Subversion of the actin cytoskeleton during viral infect

Nature Reviews Microbiology 9, 427-439 DOI: 10.1038/nrmicro2574

Citation Report

#	Article	IF	CITATIONS
1	The cell biology of receptor-mediated virus entry. Journal of Cell Biology, 2011, 195, 1071-1082.	2.3	425
2	The direct passage of animal viruses between cells. Current Opinion in Virology, 2011, 1, 396-402.	2.6	68
3	Nuclear actin and myosins: Life without filaments. Nature Cell Biology, 2011, 13, 1282-1288.	4.6	126
4	The Actin Cytoskeleton as a Barrier to Virus Infection of Polarized Epithelial Cells. Viruses, 2011, 3, 2462-2477.	1.5	49
5	Five Questions about Viral Trafficking in Neurons. PLoS Pathogens, 2012, 8, e1002472.	2.1	16
6	Cytoskeleton as an Emerging Target of Anthrax Toxins. Toxins, 2012, 4, 83-97.	1.5	12
7	Echovirus 11 infection induces dramatic changes in the actin cytoskeleton of polarized Caco-2 cells. Journal of General Virology, 2012, 93, 475-487.	1.3	9
8	Loss of Cytoskeletal Transport during Egress Critically Attenuates Ectromelia Virus Infection <i>In Vivo</i> . Journal of Virology, 2012, 86, 7427-7443.	1.5	21
9	Direct Interaction of Baculovirus Capsid Proteins VP39 and EXON0 with Kinesin-1 in Insect Cells Determined by Fluorescence Resonance Energy Transfer-Fluorescence Lifetime Imaging Microscopy. Journal of Virology, 2012, 86, 844-853.	1.5	30
10	Cofilin 1-Mediated Biphasic F-Actin Dynamics of Neuronal Cells Affect Herpes Simplex Virus 1 Infection and Replication. Journal of Virology, 2012, 86, 8440-8451.	1.5	56
11	Integrative analyses reveal novel strategies in HPV11,-16 and -45 early infection. Scientific Reports, 2012, 2, 515.	1.6	45
12	Rift Valley Fever Virus Strain MP-12 Enters Mammalian Host Cells via Caveola-Mediated Endocytosis. Journal of Virology, 2012, 86, 12954-12970.	1.5	77
13	Nuclear actin and myosins at a glance. Journal of Cell Science, 2012, 125, 4945-4949.	1.2	69
14	Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiology, 2012, 7, 347-367.	1.0	185
15	Insights into cell division using <i>Listeria monocytogenes</i> infections of PtK2 renal epithelial cells. Cytoskeleton, 2012, 69, 992-999.	1.0	2
16	Viral disruption of the blood–brain barrier. Trends in Microbiology, 2012, 20, 282-290.	3.5	177
17	Mechanisms of Budding of Nanoscale Particles through Lipid Bilayers. Journal of Physical Chemistry B, 2012, 116, 9595-9603.	1.2	44
18	The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology, 2012, 9, 45.	0.9	39

TATION PEDO

#	Article	IF	CITATIONS
19	Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology, 2012, 9, 71.	0.9	21
20	Respiratory Syncytial Virus Assembles into Structured Filamentous Virion Particles Independently of Host Cytoskeleton and Related Proteins. PLoS ONE, 2012, 7, e40826.	1.1	31
21	Exploitation of Cellular Cytoskeletons and Signaling Pathways for Cell Entry by Kaposi's Sarcoma-Associated Herpesvirus and the Closely Related Rhesus Rhadinovirus. Pathogens, 2012, 1, 102-127.	1.2	8
22	Caveolae-Dependent Endocytosis in Viral Infection. , 2012, , .		4
23	Roles for Actin Assembly in Endocytosis. Annual Review of Biochemistry, 2012, 81, 661-686.	5.0	346
24	Viruses and neurodegeneration. Virology Journal, 2013, 10, 172.	1.4	91
25	The potential role of microfilaments in host cells for infection with infectious spleen and kidney necrosis virus infection. Virology Journal, 2013, 10, 77.	1.4	10
26	Vaccinia Virus F11 Promotes Viral Spread by Acting as a PDZ-Containing Scaffolding Protein to Bind Myosin-9A and Inhibit RhoA Signaling. Cell Host and Microbe, 2013, 14, 51-62.	5.1	40
27	The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nature Reviews Microbiology, 2013, 11, 551-560.	13.6	43
28	Staphylococcus aureus enterotoxins Aâ^ and B: binding to the enterocyte brush border and uptake by perturbation of the apical endocytic membrane traffic. Histochemistry and Cell Biology, 2013, 139, 513-524.	0.8	20
29	Virus-Host Interactions. Methods in Molecular Biology, 2013, , .	0.4	2
30	Identification and characterization of a 43ÂkDa actin protein involved in the DENV-2 binding and infection of ECV304 cells. Microbes and Infection, 2013, 15, 310-318.	1.0	26
31	Arp2/3-Mediated Actin-Based Motility: A Tail of Pathogen Abuse. Cell Host and Microbe, 2013, 14, 242-255.	5.1	188
32	Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virology Journal, 2013, 10, 249.	1.4	39
33	Nipah Virus Entry and Egress from Polarized Epithelial Cells. Journal of Virology, 2013, 87, 3143-3154.	1.5	47
34	Interleukin-27 treated human macrophages induce the expression of novel microRNAs which may mediate anti-viral properties. Biochemical and Biophysical Research Communications, 2013, 434, 228-234.	1.0	43
35	The way out: what we know and do not know about herpesvirus nuclear egress. Cellular Microbiology, 2013, 15, 170-178.	1.1	152
36	Viral interactions with microtubules: orchestrators of host cell biology?. Future Virology, 2013, 8, 229-243.	0.9	14

