Carbon oxidation state as a metric for describing the ch aerosol

Nature Chemistry

3, 133-139

DOI: 10.1038/nchem.948

Citation Report

#	Article	IF	CITATIONS
3	Composition and temporal behavior of ambient ions in the boreal forest. Atmospheric Chemistry and Physics, 2010, 10, 8513-8530.	1.9	170
4	Characterization and Source Apportionment of Water-Soluble Organic Matter in Atmospheric Fine Particles (PM _{2.5}) with High-Resolution Aerosol Mass Spectrometry and GC–MS. Environmental Science & Technology, 2011, 45, 4854-4861.	4.6	114
5	Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints. Environmental Science & Technology, 2011, 45, 4763-4770.	4.6	167
6	Cloud condensation nuclei (CCN) activity and oxygen-to-carbon elemental ratios following thermodenuder treatment of organic particles grown by α-pinene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 14571.	1.3	22
7	Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3. Physical Chemistry Chemical Physics, 2011, 13, 21050.	1.3	90
8	Formation of Secondary Organic Aerosol from the Direct Photolytic Generation of Organic Radicals. Journal of Physical Chemistry Letters, 2011, 2, 1295-1300.	2.1	10
9	Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation. Journal of Geophysical Research, 2011, 116, .	3.3	129
10	Competitive reaction pathways for functionalization and volatilization in the heterogeneous oxidation of coronene thin films by hydroxyl radicals and ozone. Physical Chemistry Chemical Physics, 2011, 13, 7554.	1.3	30
11	Calculation of the Relative Chemical Stabilities of Proteins as a Function of Temperature and Redox Chemistry in a Hot Spring. PLoS ONE, 2011, 6, e22782.	1.1	36
12	Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 2011, 11, 12049-12064.	1.9	520
13	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
14	Laboratory studies of the chemical composition and cloud condensation nuclei (CCN) activity of secondary organic aerosol (SOA) and oxidized primary organic aerosol (OPOA). Atmospheric Chemistry and Physics, 2011, 11, 8913-8928.	1.9	307
15	Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmospheric Chemistry and Physics, 2011, 11, 10553-10563.	1.9	89
16	Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz. Atmospheric Chemistry and Physics, 2011, 11, 12579-12599.	1.9	81
17	Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model. Atmospheric Chemistry and Physics, 2011, 11, 12673-12696.	1.9	240
18	Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume. Atmospheric Chemistry and Physics, 2011, 11, 13219-13241.	1.9	65
19	Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 2011, 11, 6465-6474.	1.9	493
20	Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation. Atmospheric Chemistry and Physics, 2011, 11, 6895-6910.	1.9	116

#	Article	IF	Citations
21	The influence of semi-volatile and reactive primary emissions on the abundance and properties of global organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 7727-7746.	1.9	86
22	Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set. Atmospheric Chemistry and Physics, 2011, 11, 7859-7873.	1.9	80
23	Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8827-8845.	1.9	190
24	A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics. Atmospheric Chemistry and Physics, 2011, 11, 3303-3318.	1.9	596
25	Detailed heterogeneous oxidation of soot surfaces in a particle-resolved aerosol model. Atmospheric Chemistry and Physics, 2011, 11, 4505-4520.	1.9	49
26	New and extended parameterization of the thermodynamic model AIOMFAC: calculation of activity coefficients for organic-inorganic mixtures containing carboxyl, hydroxyl, carbonyl, ether, ester, alkenyl, alkyl, and aromatic functional groups. Atmospheric Chemistry and Physics, 2011, 11, 9155-9206.	1.9	317
27	Enhanced spectral analysis of C-TOF Aerosol Mass Spectrometer data: Iterative residual analysis and cumulative peak fitting. International Journal of Mass Spectrometry, 2011, 306, 1-8.	0.7	36
28	Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Physical Chemistry Chemical Physics, 2011, 13, 19238.	1.3	585
29	Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 2011, 401, 3045-3067.	1.9	764
30	Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmospheric Chemistry and Physics, 2011, 11, 11069-11102.	1.9	1,085
31	Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber. Aerosol Science and Technology, 2011, 45, 964-972.	1.5	57
32	Gas uptake and chemical aging of semisolid organic aerosol particles. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11003-11008.	3.3	555
33	A Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species. Aerosol Science and Technology, 2012, 46, 1313-1327.	1.5	99
34	Volatility and Aging of Atmospheric Organic Aerosol. Topics in Current Chemistry, 2012, 339, 97-143.	4.0	70
35	A Combinatorial Approach to Biochemical Space: Description and Application to the Redox Distribution of Metabolism. Astrobiology, 2012, 12, 271-281.	1.5	26
36	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13503-13508.	3.3	251
38	Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles. Atmospheric Chemistry and Physics, 2012, 12, 2691-2712.	1.9	161
39	Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS. Atmospheric Chemistry and Physics, 2012, 12, 10505-10518.	1.9	41

#	Article	IF	CITATIONS
40	Analysis of high mass resolution PTR-TOF mass spectra from 1,3,5-trimethylbenzene (TMB) environmental chamber experiments. Atmospheric Chemistry and Physics, 2012, 12, 829-843.	1.9	37
41	Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. Atmospheric Chemistry and Physics, 2012, 12, 10797-10816.	1.9	79
42	AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NO _x : effects of chemical structure on SOA aging. Atmospheric Chemistry and Physics, 2012, 12, 4667-4682.	1.9	113
43	A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution. Atmospheric Chemistry and Physics, 2012, 12, 615-634.	1.9	491
44	Model investigation of NO ₃ secondary organic aerosol (SOA) source and heterogeneous organic aerosol (OA) sink in the western United States. Atmospheric Chemistry and Physics, 2012, 12, 8797-8811.	1.9	13
45	Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust. Atmospheric Chemistry and Physics, 2012, 12, 9025-9040.	1.9	28
46	Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 9505-9528.	1.9	124
47	Particle mass yield from <i>β</i> -caryophyllene ozonolysis. Atmospheric Chemistry and Physics, 2012, 12, 3165-3179.	1.9	44
48	Halogenation processes of secondary organic aerosol and implications on halogen release mechanisms. Atmospheric Chemistry and Physics, 2012, 12, 5787-5806.	1.9	31
49	Modeling SOA formation from the oxidation of intermediate volatility <i>n</i> -alkanes. Atmospheric Chemistry and Physics, 2012, 12, 7577-7589.	1.9	85
50	Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN. Atmospheric Chemistry and Physics, 2012, 12, 8377-8388.	1.9	24
51	Improvements of organic aerosol representations and their effects in large-scale atmospheric models. Atmospheric Chemistry and Physics, 2012, 12, 8687-8709.	1.9	16
52	Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles. Environmental Chemistry, 2012, 9, 211.	0.7	35
53	The statistical evolution of multiple generations of oxidation products in the photochemical aging of chemically reduced organic aerosol. Physical Chemistry Chemical Physics, 2012, 14, 1468-1479.	1.3	39
54	The chemical evolution & physical properties of organic aerosol: A molecular structure based approach. Atmospheric Environment, 2012, 62, 199-207.	1.9	23
55	Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols. Environmental Science & Technology, 2012, 46, 8315-8324.	4.6	44
56	Secondary Organic Aerosol Formation from Low-NO _{<i>x</i>} Photooxidation of Dodecane: Evolution of Multigeneration Gas-Phase Chemistry and Aerosol Composition. Journal of Physical Chemistry A, 2012, 116, 6211-6230.	1.1	79
57	Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen. Environmental Science & T <u>echnology, 2012, 46, 787-794.</u>	4.6	209

#	Article	IF	CITATIONS
58	Simulations of Smog-Chamber Experiments Using the Two-Dimensional Volatility Basis Set: Linear Oxygenated Precursors. Environmental Science & amp; Technology, 2012, 46, 11179-11186.	4.6	10
59	Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors. Environmental Science & Technology, 2012, 46, 5430-5437.	4.6	181
60	Oil Weathering after the <i>Deepwater Horizon</i> Disaster Led to the Formation of Oxygenated Residues. Environmental Science & amp; Technology, 2012, 46, 8799-8807.	4.6	290
61	Influence of Ozone and Radical Chemistry on Limonene Organic Aerosol Production and Thermal Characteristics. Environmental Science & amp; Technology, 2012, 46, 11660-11669.	4.6	30
62	Fragmentation Analysis of Water-Soluble Atmospheric Organic Matter Using Ultrahigh-Resolution FT-ICR Mass Spectrometry. Environmental Science & Technology, 2012, 46, 4312-4322.	4.6	66
63	Photochemical Aging of α-Pinene Secondary Organic Aerosol: Effects of OH Radical Sources and Photolysis. Journal of Physical Chemistry A, 2012, 116, 5932-5940.	1.1	106
64	Secondary Organic Aerosol Formation from Intermediate-Volatility Organic Compounds: Cyclic, Linear, and Branched Alkanes. Environmental Science & Technology, 2012, 46, 8773-8781.	4.6	178
65	Nitrogen Incorporation in CH ₄ -N ₂ Photochemical Aerosol Produced by Far Ultraviolet Irradiation. Astrobiology, 2012, 12, 315-326.	1.5	54
66	OH-Initiated Heterogeneous Aging of Highly Oxidized Organic Aerosol. Journal of Physical Chemistry A, 2012, 116, 6358-6365.	1.1	61
67	Isotopic characterization of aerosol organic carbon components over the eastern United States. Journal of Geophysical Research, 2012, 117, .	3.3	20
68	Chemistry and Composition of Atmospheric Aerosol Particles. Annual Review of Physical Chemistry, 2012, 63, 471-491.	4.8	93
69	Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical review of the most recent advances. Environmental Chemistry, 2012, 9, 163.	0.7	84
70	Characterisation of tracers for aging of α-pinene secondary organic aerosol using liquid chromatography/negative ion electrospray ionisation mass spectrometry. Environmental Chemistry, 2012, 9, 236.	0.7	60
71	Ultrahigh-resolution FT-ICR mass spectrometry characterization of α-pinene ozonolysis SOA. Atmospheric Environment, 2012, 46, 164-172 Combinatorial variation of structure in considerations of compound lumping in one- and	1.9	80
72	two-dimensional property representations of condensable atmospheric organic compounds. 1. Lumping by 1-D volatility with <mml:math <br="" altimg="si1.gif" overflow="scroll">xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd"</mml:math>	1.9	3
73	xmins:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www Atmospheric Environment, Influence of Humidity, Temperature, and Radicals on the Formation and Thermal Properties of Secondary Organic Aerosol (SOA) from Ozonolysis of β-Pinene. Journal of Physical Chemistry A, 2013, 117, 10346-10358.	1.1	27
74	Gas–particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology. Physical Chemistry Chemical Physics, 2013, 15, 11441.	1.3	222
75	Average chemical properties and potential formation pathways of highly oxidized organic aerosol. Faraday Discussions, 2013, 165, 181.	1.6	46

#	Article	IF	CITATIONS
76	Modeling the influence of alkane molecular structure on secondary organic aerosol formation. Faraday Discussions, 2013, 165, 105.	1.6	29
77	A statistical description of the evolution of cloud condensation nuclei activity during the heterogeneous oxidation of squalane and bis(2-ethylhexyl) sebacate aerosol by hydroxyl radicals. Physical Chemistry Chemical Physics, 2013, 15, 9679.	1.3	25
78	Halogen-induced organic aerosol (XOA): a study on ultra-fine particle formation and time-resolved chemical characterization. Faraday Discussions, 2013, 165, 135.	1.6	27
79	Introductory lecture: Atmospheric organic aerosols: insights from the combination of measurements and chemical transport models. Faraday Discussions, 2013, 165, 9.	1.6	31
80	How do organic vapors contribute to new-particle formation?. Faraday Discussions, 2013, 165, 91.	1.6	105
81	OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Physical Chemistry Chemical Physics, 2013, 15, 18649.	1.3	39
82	Molecular Composition of Boreal Forest Aerosol from HyytiÃѬ҈ҎFinland, Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2013, 47, 4069-4079.	4.6	85
83	The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polymer Degradation and Stability, 2013, 98, 2140-2145.	2.7	14
84	A regional study of the seasonal variation in the molecular composition of rainwater. Atmospheric Environment, 2013, 77, 588-597.	1.9	41
85	On the Mixing and Evaporation of Secondary Organic Aerosol Components. Environmental Science & Technology, 2013, 47, 6173-6180.	4.6	46
86	Molecular Transformations Accompanying the Aging of Laboratory Secondary Organic Aerosol. Environmental Science & Technology, 2013, 47, 2230-2237.	4.6	24
87	Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts. Environmental Science & amp; Technology, 2013, 47, 2264-2271.	4.6	194
88	OH-Initiated Heterogeneous Oxidation of Cholestane: A Model System for Understanding the Photochemical Aging of Cyclic Alkane Aerosols. Journal of Physical Chemistry A, 2013, 117, 12449-12458.	1.1	23
90	High-resolution chemical ionization mass spectrometry (ToF-CIMS): application to study SOA composition and processing. Atmospheric Measurement Techniques, 2013, 6, 3211-3224.	1.2	113
91	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MS ⁿ) for measuring organic acids in concentrated bulk aerosol – a laboratory and field study. Atmospheric Measurement Techniques, 2013, 6, 431-443.	1.2	44
93	Los Angeles Basin airborne organic aerosol characterization during CalNex. Journal of Geophysical Research D: Atmospheres, 2013, 118, 11,453.	1.2	8
94	Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security, 2013, , .	0.1	10
95	Variations in the OM/OC ratio of urban organic aerosol next to a major roadway. Journal of the Air and Waste Management Association, 2013, 63, 1422-1433.	0.9	32

