Benchmark map of forest carbon stocks in tropical region

Proceedings of the National Academy of Sciences of the Unite 108, 9899-9904

DOI: 10.1073/pnas.1019576108

Citation Report

#	Article	IF	CITATIONS
1	Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research, 2011, 116, .	3.3	855
2	Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 2011, 262, 1576-1588.	3.2	111
3	Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data. Forest Ecology and Management, 2011, 262, 1786-1798.	3.2	155
4	Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Management, 2011, 2, 231-244.	2.4	265
5	Harvesting the Biosphere: The Human Impact. Population and Development Review, 2011, 37, 613-636.	2.1	98
6	Dependence of Forest Structure and Dynamics on Substrate Age and Ecosystem Development. Ecosystems, 2011, 14, 1156-1167.	3.4	27
7	Mapping biomass with remote sensing: a comparison of methods for the case study of Uganda. Carbon Balance and Management, 2011, 6, 7.	3.2	61
8	Reply to Comment on â€~A first map of tropical Africa's above-ground biomass derived from satellite imagery'. Environmental Research Letters, 2011, 6, 049002.	5.2	4
9	Carbon trading needs a multi-level approach. Nature, 2011, 475, 445-447.	27.8	19
10	Carbon from Tropical Deforestation. Science, 2012, 336, 1518-1519.	12.6	35
11	Tropical forest remote sensing services for the Democratic Republic Of Congo case inside the EU FP7 'ReCover' project (1 st iteration). , 2012, , .		4
12	Forest biomass and the science of inventory from space. Nature Climate Change, 2012, 2, 826-827.	18.8	18
13	Assessment of deforestation drivers and national carbon emissions using remote sensing analysis. , 2012, , .		2
14	A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters, 2012, 5, 421-431.	5.7	328
15	Comparison of space-based technologies for measuring BIOMASS: The road to the BIOMASS mission. , 2012, , .		2
16	Use of Airborne LiDAR to Delineate Canopy Degradation and Encroachment along the Guatemala-Belize Border. Tropical Conservation Science, 2012, 5, 12-24.	1.2	28
17	Carbon emissions from land use and land-cover change. Biogeosciences, 2012, 9, 5125-5142.	3.3	839
18	Carbon Content of Tree Tissues: A Synthesis. Forests, 2012, 3, 332-352.	2.1	338

#	Article	IF	CITATIONS
19	Plant Biomass Allocation across a Precipitation Gradient: An Approach to Seasonally Dry Tropical Forest at Yucatán, Mexico. Ecosystems, 2012, 15, 1234-1244.	3.4	45
20	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	3.3	121
21	Use of an Airborne Lidar System to Model Plant Species Composition and Diversity of Mediterranean Oak Forests. Conservation Biology, 2012, 26, 840-850.	4.7	64
22	Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 2012, 23, 1191-1196.	2.2	148
23	Dipterocarp Biology as a Window to the Understanding of Tropical Forest Structure: Where are we Looking Now?. Biotropica, 2012, 44, 575-576.	1.6	18
24	Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations. Remote Sensing, 2012, 4, 1245-1271.	4.0	22
25	Modeling the spatial and temporal heterogeneity of deforestationâ€driven carbon emissions: the <scp>INPE</scp> â€ <scp>EM</scp> framework applied to the Brazilian Amazon. Global Change Biology, 2012, 18, 3346-3366.	9.5	81
26	Biotic modifiers, environmental modulation and species distribution models. Journal of Biogeography, 2012, 39, 2179-2190.	3.0	48
27	Synergies of multiple remote sensing data sources for REDD+ monitoring. Current Opinion in Environmental Sustainability, 2012, 4, 696-706.	6.3	140
28	Drought-induced decline in Mediterranean truffle harvest. Nature Climate Change, 2012, 2, 827-829.	18.8	90
29	Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment, 2012, 121, 426-442.	11.0	125
30	Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment, 2012, 123, 25-40.	11.0	225
31	Integration of carbon conservation into sustainable forest management using high resolution satellite imagery: A case study in Sabah, Malaysian Borneo. International Journal of Applied Earth Observation and Geoinformation, 2012, 18, 305-312.	2.8	31
32	Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. Forest Ecology and Management, 2012, 276, 88-95.	3.2	148
33	Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2012, 2, 182-185.	18.8	1,326
34	A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS). Carbon Balance and Management, 2012, 7, 10.	3.2	25
35	Revaluing unmanaged forests for climate change mitigation. Carbon Balance and Management, 2012, 7, 11.	3.2	17

#	Article	IF	CITATIONS
37	Cyberinfrastructure for Observatory and Monitoring Networks: A Case Study from the TEAM Network. BioScience, 2012, 62, 667-675.	4.9	9
38	Seeding ecological restoration of tropical forests: Priority setting under REDD+. Biological Conservation, 2012, 154, 34-41.	4.1	34
39	Measuring and modelling above-ground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 2012, 154, 20-33.	4.1	108
40	Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Current Opinion in Environmental Sustainability, 2012, 4, 597-603.	6.3	253
41	Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure. Remote Sensing of Environment, 2012, 125, 23-33.	11.0	58
42	Recarbonization of the Humid Tropics. , 2012, , 229-252.		2
43	A Global System for Monitoring Ecosystem Service Change. BioScience, 2012, 62, 977-986.	4.9	142
44	Biofuels That Cause Land-Use Change May Have Much Larger Non-GHG Air Quality Emissions Than Fossil Fuels. Environmental Science & Technology, 2012, 46, 10835-10841.	10.0	19
45	Evaluation of different methods for forest regional biomass mapping from UAVSAR data. , 2012, , .		0
46	Carbon Stocks and Fluxes in Tropical Lowland Dipterocarp Rainforests in Sabah, Malaysian Borneo. PLoS ONE, 2012, 7, e29642.	2.5	95
47	The Scope for Reducing Emissions from Forestry and Agriculture in the Brazilian Amazon. Forests, 2012, 3, 546-572.	2.1	11
48	Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM+. Remote Sensing, 2012, 4, 3320-3345.	4.0	55
49	High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences, 2012, 9, 2683-2696.	3.3	91
50	Application of Semi-Automated Filter to Improve Waveform Lidar Sub-Canopy Elevation Model. Remote Sensing, 2012, 4, 1494-1518.	4.0	8
51	The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences, 2012, 9, 5407-5430.	3.3	78
52	Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences, 2012, 9, 5061-5079.	3.3	70
53	Tree height integrated into pantropical forest biomass estimates. Biogeosciences, 2012, 9, 3381-3403.	3.3	373
54	Cost-Effective Payments for Reducing Emissions from Deforestation Under Uncertainty. SSRN Electronic Journal, 0, , .	0.4	3

#	Article	IF	CITATIONS
55	Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance and Management, 2012, 7, 2.	3.2	50
56	Baseline Map of Carbon Emissions from Deforestation in Tropical Regions. Science, 2012, 336, 1573-1576.	12.6	575
57	Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix?. Annals of the New York Academy of Sciences, 2012, 1249, 137-150.	3.8	58
58	A review of protocols used for assessment of carbon stock in forested landscapes. Environmental Science and Policy, 2012, 16, 81-89.	4.9	54
59	Challenges and opportunities in linking carbon sequestration, livelihoods and ecosystem service provision in drylands. Environmental Science and Policy, 2012, 19-20, 121-135.	4.9	94
60	Carbon pools of an intact forest in <scp>G</scp> abon. African Journal of Ecology, 2012, 50, 414-427.	0.9	16
61	Modeling Aboveground Biomass in Tropical Forests Using Multi-Frequency SAR Data—A Comparison of Methods. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 298-306.	4.9	72
62	High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance and Management, 2013, 8, 7.	3.2	104
63	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 2013, 22, 1261-1271.	5.8	365
64	Ground-Based Array for Tomographic Imaging of the Tropical Forest in P-Band. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 4460-4472.	6.3	32
65	Residence times of woody biomass in tropical forests. Plant Ecology and Diversity, 2013, 6, 139-157.	2.4	104
66	Regional patterns and controls of biomass in semiarid woodlands: lessons from the Northern Argentina Dry Chaco. Regional Environmental Change, 2013, 13, 1131-1144.	2.9	44
67	Conventional tree height–diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nature Communications, 2013, 4, 2269.	12.8	103
68	Killers of the winners. Nature, 2013, 494, 320-321.	27.8	3
69	National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005. Global Change Biology, 2013, 19, 1173-1187.	9.5	109
70	Approaches to monitoring changes in carbon stocks for REDD+. Carbon Management, 2013, 4, 519-537.	2.4	49
71	The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 593-622.	8.3	616
72	High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 2013, 342, 850-853.	12.6	7,820

#	Article	IF	CITATIONS
73	Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sensing of Environment, 2013, 137, 274-287.	11.0	85
74	Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nature Communications, 2013, 4, 2975.	12.8	25
75	Carbon pools recover more quickly than plant biodiversity in tropical secondary forests. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20132236.	2.6	253
76	Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carbon Balance and Management, 2013, 8, 10.	3.2	162
77	Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability, 2013, 5, 484-493.	6.3	279
78	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	2.1	118
79	Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Management, 2013, 4, 591-600.	2.4	47
80	Determining the response of African biota to climate change: using the past to model the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120491.	4.0	57
81	Carbon forestry in West Africa: The politics of models, measures and verification processes. Global Environmental Change, 2013, 23, 957-967.	7.8	63
82	Landscapeâ€scale forest disturbance regimes in southern Peruvian Amazonia. Ecological Applications, 2013, 23, 1588-1602.	3.8	26
83	Terrestrial carbon balance in tropical Asia: Contribution from cropland expansion and land management. Global and Planetary Change, 2013, 100, 85-98.	3.5	44
84	REDD+and community-controlled forests in low-income countries: Any hope for a linkage?. Ecological Economics, 2013, 87, 43-52.	5.7	46
85	Rapid Simultaneous Estimation of Aboveground Biomass and Tree Diversity Across Neotropical Forests: A Comparison of Field Inventory Methods. Biotropica, 2013, 45, 288-298.	1.6	73
86	Error propagation in biomass estimation in tropical forests. Methods in Ecology and Evolution, 2013, 4, 175-183.	5.2	116
87	Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales. Remote Sensing of Environment, 2013, 134, 319-332.	11.0	71
88	Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sensing of Environment, 2013, 130, 153-170.	11.0	58
89	Global warming and tropical carbon. Nature, 2013, 494, 319-320.	27.8	21
90	A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. IForest, 2013, 6, 156-168.	1.4	28

ARTICLE IF CITATIONS # Biodiversity State and Trends in Southeast Asia., 2013, , 509-527. 18 91 How did we get here? An early history of forestry lidar¹. Canadian Journal of Remote 2.4 Sensing, 2013, 39, S6-S17. The tropical forest in south east Asia: Monitoring and scenario modeling using synthetic aperture 93 3.7 29 radar data. Applied Geography, 2013, 41, 168-178. Using biomass distributions to determine probability and intensity of tropical forest disturbance. 94 2.4 Plant Ecology and Diversity, 2013, 6, 87-99. Space Lidar Developed at the NASA Goddard Space Flight Centerâ€"The First 20 Years. IEEE Journal of 95 4.9 25 Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1660-1675. Uncertain Emission Reductions from Forest Conservation: REDD in the Bale Mountains, Ethiopia. 2.3 Ecology and Society, 2013, 18, . The Potential for REDD+: Key Economic Modeling Insights and Issues. Review of Environmental 97 7.0 51 Economics and Policy, 2013, 7, 67-90. The national determinants of deforestation in sub-Saharan Africa. Philosophical Transactions of the 4.0 156 Royal Society B: Biological Sciences, 2013, 368, 20120405. State and evolution of the African rainforests between 1990 and 2010. Philosophical Transactions of 99 4.0 179 the Royal Society B: Biological Sciences, 2013, 368, 20120300. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll 2.6 245 fluorescence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130171. Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of 101 4.0264 the Royal Society B: Biological Sciences, 2013, 368, 20120295. Changes in Cytoplasmic Volume Are Sufficient to Drive Spindle Scaling. Science, 2013, 342, 853-856. 12.6 Long-term trends and interannual variability of forest, savanna and agricultural fires in South 103 2.4 120 America. Carbon Management, 2013, 4, 617-638. What Does Zero Deforestation Mean?. Science, 2013, 342, 805-807. 104 12.6 Parks versus payments: reconciling divergent policy responses to biodiversity loss and climate change 105 5.213 from tropical déforestation. Environmental Research Letters, 2013, 8, 034028. Tree height and tropical forest biomass estimation. Biogeosciences, 2013, 10, 8385-8399. 149 National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic 107 5.249 Republic of the Congo. Environmental Research Letters, 2013, 8, 044039. Temperate forest aboveground biomass estimation by means of multi-sensor fusion: The Daxinganling campaign., 2013,,.

#	Article	IF	CITATIONS
109	A novel application of satellite radar data: measuring carbon sequestration and detecting degradation in a community forestry project in Mozambique. Plant Ecology and Diversity, 2013, 6, 159-170.	2.4	27
110	Land use change emissions from oil palm expansion in ParÃ;, Brazil depend on proper policy enforcement on deforested lands. Environmental Research Letters, 2013, 8, 044031.	5.2	13
111	Methods for the quantification of GHG emissions at the landscape level for developing countries in smallholder contexts. Environmental Research Letters, 2013, 8, 015019.	5.2	22
112	Effects of Topography on the Radiometry of CHRIS/PROBA Images of Successional Stages Within Tropical Dry Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6, 1584-1595.	4.9	6
113	Clobal tropical forest types as support for the consideration of biodiversity under REDD+. Carbon Management, 2013, 4, 501-517.	2.4	4
114	Forest biomass mapping with airborne LiDAR in Yokohama City. Journal of the Japan Society of Photogrammetry and Remote Sensing, 2013, 52, 306-315.	0.0	2
115	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	3.3	129
116	Influence of lithology on hillslope morphology and response to tectonic forcing in the northern Sierra Nevada of California. Journal of Geophysical Research F: Earth Surface, 2013, 118, 832-851.	2.8	63
117	Longâ€ŧerm, highâ€spatial resolution carbon balance monitoring of the Amazonian frontier: Predisturbance and postdisturbance carbon emissions and uptake. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 400-411.	3.0	13
	biogeosciences, 2013, 110, 400-411.		
118	Measuring tropical forest carbon stocks. , 0, , 44-67.		1
118 119			1
	Measuring tropical forest carbon stocks. , 0, , 44-67.	3.3	
119	Measuring tropical forest carbon stocks. , 0, , 44-67. Brazil and Indonesia. , 0, , 251-274. Impacts of trait variation through observed trait–climate relationships on performance of an Earth	3.3 3.3	0
119 120	Measuring tropical forest carbon stocks. , 0, , 44-67. Brazil and Indonesia. , 0, , 251-274. Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR.		0
119 120 121	Measuring tropical forest carbon stocks. , 0, , 44-67. Brazil and Indonesia. , 0, , 251-274. Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences, 2013, 10, 3917-3930. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model	3.3	0 122 38
119 120 121 122	Measuring tropical forest carbon stocks. , 0, , 44-67. Brazil and Indonesia. , 0, , 251-274. Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences, 2013, 10, 3917-3930. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 1000000000000000000000000000000000000	3.3 3.6	0 122 38 133
 119 120 121 122 123 	Measuring tropical forest carbon stocks. , 0, , 44-67. Brazil and Indonesia. , 0, , 251-274. Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515. Detection of large above-ground biomass variability in lowland forest ecosystems by airborne LiDAR. Biogeosciences, 2013, 10, 3917-3930. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geoscientific Model Development, 2013, 6, 643-685. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 2013, 10, 4137-4177. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements.	3.3 3.6 3.3	0 122 38 133 162

#	Article	IF	CITATIONS
127	PALSAR 50 m Mosaic Data Based National Level Biomass Estimation in Cambodia for Implementation of REDD+ Mechanism. PLoS ONE, 2013, 8, e74807.	2.5	36
128	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA. Remote Sensing, 2013, 5, 284-306.	4.0	18
129	Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa) Using L-Band Synthetic Aperture Radar Data. Remote Sensing, 2013, 5, 1524-1548.	4.0	83
130	Exploring Patterns and Effects of Aerosol Quantity Flag Anomalies in MODIS Surface Reflectance Products in the Tropics. Remote Sensing, 2013, 5, 3495-3515.	4.0	14
131	Estimates of Forest Growing Stock Volume for Sweden, Central Siberia, and Québec Using Envisat Advanced Synthetic Aperture Radar Backscatter Data. Remote Sensing, 2013, 5, 4503-4532.	4.0	36
132	Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets. Remote Sensing, 2013, 5, 2368-2388.	4.0	58
133	Opportunities and Challenges for Offsetting Greenhouse Gas Emissions with Forests. , 0, , 431-454.		1
134	Seasonal trends of dry and bulk concentration of nitrogen compounds over a rain forest in Ghana. Biogeosciences, 2014, 11, 3069-3081.	3.3	7
135	INVENTÃRIO DE CARBONO EM FRAGMENTO DE FLORESTA OMBRÓFILA MISTA POR DETECÇÃO REMOTA. Floresta, 2014, 44, 697.	0.2	1
136	Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 2014, 11, 2741-2754.	3.3	103
137	A Tale of Two "Forests― Random Forest Machine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE, 2014, 9, e85993.	2.5	122
138	The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States. PLoS ONE, 2014, 9, e103236.	2.5	35
139	The Dangers of Carbon-Centric Conservation for Biodiversity: A Case Study in the Andes. Tropical Conservation Science, 2014, 7, 178-191.	1.2	10
140	Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review. International Journal of Forestry Research, 2014, 2014, 1-14.	0.8	43
141	Natural Forest Biomass Estimation Based on Plantation Information Using PALSAR Data. PLoS ONE, 2014, 9, e86121.	2.5	45
142	Local-Scale Mapping of Biomass in Tropical Lowland Pine Savannas Using ALOS PALSAR. Forests, 2014, 5, 2377-2399.	2.1	13
143	Forest Canopy Heights in the Pacific Northwest Based on InSAR Phase Discontinuities across Short Spatial Scales. Remote Sensing, 2014, 6, 3210-3226.	4.0	7
144	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 3. Model Optimization and Testing over Continental China. Remote Sensing, 2014, 6, 3533-3553.	4.0	17

#	Article	IF	CITATIONS
145	Annual Detection of Forest Cover Loss Using Time Series Satellite Measurements of Percent Tree Cover. Remote Sensing, 2014, 6, 8878-8903.	4.0	42
146	Small Footprint Full-Waveform Metrics Contribution to the Prediction of Biomass in Tropical Forests. Remote Sensing, 2014, 6, 9576-9599.	4.0	26
147	Estimation of Airborne Lidar-Derived Tropical Forest Canopy Height Using Landsat Time Series in Cambodia. Remote Sensing, 2014, 6, 10750-10772.	4.0	29
148	Canopy Height Estimation in French Guiana with LiDAR ICESat/GLAS Data Using Principal Component Analysis and Random Forest Regressions. Remote Sensing, 2014, 6, 11883-11914.	4.0	45
149	Trading Forests: Quantifying the Contribution of Global Commodity Markets to Emissions from Tropical Deforestation. SSRN Electronic Journal, 0, , .	0.4	4
150	A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sensing, 2014, 6, 5559-5588.	4.0	100
151	Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 2014, 11, 2793-2808.	3.3	46
152	Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 2014, 11, 3547-3602.	3.3	189
153	Optimization of a prognostic biosphere model for terrestrial biomass and atmospheric CO ₂ variability. Geoscientific Model Development, 2014, 7, 1829-1840.	3.6	19
154	On the potential vegetation feedbacks that enhance phosphorus availability – insights from a process-based model linking geological and ecological timescales. Biogeosciences, 2014, 11, 3661-3683.	3.3	29
155	Identifying environmental controls on vegetation greenness phenology through model–data integration. Biogeosciences, 2014, 11, 7025-7050.	3.3	68
156	A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences, 2014, 11, 381-407.	3.3	162
157	Agriculture, Forestry and Other Land Use (AFOLU). , 2015, , 811-922.		66
158	Why Maintaining Tropical Forests is Essential and Urgent for a Stable Climate. SSRN Electronic Journal, 0, , .	0.4	35
159	Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests. Remote Sensing, 2014, 6, 5633-5649.	4.0	21
160	Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences, 2014, 11, 6827-6840.	3.3	89
161	Mapping Above- and Below-Ground Biomass Components in Subtropical Forests Using Small-Footprint LiDAR. Forests, 2014, 5, 1356-1373.	2.1	22
163	Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 2014, 5, 81-91.	2.4	993

#	Article	IF	CITATIONS
164	A wood density and aboveground biomass variability assessment using pre-felling inventory data in Costa Rica. Carbon Balance and Management, 2014, 9, 9.	3.2	4
165	Identifying areas of deforestation risk for REDD+ using a species modeling tool. Carbon Balance and Management, 2014, 9, 10.	3.2	19
166	Hyperspectral remote sensing of aboveground biomass on a river meander bend using multivariate adaptive regression splines and stochastic gradient boosting. Remote Sensing Letters, 2014, 5, 432-441.	1.4	42
167	Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability. Environmental Research Letters, 2014, 9, 124021.	5.2	74
168	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	3.3	138
169	Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms. Sensors, 2014, 14, 15348-15370.	3.8	105
170	Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environmental Conservation, 2014, 41, 64-72.	1.3	67
171	A highâ€resolution approach to estimating ecosystem respiration at continental scales using operational satellite data. Global Change Biology, 2014, 20, 1191-1210.	9.5	40
172	Woody cover assessments in a Southern African savanna, using hyper-temporal C-band ASAR-WS data. , 2014, , .		1
173	Amazonian landscapes and the bias in field studies of forest structure and biomass. Proceedings of the United States of America, 2014, 111, E5224-32.	7.1	101
174	Carbon stock and density of northern boreal and temperate forests. Global Ecology and Biogeography, 2014, 23, 297-310.	5.8	226
175	Targeted carbon conservation at national scales with high-resolution monitoring. Proceedings of the United States of America, 2014, 111, E5016-22.	7.1	84
176	Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India. Ecological Research, 2014, 29, 1053-1063.	1.5	15
177	Spatial and Temporal Patterns of Frugivorous Hornbill Movements in Central Africa and their Implications for Rain Forest Conservation. Biotropica, 2014, 46, 763-770.	1.6	10
178	Markedly divergent estimates of <scp>A</scp> mazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography, 2014, 23, 935-946.	5.8	248
179	Assessing above-ground woody debris dynamics along a gradient of elevation in Amazonian cloud forests in Peru: balancing above-ground inputs and respiration outputs. Plant Ecology and Diversity, 2014, 7, 143-160.	2.4	19
180	A Systems Engineering Approach to Estimating Uncertainty in Aboveâ€Ground Biomass (<scp>AGB</scp>) Derived from Remoteâ€6ensing Data. Systems Engineering, 2014, 17, 361-373.	2.7	10
181	The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters, 2014, 9, 124017.	5.2	155

#	Article	IF	CITATIONS
182	Regional mapping of forest growing stock volume with multitemporal ALOS PALSAR backscatter. , 2014, , .		1
183	Restoring degraded tropical forests for carbon and biodiversity. Environmental Research Letters, 2014, 9, 114020.	5.2	62
184	Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo. Carbon Balance and Management, 2014, 9, 8.	3.2	9
185	Biophysical Applications of Satellite Remote Sensing. Springer Remote Sensing/photogrammetry, 2014, , \cdot	0.4	16
186	Can recent pan-tropical biomass maps be used to derive alternative Tier 1 values for reporting REDD+ activities under UNFCCC?. Environmental Research Letters, 2014, 9, 124008.	5.2	30
187	Predicting tree heights for biomass estimates in tropical forests – a test from French Guiana. Biogeosciences, 2014, 11, 3121-3130.	3.3	41
188	Synergies and trade-offs between ecosystem services in Costa Rica. Environmental Conservation, 2014, 41, 27-36.	1.3	87
189	Impact of Evapotranspiration on Dry Season Climate in the Amazon Forest*. Journal of Climate, 2014, 27, 574-591.	3.2	45
190	New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sensing of Environment, 2014, 155, 13-31.	11.0	463
191	Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India's Western Ghats. Forest Ecology and Management, 2014, 329, 375-383.	3.2	31
192	Predicting Global Patterns in Mangrove Forest Biomass. Conservation Letters, 2014, 7, 233-240.	5.7	250
193	Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 967-979.	6.3	154
194	Satellite remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 2014, 51, 839-848.	4.0	378
195	Africa's greenhouse-gas budget is in the red. Nature, 2014, 508, 192-193.	27.8	8
196	Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing, 2014, , .	0.7	37
197	Modeling forest dynamics along climate gradients in Bolivia. Journal of Geophysical Research C: Biogeosciences, 2014, 119, 758-775.	3.0	24
198	Regional Variations in Biomass Distribution in Brazilian Savanna Woodland. Biotropica, 2014, 46, 125-138.	1.6	60
200	Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: A case study in Sierra National Forest, CA. Remote Sensing of Environment, 2014, 143, 131-141.	11.0	145

#	Article	IF	CITATIONS
201	How are REDD+ Proponents Addressing Tenure Problems? Evidence from Brazil, Cameroon, Tanzania, Indonesia, and Vietnam. World Development, 2014, 55, 37-52.	4.9	179
202	Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 2014, 6, 195-219.	11.6	972
203	Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 2014, 20, 3177-3190.	9.5	1,712
204	Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric. Remote Sensing of Environment, 2014, 140, 614-624.	11.0	250
205	Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands. Austral Ecology, 2014, 39, 408-415.	1.5	33
206	Testing Different Methods of Forest Height and Aboveground Biomass Estimations From ICESat/GLAS Data in Eucalyptus Plantations in Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 290-299.	4.9	41
207	The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 2014, 24, 680-698.	3.8	156
208	Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001–2010. Ecological Modelling, 2014, 272, 98-115.	2.5	44
209	Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature, 2014, 506, 221-224.	27.8	354
210	Identification of Areas in Brazil that Optimize Conservation of Forest Carbon, Jaguars, and Biodiversity. Conservation Biology, 2014, 28, 580-593.	4.7	13
211	Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Global Change Biology, 2014, 20, 2540-2554.	9.5	399
212	Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica. Global Biogeochemical Cycles, 2014, 28, 1437-1454.	4.9	26
213	Model-Based Analysis of the Influence of Forest Structures on the Scattering Phase Center at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 3937-3946.	6.3	11
214	Perturbations in the carbon budget of the tropics. Global Change Biology, 2014, 20, 3238-3255.	9.5	145
215	Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical <scp>A</scp> mericas. Journal of Ecology, 2014, 102, 1363-1373.	4.0	107
216	Mapping forest stand age in China using remotely sensed forest height and observation data. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1163-1179.	3.0	63
217	Impact of Topographic Correction on Estimation of Aboveground Boreal Biomass Using Multi-temporal, L-Band Backscatter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3262-3273.	4.9	19
218	Forest Biomass Mapping of Northeastern China Using GLAS and MODIS Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 140-152.	4.9	54