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
37	Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiology, 2013, 8, 123-131.	1.0	16
38	An Integrated Proteomics Reveals Pathological Mechanism of Honeybee (<i>Apis cerena</i>) Sacbrood Disease. Journal of Proteome Research, 2013, 12, 1881-1897.	1.8	41
39	The Tale of the Long Tail: the Cytoplasmic Domain of HIV-1 gp41. Journal of Virology, 2013, 87, 2-15.	1.5	104
40	Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic <i>Escherichia coli</i> Pathotypes. BioMed Research International, 2013, 2013, 1-22.	0.9	40
41	Contribution of Host Intracellular Transport Machineries to Intercellular Movement of Turnip Mosaic Virus. PLoS Pathogens, 2013, 9, e1003683.	2.1	63
42	A36-dependent Actin Filament Nucleation Promotes Release of Vaccinia Virus. PLoS Pathogens, 2013, 9, e1003239.	2.1	34
43	Phage ϕ29 protein p1 promotes replication by associating with the FtsZ ring of the divisome in <i>Bacillus subtilis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12313-12318.	3.3	18
44	SUPPRESSION OF AcMNPV REPLICATION BY ADF AND THYMOSIN PROTEIN UPâ€REGULATION IN A NEW TESTIS CELL LINE, Haâ€shlâ€t. Archives of Insect Biochemistry and Physiology, 2013, 82, 158-171.	0.6	4
45	Computational analysis of the synonymous codon usage bias in human coxsackievirus B3 strain 28. , 2013, , .		0
46	Direct interactions between bidensovirus <scp>B</scp> m <scp>DNV</scp> â€< scp>Z proteins and midgut proteins from the virus target <i><scp>B</scp>ombyxÂmori</i> . FEBS Journal, 2013, 280, 939-949.	2.2	12
47	Genome-wide RNAi screen reveals a role for the ESCRT complex in rotavirus cell entry. Proceedings of the United States of America, 2013, 110, 10270-10275.	3.3	71
48	Altered Protein Networks and Cellular Pathways in Severe West Nile Disease in Mice. PLoS ONE, 2013, 8, e68318.	1.1	20
49	Kinetic Analysis of Mouse Brain Proteome Alterations Following Chikungunya Virus Infection before and after Appearance of Clinical Symptoms. PLoS ONE, 2014, 9, e91397.	1.1	35
50	Rho'ing in and out of cells. Small GTPases, 2014, 5, e28318.	0.7	62
51	Cellular Mechanisms of Alpha Herpesvirus Egress: Live Cell Fluorescence Microscopy of Pseudorabies Virus Exocytosis. PLoS Pathogens, 2014, 10, e1004535.	2.1	72
52	Newcastle Disease Virus Interaction in Targeted Therapy against Proliferation and Invasion Pathways of Clioblastoma Multiforme. BioMed Research International, 2014, 2014, 1-11.	0.9	24
53	RNase L Interacts with Filamin A To Regulate Actin Dynamics and Barrier Function for Viral Entry. MBio, 2014, 5, e02012.	1.8	21
54	Epidermal Growth Factor Receptor-PI3K Signaling Controls Cofilin Activity To Facilitate Herpes Simplex Virus 1 Entry into Neuronal Cells. MBio, 2014, 5, e00958-13.	1.8	98

#	Article	IF	CITATIONS
55	Phosphoproteomics Combined with Quantitative 14-3-3-affinity Capture Identifies SIRT1 and RAI as Novel Regulators of Cytosolic Double-stranded RNA Recognition Pathway. Molecular and Cellular Proteomics, 2014, 13, 2604-2617.	2.5	14
56	Investigating the Role of F-Actin in Human Immunodeficiency Virus Assembly by Live-Cell Microscopy. Journal of Virology, 2014, 88, 7904-7914.	1.5	22
57	Rho GTPases, phosphoinositides, and actin. Small GTPases, 2014, 5, e29469.	0.7	69
58	A Functional Interplay between the Small GTPase Rab11a and Mitochondria-shaping Proteins Regulates Mitochondrial Positioning and Polarization of the Actin Cytoskeleton Downstream of Src Family Kinases. Journal of Biological Chemistry, 2014, 289, 2230-2249.	1.6	24
59	Infection of Porcine Circovirus 2 (PCV2) in Intestinal Porcine Epithelial Cell Line (IPEC-J2) and Interaction between PCV2 and IPEC-J2 Microfilaments. Virology Journal, 2014, 11, 193.	1.4	25
60	Singapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses. Journal of General Virology, 2014, 95, 1144-1155.	1.3	15
61	Equine herpesvirus type 1 (EHV-1)-induced rearrangements of actin filaments in productively infected primary murine neurons. Archives of Virology, 2014, 159, 1341-1349.	0.9	13
62	Visualization of cytoskeletal dynamics in podocytes using adenoviral vectors. Cytoskeleton, 2014, 71, 145-156.	1.0	8
63	Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology, 2014, 449, 88-95.	1.1	9
64	Herpes Simplex Virus Internalization into Epithelial Cells Requires Na ⁺ /H ⁺ Exchangers and p21-Activated Kinases but neither Clathrin- nor Caveolin-Mediated Endocytosis. Journal of Virology, 2014, 88, 13378-13395.	1.5	56
65	Viral Manipulation of Plant Host Membranes. Annual Review of Virology, 2014, 1, 237-259.	3.0	68
66	A Universal Law for Cell Uptake of One-Dimensional Nanomaterials. Nano Letters, 2014, 14, 1049-1055.	4.5	110
67	Viruses exploit the function of epidermal growth factor receptor. Reviews in Medical Virology, 2014, 24, 274-286.	3.9	80
68	HCMV pUL135 Remodels the Actin Cytoskeleton to Impair Immune Recognition of Infected Cells. Cell Host and Microbe, 2014, 16, 201-214.	5.1	67
69	Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. Journal of Proteomics, 2014, 109, 176-187.	1.2	57
70	Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells. Virus Research, 2014, 192, 34-45.	1.1	86
71	Danger, diversity and priming in innate antiviral immunity. Cytokine and Growth Factor Reviews, 2014, 25, 525-531.	3.2	44
72	Identification of chikungunya virus interacting proteins in mammalian cells. Journal of Biosciences, 2014, 39, 389-399.	0.5	16