#	Article	IF	CITATIONS
96	The Mechanism of Plasma Destruction of Enalapril and Related Metabolites in Water. Plasma Processes and Polymers, 2013, 10, 459-468.	1.6	25
97	Surface-Active Organics in Atmospheric Aerosols. Topics in Current Chemistry, 2013, 339, 201-259.	4.0	64
98	Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17223-17228.	3.3	300
99	Evaluating the degree of oxygenation of organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Atmospheric Chemistry and Physics, 2013, 13, 8739-8753.	1.9	66
100	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 10933-10950.	1.9	28
101	Secondary organic aerosol formation from biomass burning intermediates: phenol and methoxyphenols. Atmospheric Chemistry and Physics, 2013, 13, 8019-8043.	1.9	181
102	Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study. Atmospheric Chemistry and Physics, 2013, 13, 10125-10141.	1.9	36
103	Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase. Atmospheric Chemistry and Physics, 2013, 13, 1023-1037.	1.9	38
104	Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs. Atmospheric Chemistry and Physics, 2013, 13, 11769-11789.	1.9	50
105	Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry. Atmospheric Chemistry and Physics, 2013, 13, 12343-12362.	1.9	125
106	A new source of oxygenated organic aerosol and oligomers. Atmospheric Chemistry and Physics, 2013, 13, 2989-3002.	1.9	17
107	Modeling organic aerosol from the oxidation of α-pinene in a Potential Aerosol Mass (PAM) chamber. Atmospheric Chemistry and Physics, 2013, 13, 5017-5031.	1.9	24
108	A functional group oxidation model (FGOM) for SOA formation and aging. Atmospheric Chemistry and Physics, 2013, 13, 5907-5926.	1.9	39
109	Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmospheric Chemistry and Physics, 2013, 13, 6101-6116.	1.9	129
110	Dependence of particle nucleation and growth on high-molecular-weight gas-phase products during ozonolysis of α-pinene. Atmospheric Chemistry and Physics, 2013, 13, 7631-7644.	1.9	66
111	Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmospheric Chemistry and Physics, 2013, 13, 9141-9158.	1.9	207
112	Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environmental Chemistry, 2013, 10, 151.	0.7	103
113	Characterization of dissolved organic matter from a Greenland ice core by nanospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Journal of Glaciology, 2013, 59, 225-232.	1.1	2

#	Article	IF	CITATIONS
114	Implications of low volatility SOA and gasâ€phase fragmentation reactions on SOA loadings and their spatial and temporal evolution in the atmosphere. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3328-3342.	1.2	66
115	Composition of water-soluble organic carbon in non-urban atmospheric aerosol collected at the Storm Peak Laboratory. Environmental Chemistry, 2013, 10, 370.	0.7	22
116	Formation of anthropogenic secondary organic aerosol (SOA) and its influence on biogenic SOA properties. Atmospheric Chemistry and Physics, 2013, 13, 2837-2855.	1.9	73
117	Modelling of secondary organic aerosol formation from isoprene photooxidation chamber studies using different approaches. Environmental Chemistry, 2013, 10, 194.	0.7	7
118	High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences, 2013, 10, 1583-1624.	1.3	276
119	A novel method for online analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmospheric Measurement Techniques, 2014, 7, 983-1001.	1.2	345
120	Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3335-3351.	1.2	58
121	Insight into the numerical challenges of implementing 2-dimensional SOA models in atmospheric chemical transport models. Atmospheric Environment, 2014, 96, 331-344.	1.9	2
122	Role of Water and Phase in the Heterogeneous Oxidation of Solid and Aqueous Succinic Acid Aerosol by Hydroxyl Radicals. Journal of Physical Chemistry C, 2014, 118, 28978-28992.	1.5	70
123	Near-Unity Mass Accommodation Coefficient of Organic Molecules of Varying Structure. Environmental Science & Technology, 2014, 48, 12083-12089.	4.6	75
124	Ocean-Atmosphere Interactions of Gases and Particles. Springer Earth System Sciences, 2014, , .	0.1	22
125	Changes in the molecular composition of organic matter leached from an agricultural topsoil following addition of biomass-derived black carbon (biochar). Organic Geochemistry, 2014, 69, 52-60.	0.9	36
126	Atmospheric and Aerosol Chemistry. Topics in Current Chemistry, 2014, , .	4.0	25
127	Average oxidation state of carbon in proteins. Journal of the Royal Society Interface, 2014, 11, 20131095.	1.5	33
128	An assessment of vapour pressure estimation methods. Physical Chemistry Chemical Physics, 2014, 16, 19453-19469.	1.3	63
129	Secondary Organic Aerosol Formation via the Isolation of Individual Reactive Intermediates: Role of Alkoxy Radical Structure. Journal of Physical Chemistry A, 2014, 118, 8807-8816.	1.1	16
130	1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmospheric Environment, 2014, 95, 158-164.	1.9	134
131	Influence of Molecular Structure and Chemical Functionality on the Heterogeneous OH-Initiated Oxidation of Unsaturated Organic Particles. Journal of Physical Chemistry A, 2014, 118, 4106-4119.	1.1	32

#	Article	IF	CITATIONS
132	Using multidimensional gas chromatography to group secondary organic aerosol species by functionality. Atmospheric Environment, 2014, 96, 310-321.	1.9	9
133	Effects of NO _{<i>x</i>} on the Volatility of Secondary Organic Aerosol from Isoprene Photooxidation. Environmental Science & Technology, 2014, 48, 2253-2262.	4.6	99
134	Parameterization of Thermal Properties of Aging Secondary Organic Aerosol Produced by Photo-Oxidation of Selected Terpene Mixtures. Environmental Science & Technology, 2014, 48, 6168-6176.	4.6	14
135	Cryo-Transmission Electron Microscopy Imaging of the Morphology of Submicrometer Aerosol Containing Organic Acids and Ammonium Sulfate. Analytical Chemistry, 2014, 86, 2436-2442.	3.2	53
136	Effective Density and Mixing State of Aerosol Particles in a Near-Traffic Urban Environment. Environmental Science & Technology, 2014, 48, 6300-6308.	4.6	103
137	Gas-Phase Advanced Oxidation for Effective, Efficient in Situ Control of Pollution. Environmental Science & Technology, 2014, 48, 8768-8776.	4.6	41
138	Gas-phase kinetics of OH radicals reaction with a series of fluorinated acrylates and methacrylates at atmospheric pressure and 298ÅK. Atmospheric Environment, 2014, 94, 489-495.	1.9	8
139	Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA. Atmospheric Chemistry and Physics, 2014, 14, 11393-11407.	1.9	46
140	Aqueous-phase photooxidation of levoglucosan – a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Atmospheric Chemistry and Physics, 2014, 14, 9695-9706.	1.9	102
141	Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning – a comparison between process models of varying complexity. Atmospheric Chemistry and Physics, 2014, 14, 11853-11869.	1.9	12
142	Novel methods for predicting gas–particle partitioning during the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2014, 14, 13189-13204.	1.9	27
143	Secondary organic aerosol yields of 12-carbon alkanes. Atmospheric Chemistry and Physics, 2014, 14, 1423-1439.	1.9	100
144	Role of ozone in SOA formation from alkane photooxidation. Atmospheric Chemistry and Physics, 2014, 14, 1733-1753.	1.9	43
145	Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies. Atmospheric Chemistry and Physics, 2014, 14, 2155-2167.	1.9	70
146	Reactive uptake of N ₂ O ₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations. Atmospheric Chemistry and Physics, 2014, 14, 5693-5707.	1.9	84
147	Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise. Atmospheric Chemistry and Physics, 2014, 14, 8419-8434.	1.9	41
148	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	1.9	68
149	Cloud droplet activity changes of soot aerosol upon smog chamber ageing. Atmospheric Chemistry and Physics, 2014, 14, 9831-9854.	1.9	47

#	Article	IF	CITATIONS
150	Laboratory studies of the aqueous-phase oxidation of polyols: submicron particles vs. bulk aqueous solution. Atmospheric Chemistry and Physics, 2014, 14, 10773-10784.	1.9	40
151	Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3476-3485.	1.2	186
152	Clobal transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.	1.2	123
153	Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle. Environmental Research Letters, 2015, 10, 064004.	2.2	42
154	Evaluations of tropospheric aerosol properties simulated by the community earth system model with a sectional aerosol microphysics scheme. Journal of Advances in Modeling Earth Systems, 2015, 7, 865-914.	1.3	33
155	On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States. Atmospheric Chemistry and Physics, 2015, 15, 8679-8694.	1.9	98
156	Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2015, 15, 3395-3412.	1.9	32
157	Influence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols. Atmospheric Chemistry and Physics, 2015, 15, 5027-5045.	1.9	86
158	Molecular composition of fresh and aged secondary organic aerosol from a mixture of biogenic volatile compounds: a high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2015, 15, 5683-5695.	1.9	74
159	Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions. Atmospheric Chemistry and Physics, 2015, 15, 6305-6322.	1.9	42
160	Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmospheric Chemistry and Physics, 2015, 15, 6323-6335.	1.9	78
161	Investigating the annual behaviour of submicron secondary inorganic and organic aerosols in London. Atmospheric Chemistry and Physics, 2015, 15, 6351-6366.	1.9	46
162	Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates. Atmospheric Chemistry and Physics, 2015, 15, 7307-7336.	1.9	259
163	Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2015, 15, 737-752.	1.9	19
164	Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity. Atmospheric Chemistry and Physics, 2015, 15, 8301-8313.	1.9	41
165	Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaign. Atmospheric Chemistry and Physics, 2015, 15, 11327-11340.	1.9	23
166	The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia. Atmospheric Chemistry and Physics, 2015, 15, 13269-13297.	1.9	35
167	Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield. Atmospheric Chemistry and Physics, 2015, 15, 3063-3075.	1.9	177

#	Article	IF	CITATIONS
168	Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 2015, 15, 37-53.	1.9	108
169	Elemental composition and clustering behaviour of α-pinene oxidation products for different oxidation conditions. Atmospheric Chemistry and Physics, 2015, 15, 4145-4159.	1.9	17
170	Elemental composition of organic aerosol: The gap between ambient and laboratory measurements. Geophysical Research Letters, 2015, 42, 4182-4189.	1.5	84
171	Complex refractive index of secondary organic aerosol generated from isoprene/NO _x photooxidation in the presence and absence of SO ₂ . Journal of Geophysical Research D: Atmospheres, 2015, 120, 7777-7787.	1.2	27
172	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	1.2	104
173	Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of α-pinene and naphthalene oxidation products. Atmospheric Measurement Techniques, 2015, 8, 1-18.	1.2	63
174	Multiday production of condensing organic aerosol mass in urban and forest outflow. Atmospheric Chemistry and Physics, 2015, 15, 595-615.	1.9	27
175	Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust. Science China Chemistry, 2015, 58, 1377-1384.	4.2	35
176	Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production. Water Research, 2015, 85, 286-294.	5.3	191
177	Molecular characteristics of the water soluble organic matter in size-fractionated aerosols collected over the North Atlantic Ocean. Marine Chemistry, 2015, 170, 37-48.	0.9	13
178	Evaluation of One-Dimensional and Two-Dimensional Volatility Basis Sets in Simulating the Aging of Secondary Organic Aerosol with Smog-Chamber Experiments. Environmental Science & Technology, 2015, 49, 2245-2254.	4.6	53
179	Aqueous Organic Chemistry in the Atmosphere: Sources and Chemical Processing of Organic Aerosols. Environmental Science & Technology, 2015, 49, 1237-1244.	4.6	323
180	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	23.0	417
181	Stochastic methods for aerosol chemistry: a compact molecular description of functionalization and fragmentation in the heterogeneous oxidation of squalane aerosol by OH radicals. Physical Chemistry Chemical Physics, 2015, 17, 4398-4411.	1.3	46
182	Highly Oxidized Multifunctional Organic Compounds Observed in Tropospheric Particles: A Field and Laboratory Study. Environmental Science & Technology, 2015, 49, 7754-7761.	4.6	143
183	Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Science of the Total Environment, 2015, 518-519, 626-635.	3.9	403
184	Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Applied Energy, 2015, 155, 204-217.	5.1	76
185	Modeling the Processing of Aerosol and Trace Gases in Clouds and Fogs. Chemical Reviews, 2015, 115, 4157-4198.	23.0	234

