatalyst derived from a metanilic CoAl layered double hydr the oxygen reduction reaction, and its active sites in various pH media. Nano Research, 20 2508-2518.	oxide for 117, 10,	5.8	62
1551	Metal–polydopamine frameworks and their transformation to hollow metal/N-doped ca particles. Nanoscale, 2017, 9, 5323-5328.	bon	2.8	140
1552	Simultaneous co-doping of N and S by a facile in-situ polymerization of 6-N,N-dibutylamine-1,3,5-triazine-2,4-dithiol on graphene framework: An efficient and dura reduction catalyst in alkaline medium. Carbon, 2017, 118, 531-544.	able oxygen	5.4	38
1553	Self-assembled nitrogen-doped fullerenes and their catalysis for fuel cell and rechargeable battery applications. Nanoscale, 2017, 9, 7373-7379.	metal–air	2.8	56
1554	Low-Temperature and Gram-Scale Synthesis of Two-Dimensional Fe–N–C Carbon She Electrochemical Oxygen Reduction Reaction. Chemistry of Materials, 2017, 29, 2890-289		3.2	55
1555	A metal–organic framework devised Co–N doped carbon microsphere/nanofiber hybr free-standing 3D oxygen catalyst. Chemical Communications, 2017, 53, 4034-4037.	.d as a	2.2	65
1556	Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active electrocatalyst for oxygen reduction and ethanol oxidation. Journal of Materials Chemistry 10876-10884.	and durable A, 2017, 5,	5.2	93
1557	Mechanism of Cathodic Performance Enhancement by a Few-Nanometer-Thick Oxide Overcoat on Porous Pt Cathodes of Solid Oxide Fuel Cells. ACS Omega, 2017, 2, 806-813.		1.6	19
1558	Water Oxidation on Oxygen-Deficient Barium Titanate: A First-Principles Study. Journal of Chemistry C, 2017, 121, 8378-8389.	Physical	1.5	34
1559	Novel Iron/Cobaltâ€Containing Polypyrrole Hydrogelâ€Derived Trifunctional Electrocataly Selfâ€Powered Overall Water Splitting. Advanced Functional Materials, 2017, 27, 160649	st for 17.	7.8	320
1560	Nâ€, Oâ€, and Sâ€Tridoped Carbonâ€Encapsulated Co ₉ S ₈ Nan Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2 1606585.		7.8	365
1561	Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chemical Reviews, 2017, 1	17, 6225-6331.	23.0	3,940
1562	Shape controlled synthesis of porous tetrametallic PtAgBiCo nanoplates as highly active a methanol-tolerant electrocatalyst for oxygen reduction reaction. Chemical Science, 2017, 4292-4298.	nd 8,	3.7	52
1563	Pyrolysis of Self-Assembled Iron Porphyrin on Carbon Black as Core/Shell Structured Electrocatalysts for Highly Efficient Oxygen Reduction in Both Alkaline and Acidic Medium Functional Materials, 2017, 27, 1604356.	ı. Advanced	7.8	106
1564	Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropo flooding?. Energy and Environmental Science, 2017, 10, 296-305.	ore	15.6	127
1565	Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functio oxygen electrocatalysts for Zn–air batteries. Energy and Environmental Science, 2017, 2		15.6	154
1566	Tuning Multimetallic Ordered Intermetallic Nanocrystals for Efficient Energy Electrocataly Advanced Energy Materials, 2017, 7, 1602073.	sis.	10.2	136

#	Article	IF	CITATIONS
1567	Template-directed synthesis of nitrogen- and sulfur-codoped carbon nanowire aerogels with enhanced electrocatalytic performance for oxygen reduction. Nano Research, 2017, 10, 1888-1895.	5.8	34
1568	Block copolymer templated carbonization of nitrogen containing polymer to create fine and mesoporous carbon for oxygen reduction catalyst. Journal of Polymer Science Part A, 2017, 55, 464-470.	2.5	16
1569	Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Research, 2017, 10, 1258-1267.	5.8	28
1570	Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 2271-2279.	5.2	80
1571	Red-blood-cell like nitrogen-doped carbons with highly catalytic activity towards oxygen reduction reaction. Chinese Chemical Letters, 2017, 28, 748-754.	4.8	20
1572	Electrocatalytic Cobalt Nanoparticles Interacting with Nitrogen-Doped Carbon Nanotube in Situ Generated from a Metal–Organic Framework for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 2541-2549.	4.0	137
1573	Highly exposed Fe–N ₄ active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Transactions, 2017, 46, 1803-1810.	1.6	32
1574	Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction. Carbon, 2017, 114, 706-716.	5.4	40
1575	Uniform nitrogen and sulphur co-doped hollow carbon nanospheres as efficient metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 1742-1748.	5.2	51
1576	Engineering Favorable Morphology and Structure of Feâ€N Oxygenâ€Reduction Catalysts through Tuning of Nitrogen/Carbon Precursors. ChemSusChem, 2017, 10, 774-785.	3.6	124
1577	1D Co―and Nâ€Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Triâ€iodide Reduction Reactions. Advanced Energy Materials, 2017, 7, 1601979.	10.2	194
1578	Nitrogen Dopants in Carbon Nanomaterials: Defects or a New Opportunity?. Small Methods, 2017, 1, 1600014.	4.6	179
1579	Structural Descriptors of Zeolitic–Imidazolate Frameworks Are Keys to the Activity of Fe–N–C Catalysts. Journal of the American Chemical Society, 2017, 139, 453-464.	6.6	173
1580	Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy, 2017, 32, 353-358.	8.2	234
1581	Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 3336-3345.	5.2	88
1582	Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy and Environmental Science, 2017, 10, 742-749.	15.6	451
1583	Ferric citrate-derived N-doped hierarchical porous carbons for oxygen reduction reaction and electrochemical supercapacitors. Carbon, 2017, 115, 1-10.	5.4	102
1584	Molybdenum-Doped PdPt@Pt Core–Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2017, 9, 1524-1535.	4.0	49

#	Article	IF	CITATIONS
1585	An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environmental Science: Nano, 2017, 4, 315-324.	2.2	372
1586	Efficient electrocatalytic O ₂ reduction at copper complexes grafted onto polyvinylimidazole coated carbon nanotubes. Chemical Communications, 2017, 53, 1514-1517.	2.2	37
1587	An Aza-Fused ï€-Conjugated Microporous Framework Catalyzes the Production of Hydrogen Peroxide. ACS Catalysis, 2017, 7, 1015-1024.	5.5	83
1588	Ultrafine Co-based Nanoparticle@Mesoporous Carbon Nanospheres toward High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 1746-1758.	4.0	69
1589	Nanoporous carbon derived from a functionalized metal–organic framework as a highly efficient oxygen reduction electrocatalyst. Nanoscale, 2017, 9, 862-868.	2.8	56
1590	Non-noble bimetallic alloy encased in nitrogen-doped nanotubes as a highly active and durable electrocatalyst for oxygen reduction reaction. Carbon, 2017, 114, 347-355.	5.4	110
1591	Novel dual templating approach for preparation of highly active Fe-N-C electrocatalyst for oxygen reduction. Electrochimica Acta, 2017, 224, 49-55.	2.6	60
1592	Unique Pĩ£¿Coĩ£¿N Surface Bonding States Constructed on g ₃ N ₄ Nanosheets for Drastically Enhanced Photocatalytic Activity of H ₂ Evolution. Advanced Functional Materials, 2017, 27, 1604328.	7.8	329
1593	In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymerâ€Electrolyteâ€Membrane Fuel Cells. Advanced Materials, 2017, 29, 1604456.	11.1	192
1594	Uniform Fe ₃ O ₄ /Nitrogen-Doped Mesoporous Carbon Spheres Derived from Ferric Citrate-Bonded Melamine Resin as an Efficient Synergistic Catalyst for Oxygen Reduction. ACS Applied Materials & Interfaces, 2017, 9, 335-344.	4.0	82
1595	A review of electrocatalyst characterization by transmission electron microscopy. Journal of Energy Chemistry, 2017, 26, 1117-1135.	7.1	32
1596	Influence of Aliovalent Substitutions on Oxygen Reduction on Tantalum Oxynitrides. Journal of the Electrochemical Society, 2017, 164, F645-F650.	1.3	7
1597	Quaternary FeCoNiMn-Based Nanocarbon Electrocatalysts for Bifunctional Oxygen Reduction and Evolution: Promotional Role of Mn Doping in Stabilizing Carbon. ACS Catalysis, 2017, 7, 8386-8393.	5.5	131
1598	Different active sites in a bifunctional Co@N-doped graphene shells based catalyst for the oxidative dehydrogenation and hydrogenation reactions. Journal of Catalysis, 2017, 355, 53-62.	3.1	110
1599	Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. Journal of Power Sources, 2017, 368, 46-56.	4.0	74
1600	Influence of Precursor Functional Groups on the Formation and Performance of Iron-Coordinating Ordered Mesoporous Carbons as Fuel Cell Catalysts. Journal of Physical Chemistry C, 2017, 121, 21827-21835.	1.5	5
1601	Building three-dimensional porous nano-network for the improvement of iron and nitrogen-doped carbon oxygen reductionÂelectrocatalyst. Carbon, 2017, 125, 640-648.	5.4	47
1602	Rupturing Cotton Microfibers into Mesoporous Nitrogen-Doped Carbon Nanosheets as Metal-Free Catalysts for Efficient Oxygen Electroreduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 9709-9717.	3.2	27

#	Article	IF	CITATIONS
1603	The Relationship between the Active Pt Fraction in a PEFC Pt/C Catalyst and the ECSA and Mass Activity during Start-Up/Shut-Down Degradation by in Situ Time-Resolved XAFS Technique. Journal of Physical Chemistry C, 2017, 121, 22164-22177.	1.5	29
1604	Relevance of the Interaction between the M-Phthalocyanines and Carbon Nanotubes in the Electroactivity toward ORR. Langmuir, 2017, 33, 11945-11955.	1.6	27
1605	Nitrogen-doped carbon nanotubes with encapsulated Fe nanoparticles as efficient oxygen reduction catalyst for alkaline membrane direct ethanol fuel cells. Carbon, 2017, 125, 605-613.	5.4	36
1606	Synthesis of Nitrogen-Doped Porous Carbon Spheres with Improved Porosity toward the Electrocatalytic Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 11105-11116.	3.2	61
1607	High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor. Science Bulletin, 2017, 62, 1602-1608.	4.3	7
1608	Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. ACS Applied Materials & Interfaces, 2017, 9, 41303-41313.	4.0	74
1609	Sandwich-type Bimetal-Organic Frameworks/Graphene Oxide Derived Porous Nanosheets doped Fe/Co-N Active Sites for Oxygen Reduction Reaction. Electrochimica Acta, 2017, 255, 72-82.	2.6	43
1610	3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2017, 9, 36944-36954.	4.0	83
1611	Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media. Catalysis Letters, 2017, 147, 2903-2909.	1.4	32
1612	Carbon-Based Electrocatalysts for Hydrogen and Oxygen Evolution Reactions. ACS Catalysis, 2017, 7, 7855-7865.	5.5	406
1613	Encapsulated MnO in N-doping carbon nanofibers as efficient ORR electrocatalysts. Science China Materials, 2017, 60, 937-946.	3.5	27
1614	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 23170-23178.	5.2	60
1615	Air-Breathing Aqueous Sulfur Flow Battery for Ultralow-Cost Long-Duration Electrical Storage. Joule, 2017, 1, 306-327.	11.7	151
1616	Two-Dimensional Mesoporous Carbon Doped with Fe–N Active Sites for Efficient Oxygen Reduction. ACS Catalysis, 2017, 7, 7638-7646.	5.5	90
1617	Active Feâ€N <i>_x</i> Sites in Carbon Nanosheets as Oxygen Reduction Electrocatalyst for Flexible Allâ€Solidâ€State Zinc–Air Batteries. Advanced Sustainable Systems, 2017, 1, 1700085.	2.7	43
1618	Two-Dimensional N,S-Codoped Carbon/Co ₉ S ₈ Catalysts Derived from Co(OH) ₂ Nanosheets for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 36755-36761.	4.0	45
1619	Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chemical Communications, 2017, 53, 11556-11559.	2.2	43
1620	Ionically dispersed Fe(<scp>ii</scp>)–N and Zn(<scp>ii</scp>)–N in porous carbon for acidic oxygen reduction reactions. Chemical Communications, 2017, 53, 11453-11456.	2.2	22

#	Article	IF	CITATIONS
1621	Multifunctional Mo–N/C@MoS ₂ Electrocatalysts for HER, OER, ORR, and Zn–Air Batteries. Advanced Functional Materials, 2017, 27, 1702300.	7.8	658
1622	Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions. ACS Catalysis, 2017, 7, 7908-7916.	5.5	42
1623	Hierarchically Porous Co3C/Co-N-C/G Modified Graphitic Carbon: A Trifunctional Corrosion-Resistant Electrode for Oxygen Reduction, Hydrogen Evolution and Oxygen Evolution Reactions. Electrochimica Acta, 2017, 257, 40-48.	2.6	58
1624	Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8, 944.	5.8	890
1625	Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nature Communications, 2017, 8, 957.	5.8	443
1626	High Oxygen Reduction Reaction Performances of Cathode Materials Combining Polyoxometalates, Coordination Complexes, and Carboneous Supports. ACS Applied Materials & Interfaces, 2017, 9, 38486-38498.	4.0	48
1627	Coupling cobalt-iron bimetallic nitrides and N-doped multi-walled carbon nanotubes as high-performance bifunctional catalysts for oxygen evolution and reduction reaction. Electrochimica Acta, 2017, 258, 51-60.	2.6	61
1628	Co Nanoparticles Encapsulated in N-Doped Carbon Nanosheets: Enhancing Oxygen Reduction Catalysis without Metal–Nitrogen Bonding. ACS Applied Materials & Interfaces, 2017, 9, 38499-38506.	4.0	42
1629	A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction. Nanotechnology, 2017, 28, 485701.	1.3	13
1630	Efficient electrocatalysis of hydrogen evolution by ultralow-Pt-loading bamboo-like nitrogen-doped carbon nanotubes. Materials Today Energy, 2017, 6, 173-180.	2.5	18
1631	A novel Fe–N–C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes. Nanoscale, 2017, 9, 17364-17370.	2.8	118
1632	A review of nanocarbons in energy electrocatalysis: Multifunctional substrates and highly active sites. Journal of Energy Chemistry, 2017, 26, 1077-1093.	7.1	287
1633	Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material. Journal of Physical Chemistry C, 2017, 121, 20165-20176.	1.5	81
1634	Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis. ACS Catalysis, 2017, 7, 6392-6393.	5.5	126
1635	Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 2017, 46, 5975-6023.	18.7	609
1636	Hollow Co ₂ P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale, 2017, 9, 14162-14171.	2.8	89
1637	Effect of a sulfur and nitrogen dual-doped Fe–N–S electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 19790-19799.	5.2	54
1638	Nanostructuring Noble Metals as Unsupported Electrocatalysts for Polymer Electrolyte Fuel Cells. Advanced Energy Materials, 2017, 7, 1700548.	10.2	76

#	Article	IF	CITATIONS
1639	From <i>Chlorella</i> to Nestlike Framework Constructed with Doped Carbon Nanotubes: A Biomass-Derived, High-Performance, Bifunctional Oxygen Reduction/Evolution Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 32168-32178.	4.0	63
1640	Single Cobalt Atom and N Codoped Carbon Nanofibers as Highly Durable Electrocatalyst for Oxygen Reduction Reaction. ACS Catalysis, 2017, 7, 6864-6871.	5.5	256
1641	<i>Alfalfa</i> Leaf-Derived Porous Heteroatom-Doped Carbon Materials as Efficient Cathodic Catalysts in Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 2017, 5, 9766-9773.	3.2	66
1642	Fabrication of a mesoporous Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â[~]δ} perovskite as a low-cost and efficient catalyst for oxygen reduction. Dalton Transactions, 2017, 46, 13903-13911.	1.6	18
1643	Cobalt boride modified with N-doped carbon nanotubes as a high-performance bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 21122-21129.	5.2	73
1644	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	5.5	42
1645	Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 21709-21714.	5.2	76
1646	Theoretical insights on the reaction pathways of the oxygen reduction reaction on yttrium doped graphene as a catalyst in fuel cells. Synthetic Metals, 2017, 232, 131-137.	2.1	1
1647	Active sites and factors influencing them for efficient oxygen reduction reaction in metal-N coordinated pyrolyzed and non-pyrolyzed catalysts: a review. Journal of Materials Chemistry A, 2017, 5, 20095-20119.	5.2	108
1648	Catalysts Encapsulated in Nanostructured Carbon Systems. , 2017, , 71-122.		1
1649	Metalâ€Free Carbon Materials for CO ₂ Electrochemical Reduction. Advanced Materials, 2017, 29, 1701784.	11.1	558
1650	Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO ₂ Electrodes. Advanced Energy Materials, 2017, 7, 1700886.	10.2	28
1651	Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. Journal of the American Chemical Society, 2017, 139, 14143-14149.	6.6	1,215
1652	Ag-enhanced Catalytic Performance of Ordered Mesoporous Fe–N-Graphitic Carbons for Oxygen Electroreduction. Catalysis Letters, 2017, 147, 2745-2754.	1.4	9
1653	Protonated g-C3N4@polypyrrole derived N-doped porous carbon for supercapacitors and oxygen electrocatalysis. Carbon, 2017, 124, 599-610.	5.4	94
1654			
1034	Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity. Chemical Communications, 2017, 53, 11426-11429.	2.2	32
1655	utilize the active sites for excellent oxygen reduction reaction activity. Chemical Communications,	2.2 1.3	32 43

#	Article	IF	CITATIONS
1657	FeNi ₂ Se ₄ –Reduced Graphene Oxide Nanocomposite: Enhancing Bifunctional Electrocatalytic Activity for Oxygen Evolution and Reduction through Synergistic Effects. Advanced Sustainable Systems, 2017, 1, 1700086.	2.7	35
1658	Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. Journal of Materials Chemistry A, 2017, 5, 21936-21946.	5.2	10
1659	Enhanced X-Band Electromagnetic-Interference Shielding Performance of Layer-Structured Fabric-Supported Polyaniline/Cobalt–Nickel Coatings. ACS Applied Materials & Interfaces, 2017, 9, 33059-33070.	4.0	117
1660	Conjugated polymer-mediated synthesis of nitrogen-doped carbon nanoribbons for oxygen reduction reaction. Carbon, 2017, 124, 630-636.	5.4	44
1661	Catalytic activation of O 2 molecule by transition metal atoms deposited on the outer surface of BN nanocluster. Journal of Molecular Graphics and Modelling, 2017, 77, 218-224.	1.3	27
1662	Electrostatic Selfâ€Assembly of the Composite La _{0.7} Sr _{0.3} MnO ₃ @Ce _{0.75} Zr _{0.25} O _{2as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. Energy Technology, 2017, 5, 2226-2233.}	1.8	6
1663	Edgeâ€Abundant Porous Fe ₃ O ₄ Nanoparticles Docking in Nitrogenâ€Rich Graphene Aerogel as Efficient and Durable Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2017, 4, 2442-2447.	1.7	33
1664	Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017, 20, 629-656.	8.3	133
1665	Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. ChemPhysChem, 2017, 18, 2573-2605.	1.0	51
1666	Effect of molybdophosphoric acid in iron and cobalt graphene/chitosan composites for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 28093-28101.	3.8	12
1667	Correction to "Estimation of the Inherent Kinetic Parameters for Oxygen Reduction over a Pt-Free Cathode Catalyst by Resolving the Quasi-Four-Electron Reduction― Journal of Physical Chemistry C, 2017, 121, 15490-15490.	1.5	0
1668	Formation of Singleâ€Holed Cobalt/Nâ€Đoped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media. Advanced Science, 2017, 4, 1700247.	5.6	194
1669	Composite of FeCo alloy embedded in biocarbon derived from eggshell membrane with high performance for oxygen reduction reaction and supercapacitor. Electrochimica Acta, 2017, 248, 388-396.	2.6	29
1670	High performance platinum single atom electrocatalyst for oxygen reduction reaction. Nature Communications, 2017, 8, 15938.	5.8	569
1671	Fuel Cell Power Systems and Applications. Proceedings of the IEEE, 2017, 105, 2166-2190.	16.4	79
1672	Recent advances in air electrodes for Zn–air batteries: electrocatalysis and structural design. Materials Horizons, 2017, 4, 945-976.	6.4	263
1673	Metal–Organic Frameworkâ€Derived FeCoâ€Nâ€Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media. ChemSusChem, 2017, 10, 3019-3024.	3.6	96
1674	A facile synthetic strategy for iron, aniline-based non-precious metal catalysts for polymer electrolyte membrane fuel cells. Scientific Reports, 2017, 7, 5396.	1.6	30

#	Article	IF	CITATIONS
1675	Nitrogenâ€Doped Hierarchical Porous Carbon Architecture Incorporated with Cobalt Nanoparticles and Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 2017, 4, 1700583.	1.9	21
1676	3D Space-Confined Pyrolysis of Double-Network Aerogels Containing In-Fe Cyanogel and Polyaniline: A New Approach to Hierarchically Porous Carbon with Exclusive Fe-N <i> _x </i> Active Sites for Oxygen Reduction Catalysis. Small Methods, 2017, 1, 1700167.	4.6	85
1677	Computational screening of two-dimensional coordination polymers as efficient catalysts for oxygen evolution and reduction reaction. Journal of Catalysis, 2017, 352, 579-585.	3.1	130
1678	Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives. Advanced Energy Materials, 2017, 7, 1700544.	10.2	593
1679	Ball-milling synthesis of Co ₂ P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 17563-17569.	5.2	57
1680	Kinetics of Oxygen Electroreduction on Me–N–C (Me = Fe, Co, Cu) Catalysts in Acidic Medium: Insights on the Effect of the Transition Metal. Journal of Physical Chemistry C, 2017, 121, 17796-17817.	1.5	128
1681	Dual-Functional Electrocatalyst Derived from Iron-Porphyrin-Encapsulated Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 28758-28765.	4.0	49
1682	Synthesis of ordered carbonaceous frameworks from organic crystals. Nature Communications, 2017, 8, 109.	5.8	60
1683	The Oxygen Reduction Reaction Rate of Metallic Nanoparticles during Catalyzed Oxidation. Scientific Reports, 2017, 7, 7017.	1.6	7
1684	Temperature-directed growth of highly pyridinic nitrogen doped, graphitized, ultra-hollow carbon frameworks as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 18064-18070.	5.2	43
1685	3D polymer hydrogel for high-performance atomic iron-rich catalysts for oxygen reduction in acidic media. Applied Catalysis B: Environmental, 2017, 219, 629-639.	10.8	111
1686	Effects of MEA Fabrication and Ionomer Composition on Fuel Cell Performance of PGM-Free ORR Catalyst. ECS Transactions, 0, , .	0.3	15
1687	Rational design of hollow N/Co-doped carbon spheres from bimetal-ZIFs for high-efficiency electrocatalysis. Chemical Engineering Journal, 2017, 330, 736-745.	6.6	97
1688	Active sites of the functionalized coals and carbons for oxygen reduction reaction in a fuel cell. Kinetics and Catalysis, 2017, 58, 455-462.	0.3	2
1689	Atomic-scaled cobalt encapsulated in P,N-doped carbon sheaths over carbon nanotubes for enhanced oxygen reduction electrocatalysis under acidic and alkaline media. Chemical Communications, 2017, 53, 9862-9865.	2.2	87
1690	Modeling Electrochemical Performance of the Hierarchical Morphology of Precious Group Metal-Free Cathode for Polymer Electrolyte Fuel Cell. Journal of the Electrochemical Society, 2017, 164, F1037-F1049.	1.3	30
1691	Effect of Carbon Supports on Enhancing Mass Kinetic Current Density of Feâ€N/C Electrocatalysts. Chemistry - A European Journal, 2017, 23, 14597-14603.	1.7	18
1692	Well-Defined Metal–O ₆ in Metal–Catecholates as a Novel Active Site for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2017, 9, 28473-28477.	4.0	63

#	Article	IF	CITATIONS
1693	A new 3D crosslinked polymer strategy for highly efficient oxygen reduction Fe–N _x /C catalysts. RSC Advances, 2017, 7, 39178-39184.	1.7	7
1694	Catalytic Activity for Oxygen Reduction Reaction on CoN ₂ Embedded Graphene: A Density Functional Theory Study. Journal of the Electrochemical Society, 2017, 164, F1122-F1129.	1.3	26
1695	Two-dimensional iron-porphyrin sheet as a promising catalyst for oxygen reduction reaction: a computational study. Science Bulletin, 2017, 62, 1337-1343.	4.3	56
1696	Fe/N/C Nanotubes with Atomic Fe Sites: A Highly Active Cathode Catalyst for Alkaline Polymer Electrolyte Fuel Cells. ACS Catalysis, 2017, 7, 6485-6492.	5.5	141
1697	Recent advances in Fe (or Co)/N/C electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2017, 5, 18933-18950.	5.2	146
1698	Soft-template assisted synthesis of Fe/N-doped hollow carbon nanospheres as advanced electrocatalysts for the oxygen reduction reaction in microbial fuel cells. Journal of Materials Chemistry A, 2017, 5, 19343-19350.	5.2	75
1699	Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science, 2017, 357, 479-484.	6.0	1,273
1700	Encapsulated iron-based oxygen reduction electrocatalysts by high pressure pyrolysis. International Journal of Hydrogen Energy, 2017, 42, 22887-22896.	3.8	8
1701	Discriminating Catalytically Active FeN _{<i>x</i>} Species of Atomically Dispersed Fe–N–C Catalyst for Selective Oxidation of the C–H Bond. Journal of the American Chemical Society, 2017, 139, 10790-10798.	6.6	738
1702	Noble metal-free catalysts for oxygen reduction reaction. Science China Chemistry, 2017, 60, 1494-1507.	4.2	60
1703	Encapsulated NdCuOx bimetallic nanoparticles with nitrogen doped carbon as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 258, 1404-1412.	2.6	16
1704	Ni-O 4 species anchored on N -doped graphene-based materials as molecular entities and electrocatalytic performances for oxygen reduction reaction. Solid State Sciences, 2017, 74, 56-61.	1.5	4
1705	Deciphering the Electrocatalytic Activity of Nitrogen-Doped Carbon Embedded with Cobalt Nanoparticles and the Reaction Mechanism of Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2017, 121, 27332-27343.	1.5	18
1706	Nitrogen doped nanoporous graphene: an efficient metal-free electrocatalyst for the oxygen reduction reaction. RSC Advances, 2017, 7, 55555-55566.	1.7	15
1707	Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions. International Journal of Hydrogen Energy, 2017, 42, 30738-30749.	3.8	40
1708	Magnetron Sputtering Deposition Cu@Onion-like N–C as High-Performance Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 41945-41954.	4.0	19
1709	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	6.6	1,220
1710	Multifunctional Prussian blue analogous@polyaniline core–shell nanocubes for lithium storage and overall water splitting. RSC Advances, 2017, 7, 50812-50821.	1.7	34

#	Article	IF	CITATIONS
1711	Anionâ€Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis. Advanced Materials, 2017, 29, 1703436.	11.1	58
1712	Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy, 2017, 42, 249-256.	8.2	41
1713	Dissociation of O2 molecule on Fe/Nx clusters embedded in C60 fullerene, carbon nanotube and graphene. Synthetic Metals, 2017, 234, 38-46.	2.1	28
1714	High performance ORR electrocatalysts prepared via one-step pyrolysis of riboflavin. Chinese Journal of Catalysis, 2017, 38, 1668-1679.	6.9	10
1715	Potential- and Rate-Determining Step for Oxygen Reduction on Pt(111). Journal of Physical Chemistry C, 2017, 121, 26785-26793.	1.5	56
1716	Interconnected Fe, S, N-Codoped Hollow and Porous Carbon Nanorods as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2017, 9, 40298-40306.	4.0	44
1717	Cobalt and nitrogen-doped carbon catalysts for enhanced oxygen reduction and power production in microbial fuel cells. Electrochimica Acta, 2017, 247, 193-199.	2.6	37
1718	A Facile Activation Strategy for an MOF-Derived Metal-Free Oxygen Reduction Reaction Catalyst: Direct Access to Optimized Pore Structure and Nitrogen Species. ACS Catalysis, 2017, 7, 6082-6088.	5.5	188
1719	Co ₉ S ₈ activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction. RSC Advances, 2017, 7, 34763-34769.	1.7	11
1720	Nonprecious Electrocatalysts for Li-Air and Zn-Air batteries: Fundamentals and recent advances. IEEE Nanotechnology Magazine, 2017, 11, 29-55.	0.9	16
1721	Highly Efficient Oxygen Reduction Reaction Electrocatalysts Synthesized under Nanospace Confinement of Metal–Organic Framework. ACS Nano, 2017, 11, 8379-8386.	7.3	100
1722	Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer. Scientific Reports, 2017, 7, 5213.	1.6	4
1723	Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Scientific Reports, 2017, 7, 5266.	1.6	68
1724	Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells. Biosensors and Bioelectronics, 2017, 98, 350-356.	5.3	92
1725	Nitrogen–doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst. Nano Energy, 2017, 39, 245-252.	8.2	143
1726	Different types of nitrogen species in nitrogen-doped carbon material: The formation mechanism and catalytic role on oxygen reduction reaction. Electrochimica Acta, 2017, 245, 957-966.	2.6	40
1727	High-efficiency oxidative esterification of furfural to methylfuroate with a non-precious metal Co-N-C/MgO catalyst. Chinese Journal of Catalysis, 2017, 38, 1148-1154.	6.9	20
1728	Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1174-1180.	7.1	30

#	Article	IF	CITATIONS
1729	A Combined Probe-Molecule, M¶ssbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst. Journal of Physical Chemistry C, 2017, 121, 16283-16290.	1.5	75
1730	Co 3 O 4 nanoparticles assembled on polypyrrole/graphene oxide for electrochemical reduction of oxygen in alkaline media. Chinese Journal of Catalysis, 2017, 38, 1281-1290.	6.9	16
1731	Enhancement of catalytic activity of a programmed gold nanoparticle superstructure modulated by supramolecular protein assembly. Catalysis Today, 2017, 295, 95-101.	2.2	4
1732	Pt–Pd and Pt–Pd–(Cu or Fe or Co)/graphene nanoribbon nanocomposites as efficient catalysts toward the oxygen reduction reaction. Electrochimica Acta, 2017, 247, 19-29.	2.6	42
1733	Elucidating the Origin of Hydrogen Evolution Reaction Activity in Mono- and Bimetallic Metal- and Nitrogen-Doped Carbon Catalysts (Me–N–C). ACS Applied Materials & Interfaces, 2017, 9, 25184-25193.	4.0	32
1734	Single-Atomic Ruthenium Catalytic Sites on Nitrogen-Doped Graphene for Oxygen Reduction Reaction in Acidic Medium. ACS Nano, 2017, 11, 6930-6941.	7.3	435
1735	PtPb/PtNi Intermetallic Core/Atomic Layer Shell Octahedra for Efficient Oxygen Reduction Electrocatalysis. Journal of the American Chemical Society, 2017, 139, 9576-9582.	6.6	185
1736	Super-hydrophobic multilayer coatings with layer number tuned swapping in surface wettability and redox catalytic anti-corrosion application. Scientific Reports, 2017, 7, 4403.	1.6	72
1737	Carbon paper-free membrane electrode assembly fabricated from a Pt electrocatalyst supported on multi-walled carbon nanotubes. Journal of Materials Science, 2017, 52, 8412-8420.	1.7	4
1738	Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Applied Catalysis B: Environmental, 2017, 203, 889-898.	10.8	172
1739	Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science and Technology, 2017, 7, 330-347.	2.1	132
1740	Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks. Materials Horizons, 2017, 4, 20-37.	6.4	139
1741	Coâ€Nâ€Doped Mesoporous Carbon Hollow Spheres as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Small, 2017, 13, 1602507.	5.2	143
1742	Nitrogenâ€Doped Carbon Vesicles with Dual Ironâ€Based Sites for Efficient Oxygen Reduction. ChemSusChem, 2017, 10, 499-505.	3.6	24
1743	Stable and accessible metal catalysts confined by mesoporous carbon structures derived from multicomponent colloidal spheres. Journal of Materials Chemistry A, 2017, 5, 3136-3139.	5.2	8
1744	Modeling Fe/N/C Catalysts in Monolayer Graphene. ACS Catalysis, 2017, 7, 139-145.	5.5	100
1745	Effect of Protonated Amine Molecules on the Oxygen Reduction Reaction on Metal-Nitrogen-Carbon-Based Catalysts. Electrocatalysis, 2017, 8, 74-85.	1.5	9
1746	Networking Pyrolyzed Zeolitic Imidazolate Frameworks by Carbon Nanotubes Improves Conductivity and Enhances Oxygenâ€Reduction Performance in Polymerâ€Electrolyteâ€Membrane Fuel Cells. Advanced Materials, 2017, 29, 1604556.	11.1	131

#	Article	IF	CITATIONS
1747	Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganeseâ€Oxynitride Nanocatalysts on Graphene. ChemSusChem, 2017, 10, 68-73.	3.6	28
1748	lonic Liquid-Derived MoC Nanocomposites with Ordered Mesoporosity as Efficient Pt-Free Electrocatalyst for Hydrogen Evolution and Oxygen Reduction. Catalysis Letters, 2017, 147, 253-260.	1.4	21
1749	Ultrafine WC nanoparticles anchored on co-encased, N-doped carbon nanotubes for efficient hydrogen evolution. Energy Storage Materials, 2017, 6, 104-111.	9.5	48
1750	Design of active and stable oxygen reduction reaction catalysts by embedding Co x O y nanoparticles into nitrogen-doped carbon. Nano Research, 2017, 10, 97-107.	5.8	25
1751	Selective Aerobic Oxidation of Alcohols over Atomicallyâ€Dispersed Nonâ€Precious Metal Catalysts. ChemSusChem, 2017, 10, 359-362.	3.6	79
1752	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Research, 2017, 10, 1213-1222.	5.8	73
1753	Nitrogen-doped cobalt nanoparticles/nitrogen-doped plate-like ordered mesoporous carbons composites as noble-metal free electrocatalysts for oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 63-71.	7.1	34
1754	Facile synthesis of high performance non-noble-metal electrocatalyst Fe–N–S/C for oxygen reduction reaction in acidic solutions. Journal of Materials Science: Materials in Electronics, 2017, 28, 949-957.	1.1	4
1755	Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability. Applied Catalysis B: Environmental, 2017, 201, 253-265.	10.8	152
1756	Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms. Applied Catalysis B: Environmental, 2017, 202, 207-216.	10.8	40
1757	A novel hierarchical 3D N-Co-CNT@NG nanocomposite electrode for non-enzymatic glucose and hydrogen peroxide sensing applications. Biosensors and Bioelectronics, 2017, 89, 970-977.	5.3	93
1758	Advancing Lithium–Oxygen Battery Technology with an Iron–Nitrogenâ€Doped Mesoporous Core–Shell Carbon Cathode Loaded with Ruthenium(IV) Oxide Nanoparticles. Energy Technology, 2017, 5, 732-739.	1.8	6
1759	Co-embedded N-doped carbon fibers as highly efficient and binder-free cathode for Na–O 2 batteries. Energy Storage Materials, 2017, 6, 1-8.	9.5	57
1760	Cobalt/Nitrogenâ€Doped Porous Carbon Nanosheets Derived from Polymerizable Ionic Liquids as Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reaction. ChemCatChem, 2017, 9, 1601-1609.	1.8	79
1761	Dioxygen activation chemistry by synthetic mononuclear nonheme iron, copper and chromium complexes. Coordination Chemistry Reviews, 2017, 334, 25-42.	9.5	136
1762	Engineering nanostructures of PGM-free oxygen-reduction catalysts using metal-organic frameworks. Nano Energy, 2017, 31, 331-350.	8.2	317
1763	Polyaniline-based electrocatalysts through emulsion polymerization: Electrochemical and electrocatalytic performances. Journal of Energy Chemistry, 2017, 26, 182-192.	7.1	13
1764	Production of MoS2/CoSe2 hybrids and their performance as oxygen reduction reaction catalysts. Journal of Materials Science, 2017, 52, 3188-3198.	1.7	12

#	Article	IF	CITATIONS
1765	The recent progress and future of oxygen reduction reaction catalysis: A review. Renewable and Sustainable Energy Reviews, 2017, 69, 401-414.	8.2	300
1766	An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chemistry, 2017, 19, 831-843.	4.6	141
1767	Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles. Renewable and Sustainable Energy Reviews, 2017, 67, 160-172.	8.2	43
1768	H 2 -rich syngas production through mixed residual biomass and HDPE waste via integrated catalytic gasification and tar cracking plus bio-char upgrading. Chemical Engineering Journal, 2017, 308, 578-587.	6.6	78
1769	Highly efficient electrocatalysts with CoO/CoFe ₂ O ₄ composites embedded within N-doped porous carbon materials prepared by hard-template method for oxygen reduction reaction. RSC Advances, 2017, 7, 56375-56381.	1.7	8
1770	Microstructural Analysis and Transport Resistances of Low-Platinum-Loaded PEFC Electrodes. Journal of the Electrochemical Society, 2017, 164, F1596-F1607.	1.3	41
1771	Hybrid Bioelectrocatalytic Reduction of Oxygen at Anthracene-modified Multi-walled Carbon Nanotubes Decorated with Ni90Pd10 Nanoparticles. Electrochimica Acta, 2017, 251, 195-202.	2.6	4
1772	Catalytic Characteristics of <i>β</i> -Iron Phthalocyanine Prepared by Vacuum Heat Treatment for Fuel Cell Oxygen Reduction Reaction. Electrochemistry, 2017, 85, 469-471.	0.6	1
1773	Post Iron Decoration of Mesoporous Nitrogenâ€Doped Carbon Spheres for Efficient Electrochemical Oxygen Reduction. Advanced Energy Materials, 2017, 7, 1701154.	10.2	65
1774	DFT Study of the Oxygen Reduction Reaction Activity on Feâ^'N4-Patched Carbon Nanotubes: The Influence of the Diameter and Length. Materials, 2017, 10, 549.	1.3	18
1776	Highly Effective Dual Transition Metal Macrocycle Based Electrocatalyst with Macro-/Mesoporous Structures for Oxygen Reduction Reaction. Catalysts, 2017, 7, 201.	1.6	13
1777	Direct Borohydride Fuel Cell. , 2017, , .		0
1778	Biomass Derived Nitrogen-Doped Highly Porous Carbon Material with a Hierarchical Porous Structure for High-Performance Lithium/Sulfur Batteries. Materials, 2017, 10, 1158.	1.3	30
1779	Yttrium Copper Titanate as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction in Fuel Cells, Synthesized via Ultrafast Automatic Flame Technique. Scientific Reports, 2017, 7, 9407.	1.6	6
1780	TiN Supported Cobalt and Molybdenum Nitrides as an Efficient Oxygen Reduction Reaction Catalyst in Acid Medium. International Journal of Electrochemical Science, 2017, 12, 6340-6351.	0.5	6
1781	High-Performance N-doped Bifunctional Carbon Electrocatalysts Derived from Polymer Waste for Oxygen Reduction and Evolution Reaction. International Journal of Electrochemical Science, 2017, , 10471-10483.	0.5	10
1782	Surface Modification of Multi-Walled Carbon Nanotubes via Hemoglobin-Derived Iron and Nitrogen-Rich Carbon Nanolayers for the Electrocatalysis of Oxygen Reduction. Materials, 2017, 10, 564.	1.3	14
1783	Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 5740-5745.	5.2	113

#	Article	IF	CITATIONS
1784	Bifunctional N-doped graphene Ti and Co nanocomposites for the oxygen reduction and evolution reactions. Renewable Energy, 2018, 125, 182-192.	4.3	51
1785	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
1786	Nanocarbonâ€Based Electrocatalysts for Rechargeable Aqueous Li/Znâ€Air Batteries. ChemElectroChem, 2018, 5, 1745-1763.	1.7	34
1787	Anchoring Ironâ€EDTA Complex on Graphene toward the Synthesis of Highly Efficient Feâ€Nâ€C Oxygen Reduction Electrocatalyst for Fuel Cells. Chinese Journal of Chemistry, 2018, 36, 287-292.	2.6	22
1788	Unveiling Active Sites of CO ₂ Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catalysis, 2018, 8, 3116-3122.	5.5	405
1789	Revealing the Role of the Metal in Non-Precious-Metal Catalysts for Oxygen Reduction via Selective Removal of Fe. ACS Energy Letters, 2018, 3, 823-828.	8.8	43
1790	Nanoscale mapping of catalytic hotspots on Fe, N-modified HOPG by scanning electrochemical microscopy-atomic force microscopy. Nanoscale, 2018, 10, 6962-6970.	2.8	20
1791	A Polycarboxylâ€Decorated Fe ^{III} â€Based Xerogelâ€Derived Multifunctional Composite (Fe ₃ O ₄ /Fe/C) as an Efficient Electrode Material towards Oxygen Reduction Reaction and Supercapacitor Application. Chemistry - A European Journal, 2018, 24, 6586-6594.	1.7	12
1792	Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for using a layered nanoreactor. Scientific Reports, 2018, 8, 3404.	1.6	14
1793	In Situ Generated Dual-Template Method for Fe/N/S Co-Doped Hierarchically Porous Honeycomb Carbon for High-Performance Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 8721-8729.	4.0	83
1794	Fe ₃ C nanoparticles encapsulated in highly crystalline porous graphite: salt-template synthesis and enhanced electrocatalytic oxygen evolution activity and stability. Chemical Communications, 2018, 54, 3158-3161.	2.2	46
1795	Understanding the Roles of Sulfur Dopants in Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction: The Relationship between Catalytic Activity and Work Function. ChemElectroChem, 2018, 5, 1905-1913.	1.7	13
1796	Hierarchically porous Fe–N–C nanospindles derived from a porphyrinic coordination network for oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 1945-1952.	2.1	15
1797	A Highly Sensitive Photoelectrochemical Assay with Donor–Acceptor-Type Material as Photoactive Material and Polyaniline as Signal Enhancer. Analytical Chemistry, 2018, 90, 6096-6101.	3.2	53
1798	Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon. Nanoscale, 2018, 10, 9634-9641.	2.8	47
1800	Non-platinum metal-organic framework based electro-catalyst for promoting oxygen reduction reaction. AIP Conference Proceedings, 2018, , .	0.3	1
1801	Effect of Catalyst Pore Size on the Performance of Nonâ€Precious Fe/N/Câ€Based Electrocatalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2018, 5, 1805-1810.	1.7	19
1802	Phase Diversity of Nickel Phosphides in Oxygen Reduction Catalysis. ChemElectroChem, 2018, 5, 1985-1994.	1.7	17