#	Article	IF	Citations
73	Baculovirus induces host cell aggregation via a Rho/Rok-dependent mechanism. Journal of General Virology, 2014, 95, 2310-2320.	1.3	3
74	Anisotropic cell-to-cell spread of vaccinia virus on microgrooved substrate. Biomaterials, 2014, 35, 5049-5055.	5.7	12
75	Morphological and Functional Properties of the Blood-Brain Barrier. , 2015, , 1-50.		2
76	Phosphorylation of Nonmuscle myosin II-A regulatory light chain resists Sendai virus fusion with host cells. Scientific Reports, 2015, 5, 10395.	1.6	14
77	Serological markers of autoimmunity in children with hepatitis A. European Journal of Gastroenterology and Hepatology, 2015, 27, 1161-1169.	0.8	14
78	Differentially-Expressed Pseudogenes in HIV-1 Infection. Viruses, 2015, 7, 5191-5205.	1.5	12
79	Interaction between <i>Flavivirus</i> and Cytoskeleton during Virus Replication. BioMed Research International, 2015, 2015, 1-6.	0.9	38
80	Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion. Journal of Biological Chemistry, 2015, 290, 6558-6573.	1.6	38
81	Pseudorabies virus US3 leads to filamentous actin disassembly and contributes to viral genome delivery to the nucleus. Veterinary Microbiology, 2015, 177, 379-385.	0.8	14
82	The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Research, 2015, 209, 87-99.	1.1	42
83	Mechanisms of Virus Assembly. Annual Review of Physical Chemistry, 2015, 66, 217-239.	4.8	273
84	The effect of inhibition of host MreB on the infection of thermophilic phage GVE2 in high temperature environment. Scientific Reports, 2014, 4, 4823.	1.6	8
85	Simulations Show that Virus Assembly and Budding Are Facilitated by Membrane Microdomains. Biophysical Journal, 2015, 108, 585-595.	0.2	42
86	Molecular Determinants of the Ratio of Inert to Infectious Virus Particles. Progress in Molecular Biology and Translational Science, 2015, 129, 285-326.	0.9	66
88	Subversive bacteria reveal new tricks in their cytoskeleton-hijacking arsenal. Nature Structural and Molecular Biology, 2015, 22, 178-179.	3.6	4
89	The involvement of FAK-PI3K-AKT-Rac1 pathway in porcine reproductive and respiratory syndrome virus entry. Biochemical and Biophysical Research Communications, 2015, 458, 392-398.	1.0	24
90	A Role for 3- <i>O</i> -Sulfated Heparan Sulfate in Promoting Human Cytomegalovirus Infection in Human Iris Cells. Journal of Virology, 2015, 89, 5185-5192.	1.5	18
91	Divergent target recognition by coexpressed 5′-isomiRs of miR-142-3p and selective viral mimicry. Rna, 2015, 21, 1606-1620.	1.6	37

#	Article	IF	CITATIONS
92	Regulation of Actin-Based Structure Dynamics by HspB Proteins and Partners. Heat Shock Proteins, 2015, , 435-456.	0.2	5
93	Soybean actin-depolymerizing factor 2 interacts with Soybean mosaic virus-encoded P3 protein. Virus Genes, 2015, 50, 333-339.	0.7	22
94	Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Critical Reviews in Microbiology, 2015, 42, 1-19.	2.7	17
95	Phosphoproteome characterization reveals that Sendai virus infection activates mTOR signaling in human epithelial cells. Proteomics, 2015, 15, 2087-2097.	1.3	22
96	High throughput proteomic analysis and a comparative review identify the nuclear chaperone, Nucleophosmin among the common set of proteins modulated in Chikungunya virus infection. Journal of Proteomics, 2015, 120, 126-141.	1.2	22
97	Viruses that ride on the coat-tails of actin nucleation. Seminars in Cell and Developmental Biology, 2015, 46, 155-163.	2.3	17
98	A prophage-encoded actin-like protein required for efficient viral DNA replication in bacteria. Nucleic Acids Research, 2015, 43, 5002-5016.	6.5	31
99	Equid herpesvirus type 1 (EHV-1) disrupts actin cytoskeleton during productive infection in equine leukocytes. Polish Journal of Veterinary Sciences, 2015, 18, 107-112.	0.2	6
100	Coupled elasticity–diffusion model for the effects of cytoskeleton deformation on cellular uptake of cylindrical nanoparticles. Journal of the Royal Society Interface, 2015, 12, 20141023.	1.5	17
101	Bridging the past and the future of virology: Surface plasmon resonance as a powerful tool to investigate virus/host interactions. Critical Reviews in Microbiology, 2015, 41, 238-260.	2.7	22
102	Mapping of the interaction domains of the Crimean–Congo hemorrhagic fever virus nucleocapsid protein. Journal of General Virology, 2015, 96, 524-537.	1.3	11
103	Role of Host Proteins in HIV-1 Early Replication. , 2016, , .		2
104	Cell Biology of Virus Infection. The Role of Cytoskeletal Dynamics Integrity in the Effectiveness of Dengue Virus Infection. , 2016, , .		3
105	The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget, 2016, 7, 12206-12221.	0.8	51
106	Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms. Frontiers in Microbiology, 2016, 7, 300.	1.5	63
107	siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection. PLoS Pathogens, 2016, 12, e1005466.	2.1	30
108	Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission. PLoS Pathogens, 2016, 12, e1006061.	2.1	38
109	Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread. PLoS Pathogens, 2016, 12, e1006062.	2.1	59

