Rapid Range Shifts of Species Associated with High Lev

Science 333, 1024-1026 DOI: 10.1126/science.1206432

Citation Report

#	Article	IF	CITATIONS
1	Boreal Forest Bird Assemblages and Their Conservation. , 0, , 183-230.		3
2	Population Trends and Conservation Status of Forest Birds. , 0, , 389-426.		6
3	Island flora and fauna: equilibrium and nonequilibrium. , 0, , 121-132.		4
4	The Value of Biodiversity. , 0, , 30-61.		0
6	Communities Under Climate Change. Science, 2011, 334, 1070-1071.	6.0	45
7	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
8	Elevational Ranges of Birds on a Tropical Montane Gradient Lag behind Warming Temperatures. PLoS ONE, 2011, 6, e28535.	1.1	127
9	Climate-driven variation in food availability between the core and range edge of the endangered northern bettong (Bettongia tropica). Australian Journal of Zoology, 2011, 59, 177.	0.6	12
12	Predicting the biodiversity response to climate change: challenges and advances. Systematics and Biodiversity, 2011, 9, 307-317.	0.5	16
13	Moving farther and faster. Nature Climate Change, 2011, 1, 396-397.	8.1	6
14	Projected poleward shift of king penguins' (<i>Aptenodytes patagonicus</i>) foraging range at the Crozet Islands, southern Indian Ocean. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2515-2523.	1.2	94
15	Response of an arctic predator guild to collapsing lemming cycles. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4417-4422.	1.2	92
16	Environmental Proteomics of the Mussel Mytilus: Implications for Tolerance to Stress and Change in Limits of Biogeographic Ranges in Response to Climate Change. Integrative and Comparative Biology, 2012, 52, 648-664.	0.9	64
17	Quantifying animal phenology in the aerosphere at a continental scale using NEXRAD weather radars. Ecosphere, 2012, 3, art16.	1.0	45
18	Evolutionary and Ecological Responses to Anthropogenic Climate Change. Plant Physiology, 2012, 160, 1728-1740.	2.3	117
19	Evolution of wild cereals during 28 years of global warming in Israel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3412-3415.	3.3	175
20	Spring partitioning of Disko Bay, West Greenland, by Arctic and Subarctic baleen whales. ICES Journal of Marine Science, 2012, 69, 1226-1233.	1.2	34
22	"Evolution Canyon,―a potential microscale monitor of global warming across life. Proceedings of the United States of America, 2012, 109, 2960-2965	3.3	87

#	Article	IF	CITATIONS
23	The last great forest: a review of the status of invasive species in the North American boreal forest. Forestry, 2012, 85, 329-340.	1.2	43
24	NEON terrestrial field observations: designing continentalâ€scale, standardized sampling. Ecosphere, 2012, 3, 1-17.	1.0	74
25	Local Conditions, Not Regional Gradients, Drive Demographic Variation of Giant Ragweed (<i>Ambrosia trifida</i>) and Common Sunflower (<i>Helianthus annuus</i>) Across Northern U.S. Maize Belt. Weed Science, 2012, 60, 440-450.	0.8	18
26	Climate-induced range contraction in the Malagasy endemic plant genera Mediusella and Xerochlamys (Sarcolaenaceae). Plant Ecology and Evolution, 2012, 145, 302-312.	0.3	3
27	Feeling the heat: Australian landbirds and climate change. Emu, 2012, 112, i-vii.	0.2	117
28	Declines in pinyon pine cone production associated with regional warming. Ecosphere, 2012, 3, 1-14.	1.0	95
29	Possible climate-induced shift of stoneflies in a southern Appalachian catchment. Freshwater Science, 2012, 31, 765-774.	0.9	60
30	Connecting ecology and conservation through experiment. Nature Methods, 2012, 9, 794-795.	9.0	12
31	Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2012, 2, 619-622.	8.1	582
32	On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2072-2080.	1.2	368
33	The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 2012, 18, 3279-3290.	4.2	336
34	Extinction and climate change. Nature, 2012, 482, E4-E5.	13.7	34
35	Reestablishment of ion homeostasis during chill-coma recovery in the cricket <i>Gryllus pennsylvanicus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20750-20755.	3.3	147
36	Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21378-21383.	3.3	90
37	Functional and Phylogenetic Approaches to Forecasting Species' Responses to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 205-226.	3.8	181
38	Diversity of birds in eastern <scp>N</scp> orth <scp>A</scp> merica shifts north with global warming. Ecology and Evolution, 2012, 2, 3052-3060.	0.8	22
39	Development of risk matrices for evaluating climatic change responses of forested habitats. Climatic Change, 2012, 114, 231-243.	1.7	27
40	Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.	3.3	185

ARTICLE IF CITATIONS # Invasive Species Unchecked by Climate. Science, 2012, 335, 537-538. 6.0 13 41 Climate change-driven species' range shifts filtered by photoperiodism. Nature Climate Change, 2012, 2, 8.1 239-242. Novel communities from climate change. Philosophical Transactions of the Royal Society B: Biological 43 1.8 165 Sciences, 2012, 367, 2913-2922. Climate change impacts on body size and food web structure on mountain ecosystems. Philosophical 44 1.8 Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3050-3057. "STRANGERS" IN PARADISE: MODELING THE BIOGEOGRAPHIC RANGE EXPANSION OF THE FORAMINIFERA 45 0.1 59 AMPHISTEGINA IN THE MEDITERRANEAN SEA. Journal of Foraminiferal Research, 2012, 42, 234-244. Seed dispersal in changing landscapes. Biological Conservation, 2012, 146, 1-13. 366 47 The effects of climate change on tropical birds. Biological Conservation, 2012, 148, 1-18. 1.9 276 Overcoming extreme weather challenges: Successful but variable assisted colonization of wild 1.9 48 34 orchids in southwestern China. Biological Conservation, 2012, 150, 68-75. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological 49 1.2 125 Modelling, 2012, 244, 127-131. He and Hubbell reply. Nature, 2012, 482, E5-E6. 13.7 Geometry and scale in species–area relationships. Nature, 2012, 482, E3-E4. 51 13.7 48 Climateâ€driven range retraction of an Arctic freshwater crustacean. Freshwater Biology, 2012, 57, 1.2 2591-2601. Amazon's vulnerability to climate change heightened by deforestation and manâ€made dispersal barriers. 54 4.2 48 Global Change Biology, 2012, 18, 3606-3614. Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Clobal Change Biology, 2012, 18, 1335-1341. 4.2 The Changing Distribution Patterns of Ticks (Ixodida) in Europe in Relation to Emerging Tick-Borne 56 0.4 4 Diseases. Parasitology Research Monographs, 2012, , 151-166. Impacts of Warming on the Structure and Functioning of Aquatic Communities. Advances in 106 Ecological Research, 2012, 47, 81-176. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of 58 0.6 30 Zoology, 2012, 79, 296-314. Climate Change, Aboveground-Belowground Interactions, and Species' Range Shifts. Annual Review of 59 3.8 Ecology, Evolution, and Systematics, 2012, 43, 365-383.

#	Article	IF	CITATIONS
60	Using rigorous selection criteria to investigate marine range shifts. Estuarine, Coastal and Shelf Science, 2012, 113, 205-212.	0.9	34
61	Shifting status and distribution of range margin chorus frog (Pseudacris) populations in eastern Great Lakes watersheds. Journal of Great Lakes Research, 2012, 38, 806-811.	0.8	2
62	Systemic range shift lags among a pollinator species assemblage following rapid climate change ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 587-597.	0.5	25
63	Lepidopteran species differ in susceptibility to winter warming. Climate Research, 2012, 53, 119-130.	0.4	57
64	Eco-evolutionary responses of biodiversity to climate change. Nature Climate Change, 2012, 2, 747-751.	8.1	262
65	Dispersal Polymorphism and the Speed of Biological Invasions. PLoS ONE, 2012, 7, e40496.	1.1	33
66	Exploring Holocene Changes in Palynological Richness in Northern Europe – Did Postglacial Immigration Matter?. PLoS ONE, 2012, 7, e51624.	1.1	48
69	perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct?. Frontiers of Biogeography, 2012, 4, .	0.8	12
70	Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species. Biogeosciences, 2012, 9, 5111-5123.	1.3	84
71	Hormonally mediated maternal effects, individual strategy and global change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1647-1664.	1.8	96
72	Climate change effects fruiting of the prize matsutake mushroom in China. Fungal Diversity, 2012, 56, 189-198.	4.7	36
73	Temperature-Dependent Alterations in Host Use Drive Rapid Range Expansion in a Butterfly. Science, 2012, 336, 1028-1030.	6.0	154
74	Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2012, 2, 453-457.	8.1	745
75	The use of pollination networks in conservation ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 525-534.	0.5	18
76	Review of climate change impacts on marine fish and shellfish around the UK and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 2012, 22, 337-367.	0.9	98
77	Evolution in response to climate change: In pursuit of the missing evidence. BioEssays, 2012, 34, 811-818.	1.2	144
78	Recent Plant Diversity Changes on Europe's Mountain Summits. Science, 2012, 336, 353-355.	6.0	732
79	The influence of species interactions on geographic range change under climate change. Annals of the New York Academy of Sciences, 2012, 1249, 18-28.	1.8	52

#	Article	IF	CITATIONS
80	Climate change and the ecology and evolution of Arctic vertebrates. Annals of the New York Academy of Sciences, 2012, 1249, 166-190.	1.8	162
81	Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 2012, 18, 1042-1052.	4.2	519
82	Reduced variability in rangeâ€edge butterfly populations over three decades of climate warming. Global Change Biology, 2012, 18, 1531-1539.	4.2	32
83	Immigrants and refugees: the importance of dispersal in mediating biotic attrition under climate change. Clobal Change Biology, 2012, 18, 2126-2134.	4.2	21
84	Wrong place, wrong time: climate changeâ€induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species. Global Change Biology, 2012, 18, 2419-2428.	4.2	21
85	The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of <scp>A</scp> mazonian plant species. Global Change Biology, 2012, 18, 2636-2647.	4.2	65
86	Temporal variation in responses of species to four decades of climate warming. Global Change Biology, 2012, 18, 2439-2447.	4.2	42
87	Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global Change Biology, 2012, 18, 2720-2729.	4.2	29
88	Dynamic macroecology and the future for biodiversity. Global Change Biology, 2012, 18, 3149-3159.	4.2	55
89	Adélie penguins and temperature changes in Antarctica: a longâ€ŧerm view. Integrative Zoology, 2012, 7, 113-120.	1.3	15
90	†Back to the future': How archaeological remains can describe salmon adaptation to climate change. Molecular Ecology, 2012, 21, 2311-2314.	2.0	5
91	Predicting fish diet composition using a bagged classification tree approach: a case study using yellowfin tuna (Thunnus albacares). Marine Biology, 2012, 159, 87-100.	0.7	27
92	The relative influence of temperature, moisture and their interaction on range limits of mammals over the past century. Global Ecology and Biogeography, 2013, 22, 334-343.	2.7	19
93	The decline of moths in Great Britain: a review of possible causes. Insect Conservation and Diversity, 2013, 6, 5-19.	1.4	224
94	Adopting novel ecosystems as suitable rehabilitation alternatives for former mine sites. Ecological Processes, 2013, 2, .	1.6	84
95	Elevated temperature elicits greater effects than decreased pH on the development, feeding and metabolism of northern shrimp (Pandalus borealis) larvae. Marine Biology, 2013, 160, 2037-2048.	0.7	75
96	The Vulnerability of Biodiversity to Rapid Climate Change. , 2013, , 185-201.		4
97	Heat freezes niche evolution. Ecology Letters, 2013, 16, 1206-1219.	3.0	708

		CITATION R	EPORT	
#	Article		IF	CITATIONS
98	Global imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-9	25.	8.1	1,602
99	How comparable are species distributions along elevational and latitudinal climate grad Ecology and Biogeography, 2013, 22, 1228-1237.	ients?. Global	2.7	43
100	Latitudinal and Elevational Range Shifts under Contemporary Climate Change. , 2013, ,	599-611.		57
101	Temperature variation makes ectotherms more sensitive to climate change. Global Cha 2013, 19, 2373-2380.	nge Biology,	4.2	400
102	Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of no-analogue associations and temporarily lost biomes. Review of Palaeobotany and Pala 194, 38-49.	⁻ Colombia; ynology, 2013,	0.8	25
103	Multiscale regime shifts and planetary boundaries. Trends in Ecology and Evolution, 20	13, 28, 389-395.	4.2	243
104	Shift happens: trailing edge contraction associated with recent warming trends threate genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biology, 2013, 11, 6.	ns a distinct	1.7	130
105	Identification of Traits, Genes, and Crops of the Future. , 2013, , 27-177.			1
106	Bumblebee community homogenization after uphill shifts in montane areas of northerr Oecologia, 2013, 173, 1649-1660.	Spain.	0.9	66
107	Projected climate reshuffling based on multivariate climate-availability, climate-analog, climate-velocity analyses: implications for community disaggregation. Climatic Change, 659-675.	and 2013, 119,	1.7	41
108	Enemy release promotes range expansion in a host plant. Oecologia, 2013, 172, 1203-	1212.	0.9	19
109	Linking ecomechanics and ecophysiology to interspecific interactions and community c Annals of the New York Academy of Sciences, 2013, 1297, 73-82.	lynamics.	1.8	12
110	Detection and attribution of anthropogenic climate change impacts. Wiley Interdiscipli Climate Change, 2013, 4, 121-150.	nary Reviews:	3.6	59
111	Accidental experiments: ecological and evolutionary insights and opportunities derived change. Oikos, 2013, 122, 1649-1661.	from global	1.2	32
112	Landscape Influences on Recent Timberline Shifts in the Carpathian Mountains: Abiotic Modulate Effects of Land-Use Change. Arctic, Antarctic, and Alpine Research, 2013, 45,	Influences 404-414.	0.4	36
113	Crop pests and pathogens move polewards in a warming world. Nature Climate Change 985-988.	e, 2013, 3,	8.1	679
114	Dispersal and species' responses to climate change. Oikos, 2013, 122, 1532-1540.		1.2	318
115	Anomalous, extreme weather disrupts obligate seed dispersal mutualism: snow in a sub ecosystem. Global Change Biology, 2013, 19, 2867-2877.	tropical forest	4.2	36

#	Article	IF	CITATIONS
116	Climate change must not blow conservation off course. Nature, 2013, 500, 271-272.	13.7	29
117	Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones. Journal of Evolutionary Biology, 2013, 26, 2487-2496.	0.8	47
118	Climate warming-induced upward shift of Moso bamboo population on Tianmu Mountain, China. Journal of Mountain Science, 2013, 10, 363-369.	0.8	34
119	Forecasting range expansion into ecological traps: climateâ€mediated shifts in sea turtle nesting beaches and human development. Global Change Biology, 2013, 19, 3082-3092.	4.2	37
120	Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys. Sustainability, 2013, 5, 163-186.	1.6	32
121	The projected timing of climate departure from recent variability. Nature, 2013, 502, 183-187.	13.7	579
122	Herbivory prevents positive responses of lowland plants to warmer and more fertile conditions at high altitudes. Functional Ecology, 2013, 27, 1244-1253.	1.7	48
123	Confronting expert-based and modelled distributions for species with uncertain conservation status: A case study from the corncrake (Crex crex). Biological Conservation, 2013, 167, 161-171.	1.9	48
124	Risk assessment for Iberian birds under global change. Biological Conservation, 2013, 168, 192-200.	1.9	32
125	Marine Ecosystem Responses to Cenozoic Global Change. Science, 2013, 341, 492-498.	6.0	140
126	Carabid beetle diversity and community composition as related to altitude and seasonality in Andean forests. Studies on Neotropical Fauna and Environment, 2013, 48, 165-174.	0.5	13
127	Efficient mitigation of founder effects during the establishment of a leading-edge oak population. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131070.	1.2	41
128	Rapid shifts in dispersal behavior on an expanding range edge. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13452-13456.	3.3	121
129	Evaluating the effectiveness of conservation site networks under climate change: accounting for uncertainty. Global Change Biology, 2013, 19, 1236-1248.	4.2	77
130	Climate-adapted conservation: how to identify robust strategies for the management of reindeer in Hardangervidda National Park (Norway). Regional Environmental Change, 2013, 13, 813-823.	1.4	4
131	Natural resource manager perceptions of agency performance on climate change. Journal of Environmental Management, 2013, 114, 178-189.	3.8	31
132	Potential impacts of climate change on warmwater megafauna: the Florida manatee example (Trichechus manatus latirostris). Climatic Change, 2013, 121, 727-738.	1.7	22
133	Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 2013, 3, 989-994.	8.1	204

ARTICLE IF CITATIONS High temperature constrains reproductive success in a temperate lizard: implications for distribution 134 0.8 24 range limits and the impacts of climate change. Journal of Zoology, 2013, 291, 136-145. Science Education for Diversity. Cultural Studies of Science Education, 2013, , . 0.2 Effects of Exurban Development and Temperature on Bird Species in the Southern Appalachians. 136 2.4 19 Conservation Biology, 2013, 27, 1069-1078. Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change. 8.1 Nature Climate Change, 2013, 3, 239-243. Appropriateness of fullâ€, partial―and noâ€dispersal scenarios in climate change impact modelling. 138 1.9 88 Diversity and Distributions, 2013, 19, 1224-1234. Climate change and species interactions: ways forward. Annals of the New York Academy of Sciences, 2013, 1297, 1-7. 1.8 44 Under pressure: how a <scp>M</scp>editerranean highâ€mountain forb coordinates growth and 140 hydraulic xylem anatomy in response to temperature and water constraints. Functional Ecology, 2013, 1.7 49 27, 1295-1303. Habitat Restoration and Climate Change: Dealing with Climate Variability, Incomplete Data, and 141 1.4 37 Management Decisions with Tree Translocations. Restoration Ecology, 2013, 21, 530-536. Problems with using largeâ€scale oceanic climate indices to compare climatic sensitivities across 142 2.1 27 populations and species. Ecography, 2013, 36, 249-255. Avoidance of Needle Rust Fungus By Larval Sawfly On Pinyon Pine. Southwestern Naturalist, 2013, 58, 143 0.1 474-478. Moving forward: dispersal and species interactions determine biotic responses to climate change. 144 120 1.8 Annals of the New York Academy of Sciences, 2013, 1297, 44-60. Can terrestrial ectotherms escape the heat of climate change by moving?. Proceedings of the Royal 1.2 Society B: Biological Sciences, 2013, 280, 20131149. Limited evolutionary rescue of locally adapted populations facing climate change. Philosophical 146 1.8 136 Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120083. Ecological Consequences of Sea-Ice Decline. Science, 2013, 341, 519-524. 6.0 461 THE COALESCENT IN BOUNDARY-LIMITED RANGE EXPANSIONS. Evolution; International Journal of 148 19 1.1 Organic Evolution, 2013, 67, no-no. With that diet, you will go far: trait-based analysis reveals a link between rapid range expansion and a 149 1.2 nitrogen-favouréed diet. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122305. Combined and interactive effects of global climate change and toxicants on populations and 150 2.2266 communities. Environmental Toxicology and Chemistry, 2013, 32, 49-61. The past, present and potential future distributions of coldâ€adapted bird species. Diversity and 151 Distributions, 2013, 19, 352-362.

#	Article	IF	CITATIONS
152	Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 2013, 13, 235-248.	1.4	107
153	More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance. Evolutionary Applications, 2013, 6, 353-364.	1.5	52
154	Interspecific interactions affect species and community responses to climate shifts. Oikos, 2013, 122, 358-366.	1.2	56
155	Shifts of forest species along an elevational gradient in Southeast France: climate change or stand maturation?. Journal of Vegetation Science, 2013, 24, 269-283.	1.1	67
156	Climate-change impacts on understorey bambooÂspecies and giant pandas in China'sÂQinlingÂMountains. Nature Climate Change, 2013, 3, 249-253.	8.1	135
157	Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodiversity and Conservation, 2013, 22, 459-482.	1.2	33
158	Predicting climate change effects on agriculture from ecological niche modeling: who profits, who loses?. Climatic Change, 2013, 116, 177-189.	1.7	50
159	Mechanistic models for the spatial spread of species under climate change. Ecological Applications, 2013, 23, 815-828.	1.8	80
160	Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery in the migratory locust <i>Locusta migratoria</i> . Journal of Experimental Biology, 2013, 216, 1630-7.	0.8	76
161	Ethics and geoengineering: reviewing the moral issues raised by solar radiation management and carbon dioxide removal. Wiley Interdisciplinary Reviews: Climate Change, 2013, 4, 23-37.	3.6	112
162	Assessing the stability of tree ranges and influence of disturbance in eastern US forests. Forest Ecology and Management, 2013, 291, 172-180.	1.4	42
163	Leptospirosis: Public health perspectives. Biologicals, 2013, 41, 295-297.	0.5	86
164	North Andean environmental and climatic change at orbital to submillennial time-scales: Vegetation, water levels and sedimentary regimes from Lake Fúquene 130–27ka. Review of Palaeobotany and Palynology, 2013, 197, 186-204.	0.8	24
165	Eco-evolutionary dynamics of range shifts: Elastic margins and critical thresholds. Journal of Theoretical Biology, 2013, 321, 1-7.	0.8	31
166	Does shade cover availability limit nest-site choice in two populations of a turtle with temperature-dependent sex determination?. Journal of Thermal Biology, 2013, 38, 152-158.	1.1	20
167	The world within: Quantifying the determinants and outcomes of a host's microbiome. Basic and Applied Ecology, 2013, 14, 533-539.	1.2	35
168	Endemic or exotic: the phylogenetic position of the Martinique Volcano Frog <i>Allobates chalcopis</i> (Anura: Dendrobatidae) sheds light on its origin and challenges current conservation strategies. Systematics and Biodiversity, 2013, 11, 87-101.	0.5	11
169	Evolution of a genetic polymorphism with climate change in a Mediterranean landscape. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2893-2897.	3.3	61

#	Article	IF	CITATIONS
170	The climate velocity of the contiguous <scp>U</scp> nited <scp>S</scp> tates during the 20th century. Global Change Biology, 2013, 19, 241-251.	4.2	267
171	Cryptic loss of montane avian richness and high community turnover over 100 years. Ecology, 2013, 94, 598-609.	1.5	109
172	Impact of climate change on communities: revealing species' contribution. Journal of Animal Ecology, 2013, 82, 551-561.	1.3	57
173	Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends in Ecology and Evolution, 2013, 28, 149-155.	4.2	301
175	Comparing habitat configuration strategies for retaining biodiversity under climate change. Journal of Applied Ecology, 2013, 50, 519-527.	1.9	21
176	Accommodating climate change contingencies in conservation strategy. Trends in Ecology and Evolution, 2013, 28, 135-142.	4.2	156
177	Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos, 2013, 122, 161-170.	1.2	41
178	The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 2013, 22, 925-946.	2.0	500
179	Making decisions to conserve species under climate change. Climatic Change, 2013, 119, 239-246.	1.7	77
180	Ancient <scp>DNA</scp> supports southern survival of <scp>R</scp> ichardson's collared lemming (<i><scp>D</scp>icrostonyx richardsoni</i>) during the last glacial maximum. Molecular Ecology, 2013, 22, 2540-2548.	2.0	20
181	Modelling distribution in <scp>E</scp> uropean stream macroinvertebrates under future climates. Global Change Biology, 2013, 19, 752-762.	4.2	159
182	Potential for evolutionary responses to climate change – evidence from tree populations. Global Change Biology, 2013, 19, 1645-1661.	4.2	705
183	Northern range expansion of <scp>E</scp> uropean populations of the wasp spider <i><scp>A</scp>rgiope bruennichi</i> is associated with global warming–correlated genetic admixture and populationâ€specific temperature adaptations. Molecular Ecology, 2013, 22, 2232-2248.	2.0	117
184	Genetic Structure of Carex Species from the Australian Alpine Region along Elevation Gradients: Patterns of Reproduction and Gene Flow. International Journal of Plant Sciences, 2013, 174, 189-199.	0.6	6
185	Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 2013, 36, 1236-1246.	2.1	196
186	Common property protected areas: Community control in forest conservation. Land Use Policy, 2013, 34, 204-212.	2.5	25
187	Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 2013, 36, 971-983.	2.1	234
188	Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecological Modelling, 2013, 264, 83-97.	1.2	87

#	Article	IF	Citations
189	Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecology, 2013, 28, 879-889.	1.9	120
190	Range expansion through fragmented landscapes under a variable climate. Ecology Letters, 2013, 16, 921-929.	3.0	100
191	Thermal Buffering of Microhabitats is a Critical Factor Mediating Warming Vulnerability of Frogs in the Philippine Biodiversity Hotspot. Biotropica, 2013, 45, 628-635.	0.8	60
192	Will plant movements keep up with climate change?. Trends in Ecology and Evolution, 2013, 28, 482-488.	4.2	575
193	Climate Change and Extinctions. , 2013, , 73-78.		2
194	Biological consequences of global change for birds. Integrative Zoology, 2013, 8, 136-144.	1.3	22
195	Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Diversity and Distributions, 2013, 19, 1480-1495.	1.9	86
196	Climate change impacts on biodiversity in Switzerland: A review. Journal for Nature Conservation, 2013, 21, 154-162.	0.8	61
197	Compositional shifts in <scp>C</scp> osta <scp>R</scp> ican forests due to climateâ€driven species migrations. Global Change Biology, 2013, 19, 3472-3480.	4.2	87
198	Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 2013, 16, 1095-1103.	3.0	270
199	Climate change and crop wild relatives: can species track their suitable environment, and what do they lose in the process?. Plant Genetic Resources: Characterisation and Utilisation, 2013, 11, 234-237.	0.4	6
200	The dendrochronological potential of lime (<i>Tilia</i> spp.) from trees at Hampton Court Palace, UK. Arboricultural Journal, 2013, 35, 7-17.	0.3	3
201	Rapid climate driven shifts in wintering distributions of three common waterbird species. Global Change Biology, 2013, 19, 2071-2081.	4.2	178
202	Predicting range shifts under global change: the balance between local adaptation and dispersal. Ecography, 2013, 36, 873-882.	2.1	53
203	Climatic and biotic velocities for woody taxa distributions over the last 16Â000Âyears in eastern North America. Ecology Letters, 2013, 16, 773-781.	3.0	110
204	Implications of temperature variation for malaria parasite development across Africa. Scientific Reports, 2013, 3, 1300.	1.6	176
205	Upward ant distribution shift corresponds with minimum, not maximum, temperature tolerance. Global Change Biology, 2013, 19, 2082-2088.	4.2	81
206	Climateâ€change impact considerations for freshwaterâ€fish conservation, with special reference to the aquarium and zoo community. International Zoo Yearbook, 2013, 47, 81-92.	1.0	5

#	Article	IF	CITATIONS
207	Observed and predicted effects of climate change on species abundance in protected areas. Nature Climate Change, 2013, 3, 1055-1061.	8.1	146
208	The Future of Species Under Climate Change: Resilience or Decline?. Science, 2013, 341, 504-508.	6.0	549
209	Changes in Ecologically Critical Terrestrial Climate Conditions. Science, 2013, 341, 486-492.	6.0	473
210	Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science, 2013, 341, 514-519.	6.0	951
211	An integrated approach to assessing 21st century climate change over the contiguous U.S. using the NARCCAP RCM output. Climatic Change, 2013, 117, 809-827.	1.7	21
212	Increasing arboreality with altitude: a novel biogeographic dimension. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131581.	1.2	99
213	Global diversity of drought tolerance and grassland climate-change resilience. Nature Climate Change, 2013, 3, 63-67.	8.1	262
214	Traveling through time: The past, present and future biogeographic range of the invasive foraminifera Amphistegina spp. in the Mediterranean Sea. Marine Micropaleontology, 2013, 105, 30-39.	0.5	30
215	Climate Change Impacts on Global Food Security. Science, 2013, 341, 508-513.	6.0	2,131
216	How will biotic interactions influence climate change–induced range shifts?. Annals of the New York Academy of Sciences, 2013, 1297, 112-125.	1.8	238
217	Extreme climatic event drives range contraction of a habitat-forming species. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122829.	1.2	330
218	How does climate change cause extinction?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20121890.	1.2	650
219	The grass may not always be greener: projected reductions in climatic suitability for exotic grasses under future climates in Australia. Biological Invasions, 2013, 15, 961-975.	1.2	30
220	Pushing the limit: experimental evidence of climate effects on plant range distributions. Ecology, 2013, 94, 2131-2137.	1.5	26
221	Increased Stream Productivity with Warming Supports Higher Trophic Levels. Advances in Ecological Research, 2013, 48, 285-342.	1.4	25
222	Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ, 2013, 1, e77.	0.9	35
223	Evaluation of GeneXpert vanA/vanB assay for the detection of vancomycin-resistant enterococci in patients newly admitted to intensive care units. Turkish Journal of Medical Sciences, 2013, 43, 1008-1012.	0.4	6
224	Advancing the long view of ecological change in tundra systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120477.	1.8	20

			2
#		IF	CITATIONS
225	Climate change and elevational diversity capacity: do weedy species take up the slack?. Biology Letters, 2013, 9, 20120806.	1.0	24
226	Changing seasonality and phenological responses of free-living male arctic ground squirrels: the importance of sex. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120480.	1.8	34
227	Thin films and nanostructured coatings for eco-efficient buildings. , 2013, , 161-187a.		2
228	Bats and bat-borne diseases: a perspective on Australian megabats. Australian Journal of Zoology, 2013, 61, 48.	0.6	8
229	Marine Taxa Track Local Climate Velocities. Science, 2013, 341, 1239-1242.	6.0	1,025
230	Reproductive system of a mixed-mating plant responds to climate perturbation by increased selfing. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131336.	1.2	21
231	Model systems for a noâ€analog future: species associations and climates during the last deglaciation. Annals of the New York Academy of Sciences, 2013, 1297, 29-43.	1.8	42
232	Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Frontiers in Ecology and the Environment, 2013, 11, 465-473.	1.9	125
233	Spatiotemporal SNP analysis reveals pronounced biocomplexity at the northern range margin of <scp>A</scp> tlantic cod <i><scp>G</scp>adus morhua</i> . Evolutionary Applications, 2013, 6, 690-705.	1.5	100
234	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	3.0	1,375
235	Eucalypts face increasing climate stress. Ecology and Evolution, 2013, 3, 5011-5022.	0.8	56
236	Dispersal syndromes and the use of lifeâ€histories to predict dispersal. Evolutionary Applications, 2013, 6, 630-642.	1.5	100
237	Dramatic response to climate change in the Southwest: Robert Whittaker's 1963 Arizona Mountain plant transect revisited. Ecology and Evolution, 2013, 3, 3307-3319.	0.8	102
238	Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Global Change Biology, 2013, 19, 2196-2208.	4.2	41
239	Realized climatic niche of North American plant taxa lagged behind climate during the end of the Pleistocene. American Journal of Botany, 2013, 100, 1255-1265.	0.8	36
241	Climate isn't everything: Competitive interactions and variation by life stage will also affect range shifts in a warming world. American Journal of Botany, 2013, 100, 1344-1355.	0.8	79
242	Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings. Journal of Experimental Botany, 2013, 64, 3817-3828.	2.4	71
244	Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks. Atmospheric Chemistry and Physics, 2013, 13, 8755-8770.	1.9	96

#	Article	IF	CITATIONS
245	Climate change and conservation of waders. , 0, , 265-286.		0
246	Foraging by forest ants under experimental climatic warming: a test at two sites. Ecology and Evolution, 2013, 3, 482-491.	0.8	73
247	Competition and Climate Affects US Hardwood-Forest Tree Mortality. Forest Science, 2013, 59, 416-430.	0.5	15
248	A Changing Environment for Human Security. , 0, , .		16
249	Ground beetles (Coleoptera: Carabidae) of rice field banks and restored habitats in an agricultural area of the Po Plain (Lombardy, Italy). Biodiversity Data Journal, 2013, 1, e972.	0.4	8
251	Potenciais efeitos das mudanças climáticas futuras sobre a distribuiçãode um anuro da Caatinga Rhinella granulosa (Anura, Bufonidae). Iheringia - Serie Zoologia, 2013, 103, 272-279.	0.5	3
252	Climatic change and reptiles. , 0, , 279-294.		2
253	The Many Elements of Traditional Fire Knowledge: Synthesis, Classification, and Aids to Cross-cultural Problem Solving in Fire-dependent Systems Around the World. Ecology and Society, 2013, 18, .	1.0	110
254	A Case for Crop Wild Relative Preservation and Use in Potato. Crop Science, 2013, 53, 746-754.	0.8	61
256	Heading for New Shores: Projecting Marine Distribution Ranges of Selected Larger Foraminifera. PLoS ONE, 2013, 8, e62182.	1.1	33
257	Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape. PLoS ONE, 2013, 8, e65008.	1.1	58
258	Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios. PLoS ONE, 2013, 8, e68037.	1.1	29
259	Evaluating the Significance of Paleophylogeographic Species Distribution Models in Reconstructing Quaternary Range-Shifts of Nearctic Chelonians. PLoS ONE, 2013, 8, e72855.	1.1	54
260	Temperatures in Excess of Critical Thresholds Threaten Nestling Growth and Survival in A Rapidly-Warming Arid Savanna: A Study of Common Fiscals. PLoS ONE, 2013, 8, e74613.	1.1	156
261	Temporal Variation in Population Size of European Bird Species: Effects of Latitude and Marginality of Distribution. PLoS ONE, 2013, 8, e77654.	1.1	20
262	Thermal Carrying Capacity for a Thermally-Sensitive Species at the Warmest Edge of Its Range. PLoS ONE, 2013, 8, e81354.	1.1	20
263	Crop pests advancing with global warming. Nature, 0, , .	13.7	16
264	Urgency and Policy. , 0, , 181-210.		0

#	Article	IF	CITATIONS
265	Rapid Life-History Diversification of an Introduced Fish Species across a Localized Thermal Gradient. PLoS ONE, 2014, 9, e88033.	1.1	7
266	Projected Distributions and Diversity of Flightless Ground Beetles within the Australian Wet Tropics and Their Environmental Correlates. PLoS ONE, 2014, 9, e88635.	1.1	18
267	Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity. PLoS ONE, 2014, 9, e97718.	1.1	68
268	Aboveground Allometric Models for Freeze-Affected Black Mangroves (Avicennia germinans): Equations for a Climate Sensitive Mangrove-Marsh Ecotone. PLoS ONE, 2014, 9, e99604.	1.1	46
269	Mean Annual Precipitation Explains Spatiotemporal Patterns of Cenozoic Mammal Beta Diversity and Latitudinal Diversity Gradients in North America. PLoS ONE, 2014, 9, e106499.	1.1	25
270	American Exceptionalism: Population Trends and Flight Initiation Distances in Birds from Three Continents. PLoS ONE, 2014, 9, e107883.	1.1	38
271	Future of Endemic Flora of Biodiversity Hotspots in India. PLoS ONE, 2014, 9, e115264.	1.1	82
272	Sustained impacts of a hiking trail on changing Windswept Feldmark vegetation in the Australian Alps. Australian Journal of Botany, 2014, 62, 263.	0.3	21
273	Treeline dynamics with climate change at the central Nepal Himalaya. Climate of the Past, 2014, 10, 1277-1290.	1.3	123
274	Expansion of vegetated coastal ecosystems in the future Arctic. Frontiers in Marine Science, 2014, 1, .	1.2	135
275	Mechanisms controlling the distribution of two invasive Bromus species. Frontiers of Biogeography, 2014, 6, .	0.8	0
278	Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects. Global Change Biology, 2014, 20, 3872-3882.	4.2	93
279	Leptospirosis from water sources. Pathogens and Global Health, 2014, 108, 334-338.	1.0	50
280	Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of <i>Drosophila</i> cold tolerance. Journal of Experimental Biology, 2015, 218, 423-32.	0.8	68
281	Range Expansion of <i>Aratus pisonii</i> (Mangrove Tree Crab) into Novel Vegetative Habitats. Southeastern Naturalist, 2014, 13, N43-N48.	0.2	30
282	Northward migration under a changing climate: a case study of blackgum (Nyssa sylvatica). Climatic Change, 2014, 126, 151-162.	1.7	13
283	Managing climate change in conservation practice: an exploration of the science–management interface in beech forest management. Biodiversity and Conservation, 2014, 23, 3657-3671.	1.2	16
284	Changes in plant diversity on the Chinese Loess Plateau since the Last Glacial Maximum. Science Bulletin, 2014, 59, 4096-4100.	1.7	7

#	Article	IF	CITATIONS
285	An updated biodiversity nonuse value function for use in climate change integrated assessment models. Ecological Economics, 2014, 105, 342-349.	2.9	8
286	Postglacial population genetic differentiation potentially facilitated by a flexible migratory strategy in Golden-crowned Kinglets (<i>Regulussatrapa</i>). Canadian Journal of Zoology, 2014, 92, 163-172.	0.4	4
287	Lagging adaptation to warming climate in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7906-7913.	3.3	157
288	Reply to Rehm: Why rates of upslope shifts in tropical species vary is an open question. Proceedings of the United States of America, 2014, 111, E1677-E1677.	3.3	2
289	Responses of large mammals to climate change. Temperature, 2014, 1, 115-127.	1.7	92
290	Microhabitats in the tropics buffer temperature in a globally coherent manner. Biology Letters, 2014, 10, 20140819.	1.0	72
291	Misconceptions about analyses of Australian seaweed collections. Phycologia, 2014, 53, 215-220.	0.6	6
292	Facilitation among plants in alpine environments in the face of climate change. Frontiers in Plant Science, 2014, 5, 387.	1.7	111
293	The term â€~Anthropocene' in the context of formal geological classification. Geological Society Special Publication, 2014, 395, 29-37.	0.8	46
294	Responses to Uv-B Exposure by Saplings of the Relict Species <i>Davidia involucrata</i> Bill are Modified by Soil Nitrogen Availability. Polish Journal of Ecology, 2014, 62, 101-110.	0.2	4
295	Biodiversity and Conservation of Tropical Montane Ecosystems in the Gulf of Guinea, West Africa. Arctic, Antarctic, and Alpine Research, 2014, 46, 891-904.	0.4	23
296	Activity patterns and fineâ€scale resource partitioning in the gregarious Kihansi spray toad <i>Nectophrynoides asperginis</i> in captivity. Zoo Biology, 2014, 33, 411-418.	0.5	2
297	Determinants of pika population density vs. occupancy in the Southern Rocky Mountains. , 2014, 24, 429-435.		21
298	The northward shifting neophyte <i>Tragopogon dubius</i> is just as effective in forming mycorrhizal associations as the native <i>T. pratensis</i> . Plant Ecology and Diversity, 2014, 7, 533-539.	1.0	7
299	Recent cooling and dynamic responses of alpine summit floras in the southern Swedish Scandes. Nordic Journal of Botany, 2014, 32, 369-376.	0.2	3
300	Energy flux partitioning and evapotranspiration in a subâ€alpine spruce forest ecosystem. Hydrological Processes, 2014, 28, 5093-5104.	1.1	54
301	Climate change and habitat fragmentation drive the occurrence of <i><scp>B</scp>orrelia burgdorferi</i> , the agent of Lyme disease, at the northeastern limit of its distribution. Evolutionary Applications, 2014, 7, 750-764.	1.5	122
302	Range collapse in the Diana fritillary, <i>Speyeria diana</i> (Nymphalidae). Insect Conservation and Diversity, 2014, 7, 365-380.	1.4	15

#	Article	IF	CITATIONS
303	Relative contributions of neutral and nonâ€neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes. Evolutionary Applications, 2014, 7, 682-701.	1.5	52
304	Turning up the heat on the provenance debate: Testing the â€~local is best' paradigm under heatwave conditions. Austral Ecology, 2014, 39, 600-611.	0.7	24
305	Which hostâ€dependent insects are most prone to coextinction under changed climates?. Ecology and Evolution, 2014, 4, 1295-1312.	0.8	20
306	Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology, 2014, 20, 2841-2855.	4.2	154
307	Climate change reduces genetic diversity of Canada lynx at the trailing range edge. Ecography, 2014, 37, 754-762.	2.1	31
308	Modelling the distribution of <i>Aspalathus linearis</i> (Rooibos tea): implications of climate change for livelihoods dependent on both cultivation and harvesting from the wild. Ecology and Evolution, 2014, 4, 1209-1221.	0.8	37
309	Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecology and Evolution, 2014, 4, 2991-3003.	0.8	36
310	Coldâ€edapted species in a warming world – an explorative study on the impact of high winter temperatures on a continental butterfly. Entomologia Experimentalis Et Applicata, 2014, 151, 270-279.	0.7	39
311	What factors shape female phenotypes of a poleward-moving damselfly at the edge of its range?. Biological Journal of the Linnean Society, 2014, 112, 556-568.	0.7	28
312	Plant movements and climate warming: intraspecific variation in growth responses to nonlocal soils. New Phytologist, 2014, 202, 431-441.	3.5	29
313	Runoff and the longitudinal distribution of macroinvertebrates in a glacierâ€fed stream: implications for the effects of global warming. Freshwater Biology, 2014, 59, 2038-2050.	1.2	48
315	Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Global Change Biology, 2014, 20, 835-850.	4.2	59
316	Causes of warmâ€edge range limits: systematic review, proximate factors and implications for climate change. Journal of Biogeography, 2014, 41, 429-442.	1.4	146
317	Non-native species in Canada's boreal zone: diversity, impacts, and risk. Environmental Reviews, 2014, 22, 372-420.	2.1	37
318	Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 723-727.	3.3	431
319	Effects of Altitude on the Conservation Biogeography of Lemurs in SouthEast Madagascar. , 2014, , 3-22.		10
320	The Reduced Effectiveness of Protected Areas under Climate Change Threatens Atlantic Forest Tiger Moths. PLoS ONE, 2014, 9, e107792.	1.1	71
321	The global spread of crop pests and pathogens. Global Ecology and Biogeography, 2014, 23, 1398-1407.	2.7	367

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
322	Impact of Climate Change on the Distribution of <i>Aedes albopictus</i> (Diptera: Culicidae) in Northern Japan: Retrospective Analyses. Journal of Medical Entomology, 2014, 51, 572-579.	0.9	18
323	Climate-Driven Reshuffling of Species and Genes: Potential Conservation Roles for Species Translocations and Recombinant Hybrid Genotypes. Insects, 2014, 5, 1-61.	1.0	18
324	The Plecoptera and Trichoptera of the Arctic North Slope of Alaska. Western North American Naturalist, 2014, 74, 275-285.	0.2	6
325	Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Global Change Biology, 2014, 20, 3756-3766.	4.2	27
326	Discontinuities, crossâ€scale patterns, and the organization of ecosystems. Ecology, 2014, 95, 654-667.	1.5	109
327	Ontario freshwater fishes demonstrate differing rangeâ€boundary shifts in a warming climate. Diversity and Distributions, 2014, 20, 123-136.	1.9	104
328	Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agricultural and Forest Meteorology, 2014, 189-190, 71-80.	1.9	323
329	A century of chasing the ice: delayed colonisation of iceâ€free sites by ground beetles along glacier forelands in the Alps. Ecography, 2014, 37, 33-42.	2.1	31
330	Prioritization of climate change adaptation approaches in the Gambia. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 1163-1178.	1.0	9
331	Geographic isolation and physiological mechanisms underpinning species distributions at the range limit hotspot of South Georgia. Reviews in Fish Biology and Fisheries, 2014, 24, 485-492.	2.4	5
332	Organizing phenological data resources to inform natural resource conservation. Biological Conservation, 2014, 173, 90-97.	1.9	62
333	Foraging ecology and niche overlap in pygmy (<i>Kogia breviceps</i>) and dwarf (<i>Kogia sima</i>) sperm whales from waters of the U.S. midâ€Atlantic coast. Marine Mammal Science, 2014, 30, 626-655.	0.9	40
334	Will preâ€adaptation buffer the impacts of climate change on novel species interactions?. Ecography, 2014, 37, 111-119.	2.1	12
335	The last decade in ecological climate change impact research: where are we now?. Die Naturwissenschaften, 2014, 101, 1-9.	0.6	15
336	A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain. Biodiversity and Conservation, 2014, 23, 171-185.	1.2	26
337	Phenology research for natural resource management in the United States. International Journal of Biometeorology, 2014, 58, 579-589.	1.3	48
338	Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films, 2014, 564, 1-38.	0.8	816
339	Climate change and frog calls: long-term correlations along a tropical altitudinal gradient. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140401.	1.2	42

#	Article	IF	CITATIONS
340	Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 2014, 7, 88-103.	1.5	193
341	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
342	Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Climatic Change, 2014, 122, 735-746.	1.7	37
343	Assessment of CMIP5 global model simulations and climate change projections for the 21 st century using a modified Thornthwaite climate classification. Climatic Change, 2014, 122, 523-538.	1.7	57
344	Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. European Journal of Forest Research, 2014, 133, 247-260.	1.1	74
345	Climateâ€driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Global Change Biology, 2014, 20, 2815-2828.	4.2	57
346	Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4490-4494.	3.3	214
347	Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Global Change Biology, 2014, 20, 2221-2229.	4.2	264
348	Status and challenges for conservation of small mammal assemblages in South America. Biological Reviews, 2014, 89, 705-722.	4.7	9
349	Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 2014, 20, 1538-1549.	4.2	56
350	European isotherms move northwards by up to 15 km year ^{â~'1} : using climate analogues for awarenessâ€faising. International Journal of Climatology, 2014, 34, 1838-1844.	1.5	37
351	Can site and landscapeâ€scale environmental attributes buffer bird populations against weather events?. Ecography, 2014, 37, 872-882.	2.1	21
352	Patterns of climateâ€induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Global Change Biology, 2014, 20, 2995-3003.	4.2	101
353	Molecular footprints of the <scp>H</scp> olocene retreat of dwarf birch in <scp>B</scp> ritain. Molecular Ecology, 2014, 23, 2771-2782.	2.0	45
354	Local climatic adaptation in a widespread microorganism. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132472.	1.2	69
355	Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change, 2014, 26, 27-38.	3.6	207
356	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	6.0	519
357	Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: Importance of fine-scale habitat heterogeneity. Journal of Thermal Biology, 2014, 41, 50-58.	1.1	69

#	Article	IF	CITATIONS
358	Climate change and marine molluscs of the western North Atlantic: future prospects and perils. Journal of Biogeography, 2014, 41, 1352-1366.	1.4	33
359	Large frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal of Applied Ecology, 2014, 51, 684-692.	1.9	71
360	How ready are we to move species threatened from climate change? Insights into the assisted colonization debate from Australia. Austral Ecology, 2014, 39, 830-838.	0.7	20
361	Modelling geographical variation in voltinism of <i>Hylobius abietis</i> under climate change and implications for management. Agricultural and Forest Entomology, 2014, 16, 136-146.	0.7	27
362	Genomeâ€wide scans detect adaptation to aridity in a widespread forest tree species. Molecular Ecology, 2014, 23, 2500-2513.	2.0	95
363	Chemical Defenses (Glucosinolates) of Native and Invasive Populations of the Range Expanding Invasive Plant Rorippa austriaca. Journal of Chemical Ecology, 2014, 40, 363-370.	0.9	13
364	Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Global Change Biology, 2014, 20, 3291-3299.	4.2	92
365	Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats. Journal of the Royal Society Interface, 2014, 11, 20130961.	1.5	50
366	Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, 2014, 25, 724-733.	1.1	48
367	Dietary guild composition and disaggregation of avian assemblages under climate change. Global Change Biology, 2014, 20, 790-802.	4.2	11
368	Microhabitats reduce animal's exposure to climate extremes. Global Change Biology, 2014, 20, 495-503.	4.2	353
369	Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132433.	1.2	149
370	Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 2014, 169, 89-98.	1.9	19
371	Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western <scp>N</scp> orth <scp>A</scp> merica mountain range. Journal of Vegetation Science, 2014, 25, 135-146.	1.1	45
372	Abundance changes and habitat availability drive species' responses to climate change. Nature Climate Change, 2014, 4, 127-131.	8.1	69
373	Geographic Variability in Elevation and Topographic Constraints on the Distribution of Native and Nonnative Trout in the Great Basin. Transactions of the American Fisheries Society, 2014, 143, 205-218.	0.6	15
374	Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades. Journal of Evolutionary Biology, 2014, 27, 1572-1581.	0.8	39
375	Loss of frugivore seed dispersal services under climate change. Nature Communications, 2014, 5, 3971.	5.8	49