		CITATION REPORT		
#	Article		IF	CITATIONS
1803	Noble Metal Electrocatalysts for Anode and Cathode in Polymer Electrolyte Fuel Cells. ,	, 2018, , 171-197.		1
1804	Urchin-like non-precious-metal bifunctional oxygen electrocatalysts: Boosting the catal via the In-situ growth of heteroatom (N, S)-doped carbon nanotube on mesoporous co sulfide/carbon spheres. Journal of Colloid and Interface Science, 2018, 524, 465-474.		5.0	29
1805	Electrospun Fiber Mat Cathode with Platinumâ€Groupâ€Metalâ€Free Catalyst Powder Binder. ChemElectroChem, 2018, 5, 1537-1542.	and Nafion/PVDF	1.7	22
1807	One-step solid state synthesis of PtCo nanocubes/graphene nanocomposites as advanced reduction reaction electrocatalysts. Journal of Catalysis, 2018, 362, 85-93.	ced oxygen	3.1	29
1808	Evaluation of Alkylamine Modified Pt Nanoparticles as Oxygen Reduction Reaction Elec Fuel Cells via Electrochemical Impedance Spectroscopy. Analytical Chemistry, 2018, 90	trocatalyst for), 6116-6123.	3.2	18
1809	Homogeneously Dispersed Co ₉ S ₈ Anchored on Nitrogen and Carbon Derived from Soybean as Bifunctional Oxygen Electrocatalysts and Supercapac Applied Materials & amp; Interfaces, 2018, 10, 16436-16448.	d Sulfur Co-Doped titors. ACS	4.0	57
1810	Engineering crystalline CoOOH anchored on an N-doped carbon support as a durable e for the oxygen reduction reaction. Dalton Transactions, 2018, 47, 6069-6074.	lectrocatalyst	1.6	13
1811	Defect electrocatalytic mechanism: concept, topological structure and perspective. Ma Chemistry Frontiers, 2018, 2, 1250-1268.	aterials	3.2	119
1812	Transition-metal-oxide-based catalysts for the oxygen reduction reaction. Journal of Ma Chemistry A, 2018, 6, 8194-8209.	ıterials	5.2	259
1813	Oxygen-reduction catalysis of N-doped carbons prepared <i>via</i> heat treatment of over 1100 ŰC. Chemical Communications, 2018, 54, 4441-4444.	polyaniline at	2.2	50
1814	An ethynyl-linked Fe/Co heterometallic phthalocyanine conjugated polymer for the oxy reaction. Journal of Materials Chemistry A, 2018, 6, 8349-8357.	gen reduction	5.2	71
1815	Impact of Textural Properties of Mesoporous Porphyrinic Carbon Electrocatalysts on O Reduction Reaction Activity. ChemElectroChem, 2018, 5, 1928-1936.	xygen	1.7	25
1816	Electrocatalytically Active Hollow Carbon Nanospheres Derived from PSâ€ <i>b</i> â€P4 Particle and Particle Systems Characterization, 2018, 35, 1700404.	4VP Micelles.	1.2	9
1817	Templating Synthesis of Mesoporous Fe ₃ C-Encapsulated Fe–N-Doped ON Nanospindles for Electrocatalysis. Langmuir, 2018, 34, 4952-4961.	Carbon Hollow	1.6	43
1818	Highly efficient bifunctional catalytic activity of bismuth rhodium oxide pyrochlore thro the covalent character for rechargeable aqueous Na–air batteries. Journal of Material 2018, 6, 8523-8530.	ough tuning Is Chemistry A,	5.2	35
1819	A Review on Recent Developments and Prospects for the Oxygen Reduction Reaction of Ptâ€alloy Nanoparticles. ChemPhysChem, 2018, 19, 1552-1567.	on Hollow	1.0	64
1820	Incorporation of Multinuclear Copper Active Sites into Nitrogen-Doped Graphene for Electrochemical Oxygen Reduction. ACS Applied Energy Materials, 2018, 1, 2358-2364	ł.	2.5	15
1821	Structure and activity of metal-centered coordination sites in pyrolyzed metal–nitrog catalysts for the electrochemical reduction of O2. Current Opinion in Electrochemistry 198-206.	gen–carbon , 2018, 9,	2.5	51

#	Article	IF	CITATIONS
1822	Selective reductive cleavage of C O bond in lignin model compounds over nitrogen-doped carbon-supported iron catalysts. Molecular Catalysis, 2018, 452, 36-45.	1.0	42
1823	Polypyrroleâ€Derived Feâ^'Coâ^'Nâ^'C Catalyst for the Oxygen Reduction Reaction: Performance in Alkaline Hydrogen and Ethanol Fuel Cells. ChemElectroChem, 2018, 5, 1954-1965.	1.7	49
1824	Active Sites Engineering toward Superior Carbonâ€Based Oxygen Reduction Catalysts via Confinement Pyrolysis. Small, 2018, 14, e1800128.	5.2	36
1825	Carbon-based catalysts by structural manipulation with iron for oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8405-8412.	5.2	38
1826	Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy, 2018, 49, 23-30.	8.2	90
1827	Supramolecular bimetallogels: a nanofiber network for bimetal/nitrogen co-doped carbon electrocatalysts. Journal of Materials Chemistry A, 2018, 6, 8227-8232.	5.2	24
1828	Electrochemical Evidence for Two Subâ€families of FeN _{<i>x</i>} C _{<i>y</i>} Moieties with Concentrationâ€Dependent Cyanide Poisoning. ChemElectroChem, 2018, 5, 1880-1885.	1.7	24
1829	DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catalysis Today, 2018, 312, 118-125.	2.2	81
1830	Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Materials, 2018, 12, 277-283.	9.5	176
1831	Ag ₃ PO ₄ electrocatalyst for oxygen reduction reaction: enhancement from positive charge. RSC Advances, 2018, 8, 5382-5387.	1.7	5
1832	Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2018, 27, 1124-1139.	7.1	89
1833	ElectroCat: DOE's approach to PGM-free catalyst and electrode R&D. Solid State Ionics, 2018, 319, 68-76.	1.3	121
1834	A CeO2 modified phenylenediamine-based Fe/N/C with enhanced durability/stability as non-precious metal catalyst for oxygen reduction reaction. Electrochemistry Communications, 2018, 88, 19-23.	2.3	40
1835	Step-by-step synthesis of a heteroatom-doped carbon-based electrocatalyst for the oxygen reduction reaction. Electrochemistry Communications, 2018, 88, 83-87.	2.3	15
1836	Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy, 2018, 47, 172-198.	8.2	134
1837	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
1838	Fe-N-Graphene Wrapped Al ₂ O ₃ /Pentlandite from Microalgae: High Fenton Catalytic Efficiency from Enhanced Fe ³⁺ Reduction. Environmental Science & Technology, 2018, 52, 3608-3614.	4.6	64
1839	Enhanced oxygen electroreduction over nitrogen-free carbon nanotube-supported CuFeO ₂ nanoparticles. Journal of Materials Chemistry A, 2018, 6, 4331-4336.	5.2	27

#	Article	IF	CITATIONS
1840	A nickel-based pectin coordination polymer as an oxygen reduction reaction catalyst for proton-exchange membrane fuel cells. Inorganic Chemistry Frontiers, 2018, 5, 780-784.	3.0	15
1841	A metal–organic framework derived 3D hierarchical Co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. Journal of Materials Chemistry A, 2018, 6, 3386-3390.	5.2	92
1842	Recent Progress of Carbonâ€Based Materials in Oxygen Reduction Reaction Catalysis. ChemElectroChem, 2018, 5, 1764-1774.	1.7	66
1843	Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems. Chemical Reviews, 2018, 118, 2313-2339.	23.0	642
1844	Influence of iron precursor hydration state on performance of non-precious metal fuel cell call catalysts. Journal of Materials Chemistry A, 2018, 6, 3116-3125.	5.2	5
1845	Sodium ferric EDTA-derived Fe-N-C material for selectively electrocatalytic synthesis of hydrogen peroxide. Materials Letters, 2018, 217, 171-173.	1.3	9
1846	Porous carbon supported atomic iron as electrocatalysts for acidic oxygen reduction reaction. Science Bulletin, 2018, 63, 213-215.	4.3	12
1847	A general potentiodynamic approach for red phosphorus and sulfur nanodot incorporation on reduced graphene oxide sheets: metal-free and binder-free electrodes for supercapacitor and hydrogen evolution activities. Journal of Materials Chemistry A, 2018, 6, 3141-3150.	5.2	32
1849	Graphene with Fe and S Coordinated Active Centers: An Active Competitor for the Fe–N–C Active Center for Oxygen Reduction Reaction in Acidic and Basic pH Conditions. ACS Applied Energy Materials, 2018, 1, 368-376.	2.5	36
1850	Novel MOFâ€Derived Co@Nâ€C Bifunctional Catalysts for Highly Efficient Zn–Air Batteries and Water Splitting. Advanced Materials, 2018, 30, 1705431.	11.1	667
1851	Porous Carbonâ€Hosted Atomically Dispersed Iron–Nitrogen Moiety as Enhanced Electrocatalysts for Oxygen Reduction Reaction in a Wide Range of pH. Small, 2018, 14, e1703118.	5.2	117
1852	The oxygen reduction reaction on graphitic carbon nitride supported single Ce atom and CexPt6-x cluster catalysts from first-principles. Carbon, 2018, 130, 636-644.	5.4	30
1853	Porous carbon electrocatalyst with exclusive metal-coordinate active sites for acidic oxygen reduction reaction. Carbon, 2018, 132, 85-94.	5.4	19
1854	Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuelÂcell. Electrochimica Acta, 2018, 266, 220-232.	2.6	37
1855	Recent Advancements in Transition Metalâ€Nitrogen arbon Catalysts for Oxygen Reduction Reaction. Electroanalysis, 2018, 30, 1217-1228.	1.5	73
1856	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	5.8	100
1857	Plasmaâ€Assisted Synthesis and Surface Modification of Electrode Materials for Renewable Energy. Advanced Materials, 2018, 30, e1705850.	11.1	476
1858	Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries. Advanced Science, 2018, 5, 1700691.	5.6	645

#	Article	IF	CITATIONS
1859	Ordered mesoporous FeN <i>x</i> -doped carbon: a class of highly active and stable catalysts in acids, bases and polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 3941-3953.	5.2	15
1860	Nitrogen oordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Advanced Materials, 2018, 30, 1706758.	11.1	788
1861	Iron Single Clusters Anchored on Nâ€Doped Porous Carbon as Superior Traceâ€Metal Catalysts toward Oxygen Reduction. Advanced Materials Interfaces, 2018, 5, 1701345.	1.9	19
1862	Rational Design of Fe _{1â^'} <i>_x</i> S/Fe ₃ O ₄ /Nitrogen and Sulfurâ€Doped Porous Carbon with Enhanced Oxygen Reduction Reaction Catalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701641.	1.9	14
1863	Interface engineered <i>in situ</i> anchoring of Co ₉ S ₈ nanoparticles into a multiple doped carbon matrix: highly efficient zinc–air batteries. Nanoscale, 2018, 10, 2649-2657.	2.8	66
1864	Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe–Nitrogen–Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors. ACS Catalysis, 2018, 8, 1640-1647.	5.5	126
1865	Synergetic Contribution of Boron and Fe–N _{<i>x</i>} Species in Porous Carbons toward Efficient Electrocatalysts for Oxygen Reduction Reaction. ACS Energy Letters, 2018, 3, 252-260.	8.8	269
1866	Multifunctional electrocatalysts derived from conducting polymer and metal organic framework complexes. Nano Energy, 2018, 45, 127-135.	8.2	166
1867	Design and Synthesis of Cobaltâ€Based Electrocatalysts for Oxygen Reduction Reaction. Chemical Record, 2018, 18, 840-848.	2.9	11
1868	Nitrogen-doped, oxygen-functionalized, edge- and defect-rich vertically aligned graphene for highly enhanced oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 2176-2183.	5.2	64
1869	Facile Metal Coordination of Active Site Imprinted Nitrogen Doped Carbons for the Conservative Preparation of Nonâ€Noble Metal Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2018, 8, 1701771.	10.2	73
1870	Graphene Layersâ€Wrapped Fe/Fe ₅ C ₂ Nanoparticles Supported on Nâ€doped Graphene Nanosheets for Highly Efficient Oxygen Reduction. Advanced Energy Materials, 2018, 8, 1702476.	10.2	205
1871	Theoretical insights on the oxygen-reduction reaction mechanism of LaN4-embedded graphene. Journal of Molecular Modeling, 2018, 24, 14.	0.8	5
1872	Morphology and dispersion of nanostructured manganese–cobalt spinel on various carbon supports: the effect on the oxygen reduction reaction in alkaline media. Catalysis Science and Technology, 2018, 8, 642-655.	2.1	28
1873	Mechanisms of the oxygen reduction reaction on B- and/or N-doped carbon nanomaterials with curvature and edge effects. Nanoscale, 2018, 10, 1129-1134.	2.8	81
1874	Controlled synthesis of porous nitrogen-doped carbon nanoshells for highly efficient oxygen reduction. Reaction Chemistry and Engineering, 2018, 3, 238-243.	1.9	4
1875	Nanosheets/Mesopore Structured Co ₃ O ₄ @CMKâ€3 Composite as an Electrocatalyst for the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 1321-1329.	1.8	15
1876	Bimetallic M/N/C catalysts prepared from ï€-expanded metal salen precursors toward an efficient oxygen reduction reaction. RSC Advances, 2018, 8, 2892-2899.	1.7	15

#	Article	IF	CITATIONS
1877	Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. Electrochimica Acta, 2018, 262, 326-336.	2.6	95
1878	N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction. NPG Asia Materials, 2018, 10, e461-e461.	3.8	103
1879	Post iron-doping of activated nitrogen-doped carbon spheres as a high-activity oxygen reduction electrocatalyst. Energy Storage Materials, 2018, 13, 142-150.	9.5	42
1880	N, P-dual doped carbon with trace Co and rich edge sites as highly efficient electrocatalyst for oxygen reduction reaction. Science China Materials, 2018, 61, 679-685.	3.5	54
1881	Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metals. Applied Catalysis B: Environmental, 2018, 226, 509-522.	10.8	83
1882	Nitrogen-doped graphene supported Cu-Ag2.9 nanoparticles as efficient methanol tolerant cathode for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 1781-1789.	3.8	5
1883	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	16.1	1,476
1884	DMF-Coordination Assisted Electrodeposition of Highly Active PtCo Alloy Catalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, D43-D49.	1.3	9
1885	Porous Iron–Cobalt Alloy/Nitrogenâ€Doped Carbon Cages Synthesized via Pyrolysis of Complex Metal–Organic Framework Hybrids for Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1706738.	7.8	227
1886	Patterning Graphene Surfaces with Ironâ€Oxideâ€Embedded Mesoporous Polypyrrole and Derived Nâ€Doped Carbon of Tunable Pore Size. Small, 2018, 14, 1702755.	5.2	73
1887	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2018, 130, 1218-1222.	1.6	57
1888	Carbon Nanodots as Electrocatalysts towards the Oxygen Reduction Reaction. Electroanalysis, 2018, 30, 436-444.	1.5	26
1889	Facile Synthesis of N-Doped Graphene-Like Carbon Nanoflakes as Efficient and Stable Electrocatalysts for the Oxygen Reduction Reaction. Nano-Micro Letters, 2018, 10, 29.	14.4	85
1890	Fe–N-Doped Mesoporous Carbon with Dual Active Sites Loaded on Reduced Graphene Oxides for Efficient Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 2423-2429.	4.0	95
1891	Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon, 2018, 130, 112-119.	5.4	209
1892	CoFe nanoalloy particles encapsulated in nitrogen-doped carbon layers as bifunctional oxygen catalyst derived from a Prussian blue analogue. Journal of Alloys and Compounds, 2018, 740, 743-753.	2.8	43
1893	Preparation of an efficient Fe/N/C electrocatalyst and its application for oxygen reduction reaction in alkaline media. Journal of Electroanalytical Chemistry, 2018, 810, 62-68.	1.9	23
1894	Influence of sulfur in the precursor mixture on the structural composition of Fe-N-C catalysts. Hyperfine Interactions, 2018, 239, 1.	0.2	13

ARTICLE IF CITATIONS Strategies for Enhancing the Electrocatalytic Activity of M–N/C Catalysts for the Oxygen Reduction 1895 1.3 27 Reaction. Topics in Catalysis, 2018, 61, 1077-1100. Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells. Science of the Total Environment, 2018, 636, 1896 1081-1088. Polyformamidineâ€Derived Nonâ€Noble Metal Electrocatalysts for Efficient Oxygen Reduction Reaction. 1897 7.8 49 Advanced Functional Materials, 2018, 28, 1707551. Effect of N-doped carbon coatings on the durability of highly loaded platinum and alloy catalysts with different carbon supports for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 10070-10081. 1898 The chemical identity, state and structure of catalytically active centers during the electrochemical CO₂ reduction on porous Fe–nitrogen–carbon (Fe–N–C) materials. Chemical Science, 1899 3.7 128 2018, 9, 5064-5073. Oxygen Reduction on Fe†and Coâ€Containing Nitrogenâ€Doped Nanocarbons. ChemElectroChem, 2018, 5, 2002-2009. 1.7 Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped 1901 Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced 7.8 155 Functional Materials, 2018, 28, 1801136. N-doped and N/Fe-codoped porous carbon spheres derived from tetrazine-based polypyrrole as efficient electrocatalysts for the oxygen reduction reaction. Applied Catalysis A: General, 2018, 559, 102-111. Durability challenges and perspective in the development of PGM-free electrocatalysts for the oxygen 1903 2.5 145 reduction reaction. Current Opinion in Electrochemistry, 2018, 9, 224-232. A universal principle for a rational design of single-atom electrocatalysts. Nature Catalysis, 2018, 1, 1904 16.1 1,214 339-348. Nitrogen-doped carbon nanosheets and nanoflowers with holey mesopores for efficient oxygen 1905 5.2 66 reduction catalysis. Journal of Materials Chemistry A, 2018, 6, 10354-10360. Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction 1906 2.2 166 reaction. Chemical Communications, 2018, 54, 4274-4277. Bimetallic carbide of Co3W3C enhanced non-noble-metal catalysts with high activity and stability for 1907 1.7 10 acidic oxygen reduction reaction. RSC Advances, 2018, 8, 12292-12299. Three-Dimensional Printing of Polyaniline/Reduced Graphene Oxide Composite for High-Performance Planar Supercapacitor. ACS Applied Materials & amp; Interfaces, 2018, 10, 10437-10444. 1908 4.0 Nitrogen-doped carbon-modified titanium oxides supported Pd catalyst for the electrooxidation of 1909 1.2 5 formic acid. Journal of Solid State Electrochemistry, 2018, 22, 2623-2628. Biomass based iron and nitrogen co-doped 3D porous carbon as an efficient oxygen reduction 44 catalyst. Journal of Colloid and Interface Science, 2018, 523, 144-150. Facile preparation of efficient electrocatalysts for oxygen reduction reaction: One-dimensional 1911 meso/macroporous cobalt and nitrogen Co-doped carbon nanofibers. Journal of Power Sources, 2018, 4.0 48 380, 174-184. Toward the Decentralized Electrochemical Production of H₂O₂: A Focus on 1912 5.5 663 the Catalysis. ACS Catalysis, 2018, 8, 4064-4081.

#	Article	IF	CITATIONS
1913	Light-weight 3D Co–N-doped hollow carbon spheres as efficient electrocatalysts for rechargeable zinc–air batteries. Nanoscale, 2018, 10, 10412-10419.	2.8	73
1914	A Synthetic Route for the Preparation of Core-Shell Nanoparticles Using a Protective Carbon Layer and Ozone Treatment. Journal of the Electrochemical Society, 2018, 165, F285-F290.	1.3	4
1915	Critical advancements in achieving high power and stable nonprecious metal catalyst–based MEAs for real-world proton exchange membrane fuel cell applications. Science Advances, 2018, 4, eaar7180.	4.7	189
1916	Hydrothermal Synthesis of a New Kind of N-Doped Graphene Gel-like Hybrid As an Enhanced ORR Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 10842-10850.	4.0	87
1917	Rational Design and Synthesis of Low-Temperature Fuel Cell Electrocatalysts. Electrochemical Energy Reviews, 2018, 1, 54-83.	13.1	87
1918	Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Current Opinion in Electrochemistry, 2018, 9, 137-144.	2.5	85
1919	Identifying the Active Site of N-Doped Graphene for Oxygen Reduction by Selective Chemical Modification. ACS Energy Letters, 2018, 3, 986-991.	8.8	102
1920	Understanding Selective Reduction of CO 2 to CO on Modified Carbon Electrocatalysts. ChemElectroChem, 2018, 5, 1615-1621.	1.7	16
1921	Defect-rich, boron-nitrogen bonds-free and dual-doped graphenes for highly efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 521, 11-16.	5.0	13
1922	Incorporation of Fe ₃ C and Pyridinic N Active Sites with a Moderate N/C Ratio in Fe–N Mesoporous Carbon Materials for Enhanced Oxygen Reduction Reaction Activity. ACS Applied Nano Materials, 2018, 1, 1801-1810.	2.4	48
1923	Improved electrochemical performance of Fe-N-C catalysts through ionic liquid modification in alkaline media. Journal of Power Sources, 2018, 375, 222-232.	4.0	66
1924	Synthesis of M (Fe3C, Co, Ni)-porous carbon frameworks as high-efficient ORR catalysts. Energy Storage Materials, 2018, 11, 112-117.	9.5	71
1925	Non-noble metal catalyst on carbon ribbon for fuel cell cathode. Journal of Solid State Electrochemistry, 2018, 22, 761-771.	1.2	5
1926	A Highly Efficient Electrocatalyst Derived from Polyaniline@CNTsâ^'SPS for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 195-200.	1.7	4
1927	Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-N x /C active sites for oxygen reduction reaction in fuel cells. Applied Catalysis B: Environmental, 2018, 222, 191-199.	10.8	115
1928	Continuous Flow Synthesis of Platinum Nanoparticles in Porous Carbon as Durable and Methanolâ€Tolerant Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 62-70.	1.7	18
1929	Influence of the Composition and Preparation of the Rotating Disk Electrode on the Performance of Mesoporous Electrocatalysts in the Alkaline Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 119-128.	1.7	17
1930	Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells. Journal of Power Sources, 2018, 375, 233-243.	4.0	74

#	Article	IF	CITATIONS
1931	Nitrogen-doped carbon nanotubes based on melamine-formaldehyde resin as highly efficient catalyst for oxygen reduction reaction. Journal of Colloid and Interface Science, 2018, 509, 1-9.	5.0	24
1932	Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C P bonds for excellent photocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2018, 221, 27-35.	10.8	236
1933	Improving the Electrochemical Oxygen Reduction Activity of Manganese Oxide Nanosheets with Sulfurizationâ€Induced Nanopores. ChemCatChem, 2018, 10, 422-429.	1.8	23
1934	Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review. Journal of Power Sources, 2018, 375, 277-290.	4.0	127
1935	The key roles of trace iron for nitrogen, sulfur dual-doped carbon nanospheres as high efficient oxygen reduction catalyst. Journal of Materials Science, 2018, 53, 1404-1413.	1.7	13
1936	57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 221, 406-412.	10.8	61
1937	Investigation of activity and stability of carbon supported oxynitrides with ultra-low Pt concentration as ORR catalyst for PEM fuel cells. Journal of Electroanalytical Chemistry, 2018, 819, 312-321.	1.9	24
1938	Engineering beneficial structures and morphologies of M-N-C oxygen-reduction catalysts derived from different metal-containing precursors. Ionics, 2018, 24, 1733-1744.	1.2	5
1939	Self-terminated activation for high-yield production of N,P-codoped nanoporous carbon as an efficient metal-free electrocatalyst for Zn-air battery. Carbon, 2018, 128, 97-105.	5.4	69
1940	Novel Co3O4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction (OER). Nano-Micro Letters, 2018, 10, 15.	14.4	124
1941	Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts. Science Bulletin, 2018, 63, 24-30.	4.3	18
1942	Construction of a hierarchical 3D Co/N-carbon electrocatalyst for efficient oxygen reduction and overall water splitting. Journal of Materials Chemistry A, 2018, 6, 489-497.	5.2	111
1943	Surface Fluorination to Boost the Stability of the Fe/N/C Cathode in Proton Exchange Membrane Fuel Cells. ChemElectroChem, 2018, 5, 1914-1921.	1.7	61
1944	Electrochemically Inert g ₃ N ₄ Promotes Water Oxidation Catalysis. Advanced Functional Materials, 2018, 28, 1705583.	7.8	84
1945	DUTâ€58 (Co) Derived Synthesis of Co Clusters as Efficient Oxygen Reduction Electrocatalyst for Zinc–Air Battery. Global Challenges, 2018, 2, 1700086.	1.8	13
1946	Facile synthesis of efficient core-shell structured iron-based carbon catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 1386-1395.	3.8	7
1947	Development of non-platinum oxygen reduction catalysts prepared from metal-organic framework using 4,4′-bipyridine as a bridging ligand. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2018, 228, 190-197.	1.7	2
1948	From biological enzyme to single atomic Fe–N–C electrocatalyst for efficient oxygen reduction. Chemical Communications, 2018, 54, 1307-1310.	2.2	50

#	Article	IF	CITATIONS
1949	A specific demetalation of Fe–N ₄ catalytic sites in the micropores of NC_Ar + NH ₃ is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy and Environmental Science, 2018, 11, 365-382.	15.6	280
1950	Litchi-like porous Fe/N/C spheres with atomically dispersed FeN _x promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 4605-4610.	5.2	54
1951	ELECTROCATALYTIC PROCESSES IN ENERGY TECHNOLOGIES. , 2018, , 291-341.		0
1952	Conductive Porous Network of Metal–Organic Frameworks Derived Cobaltâ€Nitrogenâ€doped Carbon with the Assistance of Carbon Nanohorns as Electrocatalysts for Zinc–Air Batteries. ChemCatChem, 2018, 10, 1336-1343.	1.8	14
1953	Wellâ€Defined Cobalt Catalyst with Nâ€Doped Carbon Layers Enwrapping: The Correlation between Surface Atomic Structure and Electrocatalytic Property. Small, 2018, 14, 1702074.	5.2	56
1954	NiCo Alloy Nanoparticles Decorated on Nâ€Doped Carbon Nanofibers as Highly Active and Durable Oxygen Electrocatalyst. Advanced Functional Materials, 2018, 28, 1705094.	7.8	405
1955	MIL-100-Fe derived N-doped Fe/Fe3C@C electrocatalysts for efficient oxygen reduction reaction. Applied Surface Science, 2018, 434, 1266-1273.	3.1	59
1956	Fe/Fe ₃ C Nanoparticles Embedded in Nitrogenâ€Doped Carbon Nanotubes as Multifunctional Electrocatalysts for Oxygen Catalysis and CO ₂ Reduction. ChemElectroChem, 2018, 5, 471-477.	1.7	38
1957	The Solidâ€Phase Synthesis of an Feâ€Nâ€C Electrocatalyst for Highâ€Power Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 1204-1208.	7.2	293
1958	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	5.2	357
1959	Enhancement of oxygen reduction reaction performance: The characteristic role of Fe N coordinations. Electrochimica Acta, 2018, 260, 264-273.	2.6	27
1960	Enhanced Fe dispersion via "pinning―effect of thiocyanate ion on ferric ion in Fe-N-S-doped catalyst as an excellent oxygen reduction reaction electrode. Journal of Power Sources, 2018, 376, 161-167.	4.0	30
1961	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
1962	Hierarchical Core–Shell Nickel Cobaltite Chestnutâ€like Structures as Bifunctional Electrocatalyst for Rechargeable Metal–Air Batteries. ChemSusChem, 2018, 11, 406-414.	3.6	30
1963	Nonpreciousâ€metal Fe/N/C Catalysts Prepared from Ï€â€Expanded Fe Salen Precursors toward an Efficient Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 743-750.	1.8	17
1964	Oxygen reduction reaction of (C-PCTNB@CNTs): A nitrogen and phosphorus dual-doped carbon electro-catalyst derived from polyphosphazenes. Journal of Power Sources, 2018, 373, 61-69.	4.0	40
1965	A multifunctional separator modified with cobalt and nitrogen co-doped porous carbon nanofibers for Li–S batteries. Journal of Membrane Science, 2018, 548, 247-253.	4.1	78
1966	Bulk Production of Nonâ€Precious Metal Catalysts with High Surface Area and Excellent Activity in the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1854-1861.	1.7	6

ARTICLE IF CITATIONS Hydrothermal Synthesis of Platinumâ€Groupâ€Metalâ€Free Catalysts: Structural Elucidation and Oxygen 1967 1.7 8 Réduction Catalysis. ChemElectroChem, 2018, 5, 1848-1853. Nest-like assembly of the doped single-walled carbon nanotubes with unique mesopores as ultrastable 5.4 catalysts for high power density Zn-air battery. Carbon, 2018, 128, 46-53. Fe-polyaniline composite nanofiber catalyst for chemoselective hydrolysis of oxime. Journal of 1969 5.0 11 Colloid and Interface Science, 2018, 513, 592-601. Iron Oxide Nanoclusters Incorporated into Iron Phthalocyanine as Highly Active Electrocatalysts for 1.8 the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 475-483. Mechanisms of Twoâ€Electron versus Fourâ€Electron Reduction of Dioxygen Catalyzed by Earthâ€Abundant 1971 1.8 82 Metal Complexes. ChemCatChem, 2018, 10, 9-28. Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. Journal of Power Sources, 2018, 375, 214-221. 4.0 Reduced graphene oxide modified activated carbon for improving power generation of air-cathode 1973 1.2 8 microbial fuel cells. Journal of Materials Research, 2018, 33, 1279-1287. A Comprehensive Review on Controlling Surface Composition of Ptâ€Based Bimetallic Electrocatalysts. 1974 10.2 Advanced Energy Materials, 2018, 8, 1703597. 1975 Oxygen Reduction Catalysts on Nanoparticle Electrodes., 2018, , 796-811. 5 Thermal Stability and Potential Cycling Durability of Nitrogen-Doped Graphene Modified by 1.6 Metal-Organic Framework for Oxygen Reduction Reactions. Catalysts, 2018, 8, 607. Enhancement of Fe–N–C carbon catalyst activity for the oxygen reduction reaction: effective 1977 1.7 13 increment of active sites by a short and repeated heating process. RSC Advances, 2018, 8, 37600-37605. On the role of hydroxide species in sulphur- and nitrogen-doped cobalt-based carbon catalysts for the 5.2 oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 22310-22319. Metal–organic frameworks-derived core–shell Fe₃O₄/Fe₃N@graphite carbon nanocomposites as excellent 1979 1.6 29 non-precious metal electrocatalyst for oxygen reduction. Dalton Transactions, 2018, 47, 16567-16577. The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy and Environmental Science, 2018, 11, 3176-3182. 1980 15.6 A MOF-derived coral-like NiSe@NC nanohybrid: an efficient electrocatalyst for the hydrogen 1981 2.8 78 evolution reaction at all pH values. Nanoscale, 2018, 10, 22758-22765. Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media. Journal of Materials Chemistry A, 2018, 6, 43 23445-23456. Reduced graphene oxide intercalated ZnS nanoparticles as an efficient and durable electrocatalyst 1983 1.4 12 for the oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 19285-19293. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and 1984 Environmental Science, 2018, 11, 3375-3379.

#	Article	IF	CITATIONS
1985	Incorporation of Cu–N _x cofactors into graphene encapsulated Co as biomimetic electrocatalysts for efficient oxygen reduction. Nanoscale, 2018, 10, 21076-21086.	2.8	47
1987	Highly Active and Stable Fe-N-C Oxygen Reduction Electrocatalysts Derived from Electrospinning and In Situ Pyrolysis. Nanoscale Research Letters, 2018, 13, 218.	3.1	18
1988	Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science, 2018, 362, 1276-1281.	6.0	735
1989	Exploring the Effect of Gold Support on the Oxygen Reduction Reaction Activity of Metal Porphycenes. ChemCatChem, 2018, 10, 5505-5510.	1.8	6
1990	Fe-Doped Metal-Organic Frameworks-Derived Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Journal of the Electrochemical Society, 2018, 165, F1278-F1285.	1.3	12
1991	Oxygen Electroreduction Catalysts Based on Polymer Complexes of Nickel with Schiff Bases. Russian Journal of Electrochemistry, 2018, 54, 769-774.	0.3	5
1992	Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance. International Journal of Hydrogen Energy, 2018, 43, 23027-23035.	3.8	58
1993	Recent Advances of Cobalt-Based Electrocatalysts for Oxygen Electrode Reactions and Hydrogen Evolution Reaction. Catalysts, 2018, 8, 559.	1.6	107
1994	Enhanced Oxygen Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-Core Catalysts. Journal of the Electrochemical Society, 2018, 165, J3288-J3294.	1.3	11
1995	Applications of Porous Metal–Organic Framework MIL-100(M) (M = Cr, Fe, Sc, Al, V). Crystal Growth and Design, 2018, 18, 7730-7744.	1.4	51
1996	Efficient Electrochemical Reduction of Oxygen Catalyzed by Porous Carbon Containing Trace Amount of Metal Residues. Electroanalysis, 2018, 30, 2768-2773.	1.5	2
1997	Iron–Nitrogen-Doped Dendritic Carbon Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2018, 1, 6560-6568.	2.5	16
1998	Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction. Materials Today Nano, 2018, 3, 54-68.	2.3	32
1999	Pd Nanoparticles Anchored on N-rich Graphdiyne Surface for Enhanced Catalysis for Alkaline Electrolyte Oxygen Reduction. International Journal of Electrochemical Science, 2018, 13, 12226-12237.	0.5	8
2000	Singleâ€Atom to Singleâ€Atom Grafting of Pt ₁ onto FeN ₄ Center: Pt ₁ @FeNC Multifunctional Electrocatalyst with Significantly Enhanced Properties. Advanced Energy Materials, 2018, 8, 1701345.	10.2	371
2001	Recent advances in electrocatalysts toward the oxygen reduction reaction: the case of PtNi octahedra. Nanoscale, 2018, 10, 20073-20088.	2.8	60
2002	Recent Advance on Polyaniline or Polypyrrole-Derived Electrocatalysts for Oxygen Reduction Reaction. Polymers, 2018, 10, 1397.	2.0	32
2003	Feâ€Coâ€Ni/Nitrogenâ€Doped Mesoporous Carbon Materials for Electrochemical Oxygen Reduction. ChemistrySelect, 2018, 3, 12960-12966.	0.7	2

#	Article	IF	CITATIONS
2004	A Facile Synthesis of Câ€N Hollow Nanotubes as High Electroactivity Catalysts of Oxygen Reduction Reaction Derived from Dicyandiamide. ChemistrySelect, 2018, 3, 12603-12612.	0.7	21
2005	Oxygen reduction reaction of FeN4 center embedded in graphene and carbon nanotube: Density functional calculations. AIP Advances, 2018, 8, .	0.6	17
2006	Atomic approaches towards stability. Nature Catalysis, 2018, 1, 900-902.	16.1	10
2007	Fe-N _{<i>x</i>} Sites Enriched Carbon Micropolyhedrons Derived from Fe-Doped Zeolitic Imidazolate Frameworks with Reinforced Fe-N Coordination for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 15624-15633.	3.2	57
2008	Rationally Armoring PtCu Alloy with Metalâ€Organic Frameworks as Highly Selective Nonenzyme Electrochemical Sensor. Advanced Materials Interfaces, 2018, 5, 1801168.	1.9	19
2009	Nitrogen and Sulfur Dual Self-Doped Graphitic Carbon with Highly Catalytic Activity for Oxygen Reduction Reaction. ACS Applied Energy Materials, 0, , .	2.5	5
2010	Single crystalline thallium rhodium oxide pyrochlore for highly improved round trip efficiency of hybrid Na–air batteries. Dalton Transactions, 2018, 47, 15217-15225.	1.6	9
2011	Low-Cost Sulfonated Phthalocyanines-Derived Hierarchical Porous Co-Cu-N-S-Doped Carbons for Efficient Oxygen Electroreduction. Journal of the Electrochemical Society, 2018, 165, H658-H666.	1.3	4
2012	Ternary hybrid PtM@polyaniline (MÂ= Ni, FeNi) counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2018, 291, 114-123.	2.6	11
2013	Development, Challenges, and Prospects of Carbon-Based Electrode for Lithium-Air Batteries. , 2018, , 115-152.		12
2014	Polyaniline–derived metal–free hollow nitrogen–doped carbon microspheres as an efficient electrocatalyst for supercapacitors and oxygen reduction. Journal of Electroanalytical Chemistry, 2018, 829, 157-167.	1.9	33
2015	Tuning the Performance of Single-Atom Electrocatalysts: Support-Induced Structural Reconstruction. Chemistry of Materials, 2018, 30, 7494-7502.	3.2	24
2016	DFT Study of the Oxygen Reduction Reaction on Carbon-Coated Iron and Iron Carbide. ACS Catalysis, 2018, 8, 10521-10529.	5.5	46
2017	Stabilization of Iron-Based Fuel Cell Catalysts by Non-Catalytic Platinum. Journal of the Electrochemical Society, 2018, 165, F1084-F1091.	1.3	33
2018	Electrochemical Energy Conversion and Storage with Zeolitic Imidazolate Framework Derived Materials: A Perspective. ChemElectroChem, 2018, 5, 3571-3588.	1.7	46
2019	Defects on carbons for electrocatalytic oxygen reduction. Chemical Society Reviews, 2018, 47, 7628-7658.	18.7	432
2020	Nitrogen-Doped Carbon Nanotubes Encapsulated Cobalt Nanoparticles Hybrids for Highly Efficient Catalysis of Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, J3052-J3058.	1.3	12
2021	Turning Carbon Atoms into Highly Active Oxygen Reduction Reaction Electrocatalytic Sites in Nitrogen-Doped Graphene-Coated Co@Ag. ACS Sustainable Chemistry and Engineering, 2018, 6, 14033-14041.	3.2	10

#	Article	IF	CITATIONS
2022	Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst. Chemical Communications, 2018, 54, 12073-12076.	2.2	44
2023	Platinum-free electrocatalysts for oxygen reduction reaction: Fe-Nx modified mesoporous carbon prepared from biosources. Journal of Power Sources, 2018, 402, 434-446.	4.0	36
2024	Co ₂ B and Co Nanoparticles Immobilized on the N–B-Doped Carbon Derived from Nano-B ₄ C for Efficient Catalysis of Oxygen Evolution, Hydrogen Evolution, and Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2018, 10, 37067-37078.	4.0	47
2025	Density Functional Study of Hydrogen Evolution on Cobalt-Embedded Carbon Nanotubes: Effects of Doping and Surface Curvature. ACS Applied Nano Materials, 2018, 1, 6258-6268.	2.4	34
2026	Nitrogen-Doped Defect-Rich Graphitic Carbon Nanorings with CoO _{<i>x</i>} Nanoparticles as Highly Efficient Electrocatalyst for Oxygen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15811-15821.	3.2	35
2027	Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy, 2018, 54, 192-199.	8.2	83
2028	Quinone-Mediated Electrochemical O2 Reduction Accessing High Power Density with an Off-Electrode Co-N/C Catalyst. Joule, 2018, 2, 2722-2731.	11.7	38
2029	Electrocatalytic Oxygen Reduction Activities of Thiol-Protected Nanomolecules Ranging in Size from Au ₂₈ (SR) ₂₀ to Au ₂₇₉ (SR) ₈₄ . Journal of Physical Chemistry C, 2018, 122, 24809-24817.	1.5	50
2030	ORR Activity and Stability of Co-N/C Catalysts Based on Silicon Carbide Derived Carbon and the Impact of Loading in Acidic Media. Journal of the Electrochemical Society, 2018, 165, F1217-F1223.	1.3	15
2031	Stacked and Core–Shell Pt:Ni/WC Nanorod Array Electrocatalyst for Enhanced Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Energy Materials, 2018, 1, 6115-6122.	2.5	11
2032	Graphitic Carbon Nitride for Electrochemical Energy Conversion and Storage. ACS Energy Letters, 2018, 3, 2796-2815.	8.8	149
2033	Selfâ€Assembled 3D Hierarchical Porous Hybrid as Platinumâ€Like Bifunctional Nonprecious Metal Catalyst toward Oxygen Reduction Reaction and Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2018, 5, 1801296.	1.9	5
2034	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	16.1	1,075
2035	Non-precious nanostructured materials by electrospinning and their applications for oxygen reduction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 2018, 408, 17-27.	4.0	45
2036	Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions. Journal of Catalysis, 2018, 368, 279-290.	3.1	105
2037	A Self-Templating Redox-Mediated Synthesis of Hollow Phosphated Manganese Oxide Nanospheres as Noble-Metal-like Oxygen Electrocatalysts. Chemistry of Materials, 2018, 30, 8270-8279.	3.2	31
2038	Physical and Chemical Considerations for Improving Catalytic Activity and Stability of Non-Precious-Metal Oxygen Reduction Reaction Catalysts. ACS Catalysis, 2018, 8, 11264-11276.	5.5	101
2039	A Ternary Ni ₄₆ Co ₄₀ Fe ₁₄ Nanoalloyâ€Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc–Air Batteries. Advanced Materials, 2018, 30, e1803372.	11.1	73