#	Article	IF	CITATIONS
219	Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7236-7241.	7.1	182
221	Estimating the Aboveground Biomass of Bornean Forest. Biotropica, 2014, 46, 507-511.	1.6	7
222	Public policies can reduce tropical deforestation: Lessons and challenges from Brazil. Land Use Policy, 2014, 41, 465-473.	5.6	227
223	Exclusion of agricultural lands in spatial conservation prioritization strategies: consequences for biodiversity and ecosystem service representation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141529.	2.6	20
224	Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nature Climate Change, 2014, 4, 138-142.	18.8	82
225	Measurements of Forest Biomass Change Using P-Band Synthetic Aperture Radar Backscatter. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52, 6047-6061.	6.3	20
226	A high-resolution and multi-year emissions inventory for biomass burning in Southeast Asia during 2001–2010. Atmospheric Environment, 2014, 98, 8-16.	4.1	63
227	Long-term carbon loss in fragmented Neotropical forests. Nature Communications, 2014, 5, 5037.	12.8	135
228	Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature, 2014, 514, 213-217.	27.8	648
229	Allometric models for aboveground biomass in dry savanna trees of the Sudan and Sudan-Guinean ecosystems of Southern Senegal. Journal of Forest Research, 2014, 19, 340-347.	1.4	42
230	Amazon forest biomass density maps: tackling the uncertainty in carbon emission estimates. Climatic Change, 2014, 124, 545-560.	3.6	40
231	Modelling gross primary production of a tropical semi-deciduous forest in the southern Amazon Basin. International Journal of Remote Sensing, 2014, 35, 1540-1562.	2.9	16
232	Estimation of forest aboveground biomass in California using canopy height and leaf area index estimated from satellite data. Remote Sensing of Environment, 2014, 151, 44-56.	11.0	103
233	Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecological Applications, 2014, 24, 1984-2001.	3.8	72
234	Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agriculture, Ecosystems and Environment, 2014, 197, 68-76.	5.3	40
235	Uncertainty in initial forest structure and composition when predicting carbon dynamics in a temperate forest. Ecological Modelling, 2014, 291, 134-141.	2.5	9
236	Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sensing of Environment, 2014, 151, 124-137.	11.0	169
237	Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms. Remote Sensing of Environment, 2014, 154, 338-344.	11.0	36

#	ARTICLE	IF	CITATIONS
238	Life cycle analysis of shea butter use in cosmetics: from parklands to product, low carbon opportunities. Journal of Cleaner Production, 2014, 68, 73-80.	9.3	40
239	Potential contributions of remote sensing to ecosystem service assessments. Progress in Physical Geography, 2014, 38, 328-353.	3.2	126
240	Viability Statistics of GLAS/ICESat Data Acquired Over Tropical Forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 1658-1664.	4.9	8
241	Carbon storage and release in Indonesian peatlands since the last deglaciation. Quaternary Science Reviews, 2014, 97, 1-32.	3.0	122
242	Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 119-126.	2.8	68
243	Beyond mean functional traits: Influence of functional trait profiles on forest structure, production, and mortality across the eastern US. Forest Ecology and Management, 2014, 328, 1-9.	3.2	19
244	Multivariate statistical analysis of asynchronous lidar data and vegetation models in a neotropical forest. Remote Sensing of Environment, 2014, 154, 368-377.	11.0	8
245	Fusion of pan-tropical biomass maps using weighted averaging and regional calibration data. International Journal of Applied Earth Observation and Geoinformation, 2014, 31, 13-24.	2.8	26
246	Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS. Remote Sensing, 2014, 6, 6566-6586.	4.0	26
247	Quantifying and understanding carbon storage and sequestration within the Eastern Arc Mountains of Tanzania, a tropical biodiversity hotspot. Carbon Balance and Management, 2014, 9, 2.	3.2	26
248	Floristic shifts versus critical transitions in Amazonian forest systems. , 0, , 131-160.		4
249	An integrated framework for evaluating the effects of deforestation on ecosystem services. IOP Conference Series: Earth and Environmental Science, 2014, 17, 012061.	0.3	1
250	Assessing Sampling and Model Error in Standing Green Weight Estimation for a Loblolly Pine Plantation. Forest Science, 2014, 60, 623-627.	1.0	1
251	Long-term estimates of live above-ground tree carbon stocks and net change in managed uneven-aged mixed species forests of sub-tropical Queensland, Australia. Australian Forestry, 2014, 77, 189-202.	0.9	7
252	Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environmental Research Letters, 2015, 10, 034017.	5.2	182
253	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	4.9	63
254	Tropical North Atlantic oceanâ€atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters, 2015, 42, 6462-6470.	4.0	13
255	Forest carbon in lowland <scp>P</scp> apua <scp>N</scp> ew <scp>G</scp> uinea: Local variation and the importance of small trees. Austral Ecology, 2015, 40, 151-159.	1.5	36

#	Article	IF	CITATIONS
256	Quantifying the net contribution of the historical Amazonian deforestation to climate change. Geophysical Research Letters, 2015, 42, 2968-2976.	4.0	15
257	Defining habitat covariates in camera-trap based occupancy studies. Scientific Reports, 2015, 5, 17041.	3.3	30
258	Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests. Scientific Reports, 2015, 5, 17153.	3.3	75
260	Land use patterns and related carbon losses following deforestation in South America. Environmental Research Letters, 2015, 10, 124004.	5.2	125
261	Remote Sensing Concepts and Their Applicability in REDD+ Monitoring. Current Forestry Reports, 2015, 1, 252-260.	7.4	12
262	Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under <scp>REDD</scp> +?. Clobal Change Biology, 2015, 21, 3455-3468.	9.5	71
263	Choice of satellite imagery and attribution of changes to disturbance type strongly affects forest carbon balance estimates. Carbon Balance and Management, 2015, 10, 30.	3.2	16
264	Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data: Application on French Guiana. , 2015, , .		1
265	Quantifying above―and belowground biomass carbon loss with forest conversion in tropical lowlands of <scp>S</scp> umatra (<scp>I</scp> ndonesia). Global Change Biology, 2015, 21, 3620-3634.	9.5	167
266	Potential impact of large ungulate grazers on <scp>A</scp> frican vegetation, carbon storage and fire regimes. Clobal Ecology and Biogeography, 2015, 24, 991-1002.	5.8	37
267	Suitability of Interferometric Synthetic Aperture Radar (IFSAR) for biomass estimation in a selectively logged tropical rainforest in Peninsular Malaysia. Tropics, 2015, 24, 101-111.	0.8	1
268	Reporting carbon losses from tropical deforestation with Pan-tropical biomass maps. Environmental Research Letters, 2015, 10, 101002.	5.2	9
269	Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environmental Research Letters, 2015, 10, 123001.	5.2	115
270	Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environmental Research Letters, 2015, 10, 125012.	5.2	242
271	Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 2015, 10, 064017.	5.2	51
272	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	9.5	97
273	4. Monitoring REDD+ Impacts: Cross Scale Coordination And Interdisciplinary Integration. , 2015, , 55-79.		4
274	Integrated radar and lidar analysis reveals extensive loss of remaining intact forest on Sumatra 2007–2010. Biogeosciences, 2015, 12, 6637-6653.	3.3	6

#	Article	IF	CITATIONS
275	National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China. Remote Sensing, 2015, 7, 5534-5564.	4.0	57
276	HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers. Biogeosciences, 2015, 12, 887-903.	3.3	36
277	Mitigation of agricultural emissions in the tropics: comparing forest land-sparing options at the national level. Biogeosciences, 2015, 12, 4809-4825.	3.3	18
278	Carbon stock in Adaba-Dodola community forest of Danaba District, West-Arsi zone of Oromia Region, Ethiopia: An implication for climate change mitigation. Journal of Ecology and the Natural Environment, 2015, 7, 14-22.	0.3	27
279	Constraining ecosystem carbon dynamics in a data-limited world: integrating ecological "common sense" in a model–data fusion framework. Biogeosciences, 2015, 12, 1299-1315.	3.3	89
280	Seasonal forecasting of fire over Kalimantan, Indonesia. Natural Hazards and Earth System Sciences, 2015, 15, 429-442.	3.6	49
281	Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects. Forests, 2015, 6, 252-270.	2.1	65
282	Are Mixed Tropical Tree Plantations More Resistant to Drought than Monocultures?. Forests, 2015, 6, 2029-2046.	2.1	29
283	Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data. Remote Sensing, 2015, 7, 8436-8452.	4.0	19
284	Aboveground-Biomass Estimation of a Complex Tropical Forest in India Using Lidar. Remote Sensing, 2015, 7, 10607-10625.	4.0	24
285	SRTM DEM Correction in Vegetated Mountain Areas through the Integration of Spaceborne LiDAR, Airborne LiDAR, and Optical Imagery. Remote Sensing, 2015, 7, 11202-11225.	4.0	44
286	Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia. PLoS ONE, 2015, 10, e0127963.	2.5	50
287	La agroforesterÃa como estrategia para la recuperación y conservación de reservas de carbono en bosques de la AmazonÃa. Bosque, 2015, 36, 347-356.	0.3	9
288	Ecuador's Mangrove Forest Carbon Stocks: A Spatiotemporal Analysis of Living Carbon Holdings and Their Depletion since the Advent of Commercial Aquaculture. PLoS ONE, 2015, 10, e0118880.	2.5	36
289	Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010. PLoS ONE, 2015, 10, e0126754.	2.5	46
290	Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China. PLoS ONE, 2015, 10, e0137452.	2.5	9
291	Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome. PLoS ONE, 2015, 10, e0138456.	2.5	25
292	Ecosystem Services and Biodiversity in a Rapidly Transforming Landscape in Northern Borneo. PLoS ONE, 2015, 10, e0140423.	2.5	29

#	Article	IF	CITATIONS
293	Evaluation of stem rot in 339 Bornean tree species: implications of size, taxonomy, and soil-related variation for aboveground biomass estimates. Biogeosciences, 2015, 12, 5735-5751.	3.3	15
294	Assessment of Above-Ground Biomass of Borneo Forests through a New Data-Fusion Approach Combining Two Pan-Tropical Biomass Maps. Land, 2015, 4, 656-669.	2.9	3
296	Uncertainties in Greenhouse Gas Inventories. , 2015, , .		4
297	Tree dieback affects climate change mitigation potential of a dry afromontane forest in northern Ethiopia. Forest Ecology and Management, 2015, 344, 73-83.	3.2	43
298	Conserving nature out of fear or knowledge? Using threatening versus connecting messages to generate support for environmental causes. Journal for Nature Conservation, 2015, 26, 49-55.	1.8	24
299	Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 4752-4767.	6.3	80
300	Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the TucuruÃ-hydroelectricÂdam in the Amazon basin. Applied Geography, 2015, 63, 1-8.	3.7	63
301	Harmonization of pan-tropical biomass maps using an R2-weighted data fusion approach — A case study for the Amazon biome. , 2015, , .		0
302	Forest aboveground carbon mapping using multiple source remote sensing data in the Greater Mekong Subregion. , 2015, , .		1
303	Estimating woody above-ground biomass in an arid zone of central Australia using Landsat imagery. Journal of Applied Remote Sensing, 2015, 9, 096036.	1.3	7
304	Capability of GLAS/ICESat Data to Estimate Forest Canopy Height and Volume in Mountainous Forests of Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8, 5246-5261.	4.9	21
305	Conservation Payments under Uncertainty. Land Economics, 2015, 91, 36-56.	0.9	40
306	Degradation in carbon stocks near tropical forest edges. Nature Communications, 2015, 6, 10158.	12.8	149
307	Estimating aboveground carbon using airborne LiDAR in Cambodian tropical seasonal forests for REDD+ implementation. Journal of Forest Research, 2015, 20, 484-492.	1.4	12
308	Biogas: Clean Energy Access with Low-Cost Mitigation of Climate Change. Environmental and Resource Economics, 2015, 62, 265-277.	3.2	22
309	The â€~Geographic Emission Benchmark' model: a baseline approach to measuring emissions associated with deforestation and degradation. Journal of Land Use Science, 2015, 10, 466-489.	2.2	6
310	Estimating biomass and carbon mitigation of temperate coniferous forests using spectral modeling and field inventory data. Ecological Informatics, 2015, 25, 63-70.	5.2	51
311	Conservation Planning: A Review of Return on Investment Analysis. Review of Environmental Economics and Policy, 2015, 9, 23-42.	7.0	61

#	Article	IF	CITATIONS
312	Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 2015, 203, 127-139.	5.3	230
313	Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change. Environmental Science & Technology, 2015, 49, 2656-2664.	10.0	86
314	Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Global Change Biology, 2015, 21, 2711-2725.	9.5	162
315	Clobal satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 2015, 20, 114-123.	8.8	183
316	The sensitivity of wet and dry tropical forests to climate change in Bolivia. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 399-413.	3.0	22
317	Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data. Journal of Forestry Research, 2015, 26, 47-55.	3.6	10
318	Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sensing of Environment, 2015, 160, 134-143.	11.0	109
319	The influence of seasonality and species effects on surface fine roots and nodulation in tropical legume tree plantations. Plant and Soil, 2015, 388, 187-196.	3.7	14
320	Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information. Remote Sensing of Environment, 2015, 158, 431-440.	11.0	80
321	Assessing carbon stocks using indigenous peoples' field measurements in Amazonian Guyana. Forest Ecology and Management, 2015, 338, 191-199.	3.2	19
322	Forest biomass is strongly shaped by forest height across boreal to tropical forests in China. Journal of Plant Ecology, 0, , rtv001.	2.3	9
323	The carbon footprint of traditional woodfuels. Nature Climate Change, 2015, 5, 266-272.	18.8	323
324	Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management, 2015, 23, 327-346.	1.5	51
325	Nutrient limitation of eco-physiological processes in tropical trees. Trees - Structure and Function, 2015, 29, 1291-1300.	1.9	31
326	The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management, 2015, 355, 109-123.	3.2	101
327	Scale-Dependent Performance of CMIP5 Earth System Models in Simulating Terrestrial Vegetation Carbon*. Journal of Climate, 2015, 28, 5217-5232.	3.2	24
328	The importance of spatial detail: Assessing the utility of individual crown information and scaling approaches for lidar-based biomass density estimation. Remote Sensing of Environment, 2015, 168, 102-112.	11.0	59
329	Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environmental Research Letters, 2015, 10, 074002.	5.2	142

#	Article	IF	CITATIONS
330	Conservation and conflict in the Democratic Republic of Congo: The impacts of warfare, mining, and protected areas on deforestation. Biological Conservation, 2015, 191, 266-273.	4.1	113
331	Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7420-7425.	7.1	96
332	The influence of stand variables and human use on biomass and carbon stocks of a transitional African forest: Implications for forest carbon projects. Forest Ecology and Management, 2015, 351, 36-46.	3.2	37
333	A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 43, 92-101.	2.8	13
334	Recommendations for the use of tree models to estimate national forest biomass and assess their uncertainty. Annals of Forest Science, 2015, 72, 769-777.	2.0	18
335	Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data. Remote Sensing of Environment, 2015, 161, 1-11.	11.0	78
336	Remote-sensing constraints on South America fire traits by Bayesian fusion of atmospheric and surface data. Geophysical Research Letters, 2015, 42, 1268-1274.	4.0	22
337	An overview of existing and promising technologies for national forest monitoring. Annals of Forest Science, 2015, 72, 779-788.	2.0	17
338	Sensitivity of global terrestrial carbon cycle dynamics to variability in satelliteâ€observed burned area. Global Biogeochemical Cycles, 2015, 29, 207-222.	4.9	29
339	Extraction of ground surface elevation from ZY-3 winter stereo imagery over deciduous forested areas. Remote Sensing of Environment, 2015, 159, 194-202.	11.0	29
340	Recent reversal in loss of global terrestrialÂbiomass. Nature Climate Change, 2015, 5, 470-474.	18.8	447
341	Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 2015, 29, 1268-1277.	3.6	151
342	Changes in forest biomass over China during the 2000s and implications for management. Forest Ecology and Management, 2015, 357, 76-83.	3.2	19
343	Impact of fuel variability on wildfire emission estimates. Atmospheric Environment, 2015, 121, 93-102.	4.1	11
344	Estimation of carbon stock under different management regimes of tropical forest in the Terai Arc Landscape, Nepal. Forest Ecology and Management, 2015, 356, 144-152.	3.2	19
345	Breathing easier in the Amazon. Nature Geoscience, 2015, 8, 751-752.	12.9	1
346	"Carbon Cowboys―could inflate REDD+ payments through positive measurement bias. Carbon Management, 2015, 6, 151-158.	2.4	10
347	Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management, 2015, 352, 21-34.	3.2	212

		CITATION REPORT		
#	Article		IF	CITATIONS
348	Seeing the forest beyond the trees. Global Ecology and Biogeography, 2015, 24, 606-6	10.	5.8	56
349	A review of forest and tree plantation biomass equations in Indonesia. Annals of Forest 72, 981-997.	Science, 2015,	2.0	21
350	Regional forest biomass estimation using ICESat/GLAS spaceborne LiDAR over Borneo. Management, 2015, 6, 19-33.	Carbon	2.4	12
351	Local discrepancies in continental scale biomass maps: a case study over forested and landscapes in Maryland, USA. Carbon Balance and Management, 2015, 10, 19.	non-forested	3.2	31
352	Calibration of Aboveground Forest Carbon Stock Models for Major Tropical Forests in G Sumatra Using Airborne LiDAR and Field Measurement Data. IEEE Journal of Selected To Earth Observations and Remote Sensing, 2015, 8, 661-673.	Central opics in Applied	4.9	18
353	An Approach for Monitoring Global Vegetation Based on Multiangular Observations Fr Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8	om SMOS. IEEE , 604-616.	4.9	23
354	High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions. Envi Science & Technology, 2015, 49, 10806-10814.	ronmental	10.0	36
355	Measurement of Forest Above-Ground Biomass Using Active and Passive Remote Sensi (Subnational to Global) Scales. Current Forestry Reports, 2015, 1, 162-177.	ng at Large	7.4	34
356	State of the Climate in 2014. Bulletin of the American Meteorological Society, 2015, 9	6, ES1-ES32.	3.3	78
357	Using repeated small-footprint LiDAR acquisitions to infer spatial and temporal variatio high-biomass Neotropical forest. Remote Sensing of Environment, 2015, 169, 93-101.	ns of a	11.0	92
359	Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for from Envisat ASAR. Remote Sensing of Environment, 2015, 168, 316-334.	or 2010 derived	11.0	112
360	Seasonality and drought effects of Amazonian forests observed from multi-angle satell Remote Sensing of Environment, 2015, 171, 278-290.	ite data.	11.0	32
361	Attenuating the bidirectional texture variation of satellite images of tropical forest can Sensing of Environment, 2015, 171, 245-260.	opies. Remote	11.0	14
362	National and regional relationships of carbon storage and tropical biodiversity. Biologic Conservation, 2015, 192, 378-386.	cal	4.1	20
363	Nondestructive estimates of aboveâ€ground biomass using terrestrial laser scanning. N Ecology and Evolution, 2015, 6, 198-208.	Methods in	5.2	449
364	Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global Char 2015, 21, 1271-1292.	nge Biology,	9.5	72
365	The spectral changes of deforestation in the Brazilian tropical savanna. Environmental and Assessment, 2015, 187, 4145.	Monitoring	2.7	10
366	Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biolo 1762-1776.	ogy, 2015, 21,	9.5	339

#	Article	IF	CITATIONS
367	An overview of interrelationship between climate change and forests. Forest Science and Technology, 2015, 11, 11-18.	0.8	39
368	The role of tropical dry forests for biodiversity, carbon and water conservation in the neotropics: lessons learned and opportunities for its sustainable management. Regional Environmental Change, 2015, 15, 1039-1049.	2.9	90
369	Mapping Aboveground Biomass in Northern Japanese Forests Using the ALOS PRISM Digital Surface Model. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53, 1683-1691.	6.3	7
370	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	3.6	186
372	Spatially-Explicit Testing of a General Aboveground Carbon Density Estimation Model in a Western Amazonian Forest Using Airborne LiDAR. Remote Sensing, 2016, 8, 9.	4.0	19
373	Storm-triggered landslides in the Peruvian Andes and implications for topography, carbon cycles, and biodiversity. Earth Surface Dynamics, 2016, 4, 47-70.	2.4	60
374	Remote Sensing-Based Biomass Estimation. , 0, , .		8
375	High-resolution mapping of time since disturbance and forest carbon flux from remote sensing and inventory data to assess harvest, fire, and beetle disturbance legacies in the Pacific Northwest. Biogeosciences, 2016, 13, 6321-6337.	3.3	14
376	Analysing the uncertainty ofÂestimating forest carbon stocks in China. Biogeosciences, 2016, 13, 3991-4004.	3.3	12
377	Amazon forest structure generates diurnal and seasonal variability in light utilization. Biogeosciences, 2016, 13, 2195-2206.	3.3	32
378	Getting More `Carbon Bang' for Your `Buck' in Acre State, Brazil. SSRN Electronic Journal, 2016, , .	0.4	0
379	A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space. Remote Sensing, 2016, 8, 327.	4.0	52
380	Mapping Tropical Forest Biomass by Combining ALOS-2, Landsat 8, and Field Plots Data. Land, 2016, 5, 31.	2.9	11
381	Predicting biomass of hyperdiverse and structurally complex central Amazonian forests – a virtual approach using extensive field data. Biogeosciences, 2016, 13, 1553-1570.	3.3	17
382	Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India. Notulae Scientia Biologicae, 2016, 8, 125-133.	0.4	19
383	Characterizing leaf area index (LAI) and vertical foliage profile (VFP) over the United States. Biogeosciences, 2016, 13, 239-252.	3.3	23
385	An IPCC-Compliant Technique for Forest Carbon Stock Assessment Using Airborne LiDAR-Derived Tree Metrics and Competition Index. Remote Sensing, 2016, 8, 528.	4.0	45
386	Multi-gas and multi-source comparisons of six land use emission datasets and AFOLU estimates in the Fifth Assessment Report, for the tropics for 2000–2005. Biogeosciences, 2016, 13, 5799-5819.	3.3	8

#	Article	IF	CITATIONS
387	Annual South American forest loss estimates based on passive microwave remote sensing (1990–2010). Biogeosciences, 2016, 13, 609-624.	3.3	28
388	Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v.Â2.0. Geoscientific Model Development, 2016, 9, 323-361.	3.6	95
389	A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia. Environmental Research Letters, 2016, 11, 114022.	5.2	27
390	Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences, 2016, 13, 2061-2076.	3.3	30
391	Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. Remote Sensing, 2016, 8, 565.	4.0	108
392	The status and challenge of global fire modelling. Biogeosciences, 2016, 13, 3359-3375.	3.3	274
393	Opportunities for Improved Transparency in the Timber Trade through Scientific Verification. BioScience, 2016, 66, 990-998.	4.9	60
394	Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences, 2016, 13, 1571-1585.	3.3	66
395	Aboveground Biomass and Carbon in a South African Mistbelt Forest and the Relationships with Tree Species Diversity and Forest Structures. Forests, 2016, 7, 79.	2.1	48
396	Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna. Forests, 2016, 7, 294.	2.1	23
397	Non-Parametric Retrieval of Aboveground Biomass in Siberian Boreal Forests with ALOS PALSAR Interferometric Coherence and Backscatter Intensity. Journal of Imaging, 2016, 2, 1.	3.0	37
398	Forest Disturbances and Regrowth Assessment Using ALOS PALSAR Data from 2007 to 2010 in Vietnam, Cambodia and Lao PDR. Remote Sensing, 2016, 8, 217.	4.0	41
399	Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana. Remote Sensing, 2016, 8, 240.	4.0	38
400	Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sensing, 2016, 8, 369.	4.0	67
401	Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height. Remote Sensing, 2016, 8, 494.	4.0	11
402	Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sensing, 2016, 8, 522.	4.0	106
403	Airborne S-Band SAR for Forest Biophysical Retrieval in Temperate Mixed Forests of the UK. Remote Sensing, 2016, 8, 609.	4.0	29
404	Airborne Lidar Estimation of Aboveground Forest Biomass in the Absence of Field Inventory. Remote Sensing, 2016, 8, 653.	4.0	43

		IF	CITATION
# 405	ARTICLE Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia. Remote Sensing, 2016, 8, 839.	IF 4.0	CITATIONS
406	Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses. PLoS ONE, 2016, 11, e0149949.	2.5	65
407	Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data. Acta Amazonica, 2016, 46, 151-160.	0.7	18
408	Global Biogeography. , 0, , 422-450.		0
409	Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Global Change Biology, 2016, 22, 1821-1840.	9.5	118
410	Land cover change and carbon emissions over 100Âyears in an <scp>A</scp> frican biodiversity hotspot. Global Change Biology, 2016, 22, 2787-2800.	9.5	52
411	Characterizing forest structure variations across an intact tropical peat dome using field samplings and airborne Li DAR. Ecological Applications, 2016, 26, 587-601.	3.8	4
412	An integrated panâ€ŧropical biomass map using multiple reference datasets. Global Change Biology, 2016, 22, 1406-1420.	9.5	469
413	Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management, 2016, 375, 191-199.	3.2	28
414	Bioclimatic envelope models predict a decrease inÂtropical forest carbon stocks with climate change inÂMadagascar. Journal of Ecology, 2016, 104, 703-715.	4.0	63
415	Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. Journal of Advances in Modeling Earth Systems, 2016, 8, 598-613.	3.8	93
416	Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape. Scientific Reports, 2016, 6, 30012.	3.3	20
417	Termites utilise clay to build structural supports and so increase foraging resources. Scientific Reports, 2016, 6, 20990.	3.3	35
418	Valuation of forest carbon stocks to estimate the potential for result-based payment under REDD+ in Cameroon. International Forestry Review, 2016, 18, 119-129.	0.6	6
419	Carbon emissions from land cover change in Central Vietnam. Carbon Management, 2016, 7, 333-346.	2.4	16
420	A webmapping platform for publishing, sharing, and managing EO-derived data for forest protection. Proceedings of SPIE, 2016, , .	0.8	0
421	Forest above ground biomass estimation from P-band tomography data. , 2016, , .		1
422	Remote sensing of species dominance and the value for quantifying ecosystem services. Remote Sensing in Ecology and Conservation, 2016, 2, 141-151.	4.3	13

#	Article	IF	CITATIONS
423	Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance and Management, 2016, 11, 18.	3.2	35
424	Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balance and Management, 2016, 11, 24.	3.2	55
425	Forest biomass carbon stocks and variation in Tibet's carbon-dense forests from 2001 to 2050. Scientific Reports, 2016, 6, 34687.	3.3	12
426	Status and Trends in Global Ecosystem Services and Natural Capital: Assessing Progress Toward Aichi Biodiversity Target 14. Conservation Letters, 2016, 9, 429-437.	5.7	44
427	Evaluating Moisture and Geometry Effects on L-Band SAR Classification Performance Over a Tropical Rain Forest Environment. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 5357-5368.	4.9	10
428	Forest fragments of the Andean piedmont as carbon sinks. Tropical Conservation Science, 2016, 9, 194008291666733.	1.2	2
429	Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 2016, 7, 11351.	12.8	80
430	Optimizing investments in national-scale forest landscape restoration in Uganda to maximize multiple benefits. Environmental Research Letters, 2016, 11, 114027.	5.2	36
431	Evaluation of global warming impacts on the carbon budget of terrestrial ecosystems in monsoon Asia: a multiâ€model analysis. Ecological Research, 2016, 31, 459-474.	1.5	12
432	Rattan (Calamoideae) abundance and above-ground biomass at a primary rainforest of Peninsular Malaysia. Plant Ecology and Diversity, 2016, 9, 63-67.	2.4	1
433	Live aboveground carbon stocks in natural forests of Colombia. Forest Ecology and Management, 2016, 374, 119-128.	3.2	27
434	Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data. Remote Sensing of Environment, 2016, 182, 1-12.	11.0	36
435	Community forests, carbon sequestration and REDD+: evidence from Ethiopia. Environment and Development Economics, 2016, 21, 249-272.	1.5	32
436	Improving the Spatial Resolution of Land Surface Phenology by Fusing Medium- and Coarse-Resolution Inputs. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 4153-4164.	6.3	33
437	The extent of edge effects in fragmented landscapes: Insights from satellite measurements of tree cover. Ecological Indicators, 2016, 69, 196-204.	6.3	26
438	Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 2016, 198, 60-69.	4.1	185
439	Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil. Trees - Structure and Function, 2016, 30, 1315-1329.	1.9	5
440	Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016, 224, 1-10.	4.8	63