#	Article	IF	CITATIONS
376	Nanoporous Benzoxazole Networks by Silylated Monomers, Their Exceptional Thermal Stability, and Carbon Dioxide Capture Capacity. Chemistry of Materials, 2014, 26, 6729-6733.	3.2	50
377	Functional homogenization of bumblebee communities in alpine landscapes under projected climate change. Climate Change Responses, 2014, 1, .	2.6	44
378	Fine―and coarseâ€filter conservation strategies in a time of climate change. Annals of the New York Academy of Sciences, 2014, 1322, 92-109.	1.8	63
379	Interactions between climate change and land use change onÂbiodiversity: attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 317-335.	3.6	333
380	Active Management of Protected Areas Enhances Metapopulation Expansion Under Climate Change. Conservation Letters, 2014, 7, 111-118.	2.8	33
381	Biogeography of time partitioning in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13727-13732.	3.3	202
382	Current and future latitudinal gradients in stream macroinvertebrate richness across North America. Freshwater Science, 2014, 33, 1136-1147.	0.9	20
383	Variable effects of climate and density on the juvenile ecology of two salmonids in an Alaskan lake. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 799-807.	0.7	10
384	Forest Restoration Paradigms. Journal of Sustainable Forestry, 2014, 33, S161-S194.	0.6	95
385	Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nature Communications, 2014, 5, 5023.	5.8	79
386	Climate change and elevational range shifts: evidence from dung beetles in two <scp>E</scp> uropean mountain ranges. Global Ecology and Biogeography, 2014, 23, 646-657.	2.7	106
387	Illuminating geographical patterns in species' range shifts. Global Change Biology, 2014, 20, 3080-3091.	4.2	40
388	Non-climatic constraints on upper elevational plant range expansion under climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141779.	1.2	137
389	Combined speeds of climate and land-use change of the conterminous US until 2050. Nature Climate Change, 2014, 4, 811-816.	8.1	69
390	Identifying the driving factors behind observed elevational range shifts on <scp>E</scp> uropean mountains. Global Ecology and Biogeography, 2014, 23, 876-884.	2.7	110
391	Evidence of female preference for hidden sex signals in distant fish species. Behavioral Ecology, 2014, 25, 53-57.	1.0	8
392	Ecology of Temperate Forests. , 2014, , 273-296.		3
393	Ecological and lifeâ€history traits explain recent boundary shifts in elevation and latitude of western <scp>N</scp> orth <scp>A</scp> merican songbirds. Global Ecology and Biogeography, 2014, 23, 867-875.	2.7	84

#	Article	IF	Citations
394	Ecological consequences of land use change: Forest structure and regeneration across the forest-grassland ecotone in mountain pastures in Nepal. Journal of Mountain Science, 2014, 11, 838-849.	0.8	11
395	Expansion of Anopheles maculipennis s.s. (Diptera: Culicidae) to northeastern Europe and northwestern Asia: Causes and Consequences. Parasites and Vectors, 2014, 7, 389.	1.0	23
396	Validation and calibration of probabilistic predictions in ecology. Methods in Ecology and Evolution, 2014, 5, 1023-1032.	2.2	10
397	Forest Landscapes and Global Change. , 2014, , .		7
398	Sexual reproduction of Japanese knotweed (<i>Fallopia japonica</i> s.l.) at its northern distribution limit: New evidence of the effect of climate warming on an invasive species. American Journal of Botany, 2014, 101, 459-466.	0.8	37
399	Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141995.	1.2	63
400	The rapid northward shift of the range margin of a Mediterranean parasitoid insect (Hymenoptera) associated with regional climate warming. Journal of Biogeography, 2014, 41, 1379-1389.	1.4	23
401	Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones. Oecologia, 2014, 174, 1425-1435.	0.9	21
402	Nematode community shifts in response to experimental warming and canopy conditions are associated with plant community changes in the temperate-boreal forest ecotone. Oecologia, 2014, 175, 713-723.	0.9	80
403	Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka. Climatic Change, 2014, 124, 207-220.	1.7	11
404	Do birds of a feather flock together? Comparing habitat preferences of piscivorous waterbirds in a lowland river catchment. Hydrobiologia, 2014, 738, 87-95.	1.0	11
405	Towards climate-resilient restoration in mesic eucalypt woodlands: characterizing topsoil biophysical condition in different degradation states. Plant and Soil, 2014, 383, 231-244.	1.8	12
406	Precipitation and winter temperature predict longâ€ŧerm rangeâ€scale abundance changes in Western North American birds. Global Change Biology, 2014, 20, 3351-3364.	4.2	78
407	Biogeographical analysis of the Atlantic Sahara reptiles: Environmental correlates of species distribution and vulnerability toÂclimate change. Journal of Arid Environments, 2014, 109, 65-73.	1.2	13
408	Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries, 2014, 24, 415-425.	2.4	482
409	Alpine activity patterns of Mitopus morio (Fabricius, 1779) are induced by variations in temperature and humidity at different scales in central Norway. Journal of Mountain Science, 2014, 11, 644-655.	0.8	10
410	Adaptation of Agricultural and Food Systems to a Changing Climate and Increasing Urbanization. Current Sustainable/Renewable Energy Reports, 2014, 1, 43-50.	1.2	10
411	Voluntary <scp>C</scp> odes of conduct for botanic gardens and horticulture and engagement with the public. EPPO Bulletin, 2014, 44, 223-231.	0.6	6

23

#	Article	IF	Citations
412	Predictive traits to the rescue. Nature Climate Change, 2014, 4, 175-176.	8.1	12
413	Keeping Pace with Climate Change: Stage-Structured Moving-Habitat Models. American Naturalist, 2014, 184, 25-37.	1.0	47
414	Upsetting the order: how climate and atmospheric change affects herbivore–enemy interactions. Current Opinion in Insect Science, 2014, 5, 66-74.	2.2	45
415	Can traitâ€based analyses of changes in species distribution be transferred to new geographic areas?. Clobal Ecology and Biogeography, 2014, 23, 1009-1018.	2.7	12
416	A hierarchical perspective on the diversity of butterfly species' responses to weather in the Sierra Nevada Mountains. Ecology, 2014, 95, 2155-2168.	1.5	16
417	Effect of temperature and nutrient manipulations on eelgrass Zostera marina L. from the Pacific Northwest, USA. Journal of Experimental Marine Biology and Ecology, 2014, 453, 108-115.	0.7	57
418	Matching trends between recent distributional changes of northern-boreal birds and species-climate model predictions. Biological Conservation, 2014, 172, 124-127.	1.9	26
419	Using historical biogeography to test for community saturation. Ecology Letters, 2014, 17, 1077-1085.	3.0	35
420	Increased activity and growth rate in the nonâ€dispersive aquatic larval stage of a damselfly at an expanding range edge. Freshwater Biology, 2014, 59, 1266-1277.	1.2	30
421	What role do plant–soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?. Basic and Applied Ecology, 2014, 15, 305-315.	1.2	95
422	Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic and Applied Ecology, 2014, 15, 279-287.	1.2	33
423	Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 2014, 83, 70-84.	1.3	370
424	Latitudinal trends in herbivory and performance of an invasive species, common burdock (Arctium) Tj ETQq0 0 0	rgBT /Ove 1.2	rlock 10 Tf 50
425	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
426	Adaptation Opportunities, Constraints, and Limits. , 0, , 899-944.		18
427	Detection and Attribution of Observed Impacts. , 0, , 979-1038.		10
428	Regional Context. , 0, , 1133-1198.		3
429	Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere, 2014, 5, 1-33.	1.0	145

#	Article	IF	CITATIONS
430	Interactions in a warmer world: effects of experimental warming, conspecific density, and herbivory on seedling dynamics. Ecosphere, 2014, 5, 1-12.	1.0	6
431	Ethics and Emerging Technologies. , 2014, , .		21
433	Rapid evolution of larval life history, adult immune function and flight muscles in a polewardâ€moving damselfly. Journal of Evolutionary Biology, 2014, 27, 141-152.	0.8	46
434	Differences in the metabolic response to temperature acclimation in nineâ€spined stickleback (<i>Pungitius pungitius</i>) populations from contrasting thermal environments. Journal of Experimental Zoology, 2014, 321, 550-565.	1.2	15
435	Ecosystems Unbound: Ethical Questions for an Interventionist Ecology. , 2014, , 456-469.		1
436	Historical resurveys reveal persistence of smoky mouse (Pseudomys fumeus) populations over the long-term and through the short-term impacts of fire. Wildlife Research, 2015, 42, 668.	0.7	7
437	Losing your edge: climate change and the conservation value of rangeâ€edge populations. Ecology and Evolution, 2015, 5, 4315-4326.	0.8	144
438	Climate change creates rapid species turnover in montane communities. Ecology and Evolution, 2015, 5, 2340-2347.	0.8	45
439	Temperatureâ€related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecology and Evolution, 2015, 5, 5162-5176.	0.8	26
440	Differential effects of climate and species interactions on range limits at a hybrid zone: potential direct and indirect impacts of climate change. Ecology and Evolution, 2015, 5, 5120-5137.	0.8	63
441	Geographical range margins of many taxonomic groups continue to shift polewards. Biological Journal of the Linnean Society, 2015, 115, 586-597.	0.7	105
442	Reinventing residual reserves in the sea: are we favouring ease of establishment over need for protection?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2015, 25, 480-504.	0.9	280
443	The Biological Records Centre: a pioneer of citizen science. Biological Journal of the Linnean Society, 2015, 115, 475-493.	0.7	144
444	Climate response of the soil nitrogen cycle in three forest types of a headwater Mediterranean catchment. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 859-875.	1.3	13
445	Spatiotemporal Dynamics in Identification of Aircraft–Bird Strikes. Transportation Research Record, 2015, 2471, 19-25.	1.0	0
446	Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,915-10,938.	1.2	20
447	The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, <i>Palaemonetes varians</i> . Royal Society Open Science, 2015, 2, 150472.	1.1	11
448	The persistence of populations facing climate shifts and harvest. Ecosphere, 2015, 6, 1-16.	1.0	19

#	Article	IF	CITATIONS
449	A Chinese cave links climate change, social impacts and human adaptation over the last 500 years. Scientific Reports, 2015, 5, 12284.	1.6	36
450	Regional vegetation change and implications for local conservation: An example from West Cornwall (United Kingdom). Global Ecology and Conservation, 2015, 4, 405-413.	1.0	6
451	Persistence in a Two-Dimensional Moving-Habitat Model. Bulletin of Mathematical Biology, 2015, 77, 2125-2159.	0.9	11
452	Distribution pattern of vascular plant species of mountains in Nepal and their fate against global warming. Journal of Mountain Science, 2015, 12, 1345-1354.	0.8	12
453	Temperature, leaf cover density and solar radiation influence the abundance of an oligophagous insect herbivore at the southern edge of its range. Journal of Insect Conservation, 2015, 19, 891-899.	0.8	5
454	Individual behaviour mediates effects of warming on movement across a fragmented landscape. Functional Ecology, 2015, 29, 1543-1552.	1.7	16
455	Species turnover of corticolous bryophyte assemblages over 15 years in an Australian subtropical cloud forest. Austral Ecology, 2015, 40, 877-885.	0.7	1
456	The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.	0.7	53
457	Scenarios of large mammal loss in Europe for the 21 st century. Conservation Biology, 2015, 29, 1028-1036.	2.4	23
458	Gains and losses of plant species and phylogenetic diversity for a northern highâ€latitude region. Diversity and Distributions, 2015, 21, 1441-1454.	1.9	36
459	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	1.9	32
460	Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography, 2015, 24, 1340-1350.	2.7	105
461	Latitudinal shift in thermal niche breadth results from thermal release during a climateâ€mediated range expansion. Journal of Biogeography, 2015, 42, 1953-1963.	1.4	74
462	Northern Range Limit of Opuntia fragilis and the Cactaceae is 56°N, Not 58°N. Madroño, 2015, 62, 115-123.	0.3	3
463	Implications of Climate Change for Turnover in Forest Composition. Northwest Science, 2015, 89, 201-218.	0.1	12
464	Woodland recovery following droughtâ€induced tree mortality across an environmental stress gradient. Global Change Biology, 2015, 21, 3685-3695.	4.2	38
465	Assessing the impacts of projected climate change on biodiversity in the protected areas of western North America. Ecosphere, 2015, 6, 1-14.	1.0	34
466	Forest Structure, Plant Diversity and Local Endemism in a Highly Varied New Guinea Landscape. Tropical Conservation Science, 2015, 8, 284-300.	0.6	5

#	Article	IF	CITATIONS
467	Cool tadpoles from <scp>A</scp> rctic environments waste fewer nutrients – high gross growth efficiencies lead to low consumerâ€mediated nutrient recycling in the North. Journal of Animal Ecology, 2015, 84, 1744-1756.	1.3	19
468	Northern Range Extension of the Figeater Beetle,Cotinis mutabilis(Scarabaeidae: Cetoniinae), Into Nevada, Utah, and Colorado. Western North American Naturalist, 2015, 75, 8-13.	0.2	2
469	Integrating climate change criteria in reforestation projects using a hybrid decision-support system. Environmental Research Letters, 2015, 10, 094022.	2.2	14
470	Species composition of coastal dune vegetation in Scotland has proved resistant to climate change over a third of a century. Global Change Biology, 2015, 21, 3738-3747.	4.2	45
471	Regional changes in the elevational distribution of the Alpine Rock Ptarmigan <i>Lagopus muta helvetica</i> in Switzerland. Ibis, 2015, 157, 823-836.	1.0	32
472	Rate and velocity of climate change caused by cumulative carbon emissions. Environmental Research Letters, 2015, 10, 095001.	2.2	19
473	Dispersal limitation and population differentiation in performance beyond a northern range limit in an asexually reproducing fern. Diversity and Distributions, 2015, 21, 1242-1253.	1.9	19
474	Leafâ€ŧrait plasticity and species vulnerability to climate change in a Mongolian steppe. Global Change Biology, 2015, 21, 3489-3498.	4.2	63
475	Local adaptation at range edges: comparing elevation and latitudinal gradients. Journal of Evolutionary Biology, 2015, 28, 1849-1860.	0.8	67
476	Neutral and adaptive genomic signatures of rapid poleward range expansion. Molecular Ecology, 2015, 24, 6163-6176.	2.0	44
477	Frequency-dependent selection at rough expanding fronts. New Journal of Physics, 2015, 17, 103035.	1.2	2
478	Incorporating climate change projections into riparian restoration planning and design. Ecohydrology, 2015, 8, 863-879.	1.1	47
479	Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and biotic velocities. Diversity and Distributions, 2015, 21, 1014-1026.	1.9	41
480	The face of conservation responding to a dynamically changing world. Integrative Zoology, 2015, 10, 436-452.	1.3	6
481	Sensitivity of the regional European boreal climate to changes in surface properties resulting from structural vegetation perturbations. Biogeosciences, 2015, 12, 3071-3087.	1.3	12
482	Population structure and distribution of Abies spectabilis (D. Don) in Central Nepal Himalaya: A comparison with the total woody vegetation of the forests at the three different elevation ranges in Manang District. Banko Janakari, 2015, 25, 3-14.	0.3	2
483	Testing the enemy release hypothesis in a native insect species with an expanding range. PeerJ, 2015, 3, e1415.	0.9	6
484	New avian breeding records for Igloolik Island, Nunavut. Canadian Field-Naturalist, 2015, 129, 194.	0.0	2

#	Article	IF	CITATIONS
485	Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment. Climate, 2015, 3, 937-963.	1.2	15
486	Climate Change and Active Reef Restoration—Ways of Constructing the "Reefs of Tomorrow― Journal of Marine Science and Engineering, 2015, 3, 111-127.	1.2	57
487	Forecasting the Effects of Land Use Scenarios on Farmland Birds Reveal a Potential Mitigation of Climate Change Impacts. PLoS ONE, 2015, 10, e0117850.	1.1	22
488	Evidence of Tree Species' Range Shifts in a Complex Landscape. PLoS ONE, 2015, 10, e0118069.	1.1	54
489	Effects of Climate Change on Plant Population Growth Rate and Community Composition Change. PLoS ONE, 2015, 10, e0126228.	1.1	11
490	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	1.1	34
491	Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal – A Systematic Synthesis of Literature. PLoS ONE, 2015, 10, e0129869.	1.1	77
492	Climate Tolerances and Habitat Requirements Jointly Shape the Elevational Distribution of the American Pika (Ochotona princeps), with Implications for Climate Change Effects. PLoS ONE, 2015, 10, e0131082.	1.1	28
493	Inconsistent Range Shifts within Species Highlight Idiosyncratic Responses to Climate Warming. PLoS ONE, 2015, 10, e0132103.	1.1	43
494	A European Concern? Genetic Structure and Expansion of Golden Jackals (Canis aureus) in Europe and the Caucasus. PLoS ONE, 2015, 10, e0141236.	1.1	68
495	Chronic Mild Cold Conditioning Modulates the Expression of Hypothalamic Neuropeptide and Intermediary Metabolic-Related Genes and Improves Growth Performances in Young Chicks. PLoS ONE, 2015, 10, e0142319.	1.1	40
496	Looking Beyond the Large Scale Effects of Global Change: Local Phenologies Can Result in Critical Heterogeneity in the Pine Processionary Moth. Frontiers in Physiology, 2015, 6, 334.	1.3	18
497	Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2. Climate of the Past, 2015, 11, 1223-1237.	1.3	8
498	Different fire–climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire, 2015, 24, 27.	1.0	22
499	The Effect of Land Use on Carbon Stocks and Implications for Climate Variability on the Slopes of Mount Elgon, Eastern Uganda. International Journal of Regional Development, 2015, 2, 58.	0.1	12
500	Swimming Mechanics and Energetics of Elasmobranch Fishes. Fish Physiology, 2015, , 219-253.	0.2	29
501	Drivers of climate change impacts on bird communities. Journal of Animal Ecology, 2015, 84, 943-954.	1.3	118
503	Plasticity in functional traits in the context of climate change: a case study of the subalpine forb <i>Boechera stricta</i> (Brassicaceae). Global Change Biology, 2015, 21, 1689-1703.	4.2	87

#	Article	IF	CITATIONS
504	Regionalâ€scale directional changes in abundance of tree species along a temperature gradient in Japan. Global Change Biology, 2015, 21, 3436-3444.	4.2	36
505	Experimental evidence that predator range expansion modifies alpine stream community structure. Freshwater Science, 2015, 34, 66-80.	0.9	21
506	Inference Towards the Best Explanation: Reflections on the Issue of Climate Change. Israel Journal of Ecology and Evolution, 2015, 61, 1-12.	0.2	1
507	Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change. Ecological Informatics, 2015, 30, 250-256.	2.3	29
508	Range-Expanding Pests and Pathogens in a Warming World. Annual Review of Phytopathology, 2015, 53, 335-356.	3.5	195
509	Impacts of climate change on biodiversity in Israel: an expert assessment approach. Regional Environmental Change, 2015, 15, 895-906.	1.4	24
510	Population turnover, habitat use and microclimate at the contracting range margin of a butterfly. Journal of Insect Conservation, 2015, 19, 205-216.	0.8	17
511	The importance of range edges for an irruptive species during extreme weather events. Landscape Ecology, 2015, 30, 1095-1110.	1.9	30
512	Relative sensitivity to climate change of species in northwestern North America. Biological Conservation, 2015, 187, 127-133.	1.9	26
513	Seepage: Climate change denial and its effect on the scientific community. Global Environmental Change, 2015, 33, 1-13.	3.6	139
514	Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150173.	1.2	50
515	A hybrid swarm ofDinopiumwoodpeckers in Sri Lanka. Wilson Journal of Ornithology, 2015, 127, 13-20.	0.1	2
516	Symposium on "Climate Change and Molluscan Ecophysiology―at the 79thAnnual Meeting of the American Malacological Society. American Malacological Bulletin, 2015, 33, 121-126.	0.2	0
517	Hybrid zones: windows on climate change. Trends in Ecology and Evolution, 2015, 30, 398-406.	4.2	178
518	Reclamation of boreal forest after oil sands mining: anticipating novel challenges in novel environments. Canadian Journal of Forest Research, 2015, 45, 364-371.	0.8	53
519	Climatic Risk and Distribution Atlas of European Bumblebees. BioRisk, 0, 10, 1-236.	0.2	171
520	Regeneration dynamics of Euptelea pleiospermum along latitudinal and altitudinal gradients: Trade-offs between seedling and sprout. Forest Ecology and Management, 2015, 353, 232-239.	1.4	15
521	Modeling behavioral thermoregulation in a climate change sentinel. Ecology and Evolution, 2015, 5, 5810-5822.	0.8	34

#	Article	IF	CITATIONS
522	Predicting microscale shifts in the distribution of the butterfly <i>Plebejus argus</i> at the northern edge of its range. Ecography, 2015, 38, 998-1005.	2.1	12
523	The geographical range of British birds expands during 15 years of warming. Bird Study, 2015, 62, 523-534.	0.4	48
524	Observed and projected climate trends and hotspots across the National Ecological Observatory Network regions. Frontiers in Ecology and the Environment, 2015, 13, 547-552.	1.9	17
525	Forward to the north: two Euro-Mediterranean bumblebee species now cross the Arctic Circle. Annales De La Societe Entomologique De France, 2015, 51, 303-309.	0.4	26
526	Geographical variation in species' population responses to changes in temperature and precipitation. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151561.	1.2	47
527	Ecosystem and Biodiversity Conservation Issues. , 2015, , 69-83.		0
528	Species turnover in tropical montane forest avifauna links to climatic correlates. Global Ecology and Conservation, 2015, 3, 541-552.	1.0	2
529	Ultraviolet radiation does not increase oxidative stress in the lizard Psammodromus algirus along an elevational gradient. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 183, 20-26.	0.8	15
530	Integrating physiological threshold experiments with climate modeling to project mangrove species' range expansion. Global Change Biology, 2015, 21, 1928-1938.	4.2	111
531	Warming induces synchrony and destabilizes experimental pond zooplankton metacommunities. Oikos, 2015, 124, 1171-1180.	1.2	24
532	Climate change impacts on high elevation saguaro range expansion. Journal of Arid Environments, 2015, 116, 57-62.	1.2	10
533	Bounds for the critical speed of climate-driven moving-habitat models. Mathematical Biosciences, 2015, 262, 65-72.	0.9	17
534	Closer to the rear edge: ecology and genetic diversity down the coreâ€edge gradient of a marine macroalga. Ecosphere, 2015, 6, 1-25.	1.0	39
535	Beyond climate envelopes: bioâ€climate modelling accords with observed 25â€year changes in seabird populations of the British Isles. Diversity and Distributions, 2015, 21, 211-222.	1.9	22
536	Refugial capacity defines holdouts, microrefugia and stepping-stones: a response to Hannah et al Trends in Ecology and Evolution, 2015, 30, 233-234.	4.2	25
537	Longâ€ŧerm change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Diversity and Distributions, 2015, 21, 950-961.	1.9	37
538	Using Two Climate Change Vulnerability Assessment Methods to Prioritize and Manage Rare Plants: A Case Study. Natural Areas Journal, 2015, 35, 106-121.	0.2	33
539	Genomics Are Transforming Our Understanding of Responses to Climate Change. BioScience, 2015, 65, 237-246.	2.2	51

#	Article	IF	CITATIONS
540	Rapid assessment of an ocean warming hotspot reveals "high―confidence in potential species' range extensions. Global Environmental Change, 2015, 31, 28-37.	3.6	88
541	How do climate and dispersal traits limit ranges of tree species along latitudinal and elevational gradients?. Global Ecology and Biogeography, 2015, 24, 581-593.	2.7	31
542	The capacity of refugia for conservation planning under climate change. Frontiers in Ecology and the Environment, 2015, 13, 106-112.	1.9	229
543	Cold truths: how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 2015, 90, 214-235.	4.7	490
544	How to assess <i>Drosophila</i> cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Functional Ecology, 2015, 29, 55-65.	1.7	214
545	Anticipated climate and landâ€cover changes reveal refuge areas for Borneo's orangâ€utans. Global Change Biology, 2015, 21, 2891-2904.	4.2	71
546	Quantitative tools and simultaneous actions needed for species conservation under climate change–reply to Shoo et al. (2013). Climatic Change, 2015, 129, 1-7.	1.7	2
547	Microrefugia: Not for everyone. Ambio, 2015, 44, 60-68.	2.8	51
548	A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, 2015, 2, .	2.6	175
549	Validation of and comparison between a semidistributed rainfall–runoff hydrological model (PREVAH) and a spatially distributed snowâ€evolution model (SnowModel) for snow cover prediction in mountain ecosystems. Ecohydrology, 2015, 8, 1181-1193.	1.1	5
550	Habitat networks and food security: promoting species range shift under climate change depends on life history and the dynamics of land use choices. Landscape Ecology, 2015, 30, 771-789.	1.9	14
551	Comparison of trends in butterfly populations between monitoring schemes. Journal of Insect Conservation, 2015, 19, 313-324.	0.8	26
552	Fire modulates climate change response of simulated aspen distribution across topoclimatic gradients in a semi-arid montane landscape. Landscape Ecology, 2015, 30, 1055-1073.	1.9	32
553	Endangered Quino checkerspot butterfly and climate change: Short-term success but long-term vulnerability?. Journal of Insect Conservation, 2015, 19, 185-204.	0.8	45
554	Effects of climate on temporal variation in the abundance and distribution of the demersal fish assemblage in the Tsushima Warm Current region of the Japan Sea. Fisheries Oceanography, 2015, 24, 177-189.	0.9	9
555	Understanding complex biogeographic responses to climate change. Scientific Reports, 2015, 5, 12930.	1.6	54
556	Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula. Ecological Modelling, 2015, 313, 201-211.	1.2	22
557	Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change. Nature Communications, 2015, 6, 7851.	5.8	44

#	Article	IF	CITATIONS
558	Making spatial prioritizations robust to climate change uncertainties: a case study with North American birds. Ecological Applications, 2015, 25, 1819-1831.	1.8	20
559	Climate change impacts on bumblebees converge across continents. Science, 2015, 349, 177-180.	6.0	572
560	Autoassociative dynamics in the generation of sequences of hippocampal place cells. Science, 2015, 349, 180-183.	6.0	168
561	Climate-induced range overlap among closely related species. Nature Climate Change, 2015, 5, 883-886.	8.1	33
562	A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife. Environmental Management, 2015, 56, 1514-1527.	1.2	0
563	Contrasting timing of life stages across latitudes – a case study of a marine forest-forming species. European Journal of Phycology, 2015, 50, 361-369.	0.9	7
564	The vulnerability of species to range expansions by predators can be predicted using historical species associations and body size. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151211.	1.2	21
565	Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?. Journal of Thermal Biology, 2015, 54, 66-77.	1.1	18
566	Interspecific competition mediated by climate change: which interaction between brown and mountain hare in the Alps?. Mammalian Biology, 2015, 80, 424-430.	0.8	19
567	Climate-induced change of environmentally defined floristic domains: A conservation based vulnerability framework. Applied Geography, 2015, 63, 33-42.	1.7	18
568	Recent declines and range changes of orchids in Western Europe (France, Belgium and Luxembourg). Biological Conservation, 2015, 190, 133-141.	1.9	44
569	A multi-species modelling approach to examine the impact of alternative climate change adaptation strategies on range shifting ability in a fragmented landscape. Ecological Informatics, 2015, 30, 222-229.	2.3	21
570	Biology in the Anthropocene: Challenges and insights from young fossil records. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4922-4929.	3.3	110
571	A cross-taxon analysis of the impact of climate change on abundance trends in central Europe. Biological Conservation, 2015, 187, 41-50.	1.9	44
572	Place and process in conservation planning for climate change: a reply to Keppel and Wardell-Johnson. Trends in Ecology and Evolution, 2015, 30, 234-235.	4.2	3
573	Higher investment in flight morphology does not trade off with fecundity estimates in a poleward rangeâ€expanding damselfly. Ecological Entomology, 2015, 40, 133-142.	1.1	14
574	Environmental variation and population responses to global change. Ecology Letters, 2015, 18, 724-736.	3.0	155
575	Evidence of rapid change in genetic structure and diversity during range expansion in a recovering large terrestrial carnivore. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150092.	1.2	36

#	Article	IF	CITATIONS
576	Spatial sorting and range shifts: Consequences for evolutionary potential and genetic signature of a dispersal trait. Journal of Theoretical Biology, 2015, 373, 92-99.	0.8	18
577	The role of ecological interactions in determining species ranges and range changes. Biological Journal of the Linnean Society, 2015, 115, 647-663.	0.7	34
578	Theoretical consequences of trait-based environmental filtering for the breadth and shape of the niche: New testable hypotheses generated by the Traitspace model. Ecological Modelling, 2015, 307, 10-21.	1.2	12
579	Trophic level responses differ as climate warms in Ireland. International Journal of Biometeorology, 2015, 59, 1007-1017.	1.3	14
580	Areas of high conservation value in Georgia: present and future threats by invasive alien plants. Biological Invasions, 2015, 17, 1041-1054.	1.2	26
581	Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biological Invasions, 2015, 17, 2315-2327.	1.2	43
582	The effect of temperature and habitat quality on abundance of the Glanville fritillary on the Isle of Wight: implications for conservation management in a warming climate. Journal of Insect Conservation, 2015, 19, 217-225.	0.8	15
583	Towards a global terrestrial species monitoring program. Journal for Nature Conservation, 2015, 25, 51-57.	0.8	86
584	Incorporating movement in species distribution models. Progress in Physical Geography, 2015, 39, 837-849.	1.4	41
585	Swedish birds are tracking temperature but not rainfall: evidence from a decade of abundance changes. Global Ecology and Biogeography, 2015, 24, 859-872.	2.7	49
586	Assessing climate change impacts for vertebrate fauna across the West African protected area network using regionally appropriate climate projections. Diversity and Distributions, 2015, 21, 991-1003.	1.9	23
587	Can polar bears use terrestrial foods to offset lost iceâ€based hunting opportunities?. Frontiers in Ecology and the Environment, 2015, 13, 138-145.	1.9	124
588	Clobal mountain topography and the fate of montane species under climate change. Nature Climate Change, 2015, 5, 772-776.	8.1	338
589	Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change. Global Change Biology, 2015, 21, 3005-3020.	4.2	27
590	25-Hydroxycholecalciferol Enhances Male Broiler Breast Meat Yield through the mTOR Pathway. Journal of Nutrition, 2015, 145, 855-863.	1.3	51
591	The performance of protected areas for biodiversity under climate change. Biological Journal of the Linnean Society, 2015, 115, 718-730.	0.7	123
592	Biogeography, macroecology and species' traits mediate competitive interactions in the order <scp>L</scp> agomorpha. Mammal Review, 2015, 45, 88-102.	2.2	27
593	Cenozoic latitudinal response curves: individualistic changes in the latitudinal distributions of marine bivalves and gastropods. Paleobiology, 2015, 41, 33-44.	1.3	1

#	Article	IF	CITATIONS
594	Influence of vegetation damage on urban cooling effects. , 2015, , 325-347.		1
595	Past Ecosystem Dynamics in Fashioning Views on Conserving Extant New World Vegetation1. Annals of the Missouri Botanical Garden, 2015, 100, 150-158.	1.3	2
596	Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology, 2015, 96, 1451-1458.	1.5	44
597	The environmental genomics of metazoan thermal adaptation. Heredity, 2015, 114, 502-514.	1.2	61
598	Potential of remote sensing to predict species invasions. Progress in Physical Geography, 2015, 39, 283-309.	1.4	80
599	Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 2015, 21, 534-547.	1.9	112
600	Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20141857.	1.2	103
601	Niche overlap and host specificity in parasitic Maculinea butterflies (Lepidoptera: Lycaenidae) as a measure for potential extinction risks under climate change. Organisms Diversity and Evolution, 2015, 15, 555-565.	0.7	11
602	Beyond maps: a review of the applications of biological records. Biological Journal of the Linnean Society, 2015, 115, 532-542.	0.7	76
603	What constitutes a â€~native' species? Insights from the Quaternary faunal record. Biological Conservation, 2015, 186, 143-148.	1.9	41
604	The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography, 2015, 38, 1167-1175.	2.1	75
605	Projected impacts of climate change on protected birds and nature reserves in China. Science Bulletin, 2015, 60, 1644-1653.	4.3	21
607	Low Prevalence ofEchinococcus multilocularisin Michigan, U.S.A.: A Survey of Coyotes (Canis) Tj ETQq0 0 0 rgBT Comparative Parasitology, 2015, 82, 285-290.	/Overlock 0.0	10 Tf 50 267 7
608	Accounting for multiple climate components when estimating climate change exposure and velocity. Methods in Ecology and Evolution, 2015, 6, 697-705.	2.2	11
609	Individualistic sensitivities and exposure to climate change explain variation in species' distribution and abundance changes. Science Advances, 2015, 1, e1400220.	4.7	21
610	Plant Biotic Interactions in the Sonoran Desert: Conservation Challenges and Future Directions. Journal of the Southwest, 2015, 57, 457-501.	0.1	6
611	Integrated adaptive design for wildlife movement under climate change. Frontiers in Ecology and the Environment, 2015, 13, 493-502.	1.9	31
612	Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150587.	1.2	56

	CHATION R		
#	Article	IF	Citations
613	Assisted colonization as a climate change adaptation tool. Austral Ecology, 2015, 40, 12-20.	0.7	54
614	Similar but not equivalent: ecological niche comparison across closely–related <scp>M</scp> exican white pines. Diversity and Distributions, 2015, 21, 245-257.	1.9	85
615	Assessing biodiversity loss due to land use with Life Cycle Assessment: are we there yet?. Global Change Biology, 2015, 21, 32-47.	4.2	122
616	Seasonal weather patterns drive population vital rates and persistence in a stream fish. Global Change Biology, 2015, 21, 1856-1870.	4.2	63
617	Temporal context affects the observed rate of climateâ€driven range shifts in tree species. Global Ecology and Biogeography, 2015, 24, 44-51.	2.7	61
618	Conservation of passively dispersed organisms in the context of habitat degradation and destruction. Journal of Applied Ecology, 2015, 52, 514-521.	1.9	17
619	Thermophilization of adult and juvenile tree communities in the northern tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10744-10749.	3.3	115
620	Convergence of three mangrove species towards freezeâ€tolerant phenotypes at an expanding range edge. Functional Ecology, 2015, 29, 1332-1340.	1.7	61
621	From Metabolic Constraints onÂIndividuals to the Dynamics of Ecosystems. , 2015, , 3-36.		36
622	Land cover influences dietary specialization of insectivorous bats globally. Mammal Research, 2015, 60, 343-351.	0.6	5
623	Competitive Interactions upon Secondary Contact Drive Elevational Divergence in Tropical Birds. American Naturalist, 2015, 186, 470-479.	1.0	62
624	Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proceedings of the United States of America, 2015, 112, 12741-12745.	3.3	227
625	Novel competitors shape species' responses to climate change. Nature, 2015, 525, 515-518.	13.7	516
626	Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes. BioScience, 2015, 65, 906-921.	2.2	75
627	Biotic context and soil properties modulate native plant responses to enhanced rainfall. Annals of Botany, 2015, 116, 963-973.	1.4	9
628	More, smaller bacteria in response to ocean's warming?. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150371.	1.2	84
629	Prioritizing climate change adaptation options for iconic marine species. Biodiversity and Conservation, 2015, 24, 3449-3468.	1.2	24
630	Modeling the Present and Future Geographic Distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States. American Journal of Tropical Medicine and Hygiene, 2015, 93, 875-890.	0.6	110

#	Article	IF	CITATIONS
631	Red List of Czech spiders: 3rd edition, adjusted according to evidence-based national conservation priorities. Biologia (Poland), 2015, 70, 645-666.	0.8	44
632	Relocation, high″atitude warming and host genetic identity shape the foliar fungal microbiome of poplars. Molecular Ecology, 2015, 24, 235-248.	2.0	125
633	Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic forest under a scenario of future climate change. Regional Environmental Change, 2015, 15, 683-693.	1.4	14
634	Synchronicity in elevation range shifts among small mammals and vegetation over the last century is stronger for omnivores. Ecography, 2015, 38, 556-568.	2.1	16
635	Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications. Conservation Genetics, 2015, 16, 459-476.	0.8	11
636	Is the Spectacled WarblerSylvia conspicillataexpanding northward because of climate warming?. Bird Study, 2015, 62, 126-131.	0.4	1
637	Range extension and conservation status of <i>Cymbula nigra</i> (Gastropoda: Patellidae) in the Tunisian shores. African Journal of Ecology, 2015, 53, 64-74.	0.4	6
638	The pace and progress of adaptation: Marine climate change preparedness in Australia× ³ s coastal communities. Marine Policy, 2015, 53, 13-20.	1.5	25
639	Conservation planning in the Nepal Himalayas: Effectively (re)designing reserves for heterogeneous landscapes. Applied Geography, 2015, 56, 127-134.	1.7	25
640	Current and future effectiveness of Natura 2000 network in the central Alps for the conservation of mountain forest owl species in a warming climate. European Journal of Wildlife Research, 2015, 61, 35-44.	0.7	34
641	Latitudinal gradients in the productivity of <scp>E</scp> uropean migrant warblers have not shifted northwards during a period of climate change. Global Ecology and Biogeography, 2015, 24, 427-436.	2.7	25
642	Thermoregulation of two sympatric species of horned lizards in the Chihuahuan Desert and their local extinction risk. Journal of Thermal Biology, 2015, 48, 1-10.	1.1	50
643	Temperature tracking by North Sea benthic invertebrates in response to climate change. Global Change Biology, 2015, 21, 117-129.	4.2	111
644	Geographic mosaics of phenology, host preference, adult size and microhabitat choice predict butterfly resilience to climate warming. Oikos, 2015, 124, 41-53.	1.2	52
645	Collaborative approaches to accessing and utilising historical citizen science data: a case-study with spearfishers from eastern Australia. Marine and Freshwater Research, 2015, 66, 195.	0.7	18
646	Interactive effects of fearfulness and geographical location on bird population trends. Behavioral Ecology, 2015, 26, 716-721.	1.0	25
647	Climate changeâ€induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Diversity and Distributions, 2015, 21, 379-391.	1.9	95
648	Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios. Regional Environmental Change, 2015, 15, 961-971.	1.4	12

#	ARTICLE Trailing edges projected to move faster than leading edges for large pelagic fish habitats under	IF	CITATIONS
649	climate change. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 225-234.	0.6	49
650	Managing Bay and Estuarine Ecosystems for Multiple Services. Estuaries and Coasts, 2015, 38, 35-48.	1.0	32
651	Episodic and non-uniform shifts of thermal habitats in a warming ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 59-72.	0.6	31
652	Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications, 2015, 25, 24-38.	1.8	76
653	Insects in Fluctuating Thermal Environments. Annual Review of Entomology, 2015, 60, 123-140.	5.7	577
654	Behavioral responses to changing environments. Behavioral Ecology, 2015, 26, 665-673.	1.0	653
655	Climate warming increases biological control agent impact on a nonâ€ŧarget species. Ecology Letters, 2015, 18, 48-56.	3.0	72
656	Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. Ecography, 2015, 38, 546-555.	2.1	129
657	Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene, 2015, 554, 205-214.	1.0	94
658	Warming shifts â€~worming': effects of experimental warming on invasive earthworms in northern North America. Scientific Reports, 2014, 4, 6890.	1.6	20
659	An overview of interrelationship between climate change and forests. Forest Science and Technology, 2015, 11, 11-18.	0.3	39
660	Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity and Distributions, 2015, 21, 13-22.	1.9	52
661	The effects of climate change and landâ€use change on demographic rates and population viability. Biological Reviews, 2015, 90, 837-853.	4.7	151
662	Drivers of freshwater fish colonisations and extirpations under climate change. Ecography, 2015, 38, 510-519.	2.1	44
663	Climateâ€related range shifts – a global multidimensional synthesis and new research directions. Ecography, 2015, 38, 15-28.	2.1	733
664	The roles of disturbance, topography and climate in determining the leading and rear edges of population range limits. Journal of Biogeography, 2015, 42, 255-266.	1.4	25
666	Avian Diversity in Agricultural Landscape: Records from Burdwan, West Bengal, India. Proceedings of the Zoological Society, 2016, 69, 38-51.	0.4	14
667	Plant Ecology. , 2016, , 231-239.		0

ARTICLE IF CITATIONS # Elevational Shifts of Freshwater Communities Cannot Catch up Climate Warming in the Himalaya. 668 1.2 12 Water (Switzerland), 2016, 8, 327. Mediterranean water shrew (Neomys anomalus): range expansion northward. Turkish Journal of 0.4 Zoology, 2016, 40, 103-111. Winter wren populations show adaptation to local climate. Royal Society Open Science, 2016, 3, 670 1.1 5 160250. The interplay between plasticity and evolution in response to human-induced environmental change. 671 0.8 F1000Research, 2016, 5, 2835. Insect Communities., 2016, , 153-166. 672 0 Contrasting Nutritional Acclimation of Sugar Maple (Acer saccharum Marsh.) and Red Maple (Acer) Tj ETQq1 1 0.784314 rgBT /Overlo 1.1 Frontiers in Ecology and Evolution, 2016, 4, 674 Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems. Forests, 2016, 7, 271. 0.9 4 Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by 1.6 Using Maxent Model. Sustainability, 2016, 8, 722 Forecasting Large-Scale Habitat Suitability of European Bustards under Climate Change: The Role of 676 1.1 31 Environmental and Geographic Variables. PLoS ONE, 2016, 11, e0149810. Climate Change Increases Drought Stress of Juniper Trees in the Mountains of Central Asia. PLoS ONE, 1.1 2016, 11, e0153888. Elevational Distribution of Flightless Ground Beetles in the Tropical Rainforests of North-Eastern 678 1.1 10 Australia. PLoS ONE, 2016, 11, e0155826. Effects of Seasonal Weather on Breeding Phenology and Reproductive Success of Alpine Ptarmigan in 679 1.1 Colorado. PLoS ONE, 2016, 11, e0158913. Biological Interactions and Simulated Climate Change Modulates the Ecophysiological Performance 680 1.1 38 of Colobanthus quitensis in the Antarctic Ecosystem. PLoS ONE, 2016, 11, e0164844. Phenological Variation in Ambrosia artemisiifolia L. Facilitates Near Future Establishment at Northern 1.1 Latitudes. PLoS ONE, 2016, 11, e0166510. 682 Chapter 8 Molecular pathways involved in amino acid and phosphorus utilization., 2016, , 119-128. 2 Impacts of Climate Change on the Distributions of Allergenic Species., 0, , 29-49. Ensemble distribution modeling of the Mesopotamian spiny-tailed lizard, Saara loricata (Blanford,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 684 0.4 17 262-271. Contributions of dynamic environmental signals during life-cycle transitions to early life-history

traits in lodgepole pine (<i&gt;Pinus contorta&lt;/i&gt; Dougl.). Biogeosciences,

38

2016, 13, 2945-2958.