#	Article	IF	CITATIONS
2040	Self‧acrificial Template Synthesis of a Nitrogenâ€Doped Microstructured Carbon Tube as Electrocatalyst for Oxygen Reduction. ChemElectroChem, 2018, 5, 3731-3740.	1.7	12
2041	Mesoporous CoO/Co–N–C nanofibers as efficient cathode catalysts for Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 19075-19084.	5.2	45
2042	Investigation of Earth-Abundant Oxygen Reduction Electrocatalysts for the Cathode of Passive Air-Breathing Direct Formate Fuel Cells. Catalysts, 2018, 8, 320.	1.6	1
2043	High-Density Ultra-small Clusters and Single-Atom Fe Sites Embedded in Graphitic Carbon Nitride (g-C ₃ N ₄) for Highly Efficient Catalytic Advanced Oxidation Processes. ACS Nano, 2018, 12, 9441-9450.	7.3	455
2044	A study of FeN /C catalysts for the selective oxidation of unsaturated alcohols by molecular oxygen. Journal of Catalysis, 2018, 367, 16-26.	3.1	29
2049	Oxygen reduction reaction activity and the microbial community in response to magnetite coordinating nitrogen-doped carbon catalysts in bioelectrochemical systems. Biosensors and Bioelectronics, 2018, 122, 113-120.	5.3	18
2050	Porous graphene doped with Fe/N/S and incorporating Fe ₃ O ₄ nanoparticles for efficient oxygen reduction. Catalysis Science and Technology, 2018, 8, 5325-5333.	2.1	33
2051	Preparation of Co–N carbon nanosheet oxygen electrode catalyst by controlled crystallization of cobalt salt precursors for all-solid-state Al–air battery. RSC Advances, 2018, 8, 22193-22198.	1.7	11
2052	Morphology-Controlled Nitrogen-Containing Polymers as Synthetic Precursors for Electrochemical Oxygen Reduction Fe/N/C Cathode Catalysts. Catalysts, 2018, 8, 324.	1.6	8
2053	High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells. Journal of Power Sources, 2018, 401, 287-295.	4.0	44
2054	Promoting Oxygen Reduction Reaction Activity of Fe–N/C Electrocatalysts by Silica-Coating-Mediated Synthesis for Anion-Exchange Membrane Fuel Cells. Chemistry of Materials, 2018, 30, 6684-6701.	3.2	105
2055	Lithium Electrochemical Tuning for Electrocatalysis. Advanced Materials, 2018, 30, e1800978.	11.1	51
2056	The Marriage of the FeN ₄ Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters. Advanced Materials, 2018, 30, e1803220.	11.1	289
2057	Coordination-Assisted Polymerization of Mesoporous Cobalt Sulfide/Heteroatom (N,S)-Doped Double-Layered Carbon Tubes as an Efficient Bifunctional Oxygen Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 33124-33134.	4.0	66
2058	Synergistic Effects of Active Sites' Nature and Hydrophilicity on the Oxygen Reduction Reaction Activity of Pt-Free Catalysts. Nanomaterials, 2018, 8, 643.	1.9	11
2059	Pt alloy nanoparticles decorated on large-size nitrogen-doped graphene tubes for highly stable oxygen-reduction catalysts. Nanoscale, 2018, 10, 17318-17326.	2.8	45
2060	Investigation of the durability of Fe/N-doped mesoporous carbon nanostructure as a non-precious metal catalyst for oxygen reduction reaction in acid medium. Carbon, 2018, 140, 189-200.	5.4	24
2061	Tunable Electronic and Magnetic Properties of Grapheneâ€Embedded Transition Metalâ€N ₄ Complexes: Insight From Firstâ€Principles Calculations. Chemistry - an Asian Journal, 2018, 13, 3239-3245.	1.7	18

#	Article	IF	CITATIONS
2062	Edge-Site Engineering of Atomically Dispersed Fe–N ₄ by Selective C–N Bond Cleavage for Enhanced Oxygen Reduction Reaction Activities. Journal of the American Chemical Society, 2018, 140, 11594-11598.	6.6	603
2063	Simple synthesis of nitrogen-doped carbon spheres as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chinese Journal of Catalysis, 2018, 39, 1138-1145.	6.9	11
2064	Surface activation of graphene nanoribbons for oxygen reduction reaction by nitrogen doping and defect engineering: An ab initio study. Carbon, 2018, 137, 349-357.	5.4	16
2065	A family of platinum group metal-free catalysts for oxygen reduction in alkaline media. Journal of Power Sources, 2018, 395, 148-157.	4.0	19
2066	SiO ₂ -protected shell mediated templating synthesis of Fe–N-doped carbon nanofibers and their enhanced oxygen reduction reaction performance. Energy and Environmental Science, 2018, 11, 2208-2215.	15.6	196
2067	Thermal Evolution of the Structure and Activity of Non-Doped Graphene as Metal-Free Oxygen Reduction Electrocatalysts. Journal of the Electrochemical Society, 2018, 165, F526-F532.	1.3	2
2068	Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media. Chemical Engineering Journal, 2018, 349, 428-437.	6.6	70
2069	Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 2018, 528, 45-52.	5.0	49
2070	Structural Engineering of 3D Carbon Materials from Transition Metal Ion-Exchanged Y Zeolite Templates. Chemistry of Materials, 2018, 30, 3779-3788.	3.2	28
2071	Effect of carbon precursor and initial pH on cobalt-doped carbon xerogel for oxygen reduction. International Journal of Hydrogen Energy, 2018, 43, 11047-11055.	3.8	17
2072	Atomic Iron Catalysis of Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 19311-19317.	4.0	152
2073	An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Applied Catalysis B: Environmental, 2018, 237, 85-93.	10.8	78
2074	Suppression Effect of Small Organic Molecules on Oxygen Reduction Activity of Fe/N/C Catalysts. ACS Energy Letters, 2018, 3, 1396-1401.	8.8	31
2075	Critical role of iron carbide nanodots on 3D graphene based nonprecious metal catalysts for enhancing oxygen reduction reaction. Electrochimica Acta, 2018, 281, 502-509.	2.6	17
2076	Direct Ethanol Fuel Cells with Superior Ethanol-Tolerant Nonprecious Metal Cathode Catalysts for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 7609-7618.	3.2	28
2077	Oâ€, Nâ€Atomsâ€Coordinated Mn Cofactors within a Graphene Framework as Bioinspired Oxygen Reduction Reaction Electrocatalysts. Advanced Materials, 2018, 30, e1801732.	11.1	239
2078	Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons. Journal of Materials Chemistry A, 2018, 6, 14663-14674.	5.2	94
2079	Doped Nanocarbons Derived from Conducting Polymers toward ORR Electrocatalysts. Advanced Sustainable Systems, 2018, 2, 1800033.	2.7	5

#	Article	IF	Citations
2080	Atomically Dispersed Feâ€N <i>_x</i> /C Electrocatalyst Boosts Oxygen Catalysis via a New Metalâ€Organic Polymer Supramolecule Strategy. Advanced Energy Materials, 2018, 8, 1801226.	10.2	216
2081	Nanomaterials as Catalysts. , 2018, , 45-82.		15
2082	Well-dispersed ultrasmall VC nanoparticles embedded in N-doped carbon nanotubes as highly efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 2018, 10, 14272-14279.	2.8	58
2083	Recent advancements in the development of bifunctional electrocatalysts for oxygen electrodes in unitized regenerative fuel cells (URFCs). Progress in Materials Science, 2018, 98, 108-167.	16.0	37
2084	Host-guest electrocatalyst with cage-confined cuprous sulfide nanoparticles in etched chalcogenide semiconductor zeolite for highly efficient oxygen reduction reaction. Electrochimica Acta, 2018, 282, 877-885.	2.6	15
2085	Fe Vacancies Induced Surface FeO ₆ in Nanoarchitectures of Nâ€Doped Graphene Protected βâ€FeOOH: Effective Active Sites for pHâ€Universal Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2018, 28, 1803330.	7.8	51
2086	Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided Co <i>_x</i> Fe <i>_y</i> Alloy. Advanced Energy Materials, 2018, 8, 1801002.	10.2	117
2087	Novel Nanomaterials as Electrocatalysts for Fuel Cells. , 2018, , 169-204.		5
2088	Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 459-541.	0.5	1
2089	Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673.	7.1	104
2090	Melamine-sponge-derived non-precious fuel cell electrocatalyst with hierarchical pores and tunable nitrogen chemical states for exceptional oxygen reduction reaction activity. Materials Today Energy, 2018, 9, 271-278.	2.5	12
2091	Bulky <i>t</i> -Butyl Thiolated Gold Nanomolecular Series: Synthesis, Characterization, Optical Properties, and Electrocatalysis. Journal of Physical Chemistry C, 2018, 122, 17726-17737.	1.5	36
2092	Catalyst Support in Oxygen Electrocatalysis: A Case Study with CoFe Alloy Electrocatalyst. Journal of Physical Chemistry C, 2018, 122, 15843-15852.	1.5	43
2093	Nâ€doped Hierarchical Porous Carbon Nanomeshes as Oxygen Reduction in pHâ€Universal Media and Oxygen Evolution Electrocatalysts. ChemElectroChem, 2018, 5, 3279-3286.	1.7	14
2094	Cobalt and nitrogen-codoped ordered mesoporous carbon as highly efficient bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 17067-17074.	5.2	41
2095	Synthesis of Fe, Co Incorporated in P-Doped Porous Carbon Using a Metal-Organic Framework (MOF) Precursor as Stable Catalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, G3080-G3086.	1.3	14
2096	Fe, Cuâ€Coordinated ZIFâ€Derived Carbon Framework for Efficient Oxygen Reduction Reaction and Zinc–Air Batteries. Advanced Functional Materials, 2018, 28, 1802596.	7.8	340
2097	Hybridization of Binary Nonâ€Preciousâ€Metal Nanoparticles with dâ€Ti ₃ C ₂ MXene for Catalyzing the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3307-3314.	1.7	32

#	Article	IF	CITATIONS
2098	Microporous N,Pâ€Codoped Graphitic Nanosheets as an Efficient Electrocatalyst for Oxygen Reduction in Whole pH Range for Energy Conversion and Biosensing Dissolved Oxygen. Chemistry - A European Journal, 2018, 24, 18487-18493.	1.7	36
2099	Key Singleâ€Atom Electrocatalysis in Metal—Organic Framework (MOF)â€Derived Bifunctional Catalysts. ChemSusChem, 2018, 11, 3473-3479.	3.6	71
2100	Highly Graphitic Mesoporous Fe,N-Doped Carbon Materials for Oxygen Reduction Electrochemical Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 25337-25349.	4.0	54
2101	Porous Fe–N-codoped carbon microspheres: an efficient and durable electrocatalyst for oxygen reduction reaction. Inorganic Chemistry Frontiers, 2018, 5, 2211-2217.	3.0	8
2102	Carbonâ€Rich Nanomaterials: Fascinating Hydrogen and Oxygen Electrocatalysts. Advanced Materials, 2018, 30, e1800528.	11.1	135
2103	Transition metal–assisted carbonization of small organic molecules toward functional carbon materials. Science Advances, 2018, 4, eaat0788.	4.7	172
2104	Cobalt nanocrystals embedded into N-doped carbon as highly active bifunctional electrocatalysts from pyrolysis of triazolebenzoate complex. Electrochimica Acta, 2018, 284, 733-741.	2.6	13
2105	Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc-air battery. Chemical Engineering Journal, 2018, 353, 472-480.	6.6	50
2106	Sulfurâ€Doped Rhenium Selenide Vertical Nanosheets: A Highâ€Performance Electrocatalyst for Hydrogen Evolution. ChemCatChem, 2018, 10, 4424-4430.	1.8	28
2107	Influence of Air Impurities on the Performance of Nanostructured PEMFC Catalysts. , 2018, , 407-441.		4
2108	N-doped mesoporous carbon embedded Co nanoparticles for highly efficient and stable H2 generation from hydrolysis of ammonia borane. Journal of Power Sources, 2018, 399, 89-97.	4.0	27
2109	An Iron-Based Catalyst with Multiple Active Components Synergetically Improved Electrochemical Performance for Oxygen Reduction Reaction. Catalysts, 2018, 8, 243.	1.6	5
2110	Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochimica Acta, 2018, 283, 780-788.	2.6	111
2111	Molecular Nitrogen–Carbon Catalysts, Solid Metal Organic Framework Catalysts, and Solid Metal/Nitrogenâ€Đoped Carbon (MNC) Catalysts for the Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2018, 8, 1703614.	10.2	157
2112	(Invited) <i></i> Kinetic Models for the Degradation Mechanisms of PGM-Free ORR Catalysts. ECS Transactions, 2018, 85, 1239-1250.	0.3	61
2113	Metallic iron doped vitamin B12/C as efficient nonprecious metal catalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 16230-16239.	3.8	16
2114	Polyaniline globules as a catalyst for WO ₃ nanoparticles for supercapacitor application. Materials Research Express, 2018, 5, 085036.	0.8	24
2115	Well-elaborated, mechanochemically synthesized Fe-TPPâŠ,ZIF precursors (Fe-TPP = tetraphenylporphine) Tj ETQq batteries. Nano Energy, 2018, 52, 29-37.	1 1 0.7843 8.2	314 rgBT /0 108

#	Article	IF	CITATIONS
2116	Highly Dispersed Cuâ^'N _X Moieties Embedded in Graphene: A Promising Electrocatalyst towards the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 3323-3329.	1.7	30
2117	Co ₃ Fe ₇ /nitrogen-doped graphene nanoribbons as bi-functional electrocatalyst for oxygen reduction and oxygen evolution. Nanotechnology, 2018, 29, 415402.	1.3	24
2118	Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule, 2018, 2, 1242-1264.	11.7	1,618
2119	Theoretical Study of the Electrocatalytic Reduction of Oxygen by Metallocorroles. Journal of Physical Chemistry C, 2018, 122, 17686-17694.	1.5	26
2120	Hierarchical 3D macrosheets composed of interconnected <i>in situ</i> cobalt catalyzed nitrogen doped carbon nanotubes as superior bifunctional oxygen electrocatalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 15523-15529.	5.2	68
2121	Heteroatom-doped nanoporous carbon from recyclable Pueraria lobata and its dual activities for oxygen reduction and hydrogen evolution reactions. RSC Advances, 2018, 8, 24392-24398.	1.7	0
2122	High-resolution electron microscopy for heterogeneous catalysis research. Chinese Physics B, 2018, 27, 056804.	0.7	6
2123	Aligned N-doped carbon nanotube bundles with interconnected hierarchical structure as an efficient bi-functional oxygen electrocatalyst. RSC Advances, 2018, 8, 26004-26010.	1.7	11
2124	A eutectic salt-assisted semi-closed pyrolysis route to fabricate high-density active-site hierarchically porous Fe/N/C catalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 15504-15509.	5.2	98
2125	Directly Anchoring Highly Dispersed Copper Sites on Nitrogenâ€Đoped Carbon for Enhanced Oxygen Reduction Electrocatalysis. ChemElectroChem, 2018, 5, 1822-1826.	1.7	21
2126	Ultrafast microwave-assisted synthesis of nitrogen-doped carbons as electrocatalysts for oxygen reduction reaction. Nanotechnology, 2018, 29, 305708.	1.3	8
2127	Subâ€50 nm Iron–Nitrogenâ€Doped Hollow Carbon Sphereâ€Encapsulated Iron Carbide Nanoparticles as Efficient Oxygen Reduction Catalysts. Advanced Science, 2018, 5, 1800120.	5.6	187
2128	Surfactantâ€Assisted Fabrication of Cubic Cobalt Oxide Hybrid Hollow Spheres as Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 2192-2198.	1.7	8
2129	Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction. Nano Convergence, 2018, 5, 13.	6.3	26
2130	In situ formation of iron-cobalt sulfides embedded in N,S-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction. Microporous and Mesoporous Materials, 2018, 270, 1-9.	2.2	43
2131	Enhanced catalytic performance of cobalt nanoparticles coated with a N,P-codoped carbon shell derived from biomass for transfer hydrogenation of functionalized nitroarenes. Green Chemistry, 2018, 20, 2821-2828.	4.6	104
2132	Co@C Nanoparticle Embedded Hierarchically Porous Nâ€Doped Hollow Carbon for Efficient Oxygen Reduction. Chemistry - A European Journal, 2018, 24, 10178-10185.	1.7	40
2133	NiCo-doped C-N nano-composites for cathodic catalysts of Zn-air batteries in neutral media. Electrochimica Acta, 2018, 279, 1-9.	2.6	78

#	Article	IF	CITATIONS
2134	FeCo-Doped Hollow Bamboo-Like C-N Composites as Cathodic Catalysts for Zinc-Air Battery in Neutral Media. Journal of the Electrochemical Society, 2018, 165, A2502-A2509.	1.3	49
2135	Boron-Doped C ₃ N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight. Journal of Physical Chemistry C, 2018, 122, 20312-20322.	1.5	78
2136	CoFe Nanoalloys Encapsulated in N-Doped Graphene Layers as a Pt-Free Multifunctional Robust Catalyst: Elucidating the Role of Co-Alloying and N-Doping. ACS Sustainable Chemistry and Engineering, 2018, 6, 12736-12745.	3.2	50
2137	Mesoporous non-noble metal electrocatalyst derived from ZIF-67 and cobalt porphyrin for the oxygen reduction in alkaline solution. Journal of Electroanalytical Chemistry, 2018, 825, 65-72.	1.9	27
2138	Coral-like cobaltous sulfide/N,S-codoped carbon with hierarchical pores as highly efficient noble metal-free electrocatalyst for oxygen reduction reactions. Journal of Alloys and Compounds, 2018, 769, 801-807.	2.8	10
2139	Highly Dispersed Co–B/N Codoped Carbon Nanospheres on Graphene for Synergistic Effects as Bifunctional Oxygen Electrocatalysts. ACS Applied Materials & Interfaces, 2018, 10, 30460-30469.	4.0	32
2140	Synthesis of self-assembled PtPdAg nanostructures with a high catalytic activity for oxygen reduction reactions. Nanoscale, 2018, 10, 17140-17147.	2.8	11
2141	Tuning Cobalt and Nitrogen Coâ€Doped Carbon to Maximize Catalytic Sites on a Superabsorbent Resin for Efficient Oxygen Reduction. ChemSusChem, 2018, 11, 3631-3639.	3.6	20
2142	The effect of carbon support on the oxygen reduction activity and durability of single-atom iron catalysts. MRS Communications, 2018, 8, 1158-1166.	0.8	27
2143	Boosting electrocatalysis of oxygen reduction reaction through photovoltaic-driven potential manipulation strategy. Materials Today Energy, 2018, 10, 34-39.	2.5	1
2144	A facile synthesis of porous N-doped carbon with hybridization of Fe ₃ C nanoparticle-encased CNTs for an advanced oxygen reduction reaction electrocatalyst. Inorganic Chemistry Frontiers, 2018, 5, 2546-2553.	3.0	12
2145	Hierarchically Porous M–N–C (M = Co and Fe) Singleâ€Atom Electrocatalysts with Robust MN <i>_x</i> Active Moieties Enable Enhanced ORR Performance. Advanced Energy Materials, 2018, 8, 1801956.	10.2	540
2146	Boosting the Performance of Iron-Phthalocyanine as Cathode Electrocatalyst for Alkaline Polymer Fuel Cells Through Edge-Closed Conjugation. ACS Applied Materials & Interfaces, 2018, 10, 28664-28671.	4.0	34
2147	Surface Modification of Carbon Fibres for Interface Improvement in Textile Composites. Applied Composite Materials, 2018, 25, 853-860.	1.3	16
2148	Generating more Mn4+ ions on surface of nonstoichiometric MnO2 nanorods via microwave heating for improved oxygen electroreduction. Applied Surface Science, 2018, 459, 782-787.	3.1	9
2149	Iron-decorated nitrogen-rich carbons as efficient oxygen reduction electrocatalysts for Zn–air batteries. Nanoscale, 2018, 10, 16996-17001.	2.8	25
2150	Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy, 2018, 52, 485-493.	8.2	188
2151	Understanding Oxygen Activation on Metal- and Nitrogen-Codoped Carbon Catalysts. ACS Catalysis, 2018, 8, 8618-8629.	5.5	34

#	Article	IF	CITATIONS
2152	Solid-state nanocasting synthesis of ordered mesoporous CoN _x –carbon catalysts for highly efficient hydrogenation of nitro compounds. Nanoscale, 2018, 10, 16839-16847.	2.8	30
2153	Ni-Co-N doped honeycomb carbon nano-composites as cathodic catalysts of membrane-less direct alcohol fuel cell. Carbon, 2018, 140, 557-568.	5.4	24
2154	Fe/N Codoped Carbon Nanocages with Single-Atom Feature as Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 4982-4990.	2.5	38
2155	Tris(2â€benzimidazolylmethyl)amineâ€Directed Synthesis of Singleâ€Atom Nickel Catalysts for Electrochemical CO Production from CO ₂ . Chemistry - A European Journal, 2018, 24, 18444-18454.	1.7	50
2156	Resolving Challenges of Mass Transport in Non Pt-Group Metal Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2018, 165, F589-F596.	1.3	12
2157	Insight into water oxidation activity enhancement of Ni-based electrocatalysts interacting with modified carbon supports. Electrochimica Acta, 2018, 281, 684-691.	2.6	8
2158	Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst <i>via</i> space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. Journal of Materials Chemistry A, 2018, 6, 13050-13061.	5.2	74
2159	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
2160	Facile preparation of biomass-derived bifunctional electrocatalysts for oxygen reduction and evolution reactions. International Journal of Hydrogen Energy, 2018, 43, 8611-8622.	3.8	64
2161	Nanocomposites of Chalcogenide and their Applications. Nano Hybrids and Composites, 0, 20, 46-64.	0.8	5
2162	Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction. Carbon, 2018, 138, 300-308.	5.4	53
2163	Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6626-6631.	3.3	500
2164	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie, 2018, 130, 9176-9181.	1.6	105
2165	Efficient Oxygen Reduction Reaction (ORR) Catalysts Based on Single Iron Atoms Dispersed on a Hierarchically Structured Porous Carbon Framework. Angewandte Chemie - International Edition, 2018, 57, 9038-9043.	7.2	467
2166	<i>In situ</i> anchoring of metal nanoparticles in the N-doped carbon framework derived from conjugated microporous polymers towards an efficient oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 3572-3579.	2.1	28
2167	Hollow cobalt oxide nanoparticles embedded in nitrogen-doped carbon nanosheets as an efficient bifunctional catalyst for Zn–air battery. Journal of Energy Chemistry, 2019, 33, 59-66.	7.1	68
2168	Functionalization of Hollow Nanomaterials for Catalytic Applications: Nanoreactor Construction. Advanced Materials, 2019, 31, e1800426.	11.1	239
2169	Hierarchical Nickel Clusters Encapsulated in Ultrathin N-doped Graphitic Nanocarbon Hybrids for Effective Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 15127-15136.	3.2	20

#	Article	IF	CITATIONS
2170	Uncovering N, S, F Tri-Doped Heteroatoms on Porous Carbon as a Metal-Free Oxygen Reduction Reaction Catalyst for Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F897-F905.	1.3	21
2171	Coordination-Engineered Cu–N _{<i>x</i>} Single-Site Catalyst for Enhancing Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 6497-6504.	2.5	58
2172	Revealing Energetics of Surface Oxygen Redox from Kinetic Fingerprint in Oxygen Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 13803-13811.	6.6	151
2173	Atomically dispersed Fe–N _x active sites within hierarchical mesoporous carbon as efficient electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 20132-20138.	5.2	37
2174	Iron phosphide anchored nanoporous carbon as an efficient electrode for supercapacitors and the oxygen reduction reaction. RSC Advances, 2019, 9, 25240-25247.	1.7	16
2175	Single iron atoms stabilized by microporous defects of biomass-derived carbon aerogels as high-performance cathode electrocatalysts for aluminum–air batteries. Journal of Materials Chemistry A, 2019, 7, 20840-20846.	5.2	68
2176	Atomically dispersed Fe-N-C derived from dual metal-organic frameworks as efficient oxygen reduction electrocatalysts in direct methanol fuel cells. Applied Catalysis B: Environmental, 2019, 259, 118042.	10.8	89
2177	Synthesis of NiCo Alloy Nanoparticle-Decorated B,N-Doped Carbon Nanosheet Networks via a Self-Template Strategy for Bifunctional Oxygen-Involving Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 14394-14399.	3.2	21
2178	An Fe–N co-doped tube-in-tube carbon nanostructure used as an efficient catalyst for the electrochemical oxygen reduction reaction. Nanotechnology, 2019, 30, 485705.	1.3	0
2179	In Situ and Operando Characterization of Proton Exchange Membrane Fuel Cells. Advanced Materials, 2019, 31, e1901900.	11.1	114
2180	High durability fuel cell cathodes obtained from cobalt metal organic frameworks. Electrochimica Acta, 2019, 320, 134623.	2.6	8
2181	A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Science Advances, 2019, 5, eaaw2322.	4.7	290
2182	P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chinese Journal of Catalysis, 2019, 40, 1366-1374.	6.9	38
2183	Graphitic carbon nitride nanostructures: Catalysis. Applied Materials Today, 2019, 16, 388-424.	2.3	58
2184	Magnetic Cathode Stimulates Extracellular Electron Transfer in Bioelectrochemical Systems. ACS Sustainable Chemistry and Engineering, 2019, 7, 15012-15018.	3.2	12
2185	Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale, 2019, 11, 18946-18967.	2.8	61
2186	Fe, N, S-codoped carbon frameworks derived from nanocrystal superlattices towards enhanced oxygen reduction activity. Nano Convergence, 2019, 6, 4.	6.3	20
2187	Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 2019, 65, 104048.	8.2	187

#	Article	IF	CITATIONS
2188	Lead ruthenate nanocrystals on reduced graphene oxides as an efficient bifunctional catalyst for metal–air batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 409-417.	2.9	2
2189	Iron-Salt Thermally Emitted Strategy to Prepare Graphene-like Carbon Nanosheets with Trapped Fe Species for an Efficient Electrocatalytic Oxygen Reduction Reaction in the All-pH Range. ACS Applied Materials & Interfaces, 2019, 11, 27823-27832.	4.0	23
2190	Fe/N-doped carbon nanofibers with Fe ₃ O ₄ /Fe ₂ C nanocrystals enchased as electrocatalysts for efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2019, 6, 2296-2303.	3.0	15
2191	A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy and Environmental Science, 2019, 12, 2820-2829.	15.6	158
2192	Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nature Catalysis, 2019, 2, 578-589.	16.1	760
2193	Rational Synthesis of Iron/Nitrogenâ€Doped Carbon Catalyst through a Spatial Isolation Strategy for Efficient Oxygen Reduction in Acidic and Alkaline Media. Chemistry - A European Journal, 2019, 25, 11560-11565.	1.7	9
2194	Activity–Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal–Nitrogen–Carbon Catalysts. Journal of the American Chemical Society, 2019, 141, 12372-12381.	6.6	493
2195	Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy and Environmental Science, 2019, 12, 2890-2923.	15.6	317
2196	3D porous graphitic nanocarbon for enhancing the performance and durability of Pt catalysts: a balance between graphitization and hierarchical porosity. Energy and Environmental Science, 2019, 12, 2830-2841.	15.6	219
2197	NaCl protected synthesis of 3D hierarchical metal-free porous nitrogen-doped carbon catalysts for the oxygen reduction reaction in acidic electrolyte. Chemical Communications, 2019, 55, 9023-9026.	2.2	48
2198	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	1.6	29
2199	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie, 2019, 131, 12425-12432.	1.6	5
2200	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	7.2	307
2201	Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. Applied Catalysis B: Environmental, 2019, 257, 117930.	10.8	113
2202	High loading accessible active sites <i>via</i> designable 3D-printed metal architecture towards promoting electrocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 18338-18347.	5.2	35
2203	Theoretical and Experimental Reactivity Predictors for the Electrocatalytic Activity of Copper Phenanthroline Derivatives for the Reduction of Dioxygen. Journal of Physical Chemistry C, 2019, 123, 19468-19478.	1.5	18
2204	Platinum group metal-free catalysts boost cost competitiveness of fuel cell vehicles. Nature Catalysis, 2019, 2, 558-561.	16.1	154
2205	Hierarchically porous carbons as supports for fuel cell electrocatalysts with atomically dispersed Fe–N _x moieties. Chemical Science, 2019, 10, 8236-8240.	3.7	34

#	Article	IF	CITATIONS
2206	Three-dimensional interconnected core–shell networks with Ni(Fe)OOH and M–N–C active species together as high-efficiency oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 19045-19059.	5.2	70
2207	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	11.1	146
2208	Optimizing FeNC Materials as Electrocatalysts for the CO ₂ Reduction Reaction: Heatâ€Treatment Temperature, Structure and Performance Correlations. ChemCatChem, 2019, 11, 4854-4861.	1.8	19
2209	Innovative multiâ€processed Nâ€doped carbon and Fe ₃ O ₄ cathode for enhanced bioelectroâ€Fenton microbial fuel cell performance. International Journal of Energy Research, 2019, 43, 7594.	2.2	7
2210	Iron and nitrogen codoped carbon catalyst with excellent stability and methanol tolerance for oxygen reduction reaction. International Journal of Energy Research, 2019, 43, 7107.	2.2	9
2211	Fabricating Nitrogenâ€Rich Feâ^'N/C Electrocatalysts through CeO ₂ â€Assisted Pyrolysis for Enhanced Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 4040-4048.	1.7	20
2212	MOF-Derived Isolated Fe Atoms Implanted in N-Doped 3D Hierarchical Carbon as an Efficient ORR Electrocatalyst in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2019, 11, 25976-25985.	4.0	196
2213	Electrochemical Reduction of CO ₂ on Metal-Nitrogen-Doped Carbon Catalysts. ACS Catalysis, 2019, 9, 7270-7284.	5.5	282
2214	Oxygen reduction reaction mechanism on a phosporus-doped pyrolyzed graphitic Fe/N/C catalyst. New Journal of Chemistry, 2019, 43, 11408-11418.	1.4	19
2215	110th Anniversary: A Total Water Splitting Electrocatalyst Based on Borate/Fe Co-Doping of Nickel Sulfide. Industrial & Engineering Chemistry Research, 2019, 58, 13053-13063.	1.8	9
2216	Genuine four-electron oxygen reduction over precious-metal-free catalyst in alkaline media. Electrochimica Acta, 2019, 319, 382-389.	2.6	18
2217	ZIF 67 Based Highly Active Electrocatalysts as Oxygen Electrodes in Water Electrolyzer. ACS Applied Energy Materials, 2019, 2, 5568-5576.	2.5	35
2218	Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH ₃ catalyst. Energy and Environmental Science, 2019, 12, 3015-3037.	15.6	66
2220	Preparation of Graphene/Polyaniline Nanocomposites as Electrocatalyst for Oxygen Reduction Reaction. Nano, 2019, 14, 1950057.	0.5	1
2221	Preserved in a Shell: Highâ€Performance Grapheneâ€Confined Ruthenium Nanoparticles in Acetylene Hydrochlorination. Angewandte Chemie - International Edition, 2019, 58, 12297-12304.	7.2	53
2222	Electrochemical Oxygen-Reduction Activity and Carbon Monoxide Tolerance of Iron Phthalocyanine Functionalized with Graphene Quantum Dots: A Density Functional Theory Approach. Journal of Physical Chemistry C, 2019, 123, 27483-27491.	1.5	10
2223	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	2.5	42
2224	In situ synthesis of Fe-N-C catalysts from cellulose for hydrogenation of nitrobenzene to aniline. Chinese Journal of Catalysis, 2019, 40, 1557-1565.	6.9	16

#	Article	IF	CITATIONS
2225	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	8.2	68
2226	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie, 2019, 131, 19147-19156.	1.6	57
2227	Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN ₄ Sites for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 18971-18980.	7.2	362
2228	A Facile Route for Constructing Effective Cuâ^'N _{<i>x</i>} Active Sites for Oxygen Reduction Reaction. Chemistry - A European Journal, 2020, 26, 4070-4079.	1.7	29
2229	Bifunctional atomic iron-based catalyst for oxygen electrode reactions. Journal of Catalysis, 2019, 378, 353-362.	3.1	41
2230	Engineering of Nitrogen Coordinated Single Cobalt Atom Moieties for Oxygen Electroreduction. ACS Applied Materials & Interfaces, 2019, 11, 41258-41266.	4.0	50
2231	Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. Journal of the American Chemical Society, 2019, 141, 17763-17770.	6.6	436
2232	Highly Efficient Multifunctional Co–N–C Electrocatalysts with Synergistic Effects of Co–N Moieties and Co Metallic Nanoparticles Encapsulated in a N-Doped Carbon Matrix for Water-Splitting and Oxygen Redox Reactions. ACS Applied Materials & Interfaces, 2019, 11, 39809-39819.	4.0	80
2234	Optimization of Glass Edge Sealing Process Using Microwaves for Fabrication of Vacuum Glazing. Applied Sciences (Switzerland), 2019, 9, 874.	1.3	6
2235	Waste wine mash-derived doped carbon materials as an efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2019, 44, 31949-31959.	3.8	15
2236	Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer. Chemical Reviews, 2019, 119, 11945-11979.	23.0	273
2237	Atomic―and Molecularâ€Level Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
2238	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19
2239	Nitrogen-doped graphene layers for electrochemical oxygen reduction reaction boosted by lattice strain. Journal of Catalysis, 2019, 378, 113-120.	3.1	19
2240	Editorial: Significance of Peri-implant Keratinized Mucosa Width and Soft Tissue Thickness. International Journal of Periodontics and Restorative Dentistry, 2019, 39, 767-768.	0.4	2
2241	Pb–Ag Alloy Anode Modified with Polyaniline Film and its Electrochemical Performance in Sulfuric Acid Electrolyte. International Journal of Electrochemical Science, 2019, , 6722-6736.	0.5	0
2242	Recent Progress in Precious Metalâ€Free Carbonâ€Based Materials towards the Oxygen Reduction Reaction: Activity, Stability, and Antiâ€Poisoning. Chemistry - A European Journal, 2020, 26, 3973-3990.	1.7	36
2243	Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Materials Today Energy, 2019, 14, 100332.	2.5	28

#	Article	IF	CITATIONS
2244	Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N ₄ Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2019, 29, 1906174.	7.8	159
2245	Fe/Co-based nanoparticles encapsulated in heteroatom-doped carbon electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 1626-1641.	3.5	20
2246	Renewable chitosan-derived cobalt@N-doped porous carbon for efficient aerobic esterification of alcohols under air. Nanoscale, 2019, 11, 17736-17745.	2.8	26
2247	Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Mikrochimica Acta, 2019, 186, 660.	2.5	41
2248	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	5.8	528
2249	Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions. Catalysts, 2019, 9, 731.	1.6	7
2250	UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochimica Acta, 2019, 323, 134777.	2.6	25
2251	Synthesis of Fe-C-N Hybrid via Direct Pyrolysis of EDTA Ferric Sodium as Effective Electrocatalyst for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2019, , 6938-6947.	0.5	4
2252	Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2019, 141, 15684-15692.	6.6	102
2253	Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. International Journal of Biological Macromolecules, 2019, 141, 636-662.	3.6	63
2254	Improving the Oxygen Reduction Reaction Activity of FeN ₄ –Graphene via Tuning Electronic Characteristics. ACS Applied Energy Materials, 2019, 2, 6634-6641.	2.5	37
2255	Intermediate Structures of Pt–Ni Nanoparticles during Selective Chemical and Electrochemical Etching. Journal of Physical Chemistry Letters, 2019, 10, 6090-6096.	2.1	25
2256	Insight into the Rapid Degradation Behavior of Nonprecious Metal Fe–N–C Electrocatalyst-Based Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 37779-37786.	4.0	41
2257	Boosting Oxygen Reduction Performance of Manganese Oxide in Alkaline Media by Three-Dimensional Highly Ordered Conductive Porous Framework. Frontiers in Materials, 2019, 6, .	1.2	5
2258	An assembly of carbon dots and carbon sheets from plant biomass for excellent oxygen reduction reaction. Sustainable Energy and Fuels, 2019, 3, 3172-3181.	2.5	9
2259	Carbon-pore-sheathed cobalt nanoseeds: An exceptional and durable bifunctional catalyst for zinc-air batteries. Nano Energy, 2019, 65, 104051.	8.2	43
2260	Fe and N Codoped Mesoporous Carbon Nanofiber as a Nonprecious Metal Catalyst for Oxygen Reduction Reaction and a Durable Support for Pt Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 17544-17552.	3.2	14
2261	Hofmann-like metal–organic-framework-derived Pt _x Fe/C/N-GC composites as efficient electrocatalysts for methanol oxidation. RSC Advances, 2019, 9, 26450-26455.	1.7	6

#	Article	IF	CITATIONS
2262	High-Performance Polymer Fiber Membrane Based Direct Methanol Fuel Cell System with Non-Platinum Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 17145-17153.	3.2	15
2263	Nitrogen-doped hollow carbon spheres as highly effective multifunctional electrocatalysts for fuel cells, Zn–air batteries, and water-splitting electrolyzers. Journal of Power Sources, 2019, 441, 227166.	4.0	42
2264	Interfacial metal-nitrogen units of NiCo/nitrogen-doped carbon for robust oxygen reduction reaction. Carbon, 2019, 155, 545-552.	5.4	32
2265	Recent Insights into the Oxygen-Reduction Electrocatalysis of Fe/N/C Materials. ACS Catalysis, 2019, 9, 10126-10141.	5.5	295
2266	Scalable Synthesis of Micromesoporous Iron-Nitrogen-Doped Carbon as Highly Active and Stable Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 39263-39273.	4.0	38
2267	Atomically Isolated Iron Atom Anchored on Carbon Nanotubes for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 39820-39826.	4.0	49
2268	Precisely Tuning the Number of Fe Atoms in Clusters on N-Doped Carbon toward Acidic Oxygen Reduction Reaction. CheM, 2019, 5, 2865-2878.	5.8	346
2269	Co-N-C electrocatalysts derived from nitrogen containing conjugated polymers for hydrogen evolution. Materials Today: Proceedings, 2019, 6, 73-78.	0.9	2
2270	Anchoring a Co/2-methylimidazole complex on ion-exchange resin and its transformation to Co/N-doped carbon as an electrocatalyst for the ORR. Catalysis Science and Technology, 2019, 9, 578-582.	2.1	12
2271	Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science, 2019, 10, 1589-1596.	3.7	170
2272	Effect of nanoparticle composition on oxygen reduction reaction activity of Fe/N–C catalysts: a comparative study. Catalysis Science and Technology, 2019, 9, 711-717.	2.1	23
2273	Tailoring FeN ₄ Sites with Edge Enrichment for Boosted Oxygen Reduction Performance in Proton Exchange Membrane Fuel Cell. Advanced Energy Materials, 2019, 9, 1803737.	10.2	148
2274	Ironâ€Free Cathode Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells: Cobalt Catalysts and the Peroxide Mitigation Approach. Advanced Materials, 2019, 31, e1805126.	11.1	208
2275	Xerogel based catalyst for improved cathode performance in microbial fuel cells. Enzyme and Microbial Technology, 2019, 124, 1-8.	1.6	15
2276	Advances in constructing polymeric carbon-nitride-based nanocomposites and their applications in energy chemistry. Sustainable Energy and Fuels, 2019, 3, 611-655.	2.5	47
2277	Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. Journal of Materials Science, 2019, 54, 5412-5423.	1.7	47
2278	Nitrogen-Doped Graphene Oxide Electrocatalysts for the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2019, 2, 1675-1682.	2.4	69
2279	Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Advances, 2019, 9, 3063-3071.	1.7	15