-			_	
C		ON	DED	ODT
\sim	пап		NLP	ORI

#	Article	IF	CITATIONS
110	Paramyxovirus Glycoproteins and the Membrane Fusion Process. Current Clinical Microbiology Reports, 2016, 3, 142-154.	1.8	57
111	Scaling and dimensionality in the chemical kinetics of protein filament formation. International Reviews in Physical Chemistry, 2016, 35, 679-703.	0.9	10
112	The landscape of viral proteomics and its potential to impact human health. Expert Review of Proteomics, 2016, 13, 579-591.	1.3	9
113	Nuclear Egress of Herpesviruses. Advances in Virus Research, 2016, 94, 81-140.	0.9	55
114	Vaccinia virus dissemination requires p21-activated kinase 1. Archives of Virology, 2016, 161, 2991-3002.	0.9	3
115	Nipah virus matrix protein: expert hacker of cellular machines. FEBS Letters, 2016, 590, 2494-2511.	1.3	35
116	Host cytoskeleton in respiratory syncytial virus assembly and budding. Virology Journal, 2016, 13, 161.	1.4	26
117	Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Scientific Reports, 2016, 6, 27085.	1.6	36
118	The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV) Infected Glioblastoma Cells. Cellular Physiology and Biochemistry, 2016, 38, 94-109.	1.1	42
119	Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. European Journal of Medicinal Chemistry, 2016, 108, 79-88.	2.6	58
120	Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread. Journal of Virology, 2016, 90, 5163-5175.	1.5	70
121	Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step regulation of actin reorganization. Future Microbiology, 2016, 11, 1227-1248.	1.0	42
122	Screening a yeast library of temperature-sensitive mutants reveals a role for actin in tombusvirus RNA recombination. Virology, 2016, 489, 233-242.	1.1	16
123	Pathogenesis and life cycle of herpes simplex virus infection-stages of primary, latency and recurrence. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2016, 28, 350-353.	0.2	16
124	Breaching the Barrier—The Nuclear Envelope in Virus Infection. Journal of Molecular Biology, 2016, 428, 1949-1961.	2.0	65
125	iTRAQ-based comparative proteomic analysis of Vero cells infected with virulent and CV777 vaccine strain-like strains of porcine epidemic diarrhea virus. Journal of Proteomics, 2016, 130, 65-75.	1.2	51
126	A screening assay for the identification of host cell requirements and antiviral targets for hepatitis D virus infection. Antiviral Research, 2017, 141, 116-123.	1.9	9
127	Herpesviral capture of immunomodulatory host genes. Virus Genes, 2017, 53, 762-773.	0.7	22

#	Article	IF	CITATIONS
128	Effects of ligand distribution on receptor-diffusion-mediated cellular uptake of nanoparticles. Royal Society Open Science, 2017, 4, 170063.	1.1	21
129	A dynamic cell entry pathway of respiratory syncytial virus revealed by tracking the quantum dot-labeled single virus. Nanoscale, 2017, 9, 7880-7887.	2.8	16
130	The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. Journal of Cell Science, 2017, 130, 2185-2195.	1.2	34
131	Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion. Molecular Therapy - Oncolytics, 2017, 5, 75-86.	2.0	22
132	iTRAQ-based Proteomic Analysis of Porcine Kidney Epithelial PK15 cells Infected with Pseudorabies virus. Scientific Reports, 2017, 7, 45922.	1.6	19
133	Dynamic monitoring of membrane nanotubes formation induced by vaccinia virus on a high throughput microfluidic chip. Scientific Reports, 2017, 7, 44835.	1.6	8
134	Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes. Molecular Biology of the Cell, 2017, 28, 3801-3814.	0.9	6
135	Resistance of Echovirus 11 to ClO ₂ Is Associated with Enhanced Host Receptor Use, Altered Entry Routes, and High Fitness. Environmental Science & Technology, 2017, 51, 10746-10755.	4.6	29
136	Viral Hijacking of Formins in Neurodevelopmental Pathologies. Trends in Molecular Medicine, 2017, 23, 778-785.	3.5	4
137	Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Scientific Reports, 2017, 7, 14385.	1.6	17
138	The M25 gene products are critical for the cytopathic effect of mouse cytomegalovirus. Scientific Reports, 2017, 7, 15588.	1.6	19
139	Dynamic Proteomics of Herpes Simplex Virus Infection. MBio, 2017, 8, .	1.8	25
140	Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases, 2017, 8, 139-163.	0.7	100
141	Infectious Bursal Disease Virus Activates c-Src To Promote α4β1 Integrin-Dependent Viral Entry by Modulating the Downstream Akt-RhoA GTPase-Actin Rearrangement Cascade. Journal of Virology, 2017, 91, .	1.5	26
142	Impairing the function of MLCK, myosin Va or myosin Vb disrupts Rhinovirus B14 replication. Scientific Reports, 2017, 7, 17153.	1.6	8
143	RNA-seq comparative analysis of Peking ducks spleen gene expressionÂ24Âh post-infected with duck plague virulent or attenuated virus. Veterinary Research, 2017, 48, 47.	1.1	18
144	Actin-Dependent Nonlytic Rotavirus Exit and Infectious Virus Morphogenetic Pathway in Nonpolarized Cells. Journal of Virology, 2018, 92, .	1.5	19
145	Differential Effects of Strategies to Improve the Transduction Efficiency of Lentiviral Vector that Conveys an Anti-HIV Protein, Nullbasic, in Human T Cells. Virologica Sinica, 2018, 33, 142-152.	1.2	5