1.3 9

#	Article	IF	CITATIONS
687	Direct and indirect effects of native range expansion on soil microbial community structure and function. Journal of Ecology, 2016, 104, 1271-1283.	1.9	55
688	Low larval densities in northern populations reinforce range expansion by a Mediterranean damselfly. Freshwater Biology, 2016, 61, 1430-1441.	1.2	3
689	Anthropogenicâ€driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Global Change Biology, 2016, 22, 3984-3995.	4.2	51
690	Can protected areas mitigate the impacts of climate change on bird's species and communities?. Diversity and Distributions, 2016, 22, 625-637.	1.9	58
691	Rapidly shifting elevational distributions of passerine species parallel vegetation change in the subarctic. Ecosphere, 2016, 7, e01264.	1.0	24
692	Characterizing common and range expanding species. Journal of Biogeography, 2016, 43, 217-228.	1.4	53
693	Climate Change and Dynamics of Glaciers and Vegetation in the Himalaya: An Overview. , 2016, , 1-26.		20
694	Natural epigenetic variation contributes to heritable flowering divergence in a widespread asexual dandelion lineage. Molecular Ecology, 2016, 25, 1759-1768.	2.0	82
695	Gene expression under thermal stress varies across a geographical range expansion front. Molecular Ecology, 2016, 25, 1141-1156.	2.0	73
696	The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants. Microbial Ecology, 2016, 72, 394-406.	1.4	75
697	Interspecific aggression by the Swainson's Thrush (<i>Catharus ustulatus</i>) may limit the distribution of the threatened Bicknell's Thrush (<i>Catharus bicknelli</i>) in the Adirondack Mountains. Condor, 2016, 118, 169-178.	0.7	34
698	Using <i>inÂsitu</i> management to conserve biodiversity under climate change. Journal of Applied Ecology, 2016, 53, 885-894.	1.9	71
699	Identifying indicator species of elevation: Comparing the utility of woody plants, ants and moths for long-term monitoring. Austral Ecology, 2016, 41, 179-188.	0.7	9
700	Changes in abundances of forest understorey birds on Africa's highest mountain suggest subtle effects of climate change. Diversity and Distributions, 2016, 22, 288-299.	1.9	33
701	Climate interacts with anthropogenic drivers to determine extirpation dynamics. Ecography, 2016, 39, 1008-1016.	2.1	12
702	Velocity of temperature and flowering time in wheat – assisting breeders to keep pace with climate change. Global Change Biology, 2016, 22, 921-933.	4.2	53
703	Spatioâ€ŧemporal variation of biotic factors underpins contemporary range dynamics of congeners. Global Change Biology, 2016, 22, 1201-1213.	4.2	9
704	North by northâ€west: climate change and directions of density shifts in birds. Global Change Biology, 2016, 22, 1121-1129.	4.2	80

#	Article	IF	CITATIONS
705	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.	4.2	428
706	Shrubline but not treeline advance matches climate velocity in montane ecosystems of southâ€central Alaska. Global Change Biology, 2016, 22, 1841-1856.	4.2	60
707	Morphological and dietary responses of chipmunks to a century of climate change. Global Change Biology, 2016, 22, 3233-3252.	4.2	29
708	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
709	Choice of baseline climate data impacts projected species' responses to climate change. Global Change Biology, 2016, 22, 2392-2404.	4.2	66
710	Asymmetric interspecific aggression in New Guinean songbirds that replace one another along an elevational gradient. Ibis, 2016, 158, 726-737.	1.0	51
711	Can changes in ant diversity along elevational gradients in tropical and subtropical Australian rainforests be used to detect a signal of past lowland biotic attrition?. Austral Ecology, 2016, 41, 209-218.	0.7	7
712	Seed release in a changing climate: initiation of movement increases spread of an invasive species under simulated climate warming. Diversity and Distributions, 2016, 22, 708-716.	1.9	22
713	The downward spiral: ecoâ€evolutionary feedback loops lead to the emergence of â€~elastic' ranges. Ecography, 2016, 39, 261-269.	2.1	8
714	Mosses and liverworts show contrasting elevational distribution patterns in an oceanic island (Terceira, Azores): the influence of climate and space. Journal of Bryology, 2016, 38, 183-194.	0.4	33
715	Climate Change in Wildlands. , 2016, , .		6
716	Introduction to the Symposium: Parasites and Pests in Motion: Biology, Biodiversity and Climate Change. Integrative and Comparative Biology, 2016, 56, 556-560.	0.9	3
717	Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions. Ecology and Evolution, 2016, 6, 4885-4897.	0.8	8
718	Greater impacts from an extreme cold spell on tropicalÂthanÂtemperate butterflies in southern China. Ecosphere, 2016, 7, e01315.	1.0	13
719	The response of migratory populations to phenological change: a Migratory Flow Network modelling approach. Journal of Animal Ecology, 2016, 85, 648-659.	1.3	32
720	Scaleâ€dependent thermal tolerance variation in Australian mountain grasshoppers. Ecography, 2016, 39, 572-582.	2.1	23
721	The pace of past climate change vs. potential bird distributions and land use in the United States. Global Change Biology, 2016, 22, 1130-1144.	4.2	62
722	Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. Journal of Avian Biology, 2016, 47, 619-628.	0.6	34

#	Article	IF	CITATIONS
724	Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome– <i><scp>P</scp>icea glauca</i> system at an arctic treeline ecotone. New Phytologist, 2016, 211, 1221-1231.	3.5	55
725	The Influence of Climate Variability and Change on the Science and Practice of Restoration Ecology. , 2016, , 484-513.		7
726	Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life-history and physiology in a marine metazoan?. Journal of Experimental Biology, 2017, 220, 551-563.	0.8	47
727	Driving Pest Insect Populations: Agricultural Chemicals Lead to an Adaptive Syndrome in Nilaparvata Lugens Stål (Hemiptera: Delphacidae). Scientific Reports, 2016, 6, 37430.	1.6	13
728	Modelling coffee leaf rust risk in Colombia with climate reanalysis data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150458.	1.8	56
729	Occupancy and abundance of predator and prey: implications of the fireâ€cheatgrass cycle in sagebrush ecosystems. Ecosphere, 2016, 7, e01307.	1.0	20
730	Spatial models reveal the microclimatic buffering capacity of old-growth forests. Science Advances, 2016, 2, e1501392.	4.7	225
731	Genomic evidence of demographic fluctuations and lack of genetic structure across flyways in a long distance migrant, the European turtle dove. BMC Evolutionary Biology, 2016, 16, 237.	3.2	26
732	Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action. Tropical Medicine and Health, 2016, 44, 38.	1.0	20
733	Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 2016, 6, 24881.	1.6	103
735	A framework for quantifying the thermal buffering effect of microhabitats. Biological Conservation, 2016, 204, 175-180.	1.9	11
736	Drying soil in North China drove the outbreak range expansion of meadow moth by facilitating long-distance migration. Scientific Reports, 2016, 6, 30370.	1.6	2
737	Anthropogenic impacts on mosquito populations in North America over the past century. Nature Communications, 2016, 7, 13604.	5.8	49
738	Bioeconomics of Managed Relocation. Journal of the Association of Environmental and Resource Economists, 2016, 3, 1023-1059.	1.0	12
739	Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities. Scientific Reports, 2016, 6, 27835.	1.6	10
740	Does tree canopy closure moderate the effect of climate warming on plant species composition of temperate Himalayan oak forest?. Journal of Vegetation Science, 2016, 27, 948-957.	1.1	20
741	Green Infrastructure and Public Health. , 0, , .		29
742	Plant-herbivore interactions along elevational gradient: Comparison of field and common garden data. Acta Oecologica, 2016, 77, 168-175.	0.5	21

#	Article	IF	CITATIONS
746	Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Scientific Reports, 2016, 6, 24440.	1.6	26
747	Environmental Change and Kala-Azar with Particular Reference to Bangladesh. , 2016, , 223-247.		4
748	The Impacts of Extreme Climatic Events on Wild Plant Populations. , 2016, , 15-47.		0
749	QTLs for Genetic Improvement Under Global Climate Changes. , 2016, , 471-513.		1
750	Climate change surpasses land-use change in the contracting range boundary of a winter-adapted mammal. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153104.	1.2	50
751	Plant fitness in a rapidly changing world. New Phytologist, 2016, 210, 81-87.	3.5	112
752	Consistent response of bird populations to climate change on two continents. Science, 2016, 352, 84-87.	6.0	212
753	Breeding persistence of Slavonian Grebe (Podiceps auritus) at long-term monitoring sites: predictors of a steep decline at the northern European range limit. Journal of Ornithology, 2016, 157, 75-84.	0.5	1
754	Electric crows: powerlines, climate change and the emergence of a native invader. Diversity and Distributions, 2016, 22, 17-29.	1.9	48
756	Plant Genetic Diversity and Plant–Pollinator Interactions Along Altitudinal Gradients. Structure and Function of Mountain Ecosystems in Japan, 2016, , 63-88.	0.1	3
757	Plant responses to global change: next generation biogeography. Physical Geography, 2016, 37, 93-119.	0.6	8
758	Impacts of temperature on giant panda habitat in the north Minshan Mountains. Ecology and Evolution, 2016, 6, 987-996.	0.8	16
759	Seed dispersal effectiveness: A comparison of four bird species feeding on seeds of invasive Acacia cyclops in South Africa. South African Journal of Botany, 2016, 105, 259-263.	1.2	17
760	Climate adaptation in cities: What trees are suitable for urban heat management?. Landscape and Urban Planning, 2016, 153, 74-82.	3.4	42
761	A model-based framework for assessing the vulnerability of low dispersal vertebrates to landscape fragmentation under environmental change. Ecological Complexity, 2016, 28, 174-186.	1.4	24
762	Endemic birds of the Fynbos biome: a conservation assessment and impacts of climate change. Bird Conservation International, 2016, 26, 52-68.	0.7	23
763	Insect thermal baggage. Nature Climate Change, 2016, 6, 543-544.	8.1	1
764	Altitudinal variation in bumble bee (Bombus) critical thermal limits. Journal of Thermal Biology, 2016, 59, 52-57.	1.1	104

#	Article	IF	CITATIONS
765	Recent Dispersal Events among Solomon Islands Bird Species Reveal Differing Potential Routes of Island Colonization. Pacific Science, 2016, 70, 201-208.	0.2	2
766	Shifts in the climate space of temperate cyprinid fishes due to climate change are coupled with altered body sizes and growth rates. Global Change Biology, 2016, 22, 3221-3232.	4.2	23
767	Disciplinary reporting affects the interpretation of climate change impacts in global oceans. Global Change Biology, 2016, 22, 25-43.	4.2	30
768	Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099. Estuarine, Coastal and Shelf Science, 2016, 175, 157-168.	0.9	44
769	De-extinction potential under climate change: Extensive mismatch between historic and future habitat suitability for three candidate birds. Biological Conservation, 2016, 197, 164-170.	1.9	15
770	Macro―and microclimatic interactions can drive variation in species' habitat associations. Global Change Biology, 2016, 22, 556-566.	4.2	22
771	Temperature effects on fish production across a natural thermal gradient. Global Change Biology, 2016, 22, 3206-3220.	4.2	95
772	Beyond the Mean: Biological Impacts of Cryptic Temperature Change. Integrative and Comparative Biology, 2016, 56, 110-119.	0.9	55
773	Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change. Oecologia, 2016, 181, 1233-1242.	0.9	9
774	Ecogeographical variation of 12 morphological traits within <i>Pinus tabulaeformis</i> : the effects of environmental factors and demographic histories. Journal of Plant Ecology, 0, , rtw033.	1.2	11
775	Alpine bird distributions along elevation gradients: the consistency of climate and habitat effects across geographic regions. Oecologia, 2016, 181, 1139-1150.	0.9	35
776	Seasonal dry-down rates and high stress tolerance promote bamboo invasion above and below treeline. Plant Ecology, 2016, 217, 1219-1234.	0.7	27
777	Trouble at the top? Restricted distribution and extreme population isolation in an alpine crustacean assemblage with unexpected lineage diversity. Freshwater Biology, 2016, 61, 1891-1904.	1.2	6
779	Delayed effects of chlorpyrifos across metamorphosis on dispersal-related traits in a poleward moving damselfly. Environmental Pollution, 2016, 218, 634-643.	3.7	23
780	Examining climate-biome ("cliomeâ€) shifts for Yukon and its protected areas. Global Ecology and Conservation, 2016, 8, 1-17.	1.0	18
781	Warming threat compounds habitat degradation impacts on a tropical butterfly community in Vietnam. Global Ecology and Conservation, 2016, 8, 203-211.	1.0	20
782	Elevational Distribution of Adult Trees and Seedlings in a Tropical Montane Transect, Southwest China. Mountain Research and Development, 2016, 36, 342.	0.4	6
783	Hybridization as a facilitator of species range expansion. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161329.	1.2	131

#	Article	IF	CITATIONS
784	Predicting range-shift success potential for tropical marine fishes using external morphology. Biology Letters, 2016, 12, 20160505.	1.0	19
785	Threats to malaria elimination in the Himalayas. The Lancet Global Health, 2016, 4, e519.	2.9	6
786	Dispersal Limitation, Climate Change, and Practical Tools for Butterfly Conservation in Intensively Used Landscapes. Natural Areas Journal, 2016, 36, 440.	0.2	9
787	Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161467.	1.2	41
788	Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. Biological Conservation, 2016, 203, 33-42.	1.9	37
789	Novel ecosystems: Challenges and opportunities for the Anthropocene. Infrastructure Asset Management, 2016, 3, 231-242.	1.2	13
790	Will climate change leave some desert bat species thirstier than others?. Biological Conservation, 2016, 201, 284-292.	1.9	16
791	Pine marten density in lowland riparian woods: A test of the Random Encounter Model based on genetic data. Mammalian Biology, 2016, 81, 439-446.	0.8	25
792	Potential impact of climate change on parasitism efficiency of egg parasitoids: A meta-analysis of Trichogramma under variable climate conditions. Agriculture, Ecosystems and Environment, 2016, 231, 143-155.	2.5	21
793	General declines in Mediterranean butterflies over the last two decades are modulated by species traits. Biological Conservation, 2016, 201, 336-342.	1.9	57
794	Assessing tree germination resilience to global warming: a manipulative experiment using sugar maple (<i>Acer saccharum</i>). Seed Science Research, 2016, 26, 153-164.	0.8	28
795	The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Integrative Zoology, 2016, 11, 40-59.	1.3	34
796	Rapid evolution of increased vulnerability to an insecticide at the expansion front in a polewardâ€moving damselfly. Evolutionary Applications, 2016, 9, 450-461.	1.5	19
797	Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 2016, 25, 65-74.	2.7	19
798	Largeâ€scale climatic drivers of regional winter bird population trends. Diversity and Distributions, 2016, 22, 1163-1173.	1.9	26
799	Can Pathogen Spread Keep Pace with its Host Invasion?. SIAM Journal on Applied Mathematics, 2016, 76, 1633-1657.	0.8	71
800	Natural disturbance, vegetation patterns and ecological dynamics in tropical montane forests. Journal of Tropical Ecology, 2016, 32, 384-403.	0.5	38
801	Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biological Conservation, 2016, 201, 385-395.	1.9	42

#	Article	IF	CITATIONS
802	Effects of substrate on essential fatty acids produced by phytobenthos in an austral temperate river system. Freshwater Science, 2016, 35, 1189-1201.	0.9	7
803	Drying–rewetting cycles release phosphorus from forest soils. Journal of Plant Nutrition and Soil Science, 2016, 179, 670-678.	1.1	24
805	Microclimate predicts withinâ€season distribution dynamics of montane forest birds. Diversity and Distributions, 2016, 22, 944-959.	1.9	57
806	Taking the heat: distinct vulnerability to thermal stress of central and threatened peripheral lineages of a marine macroalga. Diversity and Distributions, 2016, 22, 1060-1068.	1.9	42
807	Groundwater and Surface Water Interactions in Relation to Natural and Anthropogenic Environmental Changes. , 2016, , 289-326.		12
808	Safeguarding pollinators and their values to human well-being. Nature, 2016, 540, 220-229.	13.7	1,204
809	Multi-species collapses at the warm edge of a warming sea. Scientific Reports, 2016, 6, 36897.	1.6	119
810	Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20162104.	1.2	96
811	Changes in butterfly distributions and species assemblages on a Neotropical mountain range in response to global warming and anthropogenic land use. Diversity and Distributions, 2016, 22, 1085-1098.	1.9	36
812	Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5741-8.	3.3	36
813	Modelling the climatic niche of turtles: a deep-time perspective. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161408.	1.2	21
814	Mapping climatic mechanisms likely to favour the emergence of novel communities. Nature Climate Change, 2016, 6, 1104-1109.	8.1	75
815	Moral Relevance of Range and Naturalness in Assisted Migration. Environmental Values, 2016, 25, 465-483.	0.7	10
816	Estimating Effects of Species Interactions on Populations of Endangered Species. American Naturalist, 2016, 187, 457-467.	1.0	13
817	Dynamics of Adaptation in Experimental Yeast Populations Exposed to Gradual and Abrupt Change in Heavy Metal Concentration. American Naturalist, 2016, 187, 110-119.	1.0	22
818	Acclimation, acclimatization, and seasonal variation in amphibians and reptiles. , 2017, , 41-62.		3
819	Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale. Reviews of Geophysics, 2016, 54, 523-610.	9.0	73
820	Interspecific differences in nematode control between range-expanding plant species and their congeneric natives. Soil Biology and Biochemistry, 2016, 100, 233-241.	4.2	10

#	Article	IF	CITATIONS
821	Weather explains high annual variation in butterfly dispersal. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160413.	1.2	34
822	Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies) Tj ETQq1	1 0,784314	4 rgBT /Overl
823	Climate change and habitat conversion favour the same species. Ecology Letters, 2016, 19, 1081-1090.	3.0	118
824	The Genetic Signature of Range Expansion in a Disease Vector—The Black-Legged Tick. Journal of Heredity, 2017, 108, esw073.	1.0	9
825	Long-term data from a small mammal community reveals loss of diversity and potential effects of local climate change. Environmental Epigenetics, 2017, 63, zow109.	0.9	11
826	Responses to Climate Change, Evolution and. , 2016, , 460-466.		0
827	Efficacy of conservation strategies for endangered oriental white storks (Ciconia boyciana) under climate change in Northeast China. Biological Conservation, 2016, 204, 367-377.	1.9	22
828	Functional traits help to explain half-century long shifts in pollinator distributions. Scientific Reports, 2016, 6, 24451.	1.6	49
829	Elevational sensitivity in an Asian â€~hotspot': moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China. Scientific Reports, 2016, 6, 26513.	1.6	9
830	The broad footprint of climate change from genes to biomes to people. Science, 2016, 354, .	6.0	883
831	Ecological constraints increase the climatic debt in forests. Nature Communications, 2016, 7, 12643.	5.8	108
832	Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 2016, 97, 593-609.	1.6	73
833	Dispersal Biogeography. , 2016, , 453-457.		3
834	Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone. Ecology, 2016, 97, 3167-3175.	1.5	24
835	Retention of high thermal tolerance in the invasive foraminifera Amphistegina lobifera from the Eastern Mediterranean and the Gulf of Aqaba. Marine Biology, 2016, 163, 1.	0.7	36
836	Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?. Ecological Modelling, 2016, 342, 135-146.	1.2	90
837	Did British breeding birds move north in the late 20th century?. Climate Change Responses, 2016, 3, .	2.6	15
838	Environmental Interactions. , 2016, , 305-321.		0

#	Article	IF	CITATIONS
840	Climatic warming destabilizes forest ant communities. Science Advances, 2016, 2, e1600842.	4.7	53
841	Molecular Biogeography of Prickly Lettuce (Lactuca serriolaL.) Shows Traces of Recent Range Expansion. Journal of Heredity, 2016, 108, esw078.	1.0	7
842	American Pikas (<i>Ochotona princeps</i>) Extirpated from the Historic Masonic Mining District of Eastern California. Western North American Naturalist, 2016, 76, 163-171.	0.2	9
843	Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology, 2016, , rtw066.	1.2	3
844	Faster poleward range shifts in moths with more variable colour patterns. Scientific Reports, 2016, 6, 36265.	1.6	30
845	Rapid increase in growth and productivity can aid invasions by a non-native tree. AoB PLANTS, 2016, 8, .	1.2	10
846	Fluctuating temperatures alter environmental pathogen transmission in a <i>Daphnia</i> –pathogen system. Ecology and Evolution, 2016, 6, 7931-7938.	0.8	12
847	Understanding the dynamics of physiological impacts of environmental stressors on Australian marsupials, focus on the koala (Phascolarctos cinereus). BMC Zoology, 2016, 1, .	0.3	21
848	Kansas Freshwater Mussel Populations of the Upper Saline and Smoky Hill Rivers with Emphasis on the Status of the Cylindrical Papershell (Anodontoides ferussacianus). Transactions of the Kansas Academy of Science, 2016, 119, 325-335.	0.0	3
849	Growth–climate relationships across topographic gradients in the northern Great Lakes. Ecohydrology, 2016, 9, 918-929.	1.1	7
850	Translating niche features: Modelling differential exposure of <scp>A</scp> rgentine reptiles to global climate change. Austral Ecology, 2016, 41, 367-375.	0.7	14
851	Evolutionary consequences of climateâ€induced range shifts in insects. Biological Reviews, 2016, 91, 1050-1064.	4.7	63
852	Butterfly community shifts over two centuries. Conservation Biology, 2016, 30, 754-762.	2.4	146
853	Climate warming effects in the tropical Andes: first evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conservation and Diversity, 2016, 9, 342-350.	1.4	53
854	Past climateâ€driven range shifts and population genetic diversity in arctic plants. Journal of Biogeography, 2016, 43, 461-470.	1.4	48
855	Sexâ€specific fitness effects of unpredictable early life conditions are associated with <scp>DNA</scp> methylation in the avian glucocorticoid receptor. Molecular Ecology, 2016, 25, 1714-1728.	2.0	71
856	Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. , 2016, , .		7
857	Climate Change and Treeline Dynamics in the Himalaya. , 2016, , 271-306.		13

#	Article	IF	CITATIONS
858	Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust. Journal of Experimental Biology, 2016, 219, 2340-8.	0.8	22
859	High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biology, 2016, 39, 221-236.	0.5	10
860	Reptile embryos and climate change: Modelling limits of viability to inform translocation decisions. Biological Conservation, 2016, 204, 134-147.	1.9	33
861	Implications of a Bayesian radiocarbon calibration of colonization ages for mammalian megafauna in glaciated New York State after the Last Glacial Maximum. Quaternary Research, 2016, 85, 262-270.	1.0	14
862	Seventy years of forest growth and community dynamics in an undisturbed northern hardwood forest. Canadian Journal of Forest Research, 2016, 46, 959-967.	0.8	19
863	Velocity of density shifts in Finnish landbird species depends on their migration ecology and body mass. Oecologia, 2016, 181, 313-321.	0.9	12
864	Biotic forcing: the push–pull of plant ranges. Plant Ecology, 2016, 217, 1331-1344.	0.7	16
865	Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming. Journal of Experimental Biology, 2016, 219, 1725-33.	0.8	46
866	Assessing the vulnerability of rare plants using climate change velocity, habitat connectivity, and dispersal ability: a case study in Alberta, Canada. Regional Environmental Change, 2016, 16, 1433-1441.	1.4	26
867	Local weather conditions have complex effects on the growth of blue tit nestlings. Journal of Thermal Biology, 2016, 60, 12-19.	1.1	33
868	Caribou, water, and ice – fine-scale movements of a migratory arctic ungulate in the context of climate change. Movement Ecology, 2016, 4, 14.	1.3	52
869	Achieving climate connectivity in a fragmented landscape. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7195-7200.	3.3	194
870	Gene Networks in the Wild: Identifying Transcriptional Modules that Mediate Coral Resistance to Experimental Heat Stress. Genome Biology and Evolution, 2016, 8, 243-252.	1.1	73
871	How connectivity shapes genetic structure during range expansion: Insights from the Virginia's Warbler. Auk, 2016, 133, 213-230.	0.7	9
873	Data gaps in anthropogenically driven localâ€scale species richness change studies across the Earth's terrestrial biomes. Ecology and Evolution, 2016, 6, 2938-2947.	0.8	11
874	Extensive forests and persistent snow cover promote snowshoe hare occupancy in Wisconsin. Journal of Wildlife Management, 2016, 80, 894-905.	0.7	15
875	Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos, 2016, 125, 1607-1616.	1.2	30
876	Sex-specific responses to climate change in plants alter population sex ratio and performance. Science, 2016, 353, 69-71.	6.0	81

#	Article	IF	CITATIONS
877	Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Global Change Biology, 2016, 22, 1086-1096.	4.2	51
878	Life stage, not climate change, explains observed tree range shifts. Global Change Biology, 2016, 22, 1904-1914.	4.2	46
879	Population variability complicates the accurate detection of climate change responses. Global Change Biology, 2016, 22, 2081-2093.	4.2	51
880	Modeling Potential Shifts in Hawaiian Anchialine Pool Habitat and Introduced Fish Distribution due to Sea Level Rise. Estuaries and Coasts, 2016, 39, 781-797.	1.0	8
881	Geographic variation in climate as a proxy for climate change: Forecasting evolutionary trajectories from species differentiation and genetic correlations. American Journal of Botany, 2016, 103, 140-152.	0.8	15
882	How ecosystems change. Science, 2016, 351, 448-449.	6.0	61
883	Exotic Brome-Grasses in Arid and Semiarid Ecosystems of the Western US. Springer Series on Environmental Management, 2016, , .	0.3	30
884	Potential Climate-Driven Impacts on the Distribution of Generalist Treefrogs in South America. Herpetologica, 2016, 72, 23.	0.2	12
885	Are existing biodiversity conservation strategies appropriate in a changing climate?. Biological Conservation, 2016, 193, 17-26.	1.9	27
886	Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. Marine Environmental Research, 2016, 113, 174-182.	1.1	67
887	Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biological Invasions, 2016, 18, 345-353.	1.2	127
889	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	1.0	11
890	Altitudinal shifts of the native and introduced flora of <scp>C</scp> alifornia in the context of 20thâ€century warming. Global Ecology and Biogeography, 2016, 25, 418-429.	2.7	51
891	Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES Journal of Marine Science, 2016, 73, 1306-1318.	1.2	20
892	Minimum area requirements for an atâ€risk butterfly based on movement and demography. Conservation Biology, 2016, 30, 103-112.	2.4	24
893	Assessing the Performance of EU Nature Legislation in Protecting Target Bird Species in an Era of Climate Change. Conservation Letters, 2016, 9, 172-180.	2.8	72
894	Incorporating movement in species distribution models: how do simulations of dispersal affect the accuracy and uncertainty of projections?. International Journal of Geographical Information Science, 0, , 1-25.	2.2	13
895	Host immunity shapes the impact of climate changes on the dynamics of parasite infections. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2970-2975.	3.3	29

#	Article	IF	CITATIONS
896	Lilies at the limit: Variation in plantâ€pollinator interactions across an elevational range. American Journal of Botany, 2016, 103, 189-197.	0.8	20
897	Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. Journal of Mammalogy, 2016, 97, 464-472.	0.6	21
898	Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency. Neuropeptides, 2016, 58, 31-40.	0.9	27
899	Invading or recolonizing? Patterns and drivers of wild boar population expansion into Belgian agroecosystems. Agriculture, Ecosystems and Environment, 2016, 222, 267-275.	2.5	42
900	Will bryophytes survive in a warming world?. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 19, 49-60.	1.1	107
901	Wealth reallocation and sustainability under climate change. Nature Climate Change, 2016, 6, 237-244.	8.1	52
902	Invertebrate Communities of Alpine Ponds. , 2016, , 55-103.		34
903	Plastic pikas: Behavioural flexibility in low-elevation pikas (Ochotona princeps). Behavioural Processes, 2016, 125, 63-71.	0.5	23
904	Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. Die Naturwissenschaften, 2016, 103, 15.	0.6	94
905	Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecological Engineering, 2016, 89, 14-23.	1.6	43
906	Informing conservation by identifying range shift patterns across breeding habitats and migration strategies. Biodiversity and Conservation, 2016, 25, 345-356.	1.2	26
907	Effects of regional climate change on brown rust disease in winter wheat. Climatic Change, 2016, 135, 439-451.	1.7	34
908	Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3725-3734.	3.3	276
909	Can we detect a nonlinear response to temperature in European plant phenology?. International Journal of Biometeorology, 2016, 60, 1551-1561.	1.3	47
910	An indicator highlights seasonal variation in the response of Lepidoptera communities to warming. Ecological Indicators, 2016, 68, 126-133.	2.6	16
911	Functional Diversity in Tropical High Elevation Giant Rosettes. Tree Physiology, 2016, , 181-202.	0.9	18
912	Assessing the observed impact of anthropogenic climate change. Nature Climate Change, 2016, 6, 532-537.	8.1	78
913	Change in Southern Hemisphere Intertidal Communities Through Climate Cycles: The Role of Dispersing Algae. , 2016, , 131-143.		8

#	Article	IF	CITATIONS
914	Towards an Integrative Phylogeography of Invasive Marine Seaweeds, Based on Multiple Lines of Evidence. , 2016, , 187-207.		5
915	Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain). International Journal of Biometeorology, 2016, 60, 687-697.	1.3	28
916	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	1.2	66
917	Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 2016, 46, 437-443.	0.8	13
918	Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change?. Biodiversity and Conservation, 2016, 25, 151-167.	1.2	48
919	Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecology, 2016, 217, 81-95.	0.7	89
920	Natural history collections-based research: progress, promise, and best practices. Journal of Mammalogy, 2016, 97, 287-297.	0.6	90
921	Pathways through the Landscape in a Changing Climate: The Role of Landscape Structure in Facilitating Species Range Expansion through an Urbanised Region. Landscape Research, 2016, 41, 26-44.	0.7	11
922	Heat and oxidative stress alter the expression of orexin and its related receptors in avian liver cells. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 191, 18-24.	0.8	13
923	Can tropical macrophytes establish in the Laurentian Great Lakes?. Hydrobiologia, 2016, 767, 165-174.	1.0	7
924	Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 2016, 6, 83-88.	8.1	405
925	Predicting Current and Future Distribution of Endangered Tree Dracaena ombet Kotschy and Peyr. Under Climate Change. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2017, 87, 225-232.	0.4	5
926	Extinction risk of North American seed plants elevated by climate and landâ€use change. Journal of Applied Ecology, 2017, 54, 303-312.	1.9	79
927	Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. International Journal of Geographical Information Science, 2017, 31, 190-212.	2.2	37
928	Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, <i>Cumberlandia monodonta</i> (Bivalvia: Margaritiferidae), in riverine systems. Global Change Biology, 2017, 23, 94-107.	4.2	48
929	Human Gains and Losses from Global Warming: Satisfaction with the Climate in the USA, Winter and Summer, North and South. Social Indicators Research, 2017, 131, 345-366.	1.4	1
930	Phenological shifts in hoverflies (Diptera: Syrphidae): linking measurement and mechanism. Ecography, 2017, 40, 853-863.	2.1	22
931	Contrasting genetic effects of red mangrove (Rhizophora mangle L.) range expansion along West and East Florida. Journal of Biogeography, 2017, 44, 335-347.	1.4	34

#	ARTICLE	IF	CITATIONS
932	Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures. Plant Biology, 2017, 19, 32-40.	1.8	25
933	Portfolio effects, climate change, and the persistence of small populations: analyses on the rare plant <i>Saussurea weberi</i> . Ecology, 2017, 98, 1071-1081.	1.5	29
934	Modelling spatiotemporal dynamics of Pinus pinea cone infestation by Dioryctria mendacella. Forest Ecology and Management, 2017, 389, 136-148.	1.4	17
935	Climate-based prioritization of data collection for monitoring wintering birds in Latin America. Bird Conservation International, 2017, 27, 512-524.	0.7	0
936	Cunningham's skinks show low genetic connectivity and signatures of divergent selection across its distribution. Ecology and Evolution, 2017, 7, 48-57.	0.8	7
937	Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. American Naturalist, 2017, 189, 368-380.	1.0	88
938	Time partitioning in mesocarnivore communities fromÂdifferent habitats of NW Italy: insights intoÂmartens'Âcompetitive abilities. Behaviour, 2017, 154, 241-266.	0.4	41
939	Big data integration: Pan-European fungal species observations' assembly for addressing contemporary questions in ecology and global change biology. Fungal Biology Reviews, 2017, 31, 88-98.	1.9	45
940	Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Global Change Biology, 2017, 23, 3921-3933.	4.2	67
941	Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecology and Evolution, 2017, 7, 596-605.	0.8	46
942	Development of a qPCR assay for tracking the ecological niches of genetic sub-populations within Pseudo-nitzschia pungens (Bacillariophyceae). Harmful Algae, 2017, 63, 68-78.	2.2	15
943	Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 2017, 206, 143-150.	1.9	52
944	Novel tropical forests: response to global change. New Phytologist, 2017, 213, 988-992.	3.5	6
945	Projected novel eco-hydrological river types for Europe. Ecohydrology and Hydrobiology, 2017, 17, 73-83.	1.0	7
946	Host plant density and patch isolation drive occupancy and abundance at a butterfly's northern range margin. Ecology and Evolution, 2017, 7, 331-345.	0.8	24
947	Economic thermoregulatory response explains mismatch between thermal physiology and behavior in newts. Journal of Experimental Biology, 2017, 220, 1106-1111.	0.8	29
948	Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biological Reviews, 2017, 92, 2024-2045.	4.7	118
949	Longâ€ŧerm effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Global Change Biology, 2017, 23, 3154-3168.	4.2	46

		CITATION R	Report	
#	Article		IF	CITATIONS
950	The ecological significance of secondary seed dispersal by carnivores. Ecosphere, 2017	, 8, e01685.	1.0	54
951	Evolutionary rescue and local adaptation under different rates of temperature increase analysis of changes in phenotype expression and genotype frequency in <i>Parameciur microcosms. Molecular Ecology, 2017, 26, 1734-1746.</i>		2.0	14
952	Potential relocation of climatic environments suggests high rates of climate displacence North American protection network. Global Change Biology, 2017, 23, 3219-3230.	ent within the	4.2	48
953	Marine protected areas need accountability not wasted dollars. Aquatic Conservation: Freshwater Ecosystems, 2017, 27, 4-9.	Marine and	0.9	13
954	Cross-realm assessment of climate change impacts on species â $\in^{\rm TM}$ abundance trends. Evolution, 2017, 1, 67.	Nature Ecology and	3.4	83
955	Barriers to dispersal of rain forest butterflies in tropical agricultural landscapes. Biotrop 49, 206-216.	ica, 2017,	0.8	28
956	Predicting shifts in large herbivore distributions under climate change and managemen spatially-explicit ecosystem model. Ecological Modelling, 2017, 352, 1-18.	t using a	1.2	17
957	The Interplay Between Landscape Structure and Biotic Interactions. Current Landscape Reports, 2017, 2, 12-29.	Ecology	1.1	30
958	Climate-Mediated Competition in a High-Elevation Salamander Community. Journal of H 2017, 51, 190-196.	Herpetology,	0.2	11
959	Tree range expansion in eastern North America fails to keep pace with climate warming range limits. Clobal Change Biology, 2017, 23, 3292-3301.	; at northern	4.2	104
960	Climate determinants of breeding and wintering ranges of lesser kestrels in Italy and pr impacts of climate change. Journal of Avian Biology, 2017, 48, 1595-1607.	edicted	0.6	13
961	Precipitation drives global variation in natural selection. Science, 2017, 355, 959-962.		6.0	267
962	Climate change is predicted to alter the current pest status of <i>Globodera pallidaG.Ârostochiensis</i> in the United Kingdom. Global Change Biology, 2017, 23, 4497		4.2	41
963	Species' traits influenced their response to recent climate change. Nature Climate 0 205-208.	Change, 2017, 7,	8.1	272
964	The behavioral trade-off between thermoregulation and foraging in a heat-sensitive spe Behavioral Ecology, 2017, 28, 908-918.	cies.	1.0	63
965	Unexpected population response to increasing temperature in the context of a strong interaction. Ecological Applications, 2017, 27, 1657-1665.	species	1.8	8
966	Ecological determinants of butterfly vulnerability across the European continent. Journ Conservation, 2017, 21, 439-450.	al of Insect	0.8	32
967	Evolutionary responses to climate change in a range expanding plant. Oecologia, 2017	, 184, 543-554.	0.9	18

#	Article	IF	CITATIONS
968	Climate change risks, extinction debt, and conservation implications for a threatened freshwater fish: Carmine shiner (Notropis percobromus). Science of the Total Environment, 2017, 598, 1-11.	3.9	45
969	Coordinated responses of soil communities to elevation in three subarctic vegetation types. Oikos, 2017, 126, 1586-1599.	1.2	32
970	Modelling mangrove propagule dispersal trajectories using highâ€resolution estimates of ocean surface winds and currents. Biotropica, 2017, 49, 472-481.	0.8	21
972	Seed dispersers help plants to escape global warming. Oikos, 2017, 126, 1600-1606.	1.2	36
973	Is phenotypic plasticity a key mechanism for responding to thermal stress in ants?. Die Naturwissenschaften, 2017, 104, 42.	0.6	16
974	Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds. Methods in Ecology and Evolution, 2017, 8, 1690-1702.	2.2	20
975	On detecting ecological impacts of extreme climate events and why it matters. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160136.	1.8	19
976	Projected compositional shifts and loss of ecosystem services in freshwater fish communities under climate change scenarios. Hydrobiologia, 2017, 799, 135-149.	1.0	17
977	Development of 10 novel SNP-RFLP markers for quick genotyping within the black-capped (Poecile) Tj ETQq0 0 0 2017, 9, 261-264.	rgBT /Ove 0.4	erlock 10 Tf 5 7
978	Competitor or facilitator? The ambiguous role of alpine grassland for the early establishment of tree seedlings at treeline. Oikos, 2017, 126, 1625-1636.	1.2	38
979	Geographic characteristics of sable (<i>Martes zibellina</i>) distribution over time in Northeast China. Ecology and Evolution, 2017, 7, 4016-4023.	0.8	8
980	Toward mountains without permanent snow and ice. Earth's Future, 2017, 5, 418-435.	2.4	324
981	Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nature Ecology and Evolution, 2017, 1, 150.	3.4	59
982	A spatially explicit definition of conservation priorities according to population resistance and resilience, species importance and level of threat in a changing climate. Diversity and Distributions, 2017, 23, 727-738.	1.9	48
983	Characterizing opportunistic breeding at a continental scale using all available sources of phenological data: An assessment of 337 species across the Australian continent. Auk, 2017, 134, 509-519.	0.7	30
984	Marine assemblages respond rapidly to winter climate variability. Global Change Biology, 2017, 23, 2590-2601.	4.2	60
985	To Tree or Not to Tree: Cultural Views from Ancient Romans to Modern Ecologists. Ecosystems, 2017, 20, 62-68.	1.6	7
986	Do drivers of biodiversity change differ in importance across marine and terrestrial systems — Or is it just different research communities' perspectives? Science of the Total Environment, 2017, 574, 191-203	3.9	32

#	Article	IF	CITATIONS
987	Mangrove seedling freeze tolerance depends on salt marsh presence, species, salinity, and age. Hydrobiologia, 2017, 803, 159-171.	1.0	31
988	Plant–pollinator interactions under climate change: The use of spatial and temporal transplants. Applications in Plant Sciences, 2017, 5, 1600133.	0.8	40
989	Divergence of species responses to climate change. Science Advances, 2017, 3, e1603055.	4.7	272
990	Dynamism in the upstream invasion edge of a freshwater fish exposes range boundary constraints. Oecologia, 2017, 184, 453-467.	0.9	31
991	Thermal habitat of giant panda has shrunk by climate warming over the past half century. Biological Conservation, 2017, 211, 125-133.	1.9	10
992	Thermal barriers constrain microbial elevational range size via climate variability. Environmental Microbiology, 2017, 19, 3283-3296.	1.8	12
993	High invasion potential of <i>Hydrilla verticillata</i> in the Americas predicted using ecological niche modeling combined with genetic data. Ecology and Evolution, 2017, 7, 4982-4990.	0.8	15
994	Diversity of spiders and orthopterans respond to intra-seasonal and spatial environmental changes. Journal of Insect Conservation, 2017, 21, 531-543.	0.8	18
995	The boreal–temperate forest ecotone response to climate change. Environmental Reviews, 2017, 25, 423-431.	2.1	60
996	Increasing carbon discrimination rates and depth of water uptake favor the growth of Mediterranean evergreen trees inÂthe ecotone with temperate deciduous forests. Global Change Biology, 2017, 23, 5054-5068.	4.2	30
997	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	1.9	13
998	Local scale processes drive longâ€ŧerm change in biodiversity of sandy beach ecosystems. Ecology and Evolution, 2017, 7, 4822-4834.	0.8	31
999	Ocean currents modify the coupling between climate change and biogeographical shifts. Scientific Reports, 2017, 7, 1332.	1.6	46
1000	Multiâ€scale responses to warming in an experimental insect metacommunity. Global Change Biology, 2017, 23, 5151-5163.	4.2	10
1001	Natural and anthropogenic barriers to climate tracking in river fishes along a mountain–plains transition zone. Diversity and Distributions, 2017, 23, 761-770.	1.9	21
1002	Species distributions models in wildlife planning: agricultural policy and wildlife management in the great plains. Wildlife Society Bulletin, 2017, 41, 194-204.	1.6	5
1003	Conservation effectiveness of protected areas for Hong Kong butterflies declines under climate change. Journal of Insect Conservation, 2017, 21, 599-606.	0.8	11
1004	Linking functional traits and species preferences to species' abundance and occupancy trends through time to identify habitat changes in coastal ecosystems. Perspectives in Plant Ecology, Evolution and Systematics, 2017, 27, 35-44.	1.1	6

#	Article	IF	CITATIONS
1005	Population-level genetic variation and climate change in a biodiversity hotspot. Annals of Botany, 2017, 119, 215-228.	1.4	51
1006	Less favourable climates constrain demographic strategies in plants. Ecology Letters, 2017, 20, 969-980.	3.0	83
1007	Biological interactions both facilitate and resist climate-related functional change in temperate reef communities. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170484.	1.2	38
1008	Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecological Informatics, 2017, 39, 23-31.	2.3	51
1009	A call for action: Why anthropologists can (and should) join the discussion on climate change through education. American Journal of Human Biology, 2017, 29, e23002.	0.8	1
1010	Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162438.	1.2	19
1011	Responses of coral reef fishes to past climate changes are related to lifeâ€history traits. Ecology and Evolution, 2017, 7, 1996-2005.	0.8	15
1012	Genetic variation during range expansion: effects of habitat novelty and hybridization. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170007.	1.2	37
1014	Divergence of thermal physiological traits in terrestrial breeding frogs along a tropical elevational gradient. Ecology and Evolution, 2017, 7, 3257-3267.	0.8	58
1015	Political ecology of climate change: Shifting orchards and a temporary landscape of opportunity. World Development Perspectives, 2017, 6, 25-31.	0.8	12
1016	PolarGlobe: A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data. International Journal of Geographical Information Science, 2017, 31, 1562-1582.	2.2	29
1017	Potential distribution of the invasive loblolly pine mealybug, Oracella acuta (Hemiptera:) Tj ETQq1 1 0.784314 rg	BT ₁ /Overlc	ock 10 Tf 50 3
1018	Acclimation of bloomâ€forming and perennial seaweeds to elevated <scp><i>p</i>CO</scp> ₂ conserved across levels of environmental complexity. Global Change Biology, 2017, 23, 4828-4839.	4.2	23
1019	Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 2017, 355, .	6.0	2,026
1020	Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Scientific Reports, 2017, 7, 44348.	1.6	87
1021	Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3463-3468.	3.3	108
1022	Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Global Change Biology, 2017, 23, 3610-3622.	4.2	63
1023	Longâ€ŧerm effects of prairie restoration on plant community structure and native population dynamics. Restoration Ecology, 2017, 25, 559-568.	1.4	18

ARTICLE IF CITATIONS Environmental factors determining the establishment of the African Longâ€legged Buzzard <i>Buteo 1024 1.0 8 rufinus cirtensis</i> in Western Europe. Ibis, 2017, 159, 331-342. Arctic and boreal plant species decline at their southern range limits in the Rocky Mountains. Ecology Letters, 2017, 20, 166-174. Large- and small-scale environmental factors drive distributions of cool-adapted plants in karstic 1026 1.4 51 microrefugia. Annals of Botany, 2017, 119, 301-309. High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography, 2017, 26, 459-471. Vulnerability of eastern <scp>US</scp> tree species to climate change. Global Change Biology, 2017, 23, 1028 4.2 64 3302-3320. The effect of infrastructure on the invasion of a generalist predator: Pied crows in southern Africa as a case-study. Biological Conservation, 2017, 205, 11-15. 1029 Most †global' reviews of species' responses to climate change are not truly global. Diversity and 1030 1.9 81 Distributions, 2017, 23, 231-234. IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7, 28-37. 8.1 266 Case study of the implications of climate change for lichen diversity and distributions. Biodiversity 1032 1.2 35 and Consérvation, 2017, 26, 1121-1141. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine 4.2 forest. Global Change Biology, 2017, 23, 2383-2395. Keeping it regular: Development of thermoregulation in four tropical seabird species. Journal of 1034 1.1 6 Thermal Biology, 2017, 64, 19-25. Urbanization drives community shifts towards thermophilic and dispersive species at local and 4.2 114 landscape scales. Global Change Biology, 2017, 23, 2554-2564. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology, 1036 1.5 74 2017, 98, 762-772. Single species dynamics under climate change. Theoretical Ecology, 2017, 10, 181-193. 0.4 Comparison of climate envelope models developed using expert-selected variables versus statistical 1038 1.2 25 selection. Ecological Modelling, 2017, 345, 10-20. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling. Bulletin of Entomological Research, 2017, 107, 419-430. Ad hoc instrumentation methods in ecological studies produce highly biased temperature 1040 0.8 64 measurements. Ecology and Evolution, 2017, 7, 9890-9904. Consequences of the genetic threshold model for observing partial migration under climate change 1041 scenarios. Ecology and Evolution, 2017, 7, 8379-8387.

#	Article	IF	Citations
1042	Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nature Communications, 2017, 8, 716.	5.8	41
1043	Climate drives phenological reassembly of a mountain wildflower meadow community. Ecology, 2017, 98, 2799-2812.	1.5	62
1044	High mountain communities and climate change: adaptation, traditional ecological knowledge, and institutions. Climatic Change, 2017, 145, 41-55.	1.7	47
1045	Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (<i>Gulo gulo</i> L.). Ecology and Evolution, 2017, 7, 8903-8914.	0.8	35
1046	Landscapeâ€level tree cover predicts species richness of largeâ€bodied frugivorous birds in forest fragments. Biotropica, 2017, 49, 838-847.	0.8	22
1047	Decadal Western Pacific Warm Pool Variability: A Centroid and Heat Content Study. Scientific Reports, 2017, 7, 13141.	1.6	12
1048	Trait correlations equalize spread velocity across plant life histories. Global Ecology and Biogeography, 2017, 26, 1398-1407.	2.7	15
1049	Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology and Evolution, 2017, 1, 1846-1852.	3.4	120
1050	Have bird distributions shifted along an elevational gradient on a tropical mountain?. Ecology and Evolution, 2017, 7, 9914-9924.	0.8	50
1051	Nutrition modifies critical thermal maximum of a dominant canopy ant. Journal of Insect Physiology, 2017, 102, 1-6.	0.9	45
1052	Dynamic conservation for migratory species. Science Advances, 2017, 3, e1700707.	4.7	118
1053	Using microhabitat thermal heterogeneity to avoid lethal overheating: an empirical approximation in reproductive oviparous and viviparous lizards. Revista Mexicana De Biodiversidad, 2017, 88, 683-690.	0.4	5
1054	Future breeding and foraging sites of a southern edge population of the locally endangered Black Guillemot Cepphus grylle. Bird Study, 2017, 64, 306-316.	0.4	4
1055	Environmental correlates of breeding abundance and population change of Eurasian Curlew <i>Numenius arquata</i> in Britain. Bird Study, 2017, 64, 393-409.	0.4	35
1056	Substantial decline of Northern European peatland bird populations: Consequences of drainage. Biological Conservation, 2017, 214, 223-232.	1.9	38
1057	Molecular ecology of insect pests of agricultural importance: the case of aphids. Ecological Entomology, 2017, 42, 18-27.	1.1	6
1058	Reptiles and frogs conform to multiple conceptual landscape models in an agricultural landscape. Diversity and Distributions, 2017, 23, 1408-1422.	1.9	16
1059	Birds on the move in the face of climate change: High species turnover in northern Europe. Ecology and Evolution, 2017, 7, 8201-8209.	0.8	40

#	Article	IF	CITATIONS
1060	Rapid poleward distributional shifts in the European caveâ€dwelling <i>Meta</i> spiders under the influence of competition dynamics. Journal of Biogeography, 2017, 44, 2789-2797.	1.4	28
1061	Microgeographic Adaptation of Wood Frog Tadpoles to an Apex Predator. Copeia, 2017, 105, 451-461.	1.4	16
1062	Admixture on the northern front: population genomics of range expansion in the white-footed mouse (Peromyscus leucopus) and secondary contact with the deer mouse (Peromyscus maniculatus). Heredity, 2017, 119, 447-458.	1.2	27
1063	Longâ€ŧerm community change: bryophytes are more responsive than vascular plants to nitrogen deposition and warming. Journal of Vegetation Science, 2017, 28, 1220-1229.	1.1	42
1064	Cross-taxa generalities in the relationship between population abundance and ambient temperatures. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170870.	1.2	17
1065	Evolutionarily significant units of the critically endangered leaf frog <i>Pithecopus ayeaye</i> (Anura, Phyllomedusidae) are not effectively preserved by the Brazilian protected areas network. Ecology and Evolution, 2017, 7, 8812-8828.	0.8	20
1066	Parasite biodiversity faces extinction and redistribution in a changing climate. Science Advances, 2017, 3, e1602422.	4.7	194
1067	Relative influences of climate change and human activity on the onshore distribution of polar bears. Biological Conservation, 2017, 214, 288-294.	1.9	57
1068	Elevated seasonal temperatures eliminate thermal barriers of reproduction of a dominant invasive species: A community state change for northern communities?. Diversity and Distributions, 2017, 23, 1182-1192.	1.9	18
1069	Elevational range shifts in four mountain ungulate species from the <scp>S</scp> wiss <scp>A</scp> lps. Ecosphere, 2017, 8, e01761.	1.0	44
1070	Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy, Ecology and Environment, 2017, 2, 404-417.	1.9	24
1071	Searching for Biotic Multipliers of Climate Change. Integrative and Comparative Biology, 2017, 57, 134-147.	0.9	34
1072	Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences. Integrative and Comparative Biology, 2017, 57, 48-54.	0.9	19
1073	Protected areas offer refuge from invasive species spreading under climate change. Global Change Biology, 2017, 23, 5331-5343.	4.2	142
1074	Reduced reproductive performance associated with warmer ambient temperatures during incubation in a winterâ€breeding, foodâ€storing passerine. Ecology and Evolution, 2017, 7, 3029-3036.	0.8	8
1075	Rapid morphological divergence in two closely related and co-occurring species over the last 50Åyears. Evolutionary Ecology, 2017, 31, 847-864.	0.5	27
1076	Projection in snowfall characteristics over the European Alps and its sensitivity to the <scp>SST</scp> changes: results from a 50 km resolution <scp>AGCM</scp> . Atmospheric Science Letters, 2017, 18, 261-267.	0.8	4
1077	Mangrove microclimates alter seedling dynamics at the range edge. Ecology, 2017, 98, 2513-2520.	1.5	49

#	Article	IF	CITATIONS
1078	Investigating the ancestry of putative hybrids: are Arctic fox and red fox hybridizing?. Polar Biology, 2017, 40, 2055-2062.	0.5	3
1079	Modeling local effects on propagule movement and the potential expansion of mangroves and associated fauna: testing in a sub-tropical lagoon. Hydrobiologia, 2017, 803, 173-187.	1.0	4
1080	Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. Forest Ecology and Management, 2017, 402, 135-144.	1.4	44
1081	Dynamicâ€landscape metapopulation models predict complex response of wildlife populations to climate and landscape change. Ecosphere, 2017, 8, e01890.	1.0	13
1082	Boomâ€bust dynamics in biological invasions: towards an improved application of the concept. Ecology Letters, 2017, 20, 1337-1350.	3.0	143
1083	Winter and summer weather modulate the demography of wild turkeys at the northern edge of the species distribution. Population Ecology, 2017, 59, 239-249.	0.7	10
1084	Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climateâ€driven range shift in a butterfly. Journal of Animal Ecology, 2017, 86, 1339-1351.	1.3	24
1085	Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia. Ecological Modelling, 2017, 360, 343-362.	1.2	13
1086	Future climate vulnerability – evaluating multiple lines of evidence. Frontiers in Ecology and the Environment, 2017, 15, 367-376.	1.9	11
1087	Earlier flowering did not alter pollen limitation in an early flowering shrub under short-term experimental warming. Scientific Reports, 2017, 7, 2795.	1.6	4
1088	A framework integrating physiology, dispersal and landâ€use to project species ranges under climate change. Journal of Avian Biology, 2017, 48, 1532-1548.	0.6	14
1089	Differential Effects of Climate on Survival Rates Drive Hybrid Zone Movement. Current Biology, 2017, 27, 3898-3903.e4.	1.8	15
1090	The Role of Vegetation Structure in Controlling Distributions of Vertebrate Herbivores in Arctic Alaska. Arctic, Antarctic, and Alpine Research, 2017, 49, 291-304.	0.4	11
1091	Interactive effects of temperature and habitat complexity on freshwater communities. Ecology and Evolution, 2017, 7, 9333-9346.	0.8	18
1092	Climate Change, Managed Relocation, andthe Risk of Intra-Continental Plant Invasions: A Theoretical and Empirical Exploration Relative To the Flora of New England. Rhodora, 2017, 119, 73-109.	0.0	6
1093	Environmental noise reduces predation rate in an aquatic invertebrate. Journal of Insect Conservation, 2017, 21, 839-847.	0.8	15
1095	Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 2017, 7, 8976-8988.	0.8	20
1096	Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12976-12981.	3.3	124

ARTICLE IF CITATIONS Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations' 2030 1097 0.4 45 Agenda. Mountain Research and Development, 2017, 37, 246-253. Filling the gaps in ecological studies of socioecological systems. Ecological Research, 2017, 32, 873-885. 1098 9 Common garden test of range limits as predicted by a species distribution model in the annual plant 1099 0.8 13 <i>Mimulus bicolor</i>. American Journal of Botany, 2017, 104, 817-827. Rapid assessment of metapopulation viability under climate and land-use change. Ecological 1100 Complexity, 2017, 31, 125-134. Responses of lichen communities to 18 years of natural and experimental warming. Annals of Botany, 1101 1.4 35 2017, 120, 159-170. Research on climate-change impact on Southern Ocean and Antarctic ecosystems after the UN Paris climate conferenceâ€""now more than ever―or "set sail to new shoresâ€?. Polar Biology, 2017, 40, 1481-1492. Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change, 2017, 1103 8.1 97 7, 577-580. A New Approach to Modelling the Relationship Between Annual Population Abundance Indices and 1104 Weather Data. Journal of Agricultural, Biological, and Environmental Statistics, 2017, 22, 427-445. Evolving mutation rate advances the invasion speed of a sexual species. BMC Evolutionary Biology, 1105 3.2 16 2017, 17, 150. Heterogeneous distributional responses to climate warming: evidence from rodents along a subtropical elevational gradient. BMC Ecology, 2017, 17, 17 Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Climatic Change, 1107 1.7 20 2017, 143, 415-428. Conifer Presence May Negatively Affect Sugar Maple's Ability to Migrate into the Boreal Forest 1108 1.6 Through Reduced Foliar Nutritional Status. Ecosystems, 2017, 20, 701-716. Multi $\hat{a} \in s$ tate, multi $\hat{a} \in s$ tage modeling of nest $\hat{a} \in s$ uccess suggests interaction between weather and land $\hat{a} \in u$ se. 1109 1.5 12 Ecology, 2017, 98, 175-186. A near halfâ€century of temporal change in different facets of avian diversity. Global Change Biology, 4.2 2017, 23, 2999-3011. Climate change is not a major driver of shifts in the geographical distributions of North American 1111 2.7 39 birds. Global Ecology and Biogeography, 2017, 26, 333-346. Herbivory and nutrient limitation protect warming tundra from lowland species' invasion and diversity loss. Global Change Biology, 2017, 23, 245-255. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?. Journal of 1113 1.370 Animal Ecology, 2017, 86, 108-116. Responses of arthropod populations to warming depend on latitude: evidence from urban heat 1114 4.2 64 islands. Global Change Biology, 2017, 23, 1436-1447.