#	Article	IF	CITATIONS
2280	Catalytic synthesis and simultaneous co-doping of hierarchically porous carbon with in-situ coated graphene from biomass tar as efficient catalyst for ORR. Electrochemistry Communications, 2019, 100, 52-59.	2.3	23
2281	High-Density Cobalt Nanoparticles Encapsulated with Nitrogen-Doped Carbon Nanoshells as a Bifunctional Catalyst for Rechargeable Zinc-Air Battery. Materials, 2019, 12, 243.	1.3	10
2282	N,P-Doped carbon with encapsulated Co nanoparticles as efficient electrocatalysts for oxygen reduction reactions. Dalton Transactions, 2019, 48, 2352-2358.	1.6	22
2283	Efficient CO ₂ to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy and Environmental Science, 2019, 12, 640-647.	15.6	357
2284	Highly active atomically dispersed CoN ₄ fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy and Environmental Science, 2019, 12, 250-260.	15.6	691
2285	Bandgap-controlled hollow polyaniline nanostructures synthesized by Mn-dependent nano-confined polymerization. Nanoscale, 2019, 11, 2434-2438.	2.8	7
2286	A dipole–dipole interaction tuning the photoluminescence of silicon quantum dots in a water vapor environment. Nanoscale, 2019, 11, 1790-1797.	2.8	4
2287	N–H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation. Physical Chemistry Chemical Physics, 2019, 21, 1506-1513.	1.3	8
2288	PGM-Free ORR Catalysts Designed by Templating PANI-Type Polymers Containing Functional Groups with High Affinity to Iron. Journal of the Electrochemical Society, 2019, 166, F3240-F3245.	1.3	30
2289	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	1.6	59
2290	La _{1.5} Sr _{0.5} NiMn _{0.5} Ru _{0.5} O ₆ Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. ACS Applied Materials & Interfaces, 2019, 11, 21454-21464.	4.0	129
2291	Promotion effects of CeO2 with different morphologies to Pt catalyst toward methanol electrooxidation reaction. Journal of Alloys and Compounds, 2019, 798, 706-713.	2.8	39
2292	Optimizing the synthesis of Co/Co–Fe nanoparticles/N-doped carbon composite materials as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2019, 318, 281-289.	2.6	17
2293	Unraveling Mechanistic Reaction Pathways of the Electrochemical CO ₂ Reduction on Fe–N–C Single-Site Catalysts. ACS Energy Letters, 2019, 4, 1663-1671.	8.8	138
2294	Interfacial N–Cu–S coordination mode of CuSCN/C ₃ N ₄ with enhanced electrocatalytic activity for hydrogen evolution. Nanoscale, 2019, 11, 12938-12945.	2.8	13
2295	Fabrication of CoFe/N-doped mesoporous carbon hybrids from Prussian blue analogous as high performance cathodes for lithium-sulfur batteries. International Journal of Hydrogen Energy, 2019, 44, 20257-20266.	3.8	20
2296	Galvanic exchange carving growth of Co–Fe LDHs with enhanced water oxidation. International Journal of Hydrogen Energy, 2019, 44, 20085-20092.	3.8	12
2297	The application of CeO ₂ -based materials in electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 17675-17702.	5.2	128

#	Article	IF	CITATIONS
2298	Enhanced CO Oxidation and Cyclic Activities in Three-Dimensional Platinum/Indium Tin Oxide/Carbon Black Electrocatalysts Processed by Cathodic Arc Deposition. ACS Applied Materials & Interfaces, 2019, 11, 25179-25185.	4.0	11
2299	Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano, 2019, 13, 8087-8098.	7.3	106
2300	Metal–Organic-Framework-Derived Co–Fe Bimetallic Oxygen Reduction Electrocatalysts for Alkaline Fuel Cells. Journal of the American Chemical Society, 2019, 141, 10744-10750.	6.6	176
2301	Co and CeO ₂ co-decorated N-doping carbon nanofibers for rechargeable Zn–air batteries. Nanotechnology, 2019, 30, 395401.	1.3	37
2302	Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts. ChemSusChem, 2019, 12, 3977-3987.	3.6	49
2303	A Review on Recent Progress in the Aspect of Stability of Oxygen Reduction Electrocatalysts for Protonâ€Exchange Membrane Fuel Cell: Quantum Mechanics and Experimental Approaches. Energy Technology, 2019, 7, 1900312.	1.8	26
2304	High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy and Environmental Science, 2019, 12, 2548-2558.	15.6	457
2305	Cobalt-containing nanoparticles embedded in flexible carbon aerogel for spilled oil cleanup and oxygen reduction reaction. Composites Part B: Engineering, 2019, 174, 107039.	5.9	13
2306	Room-temperature photocatalytic methanol fuel cell based on one-dimension semiconductor photoanode: Intrinsic mechanism of photogenerated charge separation. Electrochimica Acta, 2019, 318, 413-421.	2.6	17
2307	In-situ activation endows the integrated Fe3C/Fe@nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chemical Engineering Journal, 2019, 375, 122061.	6.6	45
2308	Proving the existence of Mn porphyrin-like complexes hosted in reduced graphene oxide with outstanding performance as oxygen reduction reaction catalysts. 2D Materials, 2019, 6, 045001.	2.0	19
2309	Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid. Nano Research, 2019, 12, 2307-2312.	5.8	25
2310	Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.	2.5	33
2311	Atomically Dispersed Metal Catalysts for Oxygen Reduction. ACS Energy Letters, 2019, 4, 1619-1633.	8.8	251
2312	Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene na graphene nanoribbons from first principles. Carbon, 2019, 152, 715-726.	5.4	22
2313	Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy, 2019, 63, 103810.	8.2	23
2314	Efficient oxygen reduction on sandwich-like metal@N–C composites with ultrafine Fe nanoparticles embedded in N-doped carbon nanotubes grafted on graphene sheets. Nanoscale, 2019, 11, 12610-12618.	2.8	26
2315	Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms. Carbon, 2019, 151, 160-174.	5.4	117

#	Article	IF	CITATIONS
2316	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	5.2	56
2317	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 3967-3973.	3.2	85
2318	Electrochemically Exfoliating Graphite Cathode to N-Doped Graphene Analogue and Its Excellent Al Storage Performance. Journal of the Electrochemical Society, 2019, 166, A1738-A1744.	1.3	5
2319	Secondary-Atom-Assisted Synthesis of Single Iron Atoms Anchored on N-Doped Carbon Nanowires for Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 5929-5934.	5.5	149
2320	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	5.2	37
2321	Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction. Applied Materials Today, 2019, 16, 146-168.	2.3	100
2322	A Comparative Study of Plasma-Treated Oxygen-Doped Single-Walled and Multiwalled Carbon Nanotubes as Electrocatalyst for Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 11396-11406.	3.2	35
2323	In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants. Applied Catalysis B: Environmental, 2019, 256, 117774.	10.8	129
2324	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 11369-11373.	7.2	67
2325	Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts. Applied Catalysis B: Environmental, 2019, 256, 117849.	10.8	104
2326	Leaf-like 2D nanosheet as efficient oxygen reduction reaction catalyst for Zn-air battery. Journal of Power Sources, 2019, 434, 226717.	4.0	30
2327	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie, 2019, 131, 11491-11495.	1.6	14
2328	Controlled synthesis of single cobalt atom catalysts via a facile one-pot pyrolysis for efficient oxygen reduction and hydrogen evolution reactions. Science Bulletin, 2019, 64, 1095-1102.	4.3	59
2329	Porous N–C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn-air battery. Carbon, 2019, 150, 475-484.	5.4	59
2330	Experimental and Density Functional Theory Corroborated Optimization of Durable Metal Embedded Carbon Nanofiber for Oxygen Electrocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 3109-3114.	2.1	16
2331	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312
2332	Electrospun Carbon Nanofiber Sprinkled with Co 3 O 4 as an Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect, 2019, 4, 5160-5167.	0.7	7
2333	Polyacrylamide Microspheres-Derived Fe3C@N-doped Carbon Nanospheres as Efficient Catalyst for Oxygen Reduction Reaction. Polymers, 2019, 11, 767.	2.0	10

#	Article	IF	CITATIONS
2334	Nitrogen-Doped Superporous Activated Carbons as Electrocatalysts for the Oxygen Reduction Reaction. Materials, 2019, 12, 1346.	1.3	42
2335	Nitrogenâ€Doped Porous Carbon Supported Nonprecious Metal Singleâ€Atom Electrocatalysts: from Synthesis to Application. Small Methods, 2019, 3, 1900159.	4.6	218
2336	Switching Co/N/C Catalysts for Heterogeneous Catalysis and Electrocatalysis by Controllable Pyrolysis of Cobalt Porphyrin. IScience, 2019, 15, 282-290.	1.9	20
2337	Ag/ZrO ₂ /MWCNT Nanocomposite as Nonâ€Platinum Electrocatalysts for Enhanced Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 2900-2908.	1.8	11
2338	Medium Modulated Oxygen Reduction Activity of Fe/Co Active Centreâ€engrafted Electrocatalysts. ChemElectroChem, 2019, 6, 2956-2964.	1.7	4
2339	Transitionâ€Metal Oxides/Carbides@Carbon Nanotube Composites as Multifunctional Electrocatalysts for Challenging Oxidations and Reductions. Chemistry - A European Journal, 2019, 25, 11098-11104.	1.7	28
2340	Design strategies for developing non-precious metal based bi-functional catalysts for alkaline electrolyte based zinc–air batteries. Materials Horizons, 2019, 6, 1812-1827.	6.4	79
2341	Fine Co nanoparticles encapsulated in N-doped porous carbon for efficient oxygen reduction. New Journal of Chemistry, 2019, 43, 9666-9672.	1.4	5
2342	Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coordination Chemistry Reviews, 2019, 393, 48-78.	9.5	198
2343	Glucose-derived carbon supported well-dispersed CrN as competitive oxygen reduction catalysts in acidic medium. Electrochimica Acta, 2019, 314, 202-211.	2.6	12
2344	Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2019, 431, 31-39.	4.0	41
2345	Pd/PANI/C Nanocomposites as Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media. Electrocatalysis, 2019, 10, 436-444.	1.5	16
2346	Effect of iron content on the hydrogen production kinetics of electroless-deposited Co Ni Fe P alloy catalysts from the hydrolysis of sodium borohydride, and a study of its feasibility in a new hydrolysis using magnesium and calcium borohydrides. International Journal of Hydrogen Energy, 2019, 44, 15228-15238.	3.8	17
2347	Facile Synthesis of Cobalt and Nitrogen Coordinated Carbon Nanotube as a High-Performance Electrocatalyst for Oxygen Reduction Reaction in Both Acidic and Alkaline Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 10951-10961.	3.2	21
2348	Metal-free electrocatalysts for oxygen reduction reaction based on trioxotriangulene. Communications Chemistry, 2019, 2, .	2.0	43
2349	Ultrafine Fe/Fe3C nanoparticles on nitrogen-doped mesoporous carbon by low-temperature synthesis for highly efficient oxygen reduction. Electrochimica Acta, 2019, 313, 255-260.	2.6	14
2350	Transition Metal (Fe, Co, Ni) Nanoparticles on Selective Amino-N-Doped Carbon as High-Performance Oxygen Reduction Reaction Electrocatalyst. Nanomaterials, 2019, 9, 742.	1.9	29
2351	Recent progress in theoretical and computational investigations of structural stability and activity of single-atom electrocatalysts. Progress in Natural Science: Materials International, 2019, 29, 256-264.	1.8	27

#	Article	IF	CITATIONS
2352	Self‣upported ZIFâ€Derived Co ₃ O ₄ Nanoparticlesâ€Decorated Porous Nâ€Doped Carbon Fibers as Oxygen Reduction Catalyst. Chemistry - A European Journal, 2019, 25, 6807-6813.	1.7	23
2353	Understanding the Role of Interfaces for Water Management in Platinum Group Metal-Free Electrodes in Polymer Electrolyte Fuel Cells. ACS Applied Energy Materials, 2019, 2, 3542-3553.	2.5	31
2354	Experimental and Theoretical Trends of PGM-Free Electrocatalysts for the Oxygen Reduction Reaction with Different Transition Metals. Journal of the Electrochemical Society, 2019, 166, F3136-F3142.	1.3	42
2355	Nitrogen/Cobalt Coâ€doped Mesoporous Carbon Microspheres Derived from Amorphous Metalâ€Organic Frameworks as a Catalyst for the Oxygen Reduction Reaction in Both Alkaline and Acidic Electrolytes. ChemElectroChem, 2019, 6, 2546-2552.	1.7	15
2356	FeCo-N-C oxygen reduction electrocatalysts: Activity of the different compounds produced during the synthesis via pyrolysis. Applied Catalysis B: Environmental, 2019, 253, 300-308.	10.8	52
2357	Confining ultrasmall bimetallic alloys in porous N–carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 12451-12456.	5.2	128
2358	Nickel doped cobalt - hollow nanoparticles as an efficient electrocatalyst for hydrogen evolution from neutral water. International Journal of Hydrogen Energy, 2019, 44, 14869-14876.	3.8	16
2359	A highly efficient alkaline HER Co–Mo bimetallic carbide catalyst with an optimized Mo d-orbital electronic state. Journal of Materials Chemistry A, 2019, 7, 12434-12439.	5.2	58
2360	Mechanism of Catalytic O ₂ Reduction by Iron Tetraphenylporphyrin. Journal of the American Chemical Society, 2019, 141, 8315-8326.	6.6	99
2361	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2019, 254, 186-193.	10.8	135
2362	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	5.5	79
2363	Complexingâ€Coprecipitation Method to Synthesize Catalysts of Cobalt, Nitrogenâ€Doped Carbon, and CeO ₂ Nanosheets for Highly Efficient Oxygen Reduction. ChemNanoMat, 2019, 5, 831-837.	1.5	12
2364	Unraveling the high-activity nature of Fe–N–C electrocatalysts for the oxygen reduction reaction: the extraordinary synergy between Fe–N ₄ and Fe ₄ N. Journal of Materials Chemistry A, 2019, 7, 11792-11801.	5.2	84
2365	A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. Journal of Materials Chemistry A, 2019, 7, 16690-16695.	5.2	140
2366	Hierarchically Porous MgMn2O4 Microspheres Assembled with Nanosheets as High Oxygen Reduction Catalyst. Catalysis Letters, 2019, 149, 1903-1910.	1.4	3
2367	Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells. International Journal of Hydrogen Energy, 2019, 44, 25180-25187.	3.8	57
2368	Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nature Communications, 2019, 10, 1278.	5.8	591
2369	Ultrasmall Co2P2O7 nanocrystals anchored on nitrogen-doped graphene as efficient electrocatalysts for the oxygen reduction reaction. New Journal of Chemistry, 2019, 43, 6492-6499.	1.4	13

#	Article	IF	Citations
2370	A 3-D nanoribbon-like Pt-free oxygen reduction reaction electrocatalyst derived from waste leather for anion exchange membrane fuel cells and zinc-air batteries. Nanoscale, 2019, 11, 7893-7902.	2.8	34
2371	N, S-doped nanocarbon derived from ZIF-8 as a highly efficient and durable electro-catalyst for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 274, 237-242.	1.4	39
2372	Oxygen reduction reaction performance of Fe-N/C catalysts from ligand-iron coordinative supramolecular precursors. Nanotechnology, 2019, 30, 305402.	1.3	10
2373	Oxygen Reduction Reactions of Fe-N-C Catalysts: Current Status and the Way Forward. Electrochemical Energy Reviews, 2019, 2, 252-276.	13.1	119
2374	Cobalt based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. Chemical Engineering Journal, 2019, 370, 37-59.	6.6	96
2375	Tailoring 2D MoS ₂ heterointerfaces for promising oxygen reduction reaction electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 8785-8789.	5.2	57
2376	Effect of the Formation Conditions on the Activity of Co-N-C Electrocatalysts Derived from Poly-m-Phenylenediamine in the Reduction of Oxygen. Theoretical and Experimental Chemistry, 2019, 54, 386-394.	0.2	2
2377	High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts, 2019, 9, 264.	1.6	53
2379	Modulating the Electronic Structure of Singleâ€Atom Catalysts on 2D Nanomaterials for Enhanced Electrocatalytic Performance. Small Methods, 2019, 3, 1800438.	4.6	88
2380	Molecular-level design of Fe-N-C catalysts derived from Fe-dual pyridine coordination complexes for highly efficient oxygen reduction. Journal of Catalysis, 2019, 372, 245-257.	3.1	56
2381	Design of high efficient oxygen reduction catalyst from the transition metal dimer phthalocyanine monolayer. Applied Surface Science, 2019, 480, 905-911.	3.1	12
2382	Palladium-loaded tantalum oxide modified Pt electrode toward electrochemical oxidation of ethylene glycol. Journal of Electroanalytical Chemistry, 2019, 839, 166-172.	1.9	3
2383	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Advanced Materials, 2019, 31, e1900341.	11.1	320
2384	Importance of Electrocatalyst Morphology for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 2600-2614.	1.7	45
2385	MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co–N _x /C electrocatalysts for oxygen reduction. Nanoscale Horizons, 2019, 4, 1006-1013.	4.1	124
2386	Improving ORR Activity of Nitrogen-Doped Carbon Catalysts via Washing PANI-iron Coordination Precursor with ethanol. International Journal of Electrochemical Science, 2019, 14, 2476-2488.	0.5	3
2387	Investigation on Template Etching Process of SBAâ€15 Derived Ordered Mesoporous Carbon on Electrocatalytic Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 2463-2474.	0.7	10
2388	Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nature Catalysis, 2019, 2, 259-268.	16.1	958

#	Article	IF	CITATIONS
2389	The mechanism and activity of oxygen reduction reaction on single atom doped graphene: a DFT method. RSC Advances, 2019, 9, 7086-7093.	1.7	31
2390	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	10.2	85
2391	Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Applied Catalysis B: Environmental, 2019, 251, 240-246.	10.8	101
2392	Co2Ni alloy/N-doped CNTs composite as efficient hydrogen evolution reaction catalyst in alkaline medium. Journal of Alloys and Compounds, 2019, 791, 779-785.	2.8	32
2393	Ultrafine iron-cobalt nanoparticles embedded in nitrogen-doped porous carbon matrix for oxygen reduction reaction and zinc-air batteries. Journal of Colloid and Interface Science, 2019, 546, 113-121.	5.0	40
2394	Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity. Nano Energy, 2019, 60, 394-403.	8.2	119
2395	Recent Progress in Defective Carbonâ€Based Oxygen Electrode Materials for Rechargeable Zinkâ€Air Batteries. Batteries and Supercaps, 2019, 2, 509-523.	2.4	41
2396	Versatile Strategy for Tuning ORR Activity of a Single Fe-N ₄ Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. Journal of the American Chemical Society, 2019, 141, 6254-6262.	6.6	509
2397	Group VB transition metal dichalcogenides for oxygen reduction reaction and strain-enhanced activity governed by p-orbital electrons of chalcogen. Nano Research, 2019, 12, 925-930.	5.8	39
2398	Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction in PEM Fuel Cells: Self-Template Synthesis Approach to Enhancing Catalytic Activity and Stability. Electrochemical Energy Reviews, 2019, 2, 231-251.	13.1	128
2399	Iron Single Atoms on Graphene as Nonprecious Metal Catalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Advanced Science, 2019, 6, 1802066.	5.6	164
2400	The ORR kinetics of ZIF-derived Fe N C electrocatalysts. Journal of Catalysis, 2019, 372, 174-181.	3.1	54
2401	MOF/CC-derivatives with trace amount of cobalt oxides as efficient electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2019, 30, 989-994.	4.8	12
2402	Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nature Energy, 2019, 4, 392-398.	19.8	570
2403	Electrosynthesis of Hydrogen Peroxide Synergistically Catalyzed by Atomic Co–N <i>_x</i> –C Sites and Oxygen Functional Groups in Nobleâ€Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1808173.	11.1	252
2404	Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst. Chemistry of Materials, 2019, 31, 3274-3280.	3.2	108
2405	Stepwise Fabrication of Co-Embedded Porous Multichannel Carbon Nanofibers for High-Efficiency Oxygen Reduction. Nano-Micro Letters, 2019, 11, 33.	14.4	12
2406	Temperature-directed synthesis of N-doped carbon-based nanotubes and nanosheets decorated with Fe (Fe ₃ O ₄ , Fe ₃ C) nanomaterials. Nanoscale, 2019, 11, 9155-9162.	2.8	37

#	Article	IF	CITATIONS
2407	Atomically Dispersed Iron Cathode Catalysts Derived from Binary Ligand-Based Zeolitic Imidazolate Frameworks with Enhanced Stability for PEM Fuel Cells. Journal of the Electrochemical Society, 2019, 166, F3116-F3122.	1.3	31
2408	Deep Eutectic Solvent-Mediated Hierarchically Structured Fe-Based Organic–Inorganic Hybrid Catalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials, 2019, 2, 3343-3351.	2.5	23
2409	Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction. Nano Energy, 2019, 61, 60-68.	8.2	192
2410	Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. Journal of Materials Chemistry A, 2019, 7, 12154-12165.	5.2	34
2411	Fe-N-C combined with Fe100P O N porous hollow spheres on a phosphoric acid group-rich N-doped carbon as an electrocatalyst for zinc-air battery. Applied Surface Science, 2019, 481, 498-504.	3.1	8
2412	A Comprehensive Investigation on Pyrolyzed Fe–N–C Composites as Highly Efficient Electrocatalyst toward the Oxygen Reduction Reaction of PEMFCs. ACS Applied Materials & Interfaces, 2019, 11, 14126-14135.	4.0	28
2413	Facile synthesis of polyacrylonitrile-based N/S-codoped porous carbon as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 11223-11233.	5.2	39
2414	Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction. Applied Surface Science, 2019, 485, 41-47.	3.1	22
2415	Review of Metal Catalysts for Oxygen Reduction Reaction: From Nanoscale Engineering to Atomic Design. CheM, 2019, 5, 1486-1511.	5.8	544
2416	Dual-nitrogen-source engineered Fe–N _x moieties as a booster for oxygen electroreduction. Journal of Materials Chemistry A, 2019, 7, 11007-11015.	5.2	62
2417	lron and nitrogen co-doped porous carbon derived from soybean dregs with enhanced catalytic performance for oxygen reduction. Journal of Electroanalytical Chemistry, 2019, 839, 141-148.	1.9	19
2418	<i>In situ</i> construction of hollow carbon spheres with N, Co, and Fe co-doping as electrochemical sensors for simultaneous determination of dihydroxybenzene isomers. Nanoscale, 2019, 11, 8950-8958.	2.8	37
2419	Highly efficient nitrogen and carbon coordinated N–Co–C electrocatalysts on reduced graphene oxide derived from vitamin-B12 for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7179-7185.	5.2	41
2420	Electrocatalytic Water Splitting and CO ₂ Reduction: Sustainable Solutions via Singleâ€Atom Catalysts Supported on 2D Materials. Small Methods, 2019, 3, 1800492.	4.6	63
2421	Probing the Active Sites of Carbonâ€Encapsulated Cobalt Nanoparticles for Oxygen Reduction. Small Methods, 2019, 3, 1800439.	4.6	33
2422	Covalent organic frameworks derived hollow structured N-doped noble carbon for asymmetric-electrolyte Zn-air battery. Science China Chemistry, 2019, 62, 385-392.	4.2	29
2423	Pyridinicâ€N Protected Synthesis of 3D Nitrogenâ€Doped Porous Carbon with Increased Mesoporous Defects for Oxygen Reduction. Small, 2019, 15, e1805325.	5.2	70
2424	Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering, 2019, 3, 16.	1.0	75

#	Article	IF	CITATIONS
2425	Electrophoretically Sheathed Carbon Fiber Microelectrodes with Metal/Nitrogen/Carbon Electrocatalyst for Electrochemical Monitoring of Oxygen in Vivo. ACS Applied Bio Materials, 2019, 2, 1376-1383.	2.3	7
2426	Tuning the electron density distribution of the Co-N-C catalysts through guest molecules and heteroatom doping to boost oxygen reduction activity. Journal of Power Sources, 2019, 418, 50-60.	4.0	34
2427	Ice/Saltâ€Assisted Synthesis of Ultrathin Twoâ€Dimensional Micro/Mesoporous Iron and Nitrogen Coâ€Doped Carbon as an Efficient Electrocatalyst for Oxygen Reduction. Chemistry - A European Journal, 2019, 25, 5768-5776.	1.7	11
2428	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
2429	Fabrication of Superior Singleâ€Atom Catalysts toward Diverse Electrochemical Reactions. Small Methods, 2019, 3, 1800497.	4.6	99
2430	Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chemistry, 2019, 21, 1668-1679.	4.6	68
2431	Verticalâ€Spaceâ€Limit Synthesis of Bifunctional Fe, Nâ€Codoped 2D Multilayer Graphene Electrocatalysts for Znâ€Air Battery. Energy Technology, 2019, 7, 1900123.	1.8	44
2432	Bottom-Up Construction of Active Sites in a Cu–N ₄ –C Catalyst for Highly Efficient Oxygen Reduction Reaction. ACS Nano, 2019, 13, 3177-3187.	7.3	117
2433	PGMâ€Free Cathode Catalysts for PEM Fuel Cells: A Miniâ€Review on Stability Challenges. Advanced Materials, 2019, 31, e1807615.	11.1	430
2434	Progress in the Development of Feâ€Based PGMâ€Free Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 2019, 31, e1806545.	11.1	317
2435	Less active CeO ₂ regulating bifunctional oxygen electrocatalytic activity of Co ₃ O ₄ @N-doped carbon for Zn–air batteries. Journal of Materials Chemistry A, 2019, 7, 6753-6765.	5.2	87
2436	Selective Electrocatalytic H ₂ O ₂ Generation by Cobalt@Nâ€Doped Graphitic Carbon Core–Shell Nanohybrids. ChemSusChem, 2019, 12, 1664-1672.	3.6	40
2437	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
2438	Changing the Selectivity of O ₂ Reduction Catalysis with One Ligand Heteroatom. ACS Catalysis, 2019, 9, 2685-2691.	5.5	43
2439	A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Reviews in Chemical Engineering, 2021, 37, 779-811.	2.3	28
2440	2020 Roadmap on gas-involved photo- and electro- catalysis. Chinese Chemical Letters, 2019, 30, 2089-2109.	4.8	71
2441	Pore Engineering of 2D Mesoporous Nitrogenâ€Doped Carbon on Graphene through Block Copolymer Selfâ€Assembly. Advanced Materials Interfaces, 2019, 6, 1901476.	1.9	23
2442	Analysis of the effect of catalyst layer thickness on the performance and durability of platinum group metal-free catalysts for polymer electrolyte membrane fuel cells. Sustainable Energy and Fuels, 2019, 3,	2.5	28

#	Article	IF	CITATIONS
2443	Hierarchically porous Fe/N–C hollow spheres derived from melamine/Fe-incorporated polydopamine for efficient oxygen reduction reaction electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 3455-3461.	2.5	25
2444	An <i>in situ</i> coupling strategy for the preparation of heterometal-doped carbon frameworks as efficient bifunctional ORR/OER electrocatalysts. New Journal of Chemistry, 2019, 43, 17963-17973.	1.4	21
2445	Enhancing Oxygen Electroreduction Activity of Single-Site Fe–N–C Catalysts by a Metal Support. Journal of Physical Chemistry C, 2019, 123, 30335-30340.	1.5	6
2446	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	5.0	316
2447	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	4.8	75
2448	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	6.6	288
2449	Activity Origin and Design Principles for Oxygen Reduction on Dual-Metal-Site Catalysts: A Combined Density Functional Theory and Machine Learning Study. Journal of Physical Chemistry Letters, 2019, 10, 7760-7766.	2.1	149
2450	Efficient bimetallic zeolitic imidazolate framework derived Co–N–C oxygen reduction reaction electrocatalysts. Materials Research Express, 2019, 6, 126314.	0.8	3
2451	Controlled Surface Elemental Distribution Enhances Catalytic Activity and Stability. Matter, 2019, 1, 1447-1449.	5.0	7
2452	X-ray tracking of structural changes during a subnanosecond solid-solid phase transition in cobalt nanoparticles. Physical Review B, 2019, 100, .	1.1	2
2453	Tunable and convenient synthesis of highly dispersed Fe–N _x catalysts from graphene-supported Zn–Fe-ZIF for efficient oxygen reduction in acidic media. RSC Advances, 2019, 9, 42236-42244.	1.7	10
2454	Synergistic catalysis on Fe–N _x sites and Fe nanoparticles for efficient synthesis of quinolines and quinazolinones <i>via</i> oxidative coupling of amines and aldehydes. Chemical Science, 2019, 10, 10283-10289.	3.7	86
2456	N-, P-, and S-doped graphene-like carbon catalysts derived from onium salts with enhanced oxygen chemisorption for Zn-air battery cathodes. Applied Catalysis B: Environmental, 2019, 241, 442-451.	10.8	284
2457	A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Applied Catalysis B: Environmental, 2019, 241, 407-414.	10.8	92
2458	Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Applied Surface Science, 2019, 464, 344-350.	3.1	38
2459	Two-in-one solution using insect wings to produce graphene-graphite films for efficient electrocatalysis. Nano Research, 2019, 12, 33-39.	5.8	29
2460	Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions. Journal of Colloid and Interface Science, 2019, 533, 578-587.	5.0	63
2461	Ultrathin Feâ€Nâ€C Nanosheets Coordinated Feâ€Doped CoNi Alloy Nanoparticles for Electrochemical Water Splitting. Particle and Particle Systems Characterization, 2019, 36, 1800252.	1.2	21

#	Article	IF	CITATIONS
	Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen		
2462	reduction reaction. Applied Surface Science, 2019, 473, 555-563.	3.1	23
2463	Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. Science China Materials, 2019, 62, 662-670.	3.5	74
2464	Integrating PGMâ€Free Catalysts into Catalyst Layers and Proton Exchange Membrane Fuel Cell Devices. Advanced Materials, 2019, 31, e1804846.	11.1	121
2465	UIOâ€66â€NH ₂ â€Derived Mesoporous Carbon Catalyst Coâ€Doped with Fe/N/S as Highly Efficient Cathode Catalyst for PEMFCs. Small, 2019, 15, e1803520.	5.2	73
2466	Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Progress in Materials Science, 2019, 102, 1-71.	16.0	129
2467	A highly efficient electrocatalyst for oxygen reduction reaction: Three-dimensionally ordered macroporous perovskite LaMnO3. Journal of Power Sources, 2019, 412, 701-709.	4.0	53
2468	Designed synthesis of cobalt nanoparticles embedded carbon nanocages as bifunctional electrocatalysts for oxygen evolution and reduction. Carbon, 2019, 144, 492-499.	5.4	31
2469	Fe and S co-doped N-enriched hierarchical porous carbon polyhedron as efficient non-noble-metal electrocatalyst toward oxygen reduction reaction in both alkaline and acidic medium. Electrochimica Acta, 2019, 298, 570-579.	2.6	54
2470	Shrunken hollow Mo-N/Mo-C nanosphere structure for efficient hydrogen evolution in a broad pH range. Electrochimica Acta, 2019, 298, 799-805.	2.6	38
2471	Nature of Carbon Materials Used as Nondoped Electrodes for Oxygen Reduction Reaction and Supercapacitor Applications. Journal of the Electrochemical Society, 2019, 166, F1-F8.	1.3	10
2472	Electrochemical Performance of Borateâ€Doped Nickel Sulfide: Enhancement of the Bifunctional Activity for Total Water Splitting. ChemElectroChem, 2019, 6, 1443-1449.	1.7	23
2473	Xâ€Ray Absorption Spectroscopy Characterizations on PGMâ€Free Electrocatalysts: Justification, Advantages, and Limitations. Advanced Materials, 2019, 31, e1805157.	11.1	48
2474	Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell. Biosensors and Bioelectronics, 2019, 127, 181-187.	5.3	46
2475	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	23.0	745
2476	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
2477	Transition Metalâ€Nitrogenâ€Carbon Active Site for Oxygen Reduction Electrocatalysis: Beyond the Fascinations of TMâ€N ₄ . ChemCatChem, 2019, 11, 655-668.	1.8	30
2478	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
2479	Oxygen Electroreduction on Nanoporous Carbons: Textural Features vs Nitrogen and Boron Catalytic Centers. ChemCatChem, 2019, 11, 851-860.	1.8	28

#	Article	IF	Citations
2480	Bimetallic Mn and Co encased within bamboo-like N-doped carbon nanotubes as efficient oxygen reduction reaction electrocatalysts. Journal of Colloid and Interface Science, 2019, 537, 238-246.	5.0	33
2481	Sulfur, Nitrogen and Fluorine Tripleâ€Doped Metalâ€Free Carbon Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 741-747.	1.7	33
2482	Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Science China Materials, 2019, 62, 671-680.	3.5	30
2484	Fe-N4 complex embedded free-standing carbon fabric catalysts for higher performance ORR both in alkaline & acidic media. Nano Energy, 2019, 56, 524-530.	8.2	88
2485	Metal-free N-doped carbon blacks as excellent electrocatalysts for oxygen reduction reactions. Carbon, 2019, 145, 481-487.	5.4	33
2486	Well-dispersed Pt nanoparticles on borane-modified graphene oxide and their electrocatalytic performance for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 271, 168-174.	1.4	5
2487	Feâ^'N ₃ /C Active Catalytic Sites for the Oxygen Reduction Reaction Prepared with Molecular‣evel Geometry Control through the Covalent Immobilization of an Ironâ^'Terpyridine Motif onto Carbon. ChemElectroChem, 2019, 6, 1350-1358.	1.7	20
2488	Bâ€Doped Fe/N/C Porous Catalyst for Highâ€Performance Oxygen Reduction in Anionâ€Exchange Membrane Fuel Cells. ChemElectroChem, 2019, 6, 1754-1760.	1.7	18
2489	Design Principle of Fe–N–C Electrocatalysts: How to Optimize Multimodal Porous Structures?. Journal of the American Chemical Society, 2019, 141, 2035-2045.	6.6	383
2490	In situ formation of nitrogen doped mesoporous carbon via directly carbonizing polyaniline as an efficient electrocatalyst for determination of capsaicin. Microporous and Mesoporous Materials, 2019, 278, 327-339.	2.2	7
2491	A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology, 2019, 30, 144001.	1.3	9
2492	Biomorphic CoNC/CoO <i>_x</i> Composite Derived from Natural Chloroplasts as Efficient Electrocatalyst for Oxygen Reduction Reaction. Small, 2019, 15, e1804855.	5.2	72
2493	Nanostructured Cementite/Ferrous Sulfide Encapsulated Carbon with Heteroatoms for Oxygen Reduction in Alkaline Environment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3185-3194.	3.2	16
2494	Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogenâ€Doped Carbon Materials. Advanced Materials, 2019, 31, e1804297.	11.1	459
2495	On an Easy Way to Prepare Fe, S, N Tri-Doped Mesoporous Carbon Materials as Efficient Electrocatalysts for Oxygen Reduction Reaction. Electrocatalysis, 2019, 10, 72-81.	1.5	15
2496	Zn3[Fe(CN)6]2 derived Fe/Fe5C2@N-doped carbon as a highly effective oxygen reduction reaction catalyst for zinc-air battery. Applied Catalysis B: Environmental, 2019, 244, 197-205.	10.8	98
2497	Controllable synthesis of nitrogen-doped carbon nanotubes derived from halloysite-templated polyaniline towards nonprecious ORR catalysts. Applied Surface Science, 2019, 469, 269-275.	3.1	35
2498	Heterogeneous atoms-doped titanium carbide as a precious metal-free electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2019, 295, 384-392.	2.6	19

#	Article	IF	Citations
2499	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	10.8	170
2500	NiCoO2@CMK-3 composite with nanosheets-mesoporous structure as an efficient oxygen reduction catalyst. Electrochimica Acta, 2019, 294, 38-45.	2.6	13
2501	Nitrogenâ€Doped Metalâ€Free Carbon Materials Derived from Cellulose as Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 514-521.	1.7	31
2502	Synthesis and Active Site Identification of Feâ^'Nâ^'C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 304-315.	1.7	65
2503	Nonpyrolyzed Feâ^'N Coordinationâ€Based Iron Triazolate Framework: An Efficient and Stable Electrocatalyst for Oxygen Reduction Reaction. ChemSusChem, 2019, 12, 200-207.	3.6	26
2504	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie, 2019, 131, 1498-1502.	^{Ir} 1.6	63
2505	Longâ€Life Roomâ€Temperature Sodium–Sulfur Batteries by Virtue of Transitionâ€Metalâ€Nanocluster–Sulfu Interactions. Angewandte Chemie - International Edition, 2019, 58, 1484-1488.	^{Ir} 7.2	165
2506	Highly active bimetallic CuFe–N–C electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Industrial and Engineering Chemistry, 2019, 71, 234-241.	2.9	12
2507	Cobalt, Nitrogen-Doped Porous Carbon Nanosheet-Assembled Flowers from Metal-Coordinated Covalent Organic Polymers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 1384-1393.	4.0	56
2508	Efficacious Electrochemical Oxygen Evolution from a Novel Co(II) Porphyrin/Pyrene-Based Conjugated Microporous Polymer. ACS Applied Materials & Interfaces, 2019, 11, 1520-1528.	4.0	75
2509	lron/Nitrogen co-doped mesoporous carbon synthesized by an endo-templating approach as an efficient electrocatalyst for the oxygen reduction reaction. Microporous and Mesoporous Materials, 2019, 278, 280-288.	2.2	34
2510	Metal-Free Boron Nitride Nanoribbon Catalysts for Electrochemical CO ₂ Reduction: Combining High Activity and Selectivity. ACS Applied Materials & Interfaces, 2019, 11, 906-915.	4.0	66
2511	The Electrocatalytic Stability Investigation of a Proton Manager MOF for the Oxygen Reduction Reaction in Acidic Media. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 528-534.	1.9	14
2512	Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Materials, 2019, 20, 98-107.	9.5	87
2513	Oxygen Reduction Reaction. Interface Science and Technology, 2019, 27, 203-252.	1.6	15
2514	Tailor-made metal-nitrogen-carbon bifunctional electrocatalysts for rechargeable Zn-air batteries via controllable MOF units. Energy Storage Materials, 2019, 17, 46-61.	9.5	70
2515	Fabricating hierarchically porous and Fe3C-embeded nitrogen-rich carbon nanofibers as exceptional electocatalysts for oxygen reduction. Carbon, 2019, 142, 115-122.	5.4	57
2516	In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Applied Catalysis B: Environmental, 2019, 243, 151-160.	10.8	66

	CITATION RE	PORT	
#	Article	IF	CITATIONS
2517	Single crystalline Bi2Ru2O7 pyrochlore oxide nanoparticles as efficient bifunctional oxygen electrocatalyst for hybrid Na-air batteries. Chemical Engineering Journal, 2019, 358, 11-19.	6.6	67
2518	Modulierung der elektronischen Strukturen anorganischer Nanomaterialien für eine effiziente elektrokatalytische Wasserspaltung. Angewandte Chemie, 2019, 131, 4532-4551.	1.6	34
2519	Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 4484-4502.	7.2	340
2520	Developing an advanced electrocatalyst derived from Ce(TTA)3Phen embedded polyaniline for oxygen reduction reaction. Applied Surface Science, 2019, 465, 979-985.	3.1	11
2521	Cobalt and nitrogen codoped ultrathin porous carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. Carbon, 2019, 141, 704-711.	5.4	53
2522	To pursue FexCoy-PANI/CNT catalysts for oxygen reduction reaction in acid medium with controlled molecular self-assembly method. International Journal of Hydrogen Energy, 2020, 45, 29655-29667.	3.8	4
2523	Active sites for the oxygen reduction reaction in nitrogen-doped carbon nanofibers. Catalysis Today, 2020, 357, 248-258.	2.2	28
2524	Efficient Oxygen Reduction Catalysts of Porous Carbon Nanostructures Decorated with Transition Metal Species. Advanced Energy Materials, 2020, 10, 1900375.	10.2	175
2525	Overwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chinese Chemical Letters, 2020, 31, 1207-1212.	4.8	13
2526	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
2527	Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2020, 40, 137-143.	7.1	74
2528	Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chemical Reviews, 2020, 120, 683-733.	23.0	871
2529	Encapsulation of Co-based nanoparticle in N-doped graphitic carbon for efficient oxygen reduction reaction. Carbon, 2020, 156, 31-37.	5.4	27
2530	Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118188.	10.8	163
2531	A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews, 2020, 120, 1250-1349.	23.0	436
2532	Intrinsic properties of nitrogen-rich carbon nitride for oxygen reduction reaction. Applied Surface Science, 2020, 500, 144020.	3.1	21
2533	Cobalt sulfides nanoparticles encapsulated in N, S co-doped carbon substrate for highly efficient oxygen reduction. Journal of Alloys and Compounds, 2020, 815, 152457.	2.8	25
2534	Co3O4 nanoparticles anchored in MnO2 nanorods as efficient oxygen reduction reaction catalyst for metal-air batteries. Journal of Alloys and Compounds, 2020, 814, 152239.	2.8	28

#	Article	IF	CITATIONS
2535	Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives. Carbon, 2020, 156, 77-92.	5.4	149
2536	Activity and degradation study of an Fe-N-C catalyst for ORR in Direct Methanol Fuel Cell (DMFC). Applied Catalysis B: Environmental, 2020, 262, 118217.	10.8	113
2537	Macroscopic transport properties of Gyroid structures based on pore-scale studies: Permeability, diffusivity and thermal conductivity. International Journal of Heat and Mass Transfer, 2020, 146, 118837.	2.5	33
2538	Oxygen Reduction Reactions on Single―or Fewâ€Atom Discrete Active Sites for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 1902084.	10.2	82
2539	Role of local coordination in bimetallic sites for oxygen reduction: A theoretical analysis. Journal of Energy Chemistry, 2020, 44, 131-137.	7.1	36
2540	N-doped hard carbon nanotubes derived from conjugated microporous polymer for electrocatalytic oxygen reduction reaction. Renewable Energy, 2020, 146, 2270-2280.	4.3	42
2541	Nitrogen-doped carbon nanotube–graphene hybrid stabilizes MxN (M = Fe, Co) nanoparticles for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 268, 118415.	10.8	46
2542	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	10.1	138
2543	Metal phosphide modified CdxZn1â^'xS solid solutions as a highly active visible-light photocatalyst for hydrogen evolution. Applied Catalysis A: General, 2020, 590, 117336.	2.2	28
2544	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Đoped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 1627-1633.	7.2	176
2545	Synthesis and ORR performance of nitrogen-doped ordered microporous carbon by CVD of acetonitrile vapor using silanized zeolite as template. Applied Surface Science, 2020, 504, 144438.	3.1	25
2546	Surface engineering donor and acceptor sites with enhanced charge transport for low-overpotential lithium–oxygen batteries. Energy Storage Materials, 2020, 25, 52-61.	9.5	28
2547	Identification of Catalytic Sites for Oxygen Reduction in Metal/Nitrogenâ€Doped Carbons with Encapsulated Metal Nanoparticles. Angewandte Chemie, 2020, 132, 1644-1650.	1.6	138
2548	Highly-defective Fe-N-C catalysts towards pH-Universal oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 263, 118347.	10.8	121
2549	Pyrolysis derived helically nitrogen-doped carbon nanotubes with uniform cobalt for high performance oxygen reduction. Applied Surface Science, 2020, 504, 144380.	3.1	26
2550	Self-assembled copper/cobalt-containing polypyrrole hydrogels for highly efficient ORR electrocatalysts. Journal of Molecular Liquids, 2020, 298, 112010.	2.3	44
2551	Low Mach limit to oneâ€dimensional nonisentropic planar compressible magnetohydrodynamic equations. Mathematical Methods in the Applied Sciences, 2020, 43, 580-599.	1.2	0
2552	Graphene oxide supported Pd-Fe nanohybrid as an efficient electrocatalyst for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 18704-18715.	3.8	10