#	Article	IF	CITATIONS
441	Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agriculture, Ecosystems and Environment, 2016, 233, 1-15.	5.3	35
442	Mapping and estimating the total living biomass and carbon in low-biomass woodlands using Landsat 8 CDR data. Carbon Balance and Management, 2016, 11, 13.	3.2	53
443	The effects of topographic correction and gap filling in imagery on the detection of tropical forest disturbances using a Landsat time series in Myanmar. International Journal of Remote Sensing, 2016, 37, 3655-3674.	2.9	4
444	Characterization of Forests with LiDAR Technology. , 2016, , 331-362.		2
445	On the Controls of Daytime Precipitation in the Amazonian Dry Season. Journal of Hydrometeorology, 2016, 17, 3079-3097.	1.9	17
446	Variability of fire carbon emissions in equatorial Asia and its nonlinear sensitivity to El Niño. Geophysical Research Letters, 2016, 43, 10,472.	4.0	60
447	Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Global Biogeochemical Cycles, 2016, 30, 1639-1660.	4.9	109
448	Optimizing Variable Radius Plot Size and LiDAR Resolution to Model Standing Volume in Conifer Forests. Canadian Journal of Remote Sensing, 2016, 42, 428-442.	2.4	19
449	TanDEM-X elevation model data for canopy height and aboveground biomass retrieval in a tropical peat swamp forest. International Journal of Remote Sensing, 2016, 37, 5021-5044.	2.9	22
450	Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 502-514.	2.8	49
451	Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sensing of Environment, 2016, 183, 265-281.	11.0	83
452	The Emerging Soybean Production Frontier in Southern Africa: Conservation Challenges and the Role of South-South Telecouplings. Conservation Letters, 2016, 9, 21-31.	5.7	90
453	Our Renewable Future. , 2016, , .		33
454	Geospatial modeling approach to monument construction using Michigan from A.D. 1000–1600 as a case study. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7443-7448.	7.1	29
455	Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference. Remote Sensing of Environment, 2016, 184, 350-360.	11.0	67
456	Soil carbon stock changes due to edge effects in central Amazon forest fragments. Forest Ecology and Management, 2016, 379, 30-36.	3.2	38
457	The Environmental Legacy of Modern Tropical Deforestation. Current Biology, 2016, 26, 2161-2166.	3.9	68
458	Evolving frontier land markets and the opportunity cost of sparing forests in western Amazonia. Land Use Policy, 2016, 58, 456-471.	5.6	29

#	Article	IF	CITATIONS
459	Biomass turnover time in terrestrial ecosystems halved by land use. Nature Geoscience, 2016, 9, 674-678.	12.9	108
460	Forest Carbon Monitoring and Reporting for REDD+: What Future for Africa?. Environmental Management, 2016, 58, 922-930.	2.7	8
461	Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 2016, 186, 372-392.	11.0	229
462	Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10759-10768.	7.1	543
463	Heterogeneity and assessment uncertainties in forest characteristics and biomass carbon stocks: Important considerations for climate mitigation policies. Land Use Policy, 2016, 59, 84-94.	5.6	17
464	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	23.0	73
465	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	5.2	31
466	What are the limits to oil palm expansion?. Global Environmental Change, 2016, 40, 73-81.	7.8	224
467	Low Emission Development Strategies in Agriculture. An Agriculture, Forestry, and Other Land Uses (AFOLU) Perspective. World Development, 2016, 87, 180-203.	4.9	22
468	Spatial distribution of forest biomass in Brazil's state of Roraima, northern Amazonia. Forest Ecology and Management, 2016, 377, 170-181.	3.2	25
469	Negotiating development narratives within largeâ€scale oil palm projects on village lands in Sarawak, Malaysia. Geographical Journal, 2016, 182, 364-374.	3.1	6
470	The Amazon Carbon Balance: An Evaluation of Methods and Results. Ecological Studies, 2016, , 79-100.	1.2	5
471	Overview of Forest Carbon Stocks Study in Amazonas State, Brazil. Ecological Studies, 2016, , 171-187.	1.2	4
472	Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 2016, 6, 21930.	3.3	191
473	Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin. Ecological Studies, 2016, , .	1.2	11
474	Spatially-explicit models of global tree density. Scientific Data, 2016, 3, 160069.	5.3	7
475	Investigating the capabilities of new microwave ALOS-2/PALSAR-2 data for biomass estimation. Proceedings of SPIE, 2016, , .	0.8	1
476	Rapid, High-Resolution Forest Structure and Terrain Mapping over Large Areas using Single Photon Lidar. Scientific Reports, 2016, 6, 28277.	3.3	109

#	Article	IF	CITATIONS
477	Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sensing of Environment, 2016, 187, 253-266.	11.0	108
478	What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH ₄ emissions as a case study. Atmospheric Chemistry and Physics, 2016, 16, 15199-15218.	4.9	12
479	Climatic controls on the isotopic composition and availability of soil nitrogen across mountainous tropical forest. Ecosphere, 2016, 7, e01412.	2.2	10
480	Patterns and changes of land use and land-use efficiency in Africa 1980–2005: an analysis based on the human appropriation of net primary production framework. Regional Environmental Change, 2016, 16, 1507-1520.	2.9	39
481	Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees - Structure and Function, 2016, 30, 1953-1968.	1.9	58
482	Fire regimes in Amazonia: The relative roles of policy and precipitation. Anthropocene, 2016, 14, 46-57.	3.3	25
483	Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services. Science of the Total Environment, 2016, 566-567, 584-595.	8.0	44
484	Response of soil organic carbon to land-use change in central Brazil: a large-scale comparison of Ferralsols and Acrisols. Plant and Soil, 2016, 408, 327-342.	3.7	17
485	Growth responses of narrow or broad site adapted tree species to a range of resource availability treatments after a full harvest rotation. Forest Ecology and Management, 2016, 362, 107-119.	3.2	45
486	Consistency of vegetation index seasonality across the Amazon rainforest. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 42-53.	2.8	29
487	Strong paleoclimatic legacies in current plant functional diversity patterns across Europe. Ecology and Evolution, 2016, 6, 3405-3416.	1.9	20
488	Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 2016, 104, 469-478.	4.0	55
489	A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 2016, 9, 63-105.	3.9	465
490	The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1285-1290.	7.1	248
491	Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Global Environmental Change, 2016, 37, 1-15.	7.8	159
492	A combined GLAS and MODIS estimation of the global distribution of mean forest canopy height. Remote Sensing of Environment, 2016, 174, 24-43.	11.0	67
493	Canopy Height Model (CHM) Derived From a TanDEM-X InSAR DSM and an Airborne Lidar DTM in Boreal Forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9, 381-397.	4.9	38
494	SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment, 2016, 175, 138-147.	11.0	118

#	Article	IF	CITATIONS
495	Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sensing of Environment, 2016, 173, 98-108.	11.0	58
496	Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 2016, 173, 187-199.	11.0	166
497	Diversity and Distribution of Ectomycorrhizal Fungi from Amazonian Lowland Whiteâ€sand Forests in Brazil and French Guiana. Biotropica, 2016, 48, 90-100.	1.6	46
498	A satellite perspective. Nature Climate Change, 2016, 6, 346-348.	18.8	9
499	Can carbon emissions from tropical deforestation drop by 50% in 5Âyears?. Global Change Biology, 2016, 22, 1336-1347.	9.5	109
500	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	9.5	165
501	Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy, 2016, 8, 81-95.	5.6	43
502	Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo. Global Ecology and Conservation, 2016, 6, 105-120.	2.1	17
503	Biomass resilience of Neotropical secondary forests. Nature, 2016, 530, 211-214.	27.8	763
504	Drought Survival Strategies of Tropical Trees. Tree Physiology, 2016, , 243-258.	2.5	34
505	When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio, 2016, 45, 538-550.	5.5	341
506	Tree cover and carbon mapping of Argentine savannas: Scaling from field to region. Remote Sensing of Environment, 2016, 172, 139-147.	11.0	26
507	Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 793-797.	7.1	161
508	Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns. Ecological Economics, 2016, 122, 12-24.	5.7	21
509	Conservation policy and the measurement ofÂforests. Nature Climate Change, 2016, 6, 192-196.	18.8	136
510	Deforestation scenarios for the Bolivian lowlands. Environmental Research, 2016, 144, 49-63.	7.5	35
511	Remote sensing of vegetation in the Sudano-Sahelian zone: A literature review from 1975 to 2014. Journal of Arid Environments, 2016, 124, 257-269.	2.4	44
512	Impact Evaluation of Forest Conservation Programs: Benefit-Cost Analysis, Without the Economics. Environmental and Resource Economics, 2016, 63, 395-408.	3.2	28

ARTICLE IF CITATIONS # Climate change impacts in Latin America and the Caribbean and their implications for development. 513 2.9 97 Regional Environmental Change, 2017, 17, 1601-1621. Modeling projected changes of mangrove biomass in different climatic scenarios in the Sunda Banda 514 Seascapes. International Journal of Digital Earth, 2017, 10, 457-468. Altitudinal filtering of large-tree species explains above-ground biomass variation in an Atlantic 515 1.1 20 Central African rain forest. Journal of Tropical Ecology, 2017, 33, 143-154. Estimating aboveground biomass of broadleaf, needleleaf, and mixed forests in Northeastern China 516 through analysis of 25-m ALOS/PALSAR mosaic data. Forest Ecology and Management, 2017, 389, 199-210. Novel tropical forests: response to global change. New Phytologist, 2017, 213, 988-992. 517 7.3 6 The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science 10.3 Advances, 2017, 3, e1600821. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. 519 12.6 196 Science, 2017, 355, 385-389. Erosion of organic carbon from the Andes and its effects on ecosystem carbon dioxide balance. 520 Journal of Geophysical Research G: Biogeosciences, 2017, 122, 449-469. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon 521 3.2 249 Balance and Management, 2017, 12, 3. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of 5.3 SW China. Environmental Science and Pollution Research, 2017, 24, 8137-8146. A small subset of protected areas are a highly significant source of carbon emissions. Scientific 523 3.3 24 Reports, 2017, 7, 41902. Impact of data model and point density on aboveground forest biomass estimation from airborne 524 3.2 30 LiDAR. Carbon Balance and Management, 2017, 12, 4. A review of carbon dynamics and assessment methods in the miombo woodlands. Southern Forests, 525 0.7 7 2017, 79, 95-102. From berries to blocks: carbon stock quantification of a California vineyard. Carbon Balance and Management, 2017, 12, 5. 3.2 Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 2017, 105, 527 4.0 112 1223-1234. Quantifying Forest Biomass Carbon Stocks From Space. Current Forestry Reports, 2017, 3, 1-18. The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in 529 4.0 97 Ecology and the Environment, 2017, 15, 183-188. Biomass prediction using a density-dependent diameter distribution model. Annals of Applied 1.1 Statistics, 2017, 11, .

#	Article	IF	CITATIONS
531	Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. Trends in Ecology and Evolution, 2017, 32, 416-428.	8.7	107
532	Application of the space-for-time substitution method in validating long-term biomass predictions of a forest landscape model. Environmental Modelling and Software, 2017, 94, 127-139.	4.5	18
533	Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data. Ecological Modelling, 2017, 355, 84-96.	2.5	17
534	Empirically Derived Sensitivity of Vegetation to Climate across Global Gradients of Temperature and Precipitation. Journal of Climate, 2017, 30, 5835-5849.	3.2	31
535	Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environmental Research Letters, 2017, 12, 044015.	5.2	157
536	Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Science Advances, 2017, 3, e1601047.	10.3	147
537	Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia. Environmental Research Letters, 2017, 12, 044017.	5.2	18
538	The phenology of leaf quality and its withinâ€canopy variation is essential for accurate modeling of photosynthesis in tropical evergreen forests. Global Change Biology, 2017, 23, 4814-4827.	9.5	33
539	Full and effective participation of indigenous peoples in forest monitoring for reducing emissions from deforestation and forest degradation (<scp>REDD</scp> +): trial in Panama's Darién. Ecosphere, 2017, 8, e01635.	2.2	8
540	Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 129, 189-199.	11.1	35
541	Carbon taxation of the land use sector—the economics of soil carbon. Natural Resource Modelling, 2017, 30, .	2.0	3
542	Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model. Remote Sensing of Environment, 2017, 196, 265-278.	11.0	51
543	Effects of TanDEM-X Acquisition Parameters on the Accuracy of Digital Surface Models of a Boreal Forest Canopy. Canadian Journal of Remote Sensing, 2017, 43, 194-207.	2.4	6
544	Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sensing of Environment, 2017, 196, 154-162.	11.0	75
545	Carbon stock of Banja forest in Banja district, Amhara region, Ethiopia: An implication for climate change mitigation. Journal of Sustainable Forestry, 2017, 36, 604-622.	1.4	37
546	Optimal climate for large trees at high elevations drives patterns of biomass in remote forests of Papua New Guinea. Global Change Biology, 2017, 23, 4873-4883.	9.5	33
547	An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance and Management, 2017, 12, 12.	3.2	97
549	Allometric equations for biomass and carbon stocks of forests along an altitudinal gradient in the eastern Himalayas. Forestry, 2017, 90, 445-454.	2.3	11

#	Article	IF	CITATIONS
550	Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India. Environmental Monitoring and Assessment, 2017, 189, 187.	2.7	35
551	Estimating Smallholder Opportunity Costs of REDD+: A Pantropical Analysis from Households to Carbon and Back. World Development, 2017, 95, 15-26.	4.9	42
552	Potential of Wetland Macrophytes to Sequester Carbon and Assessment of Seasonal Carbon Input into the East Kolkata Wetland Ecosystem. Wetlands, 2017, 37, 497-512.	1.5	22
553	Tree allometric equations for estimation of above, below and total biomass in a tropical moist forest: Case study with application to remote sensing. Forest Ecology and Management, 2017, 391, 184-193.	3.2	55
554	Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms. Progress in Physical Geography, 2017, 41, 247-267.	3.2	36
555	Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 528-545.	3.0	41
556	Priority areas for biodiversity conservation in mainland Ecuador. Neotropical Biodiversity, 2017, 3, 93-106.	0.5	78
557	The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests. Current Opinion in Environmental Sustainability, 2017, 26-27, 69-76.	6.3	11
558	High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nature Communications, 2017, 8, 14855.	12.8	213
559	Lidar remote sensing of savanna biophysical attributes: opportunities, progress, and challenges. International Journal of Remote Sensing, 2017, 38, 235-257.	2.9	5
560	Predicting old-growth tropical forest attributes from very high resolution (VHR)-derived surface metrics. International Journal of Remote Sensing, 2017, 38, 492-513.	2.9	12
561	Vegetation biomass estimation with remote sensing: focus on forest and other wooded land over the Mediterranean ecosystem. International Journal of Remote Sensing, 2017, 38, 1940-1966.	2.9	83
562	Drivers of biomass stocks in Northwestern South American forests: Contributing new information on the Neotropics. Forest Ecology and Management, 2017, 389, 86-95.	3.2	9
563	The potential benefit of using forest biomass data in addition to carbon and water flux measurements to constrain ecosystem model parameters: Case studies at two temperate forest sites. Agricultural and Forest Meteorology, 2017, 234-235, 48-65.	4.8	19
564	Seasonality constraints to livestock grazing intensity. Global Change Biology, 2017, 23, 1636-1647.	9.5	51
565	Spatial Modeling of Lidar-Derived Woody Biomass Estimates Collected Along Transects in a Heterogeneous Savanna Landscape. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 372-384.	4.9	4
566	Tropical protected areas reduced deforestation carbon emissions by one third from 2000–2012. Scientific Reports, 2017, 7, 14005.	3.3	48
567	Model selection changes the spatial heterogeneity and total potential carbon in a tropical dry forest. Forest Ecology and Management, 2017, 405, 69-80.	3.2	10

#	Article	IF	CITATIONS
568	Structure and allometry in tropical forests of ChocÃ ³ , Colombia. Forest Ecology and Management, 2017, 405, 309-318.	3.2	16
569	Estimating carbon stock in lowland Papua New Guinean forest: Low density of large trees results in lower than global average carbon stock. Austral Ecology, 2017, 42, 964-975.	1.5	7
570	Going beyond the green: senesced vegetation material predicts basal area and biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape. Environmental Research Letters, 2017, 12, 085004.	5.2	8
571	Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science, 2017, 358, 230-234.	12.6	539
572	Forest biomass carbon dynamics (1980–2009) in western Himalaya in the context of REDD+ policy. Environmental Earth Sciences, 2017, 76, 1.	2.7	6
573	Shifting from a fertilization-dominated to a warming-dominated period. Nature Ecology and Evolution, 2017, 1, 1438-1445.	7.8	167
574	Hydrologic resilience and Amazon productivity. Nature Communications, 2017, 8, 387.	12.8	37
575	Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution. Remote Sensing of Environment, 2017, 201, 73-87.	11.0	47
577	Conservation performance of different conservation governance regimes in the Peruvian Amazon. Scientific Reports, 2017, 7, 11318.	3.3	132
578	Spatial heterogeneity of biomass and forest structure of the Amazon rain forest: Linking remote sensing, forest modelling and field inventory. Global Ecology and Biogeography, 2017, 26, 1292-1302.	5.8	52
579	Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador. Journal of Environmental Management, 2017, 202, 287-298.	7.8	7
580	Rainforest metropolis casts 1,000-km defaunation shadow. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8655-8659.	7.1	50
581	Getting more â€~carbon bang' for your â€~buck' in Acre State, Brazil. Ecological Economics, 2017, 142, 214-227.	5.7	3
582	An individualâ€based forest model to jointly simulate carbon and tree diversity in Amazonia: description and applications. Ecological Monographs, 2017, 87, 632-664.	5.4	40
583	Hidden roles of protected areas in the conservation of biodiversity and ecosystem services. Ecosphere, 2017, 8, e01864.	2.2	17
584	Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environmental Research Letters, 2017, 12, 025004.	5.2	88
585	Human influence on the temporal dynamics and spatial distribution of forest biomass carbon in China. Ecology and Evolution, 2017, 7, 6220-6230.	1.9	19
586	Are Brazil deforesters avoiding detection? Reply to Richards etÂal . 2016. Conservation Letters, 2017, 10, 493-494.	5.7	4

#	Article	IF	CITATIONS
587	Fire disturbance data improves the accuracy of remotely sensed estimates of aboveground biomass for boreal forests in eastern Canada. Remote Sensing Applications: Society and Environment, 2017, 8, 71-82.	1.5	0
588	Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sensing of Environment, 2017, 200, 31-42.	11.0	115
589	Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling. Geophysical Research Letters, 2017, 44, 8359-8368.	4.0	13
590	Toward a general tropical forest biomass prediction model from very high resolution optical satellite images. Remote Sensing of Environment, 2017, 200, 140-153.	11.0	49
591	County-scale biomass map comparison: a case study for Sonoma, California. Carbon Management, 2017, 8, 417-434.	2.4	12
593	MODIS-VCF Based Forest Change Analysis in the State of Jharkhand. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 751-767.	1.2	8
594	Modeling road building, deforestation and carbon emissions due deforestation in the Ecuadorian Amazon: the potential impact of oil frontier growth. Journal of Land Use Science, 2017, 12, 477-492.	2.2	22
595	Expected Advances in a Rapidly Developing Work Area. , 2017, , 309-318.		Ο
596	Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993–2012. Scientific Reports, 2017, 7, 15615.	3.3	20
597	Impact of global climate change on ecosystem functions of African countries. Arid Ecosystems, 2017, 7, 217-223.	0.8	3
598	Comparison of lidar- and allometry-derived canopy height models in an eastern deciduous forest. Forest Ecology and Management, 2017, 406, 83-94.	3.2	22
599	Comparing methods for assessing the effectiveness of subnational REDD+ initiatives. Environmental Research Letters, 2017, 12, 074007.	5.2	52
600	LegalGEO: Conservation tool to guide the siting of legal reserves under the Brazilian Forest Code. Applied Geography, 2017, 86, 53-65.	3.7	17
601	Identifying salient forest SES attributes for sustainability: A multi-country study. Land Use Policy, 2017, 60, 197-205.	5.6	5
602	Life cycle assessment of the construction of an unpaved road in an undisturbed tropical rainforest area in the vicinity of Manu National Park, Peru. International Journal of Life Cycle Assessment, 2017, 22, 1109-1124.	4.7	23
603	Carbon emissions from agricultural expansion and intensification in the Chaco. Global Change Biology, 2017, 23, 1902-1916.	9.5	142
604	Reducing Carbon Emissions from Forest Conversion for Oil Palm Agriculture in Gabon. Conservation Letters, 2017, 10, 297-307.	5.7	26
605	Projections of climate change impacts on central America tropical rainforest. Climatic Change, 2017, 141, 93-105.	3.6	45

#	Article	IF	CITATIONS
606	Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. International Journal of Digital Earth, 2017, 10, 307-323.	3.9	30
607	Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Global Change Biology, 2017, 23, 1240-1257.	9.5	102
608	Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests?. Functional Ecology, 2017, 31, 542-552.	3.6	57
609	Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, 23, 177-190.	9.5	254
610	Deadwood stocks increase with selective logging and large tree frequency in Gabon. Global Change Biology, 2017, 23, 1648-1660.	9.5	18
611	Overlooking what is underground: Root:shoot ratios and coarse root allometric equations for tropical forests. Forest Ecology and Management, 2017, 385, 10-15.	3.2	32
612	Monitoring national conservation progress with indicators derived from global and national datasets. Biological Conservation, 2017, 213, 325-334.	4.1	24
613	A new highâ€resolution nationwide aboveground carbon map for Brazil. Geo: Geography and Environment, 2017, 4, e00045.	0.8	18
614	Spatial Distribution of Carbon Stored in Forests of theÂDemocratic Republic of Congo. Scientific Reports, 2017, 7, 15030.	3.3	44
615	Comparative evaluation of OCO-2 XCO2 signature between REDD+ project area and nearby leakage belt. Spatial Information Research, 2017, 25, 693-700.	2.2	8
616	Carbon futures: a valiant attempt to bring scientific order from modeling chaos. Environmental Research Letters, 2017, 12, 101001.	5.2	0
617	Forest height estimation based on uav lidar simulated waveform. , 2017, , .		2
618	A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmospheric Chemistry and Physics, 2017, 17, 2839-2864.	4.9	233
619	Regional Carbon Predictions in a Temperate Forest Using Satellite Lidar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 4954-4960.	4.9	6
620	Monitoring biodiversity change through effective global coordination. Current Opinion in Environmental Sustainability, 2017, 29, 158-169.	6.3	147
621	Tropical Dry Deciduous Forest: Research Trends and Emerging Features. , 2017, , .		15
622	Productivity and Nutrient Cycling. , 2017, , 111-147.		0
623	Assimilating satelliteâ€based canopy height within an ecosystem model to estimate aboveground forest biomass. Geophysical Research Letters, 2017, 44, 6823-6832.	4.0	11

#	Article	IF	CITATIONS
624	High Resolution of Three-Dimensional Dataset for Aboveground Biomass Estimation in Tropical Rainforests. , 2017, , 115-130.		0
625	Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences, 2017, 14, 5053-5067.	3.3	58
626	Estimating Aboveground Biomass in Tropical Forests: Field Methods and Error Analysis for the Calibration of Remote Sensing Observations. Remote Sensing, 2017, 9, 47.	4.0	22
627	Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas. Remote Sensing, 2017, 9, 213.	4.0	25
628	Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data. Remote Sensing, 2017, 9, 394.	4.0	34
629	Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data. Remote Sensing, 2017, 9, 707.	4.0	38
630	A Top-Down Approach to Estimating Spatially Heterogeneous Impacts of Development Aid on Vegetative Carbon Sequestration. Sustainability, 2017, 9, 409.	3.2	7
631	Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico. Forests, 2017, 8, 101.	2.1	12
632	An Assessment of Carbon Storage in China's Arboreal Forests. Forests, 2017, 8, 110.	2.1	12
633	Fire Behavior Simulation from Global Fuel and Climatic Information. Forests, 2017, 8, 179.	2.1	16
634	Carbon Emissions from Deforestation and Degradation in a Forest Reserve in Venezuela between 1990 and 2015. Forests, 2017, 8, 291.	2.1	9
635	Accuracy Assessment and Inter-Comparison of Eight Medium Resolution Forest Products on the Loess Plateau, China. ISPRS International Journal of Geo-Information, 2017, 6, 152.	2.9	25
636	Modeling the Effects of Future Growing Demand for Charcoal in the Tropics. Frontiers in Environmental Science, 2017, 5, .	3.3	15
637	Global patterns of aboveground carbon stock and sequestration in mangroves. Anais Da Academia Brasileira De Ciencias, 2017, 89, 973-989.	0.8	31
638	Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests. Biogeosciences, 2017, 14, 4663-4690.	3.3	27
639	First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves. Anais Da Academia Brasileira De Ciencias, 2017, 89, 1579-1589.	0.8	15
640	Spatial planning for a green economy: National-level hydrologic ecosystem services priority areas for Gabon. PLoS ONE, 2017, 12, e0179008.	2.5	10
641	Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS ONE, 2017, 12, e0179653.	2.5	37

	Сіт	CITATION REPORT	
# 642	ARTICLE Forest structure retrieval from EcoSAR P-band single-pass interferometry. , 2017, , .	IF	CITATIONS
643	A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geoscientific Model Development, 2017, 10, 2141-2156.	3.6	161
644	Inverting Aboveground Biomass–Canopy Texture Relationships in a Landscape of Forest Mosaic in th Western Ghats of India Using Very High Resolution Cartosat Imagery. Remote Sensing, 2017, 9, 228.	ie 4.0	18
645	Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences, 2017, 14, 3401-3429.	3.3	49
646	Relationships of S-Band Radar Backscatter and Forest Aboveground Biomass in Different Forest Types. Remote Sensing, 2017, 9, 1116.	4.0	27
647	Economically important species dominate aboveground carbon storage in forests of southwestern Amazonia. Ecology and Society, 2017, 22, .	2.3	10
648	A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development, 2017, 10, 4443-4476.	3.6	51
651	Global evaluation of gross primary productivity in the JULES land surface model v3.4.1. Geoscientific Model Development, 2017, 10, 2651-2670.	3.6	42
652	Weighing trees with lasers: advances, challenges and opportunities. Interface Focus, 2018, 8, 2017004	48. 3.0	120
653	Coordination and tradeâ€offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist, 2018, 218, 1015-1024.	7.3	97
654	What drives long-term variations in carbon flux and balance in a tropical rainforest in French Guiana?. Agricultural and Forest Meteorology, 2018, 253-254, 114-123.	4.8	45
655	Higher absorbed solar radiation partly offset the negative effects of water stress on the photosynthesis of Amazon forests during the 2015 drought. Environmental Research Letters, 2018, 13 044005.	3, 5.2	42
656	Modeling carbon storage across a heterogeneous mixed temperate forest: the influence of forest type specificity on regional-scale carbon storage estimates. Landscape Ecology, 2018, 33, 641-658.	4.2	6
657	Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance and Management, 2018, 5.	13, 3.2	84
658	Mapping boreal forest biomass from a SRTM and TanDEM-X based on canopy height model and Landsa spectral indices. International Journal of Applied Earth Observation and Geoinformation, 2018, 68, 202-213.	at 2.8	23
659	Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations. International Journal of Remote Sensing, 2018, 39, 6479-6498.	2.9	9
660	Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation, 2018, 222 189-197.	, 4.1	261
661	Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession. Journal of Ecology, 2018, 106, 1415-1427.	4.0	26