#	Article	IF	CITATIONS
146	Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation. Journal of Virology, 2018, 92, .	1.5	22
147	A calibration model on dynamic measurements of nanoparticles endocytosis. Europhysics Letters, 2018, 124, 48002.	0.7	4
148	Long actin-based cellular protrusions as novel evidence of the cytopathic effect induced in immune cells infected by the ectromelia virus. Central-European Journal of Immunology, 2018, 43, 363-370.	0.4	2
149	The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virology Journal, 2018, 15, 182.	1.4	10
150	Respiratory Syncytial Virus Matrix (M) Protein Interacts with Actin In Vitro and in Cell Culture. Viruses, 2018, 10, 535.	1.5	30
151	Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infection and Immunity, 2018, 86, .	1.0	108
152	All-Round Manipulation of the Actin Cytoskeleton by HIV. Viruses, 2018, 10, 63.	1.5	46
153	Actin dynamics in host–pathogen interaction. FEBS Letters, 2018, 592, 3658-3669.	1.3	54
154	Immuno-metabolic changes in herpes virus infection. Cytokine, 2018, 112, 52-62.	1.4	11
155	Proteome-wide analysis of human motif-domain interactions mapped on influenza A virus. BMC Bioinformatics, 2018, 19, 238.	1.2	8
156	MXB inhibits murine cytomegalovirus. Virology, 2018, 522, 158-167.	1.1	26
157	Viral journeys on the intracellular highways. Cellular and Molecular Life Sciences, 2018, 75, 3693-3714.	2.4	70
158	Cytoskeletons in the Closet—Subversion in Alphaherpesvirus Infections. Viruses, 2018, 10, 79.	1.5	25
159	Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses, 2018, 10, 92.	1.5	84
160	Imaging, Tracking and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. Viruses, 2018, 10, 166.	1.5	87
161	Orsay δ Protein Is Required for Nonlytic Viral Egress. Journal of Virology, 2018, 92, .	1.5	14
162	iTRAQ-based quantitative proteomic analysis of differentially expressed proteins in <i>Litopenaeus vannamei</i> in response to infection with WSSV strains varying in virulence. Letters in Applied Microbiology, 2018, 67, 113-122.	1.0	6
163	Disentangling the role of PI3K/Akt, Rho GTPase and the actin cytoskeleton on dengue virus infection. Virus Research, 2018, 256, 153-165.	1.1	29

#	Article	IF	CITATIONS
164	An Orchestra of Reovirus Receptors: Still Searching for the Conductor. Advances in Virus Research, 2018, 100, 223-246.	0.9	6
165	Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis. PLoS Pathogens, 2018, 14, e1006778.	2.1	57
166	RNA-Seq analysis of duck embryo fibroblast cell gene expression during the early stage of egg drop syndrome virus infection. Poultry Science, 2019, 98, 404-412.	1.5	7
167	Candidate gene analysis of Tomato leaf curl New Delhi virus resistance in Cucumis melo. Scientia Horticulturae, 2019, 243, 12-20.	1.7	11
168	Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends in Microbiology, 2019, 27, 39-50.	3.5	64
169	Harnessing host–virus evolution in antiviral therapy and immunotherapy. Clinical and Translational Immunology, 2019, 8, e1067.	1.7	27
170	Gliotoxin Induces Cofilin Phosphorylation to Promote Actin Cytoskeleton Dynamics and Internalization of Aspergillus fumigatus Into Type II Human Pneumocyte Cells. Frontiers in Microbiology, 2019, 10, 1345.	1.5	26
171	Nipah Virus-Like Particle Egress Is Modulated by Cytoskeletal and Vesicular Trafficking Pathways: a Validated Particle Proteomics Analysis. MSystems, 2019, 4, .	1.7	11
172	Remodeling of the Actin Network Associated with the Non-Structural Protein 1 (NS1) of West Nile Virus and Formation of NS1-Containing Tunneling Nanotubes. Viruses, 2019, 11, 901.	1.5	8
173	Comparative modulation of IncRNAs in wild-type and rag1-heterozygous mutant zebrafish exposed to immune challenge with spring viraemia of carp virus (SVCV). Scientific Reports, 2019, 9, 14174.	1.6	36
174	Virus-Dependent and -Independent Responses of Sitobion avenae (Homoptera: Aphididae) Feeding on Wheat Infected by Transmitted and Nontransmitted Viruses at Transcriptomic Level. Journal of Economic Entomology, 2019, 112, 2067-2076.	0.8	12
175	Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium. Frontiers in Immunology, 2019, 10, 1294.	2.2	17
176	Differential expression of innate and adaptive immune genes in the survivors of three gibel carp gynogenetic clones after herpesvirus challenge. BMC Genomics, 2019, 20, 432.	1.2	27
177	ZIKV Strains Differentially Affect Survival of Human Fetal Astrocytes versus Neurons and Traffic of ZIKV-Laden Endocytotic Compartments. Scientific Reports, 2019, 9, 8069.	1.6	32
178	Siteâ€specific phosphorylation of villin remodels the actin cytoskeleton to regulate Sendai viral glycoproteinâ€mediated membrane fusion. FEBS Letters, 2019, 593, 1927-1943.	1.3	4
179	Short-term effects of X-ray on viscoelastic properties of epithelial cells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2019, 233, 535-543.	1.0	5
180	The Role of Host Cytoskeleton in Flavivirus Infection. Virologica Sinica, 2019, 34, 30-41.	1.2	36
181	Induction of an Alternative mRNA 5′ Leader Enhances Translation of the Ciliopathy Gene Inpp5e and Resistance to Oncolytic Virus Infection. Cell Reports, 2019, 29, 4010-4023.e5.	2.9	15