#	Article	IF	CITATIONS
1115	Coarse climate change projections for species living in a fineâ€scaled world. Global Change Biology, 2017, 23, 12-24.	4.2	56
1116	Citizen science can improve conservation science, natural resource management, and environmental protection. Biological Conservation, 2017, 208, 15-28.	1.9	703
1117	Heat resistance throughout ontogeny: body size constrains thermal tolerance. Global Change Biology, 2017, 23, 686-696.	4.2	113
1118	Population trends influence species ability to track climate change. Global Change Biology, 2017, 23, 1390-1399.	4.2	29
1119	Paralysis and heart failure precede ion balance disruption in heat-stressed European green crabs. Journal of Thermal Biology, 2017, 68, 186-194.	1.1	6
1120	Effects of high latitude protected areas on bird communities under rapid climate change. Clobal Change Biology, 2017, 23, 2241-2249.	4.2	23
1121	Impacts of climate change on national biodiversity population trends. Ecography, 2017, 40, 1139-1151.	2.1	56
1122	Persistence in the longitudinal distribution of lotic insects in a changing climate: a tale of two rivers. Science of the Total Environment, 2017, 574, 1294-1304.	3.9	6
1123	Effect of white striping myopathy on breast muscle (Pectoralis major) protein turnover and gene expression in broilers. Poultry Science, 2017, 96, 886-893.	1.5	27
1124	Climate Change Impacts on <i>Faidherbia albida</i> (Delile) A. Chev. Distribution in Dry Lands of Ethiopia. African Journal of Ecology, 2017, 55, 233-243.	0.4	13
1125	Tracking lags in historical plant species' shifts in relation to regional climate change. Global Change Biology, 2017, 23, 1305-1315.	4.2	92
1126	Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae). Austral Entomology, 2017, 56, 104-114.	0.8	21
1127	Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos, 2017, 126, 8-17.	1.2	87
1128	Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. Journal of Ornithology, 2017, 158, 493-505.	0.5	29
1129	Drivers of species richness and compositional change in Scottish coastal vegetation. Applied Vegetation Science, 2017, 20, 183-193.	0.9	16
1130	The role of competition, ecotones, and temperature in the elevational distribution of Himalayan birds. Ecology, 2017, 98, 337-348.	1.5	64
1131	Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Global Change Biology, 2017, 23, 269-282.	4.2	110
1132	Predictive distribution modeling and population status of the endangered <i>Macaca munzala</i> in Arunachal Pradesh, India. American Journal of Primatology, 2017, 79, 1-10.	0.8	11

#	Article	IF	CITATIONS
1133	Where do they go? The effects of topography and habitat diversity on reducing climatic debt in birds. Global Change Biology, 2017, 23, 2218-2229.	4.2	43
1134	High genetic diversity vs. low genetic and morphological differentiation of <i>Argiope trifasciata</i> (Araneae, Araneidae) in Tunisia. Systematics and Biodiversity, 2017, 15, 1-15.	0.5	14
1136	Altitudinal Range Shifts of Birds At the Southern Periphery of the Boreal Forest: 40 Years of Change In the Adirondack Mountains. Wilson Journal of Ornithology, 2017, 129, 742.	0.1	14
1137	Air pollution, food production and food security: A review from the perspective of food system. Journal of Integrative Agriculture, 2017, 16, 2945-2962.	1.7	65
1138	Living on the edge: Conservation genetics of seven thermophilous plant species in a High Arctic archipelago. AoB PLANTS, 2017, , plx001.	1.2	10
1139	Evidence of exceptional oysterâ€reef resilience to fluctuations in sea level. Ecology and Evolution, 2017, 7, 10409-10420.	0.8	23
1140	Recent stability of resident and migratory landbird populations in National Parks of the Pacific Northwest. Ecosphere, 2017, 8, e01902.	1.0	10
1142	Expanded Range Limits of Boreal Birds in the Torngat Mountains of Northern Labrador. Canadian Field-Naturalist, 2017, 131, 55-62.	0.0	11
1143	Elevation Shift in Abies Mill. (Pinaceae) of Subtropical and Temperate China and Vietnam—Corroborative Evidence from Cytoplasmic DNA and Ecological Niche Modeling. Frontiers in Plant Science, 2017, 8, 578.	1.7	15
1144	Can Aquatic Plants Keep Pace with Climate Change?. Frontiers in Plant Science, 2017, 8, 1906.	1.7	23
1145	Selection of candidate reference genes and validation for real-time PCR studies in rice plants exposed to low temperatures. Genetics and Molecular Research, 2017, 16, .	0.3	6
1146	Mapping the Potential Global Range of the Brown Marmorated Stink Bug, Halyomorpha halys, with Particular Reference to New Zealand. Climate, 2017, 5, 75.	1.2	6
1147	Mixing It Up: The Role of Hybridization in Forest Management and Conservation under Climate Change. Forests, 2017, 8, 237.	0.9	41
1148	Impacts of Global Change on Mediterranean Forests and Their Services. Forests, 2017, 8, 463.	0.9	98
1149	Changes over 26 Years in the Avifauna of the BogotÃ _i Region, Colombia: Has Climate Change Become Important?. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	14
1150	Agro-Ecological Class Stability Decreases in Response to Climate Change Projections for the Pacific Northwest, USA. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	23
1151	Citizen Science as a Tool for Augmenting Museum Collection Data from Urban Areas. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	59
1152	Noni (Morinda citrifolia) Modulates the Hypothalamic Expression of Stress- and Metabolic-Related Genes in Broilers Exposed to Acute Heat Stress. Frontiers in Genetics, 2017, 8, 192.	1.1	36

#	Article	IF	CITATIONS
1153	Biodiversity Areas under Threat: Overlap of Climate Change and Population Pressures on the World's Biodiversity Priorities. PLoS ONE, 2017, 12, e0170615.	1.1	35
1154	Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest. PLoS ONE, 2017, 12, e0176706.	1.1	30
1155	Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS ONE, 2017, 12, e0181834.	1.1	32
1156	Which climate change path are we following? Bad news from Scots pine. PLoS ONE, 2017, 12, e0189468.	1.1	18
1157	Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLoS ONE, 2017, 12, e0190092.	1.1	25
1158	Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains. Nature Communications, 2017, 8, 419.	5.8	57
1159	Adaptive responses to salinity stress across multiple life stages in anuran amphibians. Frontiers in Zoology, 2017, 14, 40.	0.9	60
1160	The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, U.S.A Climate Change Responses, 2017, 4, .	2.6	24
1161	Differences in Rate and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature. Remote Sensing, 2017, 9, 222.	1.8	9
1162	The potential effects of future climate change on suitable habitat for the Taiwan partridge (Arborophila crudigularis): an ensemble-based forecasting method. Turkish Journal of Zoology, 2017, 41, 513-521.	0.4	2
1164	Surface wetting strategy prevents acute heat exposure–induced alterations of hypothalamic stress– and metabolic-related genes in broiler chickens1. Journal of Animal Science, 2017, 95, 1132-1143.	0.2	17
1165	Genetic Consequences of Invasive Species in the Galapagos Islands. Social and Ecological Interactions in the Galapagos Islands, 2018, , 19-32.	0.4	6
1166	Growthâ€competitionâ€herbivore resistance tradeâ€offs and the responses of alpine plant communities to climate change. Functional Ecology, 2018, 32, 1693-1703.	1.7	24
1167	Flight range, fuel load and the impact of climate change on the journeys of migrant birds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172329.	1.2	45
1168	Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB PLANTS, 2018, 10, ply003.	1.2	21
1169	Selection and validation of reference genes for quantitative real-time PCR in Artemisia sphaerocephala based on transcriptome sequence data. Gene, 2018, 657, 39-49.	1.0	16
1170	Recent trends in nonâ€native, invertebrate, plant pest establishments in <scp>G</scp> reat <scp>B</scp> ritain, accounting for time lags in reporting. Agricultural and Forest Entomology, 2018, 20, 496-504.	0.7	15
1171	A review and metaâ€analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis, 2018, 160, 489-515.	1.0	117

#	Article	IF	CITATIONS
1172	Allogenic succession of Korean fir (Abies koreana Wils.) forests in different climate condition. Ecological Research, 2018, 33, 327-340.	0.7	7
1173	Validation of reference genes for accurate normalization of gene expression with quantitative real-time PCR in Haloxylon ammodendron under different abiotic stresses. Physiology and Molecular Biology of Plants, 2018, 24, 455-463.	1.4	14
1174	The importance of marginal population hotspots of coldâ€adapted species for research on climate change and conservation. Journal of Biogeography, 2018, 45, 977-985.	1.4	42
1175	Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics, 2018, 44, 101-108.	2.3	29
1176	Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nature Climate Change, 2018, 8, 245-251.	8.1	95
1177	Two closely related species differ in their regional genetic differentiation despite admixing. AoB PLANTS, 2018, 10, ply007.	1.2	5
1178	Misleading prioritizations from modelling range shifts under climate change. Global Ecology and Biogeography, 2018, 27, 658-666.	2.7	39
1179	More than range exposure: Clobal otter vulnerability to climate change. Biological Conservation, 2018, 221, 103-113.	1.9	41
1181	Use of genetic, climatic, and microbiological data to inform reintroduction of a regionally extinct butterfly. Conservation Biology, 2018, 32, 828-837.	2.4	26
1182	Physiological regulation of poplar species to experimental warming differs between species with contrasting elevation ranges. New Forests, 2018, 49, 329-340.	0.7	5
1183	Assessing the landscape functional connectivity using movement maps: a case study with endemic Azorean insects. Journal of Insect Conservation, 2018, 22, 257-265.	0.8	8
1184	Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Scientific Reports, 2018, 8, 5879.	1.6	55
1185	Does current climate explain plant disjunctions? A test using the New Zealand alpine flora. Journal of Biogeography, 2018, 45, 1490-1499.	1.4	9
1186	Effects of drying and rewetting on soluble phosphorus and nitrogen in forest floors: An experiment with undisturbed columns. Journal of Plant Nutrition and Soil Science, 2018, 181, 177-184.	1.1	15
1187	An empirical test of the relative and combined effects of land over and climate change on local colonization and extinction. Global Change Biology, 2018, 24, 3849-3861.	4.2	23
1188	Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. Journal of Biogeography, 2018, 45, 1334-1344.	1.4	115
1189	Climate change impacts on boreal forest timber supply. Forest Policy and Economics, 2018, 92, 11-21.	1.5	57
1190	Range contraction and increasing isolation of a polar bear subpopulation in an era of seaâ€ice loss. Ecology and Evolution, 2018, 8, 2062-2075.	0.8	38

#	Article	IF	CITATIONS
1191	Polymorphic nuclear markers for coastal plant species with dynamic geographic distributions, the rock samphire (Crithmum maritimum) and the vulnerable dune pansy (Viola tricolor subsp. curtisii). Molecular Biology Reports, 2018, 45, 203-209.	1.0	7
1192	Can sugar maple establish into the boreal forest? Insights from seedlings under various canopies in southern Quebec. Ecosphere, 2018, 9, e02022.	1.0	16
1193	Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 2018, 556, 231-234.	13.7	580
1194	Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conservation Biology, 2018, 32, 1128-1138.	2.4	167
1195	Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Diversity and Distributions, 2018, 24, 868-879.	1.9	147
1196	Marine invertebrate migrations trace climate change over 450 million years. Global Ecology and Biogeography, 2018, 27, 704-713.	2.7	24
1197	Habitat protection actions for the Indoâ€Pacific humpback dolphin: Baseline gaps, scopes, and resolutions for the Taiwanese subspecies. Aquatic Conservation: Marine and Freshwater Ecosystems, 2018, 28, 733-743.	0.9	18
1198	Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind. Biological Conservation, 2018, 222, 75-85.	1.9	20
1199	The response of big sagebrush (<i>Artemisia tridentata</i>) to interannual climate variation changes across its range. Ecology, 2018, 99, 1139-1149.	1.5	40
1200	Land-use change interacts with climate to determine elevational species redistribution. Nature Communications, 2018, 9, 1315.	5.8	158
1201	Retreat to refugia: Severe habitat contraction projected for endemic alpine plants of the Olympic Peninsula. American Journal of Botany, 2018, 105, 760-778.	0.8	15
1202	Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota. Science of the Total Environment, 2018, 634, 355-365.	3.9	31
1203	Chaparral Landscape Conversion in Southern California. Springer Series on Environmental Management, 2018, , 323-346.	0.3	25
1204	Canadian butterfly climate debt is significant and correlated with range size. Ecography, 2018, 41, 2005-2015.	2.1	23
1205	Seasonal variation in diet and nutrition of the northernâ€nost population of <i>Rhinopithecus roxellana</i> . American Journal of Primatology, 2018, 80, e22755.	0.8	29
1206	Transportation Infrastructures and Arthropod Dispersal: Are Harvestmen (Opiliones) Hitchhiking to Northern Europe?. Journal of Ethnobiology, 2018, 38, 55-70.	0.8	8
1207	Evolutionary Responses to Climate Change. , 2018, , 43-49.		0
1208	Species Responses to Climate Change: Integrating Individual-Based Ecology Into Community and Ecosystem Studies. , 2018, , 139-147.		5

	C	ITATION REPORT	
# 1209	ARTICLE Insects and Climate Change: Variable Responses Will Lead to Climate Winners and Losers. , 2018, , 9	IF 5-101.	Citations 3
1210	Future global productivity will be affected by plant trait response to climate. Scientific Reports, 2018 8, 2870.	, 1. 6	95
1211	Biogeographic constraints to marine conservation in a changing climate. Annals of the New York Academy of Sciences, 2018, 1429, 5-17.	1.8	40
1212	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2018, , 289-300.		0
1213	Climate Change May Trigger Broad Shifts in North America's Pacific Coastal Rainforests. , 2018, , 233-244.		3
1214	Climate Change: Warming Impacts on Marine Biodiversity. , 2018, , 353-373.		28
1215	Geographic range velocity and its association with phylogeny and life history traits in North American woody plants. Ecology and Evolution, 2018, 8, 2632-2644.	0.8	9
1216	Spatial and temporal assessments of genetic structure in an endangered Garry oak ecosystem on Vancouver Island. Botany, 2018, 96, 257-265.	0.5	3
1217	Sea trout (Salmo trutta) growth patterns during early steps of invasion in the Kerguelen Islands. Polar Biology, 2018, 41, 925-934.	0.5	7
1218	Range dynamics of mountain plants decrease with elevation. Proceedings of the National Academy o Sciences of the United States of America, 2018, 115, 1848-1853.	f 3.3	284
1219	Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology, 2018, 87, 634-646.	1.3	47
1220	No upward shift of alpine grassland distribution on the Qinghai-Tibetan Plateau despite rapid climate warming from 2000 to 2014. Science of the Total Environment, 2018, 625, 1361-1368.	3.9	17
1221	Current spring warming as a driver of selection on reproductive timing in a wild passerine. Journal of Animal Ecology, 2018, 87, 754-764.	1.3	35
1222	Integrating direct observation and GPS tracking to monitor animal behavior for resource management. Environmental Monitoring and Assessment, 2018, 190, 75.	1.3	6
1223	Phylogeography of the pelagic snail Limacina helicina (Gastropoda: Thecosomata) in the subarctic western North Pacific. Journal of Molluscan Studies, 2018, 84, 30-37.	0.4	14
1224	Geographical range size and latitude predict population genetic structure in a global survey. Biology Letters, 2018, 14, 20170566.	1.0	50
1225	Effects of grazing abandonment and climate change on mountain summits flora: a case study in the Tatra Mts. Plant Ecology, 2018, 219, 261-276.	0.7	16
1226	Areas of endemism persist through time: A palaeoclimatic analysis in the Mexican Transition Zone. Journal of Biogeography, 2018, 45, 952-961.	1.4	13

#	Article	IF	CITATIONS
1227	Spatial patterns of pathogenic and mutualistic fungi across the elevational range of a host plant. Journal of Ecology, 2018, 106, 1545-1557.	1.9	25
1228	Related herbivore species show similar temporal dynamics. Journal of Animal Ecology, 2018, 87, 801-812.	1.3	8
1229	Elevation patterns of plant diversity and recent altitudinal range shifts in Sinai's highâ€mountain flora. Journal of Vegetation Science, 2018, 29, 255-264.	1.1	8
1230	Lifeâ€history traits and physiological limits of the alpine fly <i>Drosophila nigrosparsa</i> (Diptera:) Tj ETQq1 1	0.784314 0.8	rgBT /Overlo
1231	A taxonomic, functional, and phylogenetic perspective on the community assembly of passerine birds along an elevational gradient in southwest China. Ecology and Evolution, 2018, 8, 2712-2720.	0.8	22
1232	Altitudinal heterogeneity and vulnerability assessment of protected area network for climate change adaptation planning in central Iran. Applied Geography, 2018, 92, 94-103.	1.7	11
1233	Reconstructing geographic range-size dynamics from fossil data. Paleobiology, 2018, 44, 25-39.	1.3	25
1234	Enhancing the WorldClim data set for national and regional applications. Science of the Total Environment, 2018, 625, 1628-1643.	3.9	32
1235	Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecology and Evolution, 2018, 2, 475-482.	3.4	89
1236	Salamander morph frequencies do not evolve as predicted in response to 40 years of climate change. Ecography, 2018, 41, 1687-1697.	2.1	12
1237	Rapid range expansion of the Brazilian free-tailed bat in the southeastern United States, 2008–2016. Journal of Mammalogy, 2018, 99, 312-320.	0.6	33
1238	Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Functional Ecology, 2018, 32, 948-957.	1.7	41
1239	Demographic history influences spatial patterns of genetic diversityin recently expanded coyote (Canis latrans) populations. Heredity, 2018, 120, 183-195.	1.2	18
1240	Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecological Informatics, 2018, 43, 106-115.	2.3	20
1241	Bioâ€ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 2018, 27, 277-284.	2.7	567
1242	Geographical isolation and environmental heterogeneity contribute to the spatial genetic patterns of Quercus kerrii (Fagaceae). Heredity, 2018, 120, 219-233.	1.2	32
1243	Oldâ€growth forests buffer climateâ€sensitive bird populations from warming. Diversity and Distributions, 2018, 24, 439-447.	1.9	63
1244	Competition between cheatgrass and bluebunch wheatgrass is altered by temperature, resource availability, and atmospheric CO2 concentration. Oecologia, 2018, 186, 855-868.	0.9	14

#	Article	IF	CITATIONS
1245	Are North American bird species' geographic ranges mainly determined by climate?. Global Ecology and Biogeography, 2018, 27, 461-473.	2.7	15
1246	Climate Warming as a Possible Trigger of Keystone Mussel Population Decline in Oligotrophic Rivers at the Continental Scale. Scientific Reports, 2018, 8, 35.	1.6	47
1247	The neurobiology of climate change. Die Naturwissenschaften, 2018, 105, 11.	0.6	11
1248	Bat diversity in Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 2018, 218, 200-210.	1.9	29
1249	Soil bacterial community responses to altered precipitation and temperature regimes in an old field grassland are mediated by plants. FEMS Microbiology Ecology, 2018, 94, .	1.3	54
1250	Opportunities and challenges for big data ornithology. Condor, 2018, 120, 414-426.	0.7	58
1251	Interglacial refugia on tropical mountains: Novel insights from the summit rat (<i>Rattus) Tj ETQq0 0 0 rgBT /Ove</i>	rlock 10 T 1.9	f 50 502 Td
1252	Predicting population viability of the narrow endemic Mediterranean plant Centaurea corymbosa under climate change. Biological Conservation, 2018, 223, 19-33.	1.9	10
1253	Climate Velocity Can Inform Conservation in a Warming World. Trends in Ecology and Evolution, 2018, 33, 441-457.	4.2	124
1254	Effects of oil exposure, plant species composition, and plant genotypic diversity on salt marsh and mangrove assemblages. Ecosphere, 2018, 9, e02207.	1.0	13
1255	Impacts on terrestrial biodiversity of moving from a 2°C to a 1.5°C target. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160456.	1.6	24
1256	Climate change: potential implications for Ireland's biodiversity. International Journal of Biometeorology, 2018, 62, 1221-1228.	1.3	3
1257	Contemporary climateâ€driven range shifts: Putting evolution back on the table. Functional Ecology, 2018, 32, 1652-1665.	1.7	62
1258	Past and future impact of climate change on foraging habitat suitability in a high-alpine bird species: Management options to buffer against global warming effects. Biological Conservation, 2018, 221, 209-218.	1.9	33
1259	Fifty Years of Mountain Passes: A Perspective on Dan Janzen's Classic Article. American Naturalist, 2018, 191, 553-565.	1.0	85
1260	CO2 Sequestration: Processes and Methodologies. , 2018, , 1-50.		1
1261	Incorporating Social and Ecological Adaptive Capacity into Vulnerability Assessments and Management Decisions for Biodiversity Conservation. BioScience, 2018, 68, 371-380.	2.2	13
1262	The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Climatic Change, 2018, 147, 395-409.	1.7	72

#	Article	IF	CITATIONS
1263	Assessment of rock pool fish assemblages along a latitudinal gradient. Marine Biodiversity, 2018, 48, 1147-1158.	0.3	10
1264	Repeated Drought Alters Resistance of Seed Bank Regeneration in Baldcypress Swamps of North America. Ecosystems, 2018, 21, 190-201.	1.6	9
1265	Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography, 2018, 41, 265-277.	2.1	80
1266	Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies. Insect Science, 2018, 25, 894-904.	1.5	3
1267	The â€~golden kelp' <i>Laminaria ochroleuca</i> under global change: Integrating multiple ecoâ€physiological responses with species distribution models. Journal of Ecology, 2018, 106, 47-58.	1.9	78
1268	Modelling species responses to extreme weather provides new insights into constraints on range and likely climate change impacts for Australian mammals. Ecography, 2018, 41, 308-320.	2.1	44
1269	Herbivoreâ€induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores. New Phytologist, 2018, 220, 726-738.	3.5	50
1270	Climate change may drive cave spiders to extinction. Ecography, 2018, 41, 233-243.	2.1	80
1271	New poleward observations of 30 tropical reef fishes in temperate southeastern Australia. Marine Biodiversity, 2018, 48, 2249-2254.	0.3	25
1272	Importance of antecedent environmental conditions in modeling species distributions. Ecography, 2018, 41, 825-836.	2.1	13
1273	Analogâ€based fire regime and vegetation shifts in mountainous regions of the western US. Ecography, 2018, 41, 910-921.	2.1	39
1274	Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 89-102.	1.1	62
1275	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
1276	Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 71-81.	1.1	29
1277	Humusica 1, article 7: Terrestrial humus systems and forms – Field practice and sampling problems. Applied Soil Ecology, 2018, 122, 92-102.	2.1	11
1278	Elevational transplantation suggests different responses of <scp>A</scp> frican submontane and savanna plants to climate warming. Journal of Ecology, 2018, 106, 296-305.	1.9	4
1279	Traitâ€dependent distributional shifts in fruiting of common British fungi. Ecography, 2018, 41, 51-61.	2.1	19
1280	Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 2018, 106, 948-959.	1.9	49

#	Article	IF	CITATIONS
1281	Wildfire–vegetation dynamics affect predictions of climate change impact on bird communities. Ecography, 2018, 41, 982-995.	2.1	14
1282	Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr – A rare arctic-alpine species in the Tatra Mts. Science of the Total Environment, 2018, 618, 1628-1637.	3.9	27
1283	The influence of rangeâ€wide plant genetic variation on soil invertebrate communities. Ecography, 2018, 41, 1135-1146.	2.1	4
1284	Humusica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture. Applied Soil Ecology, 2018, 122, 254-270.	2.1	5
1285	The impact of the introduced Digitonthophagus gazella on a native dung beetle community in Brazil during 26Âyears. Biological Invasions, 2018, 20, 963-979.	1.2	26
1286	The dispersal success and persistence of populations with asymmetric dispersal. Theoretical Ecology, 2018, 11, 55-69.	0.4	7
1287	Rapid evolution of phenology during range expansion with recent climate change. Global Change Biology, 2018, 24, e534-e544.	4.2	54
1288	Limited stand expansion by a longâ€lived conifer at a leading northern range edge, despite available habitat. Journal of Ecology, 2018, 106, 911-924.	1.9	11
1289	Environmental Correlates with Germinable Weed Seedbanks on Organic Farms across Northern New England. Weed Science, 2018, 66, 78-93.	0.8	5
1290	How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Global Change Biology, 2018, 24, e335-e351.	4.2	97
1291	Cumulative stress restricts niche filling potential of habitatâ€forming kelps in a future climate. Functional Ecology, 2018, 32, 288-299.	1.7	21
1292	Geographic signatures in species turnover: decoupling colonization and extinction across a latitudinal gradient. Oikos, 2018, 127, 507-517.	1.2	2
1293	Synchronizing biological cycles as key to survival under a scenario of global change: The Common quail (Coturnix coturnix) strategy. Science of the Total Environment, 2018, 613-614, 1295-1301.	3.9	9
1294	Strong responses of <i>Drosophila melanogaster</i> microbiota to developmental temperature. Fly, 2018, 12, 1-12.	0.9	93
1295	Genetic adaptation as a biological buffer against climate change: Potential and limitations. Integrative Zoology, 2018, 13, 372-391.	1.3	56
1296	Extinct, obscure or imaginary: The lizard species with the smallest ranges. Diversity and Distributions, 2018, 24, 262-273.	1.9	66
1297	Physical effects of habitatâ€forming species override latitudinal trends in temperature. Ecology Letters, 2018, 21, 190-196.	3.0	46
1298	Land use and life history limit migration capacity of eastern tree species. Global Ecology and Biogeography, 2018, 27, 57-67.	2.7	39

#	Article	IF	Citations
1299	Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Climate Risk Management, 2018, 19, 94-105.	1.6	70
1300	Linking species thermal tolerance to elevational range shifts in upland dung beetles . Ecography, 2018, 41, 1510-1519.	2.1	29
1301	Restoration of plant species and genetic diversity depends on landscapeâ€scale dispersal. Restoration Ecology, 2018, 26, S92.	1.4	62
1302	Diversity patterns in sandy forest-steppes: a comparative study from the western and central Palaearctic. Biodiversity and Conservation, 2018, 27, 1011-1030.	1.2	26
1303	Concomitant impacts of climate change, fragmentation and nonâ€native species have led to reorganization of fish communities since the 1980s. Global Ecology and Biogeography, 2018, 27, 213-222.	2.7	56
1304	Tree leaf and root traits mediate soil faunal contribution to litter decomposition across an elevational gradient. Functional Ecology, 2018, 32, 840-852.	1.7	47
1305	Asymmetric crossâ€border protection of peripheral transboundary species. Conservation Letters, 2018, 11, e12430.	2.8	26
1306	Elevational gradients in plant defences and insect herbivory: recent advances in the field and prospects for future research. Ecography, 2018, 41, 1485-1496.	2.1	97
1307	Ecophysiological variation across a forestâ€ecotone gradient produces divergent climate change vulnerability within species. Ecography, 2018, 41, 1627-1637.	2.1	17
1308	Digital footprints: Incorporating crowdsourced geographic information for protected area management. Applied Geography, 2018, 90, 44-54.	1.7	70
1309	Forecasting range shifts of a coldâ€adapted species under climate change: are genomic and ecological diversity within species crucial for future resilience?. Ecography, 2018, 41, 1357-1369.	2.1	28
1310	Lags in the response of mountain plant communities to climate change. Global Change Biology, 2018, 24, 563-579.	4.2	279
1311	The mismeasure of science: Citation analysis. Journal of the Association for Information Science and Technology, 2018, 69, 474-482.	1.5	56
1312	Mesocosm experiments reveal the direction of groundwater–surface water exchange alters the hyporheic refuge capacity under warming scenarios. Freshwater Biology, 2018, 63, 165-177.	1.2	10
1313	Changes in habitat suitability influence nonâ€breeding distribution of waterbirds in central Europe. Ibis, 2018, 160, 582-596.	1.0	7
1314	Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecology and Biogeography, 2018, 27, 245-256.	2.7	336
1315	Enough space in a warmer world? Microhabitat diversity and smallâ€scale distribution of alpine plants on mountain summits. Diversity and Distributions, 2018, 24, 252-261.	1.9	49
1316	Environmental representativeness and the role of emitter and recipient areas in the future trajectory of a protected area under climate change. Animal Biodiversity and Conservation, 2018, 41, 333-344.	0.3	5

#	Article	IF	CITATIONS
1317	Range-wide variation in the effect of spring snow phenology on Dall sheep population dynamics. Environmental Research Letters, 2018, 13, 075008.	2.2	14
1318	The Cedars of Lebanon, the Limits of Restoration, and Cultural Loss. Ecological Restoration, 2018, 36, 261-262.	0.5	3
1319	Canada Warbler (Cardellina canadensis): novel molecular markers and a preliminary analysis of genetic diversity and structure. Avian Conservation and Ecology, 2018, 13, .	0.3	4
1320	Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosystem Health and Sustainability, 2018, 4, 225-239.	1.5	174
1321	Morphological Variations in <i>Tamarindus indica</i> LINN. Fruits and Seed Traits in the Different Agroecological Zones of Uganda. International Journal of Ecology, 2018, 2018, 1-12.	0.3	11
1322	OBSOLETE: Species Responses to Climate Change: Integrating Individual-Based Ecology Into Community and Ecosystem Studies. , 2018, , .		1
1323	Niche squeeze induced by climate change of the cold-tolerant subtropical montane Podocarpus parlatorei. Royal Society Open Science, 2018, 5, 180513.	1.1	6
1324	RAD-seq reveals genetic structure of the F2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biology, 2018, 18, 317.	1.6	31
1325	Estimating Invasion Time in Real Landscapes. , 2018, , .		2
1326	Potential change in the distribution of an abundant and wide-ranging forest salamander in a context of climate change. Frontiers of Biogeography, 2018, 9, .	0.8	2
1327	Fire and Climate Suitability for Woody Vegetation Communities in the South Central United States. Fire Ecology, 2018, 14, 106-124.	1.1	10
1328	Changes in feeding selectivity of freshwater invertebrates across a natural thermal gradient. Environmental Epigenetics, 2018, 64, 231-242.	0.9	19
1329	Plant–plant interactions could limit recruitment and range expansion of tall shrubs into alpine and Arctic tundra. Polar Biology, 2018, 41, 2211-2219.	0.5	11
1330	Flowering Time as a Model Trait to Bridge Proximate and Evolutionary Questions. , 2018, , 171-194.		3
1331	Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nature Communications, 2018, 9, 4771.	5.8	163
1332	Reducing Wallacean shortfalls for the coralsnakes of the Micrurus lemniscatus species complex: Present and future distributions under a changing climate. PLoS ONE, 2018, 13, e0205164.	1.1	13
1333	Nonâ€linear effect of sea ice: Spectacled Eider survival declines at both extremes of the ice spectrum. Ecology and Evolution, 2018, 8, 11808-11818.	0.8	4
1334	Global predation pressure redistribution under future climate change. Nature Climate Change, 2018, 8, 1087-1091.	8.1	53

#	Article	IF	Citations
1335	Impact of climate change implies the northward shift in distribution of the Irano-Turanian subalpine species complex Acanthophyllum squarrosum. Journal of Asia-Pacific Biodiversity, 2018, 11, 566-572.	0.2	10
1336	Out in the Cold: Trophic Resource Use by the Common Frog (<i>Rana temporaria</i>) Populations Inhabiting Extreme Habitats. Annales Zoologici Fennici, 2018, 55, 257-275.	0.2	2
1337	Widespread but heterogeneous responses of Andean forests to climate change. Nature, 2018, 564, 207-212.	13.7	184
1338	Identifying riparian climate corridors to inform climate adaptation planning. PLoS ONE, 2018, 13, e0205156.	1.1	25
1339	Escalator to extinction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11871-11873.	3.3	54
1340	The Concentration of Non-structural Carbohydrates, N, and P in Quercus variabilis Does Not Decline Toward Its Northernmost Distribution Range Along a 1500 km Transect in China. Frontiers in Plant Science, 2018, 9, 1444.	1.7	9
1342	An investigation of the molecular and biochemical basis underlying chlorantraniliproleâ€resistant <i>Drosophila</i> strains and their crossâ€resistance to other insecticides. Archives of Insect Biochemistry and Physiology, 2018, 99, e21514.	0.6	9
1343	Distributional shifts in a biodiversity hotspot. Biological Conservation, 2018, 228, 252-258.	1.9	2
1344	Compensatory conservation measures for an endangered caribou population under climate change. Scientific Reports, 2018, 8, 16438.	1.6	12
1345	Migration and recent range expansion of Seminole bats (Lasiurus seminolus) in the United States. Journal of Mammalogy, 0, , .	0.6	9
1346	Giant panda distributional and habitatâ€use shifts in a changing landscape. Conservation Letters, 2018, 11, e12575.	2.8	98
1347	Anticipatory parental effects in a subtropical lizard in response to experimental warming. Frontiers in Zoology, 2018, 15, 51.	0.9	18
1348	Decreasing brown bear (<i>Ursus arctos</i>) habitat due to climate change in Central Asia and the Asian Highlands. Ecology and Evolution, 2018, 8, 11887-11899.	0.8	28
1349	Climate Warming Effects on Epiphytes in Spruce Forests of the Alps. Herzogia, 2018, 31, 374.	0.1	3
1350	Landscape Genomics for Wildlife Research. Population Genomics, 2018, , 145-184.	0.2	41
1351	Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient. PLoS ONE, 2018, 13, e0207936.	1.1	9
1352	Livestock management, beaver, and climate influences on riparian vegetation in a semi-arid landscape. PLoS ONE, 2018, 13, e0208928.	1.1	26
1353	OBSOLETE: Evolutionary responses to climate change. , 2018, , .		0

#	Article	IF	CITATIONS
1354	Thermal Constraints Explain the Distribution of the Climate Relict Lizard <i>Colobosauroides carvalhoi</i> (Gymnophthalmidae) in the Semiarid Caatinga. South American Journal of Herpetology, 2018, 13, 248-259.	0.5	8
1355	Navigating fragmented landscapes: Canada lynx brave poor quality habitats while traveling. Ecology and Evolution, 2018, 8, 11293-11308.	0.8	7
1356	Divergent responses to warming of two common co-occurring Mediterranean bryozoans. Scientific Reports, 2018, 8, 17455.	1.6	24
1357	Does metabolism constrain bird and mammal ranges and predict shifts in response to climate change?. Ecology and Evolution, 2018, 8, 12375-12385.	0.8	30
1358	Shifting daylength regimes associated with range shifts alter aphidâ€parasitoid community dynamics. Ecology and Evolution, 2018, 8, 8761-8769.	0.8	14
1359	Post-breeding movement and habitat use by wood frogs along an Arctic–Subarctic ecotone. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	8
1360	Disproportionate magnitude of climate change in United States national parks. Environmental Research Letters, 2018, 13, 104001.	2.2	64
1361	An economic model of metapopulation dynamics. Ecological Modelling, 2018, 387, 196-204.	1.2	1
1362	Using species traits to guide conservation actions under climate change. Climatic Change, 2018, 151, 317-332.	1.7	35
1363	Transplant Experiments Point to Fire Regime as Limiting Savanna Tree Distribution. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	14
1364	OBSOLETE: Insects and climate change: variable responses will lead to climate winners and losers. , 2018, , .		0
1365	Mutation load dynamics during environmentally-driven range shifts. PLoS Genetics, 2018, 14, e1007450.	1.5	29
1366	Evidence that climate sets the lower elevation range limit in a highâ€elevation endemic salamander. Ecology and Evolution, 2018, 8, 7553-7562.	0.8	20
1367	Parapatric subspecies of <i>Macaca assamensis</i> show a marginal overlap in their predicted potential distribution: Some elaborations for modern conservation management. Ecology and Evolution, 2018, 8, 9712-9727.	0.8	10
1368	<scp>STEPWAT</scp> 2: an individualâ€based model for exploring the impact of climate and disturbance on dryland plant communities. Ecosphere, 2018, 9, e02394.	1.0	14
1370	Climate change impacts on the distribution of the allergenic plant, common ragweed (Ambrosia) Tj ETQq1 1 C	0.784314 rgBT	/Overlock 1 24
1371	An Economist's Guide to Climate Change Science. Journal of Economic Perspectives, 2018, 32, 3-32.	2.7	80
1372	Changes in temperature alter the potential outcomes of virus host shifts. PLoS Pathogens, 2018, 14, e1007185.	2.1	33

#	Article	IF	CITATIONS
1373	Calibration of a rumen bolus to measure continuous internal body temperature in moose. Wildlife Society Bulletin, 2018, 42, 328-337.	1.6	12
1374	Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170446.	1.8	50
1375	Demographic responses to climate variation depend on spatial- and life history-differentiation at multiple scales. Biological Conservation, 2018, 228, 62-69.	1.9	11
1376	Climatic niche breadth determines the response of bumblebees (Bombus spp.) to climate warming in mountain areas of the Northern Iberian Peninsula. Journal of Insect Conservation, 2018, 22, 771-779.	0.8	14
1377	Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11982-11987.	3.3	293
1378	Contextâ€dependent mutualisms in the Joshua tree–yucca moth system shift along a climate gradient. Ecosphere, 2018, 9, e02439.	1.0	22
1379	Ambient changes exceed treatment effects on plant species abundance in global change experiments. Global Change Biology, 2018, 24, 5668-5679.	4.2	25
1380	Long-term ecological research on Korean forest ecosystems: the current status and challenges. Ecological Research, 2018, 33, 1289-1302.	0.7	8
1381	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
1382	A Study on Marketing Strategies using Social Media in Facebook, Youtube, Pinterest. International Journal of Engineering and Technology(UAE), 2018, 7, 114.	0.2	3
1383	Long-distance migratory birds threatened by multiple independent risks from global change. Nature Climate Change, 2018, 8, 992-996.	8.1	86
1384	Potential landscapeâ€scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. Ecology Letters, 2018, 21, 1821-1832.	3.0	48
1385	First record of the predatory snail Acanthinucella spirata (Blainville, 1832) north of its known range. Marine Biodiversity Records, 2018, 11, .	1.2	2
1386	Species persistence under climate change: a geographical scale coexistence problem. Ecology Letters, 2018, 21, 1589-1603.	3.0	31
1387	Quantifying the effects of climate and anthropogenic change on regional species loss in China. PLoS ONE, 2018, 13, e0199735.	1.1	17
1388	Expanding, shifting and shrinking: The impact of global warming on species' elevational distributions. Global Ecology and Biogeography, 2018, 27, 1268-1276.	2.7	190
1389	Waterbird communities adjust to climate warming according to conservation policy and species protection status. Biological Conservation, 2018, 227, 205-212.	1.9	29
1390	Climatic niche and potential distribution of Tithonia diversifolia (Hemsl.) A. Gray in Africa. PLoS ONE, 2018, 13, e0202421.	1.1	17

#	Article	IF	CITATIONS
1391	Topographic variation in the climatic change response of a larch forest in Northeastern China. Landscape Ecology, 2018, 33, 2013-2029.	1.9	3
1392	Changes in the Geographic Distribution of the Diana Fritillary (Speyeria diana: Nymphalidae) under Forecasted Predictions of Climate Change. Insects, 2018, 9, 94.	1.0	2
1393	Moose at their bioclimatic edge alter their behavior based on weather, landscape, and predators. Environmental Epigenetics, 2018, 64, 419-432.	0.9	25
1394	Changing Thermal Landscapes: Merging Climate Science and Landscape Ecology through Thermal Biology. Current Landscape Ecology Reports, 2018, 3, 57-72.	1.1	43
1395	Cracking the Code of Biodiversity Responses to Past Climate Change. Trends in Ecology and Evolution, 2018, 33, 765-776.	4.2	119
1396	The physiological cold tolerance of warm-climate plants is correlated with their latitudinal range limit. Biology Letters, 2018, 14, 20180277.	1.0	12
1397	Study of bacterial associated with kolanut soil plantation and waste looking at their benefits to man and his environment. Nigerian Journal of Technology, 2018, 37, 1128.	0.2	3
1398	Indication of environmental changes in mountain catchments by dendroclimatology. Soil and Water Research, 2018, 13, 208-217.	0.7	2
1399	Rapid southward and upward range expansion of a tropical songbird, the Thrush-like Wren (Campylorhynchus turdinus), in South America: a consequence of habitat or climate change?. Revista Brasileira De Ornitologia, 2018, 26, 57-64.	0.2	6
1400	Tropical Forests Are An Ideal Habitat for Wide Array of Wildlife Species. , 0, , .		3
1401	Evaluation of the Water-Storage Capacity of Bryophytes along an Altitudinal Gradient from Temperate Forests to the Alpine Zone. Forests, 2018, 9, 433.	0.9	21
1403	Clines in traits compared over two decades in a plant hybrid zone. Annals of Botany, 2018, 122, 315-324.	1.4	16
1404	Annual temperature variation as a time machine to understand the effects of longâ€ŧerm climate change on a poleward range shift. Global Change Biology, 2018, 24, 3804-3819.	4.2	12
1405	The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2ðC. Science, 2018, 360, 791-795.	6.0	244
1406	Niche conservatism of Aedes albopictus and Aedes aegypti - two mosquito species with different invasion histories. Scientific Reports, 2018, 8, 7733.	1.6	31
1407	Influence of biotic interactions on the distribution of Canada lynx (Lynx canadensis) at the southern edge of their range. Journal of Mammalogy, 2018, 99, 760-772.	0.6	23
1408	Global patterns of protection of elevational gradients in mountain ranges. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6004-6009.	3.3	87
1409	Community disassembly under global change: Evidence in favor of the stressâ€ d ominance hypothesis. Global Change Biology, 2018, 24, 4417-4427.	4.2	19

#	Article	IF	Citations
1410	Control of invasive predators improves breeding success of an endangered alpine passerine. Ibis, 2018, 160, 892-899.	1.0	10
1411	Range expansion in unfavorable environments through behavioral responses to microclimatic conditions: Moose (Alces americanus) as the model. Mammalian Biology, 2018, 93, 189-197.	0.8	6
1412	Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS ONE, 2018, 13, e0194670.	1.1	17
1413	Solar radiation and <scp>ENSO</scp> predict fruiting phenology patterns in a 15â€year record from Kibale National Park, Uganda. Biotropica, 2018, 50, 384-395.	0.8	57
1414	Raptors as Seed Dispersers. , 2018, , 139-158.		6
1415	Duplication of hsp-110 Is Implicated in Differential Success of Globodera Species under Climate Change. Molecular Biology and Evolution, 2018, 35, 2401-2413.	3.5	11
1416	Range shifts in response to past and future climate change: Can climate velocities and species' dispersal capabilities explain variation in mammalian range shifts?. Journal of Biogeography, 2018, 45, 2175-2189.	1.4	74
1417	Geographical variation in the influence of habitat and climate on site occupancy turnover in American pika (<i>Ochotona princeps</i>). Diversity and Distributions, 2018, 24, 1506-1520.	1.9	10
1418	Compounding effects of human development and a natural food shortage on a black bear population along a human development-wildland interface. Biological Conservation, 2018, 224, 188-198.	1.9	60
1419	The recent northward expansion of Lymantria monacha in relation to realised changes in temperatures of different seasons. Forest Ecology and Management, 2018, 427, 96-105.	1.4	24
1420	Utilization and Botanical Significance of Himalayan Herbs. , 2018, , 33-86.		0
1421	An ecological and evolutionary perspective on species coexistence under global change. Current Opinion in Insect Science, 2018, 29, 71-77.	2.2	13
1422	Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544-571.	4.0	72
1423	Taxonomic and functional diversity change is scale dependent. Nature Communications, 2018, 9, 2565.	5.8	117
1424	Towards a mechanistic understanding of global change ecology. Functional Ecology, 2018, 32, 1648-1651.	1.7	9
1425	Climate change leads to accelerated transformation of highâ€elevation vegetation in the central Alps. New Phytologist, 2018, 220, 447-459.	3.5	143
1426	A meta-analysis of the ecological and evolutionary drivers of metabolic rates in brachyuran crabs. Marine and Freshwater Behaviour and Physiology, 2018, 51, 109-123.	0.4	4
1427	Early monsoon failure and mid-summer dryness induces growth cessation of lower range margin Picea crassifolia. Trees - Structure and Function, 2018, 32, 1401-1413.	0.9	12