#	Article	IF	CITATIONS
186	Aerosol water soluble organic matter characteristics over the North Atlantic Ocean: Implications for iron-binding ligands and iron solubility. Marine Chemistry, 2015, 173, 162-172.	0.9	43
187	Saturation Vapor Pressures and Transition Enthalpies of Low-Volatility Organic Molecules of Atmospheric Relevance: From Dicarboxylic Acids to Complex Mixtures. Chemical Reviews, 2015, 115, 4115-4156.	23.0	196
188	Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes. Chemical Reviews, 2015, 115, 4400-4439.	23.0	311
189	Multiphase Chemistry at the Atmosphere–Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chemical Reviews, 2015, 115, 4440-4475.	23.0	468
190	Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chemistry and Physics, 2015, 15, 253-272.	1.9	736
191	Formation of Urban Fine Particulate Matter. Chemical Reviews, 2015, 115, 3803-3855.	23.0	988
192	Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon. Journal of Physical Chemistry A, 2015, 119, 10767-10783.	1.1	126
193	Methods to extract molecular and bulk chemical information from series of complex mass spectra with limited mass resolution. International Journal of Mass Spectrometry, 2015, 389, 26-38.	0.7	78
194	Organic Emissions from a Wood Stove and a Pellet Stove Before and After Simulated Atmospheric Aging. Aerosol Science and Technology, 2015, 49, 1037-1050.	1.5	31
195	Enhanced light absorption by mixed source black and brown carbon particles in UK winter. Nature Communications, 2015, 6, 8435.	5.8	266
196	Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. Chemical Science, 2015, 6, 7020-7027.	3.7	95
197	Direct Surface Analysis Coupled to High-Resolution Mass Spectrometry Reveals Heterogeneous Composition of the Cuticle of <i>Hibiscus trionum</i> Petals. Analytical Chemistry, 2015, 87, 9900-9907.	3.2	17
198	Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health. Photochemical and Photobiological Sciences, 2014, 14, 149-169.	1.6	53
199	The Atmosphere. , 2015, , 311-454.		9
203	Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM. Atmospheric Measurement Techniques, 2016, 9, 3263-3281.	1.2	24
207	Effect of secondary organic aerosol coating thickness on the real-time detection and characterization of biomass-burning soot by two particle mass spectrometers. Atmospheric Measurement Techniques, 2016, 9, 6117-6137.	1.2	31
208	An automated baseline correction protocol for infrared spectra of atmospheric aerosols collected on polytetrafluoroethylene (Teflon) filters. Atmospheric Measurement Techniques, 2016, 9, 2615-2631.	1.2	17
210	Organic and inorganic decomposition products from the thermal desorption of atmospheric particles. Atmospheric Measurement Techniques, 2016, 9, 1569-1586.	1.2	11

#	Article	IF	CITATIONS
211	Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and 1H NMR. Atmosphere, 2016, 7, 79.	1.0	33
214	Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & amp; Technology, 2016, 50, 8613-8622.	4.6	89
215	Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols. Scientific Reports, 2016, 6, 35038.	1.6	80
216	Novel Approach for Evaluating Secondary Organic Aerosol from Aromatic Hydrocarbons: Unified Method for Predicting Aerosol Composition and Formation. Environmental Science & Technology, 2016, 50, 6249-6256.	4.6	19
217	Reactions of Atmospheric Particulate Stabilized Criegee Intermediates Lead to High-Molecular-Weight Aerosol Components. Environmental Science & Technology, 2016, 50, 5702-5710.	4.6	54
218	Molecular composition of organic aerosols at urban background and road tunnel sites using ultra-high resolution mass spectrometry. Faraday Discussions, 2016, 189, 51-68.	1.6	50
219	Airmass aging metrics derived from particle and other measurements near Fort Worth. Atmospheric Environment, 2016, 126, 45-54.	1.9	3
220	α-Pinene Autoxidation Products May Not Have Extremely Low Saturation Vapor Pressures Despite High O:C Ratios. Journal of Physical Chemistry A, 2016, 120, 2569-2582.	1.1	95
221	Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ. Environmental Science & Technology, 2016, 50, 5757-5765.	4.6	178
222	Non-linear partitioning and organic volatility distributions of urban aerosols. Faraday Discussions, 2016, 189, 515-528.	1.6	1
223	Tip-Enhanced Raman Spectroscopy of Atmospherically Relevant Aerosol Nanoparticles. Analytical Chemistry, 2016, 88, 9766-9772.	3.2	33
224	A note on the effects of inorganic seed aerosol on the oxidation state of secondary organic aerosol— <i>α</i> â€Pinene ozonolysis. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,476.	1.2	14
225	Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition. Environmental Science & Technology, 2016, 50, 10823-10832.	4.6	22
226	Signatures of Biomass Burning Aerosols in the Plume of a Saltmarsh Wildfire in South Texas. Environmental Science & Technology, 2016, 50, 9308-9314.	4.6	30
227	Sensitivity analysis of simulated SOA loadings using a varianceâ€based statistical approach. Journal of Advances in Modeling Earth Systems, 2016, 8, 499-519.	1.3	10
228	Characterization of organic residues of sizeâ€resolved fog droplets and their atmospheric implications. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4317-4332.	1.2	30
229	Inorganic Salt Interference on CO ₂ ⁺ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies. Environmental Science & Technology, 2016, 50, 10494-10503.	4.6	88
230	Importance of Unimolecular HO ₂ Elimination in the Heterogeneous OH Reaction of Highly Oxygenated Tartaric Acid Aerosol. Journal of Physical Chemistry A, 2016, 120, 5887-5896.	1.1	17

#	Article	IF	CITATIONS
231	Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2016, 16, 10793-10808.	1.9	40
232	A two-dimensional volatility basis set – Part 3: Prognostic modeling and NO _{<i>x</i>} dependence. Atmospheric Chemistry and Physics, 2016, 16, 123-134.	1.9	33
233	Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization. Atmospheric Chemistry and Physics, 2016, 16, 4401-4422.	1.9	19
234	Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation. Atmospheric Chemistry and Physics, 2016, 16, 4511-4527.	1.9	92
235	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 675-689.	1.9	70
236	Model–measurement comparison of functional group abundance in <i>α</i> -pinene and 1,3,5-trimethylbenzene secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2016, 16, 8729-8747.	1.9	9
237	Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US. Atmospheric Chemistry and Physics, 2016, 16, 11163-11176.	1.9	64
238	Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmospheric Chemistry and Physics, 2016, 16, 1123-1138.	1.9	118
239	Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study. Atmospheric Chemistry and Physics, 2016, 16, 11899-11913.	1.9	73
240	Variations in the chemical composition of the submicron aerosol and in the sources of the organic fraction at a regional background site of the Po Valley (Italy). Atmospheric Chemistry and Physics, 2016, 16, 12875-12896.	1.9	38
241	A novel framework for molecular characterization of atmospherically relevant organic compounds based on collision cross section and mass-to-charge ratio. Atmospheric Chemistry and Physics, 2016, 16, 12945-12959.	1.9	22
242	Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China. Atmospheric Chemistry and Physics, 2016, 16, 13213-13230.	1.9	46
243	Transformation of logwood combustion emissions in a smog chamber: formation of secondary organic aerosol and changes in the primary organic aerosol upon daytime and nighttime aging. Atmospheric Chemistry and Physics, 2016, 16, 13251-13269.	1.9	76
244	Particulate matter (PM) episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in secondary aerosol formation. Atmospheric Chemistry and Physics, 2016, 16, 14131-14145.	1.9	20
245	Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NO _{<i>x</i>} conditions. Atmospheric Chemistry and Physics, 2016, 16, 2255-2272.	1.9	32
246	Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmospheric Chemistry and Physics, 2016, 16, 3327-3344.	1.9	170
247	Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area. Atmospheric Chemistry and Physics, 2016, 16, 7411-7433.	1.9	137
248	Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and) Tj ETQq1 1 (lamp performance. Water Research, 2016, 91, 86-96.	0.784314 r 5.3	gBT /Overloc 30

#	Article	IF	CITATIONS
249	Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol. Analytical Chemistry, 2016, 88, 4495-4501.	3.2	48
250	High field FT-ICR mass spectrometry for molecular characterization of snow board from Moscow regions. Science of the Total Environment, 2016, 557-558, 12-19.	3.9	20
251	Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation. Journal of Physical Chemistry A, 2016, 120, 1386-1394.	1.1	31
252	SOA formation from naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene photooxidation. Atmospheric Environment, 2016, 131, 424-433.	1.9	38
253	Uptake of Semivolatile Secondary Organic Aerosol Formed from α-Pinene into Nonvolatile Polyethylene Glycol Probe Particles. Journal of Physical Chemistry A, 2016, 120, 1459-1467.	1.1	8
254	Can Highly Oxidized Organics Contribute to Atmospheric New Particle Formation?. Journal of Physical Chemistry A, 2016, 120, 1452-1458.	1.1	32
255	Post-treatment of plywood mill effluent by Multi-Barrier Treatment: A pilot-scale study. Chemical Engineering Journal, 2016, 283, 21-28.	6.6	6
256	Molecular formula composition of \hat{l}^2 -caryophyllene ozonolysis SOA formed in humid and dry conditions. Atmospheric Environment, 2017, 154, 70-81.	1.9	16
257	Condensed-phase biogenic–anthropogenic interactions with implications for cold cloud formation. Faraday Discussions, 2017, 200, 165-194.	1.6	40
258	Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value?. Faraday Discussions, 2017, 200, 639-661.	1.6	23
259	Real-time chemical characterization of atmospheric particulate matter in China: A review. Atmospheric Environment, 2017, 158, 270-304.	1.9	203
260	The Role of Water in Organic Aerosol Multiphase Chemistry: Focus on Partitioning and Reactivity. , 2017, , 95-184.		9
261	Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols. Physical Chemistry Chemical Physics, 2017, 19, 6814-6830.	1.3	38
262	Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach. Review of Scientific Instruments, 2017, 88, 033102.	0.6	10
263	Microphysical explanation of the RHâ€dependent water affinity of biogenic organic aerosol and its importance for climate. Geophysical Research Letters, 2017, 44, 5167-5177.	1.5	74
264	Effects of organic aerosol loading and fog processing on organic aerosol volatility. Journal of Aerosol Science, 2017, 105, 73-83.	1.8	8
265	Hygroscopicity of Organic Compounds as a Function of Carbon Chain Length and Carboxyl, Hydroperoxy, and Carbonyl Functional Groups. Journal of Physical Chemistry A, 2017, 121, 5164-5174.	1.1	21
266	Secondary organic aerosol from VOC mixtures in an oxidation flow reactor. Atmospheric Environment, 2017, 161, 210-220.	1.9	51

#	Article	IF	CITATIONS
267	Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry. Analyst, The, 2017, 142, 2395-2403.	1.7	33
268	Using advanced mass spectrometry techniques to fully characterize atmospheric organic carbon: current capabilities and remaining gaps. Faraday Discussions, 2017, 200, 579-598.	1.6	37
269	Time-resolved analysis of primary volatile emissions and secondary aerosol formation potential from a small-scale pellet boiler. Atmospheric Environment, 2017, 158, 236-245.	1.9	18
270	Air quality measurements—From rubber bands to tapping the rainbow. Journal of the Air and Waste Management Association, 2017, 67, 637-668.	0.9	11
271	Rapid heterogeneous oxidation of organic coatings on submicron aerosols. Geophysical Research Letters, 2017, 44, 2949-2957.	1.5	28
272	Characterization of the temperature and humidity-dependent phase diagram of amorphous nanoscale organic aerosols. Physical Chemistry Chemical Physics, 2017, 19, 6532-6545.	1.3	37
273	Influence of Functional Groups on the Viscosity of Organic Aerosol. Environmental Science & Technology, 2017, 51, 271-279.	4.6	87
274	Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences. Chemical Reviews, 2017, 117, 13187-13229.	23.0	282
275	A Model for the Spectral Dependence of Aerosol Sunlight Absorption. ACS Earth and Space Chemistry, 2017, 1, 533-539.	1.2	9
276	Atmospheric Photooxidation Diminishes Light Absorption by Primary Brown Carbon Aerosol from Biomass Burning. Environmental Science and Technology Letters, 2017, 4, 540-545.	3.9	135
277	Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahighâ€Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,703.	1.2	82
278	Why would apparent <i>ΰ</i> linearly change with O/C? Assessing the role of volatility, solubility, and surface activity of organic aerosols. Aerosol Science and Technology, 2017, 51, 1377-1388.	1.5	25
279	Molecular transformation of natural and anthropogenic dissolved organic matter under photo-irradiation in the presence of nano TiO2. Water Research, 2017, 125, 201-208.	5.3	37
280	Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals. Journal of Physical Chemistry A, 2017, 121, 5856-5870.	1.1	29
281	Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry. Analytical Chemistry, 2017, 89, 10889-10897.	3.2	34
282	Divergent Evolution of Carbonaceous Aerosols during Dispersal of East Asian Haze. Scientific Reports, 2017, 7, 10422.	1.6	27
283	Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX. Journal of the Air and Waste Management Association, 2017, 67, 854-872.	0.9	14
284	Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India. Environmental Science and Pollution Research, 2017, 24, 21065-21072.	2.7	28