#	Article	IF	CITATIONS
182	Porcine Hemagglutinating Encephalomyelitis Virus Activation of the Integrin α5β1-FAK-Cofilin Pathway Causes Cytoskeletal Rearrangement To Promote Its Invasion of N2a Cells. Journal of Virology, 2019, 93,	1.5	42
183	Comparative Nuclear Proteomics Analysis Provides Insight into the Mechanism of Signaling and Immune Response to Blast Disease Caused by <i>Magnaportheoryzae</i> in Rice. Proteomics, 2019, 19, e1800188.	1.3	11
184	Fatty acids and selected endocannabinoids content in cerebrospinal fluids from patients with neuroinfections. Metabolic Brain Disease, 2019, 34, 331-339.	1.4	4
185	Porcine sapelovirus enters PK-15 cells via caveolae-dependent endocytosis and requires Rab7 and Rab11. Virology, 2019, 529, 160-168.	1.1	6
186	The actin cytoskeleton is important for rotavirus internalization and RNA genome replication. Virus Research, 2019, 263, 27-33.	1.1	14
187	Clinical and Proteomic Correlates of Plasma ACE2 (Angiotensin-Converting Enzyme 2) in Human Heart Failure. Hypertension, 2020, 76, 1526-1536.	1.3	39
188	Proteins involved in actin filament organization are key host factors for Japanese encephalitis virus life-cycle in human neuronal cells. Microbial Pathogenesis, 2020, 149, 104565.	1.3	4
189	Interrogating autonomic peripheral nervous system neurons with viruses – A literature review. Journal of Neuroscience Methods, 2020, 346, 108958.	1.3	9
190	Ebola Virus Nucleocapsid-Like Structures Utilize Arp2/3 Signaling for Intracellular Long-Distance Transport. Cells, 2020, 9, 1728.	1.8	10
191	Inhibitory Effect of PIK-24 on Respiratory Syncytial Virus Entry by Blocking Phosphatidylinositol-3 Kinase Signaling. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	3
192	Entry of Epidemic Keratoconjunctivitis-Associated Human Adenovirus Type 37 in Human Corneal Epithelial Cells. , 2020, 61, 50.		10
193	Polarized Trout Epithelial Cells Regulate Transepithelial Electrical Resistance, Gene Expression, and the Phosphoproteome in Response to Viral Infection. Frontiers in Immunology, 2020, 11, 1809.	2.2	8
194	The emerging tick-borne Crimean-Congo haemorrhagic fever virus: A narrative review. Travel Medicine and Infectious Disease, 2020, 37, 101871.	1.5	23
195	PSGL-1 inhibits HIV-1 infection by restricting actin dynamics and sequestering HIV envelope proteins. Cell Discovery, 2020, 6, 53.	3.1	15
196	Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants. BMC Genomics, 2020, 21, 638.	1.2	10
197	Different regions of synaptic vesicle membrane regulate VAMP2 conformation for the SNARE assembly. Nature Communications, 2020, 11, 1531.	5.8	30
198	Characterization of Zika Virus Endocytic Pathways in Human Glioblastoma Cells. Frontiers in Microbiology, 2020, 11, 242.	1.5	34
199	The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell, 2020, 182, 685-712.e19.	13.5	825

	CITATION	Report	
#	Article	IF	CITATIONS
200	Polyplexes Are Endocytosed by and Trafficked within Filopodia. Biomacromolecules, 2020, 21, 1379-1392.	2.6	13
201	Recognition of Apoptotic Cells by Viruses and Cytolytic Lymphocytes: Target Selection in the Fog of War. Viral Immunology, 2020, 33, 188-196.	0.6	0
202	Crossing the kingdom border: Human diseases caused by plant pathogens. Environmental Microbiology, 2020, 22, 2485-2495.	1.8	34
203	Insights into gene expression responses to infections in teleosts using microarray data: a systematic review. Reviews in Aquaculture, 2021, 13, 18-42.	4.6	2
204	The diverse roles and dynamic rearrangement of vimentin during viral infection. Journal of Cell Science, 2021, 134, .	1.2	42
205	Cytoskeleton—a crucial key in host cell for coronavirus infection. Journal of Molecular Cell Biology, 2021, 12, 968-979.	1.5	64
206	Rabies virus matrix protein targets host actin cytoskeleton: a protein–protein interaction analysis. Pathogens and Disease, 2021, 79, .	0.8	8
207	Human guanylate binding proteins: nanomachines orchestrating host defense. FEBS Journal, 2021, 288, 5826-5849.	2.2	42
208	Dysregulation of Cell Signaling by SARS-CoV-2. Trends in Microbiology, 2021, 29, 224-237.	3.5	62
209	Optical control of fast and processive engineered myosins in vitro and in living cells. Nature Chemical Biology, 2021, 17, 540-548.	3.9	17
210	Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood–Testis Barrier Hyperpermeability. Virologica Sinica, 2021, 36, 692-705.	1.2	16
211	Modulation of Endosome Function, Vesicle Trafficking and Autophagy by Human Herpesviruses. Cells, 2021, 10, 542.	1.8	7
212	Direct interaction of HIV gp120 with neuronal CXCR4 and CCR5 receptors induces cofilin-actin rod pathology via a cellular prion protein- and NOX-dependent mechanism. PLoS ONE, 2021, 16, e0248309.	1.1	15
213	Enterovirusâ€A71 exploits peripherin and Rac1 to invade the central nervous system. EMBO Reports, 2021, 22, e51777.	2.0	12
215	Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology, 2021, 557, 86-99.	1.1	9
216	Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity, 2021, 54, 1037-1054.e7.	6.6	56
217	Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Computational Biology, 2021, 17, e1009166.	1.5	3
218	The Phage Nucleus and PhuZ Spindle: Defining Features of the Subcellular Organization and Speciation of Nucleus-Forming Jumbo Phages. Frontiers in Microbiology, 2021, 12, 641317.	1.5	18