#	Article	IF	CITATIONS
1428	Shifts in phenological distributions reshape interaction potential in natural communities. Ecology Letters, 2018, 21, 1143-1151.	3.0	64
1429	Density feedbacks mediate effects of environmental change on population dynamics of a semidesert rodent. Journal of Animal Ecology, 2018, 87, 1534-1546.	1.3	14
1430	Extending the Latent Dirichlet Allocation model to presence/absence data: A case study on North American breeding birds and biogeographical shifts expected from climate change. Global Change Biology, 2018, 24, 5560-5572.	4.2	40
1431	Range expansion and redefinition of a crop-raiding rodent associated with global warming and temperature increase. Climatic Change, 2018, 150, 319-331.	1.7	22
1432	Response of estuarine meiofauna communities to shifts in spatial distribution of keystone species: An experimental approach. Estuarine, Coastal and Shelf Science, 2018, 212, 365-371.	0.9	10
1433	Potential medium-term impacts of climate change on tuna and billfish in the Gulf of Mexico: A qualitative framework for management and conservation. Marine Environmental Research, 2018, 141, 1-11.	1.1	14
1434	Long-term variability in vegetation productivity in relation to rainfall, herbivory and fire in Tswalu Kalahari Reserve. Koedoe, 2018, 60, .	0.3	19
1435	Heritability and Evolutionary Potential Drive Cold Hardiness in the Overwintering Ophraella communa Beetles. Frontiers in Physiology, 2018, 9, 666.	1.3	13
1436	Rapid warming is associated with population decline among terrestrial birds and mammals globally. Global Change Biology, 2018, 24, 4521-4531.	4.2	137
1437	A Genomic Map of Climate Adaptation in Arabidopsis thaliana at a Micro-Geographic Scale. Frontiers in Plant Science, 2018, 9, 967.	1.7	65
1438	Glucocorticoid–environment relationships align with responses to environmental change in two coâ€occurring congeners. Ecological Applications, 2018, 28, 1683-1693.	1.8	6
1439	Microbial Diversity in Asian Deserts: Distribution, Biotechnological Importance, and Environmental Impacts. Microorganisms for Sustainability, 2018, , 365-387.	0.4	1
1441	Historical distributions of bobcats (<i>Lynx rufus</i>) and Canada lynx (<i>Lynx</i>) Tj ETQq0 0 0 rgBT /Ov 2018, 96, 1299-1308.	erlock 10 0.4	Tf 50 267 To 9
1442	Predicting Success of Range-Expanding Coral Reef Fish in Temperate Habitats Using Temperature-Abundance Relationships. Frontiers in Marine Science, 2018, 5, .	1.2	25
1443	Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 2018, 24, 4919-4928.	4.2	140
1444	Translating MC2 DGVM Results into Ecosystem Services for Climate Change Mitigation and Adaptation. Climate, 2018, 6, 1.	1.2	44
1445	Kelps' Long-Distance Dispersal: Role of Ecological/Oceanographic Processes and Implications to Marine Forest Conservation. Diversity, 2018, 10, 11.	0.7	34
1446	Projecting the Range Shifts in Climatically Suitable Habitat for Chinese Sea Buckthorn under Climate Change Scenarios. Forests, 2018, 9, 9.	0.9	28

#	Article	IF	CITATIONS
1447	Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Diversity and Distributions, 2018, 24, 1598-1611.	1.9	21
1448	Plant community response to <i>Artemisia rothrockii</i> (sagebrush) encroachment and removal along an arid elevational gradient. Journal of Vegetation Science, 2018, 29, 859-866.	1.1	4
1449	Rapid shifts in distribution and highâ€latitude persistence of oceanographic habitat revealed using citizen science data from a climate change hotspot. Global Change Biology, 2018, 24, 5440-5453.	4.2	45
1450	Expected impacts of climate change threaten the anuran diversity in the Brazilian hotspots. Ecology and Evolution, 2018, 8, 7894-7906.	0.8	21
1451	Long-term monitoring of the endemic <i>Rana latastei</i> : suggestions for after-LIFE management. Oryx, 2018, 52, 709-717.	0.5	6
1452	Adaptation Without Boundaries: Population Genomics in Marine Systems. Population Genomics, 2018, , 587-612.	0.2	2
1453	Impact of Climate Change on Spider Species Distribution Along the La Plata River Basin, Southern South America: Projecting Future Range Shifts for the Genus <i>Stenoterommata</i> (Araneae,) Tj ETQq0 0 0 rgBT	0.2 erlock	2 10 Tf 50 49
1454	Habitat assessment of Marco Polo sheep (<i>Ovis ammon polii)</i> in Eastern Tajikistan: Modeling the effects of climate change. Ecology and Evolution, 2018, 8, 5124-5138.	0.8	19
1455	Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints. BMC Ecology, 2018, 18, 6.	3.0	22
1456	Ethnobotany of the Sierra Nevada del Cocuy-Güicán: climate change and conservation strategies in the Colombian Andes. Journal of Ethnobiology and Ethnomedicine, 2018, 14, 34.	1.1	18
1457	Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 2018, 99, 1530-1546.	1.5	72
1458	Can the effect of species ecological traits on birds' altitudinal changes differ between geographic areas?. Acta Oecologica, 2018, 92, 26-34.	0.5	11
1459	Mapping future fire probability under climate change: Does vegetation matter?. PLoS ONE, 2018, 13, e0201680.	1.1	41
1460	Population persistence in the face of climate change and competition: A battle on two fronts. Ecological Modelling, 2018, 385, 78-88.	1.2	32
1461	Marine sublittoral benthos fails to track temperature in response to climate change in a biogeographical transition zone. ICES Journal of Marine Science, 2018, 75, 1894-1907.	1.2	9
1462	Thylacospermum caespitosum population structure and cushion species community diversity along an altitudinal gradient. Environmental Science and Pollution Research, 2018, 25, 28998-29005.	2.7	4
1463	Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change, 2018, 8, 813-818.	8.1	208
1464	Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biology, 2018, 41, 1523-1529.	0.5	27

#	Article	IF	CITATIONS
1465	Northern range shift may be due to increased competition induced by protection of species rather than to climate change alone. Ecology and Evolution, 2018, 8, 8364-8379.	0.8	12
1466	Vegetation structure mediates a shift in predator avoidance behavior in a range-edge population. Behavioral Ecology, 2018, 29, 1124-1131.	1.0	9
1467	Evolution for extreme living: variation in mitochondrial cytochrome <i>c</i> oxidase genes correlated with elevation in pikas (genus <i>Ochotona</i>). Integrative Zoology, 2018, 13, 517-535.	1.3	8
1468	Facilitating your replacement? Ecosystem engineer legacy affects establishment success of an expanding competitor. Oecologia, 2018, 188, 251-262.	0.9	12
1469	Soil properties and climate mediate the effects of biotic interactions on the performance of a woody range expander. Ecosphere, 2018, 9, e02186.	1.0	5
1470	Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS ONE, 2018, 13, e0191021.	1.1	29
1471	Delineating and identifying long-term changes in the whooping crane (Grus americana) migration corridor. PLoS ONE, 2018, 13, e0192737.	1.1	15
1472	Species migrations and range shifts: A synthesis of causes and consequences. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 33, 62-77.	1.1	53
1473	Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Scientific Reports, 2018, 8, 9441.	1.6	30
1474	Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Diversity and Distributions, 2018, 24, 1583-1597.	1.9	41
1475	Changing windows of opportunity: past and future climate-driven shifts in temporal persistence of kingfish (Seriola lalandi) oceanographic habitat within south-eastern Australian bioregions. Marine and Freshwater Research, 2019, 70, 33.	0.7	32
1476	Spatial scale, topography and thermoregulatory behaviour interact when modelling species' thermal niches. Ecography, 2019, 42, 376-389.	2.1	22
1477	Range limits in sympatric cryptic species: a case study in <i>Tetramorium</i> pavement ants (Hymenoptera: Formicidae) across a biogeographical boundary. Insect Conservation and Diversity, 2019, 12, 109-120.	1.4	12
1478	Heritability of climate-relevant traits in a rainforest skink. Heredity, 2019, 122, 41-52.	1.2	30
1479	Joint effects of weather and interspecific competition on foraging behavior and survival of a mountain herbivore. Environmental Epigenetics, 2019, 65, 165-175.	0.9	18
1480	Climate change increases ecogeographical isolation between closely related plants. Journal of Ecology, 2019, 107, 167-177.	1.9	10
1481	Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species. Ecography, 2019, 42, 225-236.	2.1	52
1482	Diachronic variations in the distribution of butterflies and dragonflies linked to recent habitat changes in Western Europe. Insect Conservation and Diversity, 2019, 12, 49-68.	1.4	8

#	Article	IF	Citations
1483	Complex patterns of temperature sensitivity, not ecological traits, dictate diverse species responses to climate change. Ecography, 2019, 42, 111-124.	2.1	17
1484	Matching habitat choice promotes species persistence under climate change. Oikos, 2019, 128, 221-234.	1.2	18
1485	Comparing future shifts in tree species distributions across Europe projected by statistical and dynamic process-based models. Regional Environmental Change, 2019, 19, 251-266.	1.4	26
1486	Not just a migration problem: <scp>M</scp> etapopulations, habitat shifts, and gene flow are also important for fishway science and management. River Research and Applications, 2019, 35, 1688-1696.	0.7	48
1487	Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography, 2019, 42, 1331-1351.	2.1	118
1488	Highlighting declines of coldâ€demanding plant species in lowlands under climate warming. Ecography, 2019, 42, 36-44.	2.1	17
1489	Prioritizing the protection of climate refugia: designing a climate-ready protected area network. Journal of Environmental Planning and Management, 2019, 62, 2588-2606.	2.4	21
1490	Climate and development modulate the metabolome and antioxidative system of date palm leaves. Journal of Experimental Botany, 2019, 70, 5959-5969.	2.4	21
1491	Skewed temperature dependence affects range and abundance in a warming world. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191157.	1.2	16
1492	Synergistic and antagonistic effects of land use and nonâ€native species on community responses to climate change. Global Change Biology, 2019, 25, 4303-4314.	4.2	26
1493	Worldwide distribution and theoretical spreading ofTrichoferus campestris(Coleoptera:) Tj ETQq0 0 0 rgBT /Over	ock 10 Tf 0.3	50, 342 Td (0
1494	Climate Change Is Breaking Earth's Beat. Trends in Ecology and Evolution, 2019, 34, 971-973.	4.2	55
1495	Should potential for climate change refugia be mainstreamed into the criteria for describing EBSAs?. Conservation Letters, 2019, 12, e12634.	2.8	20
1496	Environmental niche modeling for some species of the genus Anthrax Scopoli (Diptera: Bombyliidae) in Egypt, with special notes on St. Catherine protected area as a suitable habitat. Journal of Insect Conservation, 2019, 23, 831-841.	0.8	12
1497	A full and authentic reckoning of species' ranges for conservation: response to Akçakaya etÂal. 2018. Conservation Biology, 2019, 33, 1208-1210.	2.4	17
1498	Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Science of the Total Environment, 2019, 695, 133753.	3.9	26
1499	Potential changes in the distribution of suitable habitat for Pacific sardine (Sardinops sagax) under climate change scenarios. Deep-Sea Research Part II: Topical Studies in Oceanography, 2019, 169-170, 104632.	0.6	13
1500	Adaptation "from below―to changes in species distribution, habitat and climate in agro-ecosystems in the Terai Plains of Nepal. Ambio, 2019, 48, 1482-1497.	2.8	12

#	Article	IF	CITATIONS
1501	Freezing resistance, safety margins, and survival vary among big sagebrush populations across the western United States. American Journal of Botany, 2019, 106, 922-934.	0.8	11
1502	Widespread droughtâ€induced tree mortality at dry range edges indicates that climate stress exceeds species' compensating mechanisms. Global Change Biology, 2019, 25, 3793-3802.	4.2	153
1503	Smaller future floods imply less habitat for riparian plants along a boreal river. Ecological Applications, 2019, 29, e01977.	1.8	13
1504	Implications of climate change on the habitat shifts of tropical lizards. Austral Ecology, 2019, 44, 1174-1186.	0.7	6
1505	Global loss of climate connectivity in tropical forests. Nature Climate Change, 2019, 9, 623-626.	8.1	49
1506	Persecuting, protecting or ignoring biodiversity under climate change. Nature Climate Change, 2019, 9, 581-586.	8.1	47
1507	Extreme heat events and the vulnerability of endemic montane fishes to climate change. Ecography, 2019, 42, 1913-1925.	2.1	12
1508	Succession after reclamation: Identifying and assessing ecological indicators of forest recovery on reclaimed oil and natural gas well pads. Ecological Indicators, 2019, 106, 105515.	2.6	32
1509	Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sand. Water Research, 2019, 162, 456-470.	5.3	53
1510	Comparative analyses of wetland plant biomass accumulation and litter decomposition subject to in situ warming and nitrogen addition. Science of the Total Environment, 2019, 691, 769-778.	3.9	11
1511	Carrion Ecology and Management. Wildlife Research Monographs, 2019, , .	0.4	16
1512	Implications of seasonal and annual heat accumulation for population dynamics of an invasive defoliator. Oecologia, 2019, 190, 703-714.	0.9	8
1513	Where winter rules: Modeling wild boar distribution in its north-eastern range. Science of the Total Environment, 2019, 687, 1055-1064.	3.9	32
1514	Anticipating arrival: Tackling the national challenges associated with the redistribution of biodiversity driven by climate change. Journal of Applied Ecology, 2019, 56, 2298-2304.	1.9	9
1515	Species interactions under climate change: connecting kinetic effects of temperature on individuals to community dynamics. Current Opinion in Insect Science, 2019, 35, 88-95.	2.2	71
1516	Infrastructure expansion challenges sustainable development in Papua New Guinea. PLoS ONE, 2019, 14, e0219408.	1.1	26
1517	Persistence and turnover in desert plant communities during a 37â€yr period of land use and climate change. Ecological Monographs, 2019, 89, e01390.	2.4	11
1518	Rapid recovery of thermal environment after selective logging in the Amazon. Agricultural and Forest Meteorology, 2019, 278, 107637.	1.9	26

#	Article	IF	CITATIONS
1519	Distributional shifts in ectomycorrizhal fungal communities lag behind climate-driven tree upward migration in a conifer forest-high elevation shrubland ecotone. Soil Biology and Biochemistry, 2019, 137, 107545.	4.2	12
1520	Morpho-physiological variability of Pinus nigra populations reveals climate-driven local adaptation but weak water use differentiation. Environmental and Experimental Botany, 2019, 166, 103828.	2.0	15
1521	Exploring the Interplay Between Local and Regional Drivers of Distribution of a Subterranean Organism. Diversity, 2019, 11, 119.	0.7	9
1522	Effects of Elevated Carbon Dioxide on Marine Ecosystem and Associated Fishes. Thalassas, 2019, 35, 421-429.	0.1	13
1523	Diverging phenological responses of Arctic seabirds to an earlier spring. Global Change Biology, 2019, 25, 4081-4091.	4.2	35
1524	Extreme Marine Heatwaves Alter Kelp Forest Community Near Its Equatorward Distribution Limit. Frontiers in Marine Science, 2019, 6, .	1.2	126
1525	Avian Genomics in Ecology and Evolution. , 2019, , .		4
1526	The Contribution of Genomics to Bird Conservation. , 2019, , 295-330.		5
1527	European mushroom assemblages are darker in cold climates. Nature Communications, 2019, 10, 2890.	5.8	34
1528	Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. Journal of Animal Ecology, 2019, 88, 1498-1509.	1.3	25
1529	Transplanting gravid lizards to high elevation alters maternal and embryonic oxygen physiology, but not reproductive success or hatchling phenotype. Journal of Experimental Biology, 2019, 222, .	0.8	16
1530	White birch has limited phenotypic plasticity to take advantage of increased photoperiods at higher latitudes north of the seed origin. Forest Ecology and Management, 2019, 451, 117565.	1.4	8
1531	Principal threats to the conservation of freshwater habitats in the continental biogeographical region of Central Europe. Biodiversity and Conservation, 2019, 28, 4065-4097.	1.2	31
1532	Long-term phenology of two North American secondary cavity-nesters in response to changing climate conditions. Die Naturwissenschaften, 2019, 106, 54.	0.6	6
1533	Climate change erodes competitive hierarchies among native, alien and range-extending crabs. Marine Environmental Research, 2019, 151, 104777.	1.1	10
1534	Effects of climate on spider beta diversity across different Mediterranean habitat types. Biodiversity and Conservation, 2019, 28, 3971-3988.	1.2	10
1535	A Review of the Effects of Climate Change on Chelonians. Diversity, 2019, 11, 138.	0.7	28
1536	The Effects of Interaction between Climate Change and Landâ€Use/Cover Change on Biodiversityâ€Related Ecosystem Services. Global Challenges, 2019, 3, 1800095.	1.8	42

#	Article	IF	CITATIONS
1537	Butterfly communities along the Heihe River Basin in Shaanxi Province, a biodiversity conservation priority area in China. Journal of Insect Conservation, 2019, 23, 873-883.	0.8	4
1538	Complementary Use of Various Types of Anthropogenic Habitats by Scolia hirta (Hymenoptera:) Tj ETQq1 1 0.78	4314 rgBT 0.7	- /Qverlock 1
1539	Climate change has more adverse impacts on the higher mountain communities than the lower ones: people's perception from the northern Himalayas. Journal of Mountain Science, 2019, 16, 2625-2639.	0.8	7
1540	Early life history responses and phenotypic shifts in a rare endemic plant responding to climate change. , 2019, 7, coz076.		4
1541	Stealing Home: Looting, Restitution and Reconstructing Jewish Lives in France, 1942–1947, by Shannon L. Fogg. English Historical Review, 2019, , .	0.0	0
1542	Population extinctions driven by climate change, population size, and time since observation may make rare species databases inaccurate. PLoS ONE, 2019, 14, e0210378.	1.1	7
1543	Arctic shrub colonization lagged peak postglacial warmth: Molecular evidence in lake sediment from Arctic Canada. Global Change Biology, 2019, 25, 4244-4256.	4.2	43
1544	Identifying climate refugia for 30 Australian rainforest plant species, from the last glacial maximum to 2070. Landscape Ecology, 2019, 34, 2883-2896.	1.9	14
1545	Plant-Soil Feedbacks and Facilitation Influence the Demography of Herbaceous Alpine Species in Response to Woody Plant Range Expansion. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	2
1546	The Restructuring of Levant Reefs by Aliens, Ocean Warming and Overfishing. , 2019, , 214-236.		4
1547	Conceptual Risk Framework: Integrating Ecological Risk of Introduced Species with Recipient Ecosystems. BioScience, 2019, , .	2.2	7
1548	Assessing the Spatial Distribution of Biodiversity in a Changing Temperature Pattern: The Case of Catalonia, Spain. International Journal of Environmental Research and Public Health, 2019, 16, 4026.	1.2	4
1549	Soil functional responses to drought under rangeâ€expanding and native plant communities. Functional Ecology, 2019, 33, 2402-2416.	1.7	13
1550	Refugia under threat: Mass bleaching of coral assemblages in highâ€latitude eastern Australia. Global Change Biology, 2019, 25, 3918-3931.	4.2	56
1551	Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nature Communications, 2019, 10, 4612.	5.8	18
1552	Identifying Key Knowledge Gaps to Better Protect Biodiversity and Simultaneously Secure Livelihoods in a Priority Conservation Area. Sustainability, 2019, 11, 5695.	1.6	5
1553	Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Scientific Reports, 2019, 9, 15039.	1.6	85
1554	Impacts of 21stâ€century climate change on montane habitat in the Madrean Sky Island Archipelago. Diversity and Distributions, 2019, 25, 1625-1638.	1.9	24

#	Article	IF	CITATIONS
1555	Are mountaintops climate refugia for plants under global warming? A lesson from high-mountain oaks in tropical rainforest. Alpine Botany, 2019, 129, 175-183.	1.1	20
1556	Maladaptation beyond a geographic range limit driven by antagonistic and mutualistic biotic interactions across an abiotic gradient. Evolution; International Journal of Organic Evolution, 2019, 73, 2044-2059.	1.1	27
1557	Climate change and its potential impact on the conservation of the Hoary Fox, Lycalopex vetulus (Mammalia: Canidae). Mammalian Biology, 2019, 98, 91-101.	0.8	8
1558	Tropical sand-bubblers heading north? First discovery of Scopimera curtelsona Shen, 1936 (Crustacea: Decapoda: Dotillidae) populations in Hong Kong: possible range expansion from Hainan, China . Zootaxa, 2019, 4652, 520-532.	0.2	2
1559	Functional Traits of Pinus ponderosa Coarse Roots in Response to Slope Conditions. Frontiers in Plant Science, 2019, 10, 947.	1.7	20
1560	Global warming threatens conservation status of alpine EU habitat types in the European Eastern Alps. Regional Environmental Change, 2019, 19, 2411-2421.	1.4	17
1561	Insights from present distribution of an alpine mammal Royle's pika (Ochotona roylei) to predict future climate change impacts in the Himalaya. Regional Environmental Change, 2019, 19, 2423-2435.	1.4	14
1562	Gene Flow and Genetic Variation Explain Signatures of Selection across a Climate Gradient in Two Riparian Species. Genes, 2019, 10, 579.	1.0	12
1563	Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nature Ecology and Evolution, 2019, 3, 1321-1330.	3.4	37
1564	Historical records reveal the distinctive associations of human disturbance and extreme climate change with local extinction of mammals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19001-19008.	3.3	49
1565	Predictive Modeling of Suitable Habitats for Cinnamomum Camphora (L.) Presl Using Maxent Model under Climate Change in China. International Journal of Environmental Research and Public Health, 2019, 16, 3185.	1.2	23
1566	Rapid Climate-Driven Circulation Changes Threaten Conservation of Endangered North Atlantic Right Whales. Oceanography, 2019, 32, .	0.5	97
1567	Temperature preference can bias parental genome retention during hybrid evolution. PLoS Genetics, 2019, 15, e1008383.	1.5	30
1568	Atlantic corals under climate change: modelling distribution shifts to predict richness, phylogenetic structure and trait-diversity changes. Biodiversity and Conservation, 2019, 28, 3873-3890.	1.2	8
1569	Extinction debts and colonization credits of non-forest plants in the European Alps. Nature Communications, 2019, 10, 4293.	5.8	63
1570	The Fate of Endangered Rock Sedge (Carex rupestris) in the Western Carpathians—The Future Perspective of an Arctic-Alpine Species under Climate Change. Diversity, 2019, 11, 172.	0.7	3
1571	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
1572	Testing Methods to Minimise Range-shifting Time with Conservation Actions. , 2019, , .		1

#	Article	IF	CITATIONS
1573	Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nature Climate Change, 2019, 9, 142-147.	8.1	231
1574	Lizards at the Peak: Physiological Plasticity Does Not Maintain Performance in Lizards Transplanted to High Altitude. Physiological and Biochemical Zoology, 2019, 92, 189-200.	0.6	28
1575	Fire, CO2, and climate effects on modeled vegetation and carbon dynamics in western Oregon and Washington. PLoS ONE, 2019, 14, e0210989.	1.1	5
1576	Droughtâ€mediated extinction of an aridâ€land amphibian: insights from a spatially explicit dynamic occupancy model. Ecological Applications, 2019, 29, e01859.	1.8	19
1577	Spatial contraction of demersal fish populations in a large marine ecosystem. Journal of Biogeography, 2019, 46, 633-645.	1.4	30
1578	A meta-analysis of catalytic literature data reveals property-performance correlations for the OCM reaction. Nature Communications, 2019, 10, 441.	5.8	61
1579	Minimising Risks of Global Change by Enhancing Resilience of Pollinators in Agricultural Systems. , 2019, , 105-111.		6
1581	Geographically Structured Growth decline of Rear-Edge Iberian Fagus sylvatica Forests After the 1980s Shift Toward a Warmer Climate. Ecosystems, 2019, 22, 1325-1337.	1.6	28
1582	Wing shape patterns among urban, suburban, and rural populations of <i>lschnura elegans</i> (Odonata: Coenagrionidae). International Journal of Odonatology, 2019, 22, 37-49.	0.5	5
1583	Evolving social dynamics prime thermal tolerance during a poleward range shift. Biological Journal of the Linnean Society, 2019, 126, 574-586.	0.7	7
1584	Freshwater species distributions along thermal gradients. Ecology and Evolution, 2019, 9, 111-124.	0.8	9
1585	Protecting rare and endangered species under climate change on the Qinghai Plateau, China. Ecology and Evolution, 2019, 9, 427-436.	0.8	23
1586	Can leaf net photosynthesis acclimate to rising and more variable temperatures?. Plant, Cell and Environment, 2019, 42, 1913-1928.	2.8	35
1587	Regional trade of medicinal plants has facilitated the retention of traditional knowledge: case study in Gilgit-Baltistan Pakistan. Journal of Ethnobiology and Ethnomedicine, 2019, 15, 6.	1.1	17
1588	Compensatory mechanisms to climate change in the widely distributed species <i>Silene vulgaris</i> . Journal of Ecology, 2019, 107, 1918-1930.	1.9	14
1589	Trends and indicators for quantifying moth abundance and occupancy in Scotland. Journal of Insect Conservation, 2019, 23, 369-380.	0.8	45
1590	Human activity and climate change as determinants of spatial prioritization for the conservation of globally threatened birds in the southern Neotropic (Santa Fe, Argentina). Biodiversity and Conservation, 2019, 28, 2531-2553.	1.2	6
1591	Projecting consequences of global warming for the functional diversity of fleshyâ€fruited plants and frugivorous birds along a tropical elevational gradient. Diversity and Distributions, 2019, 25, 1362-1374.	1.9	12

\sim	 	D	PORT
		REL	דעהנ
		NLF	

#	Article	IF	CITATIONS
1592	Scaling of thermal tolerance with body mass and genome size in ectotherms: a comparison between water- and air-breathers. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190035.	1.8	78
1593	Modeling the Bioclimatic Range of Tall Herb Communities in Northeastern Asia. Russian Journal of Ecology, 2019, 50, 241-248.	0.3	3
1594	Conservation in human-dominated landscapes: Lessons from the distribution of the Central American squirrel monkey. Biological Conservation, 2019, 237, 41-49.	1.9	3
1595	Assessing historical and future habitat models for four conservationâ€priority Mojave Desert species. Journal of Biogeography, 2019, 46, 2081-2097.	1.4	7
1596	Shifting avian spatial regimes in a changing climate. Nature Climate Change, 2019, 9, 562-566.	8.1	37
1597	Genes on the edge: A framework to detect genetic diversity imperiled by climate change. Global Change Biology, 2019, 25, 4034-4047.	4.2	24
1598	Invasion and drought alter phenological sensitivity and synergistically lower ecosystem production. Ecology, 2019, 100, e02802.	1.5	14
1599	Climate change threatens some miombo tree species of sub-Saharan Africa. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 257, 151421.	0.6	11
1600	Effects of climatically shifting species distributions on biocultural relationships. People and Nature, 2019, 1, 87-102.	1.7	19
1601	Integrating Speciesâ€5pecific Information in Models Improves Regional Projections Under Climate Change. Geophysical Research Letters, 2019, 46, 6554-6562.	1.5	10
1602	Maladapted Prey Subsidize Predators and Facilitate Range Expansion. American Naturalist, 2019, 194, 590-612.	1.0	13
1603	Gaps in butterfly inventory data: A global analysis. Biological Conservation, 2019, 236, 289-295.	1.9	37
1604	Humboldt's <i>Tableau Physique</i> revisited. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12889-12894.	3.3	50
1605	The Heat Is On: Complexities of Aquatic Endocrine Disruption in a Changing Global Climate. Separation Science and Technology, 2019, , 13-49.	0.0	19
1606	Climate change going deep: The effects of global climatic alterations on cave ecosystems. Infrastructure Asset Management, 2019, 6, 98-116.	1.2	80
1607	Understanding the Impact of Strategic Change Management on the Maritime Crude Oil Transportation Industry in Nigeria. Review of Black Political Economy, 2019, 46, 130-151.	0.6	0
1608	Ecological Release of the Anna's Hummingbird during a Northern Range Expansion. American Naturalist, 2019, 194, 306-315.	1.0	18
1609	Holocene Population Decline and Conservation Implication for the Western Hercules Beetle, Dynastes grantii (Coleoptera, Scarabaeidae). Journal of Heredity, 2019, 110, 629-637.	1.0	4

#	ARTICLE Biogeography of plant rootâ€essociated fungal communities in the North Atlantic region mirrors	IF	CITATIONS
1610	climatic variability. Journal of Biogeography, 2019, 46, 1532-1546. Traitâ€mediated foraging drives patterns of selective predation by native and invasive coralâ€reef fishes.	1.4	14
1612	Ecosphere, 2019, 10, e02752. Orthoptera community shifts in response to land-use and climate change – Lessons from a long-term study across different grassland habitats. Biological Conservation, 2019, 236, 315-323.	1.9	42
1613	Landscape ecology of mammals. Journal of Mammalogy, 2019, 100, 1044-1068.	0.6	35
1614	Temporal genomic contrasts reveal rapid evolutionary responses in an alpine mammal during recent climate change. PLoS Genetics, 2019, 15, e1008119.	1.5	70
1615	Consistent declines in wing lengths of Calidridine sandpipers suggest a rapid morphometric response to environmental change. PLoS ONE, 2019, 14, e0213930.	1.1	21
1616	Crop switching as an adaptation strategy to climate change: the case of Semien Shewa Zone of Ethiopia. International Journal of Climate Change Strategies and Management, 2019, 11, 358-371.	1.5	16
1617	Fine-scale genetic structure and conservation status of American badgers at their northwestern range periphery. Conservation Genetics, 2019, 20, 1023-1034.	0.8	1
1618	Investigating (a)symmetry in a small mammal's response to warming and cooling events across western North America over the late Quaternary. Quaternary Research, 2019, 92, 408-415.	1.0	3
1619	Endocrine Disruption Alters Developmental Energy Allocation and Performance in Rana temporaria. Integrative and Comparative Biology, 2019, 59, 70-88.	0.9	17
1620	A general framework for propagule dispersal in mangroves. Biological Reviews, 2019, 94, 1547-1575.	4.7	88
1621	Range expansion in an introduced social parasite-host species pair. Biological Invasions, 2019, 21, 2751-2759.	1.2	7
1622	Retention and restoration priorities for climate adaptation in a multi-use landscape. Global Ecology and Conservation, 2019, 18, e00649.	1.0	17
1623	Synergistic Effects of Climate and Land-Cover Change on Long-Term Bird Population Trends of the Western USA: A Test of Modeled Predictions. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	22
1624	Artificial reefs facilitate tropical fish at their range edge. Communications Biology, 2019, 2, 168.	2.0	30
1625	Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10586-10591.	3.3	149
1626	Climate change indirectly reduces breeding frequency of a mobile species through changes in food availability. Ecosphere, 2019, 10, e02656.	1.0	6
1627	An experimental translocation identifies habitat features that buffer camouflage mismatch in snowshoe hares. Conservation Letters, 2019, 12, e12614.	2.8	38

#	Article	IF	Citations
1628	Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecological Indicators, 2019, 104, 333-340.	2.6	71
1629	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	3.0	47
1630	Episodic coral growth in China's subtropical coral communities linked to broad-scale climatic change. Geology, 2019, 47, 79-82.	2.0	14
1631	Spatial variation in the ongoing and widespread decline of a keystone plant species. Austral Ecology, 2019, 44, 891-905.	0.7	9
1632	The role of landscape and history on the genetic structure of peripheral populations of the Near Eastern fire salamander, Salamandra infraimmaculata, in Northern Israel. Conservation Genetics, 2019, 20, 875-889.	0.8	15
1633	Direct and indirect influences of warming on leaf endophytic fungi: A physiological and compositional approach. , 2019, , 125-140.		2
1634	Responses of grasslands to experimental warming. , 2019, , 347-384.		1
1635	Altitudinal gradients fail to predict fungal symbiont responses to warming. Ecology, 2019, 100, e02740.	1.5	25
1636	Extinction risks of a Mediterranean neo-endemism complex of mountain vipers triggered by climate change. Scientific Reports, 2019, 9, 6332.	1.6	31
1637	Antarctic Studies Show Lichens to be Excellent Biomonitors of Climate Change. Diversity, 2019, 11, 42.	0.7	56
1638	The Influence of Flow Projection Errors on Flood Hazard Estimates in Future Climate Conditions. Water (Switzerland), 2019, 11, 49.	1.2	10
1639	Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agriculture, Ecosystems and Environment, 2019, 280, 53-67.	2.5	50
1640	The Effect of Climate Change on the Distribution of the Genera <i>Colobus</i> and <i>Cercopithecus</i> ., 2019, , 257-280.		1
1641	Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerging Topics in Life Sciences, 2019, 3, 207-219.	1.1	59
1642	Modelling ecosystem adaptation and dangerous rates of global warming. Emerging Topics in Life Sciences, 2019, 3, 221-231.	1.1	10
1643	Truffles on the move. Frontiers in Ecology and the Environment, 2019, 17, 200-202.	1.9	10
1644	Projected 21stâ€century distribution of canopyâ€forming seaweeds in the Northwest Atlantic with climate change. Diversity and Distributions, 2019, 25, 582-602.	1.9	70
1645	Migration of soil microbes may promote tree seedling tolerance to drying conditions. Ecology, 2019, 100, e02729.	1.5	21

#	Article	IF	CITATIONS
1646	Climate change and opposing spatial conservation priorities for anuran protection in the Brazilian hotspots. Journal for Nature Conservation, 2019, 49, 118-124.	0.8	6
1647	A hierarchical Bayesian Beta regression approach to study the effects of geographical genetic structure and spatial autocorrelation on species distribution range shifts. Molecular Ecology Resources, 2019, 19, 929-943.	2.2	6
1648	Plant biomass, rather than species composition, determines ecosystem properties: Results from a longâ€ŧerm graminoid removal experiment in a northern Canadian grassland. Journal of Ecology, 2019, 107, 2211-2225.	1.9	7
1649	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	4.2	16
1650	Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE, 2019, 14, e0213368.	1.1	78
1651	Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China. Science of the Total Environment, 2019, 670, 466-477.	3.9	40
1652	Belowground Consequences of Intracontinental Range-Expanding Plants and Related Natives in Novel Environments. Frontiers in Microbiology, 2019, 10, 505.	1.5	5
1653	Transboundary mammals in the Americas: Asymmetries in protection challenge climate change resilience. Diversity and Distributions, 2019, 25, 674-683.	1.9	10
1654	Climate change, woodpeckers, and forests: Current trends and future modeling needs. Ecology and Evolution, 2019, 9, 2305-2319.	0.8	13
1655	Endangered species management and climate change: When habitat conservation becomes a moving target. Wildlife Society Bulletin, 2019, 43, 11-20.	1.6	29
1656	Climate change and climate change velocity analysis across Germany. Scientific Reports, 2019, 9, 2196.	1.6	15
1657	Forecasting the response to global warming in a heat-sensitive species. Scientific Reports, 2019, 9, 3048.	1.6	37
1658	Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change, 2019, 9, 306-312.	8.1	883
1659	The current application of ecological connectivity in the design of marine protected areas. Global Ecology and Conservation, 2019, 17, e00569.	1.0	109
1660	Range-expansion effects on the belowground plant microbiome. Nature Ecology and Evolution, 2019, 3, 604-611.	3.4	67
1661	Alternative reproductive adaptations predict asymmetric responses to climate change in lizards. Scientific Reports, 2019, 9, 5093.	1.6	13
1662	Future suitability of habitat in a migratory ungulate under climate change. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190442.	1.2	18
1663	The adaptive potential of plant populations in response to extreme climate events. Ecology Letters, 2019, 22, 866-874.	3.0	14

#	Article	IF	CITATIONS
1664	Climate change effects on the frequency, seasonality and interannual variability of suitable prescribed burning weather conditions in south-eastern Australia. Agricultural and Forest Meteorology, 2019, 271, 148-157.	1.9	33
1665	Is wind energy increasing the impact of socio-ecological change on Mediterranean mountain ecosystems? Insights from a modelling study relating wind power boost options with a declining species. Journal of Environmental Management, 2019, 238, 283-295.	3.8	13
1666	Saving endangered species using adaptive management. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6181-6186.	3.3	95
1667	Presence of an invasive species reverses latitudinal clines of multiple traits in a native species. Global Change Biology, 2019, 25, 620-628.	4.2	12
1668	A model of hardwood tree colonization among forest fragments: predicting migration across human-dominated landscapes. Ecoscience, 2019, 26, 35-51.	0.6	2
1669	Distribution trends of European dragonflies under climate change. Diversity and Distributions, 2019, 25, 936-950.	1.9	84
1670	Environmental stress shapes life-history variation in the swelled-vented frog (Feirana quadranus). Evolutionary Ecology, 2019, 33, 435-448.	0.5	12
1671	Succession matters: Community shifts in moths over three decades increases multifunctionality in intermediate successional stages. Scientific Reports, 2019, 9, 5586.	1.6	22
1672	Stochastic processes drive rapid genomic divergence during experimental range expansions. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190231.	1.2	8
1673	A minimalist model of extinction and range dynamics of virtual mountain species driven by warming temperatures. PLoS ONE, 2019, 14, e0213775.	1.1	18
1674	Phylogeography and niche modelling: reciprocal enlightenment. Mammalia, 2019, 84, 10-25.	0.3	17
1675	Climate change reduces resilience to fire in subalpine rainforests. Global Change Biology, 2019, 25, 2030-2042.	4.2	27
1676	Projecting biological impacts from climate change like a climate scientist. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e585.	3.6	20
1677	Ecoâ€evolution on the edge during climate change. Ecography, 2019, 42, 1280-1297.	2.1	122
1678	On the importance of accounting for intraspecific genomic relatedness in multiâ€species studies. Methods in Ecology and Evolution, 2019, 10, 994-1001.	2.2	4
1679	A Migratory Divide Among Red-Necked Phalaropes in the Western Palearctic Reveals Contrasting Migration and Wintering Movement Strategies. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	27
1680	Upward elevation and northwest range shifts for alpine <i>Meconopsis</i> species in the Himalaya–Hengduan Mountains region. Ecology and Evolution, 2019, 9, 4055-4064.	0.8	52
1681	Amphibian conservation in Scotland: A review of threats and opportunities. Aquatic Conservation: Marine and Freshwater Ecosystems, 2019, 29, 647-654.	0.9	1

#	Article	IF	CITATIONS
1682	Climate and land-use changes reshuffle politically-weighted priority areas of mountain biodiversity. Global Ecology and Conservation, 2019, 17, e00589.	1.0	16
1683	Grazing and warming effects on shrub growth and plant species composition in subalpine dry tundra: An experimental approach. Journal of Vegetation Science, 2019, 30, 698-708.	1.1	15
1684	Loss of genetic diversity, recovery and allele surfing in a colonizing parasite, Geomydoecus aurei. Molecular Ecology, 2019, 28, 703-720.	2.0	11
1685	Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Functional Ecology, 2019, 33, 1000-1013.	1.7	131
1686	Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National Park, Kenya. African Journal of Ecology, 2019, 57, 168-176.	0.4	16
1687	Richness of plant communities plays a larger role than climate in determining responses of species richness to climate change. Journal of Ecology, 2019, 107, 1944-1955.	1.9	12
1688	A Comprehensive Model for the Quantitative Estimation of Seed Dispersal by Migratory Mallards. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	28
1689	Potential limitations of behavioral plasticity and the role of egg relocation in climate change mitigation for a thermally sensitive endangered species. Ecology and Evolution, 2019, 9, 1603-1622.	0.8	20
1690	Extreme heterogeneity of population response to climatic variation and the limits of prediction. Global Change Biology, 2019, 25, 2127-2136.	4.2	31
1691	Linking warming effects on phenology, demography, and range expansion in a migratory bird population. Ecology and Evolution, 2019, 9, 2365-2375.	0.8	27
1692	Divergent responses to climate change and disturbance drive recruitment patterns underlying latitudinal shifts of tree species. Journal of Ecology, 2019, 107, 1956-1969.	1.9	41
1693	Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.	1.9	38
1694	Food web rewiring in a changing world. Nature Ecology and Evolution, 2019, 3, 345-354.	3.4	200
1695	Functionally distinct assembly of vascular plants colonizing alpine cushions suggests their vulnerability to climate change. Annals of Botany, 2019, 123, 569-578.	1.4	17
1696	Time of emergence of novel climates for North American migratory bird populations. Ecography, 2019, 42, 1079-1091.	2.1	17
1697	Synergistic effects of climate and landâ€use change influence broadâ€scale avian population declines. Global Change Biology, 2019, 25, 1561-1575.	4.2	88
1698	Responses of seed size, ant worker size, and seed removal rate to elevation in Mediterranean grasslands. Oecologia, 2019, 189, 781-793.	0.9	7
1699	How will forest fires impact the distribution of endemic plants in the Himalayan biodiversity hotspot?. Biodiversity and Conservation, 2019, 28, 2259-2273.	1.2	20

#	Article	IF	CITATIONS
1700	Climate Change and the Impact on Animals. , 2019, , 163-170.		0
1701	Phenology of the avian spring migratory passage in Europe and North America: Asymmetric advancement in time and increase in duration. Ecological Indicators, 2019, 101, 985-991.	2.6	47
1702	Breeding for Climate Resilience in Castor: Current Status, Challenges, and Opportunities. , 2019, , 441-498.		2
1703	Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Diversity, 2019, 41, 26-32.	1.8	30
1704	Endangered Basra Reed-warbler (<i>Acrocephalus griseldis</i>) recorded for the first time in Turkey (Aves: Acrocephalidae). Turkish Journal of Zoology, 2019, 43, 250-253.	0.4	4
1705	A shift in reptile diversity and abundance over the last 25 years. Israel Journal of Ecology and Evolution, 2019, 65, 10-20.	0.2	0
1706	Is habitat conversion likely to impede the ability of bird species to track changing climate?. Frontiers of Biogeography, 2019, 11, .	0.8	0
1707	Spatial distribution of the Boreal Owl and Northern Saw-whet Owl in the Boreal region of Alberta, Canada. Avian Conservation and Ecology, 2019, 14, .	0.3	6
1708	Climate change threatens New Guinea's biocultural heritage. Science Advances, 2019, 5, eaaz1455.	4.7	42
1709	Targeting Extreme Events: Complementing Near-Term Ecological Forecasting With Rapid Experiments and Regional Surveys. Frontiers in Environmental Science, 2019, 7, .	1.5	5
1710	Climate Envelope Models of Kalopanax septemlobus and Phellodendron amurense var. sachalinense in the Insular Part of the Russian Far East. Biology Bulletin, 2019, 46, 626-635.	0.1	1
1711	Stability and changes in the distribution of Pipiza hoverflies (Diptera, Syrphidae) in Europe under projected future climate conditions. PLoS ONE, 2019, 14, e0221934.	1.1	11
1712	Elevated mutation and selection in wild emmer wheat in response to 28 years of global warming. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20002-20008.	3.3	18
1713	Variation in developmental temperature alters adulthood plasticity of thermal tolerance in <i>Tigriopus californicus</i> . Journal of Experimental Biology, 2019, 222, .	0.8	27
1714	Dominant Arctic Predator Is Free of Major Parasitoid at Northern Edge of Its Range. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	5
1715	Spatial scale affects novel and disappeared climate change projections in Alaska. Ecology and Evolution, 2019, 9, 12026-12044.	0.8	6
1716	BEREICHERUNG ODER BEDROHUNG?. , 2019, , 211-222.		0
1717	Climate change vulnerability higher in arctic than alpine bumblebees. Frontiers of Biogeography, 2019, 11, .	0.8	13

#	Article	IF	CITATIONS
1718	Identifying climate-sensitive infectious diseases in animals and humans in Northern regions. Acta Veterinaria Scandinavica, 2019, 61, 53.	0.5	37
1719	Development of a system for drought monitoring and assessment in South Asia. Current Directions in Water Scarcity Research, 2019, 2, 133-163.	0.2	10
1720	Wet tropical soils and global change. Developments in Soil Science, 2019, 36, 131-169.	0.5	6
1721	Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Scientific Reports, 2019, 9, 17708.	1.6	34
1722	Assessing introgressive hybridization in roan antelope (Hippotragus equinus): Lessons from South Africa. PLoS ONE, 2019, 14, e0213961.	1.1	6
1723	Projecting Suitability and Climate Vulnerability of Bhutanitis thaidina (Blanchard) (Lepidoptera:) Tj ETQq1 1 0.78	4314 rgBT 1.6	Qverlock 1
1724	Climate change impacts on the distribution and diversity of major tree species in the temperate forests of Northern Iran. Regional Environmental Change, 2019, 19, 2711-2728.	1.4	25
1725	Age-dependent effects of moderate differences in environmental predictability forecasted by climate change, experimental evidence from a short-lived lizard (Zootoca vivipara). Scientific Reports, 2019, 9, 15546.	1.6	5
1726	Using virtual reality and thermal imagery to improve statistical modelling of vulnerable and protected species. PLoS ONE, 2019, 14, e0217809.	1.1	8
1727	Receding ice drove parallel expansions in Southern Ocean penguins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26690-26696.	3.3	35
1728	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	5.8	82
1729	Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nature Ecology and Evolution, 2019, 3, 1533-1538.	3.4	98
1730	Postglacial change of the floristic diversity gradient in Europe. Nature Communications, 2019, 10, 5422.	5.8	52
1731	Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. Journal of Ecology, 2019, 107, 79-90.	1.9	50
1732	Marine Metazoan Modern Mass Extinction: Improving Predictions by Integrating Fossil, Modern, and Physiological Data. Annual Review of Marine Science, 2019, 11, 369-390.	5.1	29
1733	The Yellowstone to Yukon Conservation Initiative as an Adaptive Response to Climate Change. Climate Change Management, 2019, , 179-193.	0.6	4
1734	Hypotheses from Recent Assessments of Climate Impacts to Biodiversity and Ecosystems in the United States. Climate Change Management, 2019, , 355-375.	0.6	3
1735	Complex elevational shifts in a tropical lowland moth community following a decade of climate change. Diversity and Distributions, 2019, 25, 514-523.	1.9	15

ARTICLE IF CITATIONS Habitat use and hybridisation between the Rocky Mountain sculpin (<i>Cottus</i> sp.) and slimy 1736 1.2 7 sculpin (<i>Cottus cognatus</i>). Freshwater Biology, 2019, 64, 391-404. CO2 Sequestration: Processes and Methodologies., 2019, , 1-50. Quantifying multiple pressure interactions affecting populations of a recreationally and 1738 4.2 27 commercially important freshwater fish. Global Change Biology, 2019, 25, 1049-1062. Current and future distributions of Espeletiinae (Asteraceae) in the Venezuelan Andes based on statistical downscaling of climatic variables and niche modelling. Plant Ecology and Diversity, 2019, 12,633-647 Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. 1740 6.0 34 Science, 2019, 363, . Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (<i>Callithrix</i> spp.). Diversity and Distributions, 2019, 25, 536-550. 1741 The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos, 1742 1.2 93 2019, 128, 621-629. Incorporating local adaptation into forecasts of species' distribution and abundance under climate 1743 4.2 169 change. Global Change Biology, 2019, 25, 775-793. Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology 1744 2.7 75 and Biogeography, 2019, 28, 533-543. Protected areas act as a buffer against detrimental effects of climate changeâ€"Evidence from 1745 4.2 largeâ€scale, longâ€term abundance data. Global Change Biology, 2019, 25, 304-313. Historical interactions are predicted to be disrupted under future climate change: The case of lace 1746 3 1.4 lichen and valley oak. Journal of Biogeography, 2019, 46, 19-29. Habitat―and speciesâ€mediated short―and longâ€term distributional changes in waterbird abundance linked 1.9 to variation in European winter weather. Diversity and Distributions, 2019, 25, 225-239. Patterns and drivers of longâ€term changes in breeding bird communities in a global biodiversity 1748 1.9 17 hotspot in Mexico. Diversity and Distributions, 2019, 25, 499-513. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. Journal of Thermal Biology, 2019, 79, 15-23. 1749 1.1 Using insect natural history collections to study global change impacts: challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 1750 52 1.8 20170405. Four decades of plant community change along a continental gradient of warming. Global Change Biology, 2019, 25, 1629-1641. Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 10 1752

Characterization and implication of phytolith-associated potassium in rice straw and paddy soils.

Archives of Agronomy and Soil Science, 2019, 65, 1354-1369.