	CITATION R	EPORT	
#	Article	IF	Citations
285	Effects of NO x on the molecular composition of secondary organic aerosol formed by the ozonolysis and photooxidation of $\hat{1}$ ±-pinene. Atmospheric Environment, 2017, 166, 263-275.	1.9	19
286	Evidence for Quinone Redox Chemistry Mediating Daytime and Nighttime NO ₂ -to-HONO Conversion on Soil Surfaces. Environmental Science & Technology, 2017, 51, 9633-9643.	4.6	23
287	First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l). Environmental Science & Technology, 2017, 51, 14072-14082.	4.6	55
288	A Global Assessment of Dissolved Organic Carbon in Precipitation. Geophysical Research Letters, 2017, 44, 11,672.	1.5	12
289	Evolution of Complex Maillard Chemical Reactions, Resolved in Time. Scientific Reports, 2017, 7, 3227.	1.6	72
290	Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species. Environmental Science & Technology, 2017, 51, 8491-8500.	4.6	117
291	Adsorptive fractionation of dissolved organic matter (DOM) by mineral soil: Macroscale approach and molecular insight. Organic Geochemistry, 2017, 103, 113-124.	0.9	102
292	Chemical and cellular oxidant production induced by naphthalene secondary organic aerosol (SOA): effect of redox-active metals and photochemical aging. Scientific Reports, 2017, 7, 15157.	1.6	37
293	Characterisation of the semi-volatile component of Dissolved Organic Matter by Thermal Desorption – Proton Transfer Reaction – Mass Spectrometry. Scientific Reports, 2017, 7, 15936.	1.6	15
294	Modelling organic aerosol concentrations and properties during ChArMEx summer campaigns of 2012 and 2013 in the western Mediterranean region. Atmospheric Chemistry and Physics, 2017, 17, 12509-12531.	1.9	29
295	Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2017, 17, 14485-14500.	1.9	15
296	Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmospheric Chemistry and Physics, 2017, 17, 4387-4399.	1.9	14
297	Uncertain Henry's law constants compromise equilibrium partitioning calculations of atmospheric oxidation products. Atmospheric Chemistry and Physics, 2017, 17, 7529-7540.	1.9	33
298	Inflammatory responses to secondary organic aerosolsÂ(SOA) generated from biogenic and anthropogenic precursors. Atmospheric Chemistry and Physics, 2017, 17, 11423-11440.	1.9	67
299	Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2017, 17, 14821-14839.	1.9	66
300	Chemical and isotopic composition of secondary organic aerosol generated by <i>l±</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2017, 17, 6373-6391.	1.9	14
301	Ozonolysis of <i>α</i> -phellandrene – PartÂ1: Gas- and particle-phase characterisation. Atmospheric Chemistry and Physics, 2017, 17, 6583-6609.	1.9	11
302	Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmospheric Chemistry and Physics, 2017, 17, 839-853.	1.9	135

#	Article	IF	CITATIONS
303	Secondary organic aerosol from chlorine-initiated oxidation of isoprene. Atmospheric Chemistry and Physics, 2017, 17, 13491-13508.	1.9	61
304	A new diagnostic for tropospheric ozone production. Atmospheric Chemistry and Physics, 2017, 17, 13669-13680.	1.9	6
305	Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols. Atmospheric Chemistry and Physics, 2017, 17, 14415-14431.	1.9	17
306	Formation of secondary organic aerosol coating on black carbon particles near vehicular emissions. Atmospheric Chemistry and Physics, 2017, 17, 15055-15067.	1.9	30
307	Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmospheric Chemistry and Physics, 2017, 17, 2477-2493.	1.9	107
308	The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities. Atmospheric Chemistry and Physics, 2017, 17, 3145-3163.	1.9	87
309	Resolving anthropogenic aerosol pollution types – deconvolution and exploratory classification of pollution events. Atmospheric Chemistry and Physics, 2017, 17, 3165-3197.	1.9	23
310	Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions. Atmospheric Chemistry and Physics, 2017, 17, 4305-4318.	1.9	53
311	Technical note: Relating functional group measurements to carbon types for improved model–measurement comparisons of organic aerosol composition. Atmospheric Chemistry and Physics, 2017, 17, 4433-4450.	1.9	8
312	Quantifying the volatility of organic aerosol in the southeastern US. Atmospheric Chemistry and Physics, 2017, 17, 501-520.	1.9	32
313	Secondary organic aerosol formation from in situ OH, O ₃ , and NO ₃ oxidation of ambient forest air in an oxidation flow reactor. Atmospheric Chemistry and Physics, 2017, 17, 5331-5354.	1.9	57
314	Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils. Atmospheric Chemistry and Physics, 2017, 17, 7333-7344.	1.9	59
315	Particle size dependence of biogenic secondary organic aerosol molecular composition. Atmospheric Chemistry and Physics, 2017, 17, 7593-7603.	1.9	21
316	Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing. Atmospheric Chemistry and Physics, 2017, 17, 9979-10000.	1.9	127
317	Improving organic aerosol treatments in CESM / CAM 5: Development, application, and evaluation. Journal of Advances in Modeling Earth Systems, 2017, 9, 1506-1539.	1.3	17
320	STRAPS v1.0: evaluating a methodology for predicting electron impact ionisation mass spectra for the aerosol mass spectrometer. Geoscientific Model Development, 2017, 10, 2365-2377.	1.3	1
333	Comprehensive characterization of atmospheric organic carbon at a forested site. Nature Geoscience, 2017, 10, 748-753.	5.4	66
336	Study on precipitated phases, dislocations and hardness in the HAZ of friction stir welded joint of 2024 aluminum alloy. Metallic Materials, 2017, 55, 357-361.	0.2	2

#	Article	IF	CITATIONS
339	A new oxidation flow reactor for measuring secondary aerosol formation of rapidly changing emission sources. Atmospheric Measurement Techniques, 2017, 10, 1519-1537.	1.2	44
340	Changes in Dissolved Organic Matter Composition and Disinfection Byproduct Precursors in Advanced Drinking Water Treatment Processes. Environmental Science & Technology, 2018, 52, 3392-3401.	4.6	117
341	Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging. Environmental Science & Technology, 2018, 52, 3456-3465.	4.6	40
342	SOA formation from photooxidation of naphthalene and methylnaphthalenes with m-xylene and surrogate mixtures. Atmospheric Environment, 2018, 180, 256-264.	1.9	24
343	Relationship between Molecular Components and Reducing Capacities of Humic Substances. ACS Earth and Space Chemistry, 2018, 2, 330-339.	1.2	55
344	Molecular structure impacts on secondary organic aerosol formation from glycol ethers. Atmospheric Environment, 2018, 180, 206-215.	1.9	11
345	Chemical evolution of atmospheric organic carbon over multiple generations of oxidation. Nature Chemistry, 2018, 10, 462-468.	6.6	92
346	Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA). ACS Earth and Space Chemistry, 2018, 2, 410-421.	1.2	24
347	Potential of select intermediate-volatility organic compounds and consumer products for secondary organic aerosol and ozone formation under relevant urban conditions. Atmospheric Environment, 2018, 178, 109-117.	1.9	52
348	Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment. Environmental Science & Technology, 2018, 52, 5308-5318.	4.6	76
349	Modeling the carbon isotope signatures of methane and dissolved inorganic carbon to unravel mineralization pathways in boreal lake sediments. Geochimica Et Cosmochimica Acta, 2018, 229, 36-52.	1.6	15
350	Prospects for reconstructing paleoenvironmental conditions from organic compounds in polar snow and ice. Quaternary Science Reviews, 2018, 183, 1-22.	1.4	25
351	Characterization of brominated disinfection byproducts formed during chloramination of fulvic acid in the presence of bromide. Science of the Total Environment, 2018, 627, 118-124.	3.9	39
352	Atmospheric degradation of industrial fluorinated acrylates and methacrylates with Cl atoms at atmospheric pressure and 298â€⁻K. Atmospheric Environment, 2018, 178, 206-213.	1.9	7
353	Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2038-2043.	3.3	186
354	Laboratory evaluation of species-dependent relative ionization efficiencies in the Aerodyne Aerosol Mass Spectrometer. Aerosol Science and Technology, 2018, 52, 626-641.	1.5	49
355	The Role of Organic Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth and Space Chemistry, 2018, 2, 168-202.	1.2	212
356	Air Pollution and Air Quality. , 2018, , 151-176.		9

#	Article	IF	CITATIONS
357	Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM ₁₀ samples from nine sites in central Europe. Atmospheric Chemistry and Physics, 2018, 18, 2155-2174.	1.9	7
358	Bulk and molecular-level characterization of laboratory-aged biomass burning organic aerosol from oak leaf and heartwood fuels. Atmospheric Chemistry and Physics, 2018, 18, 2199-2224.	1.9	30
359	Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmospheric Chemistry and Physics, 2018, 18, 3987-4003.	1.9	72
360	Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 427-443.	1.9	42
361	Effect of relative humidity on non-refractory submicron aerosol evolution during summertime in Hangzhou, China. Journal of Zhejiang University: Science A, 2018, 19, 45-59.	1.3	3
362	Laboratory investigations of Titan haze formation: In situ measurement of gas and particle composition. Icarus, 2018, 301, 136-151.	1.1	37
363	Source apportionment of particulate matter and trace gases near a major refinery near the Houston Ship Channel. Atmospheric Environment, 2018, 173, 16-29.	1.9	32
364	Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Research, 2018, 129, 252-263.	5.3	78
365	Chlorine-initiated oxidation of <i>n</i> -alkanes under high-NO _{<i>x</i>} conditions: insights into secondary organic aerosol composition and volatility using a FIGAERO–CIMS. Atmospheric Chemistry and Physics, 2018, 18, 15535-15553.	1.9	53
366	Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during <i>l±</i> -pinene ozonolysis. Atmospheric Chemistry and Physics, 2018, 18, 5455-5466.	1.9	16
367	Modeling organic aerosol concentrations and properties during winter 2014 in the northwestern Mediterranean region. Atmospheric Chemistry and Physics, 2018, 18, 18079-18100.	1.9	10
370	Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15601-15622.	1.9	34
371	Principal component analysis of summertime ground site measurements in the Athabasca oil sands with a focus on analytically unresolved intermediate-volatility organic compounds. Atmospheric Chemistry and Physics, 2018, 18, 17819-17841.	1.9	26
372	High-spatial-resolution mapping and source apportionment of aerosol composition in Oakland, California, using mobile aerosol mass spectrometry. Atmospheric Chemistry and Physics, 2018, 18, 16325-16344.	1.9	46
373	Dominant contribution of oxygenated organic aerosol to haze particles from real-time observation in Singapore during an Indonesian wildfire event in 2015. Atmospheric Chemistry and Physics, 2018, 18, 16481-16498.	1.9	24
376	Single Parameter for Predicting the Morphology of Atmospheric Black Carbon. Environmental Science & Technology, 2018, 52, 14169-14179.	4.6	19
377	Physical state of 2-methylbutane-1,2,3,4-tetraol in pure and internally mixed aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15841-15857.	1.9	12
378	Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity. Atmospheric Chemistry and Physics, 2018, 18, 5677-5689.	1.9	33

	CITATION	Report	
#	Article	IF	CITATIONS
379	Understanding Composition, Formation, and Aging of Organic Aerosols in Wildfire Emissions via Combined Mountain Top and Airborne Measurements. ACS Symposium Series, 2018, , 363-385.	0.5	10
380	Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 2018, 18, 17769-17800.	1.9	105
384	Molecular Corridors, Volatility and Particle Phase State in Secondary Organic Aerosols. ACS Symposium Series, 2018, , 209-244.	0.5	2
387	Primary and secondary organic aerosol from heated cooking oil emissions. Atmospheric Chemistry and Physics, 2018, 18, 11363-11374.	1.9	35
388	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. Atmospheric Chemistry and Physics, 2018, 18, 12433-12460.	1.9	12
389	Molecular insights on aging and aqueous-phase processing from ambient biomass burning emissions-influenced Po Valley fog and aerosol. Atmospheric Chemistry and Physics, 2018, 18, 13197-13214.	1.9	61
390	Molecular and physical characteristics of aerosol at a remote free troposphere site: implications for atmospheric aging. Atmospheric Chemistry and Physics, 2018, 18, 14017-14036.	1.9	39
391	An omnipresent diversity and variability in the chemical composition of atmospheric functionalized organic aerosol. Communications Chemistry, 2018, 1, .	2.0	25
393	Gas-to-particle partitioning of major biogenic oxidation products: a study on freshly formed and aged biogenic SOA. Atmospheric Chemistry and Physics, 2018, 18, 12969-12989.	1.9	18
394	Semi-volatile and highly oxygenated gaseous and particulate organic compounds observed above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 11547-11562.	1.9	39
396	Measuring the Organic Carbon to Organic Matter Multiplier with Thermal/Optical Carbon-Quadrupole Mass Spectrometer Analyses. Aerosol Science and Engineering, 2018, 2, 165-172.	1.1	3
398	Determining the link between hygroscopicity and composition for semi-volatile aerosol species. Atmospheric Measurement Techniques, 2018, 11, 4361-4372.	1.2	4
399	Anthropogenic fine aerosols dominate the wintertime regime over the northern Indian Ocean. Tellus, Series B: Chemical and Physical Meteorology, 2022, 70, 1464871.	0.8	19
401	Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous–sucrose–maleic acid aerosol. Physical Chemistry Chemical Physics, 2018, 20, 15560-15573.	1.3	39
402	Direct Observation of Hierarchic Molecular Interactions Critical to Biogenic Aerosol Formation. Communications Chemistry, 2018, 1, .	2.0	15
403	UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing). Atmospheric Environment, 2018, 189, 22-29.	1.9	62
404	Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol. Analytical Chemistry, 2018, 90, 8816-8823.	3.2	40
405	Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5. Atmospheric Chemistry and Physics, 2018, 18, 10773-10797.	1.9	32