#	Article	IF	CITATIONS
" 662	Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 206-216.	2.8	17
663	Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nature Ecology and Evolution, 2018, 2, 827-835.	7.8	160
664	Impact of land cover change on aboveground carbon stocks in Afromontane landscape in Kenya. Applied Geography, 2018, 94, 178-189.	3.7	86
665	Fuel savings, cooking time and user satisfaction with improved biomass cookstoves: Evidence from controlled cooking tests in Ethiopia. Resources and Energy Economics, 2018, 52, 173-185.	2.5	49
666	The spatiotemporal features of greenhouse gases emissions from biomass burning in China from 2000 to 2012. Journal of Cleaner Production, 2018, 181, 801-808.	9.3	36
667	A global corrected SRTM DEM product for vegetated areas. Remote Sensing Letters, 2018, 9, 393-402.	1.4	36
668	Assessing large area forest cover products derived from the same imaging source across Victoria, Australia. Ecological Management and Restoration, 2018, 19, 66-75.	1.5	1
669	Organic Carbon Stocks in all Pools Following Land Cover Change in the Rainforest of Madagascar. , 2018, , 25-37.		3
670	Field methods for sampling tree height for tropical forest biomass estimation. Methods in Ecology and Evolution, 2018, 9, 1179-1189.	5.2	78
671	An empirical, integrated forest biomass monitoring system. Environmental Research Letters, 2018, 13, 025004.	5.2	50
672	Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 2018, 553, 73-76.	27.8	422
673	Longâ€ŧerm increases in tropical flowering activity across growth forms in response to rising <scp>CO</scp> ₂ and climate change. Global Change Biology, 2018, 24, 2105-2116.	9.5	19
674	An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sensing of Environment, 2018, 206, 156-173.	11.0	167
675	The extent and predictability of the biodiversity–carbon correlation. Ecology Letters, 2018, 21, 365-375.	6.4	46
676	Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 2018, 12, 28-38.	2.1	20
677	Characterization of forest carbon stocks at the landscape scale in the Argentine Dry Chaco. Forest Ecology and Management, 2018, 424, 21-27.	3.2	12
678	An Empirical Study on the Impact of Changing Weather Conditions on Repeat-Pass SAR Tomography. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3505-3511.	4.9	7
679	Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3512-3526.	4.9	60

#	Article	IF	CITATIONS
680	Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology and Diversity, 2018, 11, 13-25.	2.4	12
681	Annual forest aboveground biomass changes mapped using ICESat/GLAS measurements, historical inventory data, and time-series optical and radar imagery for Guangdong province, China. Agricultural and Forest Meteorology, 2018, 259, 23-38.	4.8	42
682	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	12.8	28
683	Mapping of the spatial distribution of carbon storage of the <i>Pinus kesiya</i> Royle ex Gordon (Benguet pine) forest in Sagada, Mt. Province, Philippines. Journal of Sustainable Forestry, 2018, 37, 661-677.	1.4	4
684	Quaternion-Based Texture Analysis of Multiband Satellite Images: Application to the Estimation of Aboveground Biomass in the East Region of Cameroon. Acta Biotheoretica, 2018, 66, 17-60.	1.5	1
685	Forest inventory and analysis in Gilgit-Baltistan. International Journal of Climate Change Strategies and Management, 2018, 10, 616-631.	2.9	22
686	Historical carbon fluxes in the expanding deforestation frontier of Southern Brazilian Amazonia (1985–2012). Regional Environmental Change, 2018, 18, 77-89.	2.9	3
687	Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case study in Jiangle County, southeast China. Acta Geochimica, 2018, 37, 90-101.	1.7	15
688	Identifying ecosystem service hotspots for targeting land degradation neutrality investments in south-eastern Africa. Journal of Arid Environments, 2018, 159, 75-86.	2.4	32
689	Beneath the Canopy: Tropical Forests Enrolled in Conservation Payments Reveal Evidence of Less Degradation. Ecological Economics, 2018, 143, 64-73.	5.7	20
690	Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets. International Journal of Remote Sensing, 2018, 39, 577-606.	2.9	14
691	Does Collective Action Sequester Carbon? Evidence from the Nepal Community Forestry Program. World Development, 2018, 101, 133-141.	4.9	22
692	Avoided Deforestation Linked to Environmental Registration of Properties in the Brazilian Amazon. Conservation Letters, 2018, 11, e12414.	5.7	25
693	Spatial distribution of forest biomass carbon (Above and below ground) in Indian forests. Ecological Indicators, 2018, 85, 742-752.	6.3	37
694	Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biological Conservation, 2018, 217, 289-310.	4.1	91
695	Forest extent and deforestation in tropical Africa since 1900. Nature Ecology and Evolution, 2018, 2, 26-33.	7.8	97
696	Who owns the Brazilian carbon?. Global Change Biology, 2018, 24, 2129-2142.	9.5	33
697	Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 159-173.	2.8	61

#	Article	IF	CITATIONS
698	Agriculture-driven deforestation in the tropics from 1990–2015: emissions, trends and uncertainties. Environmental Research Letters, 2018, 13, 014002.	5.2	42
699	Variation of main terrestrial carbon stocks at the landscape-scale are shaped by soil in a tropical rainforest. Geoderma, 2018, 313, 57-68.	5.1	17
700	Forest structure and carbon dynamics of an intact lowland mixed dipterocarp forest in Brunei Darussalam. Journal of Forestry Research, 2018, 29, 199-203.	3.6	2
701	What if negative emission technologies fail at scale? Implications of the Paris Agreement for big emitting nations. Climate Policy, 2018, 18, 690-714.	5.1	99
702	Spatial evaluation of Indonesia's 2015 fireâ€affected area and estimated carbon emissions using Sentinelâ€1. Global Change Biology, 2018, 24, 644-654.	9.5	93
703	Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Regional Environmental Change, 2018, 18, 261-270.	2.9	43
705	Sunda epicontinental shelf and Quaternary glacial-interglacial sea level variation and their implications to the regional and global environmental change. IOP Conference Series: Earth and Environmental Science, 2018, 118, 012053.	0.3	3
706	Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH. Biogeosciences, 2018, 15, 5969-5989.	3.3	10
707	Striking divergences in Earth Observation products may limit their use for REDD+. Environmental Research Letters, 2018, 13, 104020.	5.2	7
708	Sustained Biomass Carbon Sequestration by China's Forests from 2010 to 2050. Forests, 2018, 9, 689.	2.1	12
709	A Forest Attribute Mapping Framework: A Pilot Study in a Northern Boreal Forest, Northwest Territories, Canada. Remote Sensing, 2018, 10, 1338.	4.0	18
710	Airborne laser scanning for terrain modeling in the Amazon forest. Acta Amazonica, 2018, 48, 271-279.	0.7	7
711	A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: an example from the Amazon region. Geoscientific Model Development, 2018, 11, 5203-5215.	3.6	6
712	Interferometric SAR DEMs for Forest Change in Uganda 2000–2012. Remote Sensing, 2018, 10, 228.	4.0	23
713	Tropical Peatland Vegetation Structure and Biomass: Optimal Exploitation of Airborne Laser Scanning. Remote Sensing, 2018, 10, 671.	4.0	12
714	Assessment of a Power Law Relationship Between <i>P</i> Band SAR Backscatter and Aboveground Biomass and Its Implications for BIOMASS Mission Performance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3538-3547.	4.9	17
715	Changes in Climate and Land Use Over the Amazon Region: Current and Future Variability and Trends. Frontiers in Earth Science, 2018, 6, .	1.8	259
716	Smos L-Band Vegetation Optical Depth is Highly Sensitive to Aboveground Biomass. , 2018, , .		3

#	Article	IF	CITATIONS
717	Exploring the Inclusion of Small Regenerating Trees to Improve Above-Ground Forest Biomass Estimation Using Geospatial Data. Remote Sensing, 2018, 10, 1446.	4.0	4
718	Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance and Management, 2018, 13, 22.	3.2	76
719	Assessing carbon sequestration of silvopastoral tropical landscapes using optical remote sensing and field measurements. Journal of Land Use Science, 2018, 13, 455-472.	2.2	6
720	SMOS-IC Vegetation Optical Depth Index in Monitoring Aboveground Carbon Changes in the Tropical Continents During 2010–2016. , 2018, , .		2
721	Mapping Ecological Production and Benefits from Water Consumed in Agricultural and Natural Landscapes: A Case Study of the Pangani Basin. Remote Sensing, 2018, 10, 1802.	4.0	4
722	Vegetation Continuous Fields. , 2018, , 4-12.		0
723	Vegetation Structure (LiDAR). , 2018, , 104-116.		1
724	Neotropical Forests from their Emergence to the Future Scenario of Climatic Changes. , 0, , .		3
725	Inverse Determination of the Influence of Fire on Vegetation Carbon Turnover in the Pantropics. Global Biogeochemical Cycles, 2018, 32, 1776-1789.	4.9	19
726	GOLUM-CNP v1.0: a data-driven modeling of carbon, nitrogen and phosphorus cycles in major terrestrial biomes. Geoscientific Model Development, 2018, 11, 3903-3928.	3.6	32
727	Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land, 2018, 7, 124.	2.9	20
728	Changes in surface hydrology, soil moisture and gross primary production in the Amazon during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180084.	4.0	36
729	Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests, 2018, 9, 582.	2.1	87
730	Mapping soil carbon stocks in an oceanic mangrove ecosystem in Karimunjawa Islands, Indonesia. Estuarine, Coastal and Shelf Science, 2018, 214, 185-193.	2.1	18
731	Contribution and stability of forest-derived soil organic carbon during woody encroachment in a tropical savanna. A case study in Gabon. Biology and Fertility of Soils, 2018, 54, 897-907.	4.3	4
733	Evaluation of a Data Assimilation System for Land Surface Models Using CLM4.5. Journal of Advances in Modeling Earth Systems, 2018, 10, 2471-2494.	3.8	54
734	Soil Carbon and the Carbon Cycle in the Central Amazon Forest. , 2018, , 59-66.		0
735	African shrub distribution emerges via a tradeâ€off between height and sapwood conductivity. Journal of Biogeography, 2018, 45, 2815-2826.	3.0	14

#	Article	IF	CITATIONS
736	Effects of endogenous and exogenous processes on aboveground biomass stocks and dynamics in Andean forests. Plant Ecology, 2018, 219, 1481-1492.	1.6	24
737	Characterization of higher-order scattering from vegetation with SMAP measurements. Remote Sensing of Environment, 2018, 219, 324-338.	11.0	29
738	Reducing emissions from Deforestation and forest Degradation in Angola: Insights from the scarp forest conservation †hotspot'. Land Degradation and Development, 2018, 29, 4291-4300.	3.9	10
739	The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2731-2754.	3.8	175
740	New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American Journal of Botany, 2018, 105, 1653-1661.	1.7	19
741	A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development, 2018, 11, 2995-3026.	3.6	114
743	Global patterns in wood carbon concentration across the world's trees and forests. Nature Geoscience, 2018, 11, 915-920.	12.9	89
744	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	9.5	107
745	Variations and determinants of carbon content in plants: a global synthesis. Biogeosciences, 2018, 15, 693-702.	3.3	170
746	Reliability ensemble averaging of 21stÂcentury projections of terrestrial net primary productivity reduces global and regional uncertainties. Earth System Dynamics, 2018, 9, 153-165.	7.1	23
747	First Report of Peridiscaceae for the Vascular Flora of Colombia. Harvard Papers in Botany, 2018, 23, 109-121.	0.2	2
748	Criteria to Confirm Models that Simulate Deforestation and Carbon Disturbance. Land, 2018, 7, 105.	2.9	9
749	A Wood Biology Agenda to Support Global Vegetation Modelling. Trends in Plant Science, 2018, 23, 1006-1015.	8.8	42
750	Potential of Multi-Temporal ALOS-2 PALSAR-2 ScanSAR Data for Vegetation Height Estimation in Tropical Forests of Mexico. Remote Sensing, 2018, 10, 1277.	4.0	12
751	Remote Sensing-Based and Participatory Analysis of Forests, Agricultural Land Dynamics, and Potential Land Conservation Measures in Kloto District (Togo, West Africa). Soil Systems, 2018, 2, 49.	2.6	12
752	Gross changes in forest area shape the future carbon balance of tropical forests. Biogeosciences, 2018, 15, 91-103.	3.3	3
753	The biomass distribution on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6506-6511.	7.1	2,102
754	Evaluating changes of biomass in global vegetation models: the role of turnover fluctuations and ENSO events. Environmental Research Letters, 2018, 13, 075002.	5.2	3

#	Article	IF	CITATIONS
755	Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. New Phytologist, 2018, 219, 914-931.	7.3	64
756	Independent data for transparent monitoring of greenhouse gas emissions from the land use sector – What do stakeholders think and need?. Environmental Science and Policy, 2018, 85, 101-112.	4.9	22
757	Potential value of combining ALOS PALSAR and Landsat-derived tree cover data for forest biomass retrieval in Madagascar. Remote Sensing of Environment, 2018, 213, 206-214.	11.0	25
758	Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences, 2018, 15, 3377-3390.	3.3	32
759	LPJmL4 – a dynamic global vegetation model with managed land – PartÂ2: Model evaluation. Geoscientific Model Development, 2018, 11, 1377-1403.	3.6	57
760	Smaller global and regional carbon emissions from gross land use change when considering sub-grid secondary land cohorts in aAglobal dynamic vegetation model. Biogeosciences, 2018, 15, 1185-1201.	3.3	7
761	Accelerating forest loss in Southeast Asian Massif in the 21st century: A case study in Nan Province, Thailand. Global Change Biology, 2018, 24, 4682-4695.	9.5	43
762	ORCHIDEE-MICT (v8.4.1), aÂland surface model for the high latitudes: model description and validation. Geoscientific Model Development, 2018, 11, 121-163.	3.6	135
763	Review article: A systematic literature review of research trends and authorships on natural hazards, disasters, risk reduction and climate change in Indonesia. Natural Hazards and Earth System Sciences, 2018, 18, 1785-1810.	3.6	37
764	Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecology and Management, 2018, 427, 217-229.	3.2	69
765	Climate limits on European forest structure across space and time. Global and Planetary Change, 2018, 169, 168-178.	3.5	12
766	Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. Nature Communications, 2018, 9, 3045.	12.8	83
767	Carbon storage potential in degraded forests of Kalimantan, Indonesia. Environmental Research Letters, 2018, 13, 095001.	5.2	23
768	Estimating urban above ground biomass with multi-scale LiDAR. Carbon Balance and Management, 2018, 13, 10.	3.2	60
769	Comparing Global Spatial Data on Deforestation for Institutional Analysis in Africa. , 2018, , 371-388.		2
770	Loss of biodiversity and shifts in aboveground biomass drivers in tropical rainforests with different disturbance histories. Biodiversity and Conservation, 2018, 27, 3215-3231.	2.6	31
771	Dryâ€season decline in tree sapflux is correlated with leaf turgor loss point in a tropical rainforest. Functional Ecology, 2018, 32, 2285-2297.	3.6	22
772	The tropical forest carbon cycle and climate change. Nature, 2018, 559, 527-534.	27.8	425

	Cı	tation Report	
#	Article	IF	Citations
773	Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 2018, 63, 1108-11	.17. 9.0	92
774	<i>In Situ</i> Reference Datasets From the TropiSAR and AfriSAR Campaigns in Support of Upcoming Spaceborne Biomass Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3617-3627.	4.9	49
775	The Potential of Multisource Remote Sensing for Mapping the Biomass of a Degraded Amazonian Forest. Forests, 2018, 9, 303.	2.1	29
776	Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado Re-evaluating allometric equations and environmental influences. PLoS ONE, 2018, 13, e0196742.	: 2.5	27
777	What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes. Forest Ecology and Management, 2018, 429, 570-578.	3.2	14
778	An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences, 2018, 15, 4627-4645.	0 3.3	97
779	Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests, 2018, 9, 305.	2.1	79
780	Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland. Remote Sensing, 2018, 10, 344.	4.0	35
781	Object-Based Mapping of Aboveground Biomass in Tropical Forests Using LiDAR and Very-High-Spatial-Resolution Satellite Data. Remote Sensing, 2018, 10, 438.	4.0	18
782	Integrating Airborne LiDAR and Optical Data to Estimate Forest Aboveground Biomass in Arid and Semi-Arid Regions of China. Remote Sensing, 2018, 10, 532.	4.0	48
783	Topography and Three-Dimensional Structure Can Estimate Tree Diversity along a Tropical Elevational Gradient in Costa Rica. Remote Sensing, 2018, 10, 629.	4.0	11
784	Reducing Uncertainty in Mapping of Mangrove Aboveground Biomass Using Airborne Discrete Return Lidar Data. Remote Sensing, 2018, 10, 637.	4.0	20
785	Effect of Tree Phenology on LiDAR Measurement of Mediterranean Forest Structure. Remote Sensing, 2018, 10, 659.	4.0	5
786	Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sensing, 2018, 10, 660.	4.0	26
787	Model-Assisted Estimation of Tropical Forest Biomass Change: A Comparison of Approaches. Remote Sensing, 2018, 10, 731.	4.0	16
788	SAR-Based Estimation of Above-Ground Biomass and Its Changes in Tropical Forests of Kalimantan Using L- and C-Band. Remote Sensing, 2018, 10, 831.	4.0	54
789	Estimating aboveground carbon density and its uncertainty in Borneo's structurally complex tropical forests using airborne laser scanning. Biogeosciences, 2018, 15, 3811-3830.	3.3	47
790	Improving tropical deforestation detection through using photosynthetic vegetation time series – (PVts-β). Ecological Indicators, 2018, 94, 367-379.	6.3	7

#	Article	IF	CITATIONS
791	Titled Amazon Indigenous Communities Cut Forest Carbon Emissions. Ecological Economics, 2018, 153, 56-67.	5.7	70
792	Uncertainty Quantification of Extratropical Forest Biomass in CMIP5 Models over the Northern Hemisphere. Scientific Reports, 2018, 8, 10962.	3.3	7
793	Improved Biomass Calibration and Validation With Terrestrial LiDAR: Implications for Future LiDAR and SAR Missions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11, 3527-3537.	4.9	41
794	Evaluation of CMIP5 Earth System Models for the Spatial Patterns of Biomass and Soil Carbon Turnover Times and Their Linkage with Climate. Journal of Climate, 2018, 31, 5947-5960.	3.2	36
796	Evaluation of forest CO ₂ fluxes from sonde measurements in three different climatological areas including Borneo, Malaysia, and Iriomote and Hokkaido, Japan. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1426316.	1.6	2
797	Sensitivity of Leaf Area to Interannual Climate Variation as a Diagnostic of Ecosystem Function in CMIP5 Carbon Cycle Models. Journal of Climate, 2018, 31, 8607-8625.	3.2	8
798	Study on carbon dioxide atmospheric distribution over the Southwest Indian Ocean islands using satellite data: Part 1 – Climatology and seasonal results. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179, 569-579.	1.6	1
799	Post-drought decline of the Amazon carbon sink. Nature Communications, 2018, 9, 3172.	12.8	95
800	Comparison of Biomass in Natural and Plantation Dry Forests in India. Lecture Notes in Civil Engineering, 2019, , 995-1006.	0.4	2
801	Species-specific allometric equations for improving aboveground biomass estimates of dry deciduous woodland ecosystems. Journal of Forestry Research, 2019, 30, 1619-1632.	3.6	13
802	State of research on carbon sequestration in Bangladesh: a comprehensive review. , 2019, 3, 29-36.		15
803	Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature Geoscience, 2019, 12, 730-735.	12.9	105
804	Landscapeâ€level validation of allometric relationships for carbon stock estimation reveals bias driven by soil type. Ecological Applications, 2019, 29, e01987.	3.8	6
805	Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices. Remote Sensing of Environment, 2019, 232, 111303.	11.0	40
806	Impacts of intensifying or expanding cereal cropping in sub‣aharan Africa on greenhouse gas emissions and food security. Global Change Biology, 2019, 25, 3720-3730.	9.5	51
807	Satellite-observed pantropical carbon dynamics. Nature Plants, 2019, 5, 944-951.	9.3	141
808	The Economics of REDD through an Incidence of Burdens and Benefits Lens. International Review of Environmental and Resource Economics, 2019, 13, 165-202.	1.3	6
809	A Review of Emission Reduction Potential and Cost Savings through Forest Carbon Sequestration. Asian Journal of Water, Environment and Pollution, 2019, 16, 1-7.	0.5	58

#	Article	IF	CITATIONS
810	How do soil and fire control aboveground biomass in natural forest patches?. Forest Ecology and Management, 2019, 451, 117518.	3.2	2
811	Recent Advances in Forest Observation with Visual Interpretation of Very High-Resolution Imagery. Surveys in Geophysics, 2019, 40, 839-862.	4.6	31
812	The Importance of Consistent Global Forest Aboveground Biomass Product Validation. Surveys in Geophysics, 2019, 40, 979-999.	4.6	106
813	Aspects of Forest Biomass in the Earth System: Its Role and Major Unknowns. Surveys in Geophysics, 2019, 40, 693-707.	4.6	49
814	Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests. Science of the Total Environment, 2019, 689, 1104-1114.	8.0	28
815	Source or Sink? A comparison of Landfire- and FIA-based estimates of change in aboveground live tree carbon in California's forests. Environmental Research Letters, 2019, 14, 074008.	5.2	5
816	Canopy height estimation with TanDEM-X in temperate and boreal forests. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101904.	2.8	19
817	Spatiotemporal Patterns and Phenology of Tropical Vegetation Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using Satellite Observations. Remote Sensing, 2019, 11, 1746.	4.0	21
818	Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data. Remote Sensing of Environment, 2019, 232, 111341.	11.0	46
819	Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data. Remote Sensing of Environment, 2019, 232, 111283.	11.0	79
820	Estimation of Forest Structural Attributes Using ICESat/GLAS-Spaceborne Laser Altimetry Data in the Western Ghats Region of India. Journal of Geovisualization and Spatial Analysis, 2019, 3, 1.	4.3	4
821	The age and species composition of mangrove forest directly influence the net primary productivity and carbon sequestration potential. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101235.	3.1	13
822	Tropical deforestation drivers and associated carbon emission factors derived from remote sensing data. Environmental Research Letters, 2019, 14, 094022.	5.2	38
823	Accounting for aboveground carbon storage in shrubland and woodland ecosystems in the Great Basin. Ecosphere, 2019, 10, e02821.	2.2	11
824	Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nature Communications, 2019, 10, 4590.	12.8	96
825	Evaluating k-Nearest Neighbor (kNN) Imputation Models for Species-Level Aboveground Forest Biomass Mapping in Northeast China. Remote Sensing, 2019, 11, 2005.	4.0	18
827	Optimal Combination of Predictors and Algorithms for Forest Above-Ground Biomass Mapping from Sentinel and SRTM Data. Remote Sensing, 2019, 11, 414.	4.0	68
828	UKESM1: Description and Evaluation of the U.K. Earth System Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 4513-4558.	3.8	448

#	Article	IF	CITATIONS
829	The biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 – Part 2: Model evaluation for tropical South America. Geoscientific Model Development, 2019, 12, 4347-4374.	3.6	29
830	Degradation and forgone removals increase the carbon impact of intact forest loss by 626%. Science Advances, 2019, 5, eaax2546.	10.3	87
831	From small-scale forest structure to Amazon-wide carbon estimates. Nature Communications, 2019, 10, 5088.	12.8	25
832	Surface Warming and Atmospheric Circulation Dominate Rainfall Changes Over Tropical Rainforests Under Global Warming. Geophysical Research Letters, 2019, 46, 13410-13419.	4.0	12
833	Identifying Biases in Global Tree Cover Products: A Case Study in Costa Rica. Forests, 2019, 10, 853.	2.1	26
834	Factors Affecting Spatial Variation in Vegetation Carbon Density in Pinus massoniana Lamb. Forest in Subtropical China. Forests, 2019, 10, 880.	2.1	5
835	Topography Affects Tree Species Distribution and Biomass Variation in a Warm Temperate, Secondary Forest. Forests, 2019, 10, 895.	2.1	8
836	Development of Land Surface Model BCC_AVIM2.0 and Its Preliminary Performance in LS3MIP/CMIP6. Journal of Meteorological Research, 2019, 33, 851-869.	2.4	40
837	The Carbon Balance of the Southeastern U.S. Forest Sector as Driven by Recent Disturbance Trends. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2786-2803.	3.0	8
838	Canopy Height and Above-Ground Biomass Retrieval in Tropical Forests Using Multi-Pass X- and C-Band Pol-InSAR Data. Remote Sensing, 2019, 11, 2105.	4.0	12
839	Estimation of CO2 Emissions from Wildfires Using OCO-2 Data. Atmosphere, 2019, 10, 581.	2.3	22
840	Representing Nitrogen, Phosphorus, and Carbon Interactions in the E3SM Land Model: Development and Global Benchmarking. Journal of Advances in Modeling Earth Systems, 2019, 11, 2238-2258.	3.8	74
841	High-resolution mapping of aboveground biomass for forest carbon monitoring system in the Tri-State region of Maryland, Pennsylvania and Delaware, USA. Environmental Research Letters, 2019, 14, 095002.	5.2	38
842	Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Carbon Balance and Management, 2019, 14, 11.	3.2	14
843	Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 2019, 233, 111383.	11.0	276
846	Carbon-diversity hotspots and their owners in Brazilian southeastern Savanna, Atlantic Forest and Semi-Arid Woodland domains. Forest Ecology and Management, 2019, 452, 117575.	3.2	19
847	Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sensing of Environment, 2019, 233, 111355.	11.0	125
848	Carbon recovery following selective logging in tropical rainforests in Kalimantan, Indonesia. Forest Ecosystems, 2019, 6, .	3.1	15

#	Article	IF	CITATIONS
849	Local validation of global biomass maps. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101931.	2.8	15
850	Changes in soil organic carbon and nutrient stocks in conventional selective logging versus reduced-impact logging in rainforests on highly weathered soils in Southern Cameroon. Forest Ecology and Management, 2019, 451, 117522.	3.2	16
851	Supporting forest conservation through community-based land use planning and participatory GIS – lessons from Crocker Range Park, Malaysian Borneo. Journal for Nature Conservation, 2019, 52, 125740.	1.8	17
852	Mapping the spatial-temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis. Remote Sensing of Environment, 2019, 233, 111372.	11.0	37
853	Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 151-161.	2.8	20
854	Generation of Large-Scale Moderate-Resolution Forest Height Mosaic With Spaceborne Repeat-Pass SAR Interferometry and Lidar. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 770-787.	6.3	16
855	Solid Biomass from Forest Trees to Energy: A Review. , 0, , .		6
856	Estimates and determinants of stocks of deep soil carbon in Gabon, Central Africa. Geoderma, 2019, 341, 236-248.	5.1	29
857	Nutrient acquisition strategies augment growth in tropical N ₂ â€fixing trees in nutrientâ€poor soil and under elevated <scp>CO</scp> ₂ . Ecology, 2019, 100, e02646.	3.2	27
858	Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101899.	2.8	30
859	Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sensing of Environment, 2019, 231, 111262.	11.0	79
860	Global Patterns in Net Primary Production Allocation Regulated by Environmental Conditions and Forest Stand Age: A Modelâ€Data Comparison. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 2039-2059.	3.0	30
861	Model Structure and Climate Data Uncertainty in Historical Simulations of the Terrestrial Carbon Cycle (1850–2014). Global Biogeochemical Cycles, 2019, 33, 1310-1326.	4.9	53
862	Carbon stocks and biodiversity of coastal lowland forests in South Africa: implications for aligning sustainable development and carbon mitigation initiatives. Carbon Management, 2019, 10, 349-360.	2.4	10
863	Synthesis of Leaf-on and Leaf-off Unmanned Aerial Vehicle (UAV) Stereo Imagery for the Inventory of Aboveground Biomass of Deciduous Forests. Remote Sensing, 2019, 11, 889.	4.0	19
864	What works in tropical forest conservation, and what does not: Effectiveness of four strategies in terms of environmental, social, and economic outcomes. Conservation Science and Practice, 2019, 1, e28.	2.0	30
865	Do airborne laser scanning biomass prediction models benefit from Landsat time series, hyperspectral data or forest classification in tropical mosaic landscapes?. International Journal of Applied Earth Observation and Geoinformation, 2019, 81, 176-185.	2.8	14
866	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	11.0	131

ARTICLE IF CITATIONS Degradation of Ecosystem Services and Deforestation in Landscapes With and Without Incentive-Based 867 2.1 27 Forest Conservation in the Ecuadorian Amazon. Forests, 2019, 10, 442. Upscaling Forest Biomass from Field to Satellite Measurements: Sources of Errors and Ways to 4.6 Reduce Them. Surveys in Geophysics, 2019, 40, 881-911. Combining LiDAR data and airborne imagery of very high resolution to improve aboveground biomass 869 2.35 estimates in tropical dry forests. Forestry, 2019, 92, 599-615. A metabolic scaling theory-driven remote sensing approach to map spatiotemporal dynamics of litterfall in a tropical montane cloud forest. International Journal of Applied Earth Observation and 870 Geoinformation, 2019, 82, 101896. Flux towers in the sky: global ecology from space. New Phytologist, 2019, 224, 570-584. 871 7.3 111 Widespread Decline in Vegetation Photosynthesis in Southeast Asia Due to the Prolonged Drought During the 2015/2016 El Niño. Remote Sensing, 2019, 11, 910. 4.0 Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to 873 2.3 15 primary productivity. Journal of Plant Ecology, 2019, 12, 791-803. Impact of land use on woody aboveground biomass in Miombo woodlands of western Zambia – 874 comparison of three allometric equations. Southern Forests, 2019, 81, 213-221. Charcoal-related forest degradation dynamics in dry African woodlands: Evidence from Mozambique. 875 3.7 33 Applied Geography, 2019, 107, 72-81. The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Above Ground Biomass at the 876 2.1 National Level over Tanzania. Forests, 2019, 10, 107. Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 877 4.9 38 668-689. Pre-stratified modelling plus residuals kriging reduces the uncertainty of aboveground biomass estimation and spatial distribution in heterogeneous savannas and forest environments. Forest Ecology and Management, 2019, 445, 96-109. 3.2 Evaluation of remotely sensed rainfall products over Central Africa. Quarterly Journal of the Royal 879 2.7 54 Meteorological Society, 2019, 145, 2115-2138. The future of Southeast Asia's forests. Nature Communications, 2019, 10, 1829. 880 12.8 Imaging spectrometry-derived estimates of regional ecosystem composition for the Sierra Nevada, 881 11.0 19 California. Remote Sensing of Environment, 2019, 228, 14-30. Early Growth Response of Nine Timber Species to Release in a Tropical Mountain Forest of Southern Ecuador. Forests, 2019, 10, 254. Developing allometric models to predict the individual aboveground biomass of shrubs worldwide. 883 5.8 37 Global Ecology and Biogeography, 2019, 28, 961-975. Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics, 2019, 40, 884 863-880.