96

1.3 11

#	Article	IF	CITATIONS
1754	Climate and land use changes will degrade the distribution of Rhododendrons in China. Science of the Total Environment, 2019, 659, 515-528.	3.9	57
1755	Integration of physiological knowledge into hybrid species distribution modelling to improve forecast of distributional shifts of tropical corals. Diversity and Distributions, 2019, 25, 715-728.	1.9	29
1756	Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change. Ecological Modelling, 2019, 394, 53-65.	1.2	17
1757	Treeline composition and biodiversity change on the southeastern Tibetan Plateau during the past millennium, inferred from a high-resolution alpine pollen record. Quaternary Science Reviews, 2019, 206, 44-55.	1.4	24
1758	Phylogenetic attributes, conservation status and geographical origin of species gained and lost over 50Åyears in a UNESCO Biosphere Reserve. Biodiversity and Conservation, 2019, 28, 711-728.	1.2	2
1759	Forthcoming risk of Prosopis juliflora global invasion triggered by climate change: implications for environmental monitoring and risk assessment. Environmental Monitoring and Assessment, 2019, 191, 72.	1.3	26
1760	Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytologist, 2019, 222, 193-205.	3.5	45
1761	Evolutionary potential varies across populations and traits in the neotropical oak Quercus oleoides. Tree Physiology, 2019, 39, 427-439.	1.4	14
1762	Does specialization imply rare fossil records of some benthic foraminifera: Late Palaeocene examples from the eastern Neo-Tethys (Meghalaya, NE India). Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 124-134.	1.0	8
1763	The River Network Toolkit – RivTool. Ecography, 2019, 42, 549-557.	2.1	16
1764	Thermal tolerance limits as indicators of current and future intertidal zonation patterns in a diverse mussel guild. Marine Biology, 2019, 166, 1.	0.7	25
1765	Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes. Ecology Letters, 2019, 22, 159-169.	3.0	25
1766	Phenology and productivity in a montane bird assemblage: Trends and responses to elevation and climate variation. Global Change Biology, 2019, 25, 985-996.	4.2	26
1767	Projected changes in wind assistance under climate change for nocturnally migrating bird populations. Clobal Change Biology, 2019, 25, 589-601.	4.2	31
1768	Declining population trends of European mountain birds. Global Change Biology, 2019, 25, 577-588.	4.2	82
1769	Geographical adaptation prevails over speciesâ€specific determinism in trees' vulnerability to climate change at Mediterranean rearâ€edge forests. Global Change Biology, 2019, 25, 1296-1314.	4.2	55
1770	Predicting the distribution of harmful species and their natural enemies in agricultural, livestock and forestry systems: an overview. International Journal of Pest Management, 2019, 65, 190-206.	0.9	36
1771	Climate and land-cover change alter bumblebee species richness and community composition in subalpine areas. Biodiversity and Conservation, 2019, 28, 639-653.	1.2	43

#	Article	IF	CITATIONS
1772	Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e551.	3.6	255
1773	Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology, 2019, 137, 1015-1025.	1.3	21
1774	Towards an interactive, processâ€based approach to understanding range shifts: developmental and environmental dependencies matter. Ecography, 2019, 42, 201-210.	2.1	12
1775	Range contraction to a higher elevation: the likely future of the montane vegetation in South Africa and Lesotho. Biodiversity and Conservation, 2019, 28, 131-153.	1.2	19
1776	Important areas for the conservation of the European Roller <i>Coracias garrulus</i> during the non-breeding season in southern Africa. Bird Conservation International, 2019, 29, 159-175.	0.7	7
1777	Effects of environmental filters on early establishment of cloud forest trees along elevation gradients: Implications for assisted migration. Forest Ecology and Management, 2019, 432, 427-435.	1.4	35
1778	Shifts in habitat suitability and the conservation status of the Endangered Andean cat <i>Leopardus jacobita</i> under climate change scenarios. Oryx, 2019, 53, 356-367.	0.5	11
1779	Suitable areas of Phakopsora pachyrhizi, Spodoptera exigua, and their host plant Phaseolus vulgaris are projected to reduce and shift due to climate change. Theoretical and Applied Climatology, 2019, 135, 409-424.	1.3	10
1780	Spring migration strategies of Whinchat <i>Saxicola rubetra</i> when successfully crossing potential barriers of the Sahara and the Mediterranean Sea. Ibis, 2019, 161, 131-146.	1.0	14
1781	Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi Journal of Biological Sciences, 2019, 26, 1856-1864.	1.8	29
1782	Spatial priorities for agricultural development in the Brazilian Cerrado: may economy and conservation coexist?. Biodiversity and Conservation, 2020, 29, 1683-1700.	1.2	22
1783	Early performance of two tropical dry forest species after assisted migration to pine–oak forests at different altitudes: strategic response to climate change. Journal of Forestry Research, 2020, 31, 1215-1223.	1.7	6
1784	Alpine Birds of South America. , 2020, , 492-504.		5
1785	Vegetation green up under the influence of daily minimum temperature and urbanization in the Yellow River Basin, China. Ecological Indicators, 2020, 108, 105760.	2.6	34
1786	Spatial Population Structure Determines Extinction Risk in Climate-Induced Range Shifts. American Naturalist, 2020, 195, 31-42.	1.0	14
1787	Are shifts in species distribution triggered by climate change? A swordfish case study. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 175, 104666.	0.6	12
1788	Lower elevation animal species do not tend to be better competitors than their higher elevation relatives. Global Ecology and Biogeography, 2020, 29, 171-181.	2.7	17
1789	Experimental migration upward in elevation is associated with strong selection on life history traits. Ecology and Evolution, 2020, 10, 612-625.	0.8	17

#	Article	IF	CITATIONS
1790	Correlative climatic niche models predict real and virtual species distributions equally well. Ecology, 2020, 101, e02912.	1.5	36
1791	Quantifying how changing mangrove cover affects ecosystem carbon storage in coastal wetlands. Ecology, 2020, 101, e02916.	1.5	35
1792	The impacts of climate change on the habitat distribution of the vulnerable Patagonian-Fueguian species Ctenomys magellanicus (Rodentia, Ctenomyidae). Journal of Arid Environments, 2020, 173, 104016.	1.2	18
1793	Seeds of change: characterizing the soil seed bank of a migrating salt marsh. Annals of Botany, 2020, 125, 335-344.	1.4	19
1794	Climate changeâ€driven body size shrinking in a social wasp. Ecological Entomology, 2020, 45, 130-141.	1.1	23
1795	Allopatric divergence drives the genetic structuring of an endangered alpine endemic lizard with a skyâ€island distribution. Animal Conservation, 2020, 23, 104-118.	1.5	13
1796	Conservation triage at the trailing edge of climate envelopes. Conservation Biology, 2020, 34, 289-292.	2.4	21
1797	Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya–Hengduan Mountain region. Journal of Forestry Research, 2020, 31, 2255-2272.	1.7	7
1798	Anthropogenic disturbances alter the conservation value of karst dolines. Biodiversity and Conservation, 2020, 29, 503-525.	1.2	24
1799	Mass windborne migrations extend the range of the migratory locust in East China. Agricultural and Forest Entomology, 2020, 22, 41-49.	0.7	8
1800	Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agricultural and Forest Meteorology, 2020, 280, 107803.	1.9	37
1801	Soil alters seedling establishment responses to climate. Ecology Letters, 2020, 23, 140-148.	3.0	20
1802	Conservation Genomics in a Changing Arctic. Trends in Ecology and Evolution, 2020, 35, 149-162.	4.2	23
1803	Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis) Tj ETQq1	1 0.784314 0.7	⊦rgǥ /Overlo
1804	Maternal Antibodies Against Influenza in Cord Blood and Protection Against Laboratory-Confirmed Influenza in Infants. Clinical Infectious Diseases, 2020, 71, 1741-1748.	2.9	6
1805	Palm seed and fruit lipid composition: phylogenetic and ecological perspectives. Annals of Botany, 2020, 125, 157-172.	1.4	22
1806	Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. Global Change Biology, 2020, 26, 1055-1067.	4.2	51
1807	Ecological processes underlying community assembly of aquatic bacteria and macroinvertebrates under contrasting climates on the Tibetan Plateau. Science of the Total Environment, 2020, 702, 134974.	3.9	15

# 1808	ARTICLE Why mountains matter for biodiversity. Journal of Biogeography, 2020, 47, 315-325.	IF 1.4	CITATIONS 200
1809	Phenology responses of temperate butterflies to latitude depend on ecological traits. Ecology Letters, 2020, 23, 172-180.	3.0	24
1810	Scientists' Warning on Climate Change and Medicinal Plants. Planta Medica, 2020, 86, 10-18.	0.7	85
1811	Seasonal shifts of biodiversity patterns and species' elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. Journal of Biogeography, 2020, 47, 342-354.	1.4	49
1812	Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. Journal of Biogeography, 2020, 47, 143-154.	1.4	28
1813	The importance of functional responses among competing predators for avian nesting success. Functional Ecology, 2020, 34, 252-264.	1.7	12
1814	Disentangling the relative influences of global drivers of change in biodiversity: A study of the twentieth entury red fox expansion into the Canadian Arctic. Journal of Animal Ecology, 2020, 89, 565-576.	1.3	33
1815	Rhizosphere and litter feedbacks to rangeâ€expanding plant species and related natives. Journal of Ecology, 2020, 108, 353-365.	1.9	16
1816	Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish and Fisheries, 2020, 21, 32-46.	2.7	37
1817	A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. Journal of Biogeography, 2020, 47, 114-129.	1.4	32
1818	Intraâ€Annual Variability in Responses of a Canopy Forming Kelp to Cumulative Low Tide Heat Stress: Implications for Populations at the Trailing Range Edge. Journal of Phycology, 2020, 56, 146-158.	1.0	14
1819	Genetic patterns and changes in availability of suitable habitat support a colonisation history of a North American perennial plant. Plant Biology, 2020, 22, 233-242.	1.8	3
1820	Inferring responses to climate warming from latitudinal pattern of clonal hybridization. Ecology and Evolution, 2020, 10, 307-319.	0.8	1
1821	Future range dynamics of the red alga Capreolia implexa in native and invaded regions: contrasting predictions from species distribution models versus physiological knowledge. Biological Invasions, 2020, 22, 1339-1352.	1.2	11
1822	On Madeira, the success of the speckled wood butterfly (Pararge aegeria) has coincided with declining populations of the Madeiran speckled wood (Pararge xiphia): is the colonist to blame?. Journal of Insect Conservation, 2020, 24, 365-374.	0.8	0
1823	Biotic interactions help explain variation in elevational range limits of birds among Bornean mountains. Journal of Biogeography, 2020, 47, 760-771.	1.4	12
1824	Freeze tolerance of polewardâ€spreading mangrove species weakened by soil properties of resident salt marsh competitor. Journal of Ecology, 2020, 108, 1725-1737.	1.9	16
1825	An operationalized classification of Nature Based Solutions for water-related hazards: From theory to practice. Ecological Economics, 2020, 167, 106460.	2.9	43

#	Article	IF	CITATIONS
1826	Significant shifts in coastal zooplankton populations through the 2015/16 Tasman Sea marine heatwave. Estuarine, Coastal and Shelf Science, 2020, 235, 106538.	0.9	21
1827	The highest kingdom of Anolis: Thermal biology of the Andean lizard Anolis heterodermus (Squamata:) Tj ETQq1 Biology, 2020, 89, 102498.	1 0.78431 1.1	4 rgBT /Ove 9
1828	Trophic niche segregation allows rangeâ€extending coral reef fishes to coâ€exist with temperate species under climate change. Global Change Biology, 2020, 26, 721-733.	4.2	29
1829	Population history explains the performance of an annual herb – Within and beyond its European species range. Journal of Ecology, 2020, 108, 958-968.	1.9	3
1830	Climate change disrupts local adaptation and favours upslope migration. Ecology Letters, 2020, 23, 181-192.	3.0	93
1831	The expanding distribution of the Indian Peafowl (Pavo cristatus) as an indicator of changing climate in Kerala, southern India: A modelling study using MaxEnt. Ecological Indicators, 2020, 110, 105930.	2.6	52
1832	Patterns and mechanisms of heterogeneous breeding distribution shifts of North American migratory birds. Journal of Avian Biology, 2020, 51, .	0.6	13
1833	Response of Orthoptera assemblages to environmental change in a low-mountain range differs among grassland types. Journal of Environmental Management, 2020, 256, 109919.	3.8	23
1834	Vulnerability of high-elevation endemic salamanders to climate change: A case study with the Cow Knob Salamander (Plethodon punctatus). Global Ecology and Conservation, 2020, 21, e00883.	1.0	6
1835	Dieback and expansions: species-specific responses during 20Âyears of amplified warming in the high Alps. Alpine Botany, 2020, 130, 1-11.	1.1	24
1836	Hiding from the climate: Characterizing microrefugia for boreal forest understory species. Global Change Biology, 2020, 26, 471-483.	4.2	39
1837	Evidence for temperature-dependent shifts in spawning times of anadromous alewife (<i>Alosa) Tj ETQq1 1 0.78 Aquatic Sciences, 2020, 77, 741-751.</i>	4314 rgBT 0.7	/Overlock 19
1838	Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 2020, 43, 222-235.	2.1	34
1839	Microbial rescue effects: How microbiomes can save hosts from extinction. Functional Ecology, 2020, 34, 2055-2064.	1.7	41
1840	Musk deer (Moschus spp.) face redistribution to higher elevations and latitudes under climate change in China. Science of the Total Environment, 2020, 704, 135335.	3.9	27
1841	Potential distribution patterns of scorpions in northâ€eastern Brazil under scenarios of future climate change. Austral Ecology, 2020, 45, 215-228.	0.7	19
1842	Warming Increases Pollen Lipid Concentration in an Invasive Thistle, with Minor Effects on the Associated Floral-Visitor Community. Insects, 2020, 11, 20.	1.0	11
1844	Spatiotemporal Distribution of Dengue and Chikungunya in the Hindu Kush Himalayan Region: A Systematic Review. International Journal of Environmental Research and Public Health, 2020, 17, 6656.	1.2	11

# 1845	ARTICLE Accessing Local Tacit Knowledge as a Means of Knowledge Co-Production for Effective Wildlife	IF 1.2	Citations
1846	Corridor Planning in the Chignecto Isthmus, Canada. Land, 2020, 9, 332. Quantifying Climate-Wise Connectivity across a Topographically Diverse Landscape. Land, 2020, 9, 355.	1.2	3
1849	A disconnect between upslope shifts and climate change in an Afrotropical bird community. Conservation Science and Practice, 2020, 2, e291.	0.9	17
1850	Prediction of the Suitable Area of the Chinese White Pines (Pinus subsect. Strobus) under Climate Changes and Implications for Their Conservation. Forests, 2020, 11, 996.	0.9	13
1851	Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biology, 2020, 43, 1947-1956.	0.5	25
1852	Plant population and soil origin effects on rhizosphere nematode community composition of a range-expanding plant species and a native congener. Oecologia, 2020, 194, 237-250.	0.9	2
1853	Apparent breeding success drives longâ€ŧerm population dynamics of a migratory swan. Journal of Avian Biology, 2020, 51, .	0.6	11
1854	Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates. Forest Ecology and Management, 2020, 477, 118498.	1.4	10
1855	Climate Vulnerability Assessment of the Espeletia Complex on Páramo Sky Islands in the Northern Andes. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	48
1856	The legacy of climate variability over the last century on populations' phenotypic variation in tree height. Science of the Total Environment, 2020, 749, 141454.	3.9	21
1857	Zoological Indication of Climate Change in the Central Kazakh Steppe Compared to the Middle of the 20th Century Using the Example of Carabid and Tenebrionid Beetles. Contemporary Problems of Ecology, 2020, 13, 443-468.	0.3	5
1858	How to survive winter?. , 2020, , 101-125.		1
1859	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
1861	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		0
1862	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
1866	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		0
1867	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
1868	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1

#	Article	IF	CITATIONS
1870	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
1871	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		0
1872	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-233.		1
1873	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
1874	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
1875	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		0
1876	Life at the extremes. , 2020, , 343-354.		0
1877	The challenge of novel abiotic conditions for species undergoing climateâ€induced range shifts. Ecography, 2020, 43, 1571-1590.	2.1	82
1878	Degrees of compositional shift in tree communities vary along a gradient of temperature change rates over one decade: Application of an individualâ€based temporal betaâ€diversity concept. Ecology and Evolution, 2020, 10, 13613-13623.	0.8	7
1879	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0
1882	Predicting Thermal Adaptation by Looking Into Populations' Genomic Past. Frontiers in Genetics, 2020, 11, 564515.	1.1	79
1883	Experimental study of hypoxia-induced changes in gene expression in an Asian pika, Ochotona dauurica. PLoS ONE, 2020, 15, e0240435.	1.1	5
1884	Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biology and Biochemistry, 2020, 150, 107999.	4.2	5
1885	Interspecific competition slows range expansion and shapes range boundaries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26854-26860.	3.3	36
1886	Climate extremes may be more important than climate means when predicting species range shifts. Climatic Change, 2020, 163, 579-598.	1.7	34
1887	High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biological Conservation, 2020, 249, 108732.	1.9	8
1888	Bioclimatic distance and performance of apical shoot extension: Disentangling the role of growth rate and duration in ecotypic differentiation. Forest Ecology and Management, 2020, 477, 118483.	1.4	10
1889	Species. , 2020, , 47-113.		0

#	Article	IF	CITATIONS
1890	Populations. , 2020, , 114-224.		0
1891	Waterborne Disease. , 2020, , 225-339.		0
1892	Afterthoughts and Outlook. , 2020, , 340-361.		0
1895	Putting wind dispersal in context. Nature Climate Change, 2020, 10, 807-808.	8.1	0
1896	Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proceedings of the United States of America, 2020, 117, 18557-18565.	3.3	57
1897	Thermal evolution of life history and heat tolerance during range expansions toward warmer and cooler regions. Ecology, 2020, 101, e03134.	1.5	14
1898	Highâ€elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integrative Zoology, 2020, 15, 544-557.	1.3	13
1899	Assessment of alpine summit flora in Kashmir Himalaya and its implications for long-term monitoring of climate change impacts. Journal of Mountain Science, 2020, 17, 1974-1988.	0.8	16
1900	The impact of climate change on the geographical distribution of habitat-forming macroalgae in the RÃas Baixas. Marine Environmental Research, 2020, 161, 105074.	1.1	16
1901	Population genetics of the coral <i>Acropora millepora</i> : Toward genomic prediction of bleaching. Science, 2020, 369, .	6.0	167
1902	Persistence and extinction dynamics driven by the rate of environmental change in a predator–prey metacommunity. Theoretical Ecology, 2020, 13, 629-643.	0.4	15
1903	Landscape resistance mediates native fish species distribution shifts and vulnerability to climate change in riverscapes. Global Change Biology, 2020, 26, 5492-5508.	4.2	30
1904	Cold range edges of marine fishes track climate change better than warm edges. Global Change Biology, 2020, 26, 2908-2922.	4.2	66
1905	Prediction of Plant Phenological Shift under Climate Change in South Korea. Sustainability, 2020, 12, 9276.	1.6	12
1906	Predicting the Potential Distribution of Two Varieties of Litsea coreana (Leopard-Skin Camphor) in China under Climate Change. Forests, 2020, 11, 1159.	0.9	16
1907	Modern Strategies to Assess and Breed Forest Tree Adaptation to Changing Climate. Frontiers in Plant Science, 2020, 11, 583323.	1.7	95
1908	Shorebird Reproductive Response to Exceptionally Early and Late Springs Varies Across Sites in Arctic Alaska. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	11
1909	Ecological community dynamics: 20 years of moth sampling reveals the importance of generalists for community stability. Basic and Applied Ecology, 2020, 49, 34-44.	1.2	3

#	Article	IF	CITATIONS
1910	Toward reliable habitat suitability and accessibility models in an era of multiple environmental stressors. Ecology and Evolution, 2020, 10, 10937-10952.	0.8	16
1911	CNN-Based Tree Species Classification Using High Resolution RGB Image Data from Automated UAV Observations. Remote Sensing, 2020, 12, 3892.	1.8	45
1912	Healthy Ecosystems Are a Prerequisite for Human Health—A Call for Action in the Era of Climate Change with a Focus on Russia. International Journal of Environmental Research and Public Health, 2020, 17, 8453.	1.2	5
1913	Predicting the Impact of Climate Change on Freshwater Fish Distribution by Incorporating Water Flow Rate and Quality Variables. Sustainability, 2020, 12, 10001.	1.6	9
1914	Bryophytes are predicted to lag behind future climate change despite their high dispersal capacities. Nature Communications, 2020, 11, 5601.	5.8	47
1915	Cladoceran body size distributions along temperature and trophic gradients in the conterminous USA. Journal of Plankton Research, 0, , .	0.8	2
1916	Human-caused climate change in United States national parks and solutions for the future. Parks Stewardship Forum, 2020, 36, .	0.2	2
1917	A crossâ€scale framework to support a mechanistic understanding and modelling of marine climateâ€driven species redistribution, from individuals to communities. Ecography, 2020, 43, 1764-1778.	2.1	22
1918	The Importance of Intraspecific Variation for Niche Differentiation and Species Distribution Models: The Ecologically Diverse Frog Pleurodema thaul as Study Case. Evolutionary Biology, 2020, 47, 206-219.	0.5	6
1919	Conservation management in the face of climatic uncertainty – the roles of flexibility and robustness. Ecological Complexity, 2020, 43, 100849.	1.4	6
1920	Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better?. Ecological Indicators, 2020, 115, 106455.	2.6	38
1921	Latitudinal patterns in trophic structure of temperate reefâ€associated fishes and predicted consequences of climate change. Fish and Fisheries, 2020, 21, 1092-1108.	2.7	34
1922	Climate change shifts the distribution of vegetation types in South Brazilian hotspots. Regional Environmental Change, 2020, 20, 1.	1.4	15
1923	Forecasting Seasonal Habitat Connectivity in a Developing Landscape. Land, 2020, 9, 233.	1.2	10
1924	The ECCOâ€Darwin Dataâ€Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean <i>p</i> CO ₂ and Airâ€Sea CO ₂ Flux. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001888.	1.3	43
1925	Exploring larval phenology as predictor for range expansion in an invasive species. Ecography, 2020, 43, 1423-1434.	2.1	12
1926	Down the up staircase: Equatorward march of a coldâ€water ascidian and broader implications for invasion ecology. Diversity and Distributions, 2020, 26, 881-896.	1.9	1
1927	Changes in positive associations among vertebrate predators at South Georgia during winter. Polar Biology, 2020, 43, 1439-1451.	0.5	0

CITA	TION	REPO	דחר
CITA	NUN	KEPU	JKT

#	Article	IF	CITATIONS
1928	Can microclimate offer refuge to an upland bird species under climate change?. Landscape Ecology, 2020, 35, 1907-1922.	1.9	14
1929	The functional significance of panting as a mechanism of thermoregulation and its relationship to the critical thermal maxima in lizards. Journal of Experimental Biology, 2020, 223, .	0.8	9
1930	Transmission dynamics of dengue and chikungunya in a changing climate: do we understand the eco-evolutionary response?. Expert Review of Anti-Infective Therapy, 2020, 18, 1187-1193.	2.0	8
1931	Extending the climatological concept of â€~ Detection and Attribution' to global change ecology in the Anthropocene. Functional Ecology, 2020, 34, 2270-2282.	1.7	5
1932	Suitable habitats of fish species in the Barents Sea. Fisheries Oceanography, 2020, 29, 526-540.	0.9	10
1933	The combined effects of climate change and river fragmentation on the distribution of Andean Amazon fishes. Clobal Change Biology, 2020, 26, 5509-5523.	4.2	50
1934	Identification of novel microRNAs for cold deacclimation in barley. Plant Growth Regulation, 2020, 92, 389-400.	1.8	5
1935	Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes. Annual Review of Ecology, Evolution, and Systematics, 2020, 51, 245-269.	3.8	140
1936	Battle of the borders: Is a range-extending fiddler crab affecting the spatial niche of a congener species?. Journal of Experimental Marine Biology and Ecology, 2020, 532, 151445.	0.7	8
1937	Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Regional Environmental Change, 2020, 20, 1.	1.4	19
1938	Modelling the effects of climate, predation, and dispersal on the poleward range expansion of black mangrove (Avicennia germinans). Ecological Modelling, 2020, 434, 109245.	1.2	8
1939	Variation in reproductive effort, genetic diversity and mating systems across Posidonia australis seagrass meadows in Western Australia. AoB PLANTS, 2020, 12, plaa038.	1.2	8
1940	There's a storm aâ€coming: Ecological resilience and resistance to extreme weather events. Ecology and Evolution, 2020, 10, 12147-12156.	0.8	21
1941	Range expansion of muskox lungworms track rapid arctic warming: implications for geographic colonization under climate forcing. Scientific Reports, 2020, 10, 17323.	1.6	26
1942	Climate change has different predicted effects on the range shifts of two hybridizing ambush bug () Tj ETQq0 0 C) rgBT /Ov	erlgck 10 Tf 5
1943	Treeline ecotones shape the distribution of avian species richness and functional diversity in south temperate mountains. Scientific Reports, 2020, 10, 18428.	1.6	21
1944	Thermal physiology explains the elevational range for a lizard, Eutropis longicaudata, in Taiwan. Journal of Thermal Biology, 2020, 93, 102730.	1.1	5
1945	Windstormâ€induced canopy openings accelerate temperate forest adaptation to global warming. Global Ecology and Biogeography, 2020, 29, 2067-2077.	2.7	28

#	Article	IF	Citations
1946	Climate change and landscape-use patterns influence recent past distribution of giant pandas. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200358.	1.2	12
1947	The genomic footprint of coastal earthquake uplift. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200712.	1.2	12
1948	Community context and dispersal stochasticity drive variation in spatial spread. Journal of Animal Ecology, 2020, 89, 2657-2664.	1.3	5
1949	Revisiting the study of the life cycles of predatory ground beetles (Coleoptera, Carabidae) in the agrolandscape of the foothill zone of Krasnodar Krai. BIO Web of Conferences, 2020, 21, 00009.	0.1	1
1950	Potential Impact of Climate Change on the Forest Coverage and the Spatial Distribution of 19 Key Forest Tree Species in Italy under RCP4.5 IPCC Trajectory for 2050s. Forests, 2020, 11, 934.	0.9	16
1951	Phenological Patterns and Seasonal Segregation of Coprophilous Beetles (Coleoptera: Scarabaeoidea) Tj ETQq1 1 Ecology and Evolution, 2020, 8, .	0.784314 1.1	ł rgBT /Overl 3
1952	Genetic variation inPlethodon cinereusandPlethodon hubrichtifrom in and around a contact zone. Ecology and Evolution, 2020, 10, 9948-9967.	0.8	1
1953	Global Climate Change: Resilient and Smart Agriculture. , 2020, , .		17
1954	Predicting Suitable Habitats of Camptotheca acuminata Considering Both Climatic and Soil Variables. Forests, 2020, 11, 891.	0.9	26
1955	Predicting the Invasion Potential of the Lily Leaf Beetle, Lilioceris lilii Scopoli (Coleoptera:) Tj ETQq1 1 0.784314 rg	gBT /Overlo 1.0	oçk 10 Tf 50
1956	Understanding the Importance of Dynamic Landscape Connectivity. Land, 2020, 9, 303.	1.2	45
1957	Heat stress responses and population genetics of the kelp <i>Laminaria digitata</i> (Phaeophyceae) across latitudes reveal differentiation among North Atlantic populations. Ecology and Evolution, 2020, 10, 9144-9177.	0.8	32
1958	Hotspots of species loss do not vary across future climate scenarios in a droughtâ€prone river basin. Ecology and Evolution, 2020, 10, 9200-9213.	0.8	6
1959	Constant carbon pricing increases support for climate action compared to ramping up costs over time. Nature Climate Change, 2020, 10, 1004-1009.	8.1	15
1960	Leadingâ€edge disequilibrium in alder and spruce populations across the forest–tundra ecotone. Ecosphere, 2020, 11, e03118.	1.0	14
1961	Projected Climate-Fire Interactions Drive Forest to Shrubland Transition on an Arizona Sky Island. Frontiers in Environmental Science, 2020, 8, .	1.5	11
1962	Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nature Ecology and Evolution, 2020, 4, 1630-1638.	3.4	116
1963	Plagues of Desert Locusts: Very Low Invasion Risk to China. Insects, 2020, 11, 628.	1.0	13

#	Article	IF	CITATIONS
1964	Shifting aspect or elevation? The climate change response of ectotherms in a complex mountain topography. Diversity and Distributions, 2020, 26, 1483-1495.	1.9	28
1965	Impact of Climate Change on the Distribution of Four Closely Related Orchis (Orchidaceae) Species. Diversity, 2020, 12, 312.	0.7	15
1966	Belowground impacts of alpine woody encroachment are determined by plant traits, local climate, and soil conditions. Global Change Biology, 2020, 26, 7112-7127.	4.2	26
1967	Climate-driven changes in the composition of New World plant communities. Nature Climate Change, 2020, 10, 965-970.	8.1	91
1968	Developmental nutrition modulates metabolic responses to projected climate change. Functional Ecology, 2020, 34, 2488-2502.	1.7	15
1969	Frequency of extreme freeze events controls the distribution and structure of black mangroves (<i>Avicennia germinans</i>) near their northern range limit in coastal Louisiana. Diversity and Distributions, 2020, 26, 1366-1382.	1.9	36
1970	A changing climate is snuffing out postâ€fire recovery in montane forests. Global Ecology and Biogeography, 2020, 29, 2039-2051.	2.7	52
1971	Investigating effect of climate warming on the population declines of Sympetrum frequens during the 1990s in three regions in Japan. Scientific Reports, 2020, 10, 12719.	1.6	2
1972	Examining Fractional Vegetation Cover Dynamics in Response to Climate from 1982 to 2015 in the Amur River Basin for SDG 13. Sustainability, 2020, 12, 5866.	1.6	13
1973	Responses of global waterbird populations to climate change vary with latitude. Nature Climate Change, 2020, 10, 959-964.	8.1	31
1974	Persistence and Propagation of a PDE and Discrete-Time Map Hybrid Animal Movement Model With Habitat Shift Driven by Climate Change. SIAM Journal on Applied Mathematics, 2020, 80, 2608-2630.	0.8	5
1975	Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones?. Diversity, 2020, 12, 439.	0.7	4
1976	Assessing the state of knowledge of contemporary climate change and primates. Evolutionary Anthropology, 2020, 29, 317-331.	1.7	15
1977	Migratory Dates, Breeding Phenology, and Reproductive Success of European Turtle Doves between Lowlands and Highest Breeding Habitats in North Africa. International Journal of Zoology, 2020, 2020, 1-7.	0.3	11
1978	Industrial Applications of Dinoflagellate Phycotoxins Based on Their Modes of Action: A Review. Toxins, 2020, 12, 805.	1.5	5
1979	The past, present and future impacts of climate and land use change on snowshoe hares along their southern range boundary. Biological Conservation, 2020, 249, 108731.	1.9	7
1980	Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. Journal of Great Lakes Research, 2021, 47, S704-S722.	0.8	17
1981	Vector-Borne Pathogens in Ectoparasites Collected from High-Elevation Pika Populations. EcoHealth, 2020, 17, 333-344.	0.9	0

#	Article	IF	CITATIONS
1982	Otter research in Asia: Trends, biases and future directions. Global Ecology and Conservation, 2020, 24, e01391.	1.0	11
1983	Habitat availability and environmental preference drive species range shifts in concordance with climate change. Diversity and Distributions, 2020, 26, 1343-1356.	1.9	5
1984	Historical and projected future range sizes of the world's mammals, birds, and amphibians. Nature Communications, 2020, 11, 5633.	5.8	30
1985	Predicting the Potential Distribution of Apple Canker Pathogen (Valsa mali) in China under Climate Change. Forests, 2020, 11, 1126.	0.9	21
1986	Climate-Wise Habitat Connectivity Takes Sustained Stakeholder Engagement. Land, 2020, 9, 413.	1.2	8
1987	Testing climate tracking of montane rodent distributions over the past century within the Great Basin ecoregion. Global Ecology and Conservation, 2020, 24, e01238.	1.0	11
1988	Projected migrations of southern Indian Ocean albatrosses as a response to climate change. Ecography, 2020, 43, 1683-1691.	2.1	5
1989	Ecological insights from three decades of animal movement tracking across a changing Arctic. Science, 2020, 370, 712-715.	6.0	75
1990	Climate change threatens micro-endemic amphibians of an important South American high-altitude center of endemism. Amphibia - Reptilia, 2020, 41, 233-243.	0.1	14
1991	Potential Effects of Climate and Human Influence Changes on Range and Diversity of Nine Fabaceae Species and Implications for Nature's Contribution to People in Kenya. Climate, 2020, 8, 109.	1.2	8
1992	Climate-tracking species are not invasive. Nature Climate Change, 2020, 10, 382-384.	8.1	27
1993	Temperature-related biodiversity change across temperate marine and terrestrial systems. Nature Ecology and Evolution, 2020, 4, 927-933.	3.4	153
1994	Decoupled land–sea biodiversity trends. Nature Ecology and Evolution, 2020, 4, 901-902.	3.4	3
1995	Using value of information to prioritize research needs for migratory bird management under climate change: a case study using federal land acquisition in the United States. Biological Reviews, 2020, 95, 1109-1130.	4.7	16
1996	Moderate disturbances accelerate forest transition dynamics under climate change in the temperate–boreal ecotone of eastern North America. Global Change Biology, 2020, 26, 4418-4435.	4.2	44
1997	Long-Term Dynamics Among Wolbachia Strains During Thermal Adaptation of Their Drosophila melanogaster Hosts. Frontiers in Genetics, 2020, 11, 482.	1.1	7
1998	Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nature Ecology and Evolution, 2020, 4, 963-969.	3.4	34
1999	lsotopic niche of the American pika (Ochotona princeps) through space and time. Canadian Journal of Zoology, 2020, 98, 515-526.	0.4	1

#	Article	IF	CITATIONS
2000	Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon. Insects, 2020, 11, 312.	1.0	40
2001	Growingâ€season length and soil microbes influence the performance of a generalist bunchgrass beyond its current range. Ecology, 2020, 101, e03095.	1.5	13
2002	Mammal Community Structure through the Paleocene-Eocene Thermal Maximum. American Naturalist, 2020, 196, 271-290.	1.0	6
2003	Predicting the global mammalian viral sharing network using phylogeography. Nature Communications, 2020, 11, 2260.	5.8	78
2004	Mitigation of emerging implications of climate change on food production systems. Food Research International, 2020, 134, 109256.	2.9	143
2005	Does habitat partitioning by sympatric plovers affect nest survival?. Auk, 2020, 137, .	0.7	2
2006	Vegetation response to climate warming across the forest–tundra ecotone: speciesâ€dependent upward movement. Journal of Vegetation Science, 2020, 31, 854-866.	1.1	15
2007	Impacts of Four Decades of Forest Loss on Vertebrate Functional Habitat on Borneo. Frontiers in Forests and Global Change, 2020, 3, .	1.0	10
2008	Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum) Tj ETQq0 0 0 rgB	T Qverloo	k ₃ 10 Tf 50 4
2009	Small terrestrial mammal distributions in Simien Mountains National Park, Ethiopia: a reassessment after 88 years. Journal of Mammalogy, 2020, 101, 634-647.	0.6	15
2010	Synergistic effects of warming and disease linked to high mortality in cool-adapted terrestrial frogs. Biological Conservation, 2020, 245, 108521.	1.9	16
2011	A genoscapeâ€network model for conservation prioritization in a migratory bird. Conservation Biology, 2020, 34, 1482-1491.	2.4	16
2012	Can reindeer husbandry management slow down the shrubification of the Arctic?. Journal of Environmental Management, 2020, 267, 110636.	3.8	23
2013	Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology, 2020, 101, e03107.	1.5	9
2014	Hyperthermic stress resistance of bumblebee males: test case of Belgian species. Apidologie, 2020, 51, 911-920.	0.9	12
2015	Does social thermal regulation constrain individual thermal tolerance in an ant species?. Journal of Animal Ecology, 2020, 89, 2063-2076.	1.3	19
2016	Joint seasonality in geographic and ecological spaces, illustrated with a partially migratory bird. Ecosphere, 2020, 11, e03110.	1.0	0
2017	Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Global Ecology and Conservation, 2020, 22, e00976.	1.0	6

		CITATION REPORT		
#	Article		IF	Citations
2018	Photic Barriers to Poleward Range-shifts. Trends in Ecology and Evolution, 2020, 35, 65	2-655.	4.2	34
2019	Influences of landscape change and winter severity on invasive ungulate persistence in to boreal forest. Scientific Reports, 2020, 10, 8742.	the Nearctic	1.6	25
2020	Exploring movement patterns and changing distributions of baleen whales in the weste Atlantic using a decade of passive acoustic data. Global Change Biology, 2020, 26, 4812	rn North 2-4840.	4.2	64
2021	Rapid defaunation of terrestrial mammals in a protected Neotropical cloud forest remna for Nature Conservation, 2020, 56, 125861.	int. Journal	0.8	2
2022	Combined mechanistic modelling predicts changes in species distribution and increasec of a tropical urchin herbivore and a habitatâ€forming temperate kelp. Diversity and Dist 26, 1211-1226.	l coâ€occurrence ributions, 2020,	1.9	20
2023	Physiological mechanisms linking cold acclimation and the poleward distribution limit o range-extending marine fish. , 2020, 8, coaa045.	fa		12
2024	The spread of Bombus haematurus in Italy and its first DNA barcc sequence. Fragmenta Entomologica, 2020, 52, 67-70.	ode reference	0.4	4
2025	Agriâ€environment conservation setâ€asides have coâ€benefits for connectivity. Ecogr 1435-1447.	aphy, 2020, 43,	2.1	6
2026	Hurricanes overcome migration lag and shape intraspecific genetic variation beyond a p mangrove range limit. Molecular Ecology, 2020, 29, 2583-2597.	oleward	2.0	22
2027	Modelling spatiotemporal trends in range shifts of marine commercial fish species drive change surrounding the Antarctic Peninsula. Science of the Total Environment, 2020, 7	n by climate 37, 140258.	3.9	7
2028	Double-edged effects of climate change on plant invasions: Ecological niche modeling g distributions of two invasive alien plants. Science of the Total Environment, 2020, 740,	lobal 139933.	3.9	43
2029	Global correlates of range contractions and expansions in terrestrial mammals. Nature Communications, 2020, 11, 2840.		5.8	68
2030	Avian mortality risk during heat waves will increase greatly in arid Australia during the 2 2020, 8, coaa048.	1st century. ,		55
2031	Keeping pace with climate change in global terrestrial protected areas. Science Advance eaay0814.	rs, 2020, 6,	4.7	94
2032	Using a Vegetation Model and Stakeholder Input to Assess the Climate Change Vulnera Important Ecosystem Services. Forests, 2020, 11, 618.	bility of Tribally	0.9	10
2033	Plant adaptation to climate change—Where are we?. Journal of Systematics and Evolu 533-545.	tion, 2020, 58,	1.6	82
2034	Climate and land-use change refugia for Brazilian Cerrado birds. Perspectives in Ecology Conservation, 2020, 18, 109-115.	and	1.0	16
2035	Tropical plants do not have narrower temperature tolerances, but are more at risk from because they are close to their upper thermal limits. Global Ecology and Biogeography, 21387-1398.	warming 2020, 29,	2.7	68

#	Article	IF	CITATIONS
2036	Declining peatland bird numbers are not consistent with the increasing Common Crane population. Journal of Ornithology, 2020, 161, 691-700.	0.5	2
2037	Phylogenetic beta diversity in an upper montane Atlantic Forest along an altitudinal gradient. Plant Ecology, 2020, 221, 671-682.	0.7	11
2038	Intestinal Barrier Integrity in Heat-Stressed Modern Broilers and Their Ancestor Wild Jungle Fowl. Frontiers in Veterinary Science, 2020, 7, 249.	0.9	50
2039	Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects. Global Change Biology, 2020, 26, 4263-4275.	4.2	19
2040	Drivers and Consequences of Alternative Landscape Futures on Wildlife Distributions in New England, United States. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	9
2041	Can Rock-Rubble Groynes Support Similar Intertidal Ecological Communities to Natural Rocky Shores?. Land, 2020, 9, 131.	1.2	9
2042	Latitudinal distribution of polyplacophorans along the South-eastern Pacific coast: unravelling biases in geographical diversity patterns. Marine Biodiversity, 2020, 50, 1.	0.3	6
2043	How climate change affects parasites: the case of trematode parasite Clinostomum complanatum and its fish host Trichogaster fasiatus. Journal of Parasitic Diseases, 2020, 44, 476-480.	0.4	1
2044	Global warming will affect the maximum potential abundance of boreal plant species. Ecography, 2020, 43, 801-811.	2.1	26
2045	Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)?. Biogeosciences, 2020, 17, 1261-1279.	1.3	33
2046	Wildlife Ethics and Practice: Why We Need to Change the Way We Talk About †Invasive Species'. Journal of Agricultural and Environmental Ethics, 2020, 33, 299-313.	0.9	11
2047	Cultural, histochemical, and immunohistochemical detection of pathogenic <i>Leptospira</i> species in the kidneys of cattle slaughtered in two abattoirs in Southwest Nigeria. Journal of Immunoassay and Immunochemistry, 2020, 41, 337-353.	0.5	5
2048	Latitudinal limit not a cold limit: Cold temperatures do not constrain an endangered tree species at its northern edge. Journal of Biogeography, 2020, 47, 1398-1412.	1.4	5
2049	Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change. Global Change Biology, 2020, 26, 2867-2877.	4.2	21
2050	Geomorphology and Species Interactions Control Facilitation Cascades in a Salt Marsh Ecosystem. Current Biology, 2020, 30, 1562-1571.e4.	1.8	13
2051	Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 2020, 733, 137782.	3.9	368
2052	Predicted distributions of avian specialists: A framework for conservation of endangered forests under future climates. Diversity and Distributions, 2020, 26, 652-667.	1.9	18
2053	Points of view matter when assessing biodiversity vulnerability to environmental changes. Global Change Biology, 2020, 26, 2734-2736.	4.2	2

#	Article	IF	CITATIONS
2054	Changes in Foliar Functional Traits of S. pyrenaicus subsp. carpetanus under the Ongoing Climate Change: A Retrospective Survey. Plants, 2020, 9, 395.	1.6	6
2055	A new native plant in the neighborhood: effects on plant–pollinator networks, pollination, and plant reproductive success. Ecology, 2020, 101, e03046.	1.5	13
2056	Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB PLANTS, 2020, 12, plaa005.	1.2	28
2057	Mountain Ecosystems as Natural Laboratories for Climate Change Experiments. Frontiers in Forests and Global Change, 2020, 3, .	1.0	63
2058	Plant performance and survival across transplant experiments depend upon temperature and precipitation change along elevation. Journal of Ecology, 2020, 108, 2107-2120.	1.9	29
2059	Responses of Korean Pine to Proactive Managements under Climate Change. Forests, 2020, 11, 263.	0.9	7
2060	Will Lynx Lose Their Edge? Canada Lynx Occupancy in Washington. Journal of Wildlife Management, 2020, 84, 705-725.	0.7	12
2061	Multivariate climate departures have outpaced univariate changes across global lands. Scientific Reports, 2020, 10, 3891.	1.6	23
2062	Emerging challenges for sustainable development and forest conservation in Sarawak, Borneo. PLoS ONE, 2020, 15, e0229614.	1.1	26
2063	Small mountain reservoirs in the Alps: New habitats for alpine freshwater biodiversity?. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 617-630.	0.9	5
2064	Climate adaptation by crop migration. Nature Communications, 2020, 11, 1243.	5.8	153
2065	Local, but not long-distance dispersal of penguin ticks between two sub-Antarctic islands. Frontiers of Biogeography, 2020, 12, .	0.8	2
2066	Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas. Ecosystem Services, 2020, 44, 101137.	2.3	2
2067	Predicting biotic responses to future climate warming with classic ecogeographic rules. Current Biology, 2020, 30, R744-R749.	1.8	30
2068	Above- and belowground responses to nutrient enrichment within a marsh-mangrove ecotone. Estuarine, Coastal and Shelf Science, 2020, 243, 106884.	0.9	8
2069	Dominance by Spartina densiflora slows salt marsh litter decomposition. Journal of Vegetation Science, 2020, 31, 1181-1191.	1.1	0
2070	Effects of Temperature Rise on Multi-Taxa Distributions in Mountain Ecosystems. Diversity, 2020, 12, 210.	0.7	11
2071	Divergence in Bergmann's clines: elevational variation and heritability of body size in a leaf-cutting ant. Insectes Sociaux, 2020, 67, 355-366.	0.7	1

#	Article	IF	CITATIONS
2072	Longitudinal and temporal assemblage patterns of benthic macroinvertebrates in snow melt stream waters of the Jhelum River Basin of Kashmir Himalaya (India). Ecohydrology, 2020, 13, e2236.	1.1	10
2073	Patterns and Controls on the Productivity and Plant Diversity of Alpine Ecosystems. , 2020, , 265-274.		2
2074	Climate warming has changed phenology and compressed the climatically suitable habitat of Metasequoia glyptostroboides over the last half century. Global Ecology and Conservation, 2020, 23, e01140.	1.0	9
2075	Future climate change will severely reduce habitat suitability of the Critically Endangered Chinese giant salamander. Freshwater Biology, 2020, 65, 971-980.	1.2	43
2076	Discovering the limits of ecological resilience. Science, 2020, 367, 626-627.	6.0	10
2077	In transition: Avian biogeographic responses to a century of climate change across desert biomes. Global Change Biology, 2020, 26, 3268-3284.	4.2	10
2078	Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4211-4217.	3.3	373
2079	Amphibian responses in the aftermath of extreme climate events. Scientific Reports, 2020, 10, 3409.	1.6	23
2080	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94
2081	Climate connectivity of the bobcat in the Great Lakes region. Ecology and Evolution, 2020, 10, 2131-2144.	0.8	6
2082	Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?. Diversity, 2020, 12, 56.	0.7	8
2083	Functional Role of Extrafloral Nectar in Boreal Forest Ecosystems under Climate Change. Forests, 2020, 11, 67.	0.9	6
2084	Global distribution patterns and niche modelling of the invasive Kalanchoe × houghtonii (Crassulaceae). Scientific Reports, 2020, 10, 3143.	1.6	21
2085	Contrasting latitudinal patterns in diversity and stability in a highâ€latitude speciesâ€rich moth community. Global Ecology and Biogeography, 2020, 29, 896-907.	2.7	32
2086	Knowledge Gaps or Change of Distribution Ranges? Explaining New Records of Birds in the Ecuadorian Tumbesian Region of Endemism. Diversity, 2020, 12, 66.	0.7	5
2087	Simulation-based reconstruction of global bird migration over the past 50,000 years. Nature Communications, 2020, 11, 801.	5.8	20
2088	An artificial habitat increases the reproductive fitness of a range-shifting species within a newly colonized ecosystem. Scientific Reports, 2020, 10, 554.	1.6	11
2089	Contrasting Ozark and Great Lakes populations in the endangered Hines emerald dragonfly (Somatochlora hineana) using ecological, genetic, and phylogeographic analyses. Conservation Science and Practice, 2020, 2, e162.	0.9	1

#	Article	IF	CITATIONS
2090	Multidecadal shifts in fish community diversity across a dynamic biogeographic transition zone. Diversity and Distributions, 2020, 26, 93-107.	1.9	17
2091	Differential winter and breeding range shifts: Implications for avian migration distances. Diversity and Distributions, 2020, 26, 415-425.	1.9	26
2092	Vanishing islands in the sky? A comparison of correlation―and mechanismâ€based forecasts of range dynamics for montane salamanders under climate change. Ecography, 2020, 43, 481-493.	2.1	18
2093	The Moran effect revisited: spatial population synchrony under global warming. Ecography, 2020, 43, 1591-1602.	2.1	55
2094	A winner in the Anthropocene: changing host plant distribution explains geographical range expansion in the gulf fritillary butterfly. Ecological Entomology, 2020, 45, 652-662.	1.1	8
2095	Resolving fineâ€scale population structure and fishery exploitation using sequenced microsatellites in a northern fish. Evolutionary Applications, 2020, 13, 1055-1068.	1.5	32
2096	Opinion: Is gene mapping in wild populations useful for understanding and predicting adaptation to global change?. Global Change Biology, 2020, 26, 2737-2749.	4.2	8
2097	Scientists' warning to humanity on insect extinctions. Biological Conservation, 2020, 242, 108426.	1.9	458
2098	East Asian summer monsoon and topography co-determine the Holocene migration of forest-steppe ecotone in northern China. Global and Planetary Change, 2020, 187, 103135.	1.6	19
2099	Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants, 2020, 6, 88-94.	4.7	86
2100	Rapid and varied responses of songbirds to climate change in California coniferous forests. Biological Conservation, 2020, 241, 108347.	1.9	25
2101	Spatial detection of alpine treeline ecotones in the Western United States. Remote Sensing of Environment, 2020, 240, 111672.	4.6	14
2102	Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sensing of Environment, 2020, 239, 111626.	4.6	142
2103	Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. Journal of Ecology, 2020, 108, 931-944.	1.9	33
2104	Parenting in a warming world: thermoregulatory responses to heat stress in an endangered seabird. , 2020, 8, coz109.		25
2105	Multiple axes of ecological vulnerability to climate change. Global Change Biology, 2020, 26, 2798-2813.	4.2	40
2106	Coordinated photodegradation and biodegradation of organic matter from macrophyte litter in shallow lake water: Dual role of solar irradiation. Water Research, 2020, 172, 115516.	5.3	28
2107	Altitudinal upwards shifts in fungal fruiting in the Alps. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192348.	1.2	20