#	Article	IF	CITATIONS
406	Microporous Humins Synthesized in Concentrated Sulfuric Acid Using 5-Hydroxymethyl Furfural. ACS Omega, 2018, 3, 8537-8545.	1.6	13
407	Flight Deployment of a Highâ€Resolution Timeâ€ofâ€Flight Chemical Ionization Mass Spectrometer: Observations of Reactive Halogen and Nitrogen Oxide Species. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7670-7686.	1.2	39
408	Modeling the formation of traditional and non-traditional secondary organic aerosols from in-use, on-road gasoline and diesel vehicles exhaust. Journal of Aerosol Science, 2018, 124, 68-82.	1.8	2
409	Parameterized Yields of Semivolatile Products from Isoprene Oxidation under Different NO _{<i>x</i>} Levels: Impacts of Chemical Aging and Wall-Loss of Reactive Gases. Environmental Science & Technology, 2018, 52, 9225-9234.	4.6	3
410	Ambient Measurements of Highly Oxidized Gas-Phase Molecules during the Southern Oxidant and Aerosol Study (SOAS) 2013. ACS Earth and Space Chemistry, 2018, 2, 653-672.	1.2	56
411	Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol. Aerosol Science and Technology, 2018, 52, 992-1004.	1.5	16
412	ORACLE 2-DÂ(v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model. Geoscientific Model Development, 2018, 11, 3369-3389.	1.3	24
413	Seasonal light absorption properties of water-soluble brown carbon in atmospheric fine particles in Nanjing, China. Atmospheric Environment, 2018, 187, 230-240.	1.9	80
414	Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows Increased Toxic Effects. Environmental Science and Technology Letters, 2018, 5, 424-430.	3.9	83
415	Simultaneous removal of dissolved organic matter and nitrate from sewage treatment plant effluents using photocatalytic membranes. Water Research, 2018, 143, 250-259.	5.3	26
416	Heterogeneous Reactions in Aerosol. , 2018, , 403-433.		1
417	Secondary Organic Aerosol Formation from Healthy and Aphid-Stressed Scots Pine Emissions. ACS Earth and Space Chemistry, 2019, 3, 1756-1772.	1.2	32
418	Volatility and Viscosity Are Correlated in Terpene Secondary Organic Aerosol Formed in a Flow Reactor. Environmental Science and Technology Letters, 2019, 6, 513-519.	3.9	28
419	The Old and the New: Aging of Sea Spray Aerosol and Formation of Secondary Marine Aerosol through OH Oxidation Reactions. ACS Earth and Space Chemistry, 2019, 3, 2307-2314.	1.2	24
420	Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environmental Science & Technology, 2019, 53, 10007-10022.	4.6	116
421	Characterization of submicron aerosol volatility in the regional atmosphere in Southern China. Chemosphere, 2019, 236, 124383.	4.2	9
422	Impacts of SO ₂ , Relative Humidity, and Seed Acidity on Secondary Organic Aerosol Formation in the Ozonolysis of Butyl Vinyl Ether. Environmental Science & Technology, 2019, 53, 8845-8853.	4.6	22
423	A comprehensive investigation of aqueous-phase photochemical oxidation of 4-ethylphenol. Science of the Total Environment, 2019, 685, 976-985.	3.9	25

#	Article	IF	CITATIONS
424	A novel approach for simple statistical analysis of high-resolution mass spectra. Atmospheric Measurement Techniques, 2019, 12, 3761-3776.	1.2	24
425	Infrared-absorbing carbonaceous tar can dominate light absorption by marine-engine exhaust. Npj Climate and Atmospheric Science, 2019, 2, .	2.6	71
426	Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China. Science of the Total Environment, 2019, 689, 312-321.	3.9	35
427	Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction. Journal of Physical Chemistry Letters, 2019, 10, 4003-4009.	2.1	31
428	A new aerosol flow reactor to study secondary organic aerosol. Atmospheric Measurement Techniques, 2019, 12, 4519-4541.	1.2	10
429	An extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) for online measurement of atmospheric aerosol particles. Atmospheric Measurement Techniques, 2019, 12, 4867-4886.	1.2	91
430	A Comprehensive Nontarget Analysis for the Molecular Reconstruction of Organic Aerosol Composition from Glacier Ice Cores. Environmental Science & Technology, 2019, 53, 12565-12575.	4.6	10
431	Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10248-10263.	1.2	56
433	The Cooling Rate- and Volatility-Dependent Glass-Forming Properties of Organic Aerosols Measured by Broadband Dielectric Spectroscopy. Environmental Science & Technology, 2019, 53, 12366-12378.	4.6	37
434	On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America. Atmospheric Chemistry and Physics, 2019, 19, 9097-9123.	1.9	32
437	2D Liquid Chromatographic Fractionation with Ultra-high Resolution MS Analysis Resolves a Vast Molecular Diversity of Tropospheric Particle Organics. Environmental Science & Technology, 2019, 53, 11353-11363.	4.6	34
438	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. Environmental Science & Technology, 2019, 53, 12506-12518.	4.6	45
439	Bulk Organic Aerosol Analysis by Proton-Transfer-Reaction Mass Spectrometry: An Improved Methodology for the Determination of Total Organic Mass, O:C and H:C Elemental Ratios, and the Average Molecular Formula. Analytical Chemistry, 2019, 91, 12619-12624.	3.2	11
441	Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing. Environmental Sciences: Processes and Impacts, 2019, 21, 206-213.	1.7	4
442	Characterization of black carbon-containing fine particles in Beijing during wintertime. Atmospheric Chemistry and Physics, 2019, 19, 447-458.	1.9	84
443	Organic aerosol source apportionment in Zurich using an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF-MS) – PartÂ2: Biomass burning influences in winter. Atmospheric Chemistry and Physics, 2019, 19, 8037-8062.	1.9	57
444	Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO ₂ and NH ₃ . Atmospheric Chemistry and Physics, 2019, 19, 8063-8081.	1.9	52
445	Free tropospheric aerosols at the Mt.ÂBachelor Observatory: more oxidized and higher sulfate content compared to boundary layer aerosols. Atmospheric Chemistry and Physics, 2019, 19, 1571-1585.	1.9	25

#	Article	IF	CITATIONS
446	Insights into the O : C-dependent mechanisms controlling the evaporation of <i>α</i> -pinene secondary organic aerosol particles. Atmospheric Chemistry and Physics, 2019, 19, 4061-4073.	1.9	23
447	Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples. Atmospheric Measurement Techniques, 2019, 12, 2287-2312.	1.2	16
448	Fundamental investigation of the effect of functional groups on the variations of higher heating value. Fuel, 2019, 253, 881-886.	3.4	9
449	Effects of Photolysis on the Chemical and Optical Properties of Secondary Organic Material Over Extended Time Scales. ACS Earth and Space Chemistry, 2019, 3, 1226-1236.	1.2	19
450	Chemical equilibria of aqueous ammonium–carboxylate systems in aqueous bulk, close to and at the water–air interface. Physical Chemistry Chemical Physics, 2019, 21, 12434-12445.	1.3	9
451	Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Technology, 2019, 53, 6192-6202.	4.6	34
452	Significant secondary organic aerosol production from aqueous-phase processing of two intermediate volatility organic compounds. Atmospheric Environment, 2019, 211, 63-68.	1.9	22
453	Ultrasonic nebulization for the elemental analysis of microgram-level samples with offline aerosol mass spectrometry. Atmospheric Measurement Techniques, 2019, 12, 1659-1671.	1.2	15
454	100 Years of Progress in Gas-Phase Atmospheric Chemistry Research. Meteorological Monographs, 2019, 59, 10.1-10.52.	5.0	11
455	Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. Environmental Sciences: Processes and Impacts, 2019, 21, 1240-1254.	1.7	36
456	Anthropogenic fine aerosols dominate over the Pune region, Southwest India. Meteorology and Atmospheric Physics, 2019, 131, 1497-1508.	0.9	17
457	Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5629-5649.	1.2	28
458	Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. Annual Review of Analytical Chemistry, 2019, 12, 247-274.	2.8	30
459	Secondary organic aerosol formation from the OH-initiated oxidation of guaiacol under different experimental conditions. Atmospheric Environment, 2019, 207, 30-37.	1.9	27
460	Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation. Atmospheric Chemistry and Physics, 2019, 19, 1555-1570.	1.9	39
461	Effect of aqueous-phase processing on the formation and evolution of organic aerosol (OA) under different stages of fog life cycles. Atmospheric Environment, 2019, 206, 60-71.	1.9	29
462	Predicting the importance of oxidative aging on indoor organic aerosol concentrations using the twoâ€dimensional volatility basis set (2D― <scp>VBS</scp>). Indoor Air, 2019, 29, 616-629.	2.0	17
463	Changes in Carbon Oxidation State of Metagenomes Along Geochemical Redox Gradients. Frontiers in Microbiology, 2019, 10, 120.	1.5	16

ARTICLE IF CITATIONS Estimation of atmospheric total organic carbon (TOC) – paving the path towards carbon budget 1.9 10 464 closure. Atmospheric Chemistry and Physics, 2019, 19, 459-471. Molecular characterization of organic aerosol in the Himalayas: insight from ultra-high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2019, 19, 1115-1128. Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with 466 1.9 20 hydroxyl radicals. Atmospheric Chemistry and Physics, 2019, 19, 2001-2013. Enhancement of secondary organic aerosol formation and its oxidation state by SO<sub&gt;2&lt;/sub&gt; during photooxidation of 2-methoxyphenol. Atmospheric Chemistry and Physics, 2019, 19, 2687-2700. Using collision-induced dissociation to constrain sensitivity of ammonia chemical ionization mass spectrometry (NH<sub&gt;4&lt;/sub&gt;&lt;sup&gt;+&lt;/sup&gt;) Tj ETQqQ 0 0 rgBI /Overloc 468 1861-1870. Brief communication: Analysis of organic matter in surface snow by PTR-MS $\hat{a} \in$ implications for dry deposition dynamics in the Alps. Cryosphere, 2019, 13, 297-307. 469 1.5 Influence of Particle Surface Area Concentration on the Production of Organic Particulate Matter in 470 4.6 4 a Continuously Mixed Flow Reactor. Environmental Science & amp; Technology, 2019, 53, 4968-4976. Thermal catalytic degradation of α-HBCD, β-HBCD and γ-HBCD over Fe3O4 micro/nanomaterial: Kinetic behavior, product analysis and mechanism hypothesis. Science of the Total Environment, 2019, 668, 471 3.9 1200-1212. Using Ionic Liquids To Study the Migration of Semivolatile Organic Vapors in Smog Chamber 472 0 1.1 Experiments. Journal of Physical Chemistry A, 2019, 123, 3887-3892. Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging. Atmospheric Chemistry and Physics, 2019, 19, 139-163. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: 474 23.0 460 A Key Contributor to Atmospheric Aerosol. Chemical Reviews, 2019, 119, 3472-3509. Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure 4.2 photoionisation high-resolution mass spectrometry. Chemosphere, 2019, 224, 786-795. Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong. Environmental Science 476 4.6 47 & Technology, 2019, 53, 3001-3009. Observations of highly oxidized molecules and particle nucleation in the atmosphere of Beijing. Atmospheric Chemistry and Physics, 2019, 19, 14933-14947. Composition and origin of PM<sub&gt;2.5&lt;/sub&gt; aerosol particles in the upper 479 1.9 7 Rhine valley in summer. Atmospheric Chemistry and Physics, 2019, 19, 13189-13208. Interfacial Dimerization by Organic Radical Reactions during Heterogeneous Oxidative Aging of 480 Oxygenated Organic Aerosols. Journal of Physical Chemistry A, 2019, 123, 10782-10792 Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate with OH Radicals and Cl Atoms: An Experimental and Computational 481 1.1 2 Approach. Journal of Physical Chemistry A, 2019, 123, 10868-10884. Investigation into Photoinduced Auto-Oxidation of Polycyclic Aromatic Hydrocarbons Resulting in Brown Carbon Production. Environmental Science & amp; Technology, 2019, 53, 682-691.