#	Article	IF	CITATIONS
885	A comparative assessment of tree diversity, biomass and biomass carbon stock between a protected area and a sacred forest of Western Odisha, India. Ecoscience, 2019, 26, 195-204.	1.4	18
886	Machine learning approaches outperform distance- and tree-based methods for DNA barcoding of Pterocarpus wood. Planta, 2019, 249, 1617-1625.	3.2	26
887	Mapping of aboveground biomass in Gabon. Comptes Rendus - Geoscience, 2019, 351, 321-331.	1.2	11
888	Beyond MRV: high-resolution forest carbon modeling for climate mitigation planning over Maryland, USA. Environmental Research Letters, 2019, 14, 045013.	5.2	34
889	Approaching the potential of model-data comparisons of global land carbon storage. Scientific Reports, 2019, 9, 3367.	3.3	15
890	Global mapping of costâ€effective microalgal biofuel production areas with minimal environmental impact. GCB Bioenergy, 2019, 11, 914-929.	5.6	33
891	The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 2019, 227, 44-60.	11.0	172
892	The Relevance of Forest Structure for Biomass and Productivity in Temperate Forests: New Perspectives for Remote Sensing. Surveys in Geophysics, 2019, 40, 709-734.	4.6	47
893	Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences, 2019, 16, 57-76.	3.3	85
894	Performance of Laser-Based Electronic Devices for Structural Analysis of Amazonian Terra-Firme Forests. Remote Sensing, 2019, 11, 510.	4.0	7
895	Improving Aboveground Biomass Estimation of Pinus densata Forests in Yunnan Using Landsat 8 Imagery by Incorporating Age Dummy Variable and Method Comparison. Remote Sensing, 2019, 11, 738.	4.0	37
896	Innovations in Ground and Airborne Technologies as Reference and for Training and Validation: Terrestrial Laser Scanning (TLS). Surveys in Geophysics, 2019, 40, 937-958.	4.6	38
897	Estimation of the forest stand mean height and aboveground biomass in Northeast China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 277-289.	11.1	90
899	Relationship between carbon stocks and tree species diversity in a humid Guinean savanna landscape in northern Sierra Leone. Southern Forests, 2019, 81, 235-245.	0.7	12
900	Reimagining the potential of Earth observations for ecosystem service assessments. Science of the Total Environment, 2019, 665, 1053-1063.	8.0	39
901	Evidence for a major missing source in the global chloromethane budget from stable carbon isotopes. Atmospheric Chemistry and Physics, 2019, 19, 1703-1719.	4.9	20
902	Understanding the Land Carbon Cycle with Space Data: Current Status and Prospects. Surveys in Geophysics, 2019, 40, 735-755.	4.6	22
903	Retrieval of Forest Vertical Structure from PolInSAR Data by Machine Learning Using LIDAR-Derived Features. Remote Sensing, 2019, 11, 381.	4.0	21

ARTICLE IF CITATIONS Using a Finer Resolution Biomass Map to Assess the Accuracy of a Regional, Map-Based Estimate of 904 4.6 14 Forest Biomass. Surveys in Geophysics, 2019, 40, 1001-1015. Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure. Remote Sensing of Environment, 2019, 224, 154-166. 11.0 38 Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of 906 7.1 370 Sciences of the United States of America, 2019, 116, 4382-4387. Recovery of forest carbon density and carbon storage in a soil-degraded landscape in southeastern China. European Journal of Forest Research, 2019, 138, 397-413. The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental 908 4.6 92 Management and Policy. Surveys in Geophysics, 2019, 40, 757-778. Non-Destructive Tree Volume Estimation using Terrestrial Lidar Data in Teak Dominated Central Indian 909 Forests., 2019,,. Is vegetation optical depth needed to estimate biomass from passive microwave radiometers? A 910 1 statistical study using neural networks., 2019,,. Reduced Uncertainties from Multifrequency Constraints on Terrestrial Carbon and Water Processes. Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. 912 4.0 22 Remote Sensing, 2019, 11, 2697. A Review of Regional and Global Gridded Forest Biomass Datasets. Remote Sensing, 2019, 11, 2744. 44 Potential of Carbon Stocks and Its Economic Values in Tropical Karst Landscape (Case Study in) Tj ETQq0 0 0 rgBT (Qyerlock 10 Tf 50 34 914

915	Contribution of forest degradation in Indonesia's GHG emissions: Profile and opportunity to improve its estimation accuracy. IOP Conference Series: Earth and Environmental Science, 2019, 399, 012025.	0.3	3
916	Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways. Sustainability, 2019, 11, 6332.	3.2	23
917	Toward Efficient Land Cover Mapping: An Overview of the National Land Representation System and Land Cover Map 2015 of Bangladesh. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3852-3861.	4.9	17
918	Disequilibrium of terrestrial ecosystem CO ₂ budget caused by disturbance-induced emissions and non-CO ₂ carbon export flows: a global model assessment. Earth System Dynamics, 2019, 10, 685-709.	7.1	22
920	Monitoring tropical forest carbon stocks and emissions using Planet satellite data. Scientific Reports, 2019, 9, 17831.	3.3	81
921	Protecting Patagonian peatlands in Chile. Science, 2019, 366, 1207-1208.	12.6	5
922	The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 2019, 14, 18.	3.2	29

#	Article	IF	CITATIONS
923	Aboveground Biomass Mapping Using ALOS-2/PALSAR-2 Time-Series Images for Borneo's Forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 5167-5177.	4.9	26
924	Constraining modelled global vegetation dynamics and carbon turnover using multiple satellite observations. Scientific Reports, 2019, 9, 18757.	3.3	28
925	Global Variation in Climate, Human Development, and Population Density Has Implications for Urban Ecosystem Services. Sustainability, 2019, 11, 6200.	3.2	15
926	Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne lidar. Biogeosciences, 2019, 16, 3457-3474.	3.3	8
927	Towards rapid assessments of tree species diversity and structure in fragmented tropical forests: A review of perspectives offered by remotely-sensed and field-based data. Forest Ecology and Management, 2019, 432, 40-53.	3.2	30
928	Assessing the accuracy of detected breaks in Landsat time series as predictors of small scale deforestation in tropical dry forests of Mexico and Costa Rica. Remote Sensing of Environment, 2019, 221, 707-721.	11.0	32
929	A unified framework for land cover monitoring based on a discrete global sampling grid (GSG). Environmental Monitoring and Assessment, 2019, 191, 46.	2.7	5
930	Tree Diversity and Ecosystem Carbon Stock Assessment in Nambor Wildlife Sanctuary, Assam. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 1421-1428.	1.0	5
931	Forest biomass retrieval approaches from earth observation in different biomes. International Journal of Applied Earth Observation and Geoinformation, 2019, 77, 53-68.	2.8	60
932	High-resolution inventory of mercury emissions from biomass burning in tropical continents during 2001–2017. Science of the Total Environment, 2019, 653, 638-648.	8.0	25
933	Integration of multi-resource remotely sensed data and allometric models for forest aboveground biomass estimation in China. Remote Sensing of Environment, 2019, 221, 225-234.	11.0	68
934	Multiple drivers of aboveground biomass in a human-modified landscape of the Caatinga dry forest. Forest Ecology and Management, 2019, 435, 57-65.	3.2	58
935	Mapping global forest biomass and its changes over the first decade of the 21st century. Science China Earth Sciences, 2019, 62, 585-594.	5.2	6
936	Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. Journal of Cleaner Production, 2019, 215, 382-389.	9.3	102
937	Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nature Communications, 2019, 10, 114.	12.8	62
938	GeoQuery: Integrating HPC systems and public web-based geospatial data tools. Computers and Geosciences, 2019, 122, 103-112.	4.2	52
939	Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data. Remote Sensing of Environment, 2019, 221, 489-507.	11.0	29
940	An approach to estimating forest biomass change over a coniferous forest landscape based on tree-level analysis from repeated lidar surveys. International Journal of Remote Sensing, 2019, 40, 2558-2575.	2.9	1

#	Article	IF	CITATIONS
941	Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data. Remote Sensing of Environment, 2019, 221, 621-634.	11.0	74
942	Modelling carbon stock and carbon sequestration ecosystem services for policy design: a comprehensive approach using a dynamic vegetation model. Ecosystems and People, 2019, 15, 42-60.	3.2	12
943	Investigating spatial error structures in continuous raster data. International Journal of Applied Earth Observation and Geoinformation, 2019, 74, 259-268.	2.8	13
944	Spatial and temporal analysis of carbon sources and sinks through land use/cover changes in the Beijing-Tianjin-Hebei urban agglomeration region. Physics and Chemistry of the Earth, 2019, 110, 61-70.	2.9	37
945	Estimation of aboveground biomass and carbon in a tropical rain forest in Gabon using remote sensing and GPS data. Geocarto International, 2019, 34, 243-259.	3.5	12
946	Congo Basin peatlands: threats and conservation priorities. Mitigation and Adaptation Strategies for Global Change, 2019, 24, 669-686.	2.1	64
947	Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape, Nepal. Environment, Development and Sustainability, 2020, 22, 1397-1412.	5.0	45
948	Exploring the relationships between urban form metrics and the vegetation biomass loss under urban expansion in China. Environment and Planning B: Urban Analytics and City Science, 2020, 47, 363-380.	2.0	5
949	Pollen morphology of the Amacayacu Forest dynamics plot, Western Amazon, Colombia. Palynology, 2020, 44, 32-79.	1.5	7
950	Carbon storage dynamics of subtropical forests estimated with multi-period forest inventories at a regional scale: the case of Jiangxi forests. Journal of Forestry Research, 2020, 31, 1247-1254.	3.6	13
951	Forest governance and economic values of forest ecosystem services in Vietnam. Land Use Policy, 2020, 97, 103297.	5.6	18
952	Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets - A case study. Remote Sensing of Environment, 2020, 236, 111496.	11.0	99
953	Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. Ecological Applications, 2020, 30, e02004.	3.8	16
954	Testing for changes in biomass dynamics in largeâ€scale forest datasets. Global Change Biology, 2020, 26, 1485-1498.	9.5	14
955	Forest management in southern China generates short term extensive carbon sequestration. Nature Communications, 2020, 11, 129.	12.8	259
956	Mapping smallholder and large-scale cropland dynamics with a flexible classification system and pixel-based composites in an emerging frontier of Mozambique. Remote Sensing of Environment, 2020, 239, 111611.	11.0	42
957	Multi-sensor approach integrating optical and multi-frequency synthetic aperture radar for carbon stock estimation over a tropical deciduous forest in India. Carbon Management, 2020, 11, 39-55.	2.4	19
958	Savanna vegetation structure in the Brazilian Cerrado allows for the accurate estimation of aboveground biomass using terrestrial laser scanning. Forest Ecology and Management, 2020, 458, 117798.	3.2	29

		ITATION REP	ORT	
#	Article		IF	Citations
959	Agricultural land use reduces plant biodiversity and carbon storage in tropical West African savanna ecosystems: Implications for sustainability. Global Ecology and Conservation, 2020, 21, e00875.		2.1	9
960	Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models. Remote Sensing of Environment, 2020, 23 111502.	6,	11.0	61
961	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.		9.5	43
962	Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Science of the Total Environment, 2020, 709, 136163.		8.0	32
963	Why Should We Care So Much About Old World Tropical Rainforests?. , 2020, , 66-78.			0
964	Aboveground biomass. , 2020, , 543-580.			2
965	Misinterpretation of Asian savannas as degraded forest can mislead management and conservation policy under climate change. Biological Conservation, 2020, 241, 108293.		4.1	30
966	New forest biomass carbon stock estimates in Northeast Asia based on multisource data. Global Change Biology, 2020, 26, 7045-7066.		9.5	20
967	Stand Structural Diversity and Species with Leaf Nitrogen Conservation Drive Aboveground Carbon Storage in Tropical Old-Growth Forests. Forests, 2020, 11, 994.		2.1	3
968	Prioritizing management strategies to achieve multiple outcomes in a globally significant Indonesian protected area. Conservation Science and Practice, 2020, 2, e157.		2.0	7
969	A multi-scaled analysis of forest structure using individual-based modeling in a costa rican rainforest. Ecological Modelling, 2020, 433, 109226.		2.5	5
970	Secondary forests offset less than 10% of deforestationâ€mediated carbon emissions in the Braziliar Amazon. Global Change Biology, 2020, 26, 7006-7020.		9.5	40
971	Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review. Remote Sensing, 2020, 12, 2915.		4.0	77
972	Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.		27.8	489
973	A cross-sectoral integrated assessment of alternatives for climate mitigation in Madagascar. Climate Policy, 2020, 20, 1257-1273.		5.1	5
974	A New Method for Generating a Global Forest Aboveground Biomass Map From Multiple High-Level Satellite Products and Ancillary Information. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2587-2597.		4.9	23
975	Old growth Afrotropical forests critical for maintaining forest carbon. Global Ecology and Biogeography, 2020, 29, 1785-1798.		5.8	19
976	Nitrogen Cycling and Mass Balance in the World's Mangrove Forests. Nitrogen, 2020, 1, 167-189		1.3	28

ARTICLE IF CITATIONS An Evaluation of Eight Machine Learning Regression Algorithms for Forest Aboveground Biomass 4.0 58 977 Estimation from Multiple Satellite Data Products. Remote Sensing, 2020, 12, 4015. Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation 978 4.0 9 and Model-Data Fusion. Remote Sensing, 2020, 12, 2380. Improving aboveground biomass maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, 979 3.2 36 climate and field data. Carbon Balance and Management, 2020, 15, 15. Climate and hydrologic controls on late Holocene sediment supply to an Amazon floodplain lake. 980 Journal of Paleolimnology, 2020, 64, 389-403. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science, 2020, 981 12.6 68 369, 838-841. Fusion of Multiple Gridded Biomass Datasets for Generating a Global Forest Aboveground Biomass 4.0 Map. Remote Sensing, 2020, 12, 2559. Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine 983 4.0 32 Learning Approach. Remote Sensing, 2020, 12, 2685. Estimation of Future Changes in Aboveground Forest Carbon Stock in Romania. A Prediction Based on 984 2.1 Forest-Cover Pattern Scenario. Forests, 2020, 11, 914. 985 Fire Danger Observed from Space. Surveys in Geophysics, 2020, 41, 1437-1459. 4.6 17 Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. Global Change Biology, 2020, 26, 6959-6973. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. 987 232 12.8 Nature Communications, 2020, 11, 4540. Soil Physical Quality and Relationship to Changes in Termite Community in Northwestern Colombian 988 2.2 Amazon. Frontiers in Ecology and Evolution, 2020, 8, . Approaches of Satellite Remote Sensing for the Assessment of Above-Ground Biomass across Tropical 989 4.0 28 Forests: Pan-tropical to National Scales. Remote Sensing, 2020, 12, 3351. Woody vegetation cover, height and biomass at 25-m resolution across Australia derived from multiple site, airborne and satellite observations. International Journal of Applied Earth Observation 990 2.8 and Geoinformation, 2020, 93, 102209. Potential Lidar Height, Intensity, and Ratio Parameters for Plot Dominant Species Discrimination and 991 2 4.0 Volume Estimation. Remote Sensing, 2020, 12, 3266. Assessment of Forest Biomass Estimation from Dry and Wet SAR Acquisitions Collected during the 992 2019 UAVSAR AM-PM Campaign in Southeastern United States. Remote Sensing, 2020, 12, 3397. Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and 993 4.0 5 Airborne LiDAR Data. Remote Sensing, 2020, 12, 3330. 994 Brazil threatens Indigenous lands. Science, 2020, 368, 481-482. 34

#	Article	IF	CITATIONS
995	Use of local and global maps of forest canopy height and aboveground biomass to enhance local estimates of biomass in miombo woodlands in Tanzania. International Journal of Applied Earth Observation and Geoinformation, 2020, 89, 102109.	2.8	5
996	SAR-enhanced mapping of live fuel moisture content. Remote Sensing of Environment, 2020, 245, 111797.	11.0	50
997	Comparison of forest aboveâ€ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observationâ€based estimates. Global Change Biology, 2020, 26, 3997-4012.	9.5	25
998	The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3015-3025.	7.1	160
999	Linking life and landscape with remote sensing. Developments in Earth Surface Processes, 2020, 23, 129-182.	2.8	0
1000	Global ecosystems and fire: Multiâ€model assessment of fireâ€induced treeâ€cover and carbon storage reduction. Global Change Biology, 2020, 26, 5027-5041.	9.5	55
1001	The Global Land Carbon Cycle Simulated With ISBA TRIP: Improvements Over the Last Decade. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001886.	3.8	42
1002	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198
1003	Interannual Variability of Carbon Uptake of Secondary Forests in the Brazilian Amazon (2004â€⊋014). Global Biogeochemical Cycles, 2020, 34, e2019GB006396.	4.9	9
1004	Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 2020, 26, 5106-5124.	9.5	35
1005	Policy forum: Shifting cultivation and agroforestry in the Amazon: Premises for REDD+. Forest Policy and Economics, 2020, 118, 102217.	3.4	32
1007	Remote Sensing Support for the Gain-Loss Approach for Greenhouse Gas Inventories. Remote Sensing, 2020, 12, 1891.	4.0	11
1008	Calibrating individual tree biomass models for contrasting tropical species at an uneven-aged site in the native Atlantic Forest of Brazil: A direct comparison of alternative approaches, sample sizes, and sample selection methods. Forest Ecology and Management, 2020, 473, 118306.	3.2	3
1009	African biomes are most sensitive to changes in CO ₂ under recent and near-future CO ₂ conditions. Biogeosciences, 2020, 17, 1147-1167.	3.3	6
1010	Evaluation of the Sensitivity of SMOS L-VOD to Forest Above-Ground Biomass at Global Scale. Remote Sensing, 2020, 12, 1450.	4.0	24
1011	An analysis of forest biomass sampling strategies across scales. Biogeosciences, 2020, 17, 1673-1683.	3.3	8
1012	A multi-year and high-resolution inventory of biomass burning emissions in tropical continents from 2001–2017 based on satellite observations. Journal of Cleaner Production, 2020, 270, 122511.	9.3	29
1013	Interferometric Ground Cancellation for Above Ground Biomass Estimation. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 6410-6419.	6.3	15

#	Article	IF	CITATIONS
1014	Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitigation and Adaptation Strategies for Global Change, 2020, 25, 763-787.	2.1	109
1015	Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 2020, 10, 5066.	3.3	55
1016	Tree biomass and carbon stock: understanding the role of species richness, elevation, and disturbance. Tropical Ecology, 2020, 61, 128-141.	1.2	23
1017	Assessing Impacts of Plant Stoichiometric Traits on Terrestrial Ecosystem Carbon Accumulation Using the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001841.	3.8	14
1018	The role of predictive model data in designing mangrove forest carbon programs. Environmental Research Letters, 2020, 15, 084019.	5.2	14
1019	Terrestrial fluxes of carbon in GCP carbon budgets. Global Change Biology, 2020, 26, 3006-3014.	9.5	32
1020	Trade-Offs Among Aboveground, Belowground, and Soil Organic Carbon Stocks Along Altitudinal Gradients in Andean Tropical Montane Forests. Frontiers in Plant Science, 2020, 11, 106.	3.6	26
1021	Monitoring tropical forest degradation using remote sensing. Challenges and opportunities in the Madre de Dios region, Peru. Remote Sensing Applications: Society and Environment, 2020, 19, 100337.	1.5	9
1022	Tree species diversity and biomass carbon assessment in undisturbed and disturbed tropical forests of Dibru-Saikhowa biosphere reserve in Assam North-East India. Vegetos, 2020, 33, 516-537.	1.5	6
1023	Remote Sensing of Forest Biomass Using CNSS Reflectometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 2351-2368.	4.9	35
1024	Forest productivity and carbon stock analysis from vegetation phenological indices using satellite remote sensing in Indonesia. Asia-Pacific Journal of Regional Science, 2020, 4, 657-690.	2.1	6
1025	Multiple Stable Dominance States in the Congo Basin Forests. Forests, 2020, 11, 553.	2.1	5
1026	Functional volumes, niche packing and species richness: biogeographic legacies in the Congo Basin. Royal Society Open Science, 2020, 7, 191582.	2.4	9
1027	The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography. Science of Remote Sensing, 2020, 1, 100002.	4.8	429
1028	Effect of northern boreal forest fires on PAH fluctuations across the arctic. Environmental Pollution, 2020, 261, 114186.	7.5	30
1029	Carbon allocation to the root system of tropical tree Ceiba pentandra using 13C pulse labelling in an aeroponic facility. Tree Physiology, 2020, 40, 350-366.	3.1	5
1030	Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data. Remote Sensing, 2020, 12, 240.	4.0	7
1031	Assessment of Bias in Pan-Tropical Biomass Predictions. Frontiers in Forests and Global Change, 2020, 3, .	2.3	36

#	Article	IF	CITATIONS
1032	Palms and trees resist extreme drought in Amazon forests with shallow water tables. Journal of Ecology, 2020, 108, 2070-2082.	4.0	27
1033	Microclimatic refugia in riparian woodland: A climate change adaptation strategy. Forest Ecology and Management, 2020, 462, 118006.	3.2	16
1034	Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 2020, 90, e01405.	5.4	139
1035	Patterns and drivers of development in a west Amazonian peatland during the late Holocene. Quaternary Science Reviews, 2020, 230, 106168.	3.0	7
1036	Variation in tree biomass and carbon stocks in three tropical dry deciduous forest types of Madhya Pradesh, India. Carbon Management, 2020, 11, 109-120.	2.4	21
1037	Not <i>Just</i> Participation: The Rise of the Ecoâ€Precariat in the Green Economy. Antipode, 2020, 52, 496-521.	3.8	27
1038	Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan, Pakistan. Ecological Indicators, 2020, 111, 106049.	6.3	56
1039	Socio-economic and Eco-biological Dimensions in Resource use and Conservation. Environmental Science and Engineering, 2020, , .	0.2	2
1040	Mapping nature's contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sensing of Environment, 2020, 239, 111671.	11.0	54
1041	Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nature Ecology and Evolution, 2020, 4, 202-209.	7.8	93
1042	Drought Impacts on Australian Vegetation During the Millennium Drought Measured With Multisource Spaceborne Remote Sensing. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005145.	3.0	20
1043	Tropical forests did not recover from the strong 2015–2016 El Niño event. Science Advances, 2020, 6, eaay4603.	10.3	127
1045	Carbon Flux Variability From a Relatively Simple Ecosystem Model With Assimilated Data Is Consistent With Terrestrial Biosphere Model Estimates. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001889.	3.8	22
1046	OCO-2 Solar-Induced Chlorophyll Fluorescence Variability across Ecoregions of the Amazon Basin and the Extreme Drought Effects of El Niño (2015–2016). Remote Sensing, 2020, 12, 1202.	4.0	19
1047	Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nature Communications, 2020, 11, 1900.	12.8	30
1048	Shut down of the South American summer monsoon during the penultimate glacial. Scientific Reports, 2020, 10, 6275.	3.3	19
1049	Potential PGPR Properties of Cellulolytic, Nitrogen-Fixing, Phosphate-Solubilizing Bacteria in Rehabilitated Tropical Forest Soil. Microorganisms, 2020, 8, 442.	3.6	56
1050	The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation. Remote Sensing, 2020, 12, 985.	4.0	16