#	Article	IF	CITATIONS
219	Periodic thermomechanical modulation of toll-like receptor expression and distribution in mesenchymal stromal cells. MRS Communications, 2021, 11, 425-431.	0.8	2
220	HIV-1 capsid exploitation of the host microtubule cytoskeleton during early infection. Retrovirology, 2021, 18, 19.	0.9	24
221	The Extracellular Matrix in Skin Inflammation and Infection. Frontiers in Cell and Developmental Biology, 2021, 9, 682414.	1.8	84
222	Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses, 2021, 13, 1658.	1.5	11
224	Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer?. Biology, 2021, 10, 913.	1.3	2
225	NSC23766 and Ehop016 Suppress Herpes Simplex Virus-1 Replication by Inhibiting Rac1 Activity. Biological and Pharmaceutical Bulletin, 2021, 44, 1263-1271.	0.6	6
226	Fast Generation of Stable Cell Lines Expressing Fluorescent Marker Molecules to Study Pathogen Induced Processes. Methods in Molecular Biology, 2013, 1064, 153-169.	0.4	3
227	Viral cell-to-cell spread: Conventional and non-conventional ways. Advances in Virus Research, 2020, 108, 85-125.	0.9	29
228	Adenoviral protein E4orf4 interacts with the polarity protein Par3 to induce nuclear rupture and tumor cell death. Journal of Cell Biology, 2020, 219, .	2.3	9
229	Cellular defence or viral assist: the dilemma of HDAC6. Journal of General Virology, 2017, 98, 322-337.	1.3	27
230	Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). Journal of General Virology, 2017, 98, 2156-2170.	1.3	40
231	Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. Journal of General Virology, 2018, 99, 619-630.	1.3	130
232	Membrane trafficking RNA interference screen identifies a crucial role of the clathrin endocytic pathway and ARP2/3 complex for Japanese encephalitis virus infection in HeLa cells. Journal of General Virology, 2019, 100, 176-186.	1.3	15
235	A Method for Quantifying Mechanical Properties of Tissue following Viral Infection. PLoS ONE, 2012, 7, e42197.	1.1	5
236	Rho-ROCK and Rac-PAK Signaling Pathways Have Opposing Effects on the Cell-to-Cell Spread of Marek's Disease Virus. PLoS ONE, 2012, 7, e44072.	1.1	22
237	Transcriptome Analysis on Chinese Shrimp Fenneropenaeus chinensis during WSSV Acute Infection. PLoS ONE, 2013, 8, e58627.	1.1	128
238	Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress. PLoS ONE, 2013, 8, e65526.	1.1	15
239	Myxoma Virus Oncolytic Efficiency Can Be Enhanced Through Chemical or Genetic Disruption of the Actin Cytoskeleton. PLoS ONE, 2013, 8, e84134.	1.1	14

#	Article	IF	CITATIONS
240	Modulation of Neuronal Proteome Profile in Response to Japanese Encephalitis Virus Infection. PLoS ONE, 2014, 9, e90211.	1.1	27
241	Viral Replication Protein Inhibits Cellular Cofilin Actin Depolymerization Factor to Regulate the Actin Network and Promote Viral Replicase Assembly. PLoS Pathogens, 2016, 12, e1005440.	2.1	44
242	Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. Journal of Clinical Medicine, 2021, 10, 27.	1.0	26
243	Many Breast Cancer Mutations Parallel Mutations in Known Viral Cancers. Journal of Genomes and Exomes, 0, 3, 17-35.	0.0	2
244	<i>Burkholderia pseudomallei</i> type III secreted protein BipC: role in actin modulation and translocation activities required for the bacterial intracellular lifecycle. PeerJ, 2016, 4, e2532.	0.9	6
245	Entry of the <i>Varicellovirus Canid herpesvirus 1</i> into <scp>Madin–Darby</scp> canine kidney epithelial cells is <scp>pH</scp> â€independent and occurs via a macropinocytosisâ€like mechanism but without increase in fluid uptake. Cellular Microbiology, 2021, 23, e13398.	1.1	2
246	Cell membrane skeletal protein 4.1R participates in entry of Zika virus into cells. Virus Research, 2021, 306, 198593.	1.1	2
250	6-Thioguanine Inhibits Herpes Simplex Virus 1 Infection of Eyes. Microbiology Spectrum, 2021, 9, e0064621.	1.2	9
251	Hsp90 Inhibitors Inhibit the Entry of Herpes Simplex Virus 1 Into Neuron Cells by Regulating Cofilin-Mediated F-Actin Reorganization. Frontiers in Microbiology, 2021, 12, 799890.	1.5	7
252	Virus interactions with the actin cytoskeleton—what we know and do not know about SARS-CoV-2. Archives of Virology, 2022, 167, 737-749.	0.9	17
253	Phosphoproteomic profiling of influenza virus entry reveals infection-triggered filopodia induction counteracted by dynamic cortactin phosphorylation. Cell Reports, 2022, 38, 110306.	2.9	5
254	Harder, better, faster, stronger: biochemistry and biophysics in the immunosurveillance concert. Trends in Immunology, 2022, 43, 96-105.	2.9	4
255	Equid Alphaherpesvirus 1 Modulates Actin Cytoskeleton and Inhibits Migration of Glioblastoma Multiforme Cell Line A172. Pathogens, 2022, 11, 400.	1.2	2
256	Role of Ligand Distribution in the Cytoskeleton-Associated Endocytosis of Ellipsoidal Nanoparticles. Membranes, 2021, 11, 993.	1.4	3
257	Role of ARP2/3 Complex-Driven Actin Polymerization in RSV Infection. Pathogens, 2022, 11, 26.	1.2	14
265	Coronavirus Infection and Cholesterol Metabolism. Frontiers in Immunology, 2022, 13, 791267.	2.2	31
266	Cortactin in Lung Cell Function and Disease. International Journal of Molecular Sciences, 2022, 23, 4606.	1.8	11
267	Race against Time between the Virus and Host: Actin-Assisted Rapid Biogenesis of Replication Organelles is Used by TBSV to Limit the Recruitment of Cellular Restriction Factors. Journal of Virology, 2022, 96	1.5	3