#	Article	IF	CITATIONS
483	Temperature―and Humidityâ€Dependent Phase States of Secondary Organic Aerosols. Geophysical Research Letters, 2019, 46, 1005-1013.	1.5	53
484	Calibration of a particle mass spectrometer using polydispersed aerosol particles. Aerosol Science and Technology, 2019, 53, 1-7.	1.5	7
485	A novel high-volume Photochemical Emission Aging flow tube Reactor (PEAR). Aerosol Science and Technology, 2019, 53, 276-294.	1.5	20
486	Dissolved organic matter in the deep TALDICE ice core: A nano-UPLC-nano-ESI-HRMS method. Science of the Total Environment, 2020, 700, 134432.	3.9	3
487	How aging process changes characteristics of vehicle emissions? A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 1796-1828.	6.6	20
488	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Technology, 2020, 54, 1395-1405.	4.6	96
489	Insight into the formation and evolution of secondary organic aerosol in the megacity of Beijing, China. Atmospheric Environment, 2020, 220, 117070.	1.9	34
490	The oxidation mechanism of 3,4-dihydroxy-2-butanone in the aqueous phase for secondary organic aerosols formation. Atmospheric Environment, 2020, 221, 117110.	1.9	2
491	Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles. Atmospheric Environment, 2020, 220, 117064.	1.9	20
492	Diverse Reactions in Highly Functionalized Organic Aerosols during Thermal Desorption. ACS Earth and Space Chemistry, 2020, 4, 283-296.	1.2	24
493	Aqueous-phase oxidation of three phenolic compounds by hydroxyl radical: Insight into secondary organic aerosol formation yields, mechanisms, products and optical properties. Atmospheric Environment, 2020, 223, 117240.	1.9	20
494	Evidence for a kinetically controlled burying mechanism for growth of high viscosity secondary organic aerosol. Environmental Sciences: Processes and Impacts, 2020, 22, 66-83.	1.7	14
495	Aerosol Optical Tweezers Constrain the Morphology Evolution of Liquid-Liquid Phase-Separated Atmospheric Particles. CheM, 2020, 6, 204-220.	5.8	53
496	A Review on Laboratory Studies and Field Measurements of Atmospheric Organic Aerosol Hygroscopicity and Its Parameterization Based on Oxidation Levels. Current Pollution Reports, 2020, 6, 410-424.	3.1	29
497	Emerging investigator series: heterogeneous OH oxidation of primary brown carbon aerosol: effects of relative humidity and volatility. Environmental Sciences: Processes and Impacts, 2020, 22, 2162-2171.	1.7	14
498	COVIDâ€19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China. Geophysical Research Letters, 2020, 47, e2020GL089035.	1.5	33
499	Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. TrAC - Trends in Analytical Chemistry, 2020, 132, 116052.	5.8	19
500	Optical and Chemical Analysis of Absorption Enhancement by Mixed Carbonaceous Aerosols in the 2019 Woodbury, AZ, Fire Plume. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032399.	1.2	13

#	Article	IF	CITATIONS
501	Insights into the formation and properties of secondary organic aerosol at a background site in Yangtze River Delta region of China: Aqueous-phase processing vs. photochemical oxidation. Atmospheric Environment, 2020, 239, 117716.	1.9	13
502	Optical Properties and Photochemical Transformation of the Dissolved Organic Matter Released by Sargassum. Frontiers in Marine Science, 2020, 7, .	1.2	8
505	Molecular Specificity and Proton Transfer Mechanisms in Aerosol Prenucleation Clusters Relevant to New Particle Formation. Accounts of Chemical Research, 2020, 53, 2816-2827.	7.6	14
506	Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. Environmental Science & Technology, 2020, 54, 11827-11837.	4.6	28
507	Biomass burning organic aerosols significantly influence the light absorption properties of polarity-dependent organic compounds in the Pearl River Delta Region, China. Environment International, 2020, 144, 106079.	4.8	25
508	Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems. Atmospheric Chemistry and Physics, 2020, 20, 5629-5644.	1.9	31
509	Aqueous Photoreactions of Wood Smoke Brown Carbon. ACS Earth and Space Chemistry, 2020, 4, 1149-1160.	1.2	39
511	Comparison of molecular transformation of dissolved organic matter in vermicomposting and thermophilic composting by ESI-FT-ICR-MS. Environmental Science and Pollution Research, 2020, 27, 43480-43492.	2.7	19
512	Brown carbon in atmospheric fine particles in Yangzhou, China: Light absorption properties and source apportionment. Atmospheric Research, 2020, 244, 105028.	1.8	42
513	Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. Journal of Environmental Sciences, 2020, 95, 99-110.	3.2	11
514	Tracking the formation of new brominated disinfection by-products during the seawater desalination process. Environmental Science: Water Research and Technology, 2020, 6, 2521-2541.	1.2	12
515	Molecular composition and photochemical evolution of water-soluble organic carbon (WSOC) extracted from field biomass burning aerosols using high-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6115-6128.	1.9	27
516	Dimensionality-reduction techniques for complex mass spectrometric datasets: application to laboratory atmospheric organic oxidation experiments. Atmospheric Chemistry and Physics, 2020, 20, 1021-1041.	1.9	19
517	Kinetic and Mechanistic Investigation for the Gas-Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Acrylate with OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2020, 124, 2335-2351.	1.1	1
518	Characterization of anthropogenic organic aerosols by TOF-ACSM with the new capture vaporizer. Atmospheric Measurement Techniques, 2020, 13, 2457-2472.	1.2	33
519	Molecular characterization of firework-related urban aerosols using Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 6803-6820.	1.9	27
520	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. Atmospheric Chemistry and Physics, 2020, 20, 4607-4635.	1.9	66
521	Photochemical transformation of residential wood combustion emissions: dependence of organic aerosol composition on OH exposure. Atmospheric Chemistry and Physics, 2020, 20, 6357-6378.	1.9	16

#	Article	IF	CITATIONS
522	Reproducibility of Crude Oil Spectra Obtained with Ultrahigh Resolution Mass Spectrometry. Analytical Chemistry, 2020, 92, 9465-9471.	3.2	21
523	A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. Environmental Sciences: Processes and Impacts, 2020, 22, 1616-1653.	1.7	57
524	Aqueous-Phase Production of Secondary Organic Aerosols from Oxidation of Dibenzothiophene (DBT). Atmosphere, 2020, 11, 151.	1.0	15
525	Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients. Frontiers in Microbiology, 2020, 11, 229.	1.5	16
526	Characteristics of Black Carbon Particle-Bound Polycyclic Aromatic Hydrocarbons in Two Sites of Nanjing and Shanghai, China. Atmosphere, 2020, 11, 202.	1.0	13
527	Prominent Contribution of Hydrogen Peroxide to Intracellular Reactive Oxygen Species Generated upon Exposure to Naphthalene Secondary Organic Aerosols. Environmental Science and Technology Letters, 2020, 7, 171-177.	3.9	22
528	Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018. Chemosphere, 2020, 247, 125918.	4.2	17
529	Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the Megacity Beijing. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032200.	1.2	30
530	Secondary organic aerosol formation from 3CâŽ-initiated oxidation of 4-ethylguaiacol in atmospheric aqueous-phase. Science of the Total Environment, 2020, 723, 137953.	3.9	20
531	Site-Specific Mechanisms in OH-Initiated Organic Aerosol Heterogeneous Oxidation Revealed by Isomer-Resolved Molecular Characterization. ACS Earth and Space Chemistry, 2020, 4, 783-794.	1.2	12
533	Radical chemistry in oxidation flow reactors for atmospheric chemistry research. Chemical Society Reviews, 2020, 49, 2570-2616.	18.7	62
534	The effects of humidity and ammonia on the chemical composition of secondary aerosols from toluene/NOx photo-oxidation. Science of the Total Environment, 2020, 728, 138671.	3.9	20
535	Orbitrap mass spectrometry for the molecular characterization of water resource recovery from polluted surface water using membrane bioreactor. Chemosphere, 2021, 270, 128771.	4.2	1
536	Molecular dissolved organic matter removal by cotton-based adsorbents and characterization using high-resolution mass spectrometry. Science of the Total Environment, 2021, 754, 142074.	3.9	20
537	Cyclic Ion Mobility Spectrometry Coupled to High-Resolution Time-of-Flight Mass Spectrometry Equipped with Atmospheric Solid Analysis Probe for the Molecular Characterization of Combustion Particulate Matter. Journal of the American Society for Mass Spectrometry, 2021, 32, 206-217.	1.2	6
538	Characterization of lower Phong river dissolved organic matters and formations of unknown chlorine dioxide and chlorine disinfection by-products by Orbitrap mass spectrometry. Chemosphere, 2021, 265, 128653.	4.2	26
539	Atmospheric clusters to nanoparticles: Recent progress and challenges in closing the gap in chemical composition. Journal of Aerosol Science, 2021, 153, 105733.	1.8	35
540	lonic strength effect on the formation of organonitrate compounds through photochemical degradation of vanillin in liquid water of aerosols. Atmospheric Environment, 2021, 246, 118140.	1.9	20

# 541	ARTICLE Molecular characterization of size-segregated organic aerosols in the urban boundary layer in wintertime Beijing by FT-ICR MS. Faraday Discussions, 2021, 226, 457-478.	IF 1.6	CITATIONS
542	High Molecular Diversity of Organic Nitrogen in Urban Snow in North China. Environmental Science & Technology, 2021, 55, 4344-4356.	4.6	32
543	Analytical Challenges and Strategies to Decipher the Maillard Reaction Network. , 2021, , 155-173.		2
544	Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. Environmental Science & Technology, 2021, 55, 2511-2521.	4.6	58
545	Water as a reactant in the differential expression of proteins in cancer. Computational and Systems Oncology, 2021, 1, e1007.	1.1	6
546	Using highly time-resolved online mass spectrometry to examine biogenic and anthropogenic contributions to organic aerosol in Beijing. Faraday Discussions, 2021, 226, 382-408.	1.6	13
547	Molecular mechanism for rapid autoxidation in α-pinene ozonolysis. Nature Communications, 2021, 12, 878.	5.8	47
548	Atmospheric aging enhances the ice nucleation ability of biomass-burning aerosol. Science Advances, 2021, 7, .	4.7	35
549	Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 1341-1356.	1.9	18
550	Large Discrepancy in the Formation of Secondary Organic Aerosols from Structurally Similar Monoterpenes. ACS Earth and Space Chemistry, 2021, 5, 632-644.	1.2	17
551	Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phase—Chemical Evolution and Light Absorption Properties of AqSOA. Environmental Science & Technology, 2021, 55, 5199-5211.	4.6	36
552	Chemical characterisation of benzene oxidation products under high- and low-NO _{<i>x</i>} conditions using chemical ionisation mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 3473-3490.	1.9	16
553	Aerosol characteristics at the Southern Great Plains site during the HI-SCALE campaign. Atmospheric Chemistry and Physics, 2021, 21, 5101-5116.	1.9	16
555	Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport. Atmospheric Chemistry and Physics, 2021, 21, 3763-3775.	1.9	22
557	Influence of the NO/NO ₂ Ratio on Oxidation Product Distributions under High-NO Conditions. Environmental Science & Technology, 2021, 55, 6594-6601.	4.6	13
558	Dynamic Oxidative Potential of Organic Aerosol from Heated Cooking Oil. ACS Earth and Space Chemistry, 2021, 5, 1150-1162.	1.2	13
559	Chemical composition of PM _{2.5} in October 2017 Northern California wildfire plumes. Atmospheric Chemistry and Physics, 2021, 21, 5719-5737.	1.9	23
560	Estimation of the carbon valence from its average formal oxidation state in the soil organic matter. European Journal of Soil Science, 2021, 72, 2225-2230.	1.8	5

#	Article	IF	CITATIONS
561	Elemental analysis of oxygenated organic coating on black carbon particles using a soot-particle aerosol mass spectrometer. Atmospheric Measurement Techniques, 2021, 14, 2799-2812.	1.2	5
562	Characterization of secondary organic aerosol from heated-cooking-oil emissions: evolution in composition and volatility. Atmospheric Chemistry and Physics, 2021, 21, 5137-5149.	1.9	16
564	An Automated Methodology for Non-targeted Compositional Analysis of Small Molecules in High Complexity Environmental Matrices Using Coupled Ultra Performance Liquid Chromatography Orbitrap Mass Spectrometry. Environmental Science & Technology, 2021, 55, 7365-7375.	4.6	18
565	The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. Rapid Communications in Mass Spectrometry, 2021, 35, e9113.	0.7	13
567	Characteristics, sources and evolution processes of atmospheric organic aerosols at a roadside site in Hong Kong. Atmospheric Environment, 2021, 252, 118298.	1.9	13
569	On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames. Atmospheric Chemistry and Physics, 2021, 21, 7845-7862.	1.9	10
570	Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 2: Spatiotemporal trends. Atmospheric Measurement Techniques, 2021, 14, 4355-4374.	1.2	6
573	Sizeâ€dependent Molecular Characteristics and Possible Sources of Organic Aerosols at a Coastal New Particle Formation Hotspot of East China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034610.	1.2	0
574	Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China. Atmospheric Chemistry and Physics, 2021, 21, 8531-8555.	1.9	15
575	Effect of relative humidity on SOA formation from aromatic hydrocarbons: Implications from the evolution of gas- and particle-phase species. Science of the Total Environment, 2021, 773, 145015.	3.9	34
576	Soil Organic Matter Characterization by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR MS): A Critical Review of Sample Preparation, Analysis, and Data Interpretation. Environmental Science & Technology, 2021, 55, 9637-9656.	4.6	88
578	Characterization of thermal decomposition of oxygenated organic compounds in FIGAERO-CIMS. Aerosol Science and Technology, 2021, 55, 1321-1342.	1.5	16
579	Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nature Chemistry, 2021, 13, 771-777.	6.6	35
580	Molecular composition and volatility of multi-generation products formed from isoprene oxidation by nitrate radical. Atmospheric Chemistry and Physics, 2021, 21, 10799-10824.	1.9	19
581	Estimating mean molecular weight, carbon number, and OMâ^•OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network. Atmospheric Measurement Techniques, 2021, 14, 4805-4827.	1.2	5
584	Formation of Oxidized Gases and Secondary Organic Aerosol from a Commercial Oxidant-Generating Electronic Air Cleaner. Environmental Science and Technology Letters, 2021, 8, 691-698.	3.9	17
585	Effects of driving conditions on secondary aerosol formation from a GDI vehicle using an oxidation flow reactor. Environmental Pollution, 2021, 282, 117069.	3.7	10
586	Molecular-Level Study of the Photo-Oxidation of Aqueous-Phase Guaiacyl Acetone in the Presence of ³ C*: Formation of Brown Carbon Products. ACS Earth and Space Chemistry, 2021, 5, 1983-1996.	1.2	15