# 1051	ARTICLE Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sensing of Environment, 2020, 242, 111779.	IF 11.0	CITATIONS
1052	Conserving the Amazon River Basin: The case study of the Yahuarcaca Lakes System in Colombia. Science of the Total Environment, 2020, 724, 138186.	8.0	5
1053	Lidar-derived environmental drivers of epiphytic bryophyte biomass in tropical montane cloud forests. Remote Sensing of Environment, 2021, 253, 112166.	11.0	7
1054	Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 2021, 278, 123333.	9.3	117
1055	Mangrove biomass estimation using canopy height and wood density in the South East and East Asian regions. Estuarine, Coastal and Shelf Science, 2021, 248, 106937.	2.1	17
1057	Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Global Change Biology, 2021, 27, 340-358.	9.5	36
1058	Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products. Remote Sensing of Environment, 2021, 253, 112208.	11.0	58
1059	Changes in Biomass Turnover Times in Tropical Forests and Their Environmental Drivers From 2001 to 2012. Earth's Future, 2021, 9, .	6.3	6
1060	Estimating carbon biomass in forests using incomplete data. Biotropica, 2021, 53, 397-408.	1.6	2
1061	Estimating greenhouse gas emissions from direct land use change due to crop production in multiple countries. Science of the Total Environment, 2021, 755, 143338.	8.0	12
1062	SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives. Remote Sensing of Environment, 2021, 254, 112238.	11.0	124
1063	Expected carbon emissions from a rubber plantation in Central Africa. Forest Ecology and Management, 2021, 480, 118668.	3.2	3
1064	Implications of urban expansion on land use and land cover: towards sustainable development of Mega Manila, Philippines. Geo Journal, 2021, 86, 927-942.	3.1	13
1065	Assessment of GEDI's LiDAR Data for the Estimation of Canopy Heights and Wood Volume of Eucalyptus Plantations in Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7095-7110.	4.9	19
1066	The Carbon Cycle: With a Brief Introduction to Global Biogeochemistry. , 2021, , 131-160.		5
1067	Impact of Ex-Closure in above and below Ground Carbon Stock Biomass. Forests, 2021, 12, 130.	2.1	8
1068	Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11, 234-240.	18.8	425
1069	Rapid Evaluation and Validation Method of Above Ground Forest Biomass Estimation Using Optical Remote Sensing in Tundi Reserved Forest Area, India. ISPRS International Journal of Geo-Information, 2021, 10, 29.	2.9	4

		CITATION RE	PORT	
# 1070	ARTICLE Vegetation biomass and carbon stock assessment using geospatial approach. , 2021, ,	77-91.	IF	Citations 3
1071	New Metrics and the Combinations for Estimating Forest Biomass From GLAS Data. IEI Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 7830-78	EE Journal of 839.	4.9	2
1072	Change detection (1985-2020): Projections on land-use land cover, carbon storage, se valuation in Southwestern Gambia. Sustainable Environment, 2021, 7, .	questration, and	2.4	8
1073	Tools and Technologies for Quantifying Spread and Impacts of Invasive Species. , 2021	., , 243-265.		1
1074	Public Acceptance of GM Foods: A Global Perspective (1999–2019). , 2021, , 293-31	.5.		6
1075	Analytical Formula to Investigate the Modulation of Sloped Targets Using LiDAR Wave Transactions on Geoscience and Remote Sensing, 2022, 60, 1-12.	form. IEEE	6.3	5
1076	Forest Applications. Remote Sensing and Digital Image Processing, 2021, , 59-117.		0.7	2
1077	Soil carbon dynamics in a humid tropical zone in SE Nigeria: Environmental influences conservation prioritization. Journal of Geography and Regional Planning, 2021, 14, 19-		0.2	0
1078	Dataâ€driven estimates of global litter production imply slower vegetation carbon turn Change Biology, 2021, 27, 1678-1688.	10ver. Global	9.5	8
1079	Contribution of Vouacapoua americana fruit-fall to the release of biomass in a lowland forest. Scientific Reports, 2021, 11, 4302.	Amazon	3.3	0
1080	Carbon prospecting in tropical forests for climate change mitigation. Nature Commun 12, 1271.	cations, 2021,	12.8	49
1081	Energy Production from Forest Biomass: An Overview. , 0, , .			1
1082	Resprouting drives successional pathways and the resilience of Caatinga dry forest in h landscapes. Forest Ecology and Management, 2021, 482, 118881.	numan-modified	3.2	36
1083	New insights into large tropical tree mass and structure from direct harvest and terres Royal Society Open Science, 2021, 8, 201458.	trial lidar.	2.4	21
1084	Biomass Estimation Using Satellite-Based Data. , 0, , .			4
1085	Potential of P-Band SAR Tomography in Forest Type Classification. Remote Sensing, 20	21, 13, 696.	4.0	6
1086	Estimation of forest aboveground biomass using combination of Landsat 8 and Sentin random forest regression algorithm in Himalayan Foothills. Tropical Ecology, 2021, 62,	el-1A data with 288-300.	1.2	16
1087	Assessment of linear relationships between TanDEM-X coherence and canopy height a aboveground biomass in tropical forests. International Journal of Remote Sensing, 202		2.9	4

#	Article	IF	CITATIONS
1088	Satellite Observations of the Tropical Terrestrial Carbon Balance and Interactions With the Water Cycle During the 21st Century. Reviews of Geophysics, 2021, 59, e2020RG000711.	23.0	13
1089	Representativeness of FLUXNET Sites Across Latin America. Journal of Geophysical Research C: Biogeosciences, 2021, 126, e2020JC006090.	3.0	31
1090	Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. Remote Sensing, 2021, 13, 1282.	4.0	25
1091	Assessment of above-ground biomass and carbon loss from a tropical dry forest in Mexico. Journal of Environmental Management, 2021, 282, 111973.	7.8	8
1093	Determination of Structural Characteristics of Old-Growth Forest in Ukraine Using Spaceborne LiDAR. Remote Sensing, 2021, 13, 1233.	4.0	10
1094	Producing wood at least cost to biodiversity: integrating <scp>T</scp> riad and sharing–sparing approaches to inform forest landscape management. Biological Reviews, 2021, 96, 1301-1317.	10.4	61
1095	Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecology and Evolution, 2021, 11, 3746-3770.	1.9	37
1096	Tree Diametric Relationships and Their Implications for Estimation of Above-ground Biomass in a Tropical Rainforest. Journal of Sustainable Forestry, 0, , 1-15.	1.4	0
1097	Height–diameter allometry in African monodominant forest close to mixed forest. Journal of Tropical Ecology, 2021, 37, 98-107.	1.1	5
1098	Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 2021, 256, 112336.	11.0	45
1099	Regionalization of an Existing Global Forest Canopy Height Model for Forests of the Southern United States. Remote Sensing, 2021, 13, 1722.	4.0	2
1100	The real potential of current passive satellite data to map aboveground biomass in tropical forests. Remote Sensing in Ecology and Conservation, 2021, 7, 504-520.	4.3	11
1101	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
1102	The Road to Operationalization of Effective Tropical Forest Monitoring Systems. Remote Sensing, 2021, 13, 1370.	4.0	9
1103	Effects of Earth system feedbacks on the potential mitigation of large-scale tropical forest restoration. Biogeosciences, 2021, 18, 2627-2647.	3.3	18
1104	Variations of carbon allocation and turnover time across tropical forests. Global Ecology and Biogeography, 2021, 30, 1271-1285.	5.8	12
1105	JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1). Geoscientific Model Development, 2021, 14, 2161-2186.	3.6	32
1106	Evaluating the accuracy of spectral indices from Sentinel-2 data for estimating forest biomass in urban areas of the tropical savanna. Remote Sensing Applications: Society and Environment, 2021, 22, 100484	1.5	6

#	Article	IF	CITATIONS
1109	Ecological implications of twentieth century reforestation programs for the urban forests of SĀ£o Paulo, Brazil: a study based on litterfall and nutrient cycling. Ecological Processes, 2021, 10, .	3.9	7
1110	Synthesizing tree biodiversity data to understand global patterns and processes of vegetation. Journal of Vegetation Science, 2021, 32, e13021.	2.2	17
1111	Carbon cycling in mature and regrowth forests globally. Environmental Research Letters, 2021, 16, 053009.	5.2	41
1112	An evaluation of the synergy of satellite passive microwave observations between 1.4 and 36ÂGHz, for vegetation characterization over the Tropics. Remote Sensing of Environment, 2021, 257, 112346.	11.0	10
1113	Terrain Slope Effect on Forest Height and Wood Volume Estimation from GEDI Data. Remote Sensing, 2021, 13, 2136.	4.0	24
1114	An assessment of data sources, data quality and changes in national forest monitoring capacities in the Global Forest Resources Assessment 2005–2020. Environmental Research Letters, 2021, 16, 054029.	5.2	52
1115	Woody-biomass projections and drivers of change in sub-Saharan Africa. Nature Climate Change, 2021, 11, 449-455.	18.8	23
1116	Resistance of African tropical forests to an extreme climate anomaly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	37
1117	Linking land change model evaluation to model objective for the assessment of land cover change impacts on biodiversity. Landscape Ecology, 2021, 36, 2707-2723.	4.2	1
1118	Soil and vegetation carbon stocks after land-use changes in a seasonally dry tropical forest. Geoderma, 2021, 390, 114943.	5.1	32
1119	CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking. Geoscientific Model Development, 2021, 14, 2371-2417.	3.6	11
1120	New Inventories of Global Carbon Dioxide Emissions through Biomass Burning in 2001–2020. Remote Sensing, 2021, 13, 1914.	4.0	9
1121	Climate change and elevated CO ₂ favor forest over savanna under different future scenarios in South Asia. Biogeosciences, 2021, 18, 2957-2979.	3.3	14
1122	Growing mining contribution to Colombian deforestation. Environmental Research Letters, 2021, 16, 064046.	5.2	22
1123	Beyond biomass to carbon fluxes: application and evaluation of a comprehensive forest carbon monitoring system. Environmental Research Letters, 2021, 16, 055026.	5.2	9
1124	Carbon and nitrogen stocks under various land cover in Gabon. Geoderma Regional, 2021, 25, e00363.	2.1	4
1126	Weakened seasonality of the African rainforest precipitation in boreal winter and spring driven by tropical SST variabilities. Geoscience Letters, 2021, 8, .	3.3	2
1127	Cost–Benefit Analysis of Climate Change Mitigation Measures in the Forestry Sector of Peninsular Malaysia. Earth Systems and Environment, 2022, 6, 405-419.	6.2	49

#	Article	IF	CITATIONS
1128	Carbon stock estimation by dual-polarized synthetic aperture radar (SAR) and forest inventory data in a Mediterranean forest landscape. Journal of Forestry Research, 2022, 33, 827-838.	3.6	7
1129	The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nature Ecology and Evolution, 2021, 5, 1110-1122.	7.8	88
1130	Detecting tropical selective logging with C-band SAR data may require a time series approach. Remote Sensing of Environment, 2021, 259, 112411.	11.0	29
1131	Two Decades Progress on the Application of Remote Sensing for Monitoring Tropical and Sub-Tropical Natural Forests: A Review. Forests, 2021, 12, 739.	2.1	8
1132	Money growing on trees: A classroom game about payments for ecosystem services and tropical deforestation. Journal of Economic Education, 2021, 52, 192-217.	1.3	0
1133	Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nature Sustainability, 2021, 4, 892-899.	23.7	56
1134	An Improved Method for Pan-Tropical Above-Ground Biomass and Canopy Height Retrieval Using CYGNSS. Remote Sensing, 2021, 13, 2491.	4.0	6
1135	Impact of individual protected areas on deforestation and carbon emissions in Acre, Brazil. Environmental Conservation, 2021, 48, 217-224.	1.3	5
1136	Growing Stock Volume Retrieval from Single and Multi-Frequency Radar Backscatter. Forests, 2021, 12, 944.	2.1	4
1137	Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests. Biogeosciences, 2021, 18, 4091-4116.	3.3	11
1138	Effects of marine pollution, climate, and tidal range on biomass and sediment organic carbon in Chinese mangrove forests. Catena, 2021, 202, 105270.	5.0	16
1139	Nutrient limitations regulate soil greenhouse gas fluxes from tropical forests: evidence from an ecosystem-scale nutrient manipulation experiment in Uganda. Soil, 2021, 7, 433-451.	4.9	8
1140	New Forest Aboveground Biomass Maps of China Integrating Multiple Datasets. Remote Sensing, 2021, 13, 2892.	4.0	10
1141	Sustainable Forest Management Evaluation Using Carbon Credits: From Production to Environmental Forests. Forests, 2021, 12, 1016.	2.1	6
1142	Old-growth forest loss and secondary forest recovery across Amazonian countries. Environmental Research Letters, 2021, 16, 085009.	5.2	22
1143	Improving CLM5.0 Biomass and Carbon Exchange Across the Western United States Using a Data Assimilation System. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002421.	3.8	11
1144	Changes in global terrestrial live biomass over the 21st century. Science Advances, 2021, 7, eabe9829.	10.3	136
1146	Tree diversity and carbon stocks in the Itombwe Mountains of eastern DR Congo. Biotropica, 2021, 53, 1594-1605.	1.6	1

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
1147	High aboveground carbon stock of African tropical montane forests. Nature, 2021, 596, 5	536-542.	27.8	65
1148	Carbon Stocks, Species Diversity and Their Spatial Relationships in the Yucatán Peninsul Remote Sensing, 2021, 13, 3179.	a, Mexico.	4.0	6
1149	Tracking small-scale tropical forest disturbances: Fusing the Landsat and Sentinel-2 data Remote Sensing of Environment, 2021, 261, 112470.	·ecord.	11.0	32
1150	The global forest above-ground biomass pool for 2010 estimated from high-resolution sa observations. Earth System Science Data, 2021, 13, 3927-3950.	cellite	9.9	123
1151	Interannual Variations of Vegetation Optical Depth are Due to Both Water Stress and Bic Changes. Geophysical Research Letters, 2021, 48, e2021GL095267.	mass	4.0	29
1152	Predicting carbon emissions, emissions reductions, and carbon removal due to deforestat plantation forests in Southeast Asia. Journal of Cleaner Production, 2021, 312, 127728.	ion and	9.3	14
1153	Climate change projections of terrestrial primary productivity over the Hindu Kush Himala forests. Earth System Dynamics, 2021, 12, 857-870.	iyan	7.1	5
1154	A novel approach for estimation of aboveground biomass of a carbon-rich mangrove site Journal of Environmental Management, 2021, 292, 112816.	in India.	7.8	20
1155	Effect of Scattering Angle on Earth Reflectance. Frontiers in Remote Sensing, 2021, 2, .		3.5	7
1156	Assessment of Slope-Adaptive Metrics of GEDI Waveforms for Estimations of Forest Abov Biomass over Mountainous Areas. Journal of Remote Sensing, 2021, 2021, .	reground	6.7	15
1157	Resistance and resilience of soil prokaryotic communities in response to prolonged droug tropical forest. FEMS Microbiology Ecology, 2021, 97, .	;ht in a	2.7	2
1158	Evaluating two land surface models for Brazil using a full carbon cycle benchmark with uncertainties. Climate Resilience and Sustainability, 2022, 1, e10.		2.3	4
1159	Temperature effects on L-band vegetation optical depth of a boreal forest. Remote Sensir Environment, 2021, 263, 112542.	ng of	11.0	12
1160	Temporal dynamics of above ground biomass of Kaimoor Wildlife Sanctuary, Uttar Prades conjunctive use of field and Landsat data. Proceedings of the Indian National Science Aca 87, 499.		1.4	1
1161	Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire, 2021, 4, 59.		2.8	18
1162	Scaled biomass estimation in woodland ecosystems: Testing the individual and combined satellite multispectral and lidar data. Remote Sensing of Environment, 2021, 262, 11251	capacities of 1.	11.0	33
1163	Validation of terrestrial biogeochemistry in CMIP6 Earth system models: a review. Geoscie Development, 2021, 14, 5863-5889.	entific Model	3.6	11
1164	Biomass models for three species with different growth forms and geographic distributio Brazilian Atlantic forest. Canadian Journal of Forest Research, 0, , 1-13.	n in the	1.7	4

#	Article	IF	CITATIONS
1165	Assessment of Carbon Stock in Forest Biomass and Emission Reduction Potential in Malaysia. Forests, 2021, 12, 1294.	2.1	50
1166	Mapping forest disturbances across the Southwestern Amazon: tradeoffs between open-source, Landsat-based algorithms. Environmental Research Communications, 2021, 3, 091001.	2.3	5
1167	Using satellite estimates of aboveground biomass to assess carbon stocks in a mixed-management, semi-deciduous tropical forest in the Yucatan Peninsula. Geocarto International, 0, , 1-22.	3.5	1
1168	Plant cover as an estimator of above-ground biomass in semi-arid woody vegetation in Northeast Patagonia, Argentina. Journal of Arid Land, 0, , 1.	2.3	0
1169	An alternative AMSR2 vegetation optical depth for monitoring vegetation at large scales. Remote Sensing of Environment, 2021, 263, 112556.	11.0	23
1170	Reappraisal of SMAP inversion algorithms for soil moisture and vegetation optical depth. Remote Sensing of Environment, 2021, 264, 112627.	11.0	20
1171	The NASA AfriSAR campaign: Airborne SAR and lidar measurements of tropical forest structure and biomass in support of current and future space missions. Remote Sensing of Environment, 2021, 264, 112533.	11.0	33
1172	ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite. Remote Sensing of Environment, 2021, 264, 112587.	11.0	19
1173	Improving forest above ground biomass estimates over Indian forests using multi source data sets with machine learning algorithm. Ecological Informatics, 2021, 65, 101392.	5.2	29
1174	Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. Forest Ecology and Management, 2021, 499, 119615.	3.2	20
1175	Climatic and edaphic controls over the elevational pattern of microbial necromass in subtropical forests. Catena, 2021, 207, 105707.	5.0	23
1176	Estimating aboveground net primary productivity of reforested trees in an urban landscape using biophysical variables and remotely sensed data. Science of the Total Environment, 2022, 802, 149958.	8.0	10
1177	Future projections for terrestrial biomes indicate widespread warming and moisture reduction in forests up to 2100 in South America. Global Ecology and Conservation, 2021, 25, e01441.	2.1	10
1178	Mudanças do uso e cobertura da terra no Brasil, emissões de GEE e polÃŧicas em curso. Ciência E Cultura, 2021, 73, 18-24.	0.0	0
1181	Role of Major Forest Biomes in Climate Change Mitigation: An Eco-Biological Perspective. Environmental Science and Engineering, 2020, , 483-526.	0.2	7
1182	Applications of NDVI for Land Degradation Assessment. SpringerBriefs in Environmental Science, 2015, , 17-25.	0.3	4
1183	Global Forests Management for Climate Change Mitigation. , 2017, , 395-432.		2
1184	Forest Carbon Stock and Fluxes: Distribution, Biogeochemical Cycles, and Measurement Techniques. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-16.	0.1	3

#	Article	IF	Citations
1185	Forest Carbon Stock and Fluxes: Distribution, Biogeochemical Cycles, and Measurement Techniques. Encyclopedia of the UN Sustainable Development Goals, 2021, , 361-376.	0.1	5
1186	Remote Sensing of Forest Biomass. Springer Remote Sensing/photogrammetry, 2014, , 63-98.	0.4	8
1187	Random Sampling Technique for Overfitting Control in Genetic Programming. Lecture Notes in Computer Science, 2012, , 218-229.	1.3	36
1188	Water and Matter Flows in Mountainous Watersheds of Southeast Asia: Processes and Implications for Management. Springer Environmental Science and Engineering, 2013, , 109-148.	0.1	2
1189	The Challenges Facing Forest-Based Rural Development in the Tropics and Subtropics. Tropical Forestry, 2014, , 51-83.	1.0	3
1190	Monitoring of Tropical Forest Cover with Remote Sensing. , 2016, , 1-19.		1
1191	Measurement, Reporting, and Verifications Systems in Forest Assessment. , 2016, , 839-882.		1
1192	Forests in the Global Carbon Cycle. Forestry Sciences, 2014, , 231-239.	0.4	1
1193	Carbon Stock Estimation of Tropical Forests on Borneo, Indonesia, for REDD+. Remote Sensing and Digital Image Processing, 2014, , 411-427.	0.7	4
1194	Remote Sensing of Vegetation: Potentials, Limitations, Developments and Applications. Advances in Photosynthesis and Respiration, 2016, , 289-331.	1.0	8
1195	Microwave retrievals of soil moisture and vegetation optical depth with improved resolution using a combined constrained inversion algorithm: Application for SMAP satellite. Remote Sensing of Environment, 2020, 239, 111662.	11.0	34
1196	Spatial priorities for conserving the most intact biodiverse forests within Central Africa. Environmental Research Letters, 2020, 15, 0940b5.	5.2	18
1197	Protection status as determinant of carbon stock drivers in Cerrado sensu stricto. Journal of Plant Ecology, 2020, 13, 361-368.	2.3	3
1200	A Spatially Constrained Multichannel Algorithm for Inversion of a First-Order Microwave Emission Model at L-Band. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8134-8146.	6.3	9
1201	Above-ground biomass estimates based on active and passive microwave sensor imagery in low-biomass savanna ecosystems. Journal of Applied Remote Sensing, 2018, 12, 1.	1.3	8
1202	Forest height estimation and change monitoring based on artificial neural network using Geoscience Laser Altimeter System and Landsat data. Journal of Applied Remote Sensing, 2019, 14, 1.	1.3	8
1203	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	10.3	82
1205	Aboveground carbon stock is related to land cover and woody species diversity in tropical ecosystems of Eastern Ethiopia. Ecological Processes, 2020, 9, .	3.9	19

#	Article	IF	CITATIONS
1206	Biogeophysical and biogeochemical impacts of land-use change simulated by MIROC-ES2L. Progress in Earth and Planetary Science, 2020, 7, .	3.0	10
1207	Gap models across micro- to mega-scales of time and space: examples of Tansley's ecosystem concept. Forest Ecosystems, 2020, 7, .	3.1	12
1208	Mapping data gaps to estimate biomass across Brazilian Amazon forests. Forest Ecosystems, 2020, 7, .	3.1	8
1209	Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors. Forest Ecosystems, 2020, 7, .	3.1	31
1210	Dynamics of dead wood decay in Swiss forests. Forest Ecosystems, 2020, 7, .	3.1	38
1211	Getting Road Expansion on the Right Track: A Framework for Smart Infrastructure Planning in the Mekong. PLoS Biology, 2016, 14, e2000266.	5.6	19
1212	Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World. PLoS ONE, 2012, 7, e44795.	2.5	27
1213	Are Inventory Based and Remotely Sensed Above-Ground Biomass Estimates Consistent?. PLoS ONE, 2013, 8, e74170.	2.5	52
1214	Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica. PLoS ONE, 2015, 10, e0126748.	2.5	45
1215	MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS ONE, 2015, 10, e0130143.	2.5	35
1216	Validating Community-Led Forest Biomass Assessments. PLoS ONE, 2015, 10, e0130529.	2.5	9
1217	Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia. PLoS ONE, 2016, 11, e0146357.	2.5	11
1218	Identifying Where REDD+ Financially Out-Competes Oil Palm in Floodplain Landscapes Using a Fine-Scale Approach. PLoS ONE, 2016, 11, e0156481.	2.5	23
1219	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	2.5	34
1220	Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar. PLoS ONE, 2016, 11, e0168575.	2.5	21
1221	Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS ONE, 2017, 12, e0171072.	2.5	67
1222	Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE, 2017, 12, e0179302.	2.5	380
1223	Near-real time aboveground carbon emissions in Peru. PLoS ONE, 2020, 15, e0241418.	2.5	10

#	Article	IF	CITATIONS
1224	Developing deep learning models to automate rosewood tree species identification for CITES designation and implementation. Holzforschung, 2020, 74, 1123-1133.	1.9	14
1225	VariaciÃ ³ n de la biomasa forestal en el sur de Brasil: impacto de los árboles de Araucaria. Revista De Biologia Tropical, 2014, 62, 359.	0.4	8
1226	Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico. Cerne, 2014, 20, 613-620.	0.9	7
1227	STRUCTURE AND BIOMASS ANALYSIS OF URBAN VEGETATION IN SQUARES OF SANTA CECÃLIA DISTRICT, SÃO PAULO, SP. Revista Arvore, 0, 44, .	0.5	3
1228	The Improved Biomass Stove Saves Wood, but How Often Do People Use It? Evidence from a Randomized Treatment Trial in Ethiopia. Policy Research Working Papers, 2015, , .	1.4	9
1229	Does Collective Action Sequester Carbon? The Case of the Nepal Community Forestry Program. Policy Research Working Papers, 2015, , .	1.4	3
1231	Difference and uncertainty of forest coverage estimation in China. Biodiversity Science, 2015, 23, 830-834.	0.6	2
1232	Seasonal coupling of canopy structure and function in African tropical forests and its environmental controls. Ecosphere, 2013, 4, 1-21.	2.2	36
1233	Assessing Forest Biomass and Exploration in the Brazilian Amazon with Airborne InSAR: an Alternative for REDD. The Open Remote Sensing Journal, 2012, 5, 21-36.	0.5	15
1234	Integrating ALOS-PALSAR and ground based observations for forest biomass estimation for REDD+ in Cambodia. APN Science Bulletin, 2018, 8, .	0.7	1
1235	Economics of REDD+ and Community Forestry. Journal of Forest and Livelihood, 2013, 11, 69-74.	0.9	9
1236	Appraisal of Deforestation in District Mansehra through Sentinel-2 and Landsat Imagery International Journal of Agriculture & Sustainable Development, 2019, 01, .	0.0	4
1237	Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events. Forests, 2021, 12, 8.	2.1	11
1238	Above-Ground Biomass Retrieval over Tropical Forests: A Novel GNSS-R Approach with CyGNSS. Remote Sensing, 2020, 12, 1368.	4.0	65
1239	Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sensing, 2021, 13, 77.	4.0	86
1240	Tree biomass and carbon density estimation in the tropical dry forest of Southern Western Ghats, India. IForest, 2018, 11, 534-541.	1.4	19
1241	Biomassa e carbono em florestas subtropicais: determinantes, métodos de quantificação e estimativas. Neotropical Biology and Conservation, 2013, 8, .	0.9	6
1242	Restructuring the Reduced Emissions from Deforestation and Forest Degradation (REDD+) Mechanism for a Post Kyoto Agreement. American Journal of Climate Change, 2015, 04, 69-76.	0.9	1