#	Article	IF	CITATIONS
2553	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie, 2020, 132, 4072-4079.	1.6	48
2554	Understanding the Origin of Highly Selective CO ₂ Electroreduction to CO on Ni,Nâ€doped Carbon Catalysts. Angewandte Chemie - International Edition, 2020, 59, 4043-4050.	7.2	148
2555	Nickel-containing N-doped carbon as effective electrocatalysts for the reduction of CO ₂ to CO in a continuous-flow electrolyzer. Sustainable Energy and Fuels, 2020, 4, 1296-1311.	2.5	13
2556	Anodic engineering towards high-performance direct methanol fuel cells with non-precious-metal cathode catalysts. Journal of Materials Chemistry A, 2020, 8, 1113-1119.	5.2	28
2557	Remarkably Enhanced Hydrogen Oxidation Reaction Activity of Carbon-supported Pt by Facile Nickel Modification. Chemical Research in Chinese Universities, 2020, 36, 105-109.	1.3	7
2558	Sulfur doped carbon nanohorns towards oxygen reduction reaction. Diamond and Related Materials, 2020, 103, 107671.	1.8	19
2559	A mesoporous carbon derived from 4,4′-dipyridyl iron as an efficient catalyst for oxygen reduction. Journal of Materials Chemistry A, 2020, 8, 2439-2444.	5.2	12
2560	Magnetic purification of non-precious metal fuel cell catalysts for obtaining atomically dispersed Fe centers. Catalysis Science and Technology, 2020, 10, 493-501.	2.1	11
2561	Insights into the active sites and catalytic mechanism of oxidative esterification of 5-hydroxymethylfurfural by metal-organic frameworks-derived N-doped carbon. Journal of Catalysis, 2020, 381, 570-578.	3.1	56
2562	Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule, 2020, 4, 33-44.	11.7	264
2563	Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chemical Reviews, 2020, 120, 623-682.	23.0	794
2564	Co–Ni Alloy Encapsulated by N-doped Graphene as a Cathode Catalyst for Rechargeable Hybrid Li–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 4366-4372.	4.0	34
2565	High Power Density Platinum Group Metal-free Cathodes for Polymer Electrolyte Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 2216-2224.	4.0	91
2566	Nanorods of cerium oxide as an improved electrocatalyst for enhanced oxygen reduction in single-chambered microbial biofuel cells. Materials Research Express, 2020, 7, 015514.	0.8	5
2567	Engineering Local Coordination Environments of Atomically Dispersed and Heteroatomâ€Coordinated Single Metal Site Electrocatalysts for Clean Energyâ€Conversion. Advanced Energy Materials, 2020, 10, 1902844.	10.2	245
2568	Recent Progress of Metal Carbides Encapsulated in Carbonâ€Based Materials for Electrocatalysis of Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900575.	4.6	59
2569	Design and synthesis of carbon-based catalysts for zinc–air batteries. , 2020, , 161-190.		0
2570	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion. , 2020, , 393-423.		8

#	Article	IF	CITATIONS
2571	Nâ€Ðoped Graphene Supported on Metalâ€ŀron Carbide as a Catalyst for the Oxygen Reduction Reaction: Density Functional Theory Study. ChemSusChem, 2020, 13, 996-1005.	3.6	21
2572	Nickel/Cobalt-Containing polypyrrole hydrogel-derived approach for efficient ORR electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124221.	2.3	31
2573	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
2574	Iron-Containing Porphyrins Self-Assembled on ZnO Nanoparticles as Electrocatalytic Materials for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 742-751.	2.4	17
2576	Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: An effective cathode catalyst for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2020, 332, 135397.	2.6	10
2577	SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Applied Catalysis B: Environmental, 2020, 264, 118523.	10.8	81
2578	N configuration control of N-doped carbon for stabilizing Cu nanoparticles: The synergistic effects on oxy-carbonylation of methanol. Carbon, 2020, 158, 836-845.	5.4	12
2579	Converting biomass into efficient oxygen reduction reaction catalysts for proton exchange membrane fuel cells. Science China Materials, 2020, 63, 524-532.	3.5	30
2580	Comparing the oxygen reduction reaction on selectively edge halogen doped graphene from quantum mechanics. Journal of Catalysis, 2020, 381, 295-307.	3.1	5
2581	Ionic Polyimide Derived Porous Carbon Nanosheets as Highâ€Efficiency Oxygen Reduction Catalysts for Zn–Air Batteries. Chemistry - A European Journal, 2020, 26, 6525-6534.	1.7	11
2582	Toward Promising Cathode Catalysts for Nonlithium Metal–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1901997.	10.2	102
2583	Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC. Applied Catalysis B: Environmental, 2020, 264, 118468.	10.8	59
2584	Experimental reactivity descriptors of M-N-C catalysts for the oxygen reduction reaction. Electrochimica Acta, 2020, 332, 135340.	2.6	42
2585	Graphiticâ€Shell Encapsulation of Metal Electrocatalysts for Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution in Alkaline Solution. Advanced Energy Materials, 2020, 10, 1903215.	10.2	138
2586	A Oneâ€Pot Method to Synthesize a Coâ€Based Grapheneâ€Like Structure Doped Carbon Material for the Oxygen Reduction Reaction. ChemElectroChem, 2020, 7, 131-138.	1.7	4
2587	Fe doped porous triazine as efficient electrocatalysts for the oxygen reduction reaction in acid electrolyte. Applied Catalysis B: Environmental, 2020, 264, 118507.	10.8	27
2588	Toward Efficient Carbon and Water Cycles: Emerging Opportunities with Singleâ€ S ite Catalysts Made of 3d Transition Metals. Advanced Materials, 2020, 32, e1905548.	11.1	23
2589	Iron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.	2.3	4

#	Article	IF	CITATIONS
2590	Fluorescence detection of hydroxyl radical generated from oxygen reduction on Fe/N/C catalyst. Science China Chemistry, 2020, 63, 198-202.	4.2	32
2591	Mn-doped perovskite-type oxide LaFeO3 as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Frontiers of Materials Science, 2020, 14, 459-468.	1.1	9
2592	New Synthesis route of Iron-Based Catalyst for Electrochemical Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2020, 15, 9168-9178.	0.5	4
2593	Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 2020, 63, 1543-1556.	4.2	11
2594	Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale, 2020, 12, 22718-22734.	2.8	26
2595	Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Science China Chemistry, 2020, 63, 1517-1542.	4.2	56
2596	Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Materials Today Physics, 2020, 15, 100280.	2.9	67
2597	Current progress and performance improvement of Pt/C catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 24284-24306.	5.2	137
2598	Infrared-assisted synthesis of highly amidized graphene quantum dots as metal-free electrochemical catalysts. Electrochimica Acta, 2020, 360, 137009.	2.6	14
2599	ZIF-derived Co–N–C ORR catalyst with high performance in proton exchange membrane fuel cells. Progress in Natural Science: Materials International, 2020, 30, 855-860.	1.8	37
2600	Development of non-noble Co–N–C electrocatalyst for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 33957-33967.	3.8	7
2601	Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells. Journal of Power Sources, 2020, 478, 228516.	4.0	44
2602	Self-assembly induced metal ionic-polymer derived Fe-Nx/C nanowire as oxygen reduction reaction electrocatalyst. Journal of Catalysis, 2020, 391, 1-10.	3.1	15
2603	Novel low-cost activated algal biochar as a cathode catalyst for improving performance of microbial fuel cell. Sustainable Energy Technologies and Assessments, 2020, 42, 100808.	1.7	31
2604	Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and Highâ€Power PGMâ€Free Cathodes in Fuel Cells. Advanced Materials, 2020, 32, e2003577.	11.1	262
2605	Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Current Opinion in Electrochemistry, 2020, 23, 154-161.	2.5	24
2606	Stability of PGM-free fuel cell catalysts: Degradation mechanisms and mitigation strategies. Progress in Natural Science: Materials International, 2020, 30, 721-731.	1.8	34
2607	Are Polyaniline and Polypyrrole Electrocatalysts for Oxygen (O ₂) Reduction to Hydrogen Peroxide (H ₂ O ₂)?. ACS Applied Energy Materials, 2020, 3, 10611-10618.	2.5	30

#	Article	IF	CITATIONS
2608	Identifying the Active Sites of a Single Atom Catalyst with pH-Universal Oxygen Reduction Reaction Activity. Cell Reports Physical Science, 2020, 1, 100115.	2.8	26
2609	Bifunctional Atomically Dispersed Mo–N ₂ /C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 10115-10126.	7.3	106
2610	Atomically dispersed Fe–N–C decorated with Pt-alloy core–shell nanoparticles for improved activity and durability towards oxygen reduction. Energy and Environmental Science, 2020, 13, 3032-3040.	15.6	185
2611	Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy, 2020, 78, 105125.	8.2	7
2612	Designing Alâ€Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalystâ€Based Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie, 2020, 132, 19337-19345.	1.6	39
2613	P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nature Materials, 2020, 19, 1215-1223.	13.3	278
2614	Designing Alâ€Aided Analysis and Prediction Models for Nonprecious Metal Electrocatalystâ€Based Protonâ€Exchange Membrane Fuel Cells. Angewandte Chemie - International Edition, 2020, 59, 19175-19183.	7.2	46
2615	Cobalt Nanoparticlesâ€Catalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie - International Edition, 2020, 59, 19268-19274.	7.2	71
2616	Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction. Korean Journal of Chemical Engineering, 2020, 37, 938-945.	1.2	8
2617	Separation of Metal-N4 Units in Metal–Organic Framework for Preparation of M-Nx/C Catalyst with Dense Metal Sites. Inorganic Chemistry, 2020, 59, 17134-17142.	1.9	11
2618	Cobalt/nitrogen codoped carbon nanosheets derived from catkins as a high performance non-noble metal electrocatalyst for oxygen reduction reaction and hydrogen evolution reaction. RSC Advances, 2020, 10, 43248-43255.	1.7	10
2619	Tuning of ORR activity through the stabilization of the adsorbates by hydrogen bonding with substituent groups. Physical Chemistry Chemical Physics, 2020, 22, 27811-27817.	1.3	9
2620	Non-precious Melamine/Chitosan Composites for the Oxygen Reduction Reaction: Effect of the Transition Metal. Frontiers in Materials, 2020, 7, .	1.2	4
2621	Applications of M/N/C analogue catalysts in PEM fuel cells and metal-air/oxygen batteries: Status quo, challenges and perspectives. Progress in Natural Science: Materials International, 2020, 30, 807-814.	1.8	15
2622	Heteroatom-doped ultrahigh specific area carbons from hybrid polymers with promising capacitive performance. Journal of Power Sources, 2020, 478, 228761.	4.0	25
2623	Cobalt Nanoparticles atalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie, 2020, 132, 19430-19436.	1.6	7
2624	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	2.5	5
2625	Excess Se-doped MoSe2 and nitrogen-doped reduced graphene oxide composite as electrocatalyst for hydrogen evolution and oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 848, 156588.	2.8	35

#	Article	IF	CITATIONS
2626	Application of Biomassâ€Derived Nitrogenâ€Doped Carbon Aerogels in Electrocatalysis and Supercapacitors. ChemElectroChem, 2020, 7, 3695-3712.	1.7	52
2627	Fe–N–C catalyst derived from solid-state coordination complex as durable oxygen reduction electrocatalyst in alkaline electrolyte. Ionics, 2020, 26, 5685-5696.	1.2	7
2628	Electrochemical synthesis of polyaniline nanocomposite based on modified gold nanoparticles and its application for electrochemical aptasensor. Journal of Solid State Electrochemistry, 2020, 24, 2373-2383.	1.2	5
2629	Single-atom electron microscopy for energy-related nanomaterials. Journal of Materials Chemistry A, 2020, 8, 16142-16165.	5.2	20
2630	Defect-enriched carbon nanofibers encapsulating NiCo oxide for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. Journal of Power Sources, 2020, 473, 228604.	4.0	25
2631	Kinetic Analysis of Electrochemical Oxygen Reduction over a Fe/N/C Catalyst Considering the Chemical Decomposition of H ₂ O ₂ . Journal of Physical Chemistry C, 2020, 124, 17599-17606.	1.5	3
2632	Cobalt- and iron-coordinated graphitic carbon nitride on reduced graphene oxide: A nonprecious bimetallic M–N –C analogue electrocatalyst for efficient oxygen reduction reaction in acidic media. Applied Surface Science, 2020, 531, 147367.	3.1	32
2633	The non-precious metal ORR catalysts for the anion exchange membrane fuel cells application: A numerical simulation and experimental study. International Journal of Hydrogen Energy, 2020, 45, 23353-23367.	3.8	17
2634	Sengon wood-derived RGO supported Fe-based electrocatalyst with stabilized graphitic N-bond for oxygen reduction reaction in acidic medium. International Journal of Hydrogen Energy, 2020, 45, 23237-23253.	3.8	17
2635	Cobalt‑nitrogen‑carbon nanotube co-implanted activated carbon as efficient cathodic oxygen reduction catalyst in microbial fuel cells. Journal of Electroanalytical Chemistry, 2020, 876, 114498.	1.9	12
2636	A DFT study on the relationship between local microstructure and oxygen reduction reaction activity over Fe-N4 graphene. Materials Today Communications, 2020, 25, 101524.	0.9	4
2637	Pd9Au1@Pt/C core-shell catalyst prepared via Pd9Au1-catalyzed coating for enhanced oxygen reduction. International Journal of Hydrogen Energy, 2020, 45, 27254-27262.	3.8	14
2638	Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chemical Reviews, 2020, 120, 9363-9419.	23.0	492
2639	Using a Fe-doping MOFs strategy to effectively improve the electrochemical activity of N-doped C materials for oxygen reduction reaction in alkaline medium. Journal of Solid State Electrochemistry, 2020, 24, 2427-2439.	1.2	3
2640	Durable hybrid electrocatalysts for proton exchange membrane fuel cells. Nano Energy, 2020, 77, 105192.	8.2	21
2641	Controlled chelation between tannic acid and Fe precursors to obtain N, S co-doped carbon with high density Fe-single atom-nanoclusters for highly efficient oxygen reduction reaction in Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 17136-17149.	5.2	64
2642	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
2643	Platinum Monolayer Electrocatalysts. , 2020, , .		4

#	Article	IF	CITATIONS
2644	Important Electrocatalytic Reactions. , 2020, , 57-82.		1
2645	2-Methylimidazole as a nitrogen source assisted synthesis of a nano-rod-shaped Fe/FeN@N-C catalyst with plentiful FeN active sites and enhanced ORR activity. Applied Surface Science, 2020, 533, 147481.	3.1	54
2646	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 122, 12217-12314.	23.0	563
2647	Deposition Behavior of Polyaniline on Carbon Nanofibers by Oxidative Chemical Vapor Deposition. Langmuir, 2020, 36, 13079-13086.	1.6	6
2648	Enhancing oxygen reduction reaction in air-cathode microbial fuel cells treating wastewater with cobalt and nitrogen co-doped ordered mesoporous carbon as cathode catalysts. Environmental Research, 2020, 191, 110195.	3.7	10
2649	Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chemical Reviews, 2020, 120, 12315-12341.	23.0	354
2650	Nitrile-Facilitated Proton Transfer for Enhanced Oxygen Reduction by Hybrid Electrocatalysts. ACS Catalysis, 2020, 10, 13149-13155.	5.5	8
2651	Facile Synthesis of the Amorphous Carbon Coated Fe-N-C Nanocatalyst with Efficient Activity for Oxygen Reduction Reaction in Acidic and Alkaline Media. Materials, 2020, 13, 4551.	1.3	8
2652	Enhancing bioelectricity generation of bio-electrochemical reactors using porous nickel-based composite as effective oxygen reduction catalyst. Journal of Cleaner Production, 2020, 277, 124137.	4.6	6
2653	Porous nitrogen doped carbon materials as High-Active Oxygen Reduction Catalysts Derived from Biomass (Corn Stalk). International Journal of Electrochemical Science, 2020, 15, 6302-6313.	0.5	2
2654	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie, 2020, 132, 21882-21889.	1.6	10
2655	Construction of Highly Active Metalâ€Containing Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 22160-22163.	1.6	43
2656	Superactive NiFe-LDH/graphene nanocomposites as competent catalysts for water splitting reactions. Inorganic Chemistry Frontiers, 2020, 7, 3805-3836.	3.0	85
2657	Atomically Dispersed MnN ₄ Catalysts <i>via</i> Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS Catalysis, 2020, 10, 10523-10534.	5.5	123
2658	Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Materials Today Energy, 2020, 18, 100500.	2.5	31
2659	Metal (Mn, Fe, Co, Ni, Cu, and Zn) Phthalocyanine-Immobilized Mesoporous Carbon Nitride Materials as Durable Electrode Modifiers for the Oxygen Reduction Reaction. Langmuir, 2020, 36, 12202-12212.	1.6	30
2660	Surface Charge and Electrostatic Spin Crossover Effects in CoN ₄ Electrocatalysts. ACS Catalysis, 2020, 10, 12148-12155.	5.5	69
2661	Enhanced electrochemical performance of modified thin carbon electrodes for all-vanadium redox flow batteries. Materials Advances, 2020, 1, 2033-2042.	2.6	5

#	Article	IF	CITATIONS
2662	Highly active electrocatalysts of iron phthalocyanine by MOFs for oxygen reduction reaction under alkaline solution. RSC Advances, 2020, 10, 27014-27023.	1.7	5
2663	Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nature Communications, 2020, 11, 4233.	5.8	80
2664	N-Rich Carbon Catalysts with Economic Feasibility for the Selective Oxidation of Hydrogen Sulfide to Sulfur. Environmental Science & Technology, 2020, 54, 12621-12630.	4.6	26
2665	Construction of Highly Active Metal ontaining Nanoparticles and FeCoâ€N ₄ Composite Sites for the Acidic Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 21976-21979.	7.2	157
2666	FeS/FeNC decorated N,S-co-doped porous carbon for enhanced ORR activity in alkaline media. Chemical Communications, 2020, 56, 12921-12924.	2.2	45
2667	Autoxidation of polythiophene tethered to carbon cloth boosts its electrocatalytic activity towards durable water oxidation. Journal of Materials Chemistry A, 2020, 8, 19793-19798.	5.2	11
2668	Zero valent iron nanoparticles as sustainable nanocatalysts for reduction reactions. Catalysis Reviews - Science and Engineering, 2022, 64, 286-355.	5.7	20
2669	Micromorphology and microtexture evaluation of poly(o-ethoxyaniline) films using atomic force microscopy and fractal analysis. Journal of Polymer Research, 2020, 27, 1.	1.2	14
2670	Unveiling the Potential of an Fe Bis(terpyridine) Complex for Precise Development of an Fe-N-C Electrocatalyst to Promote the Oxygen Reduction Reaction. Inorganic Chemistry, 2020, 59, 13453-13464.	1.9	17
2671	The influence of ruthenium substitution in LaCoO ₃ towards bi-functional electrocatalytic activity for rechargeable Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 20612-20620.	5.2	32
2672	Synergetic FeCo nanorods embedded in nitrogen-doped carbon nanotubes with abundant metal–NCNT heterointerfaces as efficient air electrocatalysts for rechargeable zinc–air batteries. Sustainable Energy and Fuels, 2020, 4, 5188-5194.	2.5	7
2673	Heteroatom-doped carbon interpenetrating networks: a signpost to achieve the best performance of non-PGM catalysts for fuel cells. Journal of Materials Chemistry A, 2020, 8, 18767-18777.	5.2	14
2674	Immobilizing single atom catalytic sites onto highly reduced carbon hosts: Fe–N ₄ /CNT as a durable oxygen reduction catalyst for Na–air batteries. Journal of Materials Chemistry A, 2020, 8, 18891-18902.	5.2	31
2675	A non-traditional biomass-derived N, P, and S ternary self-doped 3D multichannel carbon ORR electrocatalyst. New Journal of Chemistry, 2020, 44, 14604-14614.	1.4	38
2676	Emerging Metal Single Atoms in Electrocatalysts and Batteries. Advanced Functional Materials, 2020, 30, 2003870.	7.8	38
2677	Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts. Angewandte Chemie - International Edition, 2020, 59, 21698-21705.	7.2	128
2678	Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications, 2020, 11, 4181.	5.8	204
2679	Gel Electrocatalysts: An Emerging Material Platform for Electrochemical Energy Conversion. Advanced Materials, 2020, 32, e2003191.	11.1	78

#	Article	IF	CITATIONS
2680	Biomassâ€derived nonprecious metal catalysts for oxygen reduction reaction: The demandâ€oriented engineering of active sites and structures. , 2020, 2, 561-581.		83
2681	Evaluation of the Volumetric Activity of the Air Electrode in a Zinc–Air Battery Using a Nitrogen and Sulfur Co-doped Metal-free Electrocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 57064-57070.	4.0	6
2682	Optimization Strategies of Preparation of Biomass-Derived Carbon Electrocatalyst for Boosting Oxygen Reduction Reaction: A Minireview. Catalysts, 2020, 10, 1472.	1.6	24
2683	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	6.6	163
2684	Flexible Solid-State Supercapacitors Derived from Biomass Konjac/Polyacrylonitrile-Based Nitrogen-Doped Porous Carbon. ACS Applied Materials & Interfaces, 2020, 12, 55913-55925.	4.0	60
2685	Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nature Catalysis, 2020, 3, 1044-1054.	16.1	443
2686	A No-Sweat Strategy for Graphene-Macrocycle Co-assembled Electrocatalyst toward Oxygen Reduction and Ambient Ammonia Synthesis. Inorganic Chemistry, 2020, 59, 16385-16397.	1.9	10
2687	Single-Atom Iron-Based Electrocatalysts for High-Temperature Polymer Electrolyte Membrane Fuel Cell: Organometallic Precursor and Pore Texture Tailoring. ACS Applied Energy Materials, 2020, 3, 11164-11176.	2.5	14
2688	Improved bio-electricity production in bio-electrochemical reactor for wastewater treatment using biomass carbon derived from sludge supported carbon felt anode. Science of the Total Environment, 2020, 726, 138573.	3.9	33
2689	Role of active sites in N-coordinated Fe-Co dual-metal doped graphene for oxygen reduction and evolution reactions: A theoretical insight. Applied Surface Science, 2020, 525, 146588.	3.1	75
2690	MOFs-derived core-shell Co3Fe7@Fe2N nanopaticles supported on rGO as high-performance bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Materials Today Energy, 2020, 17, 100433.	2.5	29
2691	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie, 2020, 132, 14027-14032.	1.6	40
2692	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie - International Edition, 2020, 59, 13923-13928.	7.2	176
2693	Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels, 2020, 34, 6634-6695.	2.5	100
2694	Nanostructured Carbon-Nitrogen-Sulfur-Nickel Networks Derived From Polyaniline as Bifunctional Catalysts for Water Splitting. Frontiers in Chemistry, 2020, 8, 385.	1.8	13
2695	Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells. Chemical Research in Chinese Universities, 2020, 36, 320-328.	1.3	7
2696	Engineering of a Low ost, Highly Active, and Durable Tantalate–Graphene Hybrid Electrocatalyst for Oxygen Reduction. Advanced Energy Materials, 2020, 10, 2000075.	10.2	21
2697	Ultrafast and large-scale synthesis of Co3O4 quantum dots-C3N4/rGO as an excellent ORR electrocatalyst via a controllable deflagration strategy. Applied Surface Science, 2020, 525, 146624.	3.1	12

#	Article	IF	CITATIONS
2698	Hierarchically Porous Carbons Derived from Nonporous Coordination Polymers. ACS Applied Materials & Interfaces, 2020, 12, 25211-25220.	4.0	31
2699	Recent advances in Co-based electrocatalysts for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 3848-3870.	2.5	38
2700	Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites. Journal of Materials Chemistry A, 2020, 8, 10193-10198.	5.2	33
2701	Improving the Catalytic Performance of Co/N/C Catalyst for Oxygen Reduction Reaction by Alloying with Fe. Journal of the Electrochemical Society, 2020, 167, 104502.	1.3	9
2702	Realizing the Intrinsic Electrochemical Activity of Acidic Nâ€Doped Graphene through 1â€Pyrenesulfonic Acid Bridges. Advanced Functional Materials, 2020, 30, 2001237.	7.8	2
2703	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 14639-14646.	7.2	133
2704	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 14747-14754.	1.6	27
2705	Flowerâ€like FeS Coated with Heteroatom (S,N)â€Doped Carbon as Highly Active and Durable Oxygen Reduction Electrocatalysts. ChemElectroChem, 2020, 7, 2433-2439.	1.7	6
2706	Nitrogen and Sulfur Co-doped Porous Carbon Derived from ZIF-8 as Oxygen Reduction Reaction Catalyst for Microbial Fuel Cells. Journal Wuhan University of Technology, Materials Science Edition, 2020, 35, 280-286.	0.4	5
2707	N-doped carbon nanosheet supported Fe2O3/Fe3C nanoparticles as efficient electrode materials for oxygen reduction reaction and supercapacitor application. Inorganic Chemistry Communication, 2020, 117, 107952.	1.8	14
2708	Zinc, sulfur and nitrogen co-doped carbon from sodium chloride/zinc chloride-assisted pyrolysis of thiourea/sucrose for highly efficient oxygen reduction reaction in both acidic and alkaline media. Journal of Colloid and Interface Science, 2020, 576, 139-146.	5.0	30
2709	Microstructure Engineering of Fe/Fe ₃ C-Decorated Metal–Nitrogen–Carbon Mesoporous Nanospheres via a Self-Template Method for Enhancing Oxygen Reduction Activity. ACS Applied Materials & Interfaces, 2020, 12, 28065-28074.	4.0	10
2710	Reviving zinc-air batteries with high-density metal particles on carbon. Science Bulletin, 2020, 65, 1511-1513.	4.3	5
2711	The Feâ€Nâ€C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angewandte Chemie, 2020, 132, 14606-14611.	1.6	14
2712	Highly active Fe–N-doped porous hollow carbon nanospheres as oxygen reduction electrocatalysts in both acidic and alkaline media. Nanoscale, 2020, 12, 15115-15127.	2.8	20
2713	Complete Liquidâ€Phase Preparation of CuFeâ€Based Catalysts and Their Application in the Synthesis of Higher Alcohols from Syngas. ChemistrySelect, 2020, 5, 6585-6593.	0.7	3
2714	Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Research, 2020, 13, 2420-2426.	5.8	41
2715	TiN nanoparticles hybridized with Fe, N co-doped carbon nanosheets composites as highly efficient electrocatalyst for oxygen reduction reaction. Chemical Engineering Journal, 2020, 400, 125968.	6.6	24

		15	0
#	ARTICLE	IF	CITATIONS
2716	Establishing reactivity descriptors for platinum group metal (PGM)-free Fe–N–C catalysts for PEM fuel cells. Energy and Environmental Science, 2020, 13, 2480-2500.	15.6	205
2717	Manganese catalyzed transfer hydrogenation of biomass-derived aldehydes: Insights to the catalytic performance and mechanism. Journal of Catalysis, 2020, 389, 157-165.	3.1	28
2718	Rational Design and Synthesis of Hierarchical Porous Mn–N–C Nanoparticles with Atomically Dispersed MnN <i>_x</i> Moieties for Highly Efficient Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9367-9376.	3.2	43
2719	Pyrolysis of Ironâ€Containing Polyanilines under Micropore Generation Control: Electrocatalytic Performance in the Oxygen Reduction Reaction. ChemPlusChem, 2020, 85, 1964-1967.	1.3	1
2720	The Feâ€N Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug–Drug Interactions. Angewandte Chemie - International Edition, 2020, 59, 14498-14503.	7.2	87
2721	Synergistic heat treatment derived hollow-mesoporous-microporous Fe–N–C-SHT electrocatalyst for oxygen reduction reaction. Microporous and Mesoporous Materials, 2020, 305, 110382.	2.2	17
2722	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
2723	Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	5.2	34
2724	Silicon–air batteries: progress, applications and challenges. SN Applied Sciences, 2020, 2, 1.	1.5	10
2725	Non-enzymatic electrochemical detection of hydrogen peroxide on highly amidized graphene quantum dot electrodes. Applied Surface Science, 2020, 528, 146936.	3.1	22
2726	Confining Iron Carbide Growth in Porous Carbon to Improve the Electrocatalytic Performance for Oxygen Reduction Reaction. Electrocatalysis, 2020, 11, 354-363.	1.5	2
2727	The on-demand engineering of metal-doped porous carbon nanofibers as efficient bifunctional oxygen catalysts for high-performance flexible Zn–air batteries. Journal of Materials Chemistry A, 2020, 8, 7297-7308.	5.2	41
2728	Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catalysis, 2020, 10, 4313-4318.	5.5	119
2729	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	4.6	70
2730	Compositional and morphological engineering of in-situâ€grown Ag nanoparticles on Cu substrate for enhancing oxygen reduction reaction activity: A novel electrochemical redox tuning approach. Journal of Colloid and Interface Science, 2020, 571, 1-12.	5.0	14
2731	Electrochemical Scanning Tunneling Microscopy Investigations of FeN ₄ â€Based Macrocyclic Molecules Adsorbed on Au(111) and Their Implications in the Oxygen Reduction Reaction. ChemElectroChem, 2020, 7, 1431-1437.	1.7	21
2732	Novel Heteroatom-Doped Fe/N/C Electrocatalysts With Superior Activities for Oxygen Reduction Reaction in Both Acid and Alkaline Solutions. Frontiers in Chemistry, 2020, 8, 78.	1.8	10
2733	Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery. Journal of Power Sources, 2020, 455, 227975.	4.0	46

ARTICLE IF CITATIONS FeCo alloy catalysts promoting polysulfide conversion for advanced lithium–sulfur batteries. 2734 38 7.1 Journal of Energy Chemistry, 2020, 49, 339-347. Mesoporous Single-Atom-Doped Graphene–Carbon Nanotube Hybrid: Synthesis and Tunable Electrocatalytic Activity for Oxygen Evolution and Reduction Reactions. ACS Catalysis, 2020, 10, 5.5 100 4647-4658. Metastable Rock Salt Oxide-Mediated Synthesis of High-Density Dual-Protected M@NC for Long-Life Rechargeable Zinc–Air Batteries with Record Power Density. Journal of the American Chemical 2736 6.6 147 Society, 2020, 142, 7116-7127. Cobalt decorated nitrogen-doped carbon bowls as efficient electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2020, 56, 4488-4491. Microwave-assisted pyrolysis of <i>Pachira aquatica</i> leaves as a catalyst for the oxygen reduction 2738 1.7 3 reaction. RSC Advances, 2020, 10, 11543-11550. Insights from the Physicochemical and Electrochemical Screening of the Potentiality of the 1.3 Chemically Synthesized Polyaniline. Journal of the Electrochemical Society, 2020, 167, 066503. Unravelling the Role of Fe–Mn Binary Active Sites Electrocatalyst for Efficient Oxygen Reduction 2740 1.9 54 Reaction and Rechargeable Zn-Air Batteries. Inorganic Chemistry, 2020, 59, 5194-5205. Iron―and Nitrogenâ€Doped Grapheneâ€Based Catalysts for Fuel Cell Applications. ChemElectroChem, 2020, 1.7 7, 1739-1747. Design and Preparation of Fe–N₅ Catalytic Sites in Single-Atom Catalysts for Enhancing 2742 the Oxygen Reduction Reaction in Fuel Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 4.0 76 17334-17342. Metal-Free Chemoselective Hydrogenation of Nitroarenes by N-Doped Carbon Nanotubes via In Situ 2743 1.6 Polymerization of Pyrrole. ACS Omega, 2020, 5, 7519-7528. Supported and coordinated single metal site electrocatalysts. Materials Today, 2020, 37, 93-111. 2744 8.3 71 Atomically Dispersed Cu–N–C as a Promising Support for Low-Pt Loading Cathode Catalysts of Fuel Cells. ACS Applied Energy Materials, 2020, 3, 3807-3814. 2745 Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange 2746 4.0 25 Membrane Fuel Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 17481-17491. A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones. ACS Catalysis, 2020, 10, 4617-4629. 2747 5.5 Identifying Iron–Nitrogen/Carbon Active Structures for Oxygen Reduction Reaction under the Effect 2748 2.1 32 of Electrode Potential. Journal of Physical Chemistry Letters, 2020, 11, 2896-2901. Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride 2749 Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960. Understanding the self-templating of hierarchically porous carbon electrocatalysts using Group 2 2750 2.6 11 coordination polymers. Materials Advances, 2020, 1, 20-33. Nature-inspired electrocatalysts and devices for energy conversion. Chemical Society Reviews, 2020, 18.7 84 49, 3107-3141.

#	Article	IF	CITATIONS
2752	Theoretical study of the strain effect on the oxygen reduction reaction activity and stability of FeNC catalyst. New Journal of Chemistry, 2020, 44, 6818-6824.	1.4	12
2753	Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chemical Society Reviews, 2020, 49, 2215-2264.	18.7	582
2754	Bacterial cellulose: an encouraging eco-friendly nano-candidate for energy storage and energy conversion. Journal of Materials Chemistry A, 2020, 8, 5812-5842.	5.2	107
2755	FeN _x and γ-Fe ₂ O ₃ co-functionalized hollow graphitic carbon nanofibers for efficient oxygen reduction in an alkaline medium. Journal of Materials Chemistry A, 2020, 8, 6076-6082.	5.2	40
2756	Synergistic Pt-WO3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane. IScience, 2020, 23, 100922.	1.9	35
2757	Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Applied Surface Science, 2020, 529, 147081.	3.1	36
2758	An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel. Materials Today Energy, 2020, 17, 100452.	2.5	17
2759	Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and Al, 2020, 1, 100014.	5.8	228
2760	Cobalt Nanoparticles Embedded in N-Doped Carbon Nanotubes on Reduced Graphene Oxide as Efficient Oxygen Catalysts for Zn-Air Batteries. Energy & Fuels, 2020, 34, 8931-8938.	2.5	28
2761	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
2762	Oriented Synthesis of Pyridinic-N Dopant within the Highly Efficient Multifunction Carbon-Based Materials for Oxygen Transformation and Energy Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 10431-10443.	3.2	14
2763	Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts. Applied Surface Science, 2020, 529, 147174.	3.1	27
2764	Identification of catalytic sites for cerium redox reactions in a metal-organic framework derived powerful electrocatalyst. Energy Storage Materials, 2020, 32, 11-19.	9.5	6
2765	Facile synthesis of microporous N-doped carbon material and its application in supercapacitor. Microporous and Mesoporous Materials, 2020, 306, 110483.	2.2	11
2766	A highly efficient diatomic nickel electrocatalyst for CO ₂ reduction. Chemical Communications, 2020, 56, 8798-8801.	2.2	34
2767	Iron, Copper and Nitrogen Coâ€doped Carbon with Enhanced Electrocatalytic Activity towards Oxygen Reduction. ChemElectroChem, 2020, 7, 3116-3122.	1.7	3
2768	Engineering Pt Nanoparticles with Fe and N Codoped Carbon to Boost Oxygen Reduction Catalytic Performance in Acidic Electrolyte. Energy Technology, 2020, 8, 2000393.	1.8	4
2769	Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024.		129

#	Article	IF	CITATIONS
2770	Influence of gamma radiation on PVC/PANI composites. Journal of Physics: Conference Series, 2020, 1531, 012041.	0.3	0
2771	Impact of Surface Functionalization on the Intrinsic Properties of the Resulting Fe–N–C Catalysts for Fuel Cell Applications. Energy Technology, 2020, 8, 2000433.	1.8	14
2772	Understanding water management in platinum group metal-free electrodes using neutron imaging. Journal of Power Sources, 2020, 472, 228442.	4.0	17
2773	pH Effect on the H ₂ O ₂ -Induced Deactivation of Fe-N-C Catalysts. ACS Catalysis, 2020, 10, 8485-8495.	5.5	92
2774	Ultrafine Rh nanoparticles confined by nitrogen-rich covalent organic frameworks for methanolysis of ammonia borane. Inorganic Chemistry Frontiers, 2020, 7, 1298-1306.	3.0	59
2775	Amperometric H2S sensor based on a Pt-Ni alloy electrode and a proton conducting membrane. Sensors and Actuators B: Chemical, 2020, 311, 127900.	4.0	13
2776	Efficient method to obtain Platinum–Cobalt supported on graphene oxide and electrocatalyst development. International Journal of Hydrogen Energy, 2020, 45, 26226-26237.	3.8	11
2777	Pyrolysis-free formamide-derived N-doped carbon supporting atomically dispersed cobalt as high-performance bifunctional oxygen electrocatalyst. Journal of Energy Chemistry, 2020, 49, 283-290.	7.1	35
2778	Co loaded on graphene with interfacial structure as high performance catalyst for 4eâ^' ORR: a DFT study. Ionics, 2020, 26, 3483-3490.	1.2	9
2779	Preparation of Nonprecious Metal Electrocatalysts for the Reduction of Oxygen Using a Low-Temperature Sacrificial Metal. Journal of the American Chemical Society, 2020, 142, 5477-5481.	6.6	110
2780	High performance Fe–N–C oxygen reduction electrocatalysts by solid-phase preparation of metal–organic frameworks. Materials Research Express, 2020, 7, 025506.	0.8	2
2781	Self-Supported Fe–N–C Electrocatalyst via Pyrolysis of EDTAFeNa Adsorbed on SBA-15 for the Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 3016-3023.	1.8	4
2782	Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction. Nature Communications, 2020, 11, 938.	5.8	238
2783	Into the carbon: A matter of core and shell in advanced electrocatalysis. APL Materials, 2020, 8, .	2.2	12
2784	Space-confined iron nanoparticles in a 3D nitrogen-doped rGO-CNT framework as efficient bifunctional electrocatalysts for rechargeable Zinc–Air batteries. Microporous and Mesoporous Materials, 2020, 298, 110100.	2.2	14
2785	FeN _{<i>x</i>} /FeS _{<i>x</i>} -Anchored Carbon Sheet–Carbon Nanotube Composite Electrocatalysts for Oxygen Reduction. ACS Applied Nano Materials, 2020, 3, 2234-2245.	2.4	12
2786	Nafion-based methanol gas sensor for fuel cell vehicles. Sensors and Actuators B: Chemical, 2020, 311, 127905.	4.0	19
2787	Highly Active and Durable Transition Metal-Coordinated Nitrogen Doped Carbon Electrocatalyst for Oxygen Reduction Reaction in Neutral Media. E3S Web of Conferences, 2020, 141, 01005.	0.2	4

#	Article	IF	CITATIONS
2788	Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. Carbon, 2020, 162, 528-544.	5.4	323
2789	MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chemical Society Reviews, 2020, 49, 1414-1448.	18.7	1,128
2790	Super-fast degradation of high concentration methyl orange over bifunctional catalyst Fe/Fe3C@C with microwave irradiation. Journal of Hazardous Materials, 2020, 392, 122279.	6.5	47
2791	Enhancing the Electrocatalysis of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ by Introducing Lithium Deficiency for Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2020, 12, 10496-10502.	4.0	33
2792	Highly Efficient Oxygen Reduction Reaction Electrocatalysts FeCoâ^'Nâ^'C Derived from Two Metallomacrocycles and Nâ€doped Porous Carbon Materials. ChemElectroChem, 2020, 7, 865-872.	1.7	14
2793	In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. Journal of Alloys and Compounds, 2020, 828, 154238.	2.8	16
2794	Advanced water splitting electrocatalysts <i>via</i> the design of multicomponent heterostructures. Dalton Transactions, 2020, 49, 2761-2765.	1.6	17
2795	Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 3421-3430.	5.2	151
2796	Zincâ€Mediated Template Synthesis of Feâ€N Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	11.1	319
2797	Recent Advances in Non-Precious Transition Metal/Nitrogen-doped Carbon for Oxygen Reduction Electrocatalysts in PEMFCs. Catalysts, 2020, 10, 141.	1.6	46
2798	Atomically thin titanium carbide used as high-efficient, low-cost and stable catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 6994-7004.	3.8	13
2799	Multifunctional electrocatalytic activity of coronene-based two-dimensional metal-organic frameworks: TM-PTC. Applied Surface Science, 2020, 511, 145393.	3.1	18
2800	One-Pot Synthesis of Fe/N-Doped Hollow Carbon Nanospheres with Multienzyme Mimic Activities against Inflammation. ACS Applied Bio Materials, 2020, 3, 1147-1157.	2.3	39
2801	Enhanced cathode performance of Fe ₂ O ₃ , boron nitride-doped rGO nanosheets for microbial fuel cell applications. Sustainable Energy and Fuels, 2020, 4, 1454-1468.	2.5	16
2802	3D Atomic Understanding of Functionalized Carbon Nanostructures for Energy Applications. ACS Applied Nano Materials, 2020, 3, 1600-1611.	2.4	7
2803	Biomass-derived porous graphitic carbon materials for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8, 5773-5811.	5.2	234
2804	Revealing of Active Sites and Catalytic Mechanism in N-Coordinated Fe, Ni Dual-Doped Carbon with Superior Acidic Oxygen Reduction than Single-Atom Catalyst. Journal of Physical Chemistry Letters, 2020, 11, 1404-1410.	2.1	131
2805	Uniform Virusâ€Like Co–N–Cs Electrocatalyst Derived from Prussian Blue Analog for Stretchable Fiberâ€&haped Zn–Air Batteries. Advanced Functional Materials, 2020, 30, 1908945.	7.8	81