		CITATION I	Report	
#	Article		IF	CITATIONS
588	Diel cycle impacts on the chemical and light absorption properties of organic carbon aeros wildfires in the western United States. Atmospheric Chemistry and Physics, 2021, 21, 118	sol from 43-11856.	1.9	9
589	Temperature and volatile organic compound concentrations as controlling factors for che composition of <i>α</i> -pinene-derived secondary organic Atmospheric Chemistry and Physics, 2021, 21, 11545-11562.	mical aerosol.	1.9	1
590	Sources of Gas-Phase Species in an Art Museum from Comprehensive Real-Time Measuren Earth and Space Chemistry, 2021, 5, 2252-2267.	nents. ACS	1.2	7
591	Realâ€Time Characterization of Aerosol Compositions, Sources, and Aging Processes in G During PRIDEâ€GBA 2018 Campaign. Journal of Geophysical Research D: Atmospheres, 20 e2021JD035114.	uangzhou 21, 126,	1.2	25
592	Wet Deposition of Mercury and Dissolved Organic Carbon during Pre-Monsoon and Mons at Sitapuri Site in Delhi (India). Current World Environment Journal, 2021, 16, 530-539.	oon Periods	0.2	0
594	Relation between lignin molecular profile and fungal exo-proteome during kraft lignin mod by Trametes hirsuta LE-BIN 072. Bioresource Technology, 2021, 335, 125229.	lification	4.8	13
597	Exploring the composition and volatility of secondary organic aerosols in mixed anthropog biogenic precursor systems. Atmospheric Chemistry and Physics, 2021, 21, 14251-14273	genic and ·	1.9	20
598	Connecting the Age and Reactivity of Organic Carbon to Watershed Geology and Land Us Tributaries of the Hudson River. Journal of Geophysical Research G: Biogeosciences, 2021, e2021JG006494.	ie in 126,	1.3	2
600	Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in diffe formation regimes. Atmospheric Environment, 2021, 261, 118603.	rent O3	1.9	8
601	Extreme Molecular Complexity Resulting in a Continuum of Carbonaceous Species in Bion Tar Balls from Wildfire Smoke. ACS Earth and Space Chemistry, 2021, 5, 2729-2739.	nass Burning	1.2	14
602	Evolution of Atmospheric Total Organic Carbon from Petrochemical Mixtures. Environmer Science & Technology, 2021, 55, 12841-12851.	Ital	4.6	3
603	Molecular and optical characterization reveals the preservation and sulfurization of chemi diverse porewater dissolved organic matter in oligohaline and brackish Chesapeake Bay se Organic Geochemistry, 2021, 161, 104324.	cally diments.	0.9	11
604	Vapor- and aerosol-phase atmospheric organic matter in urban air of the Midwest USA. At Environment, 2021, 264, 118705.	mospheric	1.9	5
605	Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoli driving conditions (idling, cruising). Science of the Total Environment, 2021, 795, 148809	ne) and	3.9	14
606	Secondary organic aerosols produced from photochemical oxidation of secondarily evapo biomass burning organic gases: Chemical composition, toxicity, optical properties, and cli Environment International, 2021, 157, 106801.	rated mate effect.	4.8	11
607	Molecular characterization of organic aerosols in Taiyuan, China: Seasonal variation and so identification. Science of the Total Environment, 2021, 800, 149419.	burce	3.9	12
608	To standardize by mass of soil or organic carbon? A comparison of permanganate oxidizat (POXC) assay methods. Geoderma, 2021, 404, 115392.	le carbon	2.3	5
609	How do the chemical characteristics of organic matter explain differences among its deter in calcareous soils?. Geoderma, 2022, 406, 115454.	minations	2.3	9

#	Article	IF	CITATIONS
610	A computationally efficient model to represent the chemistry, thermodynamics, and microphysics of secondary organic aerosols (simpleSOM): model development and application to α-pinene SOA. Environmental Science Atmospheres, 2021, 1, 372-394.	0.9	3
611	Experimental and Computational Investigations of the Tropospheric Photooxidation Reactions of 1,1,1,3,3,3-Hexafluoro-2-Methyl-2-Propanol Initiated by OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2021, 125, 523-535.	1.1	4
612	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 2017, 55, 509-559.	9.0	548
613	Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.	0.1	29
614	Tracers for Biogenic Secondary Organic Aerosol from α-Pinene and Related Monoterpenes: An Overview. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 227-238.	0.1	8
615	Molecular composition and sources of water-soluble organic aerosol in summer in Beijing. Chemosphere, 2020, 255, 126850.	4.2	9
616	Role of Relative Humidity in the Secondary Organic Aerosol Formation from High-NO _{<i>x</i>} Photooxidation of Long-Chain Alkanes: <i>n</i> -Dodecane Case Study. ACS Earth and Space Chemistry, 2020, 4, 2414-2425.	1.2	5
617	Where Did This Particle Come From? Sources of Particle Number and Mass for Human Exposure Estimates. Issues in Environmental Science and Technology, 2016, , 35-71.	0.4	5
618	Bulk chemical characteristics of soluble polar organic molecules formed through condensation of formaldehyde: Comparison with soluble organic molecules in Murchison meteorite. Geochemical Journal, 2019, 53, 41-51.	0.5	7
619	Cas-phase advanced oxidation as an integrated air pollution control technique. AIMS Environmental Science, 2016, 3, 141-158.	0.7	14
620	Aqueous Secondary Organic Aerosol Formation in Ambient Cloud Water Photo-Oxidations. Aerosol and Air Quality Research, 2018, 18, 15-25.	0.9	14
621	Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmospheric Chemistry and Physics, 2020, 20, 12697-12719.	1.9	33
622	Differences in the composition of organic aerosols between winter and summer in Beijing: a study by direct-infusion ultrahigh-resolution mass spectrometry. Atmospheric Chemistry and Physics, 2020, 20, 13303-13318.	1.9	15
623	Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. Atmospheric Chemistry and Physics, 2020, 20, 13319-13341.	1.9	44
624	Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements. Atmospheric Chemistry and Physics, 2020, 20, 8421-8440.	1.9	42
625	Oxygenated products formed from OH-initiated reactions of trimethylbenzene: autoxidation and accretion. Atmospheric Chemistry and Physics, 2020, 20, 9563-9579.	1.9	29
677	A new approach for measuring the carbon and oxygen content of atmospherically relevant compounds and mixtures. Atmospheric Measurement Techniques, 2020, 13, 4911-4925.	1.2	5
682	Proteomic indicators of oxidation and hydration state in colorectal cancer. PeerJ, 2016, 4, e2238.	0.9	8

#	Article	IF	Citations
683	Secondary organic aerosol formation from gasoline and diesel vehicle exhaust under light and dark conditions. Environmental Science Atmospheres, 2022, 2, 46-64.	0.9	5
684	Comparative Assessment of Cooking Emission Contributions to Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry Measurements. Environmental Science & Technology, 2021, 55, 14526-14535.	4.6	21
685	Technical note: Adsorption and desorption equilibria from statistical thermodynamics and rates from transition state theory. Atmospheric Chemistry and Physics, 2021, 21, 15725-15753.	1.9	11
686	Levetiracetum Induced Angioedema without Prior Reaction to Phenytoin. Eastern Journal of Psychiatry, 2021, 19, 33-35.	0.0	0
687	Evaluation of a New Aerosol Chemical Speciation Monitor (ACSM) System at an Urban Site in Atlanta, GA: The Use of Capture Vaporizer and PM _{2.5} Inlet. ACS Earth and Space Chemistry, 2021, 5, 2565-2576.	1.2	16
714	The Chemical Characteristics and Formation of Potential Secondary Aerosol (PSA) using an Oxidation Flow Reactor (OFR) in the Summer: Focus on the Residential Area, Suwon. Journal of Korean Society for Atmospheric Environment, 2019, 35, 786-801.	0.2	1
716	New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002266.	1.3	15
717	Characterization of dissolved organic carbon and disinfection by-products in biochar filter leachate using orbitrap mass spectrometry. Journal of Hazardous Materials, 2022, 424, 127691.	6.5	5
718	Chemical and physical characterization of oil shale combustion emissions in Estonia. Atmospheric Environment: X, 2021, 12, 100139.	0.8	1
719	Liquid–liquid phase separation and morphologies in organic particles consisting of <i>α</i> -pinene and <i>β</i> -caryophyllene ozonolysis products and mixtures with commercially available organic compounds. Atmospheric Chemistry and Physics. 2020. 20. 11263-11273.	1.9	6
720	Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules, 2021, 26, 7174.	1.7	6
721	Response of atmospheric composition to COVID-19 lockdown measures during spring in the Paris region (France). Atmospheric Chemistry and Physics, 2021, 21, 17167-17183.	1.9	20
722	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. Environmental Science & Technology, 2022, 56, 770-778.	4.6	16
723	Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2021, 21, 16631-16644.	1.9	11
724	Transport-driven aerosol differences above and below the canopy of a mixed deciduous forest. Atmospheric Chemistry and Physics, 2021, 21, 17031-17050.	1.9	0
725	Changes in molecular dissolved organic matter and disinfection by-product formation during granular activated carbon filtration by unknown screening analysis with Orbitrap mass spectrometry. Water Research, 2022, 211, 118039.	5.3	14
726	Source and formation process impact the chemodiversity of rainwater dissolved organic matter along the Yangtze River Basin in summer. Water Research, 2022, 211, 118024.	5.3	37
727	Aqueous secondary organic aerosol formation from the direct photosensitized oxidation of vanillin in the absence and presence of ammonium nitrate. Atmospheric Chemistry and Physics, 2022, 22, 273-293.	1.9	34

#	Article	IF	CITATIONS
728	Volatile organic compounds in wintertime North China Plain: Insights from measurements of proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS). Journal of Environmental Sciences, 2022, 114, 98-114.	3.2	10
729	Extension of the AIOMFAC model by iodine and carbonate species: applications for aerosol acidity and cloud droplet activation. Atmospheric Chemistry and Physics, 2022, 22, 973-1013.	1.9	8
730	Highly oxidized organic aerosols in Beijing: Possible contribution of aqueous-phase chemistry. Atmospheric Environment, 2022, 273, 118971.	1.9	3
731	Effects of catalytic ozonation catalyzed by TiO2 activated carbon and biochar on dissolved organic matter removal and disinfection by-product formations investigated by Orbitrap mass spectrometry. Journal of Environmental Chemical Engineering, 2022, 10, 107215.	3.3	16
732	Characterization of molecular dissolved organic matter removed by modified eucalyptus-based biochar and disinfection by-product formation potential using Orbitrap mass spectrometric analysis. Science of the Total Environment, 2022, 820, 153299.	3.9	10
733	Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environmental Health Perspectives, 2022, 130, 27003.	2.8	44
734	Are reactive oxygen species (ROS) a suitable metric to predict toxicity of carbonaceous aerosol particles?. Atmospheric Chemistry and Physics, 2022, 22, 1793-1809.	1.9	30
735	Pretreatment Methods Suitable for Comprehensive Non-Target Analysis of Dissolved Organic Matter In Urban River Water by High-Resolution LC/MS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, III_251-III_260.	0.1	0
736	Dwindling Aromatic Compounds in Fine Aerosols from Chunk Coal to Briquette Combustion. SSRN Electronic Journal, 0, , .	0.4	0
737	Dwindling Aromatic Compounds in Fine Aerosols from Chunk Coal to Briquette Combustion. SSRN Electronic Journal, 0, , .	0.4	0
738	Non-Targeted Screening of Volatile Organic Compounds in a Museum in China Using Gc-Orbitrap Mass Spectrometry. SSRN Electronic Journal, 0, , .	0.4	0
739	Roles of semivolatile and intermediate-volatility organic compounds in secondary organic aerosol formation and its implication: A review. Journal of Environmental Sciences, 2022, 114, 259-285.	3.2	12
740	Secondary organic aerosol formation from straw burning using an oxidation flow reactor. Journal of Environmental Sciences, 2022, 114, 249-258.	3.2	4
741	Nitrogen-Containing Compounds Enhance Light Absorption of Aromatic-Derived Brown Carbon. Environmental Science & Technology, 2022, 56, 4005-4016.	4.6	19
742	Brown carbon from biomass burning imposes strong circum-Arctic warming. One Earth, 2022, 5, 293-304.	3.6	23
743	Molecular composition of dissolved organic matter in saline lakes of the Qing-Tibetan Plateau. Organic Geochemistry, 2022, 167, 104400.	0.9	12
744	Nontarget Screening Exhibits a Seasonal Cycle of PM _{2.5} Organic Aerosol Composition in Beijing. Environmental Science & amp; Technology, 2022, 56, 7017-7028.	4.6	8
745	Molecular Characterization of Water-Soluble Aerosol Particle Extracts by Ultrahigh-Resolution Mass Spectrometry: Observation of Industrial Emissions and an Atmospherically Aged Wildfire Plume at Lake Baikal. ACS Earth and Space Chemistry, 2022, 6, 1095-1107.	1.2	12