#	Article	IF	Citations
1243	Effect of Land Use Changes on Carbon Stock Dynamics in Major Land Use Sectors of Mizoram, Northeast India. Journal of Environmental Protection, 2018, 09, 1262-1285.	0.7	17
1244	Estimation of Tree Biomass, Carbon Stocks, and Error Propagation in Mecrusse Woodlands. Open Journal of Forestry, 2015, 05, 471-488.	0.3	8
1245	Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei. Journal of Ecology and Environment, 2015, 38, 75-84.	1.6	7
1246	Multiresolution quantification of deciduousness in West-Central African forests. Biogeosciences, 2013, 10, 6957-6967.	3.3	12
1247	Understanding the uncertainty in global forest carbon turnover. Biogeosciences, 2020, 17, 3961-3989.	3.3	45
1248	Lagged effects regulate the inter-annual variability of the tropical carbon balance. Biogeosciences, 2020, 17, 6393-6422.	3.3	26
1271	Historical and future anthropogenic warming effects on droughts, fires and fire emissions of CO ₂ and PM _{2.5} in equatorial Asia when 2015-like El Niño events occur. Earth System Dynamics, 2020, 11, 435-445.	7.1	14
1272	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	9.9	1,167
1273	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	9.9	1,159
1274	Apparent ecosystem carbon turnover time: uncertainties and robust features. Earth System Science Data, 2020, 12, 2517-2536.	9.9	17
1275	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	9.9	1,477
1276	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	9.9	616
1278	Global rules for translating land-use change (LUH2) to land-cover change for CMIP6 using GLM2. Geoscientific Model Development, 2020, 13, 3203-3220.	3.6	31
1279	Quantitative assessment of fire and vegetation properties in simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project. Geoscientific Model Development, 2020, 13, 3299-3318.	3.6	63
1280	Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geoscientific Model Development, 2020, 13, 5425-5464.	3.6	408
1284	Tropical Forest Remote Sensing Services for the Democratic Republic of Congo inside the EU FP7 ReCover Project (Final Results 2000-2012). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XL-7/W3, 397-402.	0.2	2
1286	An Operational Framework for Defining and Monitoring Forest Degradation. Ecology and Society, 2013, 18, .	2.3	171
1287	Seasonal and successional dynamics of size-dependent plant demographic rates in a tropical dry forest. PeerJ, 2020, 8, e9636.	2.0	7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1288	Tree Above-And Below-Ground Biomass Allometries for Carbon Stocks Estimation in Secondary F of Congo. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2014, 8, 09-	orest 20.	0.1	9
1289	First Retrievals of ASCAT IB VOD (Vegetation Optical Depth) at Global Scale. , 2021, , .			0
1290	Alternate Inrae-Bordeaux VOD Indices from SMOS, AMSR2 and ASCAT: Overview of Recent Developments. , 2021, , .			1
1291	Interannual Variability of Biomass (SMOS Vegetation Optical Depth) Over the Contiguous United States. , 2021, , .	1		1
1292	Global Scale IB AMSR2 Vegetation Optical Depth at X-Band. , 2021, , .			0
1293	The Role of the Biomass Mission in Carbon Cycle Science and Politics. , 2021, , .			0
1294	Aboveground Woody Biomass Estimation of the Brazilian Cerrado Biome Using Data Integration , \cdot	, 2021,		0
1295	Active Fire Dynamics in the Amazon: New Perspectives From Highâ€Resolution Satellite Observa Geophysical Research Letters, 2021, 48, e2021GL093789.	tions.	4.0	8
1296	Site form classification—a practical tool for guiding site-specific tropical forest landscape restoration and management. Forestry, 2022, 95, 261-273.		2.3	6
1297	A Global Bottomâ€Up Approach to Estimate Fuel Consumed by Fires Using Above Ground Bioma Observations. Geophysical Research Letters, 2021, 48, e2021GL095452.	SS	4.0	9
1298	Time-variations of zeroth-order vegetation absorption and scattering at L-band. Remote Sensing Environment, 2021, 267, 112726.	of	11.0	7
1299	Tree biomass and carbon stock assessment of subtropical and temperate forests in the Central Himalaya, India. Trees, Forests and People, 2021, 6, 100147.		1.9	16
1301	Applied Landscape Ecology, Future Socioeconomics and Policy-Making in the Neotropics. , 0, , .			0
1306	Evaluating Relationships Between Biodiversity and Ecosystem Functions in Forests Using Forest Inventory and Allometry Data. Structure and Function of Mountain Ecosystems in Japan, 2014, ,	351-365.	0.5	0
1308	Diversified Biometric, Chemical and Morphological Composition of Elaeis Guineesis Frond Vascul Bundles for Pulp and Paper Configuration. IOSR Journal of Agriculture and Veterinary Science, 20 91-98.		0.1	0
1309	Developing Site-Specific Allometric Equations for Above-Ground Biomass Estimation in Peat Swa Forests of Rokan Hilir District, Riau Province, Indonesia. Indonesian Journal of Forestry Research, 2014, 1, 47-65.	mp	0.3	1
1311	Measurement, Reporting and Verifications Systems in Forest Assessment. , 2015, , 1-36.			0
1312	Image Processing of RADAR and LiDAR in Tropical Forestry. , 2015, , 1-10.			1

#	Article	IF	Citations
1313	Monitoring of Tropical Forest Cover with Remote Sensing. , 2015, , 1-19.		0
1314	Use of remotely sensed auxiliary data for improving sample-based forest inventories. Dissertationes Forestales, 2015, 2015, .	0.1	0
1315	Image Processing of Radar And Lidar in Tropical Forestry. , 2015, , 1-24.		0
1316	Implication of Land-Use and Land-Cover Change into Carbon Dioxide Emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia. Jurnal Manajemen Hutan Tropika, 2015, 21, 25-35.	0.4	3
1318	Preferences for REDD+ Contract Attributes in Low-Income Countries: A Choice Experiment in Ethiopia. Policy Research Working Papers, 2015, , .	1.4	0
1319	Image Processing of Radar and Lidar in Tropical Forestry. , 2016, , 635-661.		0
1320	Chapter 10. Trees have Already been Invented: Carbon in Woodlands. Collabra, 2016, 2, .	1.3	1
1321	Monitoring of Tropical Forest Cover with Remote Sensing. , 2016, , 663-685.		1
1323	ESTIMATION OF REGIONAL FOREST ABOVEGROUND BIOMASS COMBINING ICESAT-GLAS WAVEFORMS AND HJ-1A/HSI HYPERSPECTRAL IMAGERIES. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLI-B7, 731-737.	0.2	0
1324	Community Managed Forest Groups and Preferences for REDD+ Contract Attributes: A Choice Experiment Survey of Communities in Nepal. Journal of Forest and Livelihood, 2016, 13, 9-19.	0.9	0
1325	Review of the Impacts on Greenhouse Gas Emissions of Land-Use Changes Induced by Non-food Biomass Production. Sustainable Agriculture Reviews, 2018, , 149-181.	1.1	0
1327	Dynamic Global Vegetation Models. , 2019, , 843-863.		2
1328	Land surface satellite remote sensing gap analysis. , 2018, , .		0
1329	Airborne and Spaceborne Passive Microwave Measurements of Soil Moisture. Ecohydrology, 2019, , 71-105.	0.2	6
1331	Estimation of the Basic Wood Density of Native Species Using Mixed Linear Models. Floresta E Ambiente, 2019, 26, .	0.4	2
1332	Governing REDD+: a state of the art review. Revista De Administração Da UFSM, 2019, 12, 182-197.	0.4	0
1334	Above-Ground Biomass and Tree Species Diversity in the Anap Sustainable Development Unit, Sarawak. Advances in Asian Human-Environmental Research, 2020, , 181-207.	1.0	1
1335	Earth CO2 dynamics: from CO2 to organic matter and organic matter back to CO2 – an estimate of fluxes. Revista De Biologia Neotropical / Journal of Neotropical Biology, 2020, 17, 47-55.	0.1	0

#	Article	IF	CITATIONS
1336	Estimating the interconversion between CO2 and organic matter in the environment using mathematical models and some considerations. Revista De Biologia Neotropical / Journal of Neotropical Biology, 2020, 17, 56-67.	0.1	0
1337	The Prospect of Radar Remote Sensing in Assessment of Forest above Ground Biomass. International Journal of Agricultural Science and Research (IJASR), 2020, 10, 21-36.	0.0	0
1338	Plant and soil carbon stocks in grassland patches maintained by extensive grazing in the highlands of central Argentina. Austral Ecology, 2021, 46, 374-386.	1.5	4
1339	Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania. Land Use Policy, 2022, 112, 105810.	5.6	8
1340	Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles. Remote Sensing of Environment, 2022, 268, 112760.	11.0	89
1341	Linking Foliar Traits to Belowground Processes. , 2020, , 173-197.		4
1342	PREVENTIVE REGULATIONS TO REMOVE ENVIRONMENTAL DAMAGE TO MANGROVE ECOSYSTEM IN EAST KALIMANTAN, INDONESIA. International Journal of Research in Law, Economic and Social Sciences, 2019, 1, .	0.0	0
1344	Mapping Hydrological Ecosystem Services and Impacts of Scenarios for Deforestation and Conservation of Lowland, Montane and Cloud-Affected Forests. , 2021, , 189-218.		1
1345	SMOS L-VOD Retrieved by Level 2 Algorithm and its Correlation With GEDI LIDAR Products. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 11870-11878.	4.9	4
1346	Persistence of old soil carbon under changing climate: The role of mineral-organic matter interactions. Chemical Geology, 2022, 587, 120629.	3.3	17
1347	Land Use Increases the Correlation between Tree Cover and Biomass Carbon Stocks in the Global Tropics. Land, 2021, 10, 1217.	2.9	3
1348	Improving Plot-Level Model of Forest Biomass: A Combined Approach Using Machine Learning with Spatial Statistics. Forests, 2021, 12, 1663.	2.1	4
1349	Spatial and temporal scales of canopy disturbance and recovery across an oldâ€growth tropical rain forest landscape. Ecological Monographs, 2022, 92, .	5.4	1
1350	Experience and Learning with Improved Technologies: Evidence from Improved Biomass Cookstoves in Ethiopia. Environmental and Resource Economics, 0, , 1.	3.2	2
1351	Impacts of the 2012â€2015 Californian Drought on Carbon, Water and Energy Fluxes in Californian Sierras: Results from an Imaging Spectrometryâ€Constrained Terrestrial Biosphere Model. Global Change Biology, 2021, , .	9.5	4
1352	Where Has All the Carbon Gone?. Annual Review of Earth and Planetary Sciences, 2022, 50, .	11.0	5
1353	Demonstration of large area forest volume and primary production estimation approach based on Sentinel-2 imagery and process based ecosystem modelling. International Journal of Remote Sensing, 2021, 42, 9467-9489.	2.9	10
1354	Unimodal and Multimodal Perception for Forest Management: Review and Dataset. Computation, 2021, 9, 127.	2.0	9

#	Article	IF	CITATIONS
1355	Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations. Biogeosciences, 2021, 18, 6077-6091.	3.3	9
1356	Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sensing, 2021, 13, 4540.	4.0	7
1357	Parameter uncertainty dominates C-cycle forecast errors over most of Brazil for the 21st century. Earth System Dynamics, 2021, 12, 1191-1237.	7.1	8
1358	The Contribution of Trees Outside of Forests to Landscape Carbon and Climate Change Mitigation in West Africa. Forests, 2021, 12, 1652.	2.1	5
1359	Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images. Fire, 2021, 4, 89.	2.8	3
1360	Modelagem volumétrica da necromassa lenhosa em floresta manejada e não manejada na Amazônia Central. Ciencia Florestal, 2021, 31, 1812-1832.	0.3	0
1361	Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity. Forest Ecology and Management, 2022, 505, 119945.	3.2	5
1362	Limited integration of biodiversity within climate policy: Evidence from the Alliance of Small Island States. Environmental Science and Policy, 2022, 128, 216-227.	4.9	4
1363	A new protocol for estimation of woody aboveground biomass in disturbance-prone ecosystems. Ecological Indicators, 2022, 135, 108466.	6.3	4
1364	Aboveground biomass allocation and additive allometric models of fifteen tree species in northeast China based on improved investigation methods. Forest Ecology and Management, 2022, 505, 119918.	3.2	11
1365	Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks. Remote Sensing of Environment, 2022, 269, 112849.	11.0	15
1366	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
1367	Detecting fire disturbances in forests by using GNSS reflectometry and machine learning: A case study in Angola. Remote Sensing of Environment, 2022, 270, 112878.	11.0	7
1368	Evaluating Current and Future Sensor-Specific Biomass Calibration in the Tallest Mangrove Forest on Earth. , 2020, , .		1
1369	Estimation of Forest Above-Ground Biomass with C-Band Scatterometer Backscatter Observations. , 2020, , .		0
1370	Scenarios for oil palm expansion in degraded and deforested lands in the Brazilian Amazon to meet biodiesel demand. Sustentabilidade Em Debate, 2021, 12, 90-107.	0.2	0
1371	Analysis of Canopy Gaps of Coastal Broadleaf Forest Plantations in Northeast Taiwan Using UAV Lidar and the Weibull Distribution. Remote Sensing, 2022, 14, 667.	4.0	4
1372	Making (remote) sense of lianas. Journal of Ecology, 2022, 110, 498-513.	4.0	5

#	Article	IF	CITATIONS
1373	Mangrove Above-Ground Biomass and Carbon Stock in the Karimunjawa-Kemujan Islands Estimated from Unmanned Aerial Vehicle-Imagery. Sustainability, 2022, 14, 706.	3.2	8
1374	Native forests in agricultural landscapes: An option for sustainability. , 2022, , 353-375.		0
1375	Forest succession accelerates soil carbon accumulation by increasing recalcitrant carbon stock in subtropical forest topsoils. Catena, 2022, 212, 106030.	5.0	8
1376	Offsetting Destruction: The Important Functional Contribution of Carbon Sequestration in the Restoration of a Tropical Forest in Monteverde, Costa Rica. , 2022, , .		1
1377	A Study on Sensitivities of Tropical Forest GPP Responding to the Characteristics of Drought—A Case Study in Xishuangbanna, China. Water (Switzerland), 2022, 14, 157.	2.7	3
1378	Integrating satellite-based passive microwave and optically sensed observations to evaluating the spatio-temporal dynamics of vegetation health in the red soil regions of southern China. GIScience and Remote Sensing, 2022, 59, 215-233.	5.9	4
1379	A stacking ensemble algorithm for improving the biases of forest aboveground biomass estimations from multiple remotely sensed datasets. GIScience and Remote Sensing, 2022, 59, 234-249.	5.9	28
1380	EstimaciÃ ³ n de emisiones atmosféricas de COâ,,, NOâ,,, CO, NHâ,ƒ y Black Carbon vÃa bottom up, generados p quema de biomasa en el norte de América del Sur. Revista De Teledeteccion, 2022, , 23-46.	or 0.6	0
1381	Distinct Community-Wide Responses to Forecasted Climate Change in Afrotropical Forests. Frontiers in Ecology and Evolution, 2022, 9, .	2.2	0
1382	Diurnal and Seasonal Variations of Passive and Active Microwave Satellite Observations Over Tropical Forests. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	5
1383	Large Soil Carbon Storage in Terrestrial Ecosystems of Canada. Global Biogeochemical Cycles, 2022, 36, .	4.9	33
1384	Evaluating ICESat-2 for monitoring, modeling, and update of large area forest canopy height products. Remote Sensing of Environment, 2022, 271, 112919.	11.0	22
1385	Tropical peatlands in the anthropocene: Lessons from the past. Anthropocene, 2022, 37, 100324.	3.3	12
1386	A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison. Remote Sensing of Environment, 2022, 271, 112921.	11.0	46
1387	A large but transient carbon sink from urbanization and rural depopulation in China. Nature Sustainability, 2022, 5, 321-328.	23.7	130
1388	Evaluation of Deadwood Characteristics and Carbon Storage under Different Silvicultural Treatments in a Mixed Broadleaves Mountain Forest. Forests, 2022, 13, 259.	2.1	4
1389	Forest above-ground woody biomass estimation using multi-temporal space-borne LiDAR data in a managed forest at Haldwani, India. Advances in Space Research, 2022, 69, 3245-3257.	2.6	8
1390	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	11.0	48

#	Article	IF	CITATIONS
1391	Mapping Forest Aboveground Biomass Using Multisource Remotely Sensed Data. Remote Sensing, 2022, 14, 1115.	4.0	20
1392	Estimation of the total dry aboveground biomass in the tropical forests of Congo Basin using optical, LiDAR, and radar data. GIScience and Remote Sensing, 2022, 59, 431-460.	5.9	7
1393	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	3.6	34
1394	The Multisource Vegetation Inventory (MVI): A Satellite-Based Forest Inventory for the Northwest Territories Taiga Plains. Remote Sensing, 2022, 14, 1108.	4.0	6
1395	Modelling Aboveground Biomass of Miombo Woodlands in Niassa Special Reserve, Northern Mozambique. Forests, 2022, 13, 311.	2.1	6
1396	Surface temperatures reveal the patterns of vegetation water stress and their environmental drivers across the tropical Americas. Global Change Biology, 2022, 28, 2940-2955.	9.5	9
1397	Constraining a land cover map with satellite-based aboveground biomass estimates over Africa. Geoscientific Model Development, 2022, 15, 2599-2617.	3.6	1
1398	Quantifying Post-Fire Changes in the Aboveground Biomass of an Amazonian Forest Based on Field and Remote Sensing Data. Remote Sensing, 2022, 14, 1545.	4.0	10
1399	Land Use and Land Cover Shape River Water Quality at a Continental Caribbean Land-Ocean Interface. Frontiers in Water, 2022, 4, .	2.3	4
1401	Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic. European Journal of Remote Sensing, 2022, 55, 213-231.	3.5	12
1402	Examining k-Nearest Neighbor Small Area Estimation Across Scales Using National Forest Inventory Data. Frontiers in Forests and Global Change, 2022, 5, .	2.3	5
1403	MODIS Vegetation Continuous Fields tree cover needs calibrating in tropical savannas. Biogeosciences, 2022, 19, 1377-1394.	3.3	7
1404	lgnoring variation in wood density drives substantial bias in biomass estimates across spatial scales. Environmental Research Letters, 2022, 17, 054002.	5.2	2
1405	Upscaling aboveground biomass of larch (<i>Larix olgensis</i> Henry) plantations from field to satellite measurements: a comparison of individual tree-based and area-based approaches. GIScience and Remote Sensing, 2022, 59, 722-743.	5.9	13
1406	Identifying the potential global distribution and conservation areas for Terminalia chebula, an important medicinal tree species under changing climate scenario. Tropical Ecology, 2022, 63, 584-595.	1.2	5
1407	Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	28
1408	Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. Biogeosciences, 2022, 19, 1891-1911.	3.3	3
1409	Species richness and ecosystem services of tree assemblages along an urbanisation gradient in a tropical mega-city: Consequences for urban design. Urban Forestry and Urban Greening, 2022, 70, 127527.	5.3	7

\sim			n
C1	TAT	ION	Report

#	Article	IF	CITATIONS
1410	How Well Do We Understand the Landâ€Oceanâ€Atmosphere Carbon Cycle?. Reviews of Geophysics, 2022, 60, .	23.0	38
1411	Forest aboveground biomass in the southwestern United States from a MISR multi-angle index, 2000–2015. Remote Sensing of Environment, 2022, 275, 112964.	11.0	5
1412	Biomass and Carbon Stock in the Sal (Shorea robusta) Forest of Dang District Nepal. Indonesian Journal of Social and Environmental Issues, 2021, 2, 204-212.	0.2	4
1413	Mapping the spatial distribution of stand age and aboveground biomass from Landsat time series analyses of forest cover loss in tropical dry forests. Remote Sensing in Ecology and Conservation, 2022, 8, 347-361.	4.3	5
1414	Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics. Current Climate Change Reports, 2021, 7, 99-120.	8.6	51
1415	Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nature Sustainability, 2022, 5, 444-451.	23.7	47
1416	Sensitivity of biomass burning emissions estimates to land surface information. Biogeosciences, 2022, 19, 2059-2078.	3.3	5
1417	Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nature Communications, 2022, 13, 1964.	12.8	41
1418	A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests, 2022, 13, 616.	2.1	13
1424	Carbon density and Câ€sequestration of tree plantation ecosystems in the midâ€hills of the <scp>NWâ€</scp> Himalayas: Implications for climate change mitigation. Land Degradation and Development, 2022, 33, 2115-2126.	3.9	10
1425	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	9.9	663
1426	Divergent Representation of Precipitation Recycling in the Amazon and the Congo in CMIP6 Models. Geophysical Research Letters, 2022, 49, .	4.0	11
1427	Challenges in scaling up greenhouse gas fluxes: Experience from the UK Greenhouse Gas Emissions and Feedbacks Programme. Journal of Geophysical Research G: Biogeosciences, 0, , .	3.0	3
1428	China's pathways to synchronize the emission reductions of air pollutants and greenhouse gases: Pros and cons. Resources, Conservation and Recycling, 2022, 184, 106392.	10.8	13
1429	Making the US national forest inventory spatially contiguous and temporally consistent. Environmental Research Letters, 2022, 17, 065002.	5.2	8
1430	Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data. International Journal of Applied Earth Observation and Geoinformation, 2022, 110, 102811.	1.9	0
1432	State of science in carbon budget assessments for temperate forests and grasslands. , 2022, , 237-270.		0
1433	Bottom-up approaches for estimating terrestrial GHG budgets: Bookkeeping, process-based modeling, and data-driven methods. , 2022, , 59-85.		0

# 1434	ARTICLE Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	IF 11.0	Citations 26
1435	Carbon Stock Potential across Different Land Covers in Tropical Ecosystems of Damota Natural Vegetation, Eastern Ethiopia. Applied and Environmental Soil Science, 2022, 2022, 1-10.	1.7	0
1436	Assessing Novel Lidar Modalities for Maximizing Coverage of a Spaceborne System through the Use of Diode Lasers. Remote Sensing, 2022, 14, 2426.	4.0	2
1437	Changes in Carbon Storage of Masson Pine Forests along a Latitudinal Gradient with Different Stand Structures in Southern China. Polish Journal of Ecology, 2022, 69, .	0.2	Ο
1438	Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 2022, 5, 77.	2.8	13
1439	Simulating land use and land cover change under contrasting levels of policy enforcement and its spatially-explicit impact on tropical forest landscapes in Ecuador. Land Use Policy, 2022, 119, 106207.	5.6	13
1440	A global database of woody tissue carbon concentrations. Scientific Data, 2022, 9, .	5.3	8
1441	Estimation of Aboveground Carbon Density of Forests Using Deep Learning and Multisource Remote Sensing, 2022, 14, 3022.	4.0	16
1442	Climatic and biotic factors influencing regional declines and recovery of tropical forest biomass from the 2015/16 El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
1443	Satellite Remote Sensing of Savannas: Current Status and Emerging Opportunities. Journal of Remote Sensing, 2022, 2022, .	6.7	8
1444	Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure. Remote Sensing of Environment, 2022, 279, 113114.	11.0	10
1445	Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons. Nature Communications, 2022, 13, .	12.8	8
1446	Allometric Models to Estimate Carbon Content in Arecaceae Based on Seven Species of Neotropical Palms. Frontiers in Forests and Global Change, 0, 5, .	2.3	5
1447	Comparative Study of Carbon Stock and Tree Diversity between Scientifically and Conventionally Managed Community Forests of Kanchanpur District, Nepal. Environment and Natural Resources Journal, 2022, 20, 1-11.	0.7	2
1448	Assimilation of Global Satellite Leaf Area Estimates Reduces Modeled Global Carbon Uptake and Energy Loss by Terrestrial Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
1449	Stand structure, biomass and carbon stock along disturbance gradients in differently managed tropical forests of Assam, northeast India. Trees, Forests and People, 2022, 9, 100296.	1.9	7
1450	Estimation of biomass burning emissions by integrating ICESat-2, Landsat 8, and Sentinel-1 data. Remote Sensing of Environment, 2022, 280, 113172.	11.0	10
1451	Mangrove cultural services and values: Current status and knowledge gaps. People and Nature, 2022, 4, 1083-1097.	3.7	6

		CITATION REPORT		
#	Article		IF	CITATIONS
1452	Tracking and classifying Amazon fire events in near real time. Science Advances, 2022,	, 8, .	10.3	13
1453	Recent extreme drought events in the Amazon rainforest: assessment of different predevapotranspiration datasets and drought indicators. Biogeosciences, 2022, 19, 3843-3		3.3	5
1456	Modeling Global Carbon Costs of Plant Nitrogen and Phosphorus Acquisition. Journal o Modeling Earth Systems, 2022, 14, .	of Advances in	3.8	13
1457	Exploring characteristics of national forest inventories for integration with global spac forest biomass data. Science of the Total Environment, 2022, 850, 157788.	e-based	8.0	6
1458	GEDI launches a new era of biomass inference from space. Environmental Research Let 095001.	ters, 2022, 17,	5.2	58
1459	The tropical biomass & carbon project–An application for forest biomass and ca Ecological Modelling, 2022, 472, 110067.	arbon estimates.	2.5	1
1461	Exceeding 1.5°C global warming could trigger multiple climate tipping points. Scienc	e, 2022, 377, .	12.6	562
1462	The first global soil moisture and vegetation optical depth product retrieved from fuse SMAP L-band observations. Remote Sensing of Environment, 2022, 282, 113272.	d SMOS and	11.0	19
1463	Assessment of terrain elevation estimates from ICESat-2 and GEDI spaceborne LiDAR r different land cover and forest types. Science of Remote Sensing, 2022, 6, 100067.	nissions across	4.8	12
1464	Improving above ground biomass estimates of Southern Africa dryland forests by com SAR and Sentinel-2 multispectral imagery. Remote Sensing of Environment, 2022, 282		11.0	31
1465	Availability and Integration of Agro-Environmental Data: The French Case. , 2022, , 63-	111.		0
1466	Evaluation of the Forest Quantity, Quality and Management through Gray Relational A Eurasian Journal of Forest Science, 0, , .	nalysis Method.	0.6	0
1467	Aboveground Biomass Prediction by Fusing Gedi Footprints with Optical and SAR Data Random Forest in the Mixed Tropical Forest, India. , 2022, , .	ı Using the		0
1468	Alert-Driven Community-Based Forest Monitoring: A Case of the Peruvian Amazon. Rer 2022, 14, 4284.	note Sensing,	4.0	3
1469	Patterns and drivers of tree carbon stocks in Kashmir Himalayan forests: implications f change mitigation. Ecological Processes, 2022, 11, .	or climate	3.9	3
1470	Estimation of aboveground carbon stock using Sentinel-2A data and Random Forest a scrub forests of the Salt Range, Pakistan. Forestry, 2023, 96, 104-120.	gorithm in	2.3	5
1471	Soil geochemistry – and not topography – as a major driver of carbon allocation, s dynamics in forests and soils of African tropical montane ecosystems. New Phytologist 1676-1690.	tocks, and t, 2022, 236,	7.3	5
1472	Analyzing the Spatiotemporal Patterns of Forests Carbon Sink and Sources Between 2 Earth's Future, 2022, 10, .	000 and 2019.	6.3	3