#	Article	IF	CITATIONS
2806	Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells. Journal of Power Sources, 2020, 450, 227681.	4.0	45
2807	Cobalt/zinc dual-sites coordinated with nitrogen in nanofibers enabling efficient and durable oxygen reduction reaction in acidic fuel cells. Journal of Materials Chemistry A, 2020, 8, 3686-3691.	5.2	76
2808	N- and S-doped nanoporous carbon framework derived from conjugated microporous polymers incorporation with ionic liquids for efficient oxygen reduction reaction. Materials Today Energy, 2020, 16, 100382.	2.5	19
2809	A cobalt hydroxide nanosheet-mediated synthesis of core–shell-type Mn _{0.005} Co _{2.995} O ₄ spinel nanocubes as efficient oxygen electrocatalysts. Dalton Transactions, 2020, 49, 1652-1659.	1.6	9
2810	ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction. Chinese Journal of Catalysis, 2020, 41, 799-806.	6.9	24
2811	Recent Advances on Metal Organic Framework–Derived Catalysts for Electrochemical Oxygen Reduction Reaction. ACS Symposium Series, 2020, , 231-278.	0.5	6
2812	A robust esterified nanofibre electrode for proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2020, 8, 5298-5307.	5.2	8
2813	Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chemical Engineering Journal, 2020, 389, 124323.	6.6	63
2814	2D Singleâ€Atom Catalyst with Optimized Iron Sites Produced by Thermal Melting of Metal–Organic Frameworks for Oxygen Reduction Reaction. Small Methods, 2020, 4, 1900827.	4.6	113
2815	Investigation of microstructure effects on performance of hierarchically structured porous catalyst using a novel pore network model. Chemical Engineering Journal, 2020, 388, 124261.	6.6	10
2816	High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horizons, 2020, 5, 832-838.	4.1	40
2817	Earth-Abundant Bimetallic Nanoparticle Catalysts for Aerobic Ammoxidation of Alcohols to Nitriles. Journal of Organic Chemistry, 2020, 85, 7543-7548.	1.7	27
2818	First-Principles Study of the Ligand Substituent Effect on ORR Catalysis by Metallocorroles. Journal of Physical Chemistry C, 2020, 124, 11275-11283.	1.5	21
2819	Extraordinary activity of mesoporous carbon supported Ru toward the hydrogen oxidation reaction in alkaline media. Journal of Power Sources, 2020, 461, 228147.	4.0	44
2820	Interfacial Engineering of NiO/NiCo ₂ O ₄ Porous Nanofibers as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 21661-21669.	4.0	80
2821	Molten-salt/oxalate mediating Fe and N-doped mesoporous carbon sheet nanostructures towards highly efficient and durable oxygen reduction electrocatalysis. Microporous and Mesoporous Materials, 2020, 303, 110281.	2.2	16
2822	Nitrogenâ€Doped Porous Carbon Cages for Electrocatalytic Reduction of Oxygen: Enhanced Performance with Iron and Cobalt Dual Metal Centers. ChemCatChem, 2020, 12, 3230-3239.	1.8	18
2823	Furfural as a renewable chemical platform for furfuryl alcohol production. , 2020, , 299-322.		8

щ		15	CITATIONS
#	ARTICLE Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction	IF	CITATIONS
2824	and oxygen reduction reaction. Applied Surface Science, 2020, 514, 146073.	3.1	15
2825	In Situ Aniline-Polymerized Interfaces on GO–PVA Nanoplatforms as Bifunctional Supercapacitors and pH-Universal ORR Electrodes. ACS Applied Energy Materials, 2020, 3, 4727-4737.	2.5	13
2826	A strategy to unlock the potential of CrN as a highly active oxygen reduction reaction catalyst. Journal of Materials Chemistry A, 2020, 8, 8575-8585.	5.2	38
2827	KOH activation of coal-derived microporous carbons for oxygen reduction and supercapacitors. RSC Advances, 2020, 10, 15707-15714.	1.7	21
2828	Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chemical Society Reviews, 2020, 49, 3484-3524.	18.7	453
2829	3D Holeyâ€Graphene Architecture Expedites Ion Transport Kinetics to Push the OER Performance. Advanced Energy Materials, 2020, 10, 2001005.	10.2	41
2830	Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Research, 2020, 13, 1519-1526.	5.8	60
2831	Molten salt "boiling―synthesis of surface decorated bimetallic-nitrogen doped carbon hollow nanospheres: An oxygen reduction catalyst with dense active sites and high stability. Chemical Engineering Journal, 2020, 395, 125064.	6.6	24
2832	Ni-Fe bimetallic core-shell structured catalysts supported on biomass longan aril derived nitrogen doped carbon for efficient oxygen reduction and evolution performance. Materials Today Communications, 2020, 24, 101127.	0.9	6
2833	Best Practice for Evaluating Electrocatalysts for Hydrogen Economy. ACS Applied Materials & Interfaces, 2020, 12, 20500-20506.	4.0	25
2834	Chitosan cross-linked poly(aminoanthraquinone)/Prussian blue ternary nitrogen precursor-derived Fe–N–C oxygen reduction catalysts for microbial fuel cells and zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 9256-9267.	5.2	39
2835	Thin metal organic layer derived Co/Co ₉ S ₈ /N,S co-doped carbon nanosheets synthesized by the space confinement effect of montmorillonite for oxygen electrocatalysis. New Journal of Chemistry, 2020, 44, 9522-9529.	1.4	5
2836	Enhanced utilization of active sites of Fe/N/C catalysts by pore-in-pore structures for ultrahigh mass activity. Nanotechnology, 2020, 31, 315401.	1.3	6
2837	Electrocatalytic Assisted Performance Enhancement for the Na-S Battery in Nitrogen-Doped Carbon Nanospheres Loaded with Fe. Molecules, 2020, 25, 1585.	1.7	15
2838	Fe, Cu-codoped metal-nitrogen-carbon catalysts with high selectivity and stability for the oxygen reduction reaction. Chinese Chemical Letters, 2021, 32, 506-510.	4.8	23
2839	Lowâ€PGM and PGMâ€Free Catalysts for Proton Exchange Membrane Fuel Cells: Stability Challenges and Material Solutions. Advanced Materials, 2021, 33, e1908232.	11.1	201
2840	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	7.3	55
2841	Polymer-mediated synthesis of Fe-Co nanocrystalline alloys: Formulation and properties. Materials Today: Proceedings, 2021, 34, 322-325.	0.9	1

<u> </u>			~	
СП	ΆΤΙ	ON.	REPO	DRT

#	Article	IF	CITATIONS
2842	Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction. Journal of Energy Chemistry, 2021, 54, 579-586.	7.1	52
2843	Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catalysis Today, 2021, 359, 99-105.	2.2	42
2844	Deactivation of Fe-N-C catalysts during catalyst ink preparation process. Catalysis Today, 2021, 359, 9-15.	2.2	9
2845	Ultrafine Fe/Fe3C decorated on Fe-N -C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries. Journal of Energy Chemistry, 2021, 56, 72-79.	7.1	68
2846	3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Applied Catalysis B: Environmental, 2021, 280, 119411.	10.8	324
2847	Understanding the Catalytic Sites of Metal–Nitrogen–Carbon Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2021, 27, 145-157.	1.7	27
2848	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Advanced Materials, 2021, 33, e2000381.	11.1	231
2849	N-doped graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. Journal of Colloid and Interface Science, 2021, 581, 362-373.	5.0	61
2850	PEDOT functionalized ZIF-67 derived Co-N-S triple-doped porous carbon for high-efficiency oxygen reduction. Applied Surface Science, 2021, 535, 147659.	3.1	29
2851	Multi-role graphitic carbon nitride-derived highly porous iron/nitrogen co-doped carbon nanosheets for highly efficient oxygen reduction catalyst. Journal of Colloid and Interface Science, 2021, 582, 1257-1265.	5.0	14
2852	Stable confinement of Fe/Fe3C in Fe, N-codoped carbon nanotube towards robust zinc-air batteries. Chinese Chemical Letters, 2021, 32, 1121-1126.	4.8	45
2853	Transition Metal and Nitrogen Coâ€Doped Carbonâ€based Electrocatalysts for the Oxygen Reduction Reaction: From Active Site Insights to the Rational Design of Precursors and Structures. ChemSusChem, 2021, 14, 33-55.	3.6	49
2854	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	5.0	50
2855	Cobalt and nitrogen-doped carbon with enlarged pore size derived from ZIF-67 by a NaCl-assisted pyrolysis strategy towards oxygen reduction reaction. Ionics, 2021, 27, 289-303.	1.2	19
2856	Status and challenges for the application of platinum group metal-free catalysts in proton-exchange membrane fuel cells. Current Opinion in Electrochemistry, 2021, 25, 100627.	2.5	54
2857	Nanocarbon-based metal-free and non-precious metal bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 2021, 58, 610-628.	7.1	30
2858	Self-activated cathode substrates in rechargeable zinc–air batteries. Energy Storage Materials, 2021, 35, 530-537.	9.5	11
2859	A comparison of single and double Co sites incorporated in N-doped graphene for the oxygen reduction reaction. Journal of Catalysis, 2021, 393, 230-237.	3.1	26

#	Article	IF	CITATIONS
2860	Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN4 sites for efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2021, 586, 498-504.	5.0	29
2861	The assembling principle and strategies of high-density atomically dispersed catalysts. Chemical Engineering Journal, 2021, 417, 127917.	6.6	13
2862	Atom migration-trapping towardÂsingle-atom catalysts for energy electrocatalysis. Materials Today Energy, 2021, 19, 100586.	2.5	15
2863	Cobalt-modified 2D porous organic polymer for highly efficient electrocatalytic removal of toxic urea and nitrophenol. Chemosphere, 2021, 265, 129052.	4.2	14
2864	Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis. Carbon, 2021, 173, 364-375.	5.4	37
2865	Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews, 2021, 429, 213649.	9.5	6
2866	Atomic Fe Dispersed Hierarchical Mesoporous Fe–N–C Nanostructures for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 74-81.	5.5	147
2867	Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped Non-Precious Metal Catalyst Air Cathode. ACS Sensors, 2021, 6, 752-763.	4.0	7
2868	A mild approach to bimetallic ZIF-derived porous carbons as highly efficient oxygen reduction electrocatalysts. International Journal of Hydrogen Energy, 2021, 46, 6188-6196.	3.8	5
2869	Synthesis of hierarchical interconnected graphene oxide for enhanced oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125719.	2.3	4
2870	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	7.2	445
2871	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	1.6	44
2872	Co nanoislands activated Co,N-doped porous carbon nanospheres for highly efficient and durable oxygen electrocatalyst. Applied Surface Science, 2021, 541, 148262.	3.1	12
2873	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	3.7	40
2874	Multiple catalytic reaction sites induced non-radical/radical pathway with graphene layers encapsulated Fe-N-C toward highly efficient peroxymonosulfate (PMS) activation. Chemical Engineering Journal, 2021, 413, 127507.	6.6	49
2875	Carbon supports on preparing iron-nitrogen dual-doped carbon (Fe-N/C) electrocatalysts for microbial fuel cells: mini-review. Chemosphere, 2021, 273, 128570.	4.2	13
2876	A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534.	8.2	35
2877	FeCo nanoalloys embedded in nitrogen-doped carbon nanosheets/bamboo-like carbon nanotubes for the oxygen reduction reaction. Inorganic Chemistry Frontiers, 2021, 8, 109-121.	3.0	25

#	Article	IF	CITATIONS
2878	Zinc assisted epitaxial growth of N-doped CNTs-based zeolitic imidazole frameworks derivative for high efficient oxygen reduction reaction in Zn-air battery. Chemical Engineering Journal, 2021, 414, 127569.	6.6	55
2879	Fabricating Co–N–C catalysts based on ZIF-67 for oxygen reduction reaction in alkaline electrolyte. Journal of Solid State Chemistry, 2021, 294, 121788.	1.4	19
2880	Applications of Atomically Dispersed Oxygen Reduction Catalysts in Fuel Cells and Zinc–Air Batteries. Energy and Environmental Materials, 2021, 4, 307-335.	7.3	58
2881	Oxygen reduction reaction mechanism and kinetics on M-NxCy and M@N-C active sites present in model M-N-C catalysts under alkaline and acidic conditions. Journal of Solid State Electrochemistry, 2021, 25, 45-56.	1.2	59
2882	Stabilization and activation of molecular oxygen at biomimetic tetrapyrroles on surfaces: from UHV to near-ambient pressure. Nanoscale Advances, 2021, 3, 1319-1330.	2.2	5
2883	Application of Oxygen Reduction Catalysts. , 2021, , 215-254.		1
2884	Applications of Polymer Functionalized Graphene in Energy Harvesting: Fuel Cells. RSC Polymer Chemistry Series, 2021, , 292-321.	0.1	0
2885	Dense binary Fe–Cu sites promoting CO ₂ utilization enable highly reversible hybrid Na–CO ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 22114-22128.	5.2	17
2886	Effects of Superparamagnetic Iron Nanoparticles on Electrocatalysts for the Reduction of Oxygen. Inorganic Chemistry, 2021, 60, 4236-4242.	1.9	2
2887	Metal single-atom catalysts for selective hydrogenation of unsaturated bonds. Journal of Materials Chemistry A, 2021, 9, 5296-5319.	5.2	43
2888	N-Induced Electron Transfer Effect on Low-Temperature Activation of Nitrogen for Ammonia Synthesis over Co-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 1529-1539.	3.2	11
2889	Atomically dispersed single iron sites for promoting Pt and Pt ₃ Co fuel cell catalysts: performance and durability improvements. Energy and Environmental Science, 2021, 14, 4948-4960.	15.6	168
2890	Bottom-up pore-generation strategy modulated active nitrogen species for oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 2684-2693.	3.2	4
2891	Solving the activity–stability trade-off riddle. Nature Catalysis, 2021, 4, 6-7.	16.1	24
2892	Versatile materials for energy devices and systems. , 2021, , 265-291.		0
2893	<i>In situ</i> synthesis of Co–B-doped porous carbon through laser thermal reduction for an efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 15562-15570.	1.4	1
2894	Heterometallic coordination polymers as heterogeneous electrocatalysts. Inorganic Chemistry Frontiers, 2021, 8, 2634-2649.	3.0	38
2895	Isolated single iron atoms anchored on a N, S-codoped hierarchically ordered porous carbon framework for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2021, 9, 10110-10119.	5.2	37

#	Article	IF	Citations
2896	A triphasic nanocomposite with a synergetic interfacial structure as a trifunctional catalyst toward electrochemical oxygen and hydrogen reactions. Journal of Materials Chemistry A, 2021, 9, 7114-7121.	5.2	10
2897	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	2.3	18
2898	ZIF-67-based catalysts for oxygen evolution reaction. Nanoscale, 2021, 13, 12058-12087.	2.8	47
2899	Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 23802-23816.	5.2	27
2900	Phase control of ultrafine FeSe nanocrystals in a N-doped carbon matrix for highly efficient and stable oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 3464-3471.	5.2	13
2901	Direct oxidative esterification of alcohols catalyzed by a nitrogen-doped carbon black-supported PdBi bimetallic catalyst under ambient conditions. Journal of Materials Science, 2021, 56, 7308-7320.	1.7	3
2902	Rational design and solvent-free synthesis of iron-embedded 2D composite materials derived from biomass for efficient oxygen reduction reaction. Sustainable Energy and Fuels, 2021, 5, 3979-3986.	2.5	4
2903	Carbon-supported catalysts with atomically dispersed metal sites for oxygen electroreduction: present and future perspectives. Journal of Materials Chemistry A, 2021, 9, 15919-15936.	5.2	24
2904	Oxygen reduction reaction on a 68-atom-gold cluster supported on carbon nanotubes: theoretical and experimental analysis. Materials Chemistry Frontiers, 2021, 5, 7529-7539.	3.2	6
2905	Active Site Identification in FeNC Catalysts and Their Assignment to the Oxygen Reduction Reaction Pathway by In Situ ⁵⁷ Fe Mössbauer Spectroscopy. Advanced Energy and Sustainability Research, 2021, 2, 2000064.	2.8	40
2906	Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts – structure–electrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204.	2.1	8
2907	O,N-Codoped 3D graphene hollow sphere derived from metal–organic frameworks as oxygen reduction reaction electrocatalysts for Zn-air batteries. Nanoscale, 2021, 13, 6174-6183.	2.8	17
2908	Construction of nitrogen-doped porous carbon nanosheets decorated with Fe–N ₄ and iron oxides by a biomass coordination strategy for efficient oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 14570-14579.	1.4	6
2909	Catalyst Materials for Oxygen Reduction Reaction. , 2021, , 85-182.		Ο
2910	Establishing structure/property relationships in atomically dispersed Co–Fe dual site M–N _x catalysts on microporous carbon for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13044-13055.	5.2	49
2911	Graphene-Based Dual-Metal Sites for Oxygen Reduction Reaction: A Theoretical Study. Journal of Physical Chemistry C, 2021, 125, 2334-2344.	1.5	32
2912	N-doped porous carbon spheres as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 5751-5758.	5.2	46
2913	Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives. Nanotechnology Reviews, 2021, 10, 137-157.	2.6	28

#	Article	IF	Citations
2914	Porous Carbons as Oxygen Reduction Electrocatalysts. Engineering Materials, 2021, , 41-77.	0.3	0
2915	lonic liquids as precursors for Fe–N doped carbon nanotube electrocatalysts for the oxygen reduction reaction. Nanoscale, 2021, 13, 15804-15811.	2.8	12
2916	Efficient Fe–Nx/C electrocatalyst for the oxygen reduction reaction derived from porphyrin-encapsulated zeolitic imidazolate frameworks. New Journal of Chemistry, 2021, 45, 6018-6024.	1.4	4
2917	Dark-Field Imaging of Cation Exchange Synthesis of Cu _{2–<i>x</i>} S@Au ₂ S@Au Nanoplates toward the Plasmonic Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2021, 13, 6515-6521.	4.0	7
2918	Monoâ€Doped Carbon Nanofiber Aerogel as a Highâ€Performance Electrode Material for Rechargeable Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 829-838.	1.7	7
2919	Selectivity of Mixed Iron-Cobalt Spinels Deposited on a N,S-Doped Mesoporous Carbon Support in the Oxygen Reduction Reaction in Alkaline Media. Materials, 2021, 14, 820.	1.3	16
2920	Origin of the Activity of Co–N–C Catalysts for Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 2021, 11, 3026-3039.	5.5	105
2921	Noble-metal-free Co@Co2P/N-doped carbon nanotube polyhedron as an efficient catalyst for hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 9030-9039.	3.8	22
2922	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 17832-17852.	7.2	265
2923	Highly efficient electrocatalysts fabricated via electrophoretic deposition for alcohol oxidation, oxygen reduction, hydrogen evolution, and oxygen evolution reactions. International Journal of Hydrogen Energy, 2021, 46, 7263-7283.	3.8	18
2924	Analysis on the secondary active site of FeN4-graphene for oxygen reduction reaction by DFT calculation. Chemical Physics Letters, 2021, 765, 138321.	1.2	15
2925	Characteristics of Electrolytic Deoxygenation Devices Using SiC and SWCNT Electrodes. Chemistry Letters, 2021, 50, 342-345.	0.7	2
2926	Recycling of Graphite Anode from Spent Lithiumâ€ion Batteries for Preparing Feâ€Nâ€doped Carbon ORR Catalyst. ChemCatChem, 2021, 13, 2025-2033.	1.8	23
2927	A General Carboxylateâ€Assisted Approach to Boost the ORR Performance of ZIFâ€Derived Fe/N/C Catalysts for Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2021, 31, 2009645.	7.8	98
2928	Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie, 2021, 133, 17976-17996.	1.6	60
2929	Micro-scale hollow nanosphere as highly efficient ORR electrocatalyst derived from the self-assembly of triblock copolymer (L64). Ionics, 2021, 27, 1611-1618.	1.2	0
2930	Green synthesis of iron and nitrogen coâ€doped porous carbon via pyrolysing lotus root as a <scp>highâ€performance</scp> electrocatalyst for oxygen reduction reaction. International Journal of Energy Research, 2021, 45, 10393-10408.	2.2	17
2931	Highly Oriented Nitrogenâ€doped Carbon Nanotube Integrated Bimetallic Cobalt Copper Organic Framework for Nonâ€enzymatic Electrochemical Glucose and Hydrogen Peroxide Sensor. Electroanalysis, 2021, 33, 1333-1345.	1.5	36

#	Article	IF	CITATIONS
2932	Glucose Doping of a Glcâ€Feâ€ZIF ORR Catalyst for Protonâ€Exchange Membrane Fuel Cells: Optimising Porous Structures and Improving Performance. ChemistrySelect, 2021, 6, 1271-1275.	0.7	1
2933	Carbon monoxide powered fuel cell towards H2-onboard purification. Science Bulletin, 2021, 66, 1305-1311.	4.3	21
2934	Nitrogen-Rich Precursors Assisted Synthesis of Metal-Organic Framework-Derived Nanostructures as Bifunctional Catalysts for Electrochemical Sensing and Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2021, 168, 027514.	1.3	5
2935	In-situ synthesis of Fe, N, S co-doped graphene-like nanosheets around carbon nanoparticles with dual-nitrogen-source as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 8002-8013.	3.8	8
2936	Potassiumâ€lon Activating Formation of Feâ~'Nâ~'C Moiety as Efficient Oxygen Electrocatalyst for Znâ€Air Batteries. ChemElectroChem, 2021, 8, 1298-1306.	1.7	10
2937	Molten NaClâ€Assisted Synthesis of Porous Feâ€N Electrocatalysts with a High Density of Catalytically Accessible FeN ₄ ÂActive Sites and Outstanding Oxygen Reduction Reaction Performance. Advanced Energy Materials, 2021, 11, 2100219.	10.2	160
2938	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie - International Edition, 2021, 60, 9516-9526.	7.2	119
2939	Robust Coâ€Embedded Nitrogen Doped Carbon Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ChemistrySelect, 2021, 6, 2298-2305.	0.7	3
2940	Dynamically Unveiling Metal–Nitrogen Coordination during Thermal Activation to Design Highâ€Efficient Atomically Dispersed CoN ₄ Active Sites. Angewandte Chemie, 2021, 133, 9602-9612.	1.6	21
2941	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie, 2021, 133, 8971-8977.	1.6	26
2942	Controlled pyrolysis of ionically self-assembled metalloporphyrins on carbon as cathodic electrocatalysts of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11041-11050.	3.8	4
2943	Metallo-deuteroporphyrins derived multi-layered hollow carbon spheres electrocatalysts for highly efficient oxygen reduction reaction. Nanotechnology, 2021, 32, 235401.	1.3	1
2944	Thermally Controlled Construction of Fe–N <i>_x</i> Active Sites on the Edge of a Graphene Nanoribbon for an Electrocatalytic Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 15101-15112.	4.0	25
2945	Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C ₂ N. Journal of the American Chemical Society, 2021, 143, 4405-4413.	6.6	138
2946	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	10.2	61
2947	Recent Advancements of Porphyrinâ€Like Singleâ€Atom Catalysts: Synthesis and Applications. Small Structures, 2021, 2, 2100007.	6.9	77
2948	A Novel Fe and Cu Bimetallic Mixed Porous Carbon Material for Oxygen Reduction. Electrocatalysis, 2021, 12, 362-371.	1.5	2
2949	Enhanced electrocatalytic activity of urchin-like Nb2O5 microspheres by synergistic effects with Pd toward electrooxidation of ethylene glycol in an alkaline medium. Molecular Catalysis, 2021, 504, 111436	1.0	2

#	Article	IF	CITATIONS
2950	Cobalt-based derivatives oxygen evolution reaction. Applied Nanoscience (Switzerland), 2021, 11, 1367-1378.	1.6	6
2951	Universal Method to Fabricate Transition Metal Single-Atom-Anchored Carbon with Excellent Oxygen Reduction Reaction Activity. ACS Applied Materials & Interfaces, 2021, 13, 13534-13540.	4.0	14
2952	Atomic cobalt anchored on covalent triazine frameworks with ultra-high performance towards oxygen reduction reaction. Science China Materials, 2021, 64, 2221-2229.	3.5	12
2953	Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 2021, 33, e2006292.	11.1	300
2954	Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. Science Advances, 2021, 7, .	4.7	48
2955	Fe/Fe ₃ C Boosts H ₂ O ₂ Utilization for Methane Conversion Overwhelming O ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 8889-8895.	7.2	66
2956	Fe–N–C with Intensified Exposure of Active Sites for Highly Efficient and Stable Direct Methanol Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 16279-16288.	4.0	14
2957	Promoting Atomically Dispersed MnN ₄ Sites <i>via</i> Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS Nano, 2021, 15, 6886-6899.	7.3	119
2958	High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 5525-5531.	5.5	22
2959	Abundant Co-Nx sites onto hollow MOF-Derived nitrogen-doped carbon materials for enhanced oxygen reduction. Journal of Power Sources, 2021, 492, 229632.	4.0	34
2960	Manganese-Assisted Annealing Produces Abundant Macropores in a Carbon Aerogel to Enhance Its Oxygen Reduction Catalytic Activity in Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5526-5535.	3.2	16
2961	Strongly stabilized integrated bimetallic oxide of Fe2O3-MoO3 Nano-crystal entrapped N-doped graphene as a superior oxygen reduction reaction electrocatalyst. Chemical Engineering Journal, 2021, 410, 128358.	6.6	47
2962	Effect of Outer Carbon Layer Thickness of Carbon-covered N-doped Hollow Carbon Nanospheres on Its Electrocatalytic Performance. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 166-173.	0.4	2
2963	S-doped CoMn2O4 with more high valence metallic cations and oxygen defects for zinc-air batteries. Journal of Power Sources, 2021, 491, 229584.	4.0	40
2964	Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode. Automotive Innovation, 2021, 4, 131-143.	3.1	22
2965	Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. Journal of Catalysis, 2021, 396, 215-223.	3.1	47
2966	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
2967	Phase-Controlled Synthesis of Pd–Se Nanocrystals for Phase-Dependent Oxygen Reduction Catalysis. Nano Letters, 2021, 21, 3805-3812.	4.5	46

#	Article	IF	CITATIONS
2968	Pore-scale numerical study of multiphase reactive transport processes in cathode catalyst layers of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2021, 46, 13283-13297.	3.8	25
2969	Solid-State Synthesis of Highly Dispersed Nitrogen-Coordinated Single Iron Atom Electrocatalysts for Proton Exchange Membrane Fuel Cells. Nano Letters, 2021, 21, 3633-3639.	4.5	32
2970	Sustainable Water Purification and Energy Generation Over Crystalline Chitosan Grafted Polyaniline Composite. Journal of Polymers and the Environment, 2021, 29, 3744-3755.	2.4	1
2971	Imineâ€Nitrogenâ€Doped Carbon Nanotubes for the Electrocatalytic Reduction of Flue Gas CO ₂ . ChemElectroChem, 2021, 8, 1792-1797.	1.7	12
2972	Effect of the Synthetic Method on the Properties of Ni-Based Hydrogen Oxidation Catalysts. ACS Applied Energy Materials, 2021, 4, 3404-3423.	2.5	11
2973	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe MA¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	1.5	9
2974	Effects of functional supports on efficiency and stability of atomically dispersed noble-metal electrocatalysts. EnergyChem, 2021, 3, 100054.	10.1	20
2975	Surface-confinement assisted synthesis of nitrogen-rich single atom Feâ `N/C electrocatalyst with dual nitrogen sources for enhanced oxygen reduction reaction. Nanotechnology, 2021, 32, 305402.	1.3	7
2976	Carbonâ€based nonprecious metal electrocatalysts derived from <scp>MOFs</scp> for oxygenâ€reduction reaction. International Journal of Energy Research, 2021, 45, 15676-15738.	2.2	16
2977	Ionâ€Induced Formation of Hierarchical Porous Nitrogenâ€Doped Carbon Materials with Enhanced Oxygen Reduction. ChemCatChem, 2021, 13, 3112-3118.	1.8	2
2978	High-performance Fe–N–C electrocatalysts with a "chain mail―protective shield. Nano Materials Science, 2021, 3, 420-428.	3.9	9
2979	Electrocatalysis for Oxygen Reduction Reaction on EDTAFeNa and Melamine co-Derived Self-Supported Fe-N-C Materials. Catalysts, 2021, 11, 623.	1.6	2
2980	Dimethylglyoxime Clathrate as Ligand Derived Nitrogen-Doped Carbon-Supported Nano-Metal Particles as Catalysts for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 1329.	1.9	4
2981	Novel Mn-/Co-N <i>_x</i> Moieties Captured in N-Doped Carbon Nanotubes for Enhanced Oxygen Reduction Activity and Stability in Acidic and Alkaline Media. ACS Applied Materials & Interfaces, 2021, 13, 23191-23200.	4.0	57
2982	Single Co Atoms Implanted into N-Doped Hollow Carbon Nanoshells with Non-Planar Co-N ₄ -1-O ₂ Sites for Efficient Oxygen Electrochemistry. Inorganic Chemistry, 2021, 60, 7498-7509.	1.9	17
2983	Optimizing Surface Nâ€Doping of Feâ€Nâ€C Catalysts Derived from Fe/Melamineâ€Decorated Polyaniline for Oxygen Reduction Electrocatalysis. Advanced Materials Interfaces, 2021, 8, 2100197.	1.9	10
2984	Electrochemical Catalysts for Green Hydrogen Energy. Advanced Energy and Sustainability Research, 2021, 2, 2100019.	2.8	4
2985	Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chinese Chemical Letters, 2022, 33, 1070-1073.	4.8	17

#	Article	IF	CITATIONS
2986	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	2.8	123
2987	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. Journal of Industrial and Engineering Chemistry, 2021, 97, 466-475.	2.9	19
2988	A mini-review on decorating, templating of commercial and electrospinning of new porous carbon electrodes for vanadium redox flow batteries. JPhys Materials, 2021, 4, 032007.	1.8	16
2990	FeNC Electrocatalysts with Densely Accessible FeN ₄ Sites for Efficient Oxygen Reduction Reaction. Advanced Functional Materials, 2021, 31, 2102420.	7.8	110
2991	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	5.8	35
2992	Bimetal zeolite imidazolate framework derived Mo0.84Ni0.16-Mo2C@NC nanosphere for overall water splitting in alkaline solution. Journal of Colloid and Interface Science, 2021, 592, 349-357.	5.0	23
2993	Facile and economic synthesis of heteroatoms co-doped graphene using garlic biomass as a highly stable electrocatalyst toward 4 eâ ORR. Journal of the Iranian Chemical Society, 2022, 19, 257-267.	1.2	3
2994	The use of reactive binder for carbon-based oxygen reduction reaction catalyst in neutral medium. Electrochimica Acta, 2021, 380, 138155.	2.6	2
2995	Chemical Vapor Deposition for N/S-Doped Single Fe Site Catalysts for the Oxygen Reduction in Direct Methanol Fuel Cells. ACS Catalysis, 2021, 11, 7450-7459.	5.5	120
2996	Carbohydrate-derived porous carbon materials: An ideal platform for green organic synthesis. Chinese Chemical Letters, 2022, 33, 186-196.	4.8	21
2997	Structural Design Strategy and Active Site Regulation of Highâ€Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small, 2021, 17, e2006766.	5.2	89
2998	Synthesis and Characterization of Cobalt and Nitrogen Co-Doped Peat-Derived Carbon Catalysts for Oxygen Reduction in Acidic Media. Catalysts, 2021, 11, 715.	1.6	6
2999	FeNi-functionalized 3D N, P doped graphene foam as a noble metal-free bifunctional electrocatalyst for direct methanol fuel cells. Journal of Alloys and Compounds, 2021, 867, 158732.	2.8	38
3000	Highly Active Electrocatalyst Derived from ZIF-8 Decorated with Iron(III) and Cobalt(III) Porphyrin Toward Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Chemical Research in Chinese Universities, 0, , 1.	1.3	2
3001	Fabrication of platinum group metal-free catalyst layer with enhanced mass transport characteristics via an electrospraying technique. Materials Today Energy, 2021, 20, 100641.	2.5	9
3002	Thermal Engineering of NiCo odoped Carbon Nanofibers toward Enhanced Oxygen Electrocatalysis for Zn–Air Batteries. Energy Technology, 2021, 9, 2100069.	1.8	4
3003	Effect of porosity and active area on the assessment of catalytic activity of non-precious metal electrocatalyst for oxygen reduction. Journal of Physics Condensed Matter, 2021, 33, 324001.	0.7	3
3004	Poly-5-aminoindole and graphene-like materials derived bifunctional Co–N-C electrocatalysts for oxygen reduction and hydrogen evolution. Journal of Solid State Electrochemistry, 2021, 25, 2309-2319.	1.2	4

#	Article	IF	CITATIONS
3005	ldentifying Activity and Selectivity Trends for the Electrosynthesis of Hydrogen Peroxide via Oxygen Reduction on Nickel–Nitrogen–Carbon Catalysts. Journal of Physical Chemistry C, 2021, 125, 15830-15840.	1.5	8
3006	Incorporation of Activated Biomasses in Fe-N-C Catalysts for Oxygen Reduction Reaction with Enhanced Stability in Acidic Media. ACS Applied Energy Materials, 2021, 4, 6912-6922.	2.5	15
3007	Novel core-shell CuMo-oxynitride@N-doped graphene nanohybrid as multifunctional catalysts for rechargeable zinc-air batteries and water splitting. Nano Energy, 2021, 85, 105987.	8.2	89
3008	Catalysts by pyrolysis: Direct observation of chemical and morphological transformations leading to transition metal-nitrogen-carbon materials. Materials Today, 2021, 47, 53-68.	8.3	30
3009	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	23.0	156
3010	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110
3011	General Design Concept for Singleâ€Atom Catalysts toward Heterogeneous Catalysis. Advanced Materials, 2021, 33, e2004287.	11.1	170
3012	Metal organic framework derived iron-nitrogen doped porous carbon support decorated with cobalt and iron as efficient nanocatalyst toward oxygen reduction reaction. Journal of Power Sources, 2021, 499, 229956.	4.0	26
3013	ZnO@zeolitic imidazolate frameworks derived porous hybrid hollow carbon shell as an efficient electrocatalyst for oxygen reduction. Journal of Materials Science, 2021, 56, 14989-15003.	1.7	4
3014	Elucidating Synergistic Effects of Different Metal Ratios in Bimetallic Fe/Co-N-C Catalysts for Oxygen Reduction Reaction. Catalysts, 2021, 11, 841.	1.6	10
3015	Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule, 2021, 5, 1704-1731.	11.7	416
3017	Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor. Journal of CO2 Utilization, 2021, 50, 101583.	3.3	17
3018	Achieving Selective and Efficient Electrocatalytic Activity for CO2 Reduction on N-Doped Graphene. Frontiers in Chemistry, 2021, 9, 734460.	1.8	9
3019	Using Magnetometry to Understand the Relative Role of Magnetic Particles in Co-Based Catalysts for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 17709-17717.	1.5	1
3020	Efficient and stable operation of capacitive deionization assessed by electrode and membrane asymmetry. Electrochimica Acta, 2021, 388, 138631.	2.6	11
3021	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	10.2	109
3022	Co/N-doped carbon nanotubes-grafted porous carbon sheets architecture as efficient electrocatalyst for oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 871, 159566.	2.8	25
3023	Effects of the induced micro- and meso-porosity on the single site density and turn over frequency of Fe-N-C carbon electrodes for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 291, 120068.	10.8	62

#	Article	IF	CITATIONS
3024	Transition metals decorated g-C3N4/N-doped carbon nanotube catalysts for water splitting: A review. Journal of Electroanalytical Chemistry, 2021, 895, 115510.	1.9	59
3025	Co2P embedded in nitrogen-doped carbon nanoframework derived from Co-based metal-organic framework as efficient oxygen reduction reaction electrocatalyst for enhanced performance of activated carbon air-cathode microbial fuel cell. Journal of Electroanalytical Chemistry, 2021, 895, 115355.	1.9	5
3026	Rational design of platinum-group-metal-free electrocatalysts for oxygen reduction reaction. Current Opinion in Electrochemistry, 2021, 28, 100724.	2.5	3
3027	Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N ₃ as an Active Site for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2021, 143, 14530-14539.	6.6	218
3028	Improving the Stability of Nonâ€Nobleâ€Metal M–N–C Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cel through M–N Bond Length and Coordination Regulation. Advanced Materials, 2021, 33, e2006613.	ls 11.1	94
3029	One-Step Chemical Vapor Deposition Synthesis of Hierarchical Ni and N Co-Doped Carbon Nanosheet/Nanotube Hybrids for Efficient Electrochemical CO ₂ Reduction at Commercially Viable Current Densities. ACS Catalysis, 2021, 11, 10333-10344.	5.5	32
3030	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d â€Band Center via Local Coordination Tuning. Angewandte Chemie, 2021, 133, 22082-22088.	1.6	4
3031	Generation Pathway of Hydroxyl Radical in Fe/N/C-Based Oxygen Reduction Electrocatalysts under Acidic Media. Journal of Physical Chemistry Letters, 2021, 12, 7797-7803.	2.1	17
3032	Constructing Graphiticâ€Nitrogenâ€Bonded Pentagons in Interlayerâ€Expanded Graphene Matrix toward Carbonâ€Based Electrocatalysts for Acidic Oxygen Reduction Reaction. Advanced Materials, 2021, 33, e2103133.	11.1	47
3033	Morphology control of Ni doped rod like MIL-88A derived FeS2 embedded in nitrogen-rich carbon as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Molecular Structure, 2021, 1237, 130329.	1.8	5
3034	Nanostructured Fe-N-C pyrolyzed catalyst for the H2O2 electrochemical sensing. Electrochimica Acta, 2021, 387, 138468.	2.6	11
3035	Development of a highly active Fe N C catalyst with the preferential formation of atomic iron sites for oxygen reduction in alkaline and acidic electrolytes. Journal of Colloid and Interface Science, 2021, 596, 148-157.	5.0	13
3036	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the <i>d</i> â€Band Center via Local Coordination Tuning. Angewandte Chemie - International Edition, 2021, 60, 21911-21917.	7.2	132
3037	Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2021, 894, 115397.	1.9	41
3038	Single-atom M–N–C catalysts for oxygen reduction electrocatalysis. Trends in Chemistry, 2021, 3, 779-794.	4.4	37
3039	N/B Co-doped carbon as metal-free cathode catalyst for high-performance asymmetric neutral-alkaline microbial fuel cell. Electrochimica Acta, 2021, 389, 138518.	2.6	10
3040	Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research, 2022, 15, 1753-1778.	5.8	44
3041	Synergistic desulfurization over graphitic N and enzyme-like Fe-N sites of Fe-N-C. Chemical Engineering Journal, 2022, 430, 132657.	6.6	20

ARTICLE IF CITATIONS Cobalt supported nitrogen-doped carbon nanotube as efficient catalyst for hydrogen evolution 3042 3.1 16 reaction and reduction of 4-nitrophenol. Applied Surface Science, 2022, 572, 151450. Kinetic Effects of Temperature on Fe–N–C Catalysts for 2e- and 4e-Oxygen Reduction Reactions. 3043 1.3 Journal of the Electrochemical Society, 2021, 168, 096502. Enhancing the electrocatalytic activity of Fe phthalocyanines for the oxygen reduction reaction by the presence of axial ligands: Pyridine-functionalized single-walled carbon nanotubes. Electrochimica 3044 2.6 27 Acta, 2021, 398, 139263. Deactivation, reactivation and super-activation of Fe-N/C oxygen reduction electrocatalysts: Gas sorption, physical and electrochemical investigation using NO and O2. Applied Catalysis B: 3045 24 Environmental, 2021, 292, 120169. A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for 3046 6.6 43 acidic oxygen reduction. Chemical Engineering Journal, 2022, 430, 132642. A Mild CO₂ Etching Method To Tailor the Pore Structure of Platinum-Free Oxygen Reduction Catalysts in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 45661-45669. 3047 4.0 Simultaneously Engineering the Coordination Environment and Pore Architecture of Metal–Organic Frameworkâ€Óerived Singleâ€Atomic Iron Catalysts for Ultraefficient Oxygen Reduction. Small, 2021, 17, 3048 5.2 49 e2102425. Hybrid dual-template induced nitrogen-doped hierarchically porous carbon as highly efficient oxygen 3049 3.8 reduction electrocatalyst. International Journal of Hydrogen Energy, 2021, 46, 36167-36175. Chitosan derived N-doped carbon nanotubes for selective hydrogenation of nitroarenes to anilines. 3050 3.8 12 International Journal of Hydrogen Energy, 2021, 46, 36124-36136. Metalâ€Nitrogenâ€Carbon Clusterâ€Decorated Titanium Carbide is a Durable and Inexpensive Oxygen 3.6 Reduction Reaction Electrocatalyst. ChemSusChem, 2021, 14, 4680-4689. Nitrogen-doped carbon@TiO2 double-shelled hollow spheres as an electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva. Journal of 3052 17 2.4 Pharmaceutical Analysis, 2022, 12, 436-445. Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO₂. ChemCatChem, 2021, 13, 4859-4877. High Activity of Platinum-Cobalt Supported by Natto-like N-Doped Carbon Sphere as Durable Catalyst 3054 2.5 4 for Oxygen Reduction Reaction. Energy & amp; Fuels, 2021, 35, 15074-15083. Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. Journal of Power Sources, 2021, 506, 230143. 4.0 Boosting the activity of non-platinum group metal electrocatalyst for the reduction of oxygen via 3056 dual-ligated atomically dispersed precursor's immobilized on carbon supports. Nano Energy, 2021, 90, 7 8.2 106547. Fe-Doped Copolymer-Templated Nitrogen-Rich Carbon as a PGM-Free Fuel Cell Catalyst. ACS Applied Energy Materials, 2021, 4, 9653-9663 Effect of PANI–AC Composite on Electrochemical Synthesis of Hydrogen Peroxide by Alkaline H2–O2 3058 0.30 Fuel Cell Reactor. Russian Journal of Electrochemistry, 2021, 57, 978-984. Tailoring active sites of iron-nitrogen-carbon catalysts for oxygen reduction in alkaline environment: 3059 Effect of nitrogen-based organic precursor and pyrolysis atmosphere. Electrochimica Acta, 2021, 391, 138899.