#	Article	IF	CITATIONS
746	Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	51
747	Dynamic Evolution and Covariant Response Mechanism of Volatile Organic Compounds and Residual Functional Groups during the Online Pyrolysis of Coal and Biomass Fuels. Environmental Science & Technology, 2022, 56, 5409-5420.	4.6	14
748	High resolution chemical fingerprinting and real-time oxidation dynamics of asphalt binders using Vocus Proton Transfer Reaction (PTR-TOF) mass spectrometry. Fuel, 2022, 320, 123840.	3.4	8
749	Evolution of volatility and composition in sesquiterpene-mixed and <i>l±</i> -pinene secondary organic aerosol particles during isothermal evaporation. Atmospheric Chemistry and Physics, 2021, 21, 18283-18302.	1.9	6
750	Synergetic effects of NH ₃ and NO _{<i>x</i>} on the production and optical absorption of secondary organic aerosol formation from toluene photooxidation. Atmospheric Chemistry and Physics, 2021, 21, 17759-17773.	1.9	13
751	Exploring the relationships among stoichiometric coefficients, number of transferred electrons, mean oxidation number of carbons, and oxidative ratio in organic combustion reactions. Chemistry Teacher International, 2022, 4, 39-46.	0.9	2
752	Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. Environmental Science & Technology, 2022, 56, 109-118.	4.6	13
753	Non-targeted screening of volatile organic compounds in a museum in China Using GC-Orbitrap mass spectrometry. Science of the Total Environment, 2022, 835, 155277.	3.9	5
754	Complexity in the Evolution, Composition, and Spectroscopy of Brown Carbon in Aircraft Measurements of Wildfire Plumes. Geophysical Research Letters, 2022, 49, .	1.5	10
755	Characterization of DBP precursor removal by magnetic ion exchange resin using spectroscopy and high-resolution mass spectrometry. Water Research, 2022, 217, 118435.	5.3	17
763	On the Complementarity and Informative Value of Different Electron Ionization Mass Spectrometric Techniques for the Chemical Analysis of Secondary Organic Aerosols. ACS Earth and Space Chemistry, 2022, 6, 1358-1374.	1.2	4
764	Molecular Characterization of Organosulfate-Dominated Aerosols over Agricultural Fields from the Southern Great Plains by High-Resolution Mass Spectrometry. ACS Earth and Space Chemistry, 2022, 6, 1733-1741.	1.2	5
765	Chemical Links Between Redox Conditions and Estimated Community Proteomes from 16S rRNA and Reference Protein Sequences. Microbial Ecology, 2023, 85, 1338-1355.	1.4	3
766	Dwindling aromatic compounds in fine aerosols from chunk coal to honeycomb briquette combustion. Science of the Total Environment, 2022, 838, 155971.	3.9	1
767	Single particle measurements of mixing between mimics for biomass burning and aged secondary organic aerosols. Environmental Science Atmospheres, 0, , .	0.9	2
768	Effects of the VACES particle concentrator on secondary organic aerosol and ambient particle composition. Aerosol Science and Technology, 2022, 56, 785-801.	1.5	0
770	Optical and chemical properties and oxidative potential of aqueous-phase products from OH and ³ C ^{â^—} -initiated photooxidation of eugenol. Atmospheric Chemistry and Physics, 2022, 22, 7793-7814.	1.9	6
771	Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 2022, 22, 8073-8096.	1.9	7

#	Article	IF	CITATIONS
772	Ch3MS-RF: a random forest model for chemical characterization and improved quantification of unidentified atmospheric organics detected by chromatography–mass spectrometry techniques. Atmospheric Measurement Techniques, 2022, 15, 3779-3803.	1.2	7
773	Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells. Environment International, 2022, 166, 107366.	4.8	18
774	Pm2.5-Mediated Photochemical Reaction of Typical Toluene in Real Air Matrix with Identification of Products by Isotopic Tracing and Ft-Icr Ms. SSRN Electronic Journal, 0, , .	0.4	0
775	Molecular characteristics, sources and environmental risk of aromatic compounds in particulate matter during COVID-2019: Nontarget screening by ultra-high resolution mass spectrometry and comprehensive two-dimensional gas chromatography. Environment International, 2022, 167, 107421.	4.8	3
776	Highly oxygenated organic molecules with high unsaturation formed upon photochemical aging of soot. CheM, 2022, 8, 2688-2699.	5.8	10
777	Oxygenated volatile organic compounds (VOCs) as significant but varied contributors to VOC emissions from vehicles. Atmospheric Chemistry and Physics, 2022, 22, 9703-9720.	1.9	19
778	Combined application of online FIGAERO-CIMS and offline LC-Orbitrap mass spectrometry (MS) to characterize the chemical composition of secondary organic aerosol (SOA) in smog chamber studies. Atmospheric Measurement Techniques, 2022, 15, 4385-4406.	1.2	5
779	Monoterpene Photooxidation in a Continuous-Flow Chamber: SOA Yields and Impacts of Oxidants, NO <i>_x</i> , and VOC Precursors. Environmental Science & Technology, 0, , .	4.6	1
780	Chemical composition of secondary organic aerosol particles formed from mixtures of anthropogenic and biogenic precursors. Atmospheric Chemistry and Physics, 2022, 22, 9799-9826.	1.9	1
781	Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light. Angewandte Chemie, 0, , .	1.6	0
782	Insight into the Overlooked Photochemical Decomposition of Atmospheric Surface Nitrates Triggered by Visible Light. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
783	PM2.5-mediated photochemical reaction of typical toluene in real air matrix with identification of products by isotopic tracing and FT-ICR MS. Environmental Pollution, 2022, 313, 120181.	3.7	0
784	Effects of NO2 and RH on secondary organic aerosol formation and light absorption from OH oxidation of ο-xylene. Chemosphere, 2022, 308, 136541.	4.2	2
785	Secondary Aerosol Formation and Their Modeling. , 2022, , 165-183.		7
786	Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements. Geophysical Research Letters, 2022, 49, .	1.5	5
787	Smog Chamber Study on the Role of NO <i>_x</i> in SOA and O ₃ Formation from Aromatic Hydrocarbons. Environmental Science & Technology, 2022, 56, 13654-13663.	4.6	17
788	Heterogeneous Dynamic Behavior and Synergetic Evolution Mechanism of Internal Components and Released Gases during the Pyrolysis of Aquatic Biomass. Environmental Science & (amp; Technology, 2022, 56, 13595-13606.	4.6	7
789	Measurement report: Characterisation and sources of the secondary organic carbon in a Chinese megacity over 5 years from 2016 to 2020. Atmospheric Chemistry and Physics, 2022, 22, 12789-12802.	1.9	6

#	Article	IF	CITATIONS
790	Modeling atmospheric aging of small-scale wood combustion emissions: distinguishing causal effects from non-causal associations. Environmental Science Atmospheres, 2022, 2, 1551-1567.	0.9	1
791	Molecular Signatures and Sources of Fluorescent Components in Atmospheric Organic Matter in South China. Environmental Science and Technology Letters, 2022, 9, 913-920.	3.9	9
792	Effects of Atmospheric Aging Processes on Nascent Sea Spray Aerosol Physicochemical Properties. ACS Earth and Space Chemistry, 2022, 6, 2732-2744.	1.2	7
793	The Atmosphere. , 2023, , 317-478.		0
794	Secondary organic aerosol formation in China from urban-lifestyle sources: Vehicle exhaust and cooking emission. Science of the Total Environment, 2023, 857, 159340.	3.9	5
795	Cruise observation of the marine atmosphere and ship emissions in South China Sea: Aerosol composition, sources, and the aging process. Environmental Pollution, 2023, 316, 120539.	3.7	3
796	Improving the Sensitivity of Fourier Transform Mass Spectrometer (Orbitrap) for Online Measurements of Atmospheric Vapors. Analytical Chemistry, 2022, 94, 15746-15753.	3.2	5
797	Anthropogenic and Biogenic Contributions to the Organic Composition of Coastal Submicron Sea Spray Aerosol. Environmental Science & amp; Technology, 2022, 56, 16633-16642.	4.6	0
798	Secondary organic aerosol formation from mixed volatile organic compounds: Effect of RO2 chemistry and precursor concentration. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	9
799	Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method. Environmental Science Atmospheres, 2023, 3, 230-237.	0.9	1
800	Molecular level characterization of the biolability of rainwater dissolved organic matter. Science of the Total Environment, 2023, 862, 160709.	3.9	1
801	Seasonal Variation of Aerosol Composition and Sources of Water-Soluble Organic Carbon in an Eastern City of China. Atmosphere, 2022, 13, 1968.	1.0	0
802	Mass spectrometry-based <i>Aerosolomics</i> : a new approach to resolve sources, composition, and partitioning of secondary organic aerosol. Atmospheric Measurement Techniques, 2022, 15, 7137-7154.	1.2	4
803	Enigma of Urban Gaseous Oxygenated Organic Molecules: Precursor Type, Role of NO _{<i>x</i>} , and Degree of Oxygenation. Environmental Science & Technology, 2023, 57, 64-75.	4.6	7
804	Real-Time Emission, Chemical Properties, and Dynamic Evolution Mechanism of Volatile Organic Compounds during Co-Pyrolysis of Rice Straw and Semi-Bituminous Coal. ACS ES&T Engineering, 2023, 3, 690-705.	3.7	3
805	Decomposition of Total Organic Halogen Formed during Chlorination: The Iceberg of Halogenated Disinfection Byproducts Was Previously Underestimated. Environmental Science & Technology, 2023, 57, 1433-1442.	4.6	10
806	Dynamic Wood Smoke Aerosol Toxicity during Oxidative Atmospheric Aging. Environmental Science & Technology, 2023, 57, 1246-1256.	4.6	7
807	Linking Cell Health and Reactive Oxygen Species from Secondary Organic Aerosols Exposure. Environmental Science & Technology, 2023, 57, 1039-1048.	4.6	8

#	Article	IF	CITATIONS
808	Atmospheric Oxidation and Secondary Particle Formation. Advanced Topics in Science and Technology in China, 2023, , 19-91.	0.0	0
809	Measurement report: Changes in light absorption and molecular composition of water-soluble humic-like substances during a winter haze bloom-decay process in Guangzhou, China. Atmospheric Chemistry and Physics, 2023, 23, 963-979.	1.9	5
810	Chemical Signatures of Seasonally Unique Anthropogenic Influences on Organic Aerosol Composition in the Central Amazon. Environmental Science & Technology, 2023, 57, 6263-6272.	4.6	1
811	Changes in molecular dissolved organic matter during coagulation/sedimentation and chlorine and chlorine chlorine dioxide disinfection by non-target (or unknown) screening analysis. Journal of Water Process Engineering, 2023, 52, 103528.	2.6	4
812	Molecular characteristics, sources and transformation of water-insoluble organic matter in cloud water. Environmental Pollution, 2023, 325, 121430.	3.7	0
813	First insights into the molecular characteristics of atmospheric organic aerosols from lasi, Romania: Behavior of biogenic versus anthropogenic contributions and potential implications. Science of the Total Environment, 2023, 877, 162830.	3.9	2
814	Real time measurements of the secondary organic aerosol formation and aging from ambient air using an oxidation flow reactor in seoul during winter. Environmental Pollution, 2023, 327, 121464.	3.7	3
815	The first balloon-borne sample analysis of atmospheric carbonaceous components reveals new insights into formation processes. Chemosphere, 2023, 326, 138421.	4.2	0
816	Urban particulate water-soluble organic matter in winter: Size-resolved molecular characterization, role of the S-containing compounds on haze formation. Science of the Total Environment, 2023, 875, 162657.	3.9	4
817	Regional Sources and Seasonal Variability of Rainwater Dissolved Organic and Inorganic Nitrogen at a Midâ€Atlantic, USA Coastal Site. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	1
818	Molecular characteristics of ambient organic aerosols in Shanghai winter before and after the COVID-19 outbreak. Science of the Total Environment, 2023, 869, 161811.	3.9	0
819	Molecular transformation of organic nitrogen in Antarctic penguin guano-affected soil. Environment International, 2023, 172, 107796.	4.8	3
820	Impact of biogenic secondary organic aerosol (SOA) loading on the molecular composition of wintertime PM _{2.5} in urban Tianjin: an insight from Fourier transform ion cyclotron resonance mass spectrometry. Atmospheric Chemistry and Physics, 2023, 23, 2061-2077.	1.9	4
822	PyC2MC: An Open-Source Software Solution for Visualization and Treatment of High-Resolution Mass Spectrometry Data. Journal of the American Society for Mass Spectrometry, 2023, 34, 617-626.	1.2	6
823	Simple mathematical equations for calculating oxidation number of organic carbons, number of transferred electrons, oxidative ratio,Âand mole of oxygen molecule in combustion reactions. Chemistry Teacher International, 2023, .	0.9	0
824	Comparison of aqueous secondary organic aerosol (aqSOA) product distributions from guaiacol oxidation by non-phenolic and phenolic methoxybenzaldehydes as photosensitizers in the absence and presence of ammonium nitrate. Atmospheric Chemistry and Physics, 2023, 23, 2859-2875.	1.9	7
826	Polar Nitrated Aromatic Compounds in Urban Fine Particulate Matter: A Focus on Formation via an Aqueous-Phase Radical Mechanism. Environmental Science & Technology, 2023, 57, 5160-5168.	4.6	7
827	Drivers of High Concentrations of Secondary Organic Aerosols in Northern China during the COVID-19 Lockdowns. Environmental Science & amp; Technology, 2023, 57, 5521-5531.	4.6	3

#	Article	IF	CITATIONS
828	Fresh and Aged Organic Aerosol Emissions from Renewable Diesel-Like Fuels HVO and RME in a Heavy-Duty Compression Ignition Engine. , 0, , .		0
829	Synergistic Effects of SO ₂ and NH ₃ Coexistence on SOA Formation from Gasoline Evaporative Emissions. Environmental Science & amp; Technology, 2023, 57, 6616-6625.	4.6	4