#	Article	IF	CITATIONS
2108	Translocating subtropical forest soils to a warmer region alters microbial communities and increases the decomposition of mineral-associated organic carbon. Soil Biology and Biochemistry, 2020, 142, 107707.	4.2	16
2109	Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography, 2020, 43, 637-647.	2.1	35
2110	Contrasting trends between species and catchments in diadromous fish counts over the last 30 years in France. Knowledge and Management of Aquatic Ecosystems, 2020, , 7.	0.5	8
2111	The development of Anthropocene biotas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190113.	1.8	41
2112	Planning for climate change through additions to a national protected area network: implications for cost and configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190117.	1.8	48
2113	Climate change mitigation and nature conservation both require higher protected area targets. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190121.	1.8	62
2114	Habitat transformation and climate change: Implications for the distribution, population status, and colony extinction of Southern Bald Ibis (Geronticus calvus) in southern Africa. Condor, 2020, 122, .	0.7	3
2115	Evolutionary genomics can improve prediction of species' responses to climate change. Evolution Letters, 2020, 4, 4-18.	1.6	190
2116	Does range expansion modify trait covariation? A study of a northward expanding dragonfly. Oecologia, 2020, 192, 565-575.	0.9	2
2117	Is the centralâ€marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, <i>Avicennia germinans</i> (L.) L. Molecular Ecology, 2020, 29, 704-719.	2.0	34
2118	The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Frontiers in Ecology and the Environment, 2020, 18, 211-218.	1.9	45
2119	Genetically-informed population models improve climate change vulnerability assessments. Landscape Ecology, 2020, 35, 1215-1228.	1.9	4
2120	Too hot to handle: summer space use shift in a cold-adapted ungulate at the edge of its range. Landscape Ecology, 2020, 35, 1341-1351.	1.9	23
2121	Clinging on to alpine life: Investigating factors driving the uphill range contraction and population decline of a mountain breeding bird. Clobal Change Biology, 2020, 26, 3771-3787.	4.2	6
2122	Forest dynamics and carbon storage under climate change in a subtropical mountainous region in central China. Ecosphere, 2020, 11, e03072.	1.0	8
2123	Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nature Climate Change, 2020, 10, 398-405.	8.1	116
2124	Hybridizing salamanders experience accelerated diversification. Scientific Reports, 2020, 10, 6566.	1.6	16
2125	Responses of Above-ground Biomass, Plant Diversity, and Dominant Species to Habitat Change in a Freshwater Wetland of Northeast China. Russian Journal of Ecology, 2020, 51, 57-63.	0.3	4

#	Article	IF	CITATIONS
2126	Community science validates climate suitability projections from ecological niche modeling. Ecological Applications, 2020, 30, e02128.	1.8	13
2127	The economic aspects of climate risks and food insecurity. , 2020, , 347-355.		0
2128	Invasive grasses: A new perfect storm for forested ecosystems?. Forest Ecology and Management, 2020, 463, 117985.	1.4	64
2129	Identification of conflict between wildlife living spaces and human activity spaces and adjustments in/around protected areas under climate change:A case study in the Three-River Source Region. Journal of Environmental Management, 2020, 262, 110322.	3.8	10
2130	When things get hot: Thermoregulation behavior in the lizard Sceloporus aeneus at different thermal conditions. Journal of Thermal Biology, 2020, 89, 102572.	1.1	9
2131	Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Scientific Reports, 2020, 10, 5385.	1.6	46
2132	The Thermal Tolerances, Distributions, and Performances of Tropical Montane Tree Species. Frontiers in Forests and Global Change, 2020, 3, .	1.0	45
2133	Computer Vision and Deep Learning Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study. Remote Sensing, 2020, 12, 1287.	1.8	44
2134	Canadian polar bear population structure using genomeâ€wide markers. Ecology and Evolution, 2020, 10, 3706-3714.	0.8	11
2135	The effect of climate on population growth in a coldâ€adapted ungulate at its equatorial range limit. Ecosphere, 2020, 11, e03058.	1.0	4
2136	Topography and human pressure in mountain ranges alter expected species responses to climate change. Nature Communications, 2020, 11, 1974.	5.8	86
2137	Warmer nights offer no respite for a defensive mutualism. Journal of Animal Ecology, 2020, 89, 1895-1905.	1.3	20
2138	Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. BMC Evolutionary Biology, 2020, 20, 47.	3.2	15
2139	Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya. Frontiers in Plant Science, 2020, 11, 421.	1.7	53
2140	Tree growth response to recent warming of two endemic species in Northeast Asia. Climatic Change, 2020, 162, 1345-1364.	1.7	18
2141	Positive impacts of important bird and biodiversity areas on wintering waterbirds under changing temperatures throughout Europe and North Africa. Biological Conservation, 2020, 246, 108549.	1.9	23
2142	Influence of climate-induced biogeographic range shifts on mudflat ecological functioning in the subtropics. Estuarine, Coastal and Shelf Science, 2020, 237, 106692.	0.9	2
2143	Resting metabolic rates increase with elevation in a mountainâ€dwelling lizard. Integrative Zoology, 2020, 15, 363-374.	1.3	19

#	Article	IF	CITATIONS
2144	Is subarctic forest advance able to keep pace with climate change?. Global Change Biology, 2020, 26, 3965-3977.	4.2	76
2145	Deglacial temperature controls on no-analog community establishment in the Great Lakes Region. Quaternary Science Reviews, 2020, 234, 106245.	1.4	10
2146	Embryonic and postâ€embryonic responses to highâ€elevation hypoxia in a lowâ€elevation lizard. Integrative Zoology, 2020, 15, 338-348.	1.3	10
2147	Ecological Niche Models Reveal Climate Change Effect on Biogeographical Regions: The Iberian Peninsula as a Case Study. Climate, 2020, 8, 42.	1.2	15
2148	Fish and fisheries in hot water: What is happening and how do we adapt?. Population Ecology, 2021, 63, 17-26.	0.7	35
2149	Determining priority areas for an Endangered cold-adapted snake on warming mountaintops. Oryx, 2021, 55, 334-343.	0.5	6
2150	Effects of mangrove encroachment on tidal wetland plant, nekton, and bird communities in the Western Gulf of Mexico. Estuarine, Coastal and Shelf Science, 2021, 248, 106767.	0.9	11
2151	Northwestward range expansion of the bumblebee <i>Bombus haematurus</i> into Central Europe is associated with warmer winters and niche conservatism. Insect Science, 2021, 28, 861-872.	1.5	21
2152	Multiâ€population seedling and soil transplants show possible responses of a common tropical montane tree species (<i>Weinmannia bangii</i>) to climate change. Journal of Ecology, 2021, 109, 62-73.	1.9	7
2153	Assessing climate change adaptation progress in Canada's protected areas. Canadian Geographer / Geographie Canadien, 2021, 65, 152-165.	1.0	10
2154	Rewilding in the face of climate change. Conservation Biology, 2021, 35, 155-167.	2.4	26
2155	Effects of climate change and human influence in the distribution and range overlap between two widely distributed avian scavengers. Bird Conservation International, 2021, 31, 77-95.	0.7	7
2156	Detrimental impacts of climate change may be exacerbated by densityâ€dependent population regulation in blue mussels. Journal of Animal Ecology, 2021, 90, 562-573.	1.3	13
2157	Climate change drives spatial mismatch and threatens the biotic interactions of the Brazil nut. Global Ecology and Biogeography, 2021, 30, 117-127.	2.7	19
2158	Historical and contemporary factors affect the genetic diversity and structure of Laguncularia racemosa (L.) Gaertn, along the western Atlantic coast. Estuarine, Coastal and Shelf Science, 2021, 249, 107055.	0.9	4
2159	Germination potential of baldcypress (Taxodium distichum) swamp soil seed bank along geographical gradients. Science of the Total Environment, 2021, 759, 143484.	3.9	4
2160	Climate manipulations differentially affect plant population dynamics within versus beyond northern range limits. Journal of Ecology, 2021, 109, 664-675.	1.9	18
2161	Past and future distribution pattern of Myrica esculenta in response to climate change scenario. Modeling Earth Systems and Environment, 2021, 7, 1831-1846.	1.9	5

#	Article	IF	CITATIONS
2162	Understanding and managing the interactions of impacts from nature-based recreation and climate change. Ambio, 2021, 50, 631-643.	2.8	28
2164	Is there always space at the top? Ensemble modeling reveals climate-driven high-altitude squeeze for the vulnerable snow trout Schizothorax richardsonii in Himalaya. Ecological Indicators, 2021, 120, 106900.	2.6	31
2165	Genomeâ€wide diversity and habitat underlie fineâ€scale phenotypic differentiation in the rainbow darter (Etheostoma caeruleum). Evolutionary Applications, 2021, 14, 498-512.	1.5	9
2166	Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conservation Biology, 2021, 35, 834-845.	2.4	18
2167	Interactive impacts of climate change and landâ€use change on the demography of montane birds. Ecology, 2021, 102, e03223.	1.5	28
2168	Contrasting Effects of Climate Change on Alpine Chamois. Journal of Wildlife Management, 2021, 85, 109-120.	0.7	16
2169	Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual. Molecular Ecology, 2021, 30, 698-717.	2.0	12
2170	Elevation alters outcome of competition between resident and rangeâ€shifting species. Global Change Biology, 2021, 27, 270-281.	4.2	14
2171	Current distributions and future climateâ€driven changes in diatoms, insects and fish in U.S. streams. Global Ecology and Biogeography, 2021, 30, 63-78.	2.7	24
2172	Variability in the fundamental versus realized niches of North American mangroves. Journal of Biogeography, 2021, 48, 160-175.	1.4	22
2173	Importance of species translocations under rapid climate change. Conservation Biology, 2021, 35, 775-783.	2.4	40
2174	Surviving an infectious disease outbreak: How does nurse calling influence performance during the COVIDâ€19 fight?. Journal of Nursing Management, 2021, 29, 421-431.	1.4	15
2175	Exploring Synergies and Trade-offs between Climate Change and the Sustainable Development Goals. , 2021, , .		10
2176	Opposing life stageâ€specific effects of ocean warming at source and sink populations of rangeâ€shifting coralâ€reef fishes. Journal of Animal Ecology, 2021, 90, 615-627.	1.3	3
2177	The future representativeness of Madagascar's protected area network in the face of climate change. African Journal of Ecology, 2021, 59, 253-263.	0.4	5
2178	Evaluating the Mechanisms of Landscape Change on Whiteâ€Tailed Deer Populations. Journal of Wildlife Management, 2021, 85, 340-353.	0.7	21
2179	Morphological variability of cushion plantÂLyallia kerguelensis (Caryophyllales)Âin relation to environmental conditions and geography in the Kerguelen Islands: implications for cushion necrosis and climate change. Polar Biology, 2021, 44, 17-30.	0.5	4
2180	Long-term environmental tolerance of the non-indigenous Pacific oyster to expected contemporary climate change conditions. Marine Environmental Research, 2021, 164, 105226.	1.1	8

# 2181	ARTICLE Disentangling the latitudinal and altitudinal shifts in community composition induced by climate change: The case of riparian birds. Journal of Biogeography, 2021, 48, 526-536.	IF 1.4	CITATIONS 2
2182	Microgeographical adaptation corresponds to elevational distributions of congeneric montane grasshoppers. Molecular Ecology, 2021, 30, 481-498.	2.0	15
2183	Microbes, mutualism, and range margins: testing the fitness consequences of soil microbial communities across and beyond a native plant's range. New Phytologist, 2021, 229, 2886-2900.	3.5	24
2184	Potential regional declines in species richness of tomato pollinators in North America under climate change. Ecological Applications, 2021, 31, e02259.	1.8	4
2185	Resident vegetation modifies climate-driven elevational shift of a mountain sedge. Alpine Botany, 2021, 131, 13-25.	1.1	5
2186	Review: Plant eco-evolutionary responses to climate change: Emerging directions. Plant Science, 2021, 304, 110737.	1.7	31
2187	A tradeâ€off between latitude and elevation contributes to explain range segregation of broadly distributed caveâ€dwelling spiders. Journal of Zoological Systematics and Evolutionary Research, 2021, 59, 370-375.	0.6	5
2188	Mountain treelines climb slowly despite rapid climate warming. Global Ecology and Biogeography, 2021, 30, 305-315.	2.7	62
2189	The upward elevational shifts of pond breeding amphibians following climate warming. Biological Conservation, 2021, 253, 108911.	1.9	9
2190	A unifying framework for studying and managing climate-driven rates of ecological change. Nature Ecology and Evolution, 2021, 5, 17-26.	3.4	58
2191	Climate change accelerates range expansion of the invasive non-native species, the Pacific oyster, <i>Crassostrea gigas</i> . ICES Journal of Marine Science, 2021, 78, 70-81.	1.2	26
2192	Discriminating climate, landâ€cover and random effects on species range dynamics. Global Change Biology, 2021, 27, 1309-1317.	4.2	21
2193	Mating under climate change: Impact of simulated heatwaves on the reproduction of model pollinators. Functional Ecology, 2021, 35, 739-752.	1.7	29
2194	Global effects of extreme temperatures on wild bumblebees. Conservation Biology, 2021, 35, 1507-1518.	2.4	64
2195	Bioenergy landscapes drive trophic shifts in generalist ants. Journal of Animal Ecology, 2021, 90, 738-750.	1.3	7
2196	Genomic vulnerability to rapid climate warming in a tree species with a long generation time. Global Change Biology, 2021, 27, 1181-1195.	4.2	46
2197	Replacement of oyster reefs by mangroves: Unexpected climateâ€driven ecosystem shifts. Global Change Biology, 2021, 27, 1226-1238.	4.2	21
2198	Culturable root endophyte communities are shaped by both warming and plant host identity in the Rocky Mountains, USA. Fungal Ecology, 2021, 49, 101002.	0.7	5

#	Article	IF	CITATIONS
2199	Modelling range dynamics of terricolous lichens of the genus Peltigera in the Alps under a climate change scenario. Fungal Ecology, 2021, 49, 101014.	0.7	9
2200	Onward but not always upward: individualistic elevational shifts of tree species in subtropical montane forests. Ecography, 2021, 44, 112-123.	2.1	24
2201	Incorporating marine macrophytes in plant–soil feedbacks: Emerging evidence and opportunities to advance the field. Journal of Ecology, 2021, 109, 614-625.	1.9	2
2202	Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action. Springer Polar Sciences, 2021, , .	0.0	5
2203	Translocation experiment reveals capacity for mountain pine beetle persistence under climate warming. Ecological Monographs, 2021, 91, .	2.4	11
2204	Vulnerability of mammal communities to the combined impacts of anthropic land-use and climate change in the Himalayan conservation landscape of Bhutan. Ecological Indicators, 2021, 121, 107085.	2.6	23
2205	Detecting no natural hybridization and predicting range overlap in Saccharina angustata and Saccharina japonica. Journal of Applied Phycology, 2021, 33, 693-702.	1.5	3
2206	Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population. Journal of Animal Ecology, 2021, 90, 330-342.	1.3	10
2207	Effects of current and future climates on the growth dynamics and distributions of two riverine fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 185-197.	0.9	0
2208	A methodology to assess the future connectivity of protected areas by combining climatic representativeness and land-cover change simulations: the case of the Guadarrama National Park (Madrid, Spain). Journal of Environmental Planning and Management, 2021, 64, 734-753.	2.4	3
2209	Mountains as vulnerable places: a global synthesis of changing mountain systems in the Anthropocene. Geo Journal, 2021, 86, 585-604.	1.7	19
2210	Changes in subarctic vegetation after one century of land use and climate change. Journal of Vegetation Science, 2021, 32, e12854.	1.1	8
2211	Trialling seawater irrigation to combat the high nest temperature feminisation of green turtle Chelonia mydas hatchlings. Marine Ecology - Progress Series, 2021, 667, 177-190.	0.9	20
2212	Climate change refugia: landscape, stand and tree-scale microclimates in epiphyte community composition. Lichenologist, 2021, 53, 135-148.	0.5	5
2213	Plant–soil interactions in a changing world: a climate change perspective. , 2021, , 1-27.		0
2214	Modeling Future Potential Distribution of Buff-Bellied Hummingbird (Amazilia yucatanensis) Under Climate Change: Species vs. Subspecies. Tropical Conservation Science, 2021, 25, 194008292110308.	0.6	3
2215	Searching for synthetic mechanisms on how biological traits mediate species responses to climate change. Biota Neotropica, 2021, 21, .	0.2	1
2216	Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nature Climate Change, 2021, 11, 166-171.	8.1	69

# 2217	ARTICLE Observed and projected changes in global climate zones based on Köppen climate classification. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, e701.	IF 3.6	CITATIONS
2218	Insect Species Coexistence and Conservation Amidst Global Change. , 2022, , 370-377.		2
2219	Oil and derivatives. , 2021, , 133-187.		0
2220	Microclimate structures communities, predation and herbivory in the High Arctic. Journal of Animal Ecology, 2021, 90, 859-874.	1.3	6
2221	Diversity and Origin of the Central Mexican Alpine Flora. Diversity, 2021, 13, 31.	0.7	8
2222	Passive Acoustic Monitoring Reveals Spatio-Temporal Distributions of Antarctic and Pygmy Blue Whales Around Central New Zealand. Frontiers in Marine Science, 2021, 7, .	1.2	10
2223	Implications of Pollinator Biodiversity Decline for Food Security, Economy, and Pollinator Conservation Policies. E3S Web of Conferences, 2021, 259, 01006.	0.2	2
2226	Impacts of a drought and hurricane on tropical bird and frog distributions. Ecosphere, 2021, 12, e03352.	1.0	11
2227	The dynamics of the development of harmful insects on the mother planting of basic grape plants in the Rostov region. BIO Web of Conferences, 2021, 34, 04006.	0.1	0
2228	Climateâ€driven range shifts of montane species vary with elevation. Global Ecology and Biogeography, 2021, 30, 784-794.	2.7	42
2229	Predicted Future Benefits for an Endemic Rodent in the Irano-Turanian Region. Climate, 2021, 9, 16.	1.2	2
2230	Weather conditions explain reproductive success and advancement of the breeding season in Western Capercaillie (<i>Tetrao urogallus</i>). Ibis, 2021, 163, 990-1003.	1.0	12
2231	Shifts in the wintering distribution and abundance of emperor geese in Alaska. Global Ecology and Conservation, 2021, 25, e01397.	1.0	8
2232	Potential Himalayan community turnover through the Late Pleistocene. Climatic Change, 2021, 164, 1.	1.7	1
2233	Topographic diversity as an indicator for resilience of terrestrial protected areas against climate change. Global Ecology and Conservation, 2021, 25, e01445.	1.0	9
2234	Resurvey of vascular plants and soil arthropods on the summit of Mount Corazón (Andes of Ecuador) after 140 years. Neotropical Biodiversity, 2021, 7, 238-245.	0.2	2
2235	Increasing protected area coverage mitigates climate-driven community changes. Biological Conservation, 2021, 253, 108892.	1.9	16
2236	Repeated surveying over 6Âyears reveals that fine-scale habitat variables are key to tropical mountain ant assemblage composition and functional diversity. Scientific Reports, 2021, 11, 56.	1.6	5

IF

#	ARTICLE

2237 Insect communities. , 2021, , 389-407.

1

CITATIONS

2238	Effects of Global Warming on the Distribution and Diversity of Arctic and Subarctic Insects. , 2021, , 73-83.		0
2239	Forced Unsteady State Operation of a Catalytic Converter during Cold Start-up for Oxidizing CO Over Pt/γ-Al2O3 Catalyst. MATEC Web of Conferences, 2021, 333, 05003.	0.1	0
2240	Range expansion, habitat use, and choosiness in a butterfly under climate change: Marginality and tolerance of oviposition site selection. Ecology and Evolution, 2021, 11, 2336-2345.	0.8	6
2241	Pinus pseudostrobus assisted migration trial with rain exclusion: maintaining Monarch Butterfly Biosphere Reserve forest cover in an environment affected by climate change. New Forests, 2021, 52, 995-1010.	0.7	7
2242	Species-specific growth-climate responses of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) in the Greater Khingan Range, northeast China. Dendrochronologia, 2021, 65, 125803.	1.0	12
2243	Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. Ecology Letters, 2021, 24, 772-780.	3.0	9
2244	Wintering bird communities are tracking climate change faster than breeding communities. Journal of Animal Ecology, 2021, 90, 1085-1095.	1.3	23
2245	Macroecological context predicts species' responses to climate warming. Global Change Biology, 2021, 27, 2088-2101.	4.2	16
2246	Predicting Hotspots and Prioritizing Protected Areas for Endangered Primate Species in Indonesia under Changing Climate. Biology, 2021, 10, 154.	1.3	19
2247	Spaceâ€forâ€time inferences about rangeâ€edge dynamics of tree species can be influenced by sampling biases. Global Change Biology, 2021, 27, 2102-2112.	4.2	6
2248	Spring phenology is affected by fall non-structural carbohydrate concentration and winter sugar redistribution in three Mediterranean nut tree species. Tree Physiology, 2021, 41, 1425-1438.	1.4	20
2250	Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Botany, 2021, 131, 27-39.	1.1	25
2251	Genomic vulnerability of a dominant seaweed points to futureâ€proofing pathways for Australia's underwater forests. Global Change Biology, 2021, 27, 2200-2212.	4.2	27
2252	Localâ€scale climatic refugia offer sanctuary for a habitatâ€forming species during a marine heatwave. Journal of Ecology, 2021, 109, 1758-1773.	1.9	50
2253	Drivers of Timberline Dynamics in Rodna Montains, Northern Carpathians, Romania, over the Last 131 Years. Sustainability, 2021, 13, 2089.	1.6	3
2254	Climate-Driven Range Shifts Are Rapid Yet Variable Among Recreationally Important Coastal-Pelagic Fishes. Frontiers in Marine Science, 2021, 8, .	1.2	26
2255	Regional differences in rapid evolution during severe drought. Evolution Letters, 2021, 5, 130-142.	1.6	21

#	Article	IF	CITATIONS
2256	Unravelling potential northward migration pathways for tree species under climate change. Journal of Biogeography, 2021, 48, 1088-1100.	1.4	32
2257	Current and timeâ€lagged effects of climate on innate immunity in two sympatric snake species. Ecology and Evolution, 2021, 11, 3239-3250.	0.8	7
2258	Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 2021, 27, 1904-1914.	4.2	8
2259	Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 2021, 30, 768-783.	2.7	87
2260	Illuminating the intrinsic and extrinsic drivers of ecological stability across scales. Ecological Research, 2021, 36, 364-378.	0.7	15
2261	Grizzled Skippers stuck in the south: Populationâ€level responses of an earlyâ€successional specialist butterfly to climate across its UK range over 40 years. Diversity and Distributions, 2021, 27, 962-972.	1.9	0
2264	Natural and anthropogenic climate variability shape assemblages of rangeâ€extending coralâ€reef fishes. Journal of Biogeography, 2021, 48, 1063-1075.	1.4	6
2265	Unusually large upward shifts in coldâ€adapted, montane mammals as temperature warms. Ecology, 2021, 102, e03300.	1.5	11
2266	Suitability of Habitats in Nepal for Dactylorhiza hatagirea Now and under Predicted Future Changes in Climate. Plants, 2021, 10, 467.	1.6	14
2267	The effects of climate change on Australia's only endemic Pokémon: Measuring bias in species distribution models. Methods in Ecology and Evolution, 2021, 12, 985-995.	2.2	9
2268	Habitat amount and distribution modify community dynamics under climate change. Ecology Letters, 2021, 24, 950-957.	3.0	49
2269	Preparing international cooperation on pandemic prevention for the Anthropocene. BMJ Global Health, 2021, 6, e004254.	2.0	17
2270	Tropicalization and kelp loss shift trophic composition and lead to more winners than losers in fish communities. Global Change Biology, 2021, 27, 2537-2548.	4.2	19
2271	Effects of hypoxia on the thermal physiology of a high-elevation lizard: implications for upslope-shifting species. Biology Letters, 2021, 17, 20200873.	1.0	6
2272	Effect of foundation species composition and oil exposure on wetland communities across multiple trophic levels. Marine Ecology - Progress Series, 2021, 662, 53-68.	0.9	2
2273	Monitoring Forest Phenology in a Changing World. Forests, 2021, 12, 297.	0.9	23
2274	Climate change impacts on population growth across a species' range differ due to nonlinear responses of populations to climate and variation in rates of climate change. PLoS ONE, 2021, 16, e0247290.	1.1	11
2275	Changes in Sediment Organic Carbon Accumulation under Conditions of Historical Sea-Level Rise, Southeast Saline Everglades, Florida, USA. Wetlands, 2021, 41, 1.	0.7	5

#	Article	IF	CITATIONS
2276	Interrelated impacts of climate and landâ€use change on a widespread waterbird. Journal of Animal Ecology, 2021, 90, 1165-1176.	1.3	8
2277	What drives species' distributions along elevational gradients? Macroecological and â€evolutionary insights from Brassicaceae of the central Alps. Global Ecology and Biogeography, 2021, 30, 1030-1042.	2.7	7
2278	Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Ecography, 2021, 44, 885-896.	2.1	24
2279	Spatial and temporal shifts in photoperiod with climate change. New Phytologist, 2021, 230, 462-474.	3.5	21
2280	Increasing environmental filtering of diazotrophic communities with a decade of latitudinal soil transplantation. Soil Biology and Biochemistry, 2021, 154, 108119.	4.2	27
2281	An iconic messenger of climate change? Predicting the range dynamics of the European Bee-eater (Merops apiaster). Journal of Ornithology, 2021, 162, 631-644.	0.5	8
2282	Using Holocene fossils to model the future: Distribution of climate suitability for tuatara, the last rhynchocephalian. Journal of Biogeography, 2021, 48, 1489-1502.	1.4	6
2283	An Orchid in Retrograde: Climate-Driven Range Shift Patterns of Ophrys helenae in Greece. Plants, 2021, 10, 470.	1.6	11
2284	Predicting impacts of food competition, climate, and disturbance on a longâ€distance migratory herbivore. Ecosphere, 2021, 12, e03405.	1.0	5
2285	Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. Journal of Ecology and Environment, 2021, 45, .	1.6	5
2286	Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States?. Biological Conservation, 2021, 255, 108982.	1.9	19
2287	Limited Evidence for Parallel Evolution Among Desert-Adapted <i>Peromyscus</i> Deer Mice. Journal of Heredity, 2021, 112, 286-302.	1.0	14
2289	Grow fast but don't die young: Maternal effects mediate lifeâ€history tradeâ€offs of lizards under climate warming. Journal of Animal Ecology, 2021, 90, 1550-1559.	1.3	14
2290	Upward shifts in elevational limits of forest and grassland for Mexican volcanoes over three decades. Biotropica, 2021, 53, 798-807.	0.8	7
2291	Abandonment of traditional land use and climate change threaten the survival of an endangered relict butterfly species. Insect Conservation and Diversity, 2021, 14, 556-567.	1.4	12
2292	Effects of climate change on the distribution of felids: mapping biogeographic patterns and establishing conservation priorities. Biodiversity and Conservation, 2021, 30, 1375-1394.	1.2	4
2293	Speciesâ€specific responses of a marshâ€forest ecotone plant community responding to climate change. Ecology, 2021, 102, e03296.	1.5	9
2294	Sensitivity of aboveground biomass and species composition to climate change in boreal forests of Northeastern China. Ecological Modelling, 2021, 445, 109472.	1.2	8

#	Article	IF	CITATIONS
2295	Predicting range shifts for critically endangered plants: Is habitat connectivity irrelevant or necessary?. Biological Conservation, 2021, 256, 109033.	1.9	10
2296	The four antelope species on the Qinghai-Tibet plateau face habitat loss and redistribution to higher latitudes under climate change. Ecological Indicators, 2021, 123, 107337.	2.6	27
2297	Improvements in reports of species redistribution under climate change are required. Science Advances, 2021, 7, .	4.7	56
2299	ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Global Ecology and Biogeography, 2021, 30, 1183-1190.	2.7	23
2300	Temperature mitigation strategies in Lepidium latifolium L., a sleeper weed from Ladakh himalayas. Environmental and Experimental Botany, 2021, 184, 104352.	2.0	0
2301	Current and Forthcoming Approaches for Benchmarking Genetic and Genomic Diversity. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
2302	Rapid thermophilization of understorey plant communities in a 9 yearâ€kong temperate forest experiment. Journal of Ecology, 2021, 109, 2434-2447.	1.9	27
2303	Evolution of cold tolerance and thermal plasticity in life history, behaviour and physiology during a poleward range expansion. Journal of Animal Ecology, 2021, 90, 1666-1677.	1.3	16
2304	When cooling is worse than warming: investigations into the thermal tolerance of an endemic reef fish, Boopsoidea inornata. African Journal of Marine Science, 2021, 43, 239-249.	0.4	1
2305	The decline of a hidden and expansive microhabitat: the subnivium. Frontiers in Ecology and the Environment, 2021, 19, 268-273.	1.9	14
2306	Diversity and niche differentiation of a mixed pine–oak forest in the Sierra Norte, Oaxaca, Mexico. Ecosphere, 2021, 12, e03475.	1.0	5
2307	Spatial activity and habitat use of a marginal population of the endangered Mediterranean horseshoe bat (Rhinolophus euryale). Mammal Research, 2021, 66, 499.	0.6	2
2308	Temperature and Prey Species Richness Drive the Broad-Scale Distribution of a Generalist Predator. Diversity, 2021, 13, 169.	0.7	2
2309	Mollusc successions reveal northward postglacial shifts of Alpine species ranges (Bohemian Massif,) Tj ETQq1 1 C).784314 ı 0.9	ˈgɟ̃T /Overlo
2310	Range edges of North American marine species are tracking temperature over decades. Global Change Biology, 2021, 27, 3145-3156.	4.2	38
2311	Phenological and elevational shifts of plants, animals and fungi under climate change in the <scp>E</scp> uropean <scp>A</scp> lps. Biological Reviews, 2021, 96, 1816-1835.	4.7	102
2312	Spatio-temporal analysis of Egyptian flower mantisBlepharopsis mendica(order: mantodea), with notes of its future status under climate change. Saudi Journal of Biological Sciences, 2021, 28, 2049-2055.	1.8	7
2313	Red mason bee (Osmia bicornis) thermal preferences for nest sites and their effects on offspring survival. Apidologie, 2021, 52, 707-719.	0.9	8

#	Article	IF	CITATIONS
2314	Introduced alien, range extension or just visiting? Combining citizen science observations and expert knowledge to classify range dynamics of marine fishes. Diversity and Distributions, 2021, 27, 1278-1293.	1.9	11
2316	Redistribution of Sumatran orangutan in the Leuser ecosystem due to dispersal constraints and climate change. IOP Conference Series: Earth and Environmental Science, 2021, 771, 012006.	0.2	0
2317	Treatment of climate change in extinction risk assessments and recovery plans for threatened species. Conservation Science and Practice, 2021, 3, e450.	0.9	6
2318	Dynamics of a discrete-time pioneer–climax model. Theoretical Ecology, 2021, 14, 501.	0.4	2
2319	Distribution and Habitat Suitability of Ross Seals in a Warming Ocean. Frontiers in Marine Science, 2021, 8, .	1.2	8
2320	Impact of climate change on alpine plant community in Qilian Mountains of China. International Journal of Biometeorology, 2021, 65, 1849-1858.	1.3	10
2321	Balsam Fir and American Beech Influence Soil Respiration Rates in Opposite Directions in a Sugar Maple Forest Near Its Northern Range Limit. Frontiers in Forests and Global Change, 2021, 4, .	1.0	5
2322	Climate adaptation interventions for iconic fauna. Conservation Science and Practice, 2021, 3, e434.	0.9	6
2323	Montane species track rising temperatures better in the tropics than in the temperate zone. Ecology Letters, 2021, 24, 1697-1708.	3.0	55
2324	Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 2021, 257, 109070.	1.9	120
2325	Site Characteristics More Than Vegetation Type Influence Food Web Structure of Intertidal Salt Marshes. Frontiers in Marine Science, 2021, 8, .	1.2	3
2326	Autumn larval cold tolerance does not predict the northern range limit of a widespread butterfly species. Ecology and Evolution, 2021, 11, 8332-8346.	0.8	4
2327	Does Hyperoxia Restrict Pyrenean Rock Lizards Iberolacerta bonnali to High Elevations?. Diversity, 2021, 13, 200.	0.7	4
2328	Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biology, 2021, 22, 138.	3.8	76
2329	Dung beetle resistance to desiccation varies within and among populations. Physiological Entomology, 2021, 46, 230-243.	0.6	5
2330	Site-Based Conservation of Terrestrial Bird Species in the Caribbean and Central and South America Under Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
2331	Temperature effects on forest understorey plants in hedgerows: a combined warming and transplant experiment. Annals of Botany, 2021, 128, 315-327.	1.4	2
2332	Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates. Ecology Letters, 2021, 24, 1633-1645.	3.0	32

#	Article	IF	CITATIONS
2333	Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Science of the Total Environment, 2021, 767, 145413.	3.9	90
2334	Two centuries of changes in Andean crop distribution. Journal of Biogeography, 2021, 48, 1972-1980.	1.4	7
2335	Climate change and elevated CO ₂ favor forest over savanna under different future scenarios in South Asia. Biogeosciences, 2021, 18, 2957-2979.	1.3	14
2336	Light and energetics at seasonal extremes limit poleward range shifts. Nature Climate Change, 2021, 11, 530-536.	8.1	18
2337	Predicted climateâ€induced reductions in scavenging in eastern North America. Global Change Biology, 2021, 27, 3383-3394.	4.2	5
2338	Linking climate niches across seasons to assess population vulnerability in a migratory bird. Global Change Biology, 2021, 27, 3519-3531.	4.2	14
2339	Lagged recovery of fish spatial distributions following a cold-water perturbation. Scientific Reports, 2021, 11, 9513.	1.6	6
2340	Climate change and micro-topography are facilitating the mountain invasion by a non-native perennial plant species. NeoBiota, 0, 65, 23-45.	1.0	9
2341	Cascading effects: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03430.	1.0	8
2342	Successful Long-Distance Breeding Range Expansion of a Top Marine Predator. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
2343	Northward range extension for <i>Durvillaea poha</i> bull kelp: Response to tectonic disturbance?. Journal of Phycology, 2021, 57, 1411-1418.	1.0	9
2344	Landscape forest impacts the potential activity time of an invasive lizard and its possibilities for range expansion in Taiwan under climate warming. Journal of Thermal Biology, 2021, 98, 102948.	1.1	6
2345	Vulnerability of bat–plant pollination interactions due to environmental change. Global Change Biology, 2021, 27, 3367-3382.	4.2	17
2346	Predicting impacts of global climatic change on genetic and phylogeographical diversity of a Neotropical treefrog. Diversity and Distributions, 2021, 27, 1519-1535.	1.9	10
2347	Predicting the Location of Maple Habitat Under Warming Scenarios in Two Regions at the Northern Range in Canada. Forest Science, 2021, 67, 446-456.	0.5	2
2348	Modeling biodiversity changes and conservation issues in a desert sky island. Journal of Arid Environments, 2021, 189, 104481.	1.2	4
2349	Mapping climate change vulnerability of aquatic-riparian ecosystems using decision-relevant indicators. Ecological Indicators, 2021, 125, 107581.	2.6	3
2350	A First Look into the Natural History of the Sierra Box Turtle (Terrapene nelsoni klauberi) in Southeast Sonora, Mexico. Chelonian Conservation and Biology, 2021, 20, .	0.1	0

		CITATION REPORT		
#	Article		IF	CITATIONS
2351	Limited potential for bird migration to disperse plants to cooler latitudes. Nature, 2021	, 595, 75-79.	13.7	44
2352	How Dispersal Evolution and Local Adaptation Affect the Range Dynamics of Species La Climate Change. American Naturalist, 2021, 197, E173-E187.	agging Behind	1.0	8
2353	Perceived Barriers to the Use of Assisted Colonization for Climate Sensitive Species in t Islands. Environmental Management, 2021, 68, 329-339.	he Hawaiian:	1.2	5
2354	El Niño–Southern Oscillation impacts on jumbo squid habitat: Implication for fisher Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2072-2083.	ies management.	0.9	6
2355	Predicting the Potential Geographic Distribution and Habitat Suitability of Two Econom on the Loess Plateau, China. Forests, 2021, 12, 747.	iic Forest Trees	0.9	12
2356	Drivers of black grouse trends in the French Alps: The prevailing contribution of climate and Distributions, 2021, 27, 1338-1352.	. Diversity	1.9	5
2357	Virus-Host Interactions Shape Viral Dispersal Giving Rise to Distinct Classes of Traveling Spatial Expansions. Physical Review X, 2021, 11, .	g Waves in	2.8	5
2358	Fluctuation at High Temperature Combined with Nutrients Alters the Thermal Depende Phytoplankton. Microbial Ecology, 2021, , 1.	nce of	1.4	7
2359	Propagule pressure rather than population growth determines colonisation ability: a ca two phytophagous mite species differing in their invasive potential. Ecological Entomol 1136-1147.		1.1	2
2360	Future fire-driven landscape changes along a southwestern US elevation gradient. Clim 2021, 166, 1.	atic Change,	1.7	2
2362	Community structure of macromoths along altitudinal gradients in Korea. Journal of As Biodiversity, 2021, 14, 205-208.	ia-Pacific	0.2	0
2363	Rapid shifts in Arctic tundra species' distributions and interâ€specific range overlap und climate change. Diversity and Distributions, 2021, 27, 1706-1718.	der future	1.9	20
2364	Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera Letters, 2021, 24, 1619-1632.	ı. Ecology	3.0	36
2365	Modeling current and future species distribution of breeding birds as regional essential variables (SD EBVs): A bird perspective in Swiss Alps. Global Ecology and Conservation,		1.0	8
2366	Understanding the critical rate of environmental change for ecosystems, cyanobacteria PLoS ONE, 2021, 16, e0253003.	ı as an example.	1.1	6
2367	Species distribution models for predicting the habitat suitability of Chinese fireâ€bellied orientalis under climate change. Ecology and Evolution, 2021, 11, 10147-10154.	d newt Cynops	0.8	6
2368	Communityâ€level assisted migration for climateâ€appropriate prairie restoration. Rest 2021, 29, e13416.	toration Ecology,	1.4	7
2369	Climate influence on the distribution of the yellow plum (Ximenia Americana L.) in Burk Forests and People, 2021, 4, 100072.	ina Faso. Trees,	0.8	9

#	Article	IF	CITATIONS
2370	Changes in species, functional, and phylogenetic diversity of Aculeata communities along elevational gradients in the Kyushu Central Mountains of the Japanese archipelago. Ecological Research, 2021, 36, 778-787.	0.7	1
2371	Decline of parasitic and habitat-specialist species drives taxonomic, phylogenetic and functional homogenization of sub-alpine bumblebee communities. Oecologia, 2021, 196, 905-917.	0.9	5
2372	Evidence of Range Shifts in Riparian Plant Assemblages in Response to Multidecadal Streamflow Declines. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
2373	Colonizations cause diversification of host preferences: A mechanism explaining increased generalization at range boundaries expanding under climate change. Global Change Biology, 2021, 27, 3505-3518.	4.2	20
2374	Radial growth and non-structural carbohydrate partitioning response to resin tapping of slash pine (Pinus elliottii Engelm. var. elliottii). Journal of Forestry Research, 2022, 33, 423-433.	1.7	9
2376	Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. Plant Ecology, 2021, 222, 933-951.	0.7	6
2377	Effects of climate variation on bird escape distances modulate community responses to global change. Scientific Reports, 2021, 11, 12826.	1.6	8
2378	Optimal reservoir operation – A climate change adaptation strategy for Narmada basin in central India. Journal of Hydrology, 2021, 598, 126238.	2.3	21
2379	Changes in the structure and composition of the â€ [~] Mexical' scrubland bee community along an elevational gradient. PLoS ONE, 2021, 16, e0254072.	1.1	5
2380	Climate and land use changes shift the distribution and dispersal of two umbrella species in the Hindu Kush Himalayan region. Science of the Total Environment, 2021, 777, 146207.	3.9	33
2381	Embedding biodiversity research into climate adaptation policy and practice. Global Change Biology, 2021, 27, 4935-4945.	4.2	2
2382	Comparison of the distribution and phenology of Arctic Mountain plants between the early 20th and 21st centuries. Global Change Biology, 2021, 27, 5070-5083.	4.2	9
2384	Addressing risks to biodiversity arising from a changing climate: The need for ecosystem restoration in the Tana River Basin, Kenya. PLoS ONE, 2021, 16, e0254879.	1.1	10
2385	Longâ€ŧerm resilience in microcrustacean communities despite environmental changes. Ecosphere, 2021, 12, e03676.	1.0	1
2386	Historical floras reflect broad shifts in flowering phenology in response to a warming climate. Ecosphere, 2021, 12, e03683.	1.0	4
2387	Thermal traits predict the winners and losers under climate change: an example from North American ant communities. Ecosphere, 2021, 12, e03645.	1.0	20
2389	Identification of the most preferred topographic elevation characteristics for the wild olive trees in Al-Baha Region, Saudi Arabia. International Journal of Advanced and Applied Sciences, 2021, 8, 115-125.	0.2	0
2390	Effects of egg mass and local climate on morphology of East Pacific leatherback turtle Dermochelys coriacea hatchlings in Costa Rica. Marine Ecology - Progress Series, 2021, 669, 191-200.	0.9	3

#	Article	IF	CITATIONS
2391	Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects. Journal of Thermal Biology, 2021, 99, 103006.	1.1	7
2392	Antioxidant, antimicrobial and antiproliferative activities of fungal metabolite produced by Aspergillus flavus on in vitro study. Food Science and Technology, 0, , .	0.8	1
2393	Potential distribution and habitat suitability of <i>Picea crassifolia</i> with climate change scenarios. Canadian Journal of Forest Research, 2021, 51, 1903-1915.	0.8	3
2394	Genomics of altitudeâ€associated wing shape in two tropical butterflies. Molecular Ecology, 2021, 30, 6387-6402.	2.0	8
2395	Global change on the roof of the world: Vulnerability of Himalayan otter species to land use and climate alterations. Diversity and Distributions, 2022, 28, 1635-1649.	1.9	23
2396	Estimating spatiotemporal availability of transboundary fishes to fisheryâ€independent surveys. Journal of Applied Ecology, 2021, 58, 2146-2157.	1.9	8
2397	Forest Structure and Projections of Avicennia germinans (L.) L. at Three Levels of Perturbation in a Southwestern Gulf of Mexico Mangrove. Forests, 2021, 12, 989.	0.9	2
2398	Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Communications Biology, 2021, 4, 869.	2.0	7
2399	How phenological tracking shapes species and communities in nonâ€stationary environments. Biological Reviews, 2021, 96, 2810-2827.	4.7	12
2400	Potential distributional shifts in North America of allelopathic invasive plant species under climate change models. Plant Diversity, 2022, 44, 11-19.	1.8	21
2401	Longâ€ŧerm persistence of experimental populations beyond a species' natural range. Ecology, 2021, 102, e03432.	1.5	1
2402	Factors influencing distributional shifts and abundance at the range core of a climateâ€sensitive mammal. Global Change Biology, 2021, 27, 4498-4515.	4.2	21
2403	Cushion plants as critical pioneers and engineers in alpine ecosystems across the Tibetan Plateau. Ecology and Evolution, 2021, 11, 11554-11558.	0.8	4
2404	Evolutionary Responses to Warming. Trends in Ecology and Evolution, 2021, 36, 591-600.	4.2	35
2405	Climate Connectivity of European Forests for Species Range Shifts. Forests, 2021, 12, 940.	0.9	0
2406	Variation in Alpine Plant Diversity and Soil Temperatures in Two Mountain Landscapes of South Patagonia. Diversity, 2021, 13, 310.	0.7	2
2407	Invasion history shapes host transcriptomic response to a bodyâ€snatching parasite. Molecular Ecology, 2021, 30, 4321-4337.	2.0	2
2408	Losers can win: Thermoregulatory advantages of regenerated claws of fiddler crab males for establishment in warmer microhabitats, Journal of Thermal Biology, 2021, 99, 102952.	1.1	1

		ATION REPORT		
#	Article	IF	Сітатіс	ONS
2409	Host repertoires and changing insect–plant interactions. Ecological Entomology, 2021, 46, 1241-125	53. 1.1	17	
2410	Climate change is creating a mismatch between protected areas and suitable habitats for frogs and birds in Puerto Rico. Biodiversity and Conservation, 2021, 30, 3509-3528.	1.2	5	
2411	<i>Ophrys sphegodes</i> subsp. <i>helenae</i> (Renz) Soó & D.M.Moore (Orchidacea): a new subspecies for the Bulgarian flora. Acta Scientifica Naturalis, 2021, 8, 55-73.	0.0	0	
2413	Shifts in fineâ€scale distribution and breeding success of boreal waterbirds along gradients in iceâ€out timing and habitat structure. Freshwater Biology, 2021, 66, 2038-2050.	1.2	4	
2414	Why Are Species' Traits Weak Predictors of Range Shifts?. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 47-66.	3.8	34	
2415	Differences in Thermal Tolerance between Parental Species Could Fuel Thermal Adaptation in Hybrid Wood Ants. American Naturalist, 2021, 198, 278-294.	1.0	8	
2416	Big Data in Biodiversity Science: A Framework for Engagement. Technologies, 2021, 9, 60.	3.0	4	
2417	Potential Impacts of Climate Change on the Toxicity of Pesticides towards Earthworms. Journal of Toxicology, 2021, 2021, 1-14.	1.4	12	
2418	Modeling opportunistic exploitation: increased extinction risk when targeting more than one species. Ecological Modelling, 2021, 454, 109611.	1.2	2	
2419	Relict populations of Araucaria angustifolia will be isolated, poorly protected, and unconnected under climate and land-use change in Brazil. Biodiversity and Conservation, 2021, 30, 3665-3684.	1.2	9	
2420	Species and spatial variation in the effects of sea ice on Arctic seabird populations. Diversity and Distributions, 2021, 27, 2204-2217.	1.9	12	
2421	Review on climate change and its effect on wildlife and ecosystem. Open Journal of Environmental Biology, 2021, , 008-014.	0.1	6	
2422	High-latitude EU Habitats Directive species at risk due to climate change and land use. Global Ecology and Conservation, 2021, 28, e01664.	1.0	9	
2423	Resilience of terrestrial and aquatic fauna to historical and future wildfire regimes in western North America. Ecology and Evolution, 2021, 11, 12259-12284.	0.8	27	
2424	Ecological niche models of biotic interactions predict increasing pest risk to olive cultivars with changing climate. Ecosphere, 2021, 12, e03714.	1.0	12	
2425	Individual Nest Site Preferences Do Not Explain Upslope Population Shifts of a Secondary Cavity-Nesting Species. Animals, 2021, 11, 2457.	1.0	0	
2426	Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landscape Ecology, 2021, 36, 3451-3471.	1.9	44	_
2427	Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29	