#	Article	IF	CITATIONS
268	Host Cytoskeleton Gene Expression Is Correlated with the Formation of Ascovirus Reproductive Viral Vesicles. Viruses, 2022, 14, 1444.	1.5	1
269	Three-Dimensional Investigations of Virus-Associated Structures in the Nuclei with White Spot Syndrome Virus (WSSV) Infection in Red Swamp Crayfish (Procambarus clarkii). Animals, 2022, 12, 1730.	1.0	1
270	Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. Journal of Cell Science, 2022, 135, .	1.2	9
271	Small GTPase—A Key Role in Host Cell for Coronavirus Infection and a Potential Target for Coronavirus Vaccine Adjuvant Discovery. Viruses, 2022, 14, 2044.	1.5	3
272	Actin cytoskeleton remodeling primes RIG-I-like receptor activation. Cell, 2022, 185, 3588-3602.e21.	13.5	23
273	Ultrastructural analysis and three-dimensional reconstruction of cellular structures involved in SARS-CoV-2 spread. Histochemistry and Cell Biology, 2023, 159, 47-60.	0.8	4
274	Distinct functions of dimeric and monomeric scaffold protein Alix in regulating F-actin assembly and loading of exosomal cargo. Journal of Biological Chemistry, 2022, 298, 102425.	1.6	4
275	Design and synthesis of novel palladium cyclometallate-based fluorescent probe: Studies on interaction with cell membrane by confocal and fluorescence lifetime imaging. Journal of Inorganic Biochemistry, 2022, , 112019.	1.5	1
276	Small molecule RAF265 as an antiviral therapy acts against HSVâ€4 by regulating cytoskeleton rearrangement and cellular translation machinery. Journal of Medical Virology, 2023, 95, .	2.5	3
277	The Transient Receptor Potential Vanilloid 2 (TRPV2) Channel Facilitates Virus Infection Through the Ca ²⁺ â€LRMDA Axis in Myeloid Cells. Advanced Science, 2022, 9, .	5.6	5
280	Small-Molecule RAF265 as an Antiviral Therapy Acts against PEDV Infection. Viruses, 2022, 14, 2261.	1.5	1
282	HIV infection drives pro-inflammatory immunothrombotic pathway activation and organ dysfunction among adults with sepsis in Uganda. Aids, 2023, 37, 233-245.	1.0	4
283	The host cytoskeleton: a key regulator of early <scp>HIV</scp> $\hat{a} \in \mathbf{I}$ infection. FEBS Journal, 0, , .	2.2	3
284	Viral modulation of lipid rafts and their potential as putative antiviral targets. Reviews in Medical Virology, 2023, 33, .	3.9	5
285	PIK-24 Inhibits RSV-Induced Syncytium Formation via Direct Interaction with the p85α Subunit of PI3K. Journal of Virology, 2022, 96, .	1.5	1
286	Mapping of Tilapia Lake Virus entry pathways with inhibitors reveals dependence on dynamin activity and cholesterol but not endosomal acidification. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
287	Astrocytes in the pathophysiology of neuroinfection. Essays in Biochemistry, 2023, 67, 131-145.	2.1	5
288	Peptide targeting the interaction of S protein cysteine-rich domain with Ezrin restricts pan-coronavirus infection. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	0

ARTICLE IF CITATIONS # Get in and get out: Remodeling of the cellular actin cytoskeleton upon HIVâ€1 infection. Biology of the 289 0.7 3 Cell, 0, , . Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg?. Viruses, 2023, 15, 712. 1.5 TRIM40 is a pathogenic driver of inflammatory bowel disease subverting intestinal barrier integrity. 291 5.8 7 Nature Communications, 2023, 14, . Baculovirus Actin Rearrangement-Inducing Factor 1 Can Remodel the Mammalian Actin Cytoskeleton. 1.2 Microbiology Spectrum, 2023, 11, . RSV-induced expanded ciliated cells contribute to bronchial wall thickening. Virus Research, 2023, 327, 293 1.1 4 199060. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells, 2023, 12, 805. 294 1.8 Lessons learned from the SARS-CoV-2 pandemic; from nucleic acid nanomedicines, to clinical trials, 295 2.4 0 herd immunity, and the vaccination divide. Expert Opinion on Drug Delivery, 2023, 20, 489-506. Semisynthesis reveals apoptin as a tumour-selective protein prodrug that causes cytoskeletal 296 3.7 collapse. Chemical Science, 2023, 14, 3881-3892. 297 Host Cell Targets for Unconventional Antivirals against RNA Viruses. Viruses, 2023, 15, 776. 1.5 7 Seneca Valley virus enters cells through multiple pathways and traffics intracellularly via the 1.3 endolysosomal pathway. Journal of General Virology, 2023, 104, . High Growth Rate of Diatoms Explained by Reduced Carbon Requirement and Low Energy Cost of Silica 299 1.2 1 Deposition. Microbiology Spectrum, 2023, 11, . Preparation, Antibacterial and Antiviral Activity Measurements and Detection Methods. ACS Symposium Series, 0, , 33-64.