#	Article	IF	Citations
3060	FeCo@Nâ€Doped Nanoparticles Encapsulated in Polyacrylamideâ€Derived Carbon Nanocages as a Functional Filler for Polyethylene System. ChemistrySelect, 2021, 6, 8546-8559.	0.7	1
3061	How determinant is the iron precursor ligand in Fe-N-C single-site formation and activity for oxygen reduction reaction?. Electrochimica Acta, 2021, 394, 139105.	2.6	5
3062	Platinum group metal-free Fe-based (Fe N C) oxygen reduction electrocatalysts for direct alcohol fuel cells. Current Opinion in Electrochemistry, 2021, 29, 100756.	2.5	17
3063	Unraveling the valence state and phase transformation of iron-based electrocatalysts towards oxygen reduction reaction. Journal of Alloys and Compounds, 2021, 877, 160274.	2.8	5
3064	Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chemical Engineering Journal, 2021, 421, 129719.	6.6	38
3065	Hydrophilicity and hydrophobicity: Key aspects for biomedical and technological purposes. Physica A: Statistical Mechanics and Its Applications, 2021, 580, 126189.	1.2	14
3066	Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Applied Catalysis B: Environmental, 2021, 294, 120239.	10.8	70
3067	The pseudo-capacitance of graphitic nanoribbons aerogel with encapsulated Fe nanoparticles. Journal of Alloys and Compounds, 2021, 883, 160742.	2.8	1
3068	Synergistic coupling ensuing cobalt phosphosulfide encapsulated by heteroatom-doped two-dimensional graphene shell as an excellent catalyst for oxygen electroreduction. Chemical Engineering Journal, 2021, 423, 130233.	6.6	10
3069	Performance evaluation of functionalized carbon aerogel as oxygen reduction reaction electrocatalyst in zinc-air cell. Journal of Power Sources, 2021, 511, 230458.	4.0	12
3070	Fe-Nx doped carbon nanotube as a high efficient cathode catalyst for proton exchange membrane fuel cell. Chemical Engineering Journal, 2021, 423, 130241.	6.6	23
3071	Synergistically enhanced nitrate removal by capacitive deionization with activated carbon/PVDF/polyaniline/ZrO2 composite electrode. Separation and Purification Technology, 2021, 274, 119108.	3.9	12
3072	Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. Chinese Journal of Catalysis, 2021, 42, 2094-2104.	6.9	15
3073	Synthesis and application in oxygen reduction reaction of N-doping porous graphitic carbon from biomass waste. Fuel Processing Technology, 2021, 224, 107028.	3.7	15
3074	Electrocatalytic H2O2 generation for disinfection. Chinese Journal of Catalysis, 2021, 42, 2149-2163.	6.9	39
3075	Elucidating the roles of the Fe-Nx active sites and pore characteristics on Fe-Pani-biomass-derived RGO as oxygen reduction catalysts in PEMFCs. Materials Research Bulletin, 2022, 145, 111526.	2.7	7
3076	Conversion of rice husk biomass into electrocatalyst for oxygen reduction reaction in Zn-air battery: Effect of self-doped Si on performance. Journal of Colloid and Interface Science, 2022, 606, 1014-1023.	5.0	20
3077	Investigating the electron shuttling characteristics of resazurin in enhancing bio-electricity generation in microbial fuel cell. Chemical Engineering Journal, 2022, 428, 130924.	6.6	6

#	Article	IF	CITATIONS
3078	Ultralight Coral-like hierarchical Fe/CNTs/Porous carbon composite derived from biomass with tunable microwave absorption performance. Applied Surface Science, 2022, 571, 151349.	3.1	25
3079	Fe–N–C electrocatalysts in the oxygen and nitrogen cycles in alkaline media: the role of iron carbide. Physical Chemistry Chemical Physics, 2021, 23, 26674-26679.	1.3	13
3080	Recent advances in non-precious metal electrocatalysts for oxygen reduction in acidic media and PEMFCs: an activity, stability and mechanism study. Green Chemistry, 2021, 23, 6898-6925.	4.6	32
3081	In Situ X-ray Absorption Spectroscopy to Monitor the Degradation of Fe/N/C Cathode Catalyst in Proton Exchange Membrane Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 014513.	1.3	14
3082	Anisotropic anion exchange membranes with extremely high water uptake for water electrolysis and fuel cells. Journal of Materials Chemistry A, 2021, 9, 23485-23496.	5.2	33
3083	Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy and Environmental Science, 2021, 14, 1016-1028.	15.6	130
3084	A single-site iron catalyst with preoccupied active centers that achieves selective ammonia electrosynthesis from nitrate. Energy and Environmental Science, 2021, 14, 3522-3531.	15.6	243
3085	3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells. Chemistry in the Environment, 2021, , 139-178.	0.2	2
3086	Honeycomb-like Fe/Fe ₃ C-doped porous carbon with more Fe–N _{<i>x</i>} active sites for promoting the electrocatalytic activity of oxygen reduction. Sustainable Energy and Fuels, 2021, 5, 5295-5304.	2.5	7
3087	Electrocatalytic oxygen reduction by a Co/Co ₃ O ₄ @N-doped carbon composite material derived from the pyrolysis of ZIF-67/poplar flowers. RSC Advances, 2021, 11, 2693-2700.	1.7	21
3088	Cu@Pt/NCNT preparation and electrochemical performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 4214-4227.	1.1	0
3089	High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction. RSC Advances, 2021, 11, 29555-29563.	1.7	1
3090	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zincâ \in "air batteries. Nanoscale, 2021, 13, 10862-10870.	2.8	21
3091	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
3092	Rational design and synthesis of hollow Fe–N/C electrocatalysts for enhanced oxygen reduction reaction. Chemical Communications, 2021, 57, 5258-5261.	2.2	27
3093	Structural Advantage Induced by Sulfur to Boost the Catalytic Performance of FeNC Catalyst towards the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 3653-3658.	1.8	13
3094	Thermal Annealing Effect of Coâ^'Nâ^'C/Carbon Nanotube on the Electrochemical Oxygen Reduction Reaction. Energy Technology, 2018, 6, 2394-2398.	1.8	8
3095	Role of Nitrogen Precursor on the Activity Descriptor towards Oxygen Reduction Reaction in Ironâ€Based Catalysts. ChemistrySelect, 2018, 3, 6542-6550.	0.7	9

# 3096	ARTICLE PEM Fuel Cells, Materials and Design Development Challenges. , 2012, , 7756-7777.	IF	Citations 3
3097	Alkaline Membrane Fuel Cells. , 2014, , 26-33.		7
3098	Fuel Cells, Non-Precious Metal Catalysts for Oxygen Reduction Reaction. , 2014, , 909-918.		5
3099	Molecular Complexes in Electrocatalysis for Energy Production and Storage. Nanostructure Science and Technology, 2013, , 273-315.	0.1	2
3100	PEM Fuel Cells, Modeling. , 2017, , 1-61.		3
3101	Proton-Exchange Membrane Fuel Cells with Low-Pt Content. , 2018, , 1-20.		7
3102	Proton-Exchange Membrane Fuel Cells with Low-Pt Content. , 2019, , 323-342.		7
3103	PEM Fuel Cells: Materials and Design Development Challenges. , 2012, , 173-193.		1
3104	Fe3C Nanorods Encapsulated in N-Doped Carbon Nanotubes as Active Electrocatalysts for Hydrogen Evolution Reaction. Electrocatalysis, 2018, 9, 264-270.	1.5	24
3105	Single-phase Ru1â^â^îMn Co O2 nanoparticles as highly effective oxygen reduction electrocatalysts in alkaline media with enhanced stability and fuel-tolerance. Applied Catalysis B: Environmental, 2020, 277, 119149.	10.8	13
3106	Site specific nitrogen incorporation in reduced graphene oxide using imidazole as a novel reducing agent for efficient oxygen reduction reaction and improved supercapacitive performance. Carbon, 2020, 166, 361-373.	5.4	16
3107	Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. Carbon, 2020, 167, 559-574.	5.4	52
3108	Fe-N-doped carbon catalysts prepared by hybrid PECVD/sputtering system for oxygen reduction reaction. Chemical Physics Letters, 2017, 679, 71-76.	1.2	7
3109	Fe0.8Zn0.2 Nanoparticles Wrapped in Mesoporous Nitrogen-Doped Carbon Layers as Electrocatalysts for an Efficient Oxygen Reduction Reaction. Energy & Fuels, 2020, 34, 16800-16809.	2.5	4
3110	Calcination of Porphyrin-Based Conjugated Microporous Polymers Nanotubes As Nanoporous N-Rich Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. ACS Applied Energy Materials, 2020, 3, 5260-5268.	2.5	29
3111	Electric Field Polarization To Increase Bifunctional Oxygen Electrocatalyst Performance of Nitrogen–Iron Functionalized Carbon Nanomaterials. ACS Applied Energy Materials, 2020, 3, 1484-1495.	2.5	6
3112	Membrane-less Direct Formate Fuel Cell Using an Fe–N-Doped Bamboo Internode as the Binder-Free and Monolithic Air-Breathing Cathode. ACS Applied Materials & Interfaces, 2020, 12, 27095-27103.	4.0	13
3113	Toward pH Independent Oxygen Reduction Reaction by Polydopamine Derived 3D Interconnected, Iron Carbide Embedded Graphitic Carbon. ACS Applied Materials & Interfaces, 2021, 13, 8147-8158.	4.0	15

#	Article	IF	CITATIONS
3114	In Situ Synthesis of MoS ₂ on C ₃ N ₄ To Form MoS ₂ /C ₃ N ₄ with Interfacial Mo–N Coordination for Electrocatalytic Reduction of N ₂ to NH ₃ . ACS Sustainable Chemistry and Engineering, 2020, 8, 8814-8822.	3.2	40
3115	Ultrahigh pressure synthesis of highly efficient FeN _x /C electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 17470-17475.	5.2	10
3116	Methanol tolerance of atomically dispersed single metal site catalysts: mechanistic understanding and high-performance direct methanol fuel cells. Energy and Environmental Science, 2020, 13, 3544-3555.	15.6	129
3117	Rational prediction of multifunctional bilayer single atom catalysts for the hydrogen evolution, oxygen evolution and oxygen reduction reactions. Nanoscale, 2020, 12, 20413-20424.	2.8	17
3118	A NH ₄ Cl–NaCl mixed salts assisted pyrolysis route for preparation of a high performance Fe/N/C oxygen reduction reaction catalyst. Inorganic Chemistry Frontiers, 2020, 7, 2932-2940.	3.0	12
3119	Effect of Deformation on Electrochemical Performance of Aluminum-Air Battery. Journal of the Electrochemical Society, 2020, 167, 100505.	1.3	4
3120	Nanochannel-Controlled Synthesis of Ultrahigh Nitrogen-Doping Efficiency on Mesoporous Fe/N/C Catalysts for Oxygen Reduction Reaction. Nanoscale Research Letters, 2020, 15, 21.	3.1	9
3121	Synchrotron Radiation Analysis of Carbon Alloy Catalysts. Hyomen Kagaku, 2011, 32, 716-722.	0.0	1
3122	Use of Grape Leaves for Producing Graphene for Use as an Oxygen Reduction Electrocatalyst. International Journal of Electrochemical Science, 0, , 4754-4773.	0.5	3
3123	Electrochemical Deposition of Polypyrrole Nanostructures for Energy Applications: A Review. Current Nanoscience, 2020, 16, 462-477.	0.7	19
3125	Nitrogen Coordinated Single Atomic Metals Supported on Nanocarbons: A New Frontier in Electrocatalytic CO2 Reduction. Engineered Science, 2018, , .	1.2	13
3126	Fabrication of Mn-N-C Catalyst for Oxygen Reduction Reactions Using Mn-Embedded Carbon Nanofiber. Energies, 2020, 13, 2561.	1.6	6
3127	Relevant Properties of Carbon Support Materials in Successful Fe-N-C Synthesis for the Oxygen Reduction Reaction: Study of Carbon Blacks and Biomass-Based Carbons. Materials, 2021, 14, 45.	1.3	12
3128	Recent Progress in the Identification of Active Sites in Pyrolyzed Feâ^'N/C Catalysts and Insights into Their Role in Oxygen Reduction Reaction. Journal of Electrochemical Science and Technology, 2017, 8, 169-182.	0.9	22
3129	Migration-Prevention Strategy to Fabricate Single-Atom Fe Implanted N-Doped Porous Carbons for Efficient Oxygen Reduction. Research, 2019, 2019, 1768595.	2.8	25
3130	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	2.8	45
3131	Nanocomposites of nitrogen-doped graphene and cobalt tungsten oxide as efficient electrode materials for application in electrochemical devices. AIMS Materials Science, 2016, 3, 1456-1473.	0.7	8
3132	One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction. Carbon Letters, 2016, 17, 53-64.	3.3	6

#	Article	IF	CITATIONS
3133	Development of Robust Electrocatalysts Comprising Single-atom Sites with Designed Coordination Environments. Electrochemistry, 2020, 88, 489-496.	0.6	5
3134	The joint effect of electrical conductivity and surface oxygen functionalities of carbon supports on the oxygen reduction reaction studied over bare supports and Mn–Co spinel/carbon catalysts in alkaline media. Catalysis Science and Technology, 2021, 11, 7578-7591.	2.1	15
3135	Atomic Fe–N ₅ catalytic sites embedded in N-doped carbon as a highly efficient oxygen electrocatalyst for zinc–air batteries. Materials Chemistry Frontiers, 2021, 5, 8127-8137.	3.2	13
3136	Conductive two-dimensional M ₃ (C ₆ S ₃ O ₃) ₂ monolayers as effective electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 24887-24894.	5.2	20
3137	Recent progress of electrocatalysts for hydrogen proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 41956-41973.	3.8	21
3138	Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Frontiers of Chemical Science and Engineering, 2021, 15, 1550-1560.	2.3	13
3139	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	7.3	24
3140	Porous carbon polyhedrons with exclusive Metal-NX moieties for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 39882-39891.	3.8	14
3141	Tuning the pâ€Orbital Electron Structure of sâ€Block Metal Ca Enables a Highâ€Performance Electrocatalyst for Oxygen Reduction. Advanced Materials, 2021, 33, e2107103.	11.1	71
3142	Armoring the Pt/C Catalyst with Fine Atomic-Scale Tungsten Species to Increase Tolerance against Thermal and Fuel Cell Stresses. ACS Applied Energy Materials, 0, , .	2.5	2
3143	Size effect of metal–organic frameworks with iron single-atom catalysts on oxygen–reduction reactions. Carbon Letters, 2021, 31, 1349-1355.	3.3	12
3144	A Review of Heteroatom Doped Materials for Advanced Lithium–Sulfur Batteries. Advanced Functional Materials, 2022, 32, 2107166.	7.8	113
3145	Structure–Property Relationship of Cryogel-Based Fe–N–C Catalysts for the Oxygen Reduction Reaction. Energy & Fuels, 2021, 35, 16814-16821.	2.5	6
3146	MOFs fertilized transition-metallic single-atom electrocatalysts for highly-efficient oxygen reduction: Spreading the synthesis strategies and advanced identification. Journal of Energy Chemistry, 2022, 67, 391-422.	7.1	43
3147	Phosphorus-Driven Electron Delocalization on Edge-Type FeN ₄ Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762.	5.5	98
3148	A perspective on the PGM-free metal–nitrogen–carbon catalysts for PEMFC. Journal of Energy Chemistry, 2022, 67, 250-254.	7.1	11
3149	Boosting microbial electrocatalysis via localized high electron shuttles concentration by monolithic electrode based on nanostructured nitrogen-doped carbon microtubes. Journal of Power Sources, 2021, 514, 230557.	4.0	6
3150	Development of Group 4 and 5 Oxide-based Electrocatalysts as Non-platinum Cathodes for PEFC. Hyomen Kagaku, 2011, 32, 710-715.	0.0	0

#	Article	IF	CITATIONS
3151	Composition Survey and Analysis of Non-Pt Oxygen Reduction Catalysts for Proton Exchange Membrane Fuel Cells. Journal of the Korean Electrochemical Society, 2012, 15, 12-18.	0.1	3
3153	Low-Cost Nanomaterials for High-Performance Polymer Electrolyte Fuel Cells (PEMFCs). Green Energy and Technology, 2014, , 359-394.	0.4	2
3155	Fuel Cells Challenges. Green Energy and Technology, 2016, , 77-94.	0.4	1
3156	CoAl ₂ O ₄ /Graphene Aerogel by Hydrotalcite Precursor Method as Bifunctional Electrocatalysts. Journal of Advances in Physical Chemistry, 2017, 06, 113-120.	0.1	0
3158	Carbon paper coated with Metal-free C-N electrocatalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. International Journal of Electrochemical Science, 0, , 7020-7033.	0.5	1
3159	PEM Fuel Cells: Modeling. , 2019, , 235-293.		1
3160	Local electronic structure and activity of nitrogen-doped carbon. Tanso, 2019, 2019, 204-210.	0.1	2
3161	An Efficient Bifunctional Electrocatalyst of Phosphorous Carbon Co-doped MOFs. Nanoscale Research Letters, 2020, 15, 169.	3.1	3
3162	One-pot electrosynthesis of ultrathin overoxidized poly(3,4-ethylenedioxythiophene) films. Electrochimica Acta, 2022, 401, 139472.	2.6	11
3163	Enhanced Electrocatalytic Activity of Alloyed Palladium–Lead Nanoparticles toward Electrooxidation of Ethanol. Langmuir, 2021, 37, 13132-13140.	1.6	9
3164	Site-density engineering of single-atomic iron catalysts for high-performance proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 302, 120860.	10.8	42
3165	Calcined Co(II)-Triethylenetetramine, Co(II)- Polyaniline-Thiourea as the Cathode Catalyst of Proton Exchanged Membrane Fuel Cell. Polymers, 2020, 12, 3070.	2.0	6
3166	Pore-scale modeling of complex transport phenomena in porous media. Progress in Energy and Combustion Science, 2022, 88, 100968.	15.8	139
3167	Influence on Electrochemical Reactivity and Synthesis of Stainless Steel/Nitrogen-Doped Carbon Nanofibers. Journal of Physical Chemistry C, 2021, 125, 25197-25206.	1.5	2
3168	Effect of the Thermal Treatment of Fe/N/C Catalysts for the Oxygen Reduction Reaction Synthesized by Pyrolysis of Covalent Organic Frameworks. Industrial & Engineering Chemistry Research, 2021, 60, 18759-18769.	1.8	12
3169	A Lowâ€Power CuSCN Hydrogen Sensor Operating Reversibly at Room Temperature. Advanced Functional Materials, 2022, 32, 2102635.	7.8	8
3170	FeN4-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: Impacts of FeN4 spin states. Chemical Engineering Journal, 2022, 431, 133339.	6.6	13
3171	Communication—On the Lack of Correlation between the Voltammetric Redox Couple and ORR Activity of Fe-N-C Catalysts. Journal of the Electrochemical Society, 2020, 167, 134510.	1.3	7

#	Article	IF	CITATIONS
3172	Iron and nitrogen-doped double gyroid mesoporous carbons for oxygen reduction in acidic environments. JPhys Energy, 2021, 3, 015001.	2.3	3
3173	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	3.7	28
3174	Size-controlled, hollow and hierarchically porous Co2Ni2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. Reaction Chemistry and Engineering, 0, , .	1.9	3
3175	Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures. Materials Advances, 2022, 3, 779-809.	2.6	45
3176	Advanced modifications in nonnoble materials for proton exchange membrane. , 2022, , 243-277.		0
3177	Meta-analysis of commercial Pt/C measurements for oxygen reduction reactions via data mining. Chinese Journal of Catalysis, 2022, 43, 116-121.	6.9	9
3178	Transition metal catalysis in lithium-ion batteries studied by operando magnetometry. Chinese Journal of Catalysis, 2022, 43, 158-166.	6.9	8
3179	Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries. Chemical Engineering Journal, 2022, 435, 133872.	6.6	25
3180	Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Research, 2022, 15, 3082-3089.	5.8	31
3181	Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests. Energies, 2021, 14, 7856.	1.6	10
3182	Effect of synthesis method on the oxygen reduction performance of Co–N–C catalyst. International Journal of Hydrogen Energy, 2022, 47, 3762-3770.	3.8	8
3183	Recent Advances in Flexible Zn–Air Batteries: Materials for Electrodes and Electrolytes. Small Methods, 2022, 6, e2101116.	4.6	21
3184	Polysulfide Catalytic Materials for Fastâ€Kinetic Metal–Sulfur Batteries: Principles and Active Centers. Advanced Science, 2022, 9, e2102217.	5.6	56
3185	High-performance asymmetric supercapacitor achieved by CoS2 nanoparticles decorated polyaniline functionalized SBA-15-derived mesoporous nitrogen-doped carbon with rod-like architectures. Journal of Alloys and Compounds, 2022, 898, 162773.	2.8	6
3186	Oneâ€step Preparation of Fe/N/C Singleâ€atom Catalysts Containing Feâ^'N4 Sites from an Iron Complex Precursor with 5,6,7,8â€Tetraphenylâ€1,12â€diazatriphenylene Ligands. Chemistry - A European Journal, 2021, , .	1.7	2
3187	Improving Pd–N–C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. Nature Energy, 2021, 6, 1144-1153.	19.8	108
3188	Highly stable N-containing polymer-based Fe/Nx/C electrocatalyst for alkaline anion exchange membrane fuel cell applications. Progress in Natural Science: Materials International, 2022, 32, 27-33.	1.8	11
3189	K-Edge XANES Investigation of Fe-Based Oxides by Density Functional Theory Calculations. Journal of Physical Chemistry C, 2021, 125, 26229-26239.	1.5	11

#	Article	IF	CITATIONS
3190	Oxygen Reduction Activity of Bâ†N ontaining Organic Molecule Affected by Asymmetric Regulation. Small, 2022, 18, e2105524.	5.2	8
3191	Electrodeposition of films of individual 5,10,15,20-tetrakis(3-aminophenyl)porphyrin metal complexes and their composite for electrocatalytic oxygen reduction. Inorganic Chemistry Communication, 2022, 135, 109106.	1.8	3
3192	ZIF-8-based oxygen reduction reaction catalyst prepared from one-pot and stepwise ion- and liquid-assisted grinding modified with tris-1,10-phenanthroline iron (II) perchlorate. International Journal of Hydrogen Energy, 2022, 47, 3846-3856.	3.8	1
3193	(La _{0.65} Sr _{0.3}) _{0.95} FeO _{3â^'<i>δ</i>} perovskite with high oxygen vacancy as efficient bifunctional electrocatalysts for Zn–air batteries. RSC Advances, 2021, 11, 38977-38981.	1.7	4
3194	Co nanoparticles decorated with N-doped carbon nanotubes as high-efficiency catalysts with intrinsic oxidase-like property for colorimetric sensing. RSC Advances, 2021, 11, 39966-39977.	1.7	12
3195	Construction of a three-dimensional S,N co-doped ZIF-67 derivative assisted by PEDOT nanowires and its application in rechargeable Zn–air batteries. New Journal of Chemistry, 2021, 45, 22787-22797.	1.4	5
3196	Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews, 2021, 50, 12985-13011.	18.7	135
3197	Effect of Support on Oxygen Reduction Reaction Activity of Supported Iron Porphyrins. ACS Catalysis, 2022, 12, 1139-1149.	5.5	18
3198	Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128118.	2.3	21
3199	Strategic design of cellulose nanofibers@zeolitic imidazolate frameworks derived mesoporous carbon-supported nanoscale CoFe2O4/CoFe hybrid composition as trifunctional electrocatalyst for Zn-air battery and self-powered overall water-splitting. Journal of Power Sources, 2022, 521, 230925.	4.0	45
3200	Enhanced Feâ 'N active site formation through interfacial energy control of precursor impregnation solution for the air cathode of membraneless direct formate fuel cells. Carbon, 2022, 189, 240-250.	5.4	7
3201	Best practices for ORR performance evaluation of metal-free porous carbon electrocatalysts. Carbon, 2022, 189, 349-361.	5.4	61
3202	Defect stabilized Fe atom on porous BN sheet as a potential electrocatalyst for oxygen reduction reaction: A first-principles investigation. Applied Surface Science, 2022, 580, 152271.	3.1	6
3203	A facile iron-sulfur double-doping strategy to prepare high performance FeNx/S-NC electrocatalyst for oxygen reduction reaction in zinc-air battery. Applied Surface Science, 2022, 580, 152255.	3.1	6
3204	Clarifying the critical roles of iron in boosting oxygen reduction: Single Fe atoms anchored on carbon vacancies as efficient active sites. Applied Catalysis B: Environmental, 2022, 305, 121035.	10.8	27
3205	Achievement of a novel organometallic electrocatalyst based on nickel and poly para-aminophenol with excellent oxygen reduction reaction activity: Promoting the commercialization of low temperature fuel cells. Sustainable Energy Technologies and Assessments, 2022, 51, 101988.	1.7	2
3206	Thermodynamic Margin in Carbon Network Modulated Activity Control of Oxygen Reduction Reaction Iron Catalyst. Journal of Physical Chemistry C, 2020, 124, 26982-26989.	1.5	1
3207	PGM-Free Oxygen-Reduction Catalyst Development for Proton-Exchange Membrane Fuel Cells: Challenges, Solutions, and Promises. Accounts of Materials Research, 2022, 3, 224-236.	5.9	73

#	ARTICLE A spherical multishell hollow carbon-based catalyst with a controllable N-species content for the	IF	CITATIONS
3208	oxygen reduction reaction in air-breathing cathode microbial fuel cells. Reaction Chemistry and Engineering, 0, , .	1.9	3
3209	Synthesis and electrocatalytic properties of M (Fe, Co),N co-doped porous carbon frameworks for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 9504-9516.	3.8	12
3210	Hydrothermal Synthesis of Fe ³⁺ /3-Aminophenol–Formaldehyde as an Oxygen Electroreduction Catalyst in Alkaline Conditions. ACS Applied Energy Materials, 2022, 5, 1595-1606.	2.5	8
3211	Multiple roles of graphene in electrocatalysts for metal-air batteries. Catalysis Today, 2023, 409, 2-22.	2.2	12
3212	CoP/Co2P hollow spheres embedded in porous N-doped carbon as highly efficient multifunctional electrocatalyst for Zn–air battery driving water splitting device. Electrochimica Acta, 2022, 403, 139643.	2.6	9
3213	Sublayer-enhanced atomic sites of single atom catalysts through <i>in situ</i> atomization of metal oxide nanoparticles. Energy and Environmental Science, 2022, 15, 1183-1191.	15.6	25
3214	Bead-like carbon fibers consisting of abundantly exposed active sites for the oxygen reduction reaction. Nanotechnology, 2022, 33, 195401.	1.3	3
3215	Inâ€Situ Silica Xerogel Assisted Facile Synthesis of Feâ€Nâ€C Catalysts with Dense Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, e2104934.	5.2	25
3216	Siteâ€Engineered Tetragonal ZrO ₂ Nanoparticles: A Promising Oxygen Reduction Catalyst with High Activity and Chemical Stability in Alkaline Medium. Advanced Materials Interfaces, 2022, 9, .	1.9	3
3217	Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 2022, 51, 188-236.	18.7	53
3218	Inducing atomically dispersed Cl–FeN ₄ sites for ORRs in the SiO ₂ -mediated synthesis of highly mesoporous N-enriched C-networks. Journal of Materials Chemistry A, 2022, 10, 6153-6164.	5.2	7
3219	Facile Preparation of Fe–N–C Oxygen Reduction Electrocatalysts from Metal Organic Frameworks for Zn-Air Battery. Journal of Renewable Materials, 2022, 10, 1337-1348.	1.1	3
3220	Metal–Organic Frameworks (MOFs) and Materials Derived from MOFs as Catalysts for the Development of Green Processes. Catalysts, 2022, 12, 136.	1.6	12
3221	Oxygen reduction reactions from boron-doped graphene quantum dot catalyst electrodes in acidic and alkaline electrolytes. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104196.	2.7	7
3222	Electrospun Carbon Nanofibers Loaded with Atomic FeN <i>_x</i> /Fe ₂ O ₃ Active Sites for Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Media. Advanced Materials Interfaces, 2022, 9, .	1.9	7
3223	Iron-based sulfur and nitrogen dual doped porous carbon as durable electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 6078-6088.	3.8	21
3224	Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogenâ€Đoped Carbon through N Coordination Environment Engineering. Small, 2022, 18, e2105329.	5.2	78
3225	Impact of Nickel Content on the Structure and Electrochemical CO ₂ Reduction Performance of Nickel–Nitrogen–Carbon Catalysts Derived from Zeolitic Imidazolate Frameworks. ACS Applied Energy Materials, 2022, 5, 430-439.	2.5	11

#	Article	IF	CITATIONS
3226	N-Doped carbon nanotube encapsulated cobalt for efficient oxidative esterification of 5-hydroxymethylfurfural. Reaction Chemistry and Engineering, 2022, 7, 1191-1198.	1.9	4
3227	Nâ€Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
3228	Nâ€Doped Carbon Electrocatalyst: Marked ORR Activity in Acidic Media without the Contribution from Metal Sites?. Angewandte Chemie, 2022, 134, .	1.6	7
3229	Fabrication of Co, N-Doping Hierarchical Porous Graphene from Metal Organic Framework for Oxygen Reduction Reaction in Microbial Fuel Cell. Journal of the Electrochemical Society, 2022, 169, 024501.	1.3	3
3230	Aerobic oxidative cleavage and esterification of C C bonds catalyzed by iron-based nanocatalyst. Molecular Catalysis, 2022, 519, 112152.	1.0	5
3231	Synthetic strategies of single-atoms catalysts and applications in electrocatalysis. Electrochimica Acta, 2022, 409, 139835.	2.6	8
3232	In-situ degradation of organic pollutants by bioelectrical-Fenton reaction with a metal-free polyaniline-derived nitrogen-doped carbon nanofibre electrode. Journal of Alloys and Compounds, 2022, 901, 163710.	2.8	9
3233	Graphene carbon black as catalyst support: The influences of iron phthalocyanine loading and carbon black additive amount on the power generation performance of direct glucose fuel cell. Fuel, 2022, 315, 123227.	3.4	6
3234	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	11.1	84
3235	Fast-Decoding Algorithm for Electrode Processes at Electrified Interfaces by Mean-Field Kinetic Model and Bayesian Data Assimilation: An Active-Data-Mining Approach for the Efficient Search and Discovery of Electrocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 22889-22902.	4.0	5
3236	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	23.0	195
3237	Highly Porous Iron-Doped Nitrogen–Carbon Framework on Reduced Graphene Oxide as an Excellent Oxygen Reduction Catalyst for Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2022, 5, 1822-1832.	2.5	15
3238	The Enhanced Local Co Concentration for Efficient Co2 Electrolysis Towards C2 Products on Tandem Active Sites. SSRN Electronic Journal, 0, , .	0.4	0
3239	N-doped carbon nanotubes encapsulated with FeNi nanoparticles derived from defect-rich, molecule-doped 3D g-C ₃ N ₄ as an efficient bifunctional electrocatalyst for rechargeable zincâ€"air batteries. Journal of Materials Chemistry A, 2022, 10, 9911-9921.	5.2	43
3240	A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy and Environmental Science, 2022, 15, 1601-1610.	15.6	137
3241	Functionality and design of Co-MOFs: unique opportunities in electrocatalysts for oxygen reduction reaction. Catalysis Science and Technology, 2022, 12, 1723-1740.	2.1	9
3242	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design. Chemical Communications, 2022, 58, 3578-3590.	2.2	14
3243	The Effect of an External Magnetic Field on the Electrocatalytic Activity of Heat-Treated Cyanometallate Complexes towards the Oxygen Reduction Reaction in an Alkaline Medium. Materials, 2022, 15, 1418.	1.3	4

#	Article	IF	CITATIONS
3244	Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst. Materials Today, 2022, 53, 58-70.	8.3	23
3245	Block Copolymer Selfâ€Assembly Guided Synthesis of Mesoporous Carbons with Inâ€Plane Holey Pores for Efficient Oxygen Reduction Reaction. Macromolecular Rapid Communications, 2022, 43, e2100884.	2.0	9
3246	Biomass derived Fe-N/C catalyst for efficiently catalyzing oxygen reduction reaction in both alkaline and neutral pH conditions. Chinese Chemical Letters, 2023, 34, 107236.	4.8	5
3248	Preparation of nitrogen-doped porous carbon modified by iron carbide and its application in an oxygen reduction reaction. Journal of Chemical Sciences, 2022, 134, 1.	0.7	1
3249	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	5.2	25
3250	3D-Printed Bio-inspired Multi-channel Cathodes for Zinc–air Battery Applications. Journal of Bionic Engineering, 2022, 19, 1014-1023.	2.7	4
3251	Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications. Nano Research, 2022, 15, 4950-4957.	5.8	8
3252	Effective Approaches for Designing Stable M–N <i>_x</i> /C Oxygenâ€Reduction Catalysts for Protonâ€Exchangeâ€Membrane Fuel Cells. Advanced Materials, 2022, 34, e2200595.	11.1	38
3253	Carbon composites from iron-chelating pyridine nitrogen-rich coordinated nanosheets for oxygen reduction. Functional Composite Materials, 2022, 3, .	0.9	0
3254	Novel Porphyrinâ€Based Hypercrosslinked Polymers as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Energy Technology, 2022, 10, .	1.8	1
3255	Nanostructured, Metal-Free Electrodes for the Oxygen Reduction Reaction Containing Nitrogen-Doped Carbon Quantum Dots and a Hydroxide Ion-Conducting Ionomer. Molecules, 2022, 27, 1832.	1.7	4
3256	Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 2022, 4, 022001.	6.3	139
3257	Fe ₃ O ₄ Templated Pyrolyzed Feâ^'Nâ^'C Catalysts. Understanding the role of Nâ€Functions and Fe ₃ C on the ORR Activity and Mechanism. ChemElectroChem, 2022, 9, .	1.7	6
3258	A Facile Strategy to Boost the Active Sites of Fe–N–C Electrocatalyst for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 034506.	1.3	2
3259	Electrosynthesis of H2O2 through a two-electron oxygen reduction reaction by carbon based catalysts: From mechanism, catalyst design to electrode fabrication. Environmental Science and Ecotechnology, 2022, 11, 100170.	6.7	29
3260	Self-supported metal (Fe, Co, Ni)-embedded nitrogen-doping carbon nanorod framework as trifunctional electrode for flexible Zn-air batteries and switchable water electrolysis. Green Energy and Environment, 2023, 8, 1644-1653.	4.7	9
3261	Engineered biochar derived from pyrolyzed waste tea as a carbon support for Fe-N-C electrocatalysts for the oxygen reduction reaction. Electrochimica Acta, 2022, 412, 140128.	2.6	33
3262	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie - International Edition, 2022, 61, .	7.2	15

#	Article	IF	CITATIONS
3263	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie, 0, , .	1.6	0
3264	Co-Cr composite oxides efficiently catalyzed transfer hydrogenation of α, β-unsaturated aldehydes via N-doped carbon and interfacial electron migration. Molecular Catalysis, 2022, 524, 112257.	1.0	3
3265	Copper-involved highly efficient oxygen reduction reaction in both alkaline and acidic media. Chemical Engineering Journal, 2022, 437, 135377.	6.6	25
3266	Highly dispersed Co atoms anchored in porous nitrogen-doped carbon for acidic H2O2 electrosynthesis. Chemical Engineering Journal, 2022, 438, 135619.	6.6	21
3267	Highly ordered nanoarrays catalysts embedded in carbon nanotubes as highly efficient and robust air electrode for flexible solid-state rechargeable zinc-air batteries. Journal of Colloid and Interface Science, 2022, 616, 679-690.	5.0	22
3268	Investigation on the demetallation of Fe-N-C for oxygen reduction reaction: The influence of structure and structural evolution of active site. Applied Catalysis B: Environmental, 2022, 309, 121290.	10.8	26
3269	Design of Co-NC as efficient electrocatalyst: The unique structure and active site for remarkable durability of proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 308, 121220.	10.8	26
3270	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	102
3271	Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal–Nitrogen–Graphene for Efficient Oxygen Reduction. Angewandte Chemie, 2022, 134, .	1.6	22
3272	Progressions in cathodic catalysts for oxygen reduction and hydrogen evolution in bioelectrochemical systems: Molybdenum as the next-generation catalyst. Catalysis Reviews - Science and Engineering, 2023, 65, 986-1078.	5.7	3
3273	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	7.8	35
3274	Materials Engineering toward Durable Electrocatalysts for Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	10.2	61
3275	In Situ Anchoring Co–N–C Nanoparticles on Co ₄ N Nanosheets toward Ultrastable Flexible Self‧upported Bifunctional Oxygen Electrocatalyst Enables Recyclable Zn–Air Batteries Over 10 000 Cycles and Fast Charging. Small, 2022, 18, e2105887.	5.2	22
3276	NiCo Alloy Nanoparticles on a N/C Dualâ€Doped Matrix as a Cathode Catalyst for Improved Microbial Fuel Cell Performance. Small, 2022, 18, e2106355.	5.2	14
3278	Highly Active Atomically Dispersed Co–N _{<i>x</i>} Sites Anchored on Ultrathin N-Doped Carbon Nanosheets with Durability Oxygen Reduction Reaction of Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 16956-16964.	3.2	11
3279	Fiber Materials for Electrocatalysis Applications. Advanced Fiber Materials, 2022, 4, 720-735.	7.9	48
3280	Nanocatalysts for fuel cells. , 2022, , 579-604.		0
3281	Adding NaPO3 improving the ORR performance of N-doped porous carbon material derived from yuba. lonics, 2022, 28, 3389-3397.	1.2	3

#	ARTICLE In-situ growth of iron phosphide encapsulated by carbon nanotubes decorated with zeolitic	IF	Citations
3282	imidazolate framework-8 for enhancing oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 17367-17378.	3.8	3
3283	Synthesis of Fe-doped carbon hybrid composed of CNT/flake-like carbon for catalyzing oxygen reduction. Nano Research, 2022, 15, 6670-6677.	5.8	11
3284	Highly Dispersed Pt ₃ Co Nanocatalysts Embedded in Porous Hollow Carbon Spheres with Efficient Electrocatalytic O ₂ -Reduction and H ₂ -Evolution Activities. ACS Applied Energy Materials, 2022, 5, 4496-4504.	2.5	3
3285	Fe Singleâ€∎tom Sites in Twoâ€Ðimensional Nitrogenâ€doped Porous Carbon for Electrocatalytic Oxygen Reduction. ChemCatChem, 2022, 14, .	1.8	3
3286	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	9.5	32
3287	Unconventional and scalable synthesis of non-precious metal electrocatalysts for practical proton exchange membrane and alkaline fuel cells: A solid-state co-ordination synthesis approach. Coordination Chemistry Reviews, 2022, 463, 214554.	9.5	22
3292	Iron and Nickel Phthalocyanine-Modified Nanocarbon Materials as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells and Zinc-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
3293	Highly accessible and dense surface single metal FeN ₄ active sites for promoting the oxygen reduction reaction. Energy and Environmental Science, 2022, 15, 2619-2628.	15.6	82
3294	MXene-based sulfur composite cathodes. , 2022, , 361-388.		0
3295	Iron and Nickel Phthalocyanine-Modified Nanocarbon Materials as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells and Zinc-Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
3296	One-step synthesis of CeFeO ₃ nanoparticles on porous nanocarbon frameworks derived from ZIF-8 for a boosted oxygen reduction reaction in pH universal electrolytes. Journal of Materials Chemistry A, 2022, 10, 13013-13020.	5.2	19
3297	MOF-Derived Porous Fe-N-C Materials for Efficiently Electrocatalyzing the Oxygen Reduction Reaction. Energy & amp; Fuels, 2022, 36, 5415-5423.	2.5	12
3298	High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 311-323.	16.1	248
3299	A Spherical Superstructure of Co,N-doping Mesoporous Carbon for Oxygen Reduction Reaction in Air-Breath Cathode Microbial Fuel Cell. Catalysis Letters, 0, , 1.	1.4	0
3300	Effect of Precursor Status on the Transition from Complex to Carbon Shell in a Platinum Core–Carbon Shell Catalyst. ACS Omega, 2022, 7, 15615-15624.	1.6	2
3301	Novel Amorphous Carbons for the Adsorption of Phosphate: Part I. Elucidation of Chemical Structure of N-Metal-Doped Chars. ACS Omega, 2022, 7, 14490-14504.	1.6	1
3302	Polymer-chelation approach to high-performance Fe-Nx-C catalyst towards oxygen reduction reaction. Chinese Chemical Letters, 2023, 34, 107455.	4.8	3
3303	Polyaniline-coated conductive media promotes direct interspecies electrons transfer (DIET) and kinetics enhancement of low-strength wastewater treatment in anaerobic fluidized bed membrane bioreactor (AFMBR). Chemical Engineering Journal, 2022, 446, 136711.	6.6	4