#	Article	IF	CITATIONS
1473	Tracking 21st century anthropogenic and natural carbon fluxes through model-data integration. Nature Communications, 2022, 13, .	12.8	10
1474	Estimation of above and belowground biomass for grass, herb, and fern species in Peninsula Malaysia. Tropical Ecology, 0, , .	1.2	0
1475	Estimating Aboveground Forest Biomass Using Radar Methods. Contemporary Problems of Ecology, 2022, 15, 433-448.	0.7	1
1476	Identification of suitable habitat for Taxus wallichiana and Abies pindrow in moist temperate forest using maxent modelling technique. Saudi Journal of Biological Sciences, 2022, 29, 103459.	3.8	9
1477	Improving Estimates and Change Detection of Forest Above-Ground Biomass Using Statistical Methods. Remote Sensing, 2022, 14, 4911.	4.0	6
1478	Spatially Continuous Mapping of Forest Canopy Height in Canada by Combining GEDI and ICESat-2 with PALSAR and Sentinel. Remote Sensing, 2022, 14, 5158.	4.0	24
1479	On the Sensitivity of a Ground-Based Tropospheric Lidar to Aitken Mode Particles in the Upper Troposphere. Remote Sensing, 2022, 14, 4913.	4.0	0
1480	Pixel-Based Long-Term (2001–2020) Estimations of Forest Fire Emissions over the Himalaya. Remote Sensing, 2022, 14, 5302.	4.0	9
1481	Estimation of National Forest Aboveground Biomass from Multi-Source Remotely Sensed Dataset with Machine Learning Algorithms in China. Remote Sensing, 2022, 14, 5487.	4.0	7
1482	Modeling carbon storage in urban vegetation: Progress, challenges, and opportunities. International Journal of Applied Earth Observation and Geoinformation, 2022, 114, 103058.	1.9	10
1483	Impacts du changement d'utilisation des terres sur la biomasse et la diversité dans le paysage forestier de la r̩serve de biosph̕re de Yangambi en R̩publique d̩mocratique du Congo. Bois Et Forets Des Tropiques, 0, 353, 61-73.	0.2	1
1484	A practice-led assessment of landscape restoration potential in a biodiversity hotspot. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	4.0	7
1485	Developing nondestructive speciesâ€ s pecific tree allometry with terrestrial laser scanning. Methods in Ecology and Evolution, 2023, 14, 280-290.	5.2	7
1486	Clobal-scale biomass estimation based on machine learning and deep learning methods. Remote Sensing Applications: Society and Environment, 2022, 28, 100868.	1.5	1
1487	Quantification of Above-Ground Biomass over the Cross-River State, Nigeria, Using Sentinel-2 Data. Remote Sensing, 2022, 14, 5741.	4.0	4
1488	Implications of Earth system tipping pathways for climate change mitigation investment. Discover Sustainability, 2022, 3, .	2.8	0
1489	Forest expansion in abandoned agricultural lands has limited effect to offset carbon emissions from Central-North Spain. Regional Environmental Change, 2022, 22, .	2.9	3
1490	Global Carbon Budget 2022. Earth System Science Data, 2022, 14, 4811-4900.	9.9	492

#	Article	IF	CITATIONS
1491	Large-scale high-resolution yearly modeling of forest growing stock volume and above-ground carbon pool. Environmental Modelling and Software, 2023, 159, 105580.	4.5	7
1492	Role of space station instruments for improving tropical carbon flux estimates using atmospheric data. Npj Microgravity, 2022, 8, .	3.7	1
1493	Forest Restoration Potential in China: Implications for Carbon Capture. Journal of Remote Sensing, 2022, 2022, .	6.7	5
1494	Global Unsupervised Assessment of Multifrequency Vegetation Optical Depth Sensitivity to Vegetation Cover. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 538-552.	4.9	5
1495	Reliability of using vegetation optical depth for estimating decadal and interannual carbon dynamics. Remote Sensing of Environment, 2023, 285, 113390.	11.0	6
1496	ESTIMATIVA DE BIOMASSA EM UMA FLORESTA TROPICAL NO MUNICÃPIO DE MAUÉS - AM, BRASIL. Revista Brasileira De Cartografia, 2013, 65, .	0.2	0
1497	Declining Amazon biomass due to deforestation and subsequent degradation losses exceeding gains. Global Change Biology, 2023, 29, 1106-1118.	9.5	16
1498	Preferential substrate use decreases priming effects in contrasting treeline soils. Biogeochemistry, 2023, 162, 141-161.	3.5	3
1499	Forest degradation and biomass changes over forest area in Indonesia's new capital city and surrounding area. IOP Conference Series: Earth and Environmental Science, 2022, 1109, 012073.	0.3	1
1500	Predicting the Forest Canopy Height from LiDAR and Multi-Sensor Data Using Machine Learning over India. Remote Sensing, 2022, 14, 5968.	4.0	9
1501	Global apparent temperature sensitivity of terrestrial carbon turnover modulated by hydrometeorological factors. Nature Geoscience, 2022, 15, 989-994.	12.9	6
1502	Siberian carbon sink reduced by forest disturbances. Nature Geoscience, 2023, 16, 56-62.	12.9	27
1503	Carbon of Chaillu forests based on a phytosociological analysis in Republic of Congo, more than meets the eye?. African Journal of Ecology, 2023, 61, 48-63.	0.9	0
1504	Soil quality, carbon stock and climate change mitigation potential of Dipterocarp natural and planted forests of Tripura, Northeast India. Vegetos, 0, , .	1.5	1
1505	Estimating forest aboveground biomass using temporal features extracted from multiple satellite data products and ensemble machine learning algorithm. Geocarto International, 2023, 38, .	3.5	2
1506	The impact of abiotic and biotic factors on growth, mortality and net tree C stock in mountain forest ecosystems in southwest China. Environmental Research Letters, 2022, 17, 124037.	5.2	0
1507	Global net biome CO ₂ exchange predicted comparably well using parameter–environment relationships and plant functional types. Global Change Biology, 2023, 29, 2256-2273.	9.5	3
1508	The impacts of land use and land cover change on biophysical processes in West Africa using a regional climate model experimental approach. International Journal of Climatology, 2023, 43, 1731-1755.	3.5	3

#	Article	IF	CITATIONS
1509	Forest Footprint for Cities: Methods for Estimating Deforestation and Associated CO2 Emissions Embodied in Products Consumed in Cities. , 0, , .		0
1511	Tipping point in North American Arctic-Boreal carbon sink persists in new generation Earth system models despite reduced uncertainty. Environmental Research Letters, 2023, 18, 025008.	5.2	6
1513	Prediction of Urban Forest Aboveground Carbon Using Machine Learning Based on Landsat 8 and Sentinel-2: A Case Study of Shanghai, China. Remote Sensing, 2023, 15, 284.	4.0	8
1514	Estimating Aboveground Carbon Dynamic of China Using Optical and Microwave Remote-Sensing Datasets from 2013 to 2019. Journal of Remote Sensing, 2023, 3, .	6.7	5
1515	An ecologically-constrained deep learning model for tropical leaf phenology monitoring using PlanetScope satellites. Remote Sensing of Environment, 2023, 286, 113429.	11.0	10
1516	Global review and state-of-the-art of biomass and carbon stock in the Amazon. Journal of Environmental Management, 2023, 331, 117251.	7.8	16
1517	Monitoring of Carbon Stocks in Pastures in the Savannas of Brazil through Ecosystem Modeling on a Regional Scale. Land, 2023, 12, 60.	2.9	1
1518	Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC. Environmental Research Letters, 2023, 18, 034021.	5.2	5
1519	Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon. Carbon Balance and Management, 2023, 18, .	3.2	2
1520	Sub-continental-scale carbon stocks of individual trees in African drylands. Nature, 2023, 615, 80-86.	27.8	23
1521	Gaussian process regression-based forest above ground biomass retrieval from simulated L-band NISAR data. International Journal of Applied Earth Observation and Geoinformation, 2023, 118, 103252.	1.9	2
1522	Determination of Spatially-Distributed Hydrological Ecosystem Services (HESS) in the Red River Delta Using a Calibrated SWAT Model. Sustainability, 2023, 15, 6247.	3.2	2
1523	Anthropogenic activities dominated tropical forest carbon balance in two contrary ways over the Greater Mekong Subregion in the 21st century. Global Change Biology, 2023, 29, 3421-3432.	9.5	2
1524	Eco-morphodynamic carbon pumping by the largest rivers in the Neotropics. Scientific Reports, 2023, 13, .	3.3	2
1525	Towards a roadmap for space-based observations of the land sector for the UNFCCC global stocktake. IScience, 2023, 26, 106489.	4.1	3
1526	Moisture origins of the Amazon carbon source region. Environmental Research Letters, 2023, 18, 044027.	5.2	6
1527	An individual tree-based model for estimating regional and temporal carbon storage of Abies chensiensis forest ecosystem in the Qinling Mountains, China. Ecological Modelling, 2023, 479, 110305.	2.5	3
1528	Inter-comparison and validation against in-situ measurements of satellite estimates of incoming solar radiation for Central Africa: From the annual means to the diurnal cycles. Atmospheric Research, 2023, 287, 106711.	4.1	0

#	Article	IF	Citations
1529	Evaluating and mitigating the impact of systematic geolocation error on canopy height measurement performance of GEDI. Remote Sensing of Environment, 2023, 291, 113571.	11.0	11
1530	Species richness, stand structure and carbon storage under an age chronosequence in Tectona grandis plantation at agricultural landscape of Indian Eastern Himalayan Foothill. Tropical Ecology, 0, , .	1.2	1
1531	Spatial distribution of aboveground biomass stock in tropical dry forest in Brazil. IForest, 2023, 16, 116-126.	1.4	0
1532	Attributing Past Carbon Fluxes to CO ₂ and Climate Change: Respiration Response to CO ₂ Fertilization Shifts Regional Distribution of the Carbon Sink. Global Biogeochemical Cycles, 2023, 37, .	4.9	1
1533	Patterns of floristic inventory and plant collections in Myanmar. Plant Diversity, 2023, 45, 302-308.	3.7	2
1534	Net loss of biomass predicted for tropical biomes in a changing climate. Nature Climate Change, 2023, 13, 274-281.	18.8	11
1535	Comparing different methods for biomass modeling over tropical region based on Landsat data. , 2023, , .		0
1536	Mapping the Shifting Focus in Remote Sensing Literature: Technology, Methodology, and Applications. Processes, 2023, 11, 571.	2.8	1
1537	Continuous mapping of aboveground biomass using Landsat time series. Remote Sensing of Environment, 2023, 288, 113483.	11.0	5
1538	Mechanisms and Impacts of Earth System Tipping Elements. Reviews of Geophysics, 2023, 61, .	23.0	10
1539	A Proposed Ensemble Feature Selection Method for Estimating Forest Aboveground Biomass from Multiple Satellite Data. Remote Sensing, 2023, 15, 1096.	4.0	6
1540	Forest carbon stock and biomass estimation in West Central India using two allometric models. , 2023, 2, .		1
1541	Forest ecosystem services at landscape level – Why forest transition matters?. Forest Ecology and Management, 2023, 534, 120782.	3.2	4
1542	Maps with 1 km resolution reveal increases in above- and belowground forest biomass carbon pools in China over the past 20Âyears. Earth System Science Data, 2023, 15, 897-910.	9.9	14
1543	Forest Emissions Reduction Assessment Using Optical Satellite Imagery and Space LiDAR Fusion for Carbon Stock Estimation. Remote Sensing, 2023, 15, 1410.	4.0	6
1544	Potential aboveground biomass increase in Brazilian Atlantic Forest fragments with climate change. Global Change Biology, 2023, 29, 3098-3113.	9.5	8
1545	Spatial and temporal sampling strategy connecting <scp>NEON</scp> Terrestrial Observation System protocols. Ecosphere, 2023, 14, .	2.2	3
1546	Higher functional diversity improves modeling of Amazon forest carbon storage. Ecological Modelling, 2023, 481, 110323.	2.5	4

#	Article	IF	CITATIONS
1547	Individual tree segmentation and biomass estimation based on UAV Digital aerial photograph. Journal of Mountain Science, 2023, 20, 724-737.	2.0	1
1548	Functional Traits and Local Environmental Conditions Determine Tropical Rain Forest Types at Microscale Level in Southern Ecuador. Diversity, 2023, 15, 420.	1.7	0
1549	Forest Structural and Functional Attribute Upscaling Using Spaceborne LiDAR Data. , 2023, , 293-342.		0
1550	The Origin and Development of LiDAR Techniques. , 2023, , 1-22.		1
1551	Using simulated GEDI waveforms to evaluate the effects of beam sensitivity and terrain slope on GEDI L2A relative height metrics over the Brazilian Amazon Forest. Science of Remote Sensing, 2023, 7, 100083.	4.8	3
1552	Assessment of fire hazard in Southwestern Amazon. Frontiers in Forests and Global Change, 0, 6, .	2.3	4
1553	Spatial heterogeneity of global forest aboveground carbon stocks and fluxes constrained by spaceborne lidar data and mechanistic modeling. Global Change Biology, 2023, 29, 3378-3394.	9.5	2
1554	Brazilian Amazon indigenous territories under deforestation pressure. Scientific Reports, 2023, 13, .	3.3	8
1555	Uncertainty of spatial averages and totals of natural resource maps. Methods in Ecology and Evolution, 2023, 14, 1320-1332.	5.2	3
1556	Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts. Sustainability, 2023, 15, 6577.	3.2	0
1557	Deforestation Drivers Across the Tropics and Their Impacts on Carbon Stocks and Ecosystem Services. Anthropocene Science, 0, , .	2.9	2
1558	A twenty-year dataset of soil moisture and vegetation optical depth from AMSR-E/2 measurements using the multi-channel collaborative algorithm. Remote Sensing of Environment, 2023, 292, 113595.	11.0	5
1559	Modeling and Mapping of Aboveground Biomass and Carbon Stock Using Sentinel-2 Imagery in Chure Region, Nepal. International Journal of Forestry Research, 2023, 2023, 1-12.	0.8	0
1560	Mapping high-resolution forest aboveground biomass of China using multisource remote sensing data. GIScience and Remote Sensing, 2023, 60, .	5.9	6
1561	Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests, 2023, 14, 1086.	2.1	10
1562	CDR and Tropical Forestry: Fighting Climate Change One Cubic Meter a Time. , 0, , .		0
1563	Review of Forest Biomass Estimation Methods. World Journal of Forestry, 2023, 12, 115-122.	0.0	0
1564	Forest Area and Structural Variable Estimation in Boreal Forest Using Suomi NPP VIIRS Data and a Sample from VHR Imagery. Remote Sensing, 2023, 15, 3029.	4.0	Ο

#	Article	IF	CITATIONS
1565	Above-Ground Biomass Estimation Based on Multi-Angular <i>L</i> Band Measurements of Brightness Temperatures. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 5813-5827.	4.9	0
1566	Selective logging and shifting agriculture may help maintain forest biomass on the YucatÃ _i n peninsula. Land Degradation and Development, 2023, 34, 4456-4471.	3.9	2
1567	The potential of bamboo forests as a carbon sink and allometric equations for estimating their aboveground biomass. Environment, Development and Sustainability, 0, , .	5.0	1
1568	Estimation of aboveground biomass of arboreal species in the semi-arid region of Brazil using SAR (synthetic aperture radar) images. Journal of Arid Land, 2023, 15, 695-709.	2.3	1
1569	Food systems transformation in fragile contexts, a practitioner's perspective. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	0
1570	Application of MaxEnt Model in Biomass Estimation: An Example of Spruce Forest in the Tianshan Mountains of the Central-Western Part of Xinjiang, China. Forests, 2023, 14, 953.	2.1	2
1571	First assessment of optical and microwave remotely sensed vegetation proxies in monitoring aboveground carbon in tropical Asia. Remote Sensing of Environment, 2023, 293, 113619.	11.0	5
1572	Prediction of Regional Forest Biomass Using Machine Learning: A Case Study of Beijing, China. Forests, 2023, 14, 1008.	2.1	2
1573	Uncertainty and Emergent Constraints on Enhanced Ecosystem Carbon Stock by Land Greening. Journal of Advances in Modeling Earth Systems, 2023, 15, .	3.8	1
1574	The effectiveness of global protected areas for climate change mitigation. Nature Communications, 2023, 14, .	12.8	12
1575	N fertilization did not raise soil greenhouse gas emissions in a reforested reclaimed-mine site over a short-term study. Ecological Engineering, 2023, 194, 107040.	3.6	1
1576	A gridded dataset of a leaf-age-dependent leaf area index seasonality product over tropical and subtropical evergreen broadleaved forests. Earth System Science Data, 2023, 15, 2601-2622.	9.9	0
1577	Phytolith assemblages reflect variability in human land use and the modern environment. Vegetation History and Archaeobotany, 2024, 33, 221-236.	2.1	0
1578	Precise and unbiased biomass estimation from GEDI data and the US Forest Inventory. Frontiers in Forests and Global Change, 0, 6, .	2.3	3
1579	Integrated LiDAR-supported valuation of biomass and litter in forest ecosystems. A showcase in Spain. Science of the Total Environment, 2023, 897, 165364.	8.0	0
1580	The role of high-biodiversity regions in preserving Nature's Contributions to People. Nature Sustainability, 2023, 6, 1385-1393.	23.7	4
1581	A Bibliometric Analysis of the Impact of Ecological Restoration on Carbon Sequestration in Ecosystems. Forests, 2023, 14, 1442.	2.1	6
1582	Improved Fine-Scale Tropical Forest Cover Mapping for Southeast Asia Using Planet-NICFI and Sentinel-1 Imagery. Journal of Remote Sensing, 2023, 3, .	6.7	2

#	Article	IF	CITATIONS
1583	Influence of Vegetation Height, Plant Area Index, and Forest Intactness on SMOS L-VOD, for Different Seasons and Latitude Ranges. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-11.	6.3	0
1584	How effective are perches in promoting bird-mediated seed dispersal for natural forest regeneration? A systematic review protocol. Environmental Evidence, 2023, 12, .	2.7	0
1585	Quaternion Fourier Transform. Trends in Mathematics, 2023, , 1-58.	0.1	0
1586	Validation of ESA-CCI Forest Biomass Products over India: Methodological and Data Challenges and Results. Journal of the Indian Society of Remote Sensing, 0, , .	2.4	0
1587	Fire carbon emissions over Equatorial Asia reduced by shortened dry seasons. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	0
1588	Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nature Geoscience, 2023, 16, 886-892.	12.9	12
1589	Analysis and Forecast of Land Use and Carbon Sink Changes in Jilin Province, China. Sustainability, 2023, 15, 14040.	3.2	1
1590	Amazon deforestation: simulated impact of Brazil's proposed BR-319 highway project. Environmental Monitoring and Assessment, 2023, 195, .	2.7	1
1592	Scale variance in the carbon dynamics of fragmented, mixed-use landscapes estimated using model–data fusion. Biogeosciences, 2023, 20, 3301-3327.	3.3	0
1593	A Bibliometric Analysis of the Research Progress and Trends during 2002–2022 on the Carbon Stocks in Terrestrial Ecosystems. Forests, 2023, 14, 2051.	2.1	0
1594	A biomass map of the Brazilian Amazon from multisource remote sensing. Scientific Data, 2023, 10, .	5.3	1
1595	Longâ€ŧerm ecological responses of a lowland dipterocarp forest to climate changes and nutrient availability. New Phytologist, 0, , .	7.3	1
1596	Predicting the loss of forests, carbon stocks and biodiversity driven by a neotropical â€~gold rush'. Biological Conservation, 2023, 286, 110312.	4.1	0
1597	Ecological restoration research progress and prospects: A bibliometric analysis. Ecological Indicators, 2023, 155, 110968.	6.3	1
1599	Advancing spatial decision-making in a transboundary catchment through multidimensional ecosystem services assessment. Ecosystem Services, 2023, 64, 101554.	5.4	0
1600	A new global C-band vegetation optical depth product from ASCAT: Description, evaluation, and inter-comparison. Remote Sensing of Environment, 2023, 299, 113850.	11.0	0
1602	Passive Microwave Retrieval of Vegetation Optical Depth and Soil Permittivity Over Snow Covered Surfaces at L-Band. , 2023, , .		0
1604	Examining the Potential of Sentinel Imagery and Ensemble Algorithms for Estimating Aboveground Biomass in a Tropical Dry Forest. Remote Sensing, 2023, 15, 5086.	4.0	0

#	Article	IF	CITATIONS
1605	Forest biomass assessment combining field inventorying and remote sensing data. Open Geosciences, 2023, 15, .	1.7	1
1606	Climate Change Will Increase Biomass Proportion of Global Forest Carbon Stocks Under an SSP5–8.5 Climate Trajectory. Geophysical Research Letters, 2023, 50, .	4.0	0
1607	Comparison of variable extraction methods using surface field data and its key influencing factors: A case study on aboveground biomass of Pinus densata forest using the original bands and vegetation indices of Landsat 8. Ecological Indicators, 2023, 157, 111307.	6.3	2
1608	Biodiversity State and Trends in Southeast Asia. , 2013, , 217-238.		0
1609	ENSOâ€Related Fire Weather Changes in Southeast and Equatorial Asia: A Quantitative Evaluation Using Fire Weather Index. Journal of Geophysical Research D: Atmospheres, 2023, 128, .	3.3	1
1610	FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach. Earth System Science Data, 2023, 15, 4927-4945.	9.9	0
1611	On the NASA GEDI and ESA CCI biomass maps: aligning for uptake in the UNFCCC global stocktake. Environmental Research Letters, 2023, 18, 124042.	5.2	2
1612	An innovative hydrological model for the sparsely-gauged Essequibo River basin, northern Amazonia. International Journal of River Basin Management, 0, , 1-11.	2.7	0
1613	Efecto del cambio climático en la distribución de las especies de clima templado en Oaxaca, México. Botanical Sciences, 0, 100, .	0.8	0
1614	Estimation of Aboveground Forest Biomass and Carbon Storage of Bangladesh. Biotropia, 2023, 30, 263-281.	0.0	0
1615	Estoque de carbono e estrutura horizontal em fragmentos de Mata Ciliar. Ciencia Florestal, 2023, 33, e64785.	0.3	0
1616	Climate change and tropical forests. , 2024, , 203-219.		0
1617	Comparing forest product harvest rates and livelihood activities among migrant and Indigenous households in the Congo Basin. Forest Policy and Economics, 2023, 157, 103089.	3.4	0
1618	Satellite observed aboveground carbon dynamics in Africa during 2003–2021. Remote Sensing of Environment, 2024, 301, 113927.	11.0	0
1619	Woody biomass increases across three contrasting land uses in Hurungwe, mid-Zambezi valley, Zimbabwe. Southern Forests, 2023, 85, 152-161.	0.7	0
1620	Old-growth mixed dipterocarp forests show variable losses and gains in aboveground biomass and standing carbon over forty years. Forest Ecosystems, 2024, 11, 100163.	3.1	1
1621	The role of Weather Modification Technology for forest and land fire disaster mitigation in the perspective of carbon emission reduction in Indonesia. E3S Web of Conferences, 2023, 467, 03001.	0.5	0
1622	Water Stress Dominates 21st entury Tropical Land Carbon Uptake. Global Biogeochemical Cycles, 2023, 37, .	4.9	0

#	Article	IF	CITATIONS
1623	Forest Height and Aboveground Biomass Mapping by synergistic use of GEDI and Sentinel Data using Random Forest Algorithm in the Indian Himalayan Region. Journal of the Indian Society of Remote Sensing, 0, , .	2.4	1
1624	Introduction to Forest Bioenergy. Green Energy and Technology, 2024, , 1-24.	0.6	0
1625	Peatlands in Chilean Patagonia: Distribution, Biodiversity, Ecosystem Services, and Conservation. Integrated Science, 2023, , 153-174.	0.2	0
1626	Modelling Biomass. Green Energy and Technology, 2024, , 121-146.	0.6	0
1627	Overview of the Biomass Models. Green Energy and Technology, 2024, , 147-170.	0.6	0
1628	Closure of tropical seaways favors the climate and vegetation in tropical Africa and South America approaching their present conditions. Global and Planetary Change, 2024, 233, 104351.	3.5	0
1629	Estimation for Refined Carbon Storage of Urban Green Space and Minimum Spatial Mapping Scale in a Plain City of China. Remote Sensing, 2024, 16, 217.	4.0	0
1631	Multi-dimensional temperature sensitivity of protected tropical mountain rain forests. Frontiers in Forests and Clobal Change, 0, 6, .	2.3	0
1632	Satellite-Observed Increase in Aboveground Carbon over Southwest China during 2013-2021. Journal of Remote Sensing, 2024, 4, .	6.7	0
1633	The status of forest carbon markets in Latin America. Journal of Environmental Management, 2024, 352, 119921.	7.8	0
1634	Global multifaceted biodiversity patterns, centers, and conservation needs in angiosperms. Science China Life Sciences, 2024, 67, 817-828.	4.9	1
1635	Multifootprint Observation Lidar and Imager (MOLI) Mission for Peatland Observations. , 2023, , 271-293.		0
1636	Annual maps of forest cover in the Brazilian Amazon from analyses of PALSAR and MODIS images. Earth System Science Data, 2024, 16, 321-336.	9.9	0
1637	Ultraâ€wideband imaging with an improved backward projection algorithm for farâ€field applications. Microwave and Optical Technology Letters, 2024, 66, .	1.4	0
1638	An overview of remotely sensed fuel variables for the prediction of wildf ires. , 2024, , 407-417.		0
1639	Protecting an artificial savanna as a natureâ€based solution to restore carbon and biodiversity in the Democratic Republic of the Congo. Global Change Biology, 2024, 30, .	9.5	0
1640	Revealing the spatial variation in biomass uptake rates of Brazil's secondary forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 208, 233-244.	11.1	0
1641	A comparative study on the efficacy of dual-pol and full-pol ASAR data in radiative transfer modeling for forest above-ground biomass estimation. International Journal of Remote Sensing, 2024, 45, 719-747.	2.9	0

ARTICLE IF CITATIONS Identificaci \tilde{A}^3 n de \tilde{A}_1 reas con alta biomasa a \tilde{A} ©rea y alta riqueza de especies en bosques nativos del 0.6 0 1642 nordeste de Uruguay. Revista De Teledeteccion, 2024, , 37-52. Monitoring Earth's climate variables with satellite laser altimetry. Nature Reviews Earth & 1643 Environment, 2024, 5, 120-136. Forest aboveground biomass estimation by GEDI and multi-source EO data fusion over Indian forest. 1644 2.9 0 International Journal of Remote Sensing, 2024, 45, 1304-1338. Incorporating smallâ€scale disturbances in models of forest structure and aboveground biomass of 1646 tropical mountains. Ecosphere, 2024, 15, . In situ shortâ€ŧerm responses of Amazonian understory plants to elevated CO₂. Plant, Cell 1647 5.7 0 and Environment, 2024, 47, 1865-1876. Development of forest aboveground biomass estimation, its problems and future solutions: A review. Ecological Indicators, 2024, 159, 111653. 1648 6.3 Enhanced net CO₂ exchange of a semideciduous forest in the southern Amazon due to 1649 3.3 0 diffuse radiation from biomass burning. Biogeosciences, 2024, 21, 843-868. High-resolution canopy height map in the Landes forest (France) based on GEDI, Sentinel-1, and Sentinel-2 data with a deep learning approach. International Journal of Applied Earth Observation and Geoinformation, 2024, 128, 103711. 1.9 Estimating Above-Ground Biomass of the Regional Forest Landscape of Northern Western Ghats Using 1651 Machine Learning Algorithms and Multi-sensor Remote Sensing Data. Journal of the Indian Society of 0 2.4 Remote Sensing, 0, , . Comprehensive Analysis of Gap Formation in the Canopy of an Old-Growth Broadleaved Forest. Biology Bulletin, 2024, 51, 211-220. Biomass Change Estimated by TanDEM-X Interferometry and GEDI in a Tanzanian Forest. Remote Sensing, 1653 0 4.02024, 16, 861. Above Ground Biomass Mapping of Tropical Forest of Tripura Using EOS-04 and ALOS-2 PALSAR-2 SAR 2.4 Data. Journal of the Indian Society of Remote Sensing, 0, , . Forest degradation contributes more to carbon loss than forest cover loss in North American boreal 1655 1.9 0 forests. International Journal of Applied Earth Observation and Geoinformation, 2024, 128, 103729. A new circa 2007 biomass map for China differs significantly from existing maps. Scientific Data, 2024, 5.3 Evaluation of optical and microwave-derived vegetation indices for monitoring aboveground biomass 1658 5.3 0 over China. Geo-Spatial Information Science, 0, , 1-16. Evaluating the Research Status of the Remote Sensing-Mediated Monitoring of Forest Biomass: A Bibliometric Analysis of WOS. Forests, 2024, 15, 524