#	Article	IF	CITATIONS
3304	Metalloidâ€Cluster Ligands Enabling Stable and Active FeN ₄ â€Te <i>_n</i> Motifs for the Oxygen Reduction Reaction. Advanced Materials, 2022, 34, e2202714.	11.1	40
3305	Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Research, 2022, 15, 6067-6075.	5.8	28
3306	Ultra-fast phosphating synthesis of metastable crystalline phase-controllable ultra-small MP /CNT (MÂ=ÂPd, Pt, Ru) for polyalcohol electrooxidation. Journal of Energy Chemistry, 2022, 72, 108-115.	7.1	9
3307	Polyaniline derived carbon membrane and its in-situ membrane fouling mitigation performance in MBR based on metal-free electro-Fenton. Water Research, 2022, 219, 118564.	5.3	12
3308	B, N-doped carbon nanosheets embedded with Co nanoparticles for enhanced oxygen reduction reaction. Journal of Nanoparticle Research, 2022, 24, 1.	0.8	1
3309	Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers. Jacs Au, 2022, 2, 1144-1159.	3.6	4
3310	Standardized protocols for evaluating platinum group metal-free oxygen reduction reaction electron electrolyte fuel cells. Nature Catalysis, 2022, 5, 455-462.	16.1	47
3311	Insight into the effect of clay mineral structure on clay-derived N-doped carbon materials and their efficient electrocatalytic performance. Surfaces and Interfaces, 2022, 31, 102000.	1.5	2
3312	Dual-template induced multi-scale porous Fe@FeNC oxygen reduction catalyst for high-performance electrochemical devices. Chemical Engineering Journal, 2022, 445, 136628.	6.6	13
3313	Coordination chemistry for innovative carbon-related materials. Coordination Chemistry Reviews, 2022, 466, 214577.	9.5	5
3314	Engineering the morphology and electronic structure of atomic cobalt-nitrogen-carbon catalyst with highly accessible active sites for enhanced oxygen reduction. Journal of Energy Chemistry, 2022, 73, 469-477.	7.1	26
3315	Seizing gaseous Fe ²⁺ to densify O ₂ -accessible Fe–N ₄ sites for high-performance proton exchange membrane fuel cells. Energy and Environmental Science, 2022, 15, 3033-3040.	15.6	49
3316	Evidence of carbon-supported porphyrins pyrolyzed for the oxygen reduction reaction keeping integrity. Scientific Reports, 2022, 12, 8072.	1.6	13
3317	Mesoporeâ€Rich Fe–N–C Catalyst with FeN ₄ –O–NC Singleâ€Atom Sites Delivers Remarkabl Oxygen Reduction Reaction Performance in Alkaline Media. Advanced Materials, 2022, 34, e2202544.	e 11.1	168
3318	Construction of N, P Coâ€Doped Carbon Frames Anchored with Fe Single Atoms and Fe ₂ P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	11.1	93
3319	Interface engineering for modulating catalytic selectivity of covalent organic frameworks for oxygen reduction. Materials Today Chemistry, 2022, 24, 100936.	1.7	3
3320	A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nature Materials, 2022, 21, 681-688.	13.3	145
3321	Effect of Co on Morphology and Photo and Electro Chemical Activities of G-C3n4. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3322	The Enhanced Local Co Concentration for Efficient Co2 Electrolysis Towards C2 Products on Tandem Active Sites. SSRN Electronic Journal, 0, , .	0.4	0
3323	Environmentally Friendly Bifunctional Catalyst for ORR and OER from Coconut Shell Particles. Advances in Materials Physics and Chemistry, 2022, 12, 106-123.	0.3	4
3324	Low-temperature carbonization of p-Phenylenediamine guided by an iron alginate template for lithium-ion capacitors. New Journal of Chemistry, 2022, 46, 12229-12236.	1.4	2
3325	Biomass-derived cobalt/ carbon hierarchically structured composites for efficient oxygen electrocatalysis and zinc-air batteries. Catalysis Science and Technology, 0, , .	2.1	5
3326	Nitrogenâ€Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Advanced Functional Materials, 2022, 32, .	7.8	59
3327	Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Research, 2022, 15, 7959-7967.	5.8	15
3328	Tuning the Catalytic Activity of Fe-Phthalocyanine-Based Catalysts for the Oxygen Reduction Reaction by Ligand Functionalization. ACS Catalysis, 2022, 12, 7278-7287.	5.5	30
3329	Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS Omega, 2022, 7, 19804-19815.	1.6	11
3330	Amperometric hydrogen gas sensor based on Pt/C/Nafion electrode and ionic electrolyte. Sensors and Actuators B: Chemical, 2022, 367, 132137.	4.0	14
3331	Edgeâ€Rich Graphene Nanospheres with Ultraâ€High Nitrogen Loading Metalâ€Free Electrocatalysts for Boosted Oxygen Reduction. ChemElectroChem, 2022, 9, .	1.7	0
3332	Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coordination Chemistry Reviews, 2022, 467, 214600.	9.5	16
3334	Oxygen reduction reaction by noble metal-based catalysts. , 2022, , 173-203.		0
3335	Oxygen reduction reaction by metal-free catalysts. , 2022, , 241-275.		1
3336	Oxygen reduction reaction in ethanol fuel cells. , 2022, , 337-378.		0
3337	Review—Development of Highly Active and Stable Catalyst Supports and Platinum–Free Catalysts for PEM Fuel Cell. Journal of the Electrochemical Society, 2022, 169, 074501.	1.3	6
3338	Threeâ€Dimensional Hierarchical Porous Fe, Nâ€Doped Hollow Carbon Nanospheres as Stable Electrocatalyst for Efficient Oxygen Reduction Reaction in Both Acidic and Alkaline Electrolytes. ChemistrySelect, 2022, 7, .	0.7	1
3339	Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Research, 2022, 15, 7951-7958.	5.8	15
3340	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETQ4	q1_1_0.784	13]4 rgBT /C

#	Article	IF	CITATIONS
3341	Probing the Oxygen Reduction Reaction Intermediates and Dynamic Active Site Structures of Molecular and Pyrolyzed Fe–N–C Electrocatalysts by In Situ Raman Spectroscopy. ACS Catalysis, 2022, 12, 7811-7820.	5.5	76
3342	Comparative density functional theory study for predicting oxygen reduction activity of single-atom catalyst. Surface Science, 2022, 724, 122144.	0.8	3
3344	Under Deposit Corrosion of Low Alloy Steel in Saturated CO2 Formation Water. International Journal of Electrochemical Science, 2022, 17, 220760.	0.5	1
3345	Wood based quasi-solid-state Zn-air battery with dual honeycomb-like porous carbon and cationic nanocellulose film. Industrial Crops and Products, 2022, 186, 115242.	2.5	4
3346	Synchronous bi-modulation by nanoclusters and single atoms for high-efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2022, 446, 137441.	6.6	12
3347	3d Interconnected Honeycomb-Like Multifunctional Catalyst for Zn–Air Batteries. SSRN Electronic Journal, 0, , .	0.4	0
3348	An Integrated Oxygen Electrode Derived from Flexible Single-Wall Carbon Nanotube Film for Rechargeable Zn-Air Batteries Produced by Electro-Polymerization. SSRN Electronic Journal, 0, , .	0.4	0
3349	General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 30724-30734.	4.0	7
3350	High-Performance A-Site Deficient Perovskite Electrocatalyst for Rechargeable Zn–Air Battery. Catalysts, 2022, 12, 703.	1.6	2
3351	N, P co-doped graphene enriched phosphorus as a highly efficient oxygen reduction catalyst. Journal of Electroanalytical Chemistry, 2022, 921, 116560.	1.9	9
3352	Optimization of H2O2 production in small-scale off-grid buffer layer flow cell equipped with Cobalt@N-Doped Graphitic Carbon Core–Shell Nanohybrid electrocatalyst. Materials Today Energy, 2022, , 101092.	2.5	6
3353	Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochimica Acta, 2022, 427, 140861.	2.6	7
3354	Microenvironment Alters the Oxygen Reduction Activity of Metal/N/C Catalysts at the Triple-Phase Boundary. ACS Catalysis, 2022, 12, 9003-9010.	5.5	10
3355	Metal-nitrogen co-doped hierarchical porous carbon derived from the bimetallic metal-organic framework as ORR electrocatalyst for passive alkaline direct ethanol fuel cell. Journal of Electroanalytical Chemistry, 2022, 920, 116620.	1.9	7
3356	Metalâ€Organicâ€Frameworkâ€derived Co Nanoparticles Embedded in P, Nâ€Dualâ€doped Porous Carbon/rGO Catalyst for Water Splitting and Oxygen Reduction. ChemNanoMat, 2022, 8, .	1.5	2
3357	Fe ₃ C Decorated N, Fe Coâ€Doped Hollow Carbon Microspheres as Efficient Air Electrode Catalyst for Zincâ€Air Battery. ChemistrySelect, 2022, 7, .	0.7	5
3358	Simple synthesis of a CoO nanoparticle-decorated nitrogen-doped carbon catalyst from spent coffee grounds for alkaline hydrogen evolution. Journal of Materials Science, 2022, 57, 18075-18088.	1.7	4
3359	Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9077-9086.	3.2	7

#	Article	IF	CITATIONS
3360	Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nature Energy, 2022, 7, 652-663.	19.8	258
3361	Hexamethylenetetramine-derived pyridinic N abundant porous carbon-supported Co/Co-Nx nanoparticles as highly efficient oxygen reduction catalyst and zinc-air battery cathode. Materials Today Sustainability, 2022, 19, 100180.	1.9	5
3362	Enhanced catalytic reduction of Cr(VI) with formic acid over spherical bimetallic Ni-Co nanoalloy catalysts at room temperature. Applied Surface Science, 2022, 601, 154252.	3.1	4
3363	Embedding isolated iron into biomass-derived porous carbon as efficient electrocatalysts for O2 and CO2 reduction. Journal of Materials Science, 0, , .	1.7	0
3364	Boosting oxygen reduction electrocatalysis of graphene-based bilayer heterojunction. Surfaces and Interfaces, 2022, 33, 102232.	1.5	0
3365	Recent Progresses in Adsorption Mechanism, Architectures, Electrode Materials and Applications for Advanced Electrosorption System: A Review. Polymers, 2022, 14, 2985.	2.0	1
3366	Kinetic Diagnostics and Synthetic Design of Platinum Group Metal-Free Electrocatalysts for the Oxygen Reduction Reaction Using Reactivity Maps and Site Utilization Descriptors. Journal of the American Chemical Society, 2022, 144, 13487-13498.	6.6	18
3367	Progress on nanostructured gel catalysts for oxygen electrocatalysis. Nano Research, 2022, 15, 10343-10356.	5.8	11
3368	Recent advances in carbonaceous catalyst design for the in situ production of <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="bold">H</mml:mi> <mml:mn> 2</mml:mn> </mml:msub> <mml:mi bold"="">H</mml:mi> <mml:mn> 2 <mml:mi mathvariant="bold">Math/MathML" altimg="si1.svg"> <mml:msub> <mml:msub> <mml:msub> <mml:mi mathvariant="bold">Math/MathML" altimg="si1.svg"> <mml:mrow> <mml:msub> <mml:msub> <mml:mi mathvariant="bold">Math/MathML" altimg="si1.svg"> <mml:msub> <mml:msub> <mml:msub> <mml:mi mathvariant="bold">Math/MathML" altimg="si1.svg"> <mml:msub> <mml:msub> <mml:msub> <mml:mi mathvariant="bold">Math/MathML" altimg="si1.svg"> <mml:msub> <mml:msub> <mml:mi mathvariant="bold"> Mathvariant="bold"> <mml:msub> <mml:msub> </mml:msub> </mml:msub> </mml:mi></mml:msub> </mml:msub> </mml:mi></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:msub></mml:msub></mml:mrow></mml:mi></mml:msub></mml:msub></mml:msub></mml:mi></mml:mn></mml:mrow></mml:math> <mml:mathvariant="bold"> <mml:msub> </mml:msub> </mml:mathvariant="bold"> <mml:msub> </mml:msub>	4.2	9
3369	State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Applied Catalysis B: Environmental, 2023, 325, 121733.	10.8	54
3370	Anchoring Bimetal Single Atoms and Alloys on N-Doping-Carbon Nanofiber Networks for an Efficient Oxygen Reduction Reaction and Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2022, 14, 38739-38749.	4.0	13
3372	Enhanced electrocatalytic activities of <scp>MoO₃</scp> / <scp>rGO</scp> nanocomposites for oxygen reduction reaction. Journal of Chemical Technology and Biotechnology, 2022, 97, 3459-3466.	1.6	1
3373	Dimensional Nanoarchitectonics of g-C ₃ N ₄ /Co Nanocomposites for Photo- and Electro-Chemical Applications. ACS Applied Nano Materials, 2022, 5, 11731-11740.	2.4	7
3374	Performance optimization of PGM and PGM-free catalysts in anion-exchange membrane fuel cells. Journal of Solid State Electrochemistry, 2022, 26, 2049-2057.	1.2	4
3375	Directional Manipulation of Electron Transfer by Energy Level Engineering for Efficient Cathodic Oxygen Reduction. Nano Letters, 2022, 22, 6622-6630.	4.5	14
3376	Preparation and Properties of MOF-derived Porous Carbon Nanosheets as Electrocatalyst for Oxygen Reduction Reaction. International Journal of Electrochemical Science, 2022, 17, 220922.	0.5	1
3377	Construction of hierarchically porous carbon spheres supported nonprecious metal single-atom electrocatalysts for oxygen reduction reaction. Journal of Power Sources, 2022, 545, 231913.	4.0	2
3378	Co nanoparticles/N-doped carbon nanotubes: Facile synthesis by taking Co-based complexes as precursors and electrocatalysis on oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653, 129912.	2.3	5

#	Article	IF	CITATIONS
3379	Tuning the wettability of advanced mesoporous Fe N C catalysts for optimizing the construction of the gas/liquid/solid three-phase interface in air-cathodes. Chemical Engineering Journal, 2022, 450, 138342.	6.6	5
3380	Theoretical insights into multi-metal atoms embedded nitrogen-doped graphene as efficient bifunctional catalysts for oxygen reduction and evolution reactions. Applied Surface Science, 2022, 605, 154714.	3.1	10
3381	Facile synthesis of Fe3C-dominated Fe/Fe3C/FeN0.0324 multiphase nanocrystals embedded in nitrogen-modified graphitized carbon as efficient pH-universal catalyst for oxygen reduction reaction and zinc-air battery. Chemical Engineering Journal, 2023, 451, 138823.	6.6	19
3382	Recent advances in the metal–organic framework-based electrocatalysts for trifunctional electrocatalysis. Dalton Transactions, 2022, 51, 13573-13590.	1.6	16
3383	Effect of local pH change on non-PGM catalysts – a potential-dependent mechanistic analysis of the oxygen reduction reaction. Catalysis Science and Technology, 2022, 12, 6246-6255.	2.1	3
3384	Introducing mesoporous silica-protected calcination for improving the electrochemical performance of Cu@Fe–N–C composites in oxygen reduction reactions and supercapacitor applications. New Journal of Chemistry, 2022, 46, 18351-18365.	1.4	5
3385	A theoretical roadmap for the best oxygen reduction activity in two-dimensional transition metal tellurides. Chemical Science, 2022, 13, 11048-11057.	3.7	2
3386	Hierarchically porous N-doped carbon nanosheets with atomically dispersed Fe/Co dual-metallic sites for efficient and robust oxygen electrocatalysis in Zn–air batteries. Energy Advances, 0, , .	1.4	1
3387	Hydrogen generation <i>via</i> ammonia decomposition on highly efficient and stable Ru-free catalysts: approaching complete conversion at 450 °C. Energy and Environmental Science, 2022, 15, 4190-4200.	15.6	29
3388	Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coordination Chemistry Reviews, 2023, 474, 214854.	9.5	63
3389	Review—Heteroatom-Doped High Porous Carbon Metal Free Nanomaterials for Energy Storage and Conversion. ECS Journal of Solid State Science and Technology, 2022, 11, 091006.	0.9	1
3390	Polydopamine-Derived Iron-Doped Hollow Carbon Nanorods as an Efficient Bifunctional Electrocatalyst for Simultaneous Generation of Hydrogen and Electricity. Energy & Fuels, 2022, 36, 11245-11260.	2.5	2
3391	Recent Advances in Non-Precious Metal–Nitrogen–Carbon Single-Site Catalysts for CO2 Electroreduction Reaction to CO. Electrochemical Energy Reviews, 2022, 5, .	13.1	18
3392	Doping oxygen triggered electrocatalytic activity of carbon interpenetrating networks in acid electrolyte. International Journal of Hydrogen Energy, 2022, 47, 33999-34011.	3.8	3
3393	Copper Collector Generated Cu ⁺ /Cu ²⁺ Redox Pair for Enhanced Efficiency and Lifetime of Zn–Ni/Air Hybrid Battery. ACS Nano, 2022, 16, 17139-17148.	7.3	17
3394	Recent Advances of Single-atom Catalysts for Electro-catalysis. Chemical Research in Chinese Universities, 2022, 38, 1146-1150.	1.3	7
3395	ZIF-8 derived bimetallic Fe–Ni-Nanoporous carbon for enhanced oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 37002-37012.	3.8	10
3396	Effective oxidative esterification of 5–hydroxymethylfurfural over a N-doped biomass-based carbon supported cobalt catalyst. Catalysis Today, 2023, 408, 58-63.	2.2	3

#	Article	IF	CITATIONS
3397	Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chemical Reviews, 2023, 123, 6233-6256.	23.0	31
3398	Synthesis of a Co-Nx type catalyst derived from the pyrolysis of a covalent triazine-based framework for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2022, 924, 116879.	1.9	1
3399	Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043.	4.1	1
3400	Engineering atomic Fe-N-C with adjacent FeP nanoparticles in N, P-doped carbon for synergetic oxygen reduction and Zinc-air battery. New Journal of Chemistry, 0, , .	1.4	0
3401	Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. Journal of Materials Chemistry A, 2022, 10, 23959-23972.	5.2	4
3402	Substituent Effects in Iron Porphyrin Catalysts for the Hydrogen Evolution Reaction**. Chemistry - A European Journal, 2023, 29, .	1.7	9
3403	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	5.8	10
3404	Relation between halfâ€cell and fuel cell activity and stability of FeNC catalysts for the oxygen reduction reaction. SusMat, 2022, 2, 630-645.	7.8	11
3405	Effect of Electrolyte Media on the Catalysis of Fe Phthalocyanine toward the Oxygen Reduction Reaction: Ab Initio Molecular Dynamics Simulations and Experimental Analyses. ACS Catalysis, 2022, 12, 12786-12799.	5.5	14
3406	Metal-Carbon Composites Based on Carbonized Melamine-Formaldehyde Polymer and Their Electrocatalytic Properties. Russian Journal of Electrochemistry, 2022, 58, 946-956.	0.3	1
3407	Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Next Generation of Proton Exchange Membrane Fuel Cells?. ACS Catalysis, 2022, 12, 13853-13875.	5.5	24
3408	Molecular Catalyst Synthesis Strategies to Prepare Atomically Dispersed Fe-N-C Heterogeneous Catalysts. Journal of the American Chemical Society, 2022, 144, 18797-18802.	6.6	12
3409	An ultrasensitive label-free electrochemical aptasensing platform for thiamethoxam detection based on ZIF-67 derived Co-N doped porous carbon. Bioelectrochemistry, 2023, 149, 108317.	2.4	9
3410	Carboxymethyl Cellulose -Polyaniline Composites as Efficient Corrosion Inhibitor for Q235 Steel in 1 M HCl solution. International Journal of Electrochemical Science, 2022, 17, 221180.	0.5	2
3411	Identification of the active triple-phase boundary of a non-Pt catalyst layer in fuel cells. Science Advances, 2022, 8, .	4.7	33
3412	Templated Nitrogen-, Iron-, and Cobalt-Doped Mesoporous Nanocarbon Derived from an Alkylresorcinol Mixture for Anion-Exchange Membrane Fuel Cell Application. ACS Catalysis, 2022, 12, 14050-14061.	5.5	22
3413	Conducting polypyrrole silicotungstate deposited on macroporous melamine sponge for electromagnetic interference shielding. Materials Chemistry and Physics, 2023, 293, 126907.	2.0	2
3414	Engineering the electronic structure of high performance FeCo bimetallic cathode catalysts for microbial fuel cell application in treating wastewater. Environmental Research, 2023, 216, 114542.	3.7	2

#	Article	IF	CITATIONS
3415	Efficient electrochemical CO2 reduction to CO by metal and nitrogen co-doped carbon catalysts derived from pharmaceutical wastes adsorbed on commercial carbon nanotubes. Chemical Engineering Journal, 2023, 453, 139712.	6.6	9
3416	Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives. Micromachines, 2022, 13, 1984.	1.4	2
3417	Tafel Slope Analysis from Inherent Rate Constants for Oxygen Reduction Reaction Over N-doped Carbon and Fe–N-doped Carbon Electrocatalysts. Catalysis Surveys From Asia, 2023, 27, 84-94.	1.0	3
3418	Coâ€based Catalysts for Selective H ₂ O ₂ Electroproduction via 2â€electron Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	5
3419	Anion exchange membrane fuel cell: New insights and advancements. Wiley Interdisciplinary Reviews: Energy and Environment, 0, , .	1.9	2
3420	Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer for proton exchange membrane fuel cells. Frontiers in Energy, 2023, 17, 123-133.	1.2	4
3421	Preparation of mesoporous carbon with adjustable diameter and pore size. Diamond and Related Materials, 2022, 130, 109515.	1.8	1
3422	Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. Chinese Journal of Catalysis, 2022, 43, 2987-3018.	6.9	45
3423	Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. International Journal of Molecular Sciences, 2022, 23, 14247.	1.8	2
3424	Iron carbide and iron phosphide embedded N-doped porous carbon derived from biomass as oxygen reduction reaction catalyst for microbial fuel cell. International Journal of Hydrogen Energy, 2023, 48, 4492-4502.	3.8	10
3425	Fe–N/C catalysts with tunable mesoporous structures and carbon layer numbers reveal the role of interlayer O ₂ activation. , 2023, 1, 62-73.		5
3426	Ultrastable Fe–N–C Fuel Cell Electrocatalysts by Eliminating Nonâ€Coordinating Nitrogen and Regulating Coordination Structures at High Temperatures. Advanced Materials, 2023, 35, .	11.1	24
3427	Recent progress in the development of efficient biomass-based ORR electrocatalysts. Carbon, 2023, 203, 237-260.	5.4	22
3428	Co,N-doped carbon sheets prepared by a facile method as high-efficiency oxygen reduction catalysts. RSC Advances, 2022, 12, 33981-33987.	1.7	2
3429	Relationship between the electron-transfer coefficients of the oxygen reduction reaction estimated from the Gibbs free energy of activation and the Butler–Volmer equation. Physical Chemistry Chemical Physics, 2022, 25, 700-707.	1.3	8
3430	Biomass-derived carbon material as efficient electrocatalysts for the oxygen reduction reaction. Biomass and Bioenergy, 2023, 168, 106676.	2.9	11
3431	Altering the spin state of Fe-N-C through ligand field modulation of single-atom sites boosts the oxygen reduction reaction. Nano Energy, 2023, 105, 108020.	8.2	43
3432	Atomically dispersed Fe–N4 moieties in porous carbon as efficient cathode catalyst for enhancing the performance in microbial fuel cells. Journal of Power Sources, 2023, 556, 232434.	4.0	3

#	Article	IF	CITATIONS
3433	Iron/cobalt-decorated nitrogen-rich 3D layer-stacked porous biochar as high-performance oxygen reduction air-cathode catalyst in microbial fuel cell. Biosensors and Bioelectronics, 2023, 222, 114926.	5.3	11
3434	Preparation of Two-Dimensional Fe-N-C Nanosheets Derived from ZIF8 and Their Catalytic Performance for Oxygen Reduction Reaction. Material Sciences, 2022, 12, 1230-1236.	0.0	0
3435	Exploiting Asymmetric Co States in a Co-N-C Catalyst for an Efficient Oxygen Reduction Reaction. Symmetry, 2022, 14, 2496.	1.1	1
3436	Regulating electronic structure of CoN4 with axial Co—S for promoting oxygen reduction and Zn-air battery performance. Nano Research, 2023, 16, 4211-4218.	5.8	7
3437	Methods to Synthesize Nanostructured Materials for Electrocatalytic Activities. ACS Symposium Series, 0, , 31-51.	0.5	0
3438	Review—Micro-Fuel Cell Principal Biosensors for Monitoring Transdermal Volatile Organic Compounds in Humans. , 2022, 1, 041602.		10
3439	Zincâ€assisted synthesis of Feâ€Nâ€C catalysts based on polyaniline with high oxygen reduction reaction catalytic activities in direct methanol fuel cells. Fuel Cells, 2023, 23, 42-50.	1.5	1
3440	Electrocatalysts and Electrocatalysis: From Fundamental Mechanisms to Fuel Cell Applications. ACS Symposium Series, 0, , 53-71.	0.5	1
3441	Effect of Iron Loading on Controlling Fe/Nâ^'C Electrocatalyst Structure for Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	0.7	1
3442	Single Platinum Atom Catalysts with High Density. Angewandte Chemie - International Edition, 2023, 62,	7.2	1
3443	Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. ACS Symposium Series, 0, , 227-255.	0.5	2
3444	Transition Metal-Doped Nanocarbon Electrocatalysts for Oxygen Reduction Reaction. ACS Symposium Series, 0, , 133-150.	0.5	0
3447	Noble Metal-Free Electrocatalysts: Materials for Energy Applications. ACS Symposium Series, 0, , 73-94.	0.5	0
3448	Introduction to Electrocatalysts. ACS Symposium Series, 0, , 1-29.	0.5	0
3449	Metal-free carbon semi-tubes for oxygen reduction electrocatalysis. Cell Reports Physical Science, 2023, 4, 101204.	2.8	8
3450	Elucidating the impact of the ionomer equivalent weight on a platinum group metalâ€free PEMFC cathode via oxygen limiting current. SusMat, 2023, 3, 72-90.	7.8	1
3451	Electrocatalysts Based on Graphene and Its Composites. ACS Symposium Series, 0, , 165-199.	0.5	1
3453	Engineering the Electronic Structure of Singleâ€Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Advanced Materials, 2023, 35, .	11.1	63

#	Article	IF	CITATIONS
3454	Single-Atom Iron Catalyst Based on Functionalized Mesophase Pitch Exhibiting Efficient Oxygen Reduction Reaction Activity. Catalysts, 2022, 12, 1608.	1.6	0
3455	Single Platinum Atom Catalysts with HighÂDensity. Angewandte Chemie, 0, , .	1.6	0
3458	The Active Sites and Corresponding Stability Challenges of the Mâ€N Catalysts for Proton Exchange Membrane Fuel Cell. Chinese Journal of Chemistry, 2023, 41, 710-724.	2.6	6
3459	Biomass-Derived Electroactive Carbons with Application in Green Electrochemical Technologies. ACS Symposium Series, 0, , 129-164.	0.5	0
3460	Covalent Organic Framework-Based Electrocatalysts for CO ₂ Reduction Reaction. ACS Symposium Series, 0, , 257-274.	0.5	0
3461	Role of Electrocatalysts in the Performance and Efficiency of Metalâ^'Air Batteries. ACS Symposium Series, 0, , 95-127.	0.5	2
3462	Electrocatalysts Based on Metal Oxides for Hydrogen Evolution Reaction. ACS Symposium Series, 0, , 201-226.	0.5	0
3463	Fe–Nx active sites in Fe–N–C electrocatalysts synthesized using electron beam irradiation. Journal of the Korean Physical Society, 2023, 82, 286-292.	0.3	1
3464	Subsurface oxygen reduction reaction activity on Ti ₂ N MXene revealed by <i>in situ</i> Raman spectroelectrochemistry. Sustainable Energy and Fuels, 2023, 7, 956-964.	2.5	3
3465	Doping matters in carbon nanomaterial efficiency in environmental remediation. Environmental Science and Pollution Research, 2023, 30, 124921-124933.	2.7	5
3466	High Durability of Fe–N–C Singleâ€Atom Catalysts with Carbon Vacancies toward theÂOxygen Reduction Reaction in Alkaline Media. Advanced Materials, 2023, 35, .	11.1	103
3467	Cathode Materials for Primary Zinc-Air Battery. , 2023, , 23-66.		0
3468	Mn–N–C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction. Nanotechnology, 2023, 34, 145403.	1.3	1
3470	Electronic Structure and Reaction Mechanism on Nitrogen-doped Carbon Electrode Catalysts and Design of Catalyst Based on the Mechanism. Vacuum and Surface Science, 2023, 66, 10-15.	0.0	0
3471	Precise control of π-conjugated polymer/carbon nanotubes heterointerfaces for oxygen reduction reactions. International Journal of Hydrogen Energy, 2023, 48, 13151-13158.	3.8	1
3472	Adaptive learning-driven high-throughput synthesis of oxygen reduction reaction Fe–N–C electrocatalysts. Journal of Power Sources, 2023, 559, 232583.	4.0	4
3473	Synthesis of heteroatom incorporated porous carbon encapsulated Fe-doped Co9S8 as an efficient bifunctional electrocatalyst for overall water splitting. Journal of Physics and Chemistry of Solids, 2023, 175, 111220.	1.9	11
3474	Tin-nitrogen/carbon for superior oxygen reduction reaction at fuel cell cathode. International Journal of Hydrogen Energy, 2022, , .	3.8	0

#	Article	IF	Citations
3475	Comprehensive Review on Nitrogen-Doped Graphene: Structure Characterization, Growth Strategy, and Capacitive Energy Storage. Energy & Fuels, 2023, 37, 902-918.	2.5	8
3476	Candied Haws-Like Fe–N–C Catalysts with Broadened Carbon Interlayer Spacing for Efficient Zinc–Air Battery. ACS Applied Materials & Interfaces, 2023, 15, 953-962.	4.0	3
3477	3D Interconnected Honeycomb-Like Multifunctional Catalyst for Zn–Air Batteries. Nano-Micro Letters, 2023, 15, .	14.4	6
3478	ORR Catalysts Derived from Biopolymers. Catalysts, 2023, 13, 80.	1.6	3
3479	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	1.9	2
3480	Carbon-based hydrogels. , 2023, , 281-324.		0
3481	Design and Performance Enhancement of Cobalt-Encapsulated Nitrogen-Doped Carbon Nanofiber Electrocatalyst through Ionic Liquid Modification for Efficient Oxygen Reduction. ACS Applied Nano Materials, 2023, 6, 1975-1984.	2.4	7
3482	Preparation of S self-doped porous carbon nanospheres as ORR catalysts derived from block copolymer grafted S group. Modern Physics Letters B, 0, , .	1.0	0
3483	N-Doped Hollow Carbon Sphere and Polyhedral Carbon Composite Supported Pt/Fe Nanoparticles as Highly Efficient Cathodic Catalysts of Proton-Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2023, 6, 1228-1238.	2.5	1
3484	Electron Modulation and Morphology Engineering Jointly Accelerate Oxygen Reaction to Enhance Znâ€Air Battery Performance. Advanced Science, 2023, 10, .	5.6	24
3485	Heterocyclic Modulated Electronic States of Alkynyl ontaining Conjugated Microporous Polymers for Efficient Oxygen Reduction. Small, 2023, 19, .	5.2	14
3486	Highly active CoFe alloy nanoparticles encapsulated in N-doped carbon nanostructures for oxygen reduction reaction in both alkaline and acidic media. Journal of Alloys and Compounds, 2023, 944, 169166.	2.8	3
3487	Rational design of porous Fex-N@MOF as a highly efficient catalyst for oxygen reduction over a wide pH range. Journal of Alloys and Compounds, 2023, 944, 169039.	2.8	5
3488	Influence of the Structure of Nanocomposites Based on Co,N,S-Doped Carbon and Co9S8 on the Catalytic Properties in the Processes of Quinoline and Its Methyl Derivatives Hydrogenation. Theoretical and Experimental Chemistry, 2023, 58, 417-426.	0.2	2
3489	Fe, Cu dual-metal single atom catalyst on commercial carbon black for efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2023, 11, 6191-6197.	5.2	19
3490	FeNC Oxygen Reduction Electrocatalyst with High Utilization Penta oordinated Sites. Advanced Materials, 2023, 35, .	11.1	22
3491	Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. Electrochemical Energy Reviews, 2023, 6, .	13.1	12
3492	Immobilization of a Molecular Copper Complex and a Carboxylate-Terminated Cocatalyst on a Metal Oxide Electrode for Enhanced Electrocatalytic Oxygen Reduction. ACS Catalysis, 2023, 13, 5599-5608.	5.5	4

#	Article	IF	CITATIONS
3493	Increasing Accessible Active Site Density of Non-Precious Metal Oxygen Reduction Reaction Catalysts through Ionic Liquid Modification. ACS Applied Materials & amp; Interfaces, 2023, 15, 18781-18789.	4.0	8
3494	From catalyst structure design to electrode fabrication of platinum-free electrocatalysts in proton exchange membrane fuel cells: A review. Journal of Industrial and Engineering Chemistry, 2023, 122, 1-26.	2.9	5
3495	Solvent-mediated oxidative polymerization to atomically dispersed iron sites for oxygen reduction. Applied Catalysis B: Environmental, 2023, 331, 122675.	10.8	5
3496	CoOx-Fe3O4/N-rGO Oxygen Reduction Catalyst for Anion-Exchange Membrane Fuel Cells. Energies, 2023, 16, 3425.	1.6	3
3497	Study on Electrochemical Properties of Carbon Submicron Fibers Loaded with Cobalt-Ferro Alloy and Compounds. Crystals, 2023, 13, 282.	1.0	17
3498	Advancing ionomer design to boost interfacial and thin-film proton conductivity via styrene-calix[4]arene-based ionomers. Cell Reports Physical Science, 2023, 4, 101282.	2.8	0
3499	Inducing Fe 3d Electron Delocalization and Spin-State Transition of FeN4 Species Boosts Oxygen Reduction Reaction for Wearable Zinc–Air Battery. Nano-Micro Letters, 2023, 15, .	14.4	9
3500	First-principles study of the effect of the local coordination environment on the electrochemical activity of Pd1-CxNy single atom catalysts. Chemical Engineering Science, 2023, 270, 118551.	1.9	2
3501	Plasma-engineered cobalt nanoparticle encapsulated N-doped graphene nanoplatelets as high-performance oxygen reduction reaction electrocatalysts for aluminum–air batteries. Catalysis Today, 2023, 420, 114025.	2.2	4
3502	Cobalt(<scp>ii</scp>)-bridged triphenylamine and terpyridine-based donor–acceptor coordination polymer as an efficient trifunctional electrocatalyst. Journal of Materials Chemistry A, 2023, 11, 8003-8012.	5.2	7
3503	Atomically dispersed Fe/Co dual site electrocatalysts derived from covalent triazine frameworks for boosting oxygen reduction. Journal of Materials Chemistry A, 2023, 11, 5902-5909.	5.2	4
3504	Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science. Progress in Energy and Combustion Science, 2023, 96, 101074.	15.8	13
3505	Structurally well-defined conjugated <i>meso</i> -aminoporphyrin oligomers analogous to polyanilines. Chemical Science, 2023, 14, 2735-2744.	3.7	1
3506	External-Shell Oxygen Enabling the Local Environment Modulation of Unsaturated NbN ₃ for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2023, 15, 10718-10725.	4.0	1
3507	Recent progress on single-atom catalysts for lithium–air battery applications. Energy and Environmental Science, 2023, 16, 1431-1465.	15.6	29
3508	Pore network modeling of advection-diffusion-reaction in porous media: The effects of channels. Chemical Engineering Science, 2023, 271, 118577.	1.9	1
3509	Fabrication of Fe3C nanoparticles encapsulated in undoped graphite carbon and their catalysis for oxygen reduction. Journal of Central South University, 2023, 30, 35-48.	1.2	2
3510	Dual single-atom catalyst design to build robust oxygen reduction electrode via free radical scavenging. Chem Catalysis, 2023, 3, 100532.	2.9	17

#	Article	IF	CITATIONS
3511	The decisive role of adsorbed OH* in lowâ€potential CO electroâ€oxidation on singleâ€atom catalytic sites. , 2023, 5, .		2
3512	Boost the Utilization of Dense <scp>FeN₄</scp> Sites for Highâ€Performance Proton Exchange Membrane Fuel Cells. Energy and Environmental Materials, 0, , .	7.3	3
3513	Porous Ironâ€Nitrogenâ€Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem, 2023, 10, .	1.7	3
3514	Potential-Dependent Oxygen Reduction on FeN ₄ under Explicit Solvation Environment. Journal of Physical Chemistry C, 2023, 127, 4934-4941.	1.5	3
3515	Fluorination and its Effects on Electrocatalysts for Lowâ€Temperature Fuel Cells. Advanced Energy Materials, 2023, 13, .	10.2	11
3516	Controlled doping of carbon catalyst supports by atomic replacement via gasification-assisted heteroatom doping. Carbon, 2023, 207, 207-218.	5.4	3
3517	Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nature Communications, 2023, 14, .	5.8	33
3518	Promoting ZIF-8-Derived Fe–N–C Oxygen Reduction Catalysts via Zr Doping in Proton Exchange Membrane Fuel Cells: Durability and Activity Enhancements. ACS Catalysis, 2023, 13, 4221-4230.	5.5	29
3519	Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Research, 2023, 16, 4468-4487.	5.8	19
3520	Pyrolyzed cobalt hexacyanocobaltate dispersed on reduced-graphene-oxide as an electrocatalyst of the oxygen reduction reaction in an alkaline medium. Journal of Materials Chemistry A, 2023, 11, 7286-7298.	5.2	3
3521	Influence of Nitrogen Doping into Carbon on the Activation Barrier of ORR in Alkaline Medium: An Investigation Based on Eyring Analysis. Langmuir, 2023, 39, 4351-4361.	1.6	5
3522	Litchiâ€derived platinum group metalâ€free electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction in alkaline media. SusMat, 2023, 3, 248-262.	7.8	8
3523	N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction. Molecular Catalysis, 2023, 541, 113102.	1.0	3
3524	Study of oxygen reduction reaction on binuclear-phthalocyanine with Fe-Fe, Co-Co, and Fe-Co dual-atom-active sites using density functional theory. Journal of Industrial and Engineering Chemistry, 2023, 123, 404-411.	2.9	5
3525	An integrated oxygen electrode derived from a flexible single-walled carbon nanotube film for rechargeable Zn-air batteries produced by electropolymerization. NPG Asia Materials, 2023, 15, .	3.8	5
3526	Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews, 2023, 6, .	13.1	19
3527	High-entropy single-atom activated carbon catalysts for sustainable oxygen electrocatalysis. Nature Sustainability, 2023, 6, 816-826.	11.5	49
3528	High dispersion Co-N/C ultra-thin carbon nanosheets modified with trace Ce as efficient oxygen reduction reaction catalysts. New Journal of Chemistry, 0, , .	1.4	Ο

			0
#	Article	IF	CITATIONS
3529	Transition metal embedded in nonmetal-doped T-carbon [110]: A superior synergistic trifunctional electrocatalyst for HER, OER and ORR. Journal of Energy Chemistry, 2023, 83, 79-89.	7.1	12
3530	Construction of Ru single-atom catalyst with abundant Ru-N active domains for highly efficient acetylene hydrochlorination. Molecular Catalysis, 2023, 543, 113158.	1.0	1
3539	Platinum group metal-free catalysts for fuel cells: status and prospects. , 2023, , 177-197.		0
3563	Noble metal-free N-doped carbon-based electrocatalysts for air electrode of rechargeable zinc-air battery. Science China Materials, 2023, 66, 2953-3003.	3.5	3
3583	The synergy between electrochemical substrate oxidation and the oxygen reduction reaction to enable aerobic oxidation. Chemical Communications, 2023, 59, 11528-11531.	2.2	1
3598	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	4.6	3
3616	Recent progress of antipoisoning catalytic materials for high temperature proton exchange membrane fuel cells doped with phosphoric acid. , 0, , .		0
3620	Metal nitrides for seawater electrolysis. Chemical Society Reviews, 0, , .	18.7	1
3630	Low-cost Transition Metal-Nitrogen-Carbon Electrocatalysts for Oxygen Reduction Reaction: Operating Conditions from Aqueous Electrolytes to Fuel Cells. Sustainable Energy and Fuels, 0, , .	2.5	0
3654	Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive review. Nano Research, 2024, 17, 2592-2618.	5.8	0
3661	Naturally Inspired Heme-Like Chemistries for the Oxygen Reduction Reaction: Going Beyond Platinum Group Metals in Proton Exchange Membrane Fuel Cell Catalysis. , 2024, , 325-351.		0