#	Article	IF	CITATIONS
2428	Aspen seedling establishment, survival, and growth following a high-severity wildfire. Forest Ecology and Management, 2021, 493, 119248.	1.4	7
2430	Functional traits shape tree species distribution in the Himalayas. Journal of Ecology, 2021, 109, 3818-3834.	1.9	19
2431	Buried hurricane legacies: increased nutrient limitation and decreased root biomass in coastal wetlands. Ecosphere, 2021, 12, e03674.	1.0	6
2432	South America climate change revealed through climate indices projected by GCMs and Eta-RCM ensembles. Climate Dynamics, 2022, 58, 459-485.	1.7	33
2433	Predicting the potential global distribution of <i>Ageratina adenophora</i> under current and future climate change scenarios. Ecology and Evolution, 2021, 11, 12092-12113.	0.8	29
2434	The evolutionary genomics of species' responses to climate change. Nature Ecology and Evolution, 2021, 5, 1350-1360.	3.4	63
2435	Climatic displacement exacerbates the negative impact of drought on plant performance and associated arthropod abundance. Ecology, 2021, 102, e03462.	1.5	7
2436	Modeling the climate change impact on the habitat suitability and potential distribution of an economically important hill stream fish, Neolissochilus hexagonolepis, in the Ganges–Brahmaputra basin of Eastern Himalayas. Aquatic Sciences, 2021, 83, 1.	0.6	6
2437	Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment, 2021, 783, 146896.	3.9	60
2438	Diminishing potential for tropical reefs to function as coral diversity strongholds under climate change conditions. Diversity and Distributions, 2021, 27, 2245-2261.	1.9	12
2439	Historical warming consistently decreased size, dispersal and speciation rate of fish. Nature Climate Change, 2021, 11, 787-793.	8.1	20
2440	Plant shade enhances thermoregulation of internal environments in Trinervitermes trinervoides mounds. Journal of Thermal Biology, 2021, 100, 103068.	1.1	3
2441	Predicting range shifts of <i>Davidia involucrata</i> Ball. under future climate change. Ecology and Evolution, 2021, 11, 12779-12789.	0.8	9
2442	Microclimate and resource quality determine resource use in a range-expanding herbivore. Biology Letters, 2021, 17, 20210175.	1.0	10
2443	Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. ELife, 2021, 10, .	2.8	40
2444	Fungal community dynamics across a forest–alpine ecotone. Molecular Ecology, 2021, 30, 4926-4938.	2.0	13
2445	Behavioural and physiological responses to thermal stress in a social spider. Functional Ecology, 2021, 35, 2728-2742.	1.7	11
2446	The potential impacts of climate change on the distribution of key tree species and Cordyceps in Bhutan: Implications for ecological functions and rural livelihoods. Ecological Modelling, 2021, 455, 109650.	1.2	3

#	Article	IF	CITATIONS
2448	Threat patterns and conservation status of endemic vascular flora in Argentina: a quantitative perspective. Phytotaxa, 2021, 520, 21-39.	0.1	6
2449	Commensal microbiota and host metabolic divergence are associated with the adaptation of <i>Diploderma vela</i> to spatially heterogeneous environments. Integrative Zoology, 2022, 17, 346-365.	1.3	11
2450	Neonatives and translocated species: different terms are needed for different species categories in conservation policies. NeoBiota, 0, 68, 101-104.	1.0	3
2451	High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird. Scientific Reports, 2021, 11, 18470.	1.6	0
2452	Combining expertâ€based and computational approaches to design protected river networks under climate change. Diversity and Distributions, 2021, 27, 2428-2440.	1.9	4
2453	Biotechnology for carbon capture and fixation: Critical review and future directions. Journal of Environmental Management, 2021, 293, 112830.	3.8	45
2454	Selection on growth rate and local adaptation drive genomic adaptation during experimental range expansions in the protist <i>Tetrahymena thermophila</i> . Journal of Animal Ecology, 2022, 91, 1088-1103.	1.3	5
2455	Runs of homozygosity in killer whale genomes provide a global record of demographic histories. Molecular Ecology, 2021, 30, 6162-6177.	2.0	39
2456	Potential changes in the distributions of Near Eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the Near and Middle East: Implication for conservation and management. Global Ecology and Conservation, 2021, 29, e01730.	1.0	15
2457	Climateâ€associated decline of body condition in a fossorial salamander. Global Change Biology, 2022, 28, 1725-1739.	4.2	8
2458	Climate and human induced 2000-year vegetation diversity change in Yunnan, southwestern China. Holocene, 0, , 095968362110417.	0.9	3
2459	Distribution changes in páramo plants from the equatorial high Andes in response to increasing temperature and humidity variation since 1880. Alpine Botany, 2021, 131, 201-212.	1.1	11
2460	Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Diversity and Distributions, 2021, 27, 2369-2383.	1.9	19
2461	Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar. Global Change Biology, 2021, 27, 6071-6085.	4.2	15
2462	Will borealization of Arctic tundra herbivore communities be driven by climate warming or vegetation change?. Global Change Biology, 2021, 27, 6568-6577.	4.2	11
2463	Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture and Food Security, 2021, 10, .	1.6	82
2464	Genetic Variations and Differential DNA Methylation to Face Contrasted Climates in Small Ruminants: An Analysis on Traditionally-Managed Sheep and Goats. Frontiers in Genetics, 2021, 12, 745284.	1.1	4
2465	Elevated Temperatures Shorten the Spawning Period of Silver Carp (Hypophthalmichthys molitrix) in a Large Subtropical River in China. Frontiers in Marine Science, 2021, 8, .	1.2	4

#	Article	IF	CITATIONS
2466	Selection of mesophotic habitats by Oculina patagonica in the Eastern Mediterranean Sea following global warming. Scientific Reports, 2021, 11, 18134.	1.6	7
2467	Population responses to harvesting in fluctuating environments. Climate Research, 2021, SUSTAIN, .	0.4	6
2468	Changes in food-web structure and energy flow in kelp forest ecosystems on the south-west coast of South Africa following the invasion of Jasus lalandii. Food Webs, 2021, 28, e00200.	0.5	0
2469	Potential habitat and productivity loss of Populus deltoides industrial forest plantations due to global warming. Forest Ecology and Management, 2021, 496, 119474.	1.4	14
2470	Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land use change, climate change and dispersal limitations. Diversity and Distributions, 2021, 27, 2384-2396.	1.9	14
2471	Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 2021, 64, 101393.	2.3	53
2472	Genomic analysis unveils mechanisms of northward invasion and signatures of plateau adaptation in the Asian house rat. Molecular Ecology, 2021, 30, 6596-6610.	2.0	10
2473	Flywayâ€scale analysis reveals that the timing of migration in wading birds is becoming later. Ecology and Evolution, 2021, 11, 14135-14145.	0.8	1
2474	Measuring Metrics of Climate Change and Its Implication on the Endangered Mammal Conservation in the Leuser Ecosystem. Frontiers in Environmental Science, 2021, 9, .	1.5	4
2475	Response of Biodiversity, Ecosystems, and Ecosystem Services to Climate Change in China: A Review. Ecologies, 2021, 2, 313-331.	0.7	8
2476	Conservation of woody species in China under future climate and land over changes. Journal of Applied Ecology, 2022, 59, 141-152.	1.9	22
2477	Climate exposure shows high risk and few climate refugia for Chilean native vegetation. Science of the Total Environment, 2021, 785, 147399.	3.9	10
2478	Disentangling tropicalization and deborealization in marine ecosystems under climate change. Current Biology, 2021, 31, 4817-4823.e5.	1.8	43
2479	Flora of Ferruginous Outcrops Under Climate Change: A Study in the Cangas of CarajÃ _i s (Eastern) Tj ETQq1 1 0.7	784314 rg 1.7	BT ₄ /Overlock
2480	Forecasting parasite sharing under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200360.	1.8	19
2481	Temperature increase and frost decrease driving upslope elevational range shifts in Alpine grouse and hares. Clobal Change Biology, 2021, 27, 6602-6614.	4.2	18
2482	Habitat availability and climate warming drive changes in the distribution of grassland grasshoppers. Agriculture, Ecosystems and Environment, 2021, 320, 107565.	2.5	19
2483	Driven to the edge: Species distribution modeling of a Clawed Salamander (Hynobiidae:) Tj ETQq1 1 0.784314 rg response to climate change. Ecology and Evolution, 2021, 11, 14669-14688.	BT /Overlo 0.8	ock 10 Tf 50 12

#	Article	IF	CITATIONS
2484	Coping with Environmental Extremes: Population Ecology and Behavioural Adaptation of Erebia pronoe, an Alpine Butterfly Species. Insects, 2021, 12, 896.	1.0	5
2485	Quantitative pollen-based reconstruction of the vegetation diversity in response to the late-Holocene climate change near Karwar, south-west coast of India. Quaternary International, 2021, 599-600, 95-106.	0.7	5
2486	Impact of low temperatures on the immune system of honeybees. Journal of Thermal Biology, 2021, 101, 103082.	1.1	2
2487	Is the current Mediterranean network of marine protected areas resilient to climate change?. Science of the Total Environment, 2021, 792, 148397.	3.9	13
2488	Climate change and elevational range shifts in insects. Current Opinion in Insect Science, 2021, 47, 111-118.	2.2	35
2490	Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya. Scientific Reports, 2021, 11, 19595.	1.6	3
2491	A quantitative approach for the design of robust and cost-effective conservation policies under uncertain climate change: The case of grasshopper conservation in Schleswig-Holstein, Germany. Journal of Environmental Management, 2021, 296, 113201.	3.8	8
2492	Cold water temperatures define the poleward range limits of south American fiddler crabs. Estuarine, Coastal and Shelf Science, 2021, 260, 107494.	0.9	5
2493	Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert. Fungal Ecology, 2021, 53, 101096.	0.7	4
2494	Bat activity patterns relative to temporal and weather effects in a temperate coastal environment. Global Ecology and Conservation, 2021, 30, e01769.	1.0	12
2495	Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 2021, 66, 2025-2035.	4.3	12
2496	The impact of global warming on the niches and pollinator availability of sexually deceptive orchid with a single pollen vector. Science of the Total Environment, 2021, 795, 148850.	3.9	13
2497	A heuristic tool to assess regional impacts of renewable energy infrastructure on conservation areas. Biological Conservation, 2021, 263, 109334.	1.9	3
2498	Quantitative assessment of the impact of climatic factors on phenological changes in the Qilian Mountains, China. Forest Ecology and Management, 2021, 499, 119594.	1.4	17
2499	Impact of climate and land cover changes on the potential distribution of four endemic salamanders in Mexico. Journal for Nature Conservation, 2021, 64, 126066.	0.8	13
2500	Clinal variation in phenological traits and fitness responses to drought across the native range of California poppy. Climate Change Ecology, 2021, 2, 100021.	0.9	4
2501	Effects of spatially heterogeneous warming on gut microbiota, nutrition and gene flow of a heat-sensitive ungulate population. Science of the Total Environment, 2022, 806, 150537.	3.9	3
2502	Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Science of the Total Environment, 2022, 805, 149926.	3.9	5

CITATION REP	ORT

#	Article	IF	CITATIONS
2503	Long-term growth of three sympatric Dryopteris fern species shows the accumulation of climatic effects over 2Âyears because of organ preformation. Climatic Change, 2021, 164, 1.	1.7	0
2504	How bioregional history could shape the future of agriculture. Advances in Ecological Research, 2021, , 149-189.	1.4	6
2505	Low Oxygen Zones Predict Future Condition of Fish Under Climate Change. , 2021, , 121-139.		0
2506	A Science Agenda to Inform Natural Resource Management Decisions in an Era of Ecological Transformation. BioScience, 2022, 72, 71-90.	2.2	24
2507	Effects of climate change and land cover on the distributions of a critical tree family in the Philippines. Scientific Reports, 2021, 11, 276.	1.6	19
2508	Modelling species distributions and environmental suitability highlights risk of plant invasions in western United States. Diversity and Distributions, 2021, 27, 710-728.	1.9	25
2509	Patterns of tree species richness in Southwest China. Environmental Monitoring and Assessment, 2021, 193, 97.	1.3	13
2510	Impact of Past and Future Climate Change on the Potential Distribution of an Endangered Montane Shrub Lonicera oblata and Its Conservation Implications. Forests, 2021, 12, 125.	0.9	22
2511	A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth, 2021, 4, 88-101.	3.6	103
2512	Impact of climate change on biodiversity and shift in major biomes. , 2021, , 33-44.		2
2513	How complete are insect inventories? An assessment of the british butterfly database highlighting the influence of dynamic distribution shifts on sampling completeness. Biodiversity and Conservation, 2021, 30, 889-902.	1.2	10
2515	Sustainable crop production and improvement through bio-prospecting of fungi. , 2021, , 407-428.		5
2516	Climate change and terrestrial biodiversity. , 2021, , 85-114.		3
2517	The Effect of Temperature on Sperm Motility and Viability. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 189-205.	0.1	0
2518	Marine biodiversity and climate change. , 2021, , 445-464.		28
2519	Spatial structure of reproductive success infers mechanisms of ungulate invasion in Nearctic boreal landscapes. Ecology and Evolution, 2021, 11, 900-911.	0.8	12
2520	The Dynamic History of the Upper Forest Line Ecotone in the Northern Andes. , 2012, , 229-246.		6
2521	Climate as an agent of change in forest landscapes. , 2014, , 29-49.		2

#	Article	IF	CITATIONS
2522	Causes of Landscape Pattern. , 2015, , 33-62.		2
2523	Carrion Decomposition. Wildlife Research Monographs, 2019, , 101-124.	0.4	20
2524	Biogeographic Processes Influencing Antarctic and sub-Antarctic Seaweeds. , 2020, , 43-57.		9
2525	Effects of Acute and Chronic Environmental Disturbances on Lizards of Patagonia. Natural and Social Sciences of Patagonia, 2020, , 373-405.	0.2	4
2526	Anthropogenic Effects on Avian Haemosporidians and Their Vectors. , 2020, , 451-485.		10
2527	Bromus Response to Climate and Projected Changes with Climate Change. Springer Series on Environmental Management, 2016, , 257-274.	0.3	52
2528	Environmental Impacts—Terrestrial Ecosystems. Regional Climate Studies, 2016, , 341-372.	1.2	2
2529	Mountain Biodiversity and Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-21.	0.0	8
2530	South African Biomes and Their Changes Over Time. World Regional Geography Book Series, 2019, , 57-69.	0.1	5
2531	Envisioning Science Teacher Preparation for Twenty-First-Century Classrooms for Diversity: Some Tensions. Cultural Studies of Science Education, 2013, , 231-249.	0.2	6
2532	Terrestrial Biodiversity and Climate Change. , 2014, , 355-361.		1
2533	Forest Processes. Advances in Global Change Research, 2014, , 25-54.	1.6	3
2534	Indicators of Pollinator Decline and Pollen Limitation. , 2015, , 103-115.		4
2535	Impact of Climate Change on Communities, Response and Migration of Insects, Nematodes, Vectors and Natural Enemies in Diverse Ecosystems. , 2020, , 69-93.		3
2536	OBSOLETE: Climate Change May Trigger Broad Shifts in North America's Pacific Coastal Rainforests. , 2018, , .		3
2537	Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change. Science of the Total Environment, 2020, 731, 138518.	3.9	31
2541	Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nature Climate Change, 2020, 10, 576-581.	8.1	99
2542	Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 2020, 4, 1044-1059.	3.4	359

#	Article	IF	CITATIONS
2543	Plant pathogen evolution and climate change CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-8.	0.6	20
2544	Denning phenology and reproductive success of wolves in response to climate signals. Environmental Research Letters, 2020, 15, 125001.	2.2	6
2545	Warmer temperatures interact with salinity to weaken physiological facilitation to stress in freshwater fishes. , 2020, 8, coaa107.		5
2546	Local trends in abundance of migratory bats across 20 years. Journal of Mammalogy, 2020, 101, 1542-1547.	0.6	1
2547	Racing against change: understanding dispersal and persistence to improve species' conservation prospects. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202061.	1.2	19
2548	Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20202201.	1.2	37
2565	Characterization of European cities' climate shift – an exploratory study based on climate analogues. International Journal of Climate Change Strategies and Management, 2018, 10, 428-452.	1.5	20
2566	Beyond species counts for assessing, valuing, and conserving biodiversity: response to Wallach etÂal. 2019. Conservation Biology, 2021, 35, 369-372.	2.4	4
2567	Climateâ€driven range shifts reduce persistence of competitors in a perennial plant community. Global Change Biology, 2021, 27, 1890-1903.	4.2	18
2568	Spatial distribution and conservation hotspots of mammals in Canada. Facets, 2020, 5, 692-703.	1.1	4
2570	Regionally Varying Assessments of Upper-Level Tropical Width in Reanalyses and CMIP5 Models Using a Tropopause Break Metric. Journal of Climate, 2020, 33, 5885-5903.	1.2	3
2571	Climate-Induced Migration ofÂNative Tree Populations andÂConsequences for Forest Composition. , 2013, , 307-378.		1
2572	Conservation in the face of climate change: recent developments. F1000Research, 2015, 4, 1158.	0.8	18
2573	Expert opinion on extinction risk and climate change adaptation for biodiversity. Elementa, 2015, 3, .	1.1	13
2574	Farmer perceptions of climate change risk and associated on-farm management strategies in Vermont, northeastern United States. Elementa, 2016, 4, .	1.1	22
2575	Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLoS Biology, 2016, 14, e2001104.	2.6	434
2576	Climate change and disease in plant communities. PLoS Biology, 2020, 18, e3000949.	2.6	87
2577	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQq1 1 0	.784314 rş 1.1	gBT /Overloch

# 2578	ARTICLE Phylogenetic Patterns of Extinction Risk in the Eastern Arc Ecosystems, an African Biodiversity Hotspot. PLoS ONE, 2012, 7, e47082.	IF 1.1	Citations 33
2579	The Speed of Range Shifts in Fragmented Landscapes. PLoS ONE, 2012, 7, e47141.	1.1	71
2580	Biotic Interactions in the Face of Climate Change: A Comparison of Three Modelling Approaches. PLoS ONE, 2012, 7, e51472.	1.1	25
2581	Coverage, Diversity, and Functionality of a High-Latitude Coral Community (Tatsukushi, Shikoku Island,) Tj ETQq1	1.0.7843 1.1	14 rgBT /Ove 43
2582	Insects Overshoot the Expected Upslope Shift Caused by Climate Warming. PLoS ONE, 2013, 8, e65842.	1.1	43
2583	Are Anomalous Invasion Speeds Robust to Demographic Stochasticity?. PLoS ONE, 2013, 8, e67871.	1.1	6
2584	Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude. PLoS ONE, 2014, 9, e82490.	1.1	86
2585	Genetic Structure and Diversity of the Endangered Fir Tree of Lebanon (Abies cilicica Carr.): Implications for Conservation. PLoS ONE, 2014, 9, e90086.	1.1	35
2586	Winter Climate Limits Subantarctic Low Forest Growth and Establishment. PLoS ONE, 2014, 9, e93241.	1.1	11
2587	Indigenous Knowledge and Science Unite to Reveal Spatial and Temporal Dimensions of Distributional Shift in Wildlife of Conservation Concern. PLoS ONE, 2014, 9, e101595.	1.1	50
2588	The Importance of Biologically Relevant Microclimates in Habitat Suitability Assessments. PLoS ONE, 2014, 9, e104648.	1.1	82
2589	Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus) Tj ETQq1 1 0.7	'84314 rg 1.1	BT /Overlock
2590	Expertly Validated Models and Phylogenetically-Controlled Analysis Suggests Responses to Climate Change Are Related to Species Traits in the Order Lagomorpha. PLoS ONE, 2015, 10, e0122267.	1.1	45
2591	Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot. PLoS ONE, 2015, 10, e0122721.	1.1	36
2592	Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. PLoS ONE, 2015, 10, e0122905.	1.1	54
2593	Noah's Ark Conservation Will Not Preserve Threatened Ecological Communities under Climate Change. PLoS ONE, 2015, 10, e0124014.	1.1	10
2594	The Geographic Distribution of a Tropical Montane Bird Is Limited by a Tree: Acorn Woodpeckers (Melanerpes formicivorus) and Colombian Oaks (Quercus humboldtii) in the Northern Andes. PLoS ONE, 2015, 10, e0128675.	1.1	23
2595	Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLoS ONE, 2015, 10, e0130488.	1.1	22

#	Article	IF	CITATIONS
2596	Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata. PLoS ONE, 2015, 10, e0131530.	1.1	52
2597	Recent Invasion of the Symbiont-Bearing Foraminifera Pararotalia into the Eastern Mediterranean Facilitated by the Ongoing Warming Trend. PLoS ONE, 2015, 10, e0132917.	1.1	49
2598	Summer Precipitation Predicts Spatial Distributions of Semiaquatic Mammals. PLoS ONE, 2015, 10, e0135036.	1.1	15
2599	Ground-Dwelling Arthropod Communities of a Sky Island Mountain Range in Southeastern Arizona, USA: Obtaining a Baseline for Assessing the Effects of Climate Change. PLoS ONE, 2015, 10, e0135210.	1.1	17
2600	A Range-Expanding Shrub Species Alters Plant Phenological Response to Experimental Warming. PLoS ONE, 2015, 10, e0139029.	1.1	12
2601	Elevational Ranges of Montane Birds and Deforestation in the Western Andes of Colombia. PLoS ONE, 2015, 10, e0143311.	1.1	12
2602	The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages. PLoS ONE, 2016, 11, e0149220.	1.1	109
2603	Ant Diversity and Distribution along Elevation Gradients in the Australian Wet Tropics: The Importance of Seasonal Moisture Stability. PLoS ONE, 2016, 11, e0153420.	1.1	42
2604	Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands. PLoS ONE, 2016, 11, e0158203.	1.1	22
2605	Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America. PLoS ONE, 2016, 11, e0159184.	1.1	45
2606	Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests. PLoS ONE, 2016, 11, e0159795.	1.1	11
2607	Predicting the Potential Distribution of Polygala tenuifolia Willd. under Climate Change in China. PLoS ONE, 2016, 11, e0163718.	1.1	33
2608	The Effect of Altered Soil Moisture on Hybridization Rate in a Crop-Wild System (Raphanus spp.). PLoS ONE, 2016, 11, e0166802.	1.1	4
2609	Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species. PLoS ONE, 2016, 11, e0169165.	1.1	13
2610	Indirect effect of temperature on fish population abundances through phenological changes. PLoS ONE, 2017, 12, e0175735.	1.1	34
2611	Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion. PLoS ONE, 2017, 12, e0176263.	1.1	17
2612	Simulating the spread of selection-driven genotypes using landscape resistance models for desert bighorn sheep. PLoS ONE, 2017, 12, e0176960.	1.1	22
2613	Life history trade-off moderates model predictions of diversity loss from climate change. PLoS ONE, 2017, 12, e0177778.	1.1	5

#	Article	IF	CITATIONS
2614	Projected climate change threatens pollinators and crop production in Brazil. PLoS ONE, 2017, 12, e0182274.	1.1	69
2615	Microhabitats and canopy cover moderate high summer temperatures in a fragmented Mediterranean landscape. PLoS ONE, 2017, 12, e0183106.	1.1	35
2616	Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami. PLoS ONE, 2017, 12, e0184193.	1.1	12
2617	Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change. PLoS ONE, 2017, 12, e0187714.	1.1	31
2618	Climate change adaptation benefits of potential conservation partnerships. PLoS ONE, 2018, 13, e0191468.	1.1	7
2619	Impacts of thermal fluctuations on heat tolerance and its metabolomic basis in Arabidopsis thaliana, Drosophila melanogaster, and Orchesella cincta. PLoS ONE, 2020, 15, e0237201.	1.1	9
2620	Has the currently warming climate affected populations of the mountain ringlet butterfly, Erebia epiphron (Lepidoptera: Nymphalidae), in low-elevation mountains?. European Journal of Entomology, 0, 113, 295-301.	1.2	20
2621	Sustainable Development and Water Resource Scarcity. Archives of Business Research, 2014, 2, 12-28.	0.0	3
2622	Composition, diversity and foraging guilds of avifauna in a suburban area of southern West Bengal, India. Ring, 2017, 39, 103-120.	0.4	13
2623	MORPHOLOGICAL AND REPRODUCTIVE TRAIT-VARIABILITY OF A FOOD DECEPTIVE ORCHID, CEPHALANTHERA RUBRA ALONG DIFFERENT ALTITUDES. Applied Ecology and Environmental Research, 2019, 17, .	0.2	4
2624	Climate Change and Mountaintop-Removal Mining: A MaxEnt Assessment of the Potential Threat to West Virginian Fishes. Northeastern Naturalist, 2019, 26, 499.	0.1	2
2625	Observations of habitat associations in boreal forest birds and the geographic variation in bird community composition. Wilson Journal of Ornithology, 2019, 131, 12.	0.1	3
2626	Advances in understanding and managing insect pests of forest trees. Burleigh Dodds Series in Agricultural Science, 2019, , 515-584.	0.1	7
2627	Mosquitoes and Culicoides biting midges: vector range and the influence of climate change. OIE Revue Scientifique Et Technique, 2015, 34, 123-137.	0.5	86
2629	Efectos del cambio climático en una especie de lagartija termófila de amplia distribución (Dipsosaurus) Tj ETQ	q0,0,0 rgB 0.4	BT 40verlock
2630	Principal Threats to the Conservation of Running Water Habitats in the Continental Biogeographical Region of Central Europe. Journal of Landscape Ecology(Czech Republic), 2020, 13, 32-61.	0.2	1
2631	The ongoing extinction event: a deep time, eco-evolutionary perspective for mitigation and reconciliation management. WIT Transactions on Ecology and the Environment, 2013, , .	0.0	1
2632	Climate change effects on earthworms - a review. Soil Organisms, 2019, 91, 114-138.	2.2	35

#	Article	IF	CITATIONS
2634	Modeling distribution of Mediterranean beech forests and soil carbon stock under climate change scenarios. Climate Research, 2015, 66, 25-36.	0.4	20
2635	Drivers of treeline shift in different European mountains. Climate Research, 2017, 73, 135-150.	0.4	46
2636	Thermal niche predicts recent changes in range size for bird species. Climate Research, 2017, 73, 207-216.	0.4	30
2637	Impact of climate change on land, water and ecosystem quality in polar and mountainous regions: gaps in our knowledge. Climate Research, 2019, 77, 115-138.	0.4	3
2638	First harvest of Périgord black truffle in the UK as a result of climate change. Climate Research, 2017, 74, 67-70.	0.4	10
2639	Statistical modelling of snow cover dynamics in the Central Himalaya Region, Nepal. Climate Research, 2018, 75, 181-199.	0.4	3
2640	OPINION PIECE Non-traditional data and innovative methods for autumn climate change ecology. Climate Research, 2018, 75, 215-220.	0.4	6
2641	Spatial niche differentiation and coexistence at the edge: co-occurrence distribution patterns in Scurria limpets. Marine Ecology - Progress Series, 2013, 483, 185-198.	0.9	19
2642	Latitudinal variation in larval development of coral reef fishes: implications of a warming ocean. Marine Ecology - Progress Series, 2015, 521, 129-141.	0.9	35
2643	Effects of temperature on embryonic development and paralarval behavior of the neon flying squid Ommastrephes bartramii. Marine Ecology - Progress Series, 2015, 529, 145-158.	0.9	16
2644	Wave-sheltered embayments are recruitment hotspots for tropical fishes on temperate reefs. Marine Ecology - Progress Series, 2016, 546, 197-212.	0.9	14
2645	Current wintering habitat of an endemic seabird of Réunion Island, Barau's petrel Pterodroma baraui, and predicted changes induced by global warming. Marine Ecology - Progress Series, 2016, 550, 235-248.	0.9	18
2646	Effects of climate on the mole crab Emerita brasiliensis on a dissipative beach in Uruguay. Marine Ecology - Progress Series, 2016, 552, 211-222.	0.9	13
2647	Contrasting migratory responses of two closely related seabirds to long-term climate change. Marine Ecology - Progress Series, 2016, 559, 231-242.	0.9	22
2648	Changes in the spatial distribution and anatomy of a range shift for the Atlantic surfclam Spisula solidissima in the Mid-Atlantic Bight and on Georges Bank. Marine Ecology - Progress Series, 2019, 620, 77-97.	0.9	19
2649	Global biogeography of coral recruitment: tropical decline and subtropical increase. Marine Ecology - Progress Series, 2019, 621, 1-17.	0.9	57
2650	Direct and indirect effects of climate change squeeze the local distribution of a habitat-forming seaweed. Marine Ecology - Progress Series, 2019, 626, 43-52.	0.9	15
2651	Global climate changes over time shape the environmental niche distribution of Octopus insularis in the Atlantic Ocean. Marine Ecology - Progress Series, 2020, 652, 111-121.	0.9	12

#	Article	IF	CITATIONS
2652	Climatic Constraints on Laggar Falcon (Falco jugger) Distribution Predicts Multidirectional Range Movements under Future Climate Change Scenarios. Journal of Raptor Research, 2020, 54, 1.	0.2	12
2653	The impact of climate change on birds: a review. Biodiversity Science, 2012, 20, 108-115.	0.2	5
2654	The Need of Species Distribution Models Metadata: Using Species Distribution Model to Address Decision Making on Climate Change. Biodiversity Information Science and Standards, 0, 2, e25478.	0.0	1
2655	Butterfly distribution along altitudinal gradients: temporal changes over a short time period. Nature Conservation, 0, 34, 91-118.	0.0	22
2656	Contrasting effects of altitude on species groups with different traits in a non-fragmented montane temperate forest. Nature Conservation, 0, 37, 99-121.	0.0	6
2657	Alien species and public health impacts in Europe: a literature review. NeoBiota, 0, 27, 1-23.	1.0	53
2658	Range expansion drives the evolution of alternate reproductive strategies in invasive fire ants. NeoBiota, 0, 33, 67-82.	1.0	3
2659	Ultrasonic Acoustic Surveys of State Endangered Northern Flying Squirrels in the Pocono Mountains, Pennsylvania. Journal of Fish and Wildlife Management, 2020, 11, 644-653.	0.4	4
2661	Impact of Climate Change on a Key Agricultural Pest. , 0, , 65-87.		2
2662	Photoperiod and Nitrogen Supply Limit the Scope of Northward Migration and Seed Transfer of Black Spruce in a Future Climate Associated with Doubled Atmospheric CO2 Concentration. American Journal of Plant Sciences, 2015, 06, 189-200.	0.3	10
2663	Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?. Open Journal of Ecology, 2014, 04, 1089-1101.	0.4	6
2669	Home Ranges of Semi-Urban Brown Hares (Lepus europaeus) and Mountain Hares (Lepus timidus) at Northern Latitudes. Annales Zoologici Fennici, 2019, 56, 107.	0.2	12
2670	Assessing Vulnerability to Land Use and Climate Change at Landscape Scales Using Landforms and Physiographic Diversity as Coarse-Filter Targets. , 2016, , 95-115.		3
2671	Trait correlates of distribution trends in the Odonata of Britain and Ireland. PeerJ, 2015, 3, e1410.	0.9	29
2672	Are mountain habitats becoming more suitable for generalist than cold-adapted lizards thermoregulation?. PeerJ, 2016, 4, e2085.	0.9	24
2673	Inter-annual variability influences the eco-evolutionary dynamics of range-shifting. PeerJ, 2014, 1, e228.	0.9	9
2674	Environmental, land cover and land use constraints on the distributional patterns of anurans: <i>Leptodacylus</i> species (Anura, Leptodactylidae) from Dry Chaco. PeerJ, 2016, 4, e2605.	0.9	13
2675	Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. PeerJ, 2017, 5, e2957.	0.9	82

	CITATION		
#	Article	IF	Citations
2676	Lowland extirpation of anuran populations on a tropical mountain. PeerJ, 2017, 5, e4059.	0.9	27
2677	Phylogeographic structure in three North American tent caterpillar species (Lepidoptera:) Tj ETQq1 1 0.784314 e4479.	rgBT /Ove 0.9	rlock 10 Tf 5(16
2678	Is the future already here? The impact of climate change on the distribution of the eastern coral snake (<i>Micrurus fulvius</i>). PeerJ, 2018, 6, e4647.	0.9	17
2679	Planning protected areas network that are relevant today and under future climate change is possible: the case of Atlantic Forest endemic birds. PeerJ, 2018, 6, e4689.	0.9	26
2680	Protected areas' effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. PeerJ, 2018, 6, e5222.	0.9	18
2681	The role of biotic factors during plant establishment in novel communities assessed with an agent-based simulation model. PeerJ, 2018, 6, e5342.	0.9	7
2682	Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ, 2018, 6, e6094.	0.9	15
2683	Potential invasive plant expansion in global ecoregions under climate change. PeerJ, 2019, 7, e6479.	0.9	15
2684	Climatic niche comparison across a cryptic species complex. PeerJ, 2019, 7, e7042.	0.9	10
2685	Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. PeerJ, 2020, 8, e8513.	0.9	18
2690	The Role of Temperate Agroforestry Practices in Supporting Pollinators. , 2021, , 275-304.		1
2691	Mediterranean Pine Forest Distribution: Assessing Vulnerability and Resilience Under Climate Change. Managing Forest Ecosystems, 2021, , 251-277.	0.4	2
2692	Biogeographical Patterns of Local Adaptation and Plasticity of Mediterranean Pines and Their Implications Under Climate Change. Managing Forest Ecosystems, 2021, , 71-82.	0.4	6
2693	Applying assessments of adaptive capacity to inform naturalâ€resource management in a changing climate. Conservation Biology, 2022, 36, .	2.4	16
2694	Climate change in action: local elevational shifts on Iberian amphibians and reptiles. Regional Environmental Change, 2021, 21, 1.	1.4	8
2695	Coldâ€water species deepen to escape warm water temperatures. Global Ecology and Biogeography, 2022, 31, 75-88.	2.7	21
2696	Life-history traits and habitat availability shape genomic diversity in birds: implications for conservation. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211441.	1.2	18
2697	Spatiotemporal Distribution of Herbivorous Insects Along Always-Green Mountaintop Forest Islands. Frontiers in Forests and Global Change, 2021, 4, .	1.0	5

#	Article	IF	CITATIONS
2698	A Meta-Analysis Indicates Positive Correlation between Genetic Diversity and Species Diversity. Biology, 2021, 10, 1089.	1.3	4
2699	Reduced hostâ€plant specialization is associated with the rapid range expansion of a Mediterranean butterfly. Journal of Biogeography, 2021, 48, 3016-3031.	1.4	10
2700	Extreme climate events limit northern range expansion of wild turkeys. Oecologia, 2021, 197, 633-650.	0.9	2
2701	Broadening Predictive Understanding of Species' Range Responses to Climate Change: The Case of Aloidendron dichotomum. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	5
2702	ASSESSMENT OF VARIATION IN THE DETECTION AND PREVALENCE OF BLOOD PARASITES AMONG SYMPATRICALLY BREEDING GEESE IN WESTERN ALASKA, USA. Journal of Wildlife Diseases, 2021, 57, 799-807.	0.3	2
2703	Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Current Biology, 2021, 31, R1342-R1361.	1.8	40
2704	Breathing Artifacts of Urban BioClimatic Layers for Post-Anthropocene Urban Environment. Sustainability, 2021, 13, 11307.	1.6	4
2705	Humanâ€mediated dispersal redefines mangrove biogeography in the Anthropocene. Ecography, 2021, 44, 1845-1855.	2.1	7
2706	Black locust (Robinia pseudoacacia L.) range shifts in China: Application of a global model in climate change futures. Climate Change Ecology, 2021, 2, 100036.	0.9	7
2707	Climate change/global warming/climate emergency versus general climate research: comparative bibliometric trends of publications. Heliyon, 2021, 7, e08219.	1.4	34
2709	Niche evolution and historical biogeography of lady slipper orchids in North America and Eurasia. Journal of Biogeography, 2021, 48, 2727-2741.	1.4	9
2710	Millipedes step up: species extend their upper elevational limit in the Alps in response to climate warming. Insect Conservation and Diversity, 2022, 15, 61-72.	1.4	12
2711	Changes in plant composition and diversity in an alpine heath and meadow after 18Âyears of experimental warming. Alpine Botany, 0, , 1.	1.1	2
2712	Timing outweighs magnitude of rainfall in shaping population dynamics of a small mammal species in steppe grassland. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
2713	Predicting distribution and range dynamics of Trillium govanianum under climate change and growing human footprint for targeted conservation. Plant Ecology, 2022, 223, 53-69.	0.7	7
2714	Combining Remote Sensing and Species Distribution Modelling to Assess Pinus hartwegii Response to Climate Change and Land Use from Izta-Popo National Park, Mexico. Land, 2021, 10, 1037.	1.2	2
2715	Lean Pattern in an Altitude Range Shift of a Tree Species: Abies pinsapo Boiss Forests, 2021, 12, 1451.	0.9	3
2716	Associating Land Cover Changes with Patterns of Incidences of Climate-Sensitive Infections: An Example on Tick-Borne Diseases in the Nordic Area. International Journal of Environmental Research and Public Health, 2021, 18, 10963.	1.2	10

#	Article	IF	CITATIONS
2717	Plant–soil biota interactions explain shifts in plant community composition under global change. Functional Ecology, 2021, 35, 2778-2788.	1.7	8
2718	Warming alters the interaction of two invasive beachgrasses with implications for range shifts and coastal dune functions. Oecologia, 2021, 197, 757-770.	0.9	1
2720	Disentangling the direct, indirect, and combined effects of experimental warming on a plant–insect herbivore interaction. Ecosphere, 2021, 12, e03778.	1.0	9
2721	Lost but Not Forgotten: Identifying Unmapped and Unlisted Environmental Hazards including Abandoned Mines. Sustainability, 2021, 13, 11011.	1.6	1
2722	Projected Impact of Climate Change on Habitat Suitability of a Vulnerable Endemic Vachellia negrii (pic.serm.) kyal. & Boatwr (Fabaceae) in Ethiopia. Sustainability, 2021, 13, 11275.	1.6	4
2723	Does threatened species listing status predict climate change risk? A case study with Australian Persoonia (Proteaceae) species. Global Ecology and Conservation, 2021, 31, e01862.	1.0	2
2724	Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecological Indicators, 2021, 132, 108256.	2.6	63
2725	Convergence of global hydrothermal pattern leads to an increase in vegetation net primary productivity. Ecological Indicators, 2021, 132, 108282.	2.6	7
2726	Climate Change: Wildfire Impact. , 0, , .		0
2728	REGIONAL CLIMATE CHANGE IMPACTS ON WILD ANIMALS' LIVING TERRITORY IN CENTRAL EUROPE. Applied Ecology and Environmental Research, 2012, 10, 107-120.	0.2	3
2729	Réchauffement climatiqueÂ: le Nord n'est pas moins concerné que le Sud. Territoire En Mouvement, 2012, , 21-33.	0.1	1
2730	"Quo vadis, life on earth". Revista Do Instituto De Medicina Tropical De Sao Paulo, 2012, 54, 214-214.	0.5	0
2731	Global Warming and Ecological Degradation. Social-environmental Sustainability Series, 2012, , 1-54.	0.0	0
2733	Ecology of Temperate Forests. , 2013, , 1-21.		0
2734	Responses of Insect Pests to Climate Change: Effects and Interactions of Temperature, CO2, and Soil Quality. , 2013, , 115-130.		0
2737	Analysis for the Regional Characteristic of Climatic Aridity Condition in May. Journal of Korea Water Resources Association, 2013, 46, 613-627.	0.3	2
2738	Natural Heritage at Risk by Climate Change. Advances in Global Change Research, 2014, , 3-13.	1.6	0
2740	Global Perils that Reduce the Earth's Capacity to Sustain and Safeguard Growing Populations—Tactics to Mitigate or Suppress Them. SpringerBriefs in Environmental Science, 2015, , 85-119.	0.3	1

#	Article	IF	CITATIONS
2743	BiogeografÃa predictiva: técnicas de modelamiento de distribución de especies y su aplicación en el impacto del cambio climático. Espacio Y Desarrollo, 2015, , .	0.0	1
2745	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2015, , .		0
2748	Reply to Global high-altitude limits for amphibians by Tracie A. Seimon and Anton Seimon (2015). Journal of Threatened Taxa, 2015, 7, 7851-7852.	0.1	0
2749	Managing Central Hardwood Forests Within the Context of the Historic Range of Variability (HRV): Challenges and Opportunities. Managing Forest Ecosystems, 2016, , 371-391.	0.4	0
2751	Impact of Climate Change on a Key Agricultural Pest. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 232-254.	0.3	0
2753	Impact of Timber Harvesting on Vegetation in the Ural Mountains. International Journal of Bio-resource and Stress Management, 2017, 8, 167-174.	0.1	1
2754	Florida Inlets and Intertidal Biofouling Communities. Marine Technology Society Journal, 2017, 51, 7-21.	0.3	3
2756	Species Ranges. , 2018, , .		0
2758	Terrestrische und semiterrestrische Ökosysteme. , 2018, , 109-145.		0
2767	Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas, 2018, 19, 1960-1977.	0.2	1
2768	The recent expansion of Fox Sparrow (<i>Passerella iliaca iliaca</i>) breeding range into the northeastern United States. PeerJ, 2018, 6, e6087.	0.9	2
2769	Impacto de mudanças climáticas sobre a distribuição geográfica potencial de llex paraguariensis. Rodriguesia, 2018, 69, 2069-2079.	0.9	7
2770	Weather and Climate Impacts on Browsing and Grazing Ungulates. Ecological Studies, 2019, , 197-213.	0.4	2
2771	CO2 Sequestration: Processes and Methodologies. , 2019, , 619-668.		2
2773	Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests. Australian Journal of Zoology, 2019, 67, 231.	0.6	4
2774	Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 117-141.	0.3	0
2775	Avian Biodiversity of Newly Established Bunjosa Game Reserve, District Poonch, Azad Jammu and Kashmir, Pakistan: Implications for Conservation. International Journal of Environmental Sciences & Natural Resources, 2019, 16, .	0.3	0
2776	Physiologische Anpassung und Migration als Antworten auf den Klimawandel. , 2019, , 37-41.		0

		CITATION RE	PORT	
#	Article		IF	Citations
2780	Birnam Woods, Moving Closer, Shadows Our Work. Ecological Restoration, 2019, 37,	1-2.	0.5	0
2784	The history of Aplomado Falcon Falco femoralis subspecies diagnoses. Bulletin of the B Ornithologists' Club, 2019, 139, 111.	ritish	0.1	3
2790	The Principal Threats to the Standing Water Habitats in the Continental Biogeographic Central Europe. Journal of Landscape Ecology(Czech Republic), 2019, 12, 116-139.	al Region of	0.2	1
2798	Diversity and distribution of Orthoptera communities of two adjacent mountains in no the Carpathians. Travaux Du Museum National D'Histoire Naturelle Grigore Antipa, 201	rthern part of 19, 62, 191-211.	0.1	0
2800	Moving up and over: redistribution of plants in alpine, Arctic, and Antarctic ecosystems change. Arctic, Antarctic, and Alpine Research, 2020, 52, 651-665.	s under global	0.4	19
2801	Response of Asiatic Ibex (Capra sibirica) under Climate Change Scenarios. Journal of Re Ecology, 2020, 11, 27.	esources and	0.2	1
2802	DistribuciÃ ³ n potencial de puya raimondii harms en futuros escenarios del cambio clim of High Andean Research, 2020, 22, 170-181.	Ăįtico. Journal	0.1	2
2803	Do empirical observations support commonly-held climate change range shift hypothe systematic review protocol. Environmental Evidence, 2020, 9, .	ses? A	1.1	4
2804	Biodiversity: Climate Change. , 2020, , 23-33.			0
2807	A technique for detecting and attributing changes in species distributions to climate cl time. Chinese Journal of Population Resources and Environment, 2020, 18, 110-126.	hange over	1.0	0
2810	Causes and consequences of deer browsing on red trillium (<i>Trillium erectum</i>) ale elevational gradient. Botany, 2020, 98, 469-478.	ong an	0.5	2
2812	Integrating functional connectivity in designing networks of protected areas under clir caribou case-study. PLoS ONE, 2020, 15, e0238821.	nate change: A	1.1	6
2813	Climateâ€driven, but dynamic and complex? A reconciliation of competing hypotheses distributions. Ecology Letters, 2022, 25, 38-51.	for species'	3.0	20
2814	Towards an understanding of the latitudinal patterns in thermal tolerance and vulneral woody plants under climate warming. Ecography, 2021, 44, 1797-1807.	bility of	2.1	6
2815	Challenges and opportunities of species distribution modelling of terrestrial arthropod Diversity and Distributions, 2021, 27, 2596-2614.	predators.	1.9	15
2816	Threatened salmon rely on a rare life history strategy in a warming landscape. Nature C 2021, 11, 982-988.	limate Change,	8.1	23
2817	Trophic position, altitudinal distribution, and water dependence as determining factors concentrations in tropical montane anurans. Science of the Total Environment, 2022, 8		3.9	1
2818	Distributional modelling, megafires and data gaps highlight probable underestimation change risk for two lizards from Australia's montane rainforests. Austral Ecology, C		0.7	2

ARTICLE IF CITATIONS Emerging palaeoecological frameworks for elucidating plant dynamics in response to fire and other 2819 2.7 13 disturbance. Global Ecology and Biogeography, 2022, 31, 138-154. Northeastern High-Elevation Areas: Ecological Values and Conservation Priorities. Northeastern 2820 0.1 Naturalist, 2021, 28, . Plant sedimentary DNA as a proxy for vegetation reconstruction in eastern and northern Asia. 2821 2.6 4 Ecological Indicators, 2021, 132, 108303. Climate change and Brazil's coastal zone: socio-environmental vulnerabilities and action strategies. Sustentabilidade Em Debate, 2020, 11, 405-444. Mor Çiçekli OrmangĂ¼lĂ¼nĂ¼n (Rhododendron ponticum L.) GĂ¼nĂ¼mĂ¼z ve Gelecekteki İklim KoÅŸullarına Göre 2825 YayılıÅŸ Alanlarının Modellenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 0, , . Electronic Nose Testing for Confined Space Application Utilizes Principal Component Analysis and Support Vector Machine. IOP Conference Series: Materials Science and Engineering, 0, 932, 012072. The effect of proximity to protected areas on community adaptation to environmental change. Journal 2827 3.8 2 of Environmental Management, 2022, 301, 113805.

CITATION REPORT

4

2020	Responses and modeling of southern pine beene and its nost pines to climate change. , 2022, , 55-65.		2	
2829	A Preliminary Study on Tree-Top Detection and Deep Learning Classification Using Drone Image Mosaics of Japanese Mixed Forests. Lecture Notes in Computer Science, 2020, , 64-86.	1.0	0	

2830	Imperiled by Climate Change: Clobal Biodiversity Rich-Spots. , 2021, , .		2
2832	Current Evidence and Future Projections: a Comparative Analysis of the Impacts of Climate Change on Critical Climate-Sensitive Areas of Papua New Guinea. Sains Tanah, 2019, 16, 229.	0.2	2

2833	IMPACT OF CLIMATE CHANGE ON THE GEOGRAPHICAL DISTRIBUTION OF A CLOUD FOREST INDICATOR TREE SPECIES. Revista Arvore, 0, 44, .	0.5	2
2834	Persistence of the broad-toothed rat (Mastacomys fuscus) across Victoria is correlated with climate and elevation. Wildlife Research, 2020, 47, 267.	0.7	4
2835	Biodiversity Conservation and Climate Change. , 2020, , 125-170.		0

2837 Multiple Perspectives on Biodiversity Conservation: From Concept to Heated Debate. , 2020, , 15-32.

2838	Variations in species composition and forest structure among fragments along altitudinal gradients of Bagale forest reserve, Adamawa state, Nigeria. International Journal of Forestry, Ecology and Environment, 2020, 1, 35-47.	0.3	0
2844	A 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger climate classification and bioclimatic variables. Earth System Science Data, 2021, 13, 5087-5114.	3.7	18
2845	Speciation of a subterranean amphipod on the glacier margins in South Eastern Alps, Europe. Journal of Biogeography, 2022, 49, 38-50.	1.4	9

#	Article	IF	Citations
2846	Interspecific Variance of Suitable Habitat Changes for Four Alpine Rhododendron Species under Climate Change: Implications for Their Reintroductions. Forests, 2021, 12, 1520.	0.9	10
2847	How does a wetland plant respond to increasing temperature along a latitudinal gradient?. Ecology and Evolution, 2021, 11, 16228-16238.	0.8	6
2848	Chemical seed priming alleviates salinity stress and improves <i>Sulla carnosa</i> germination in the saline depression of Tunisia. Plant Direct, 2021, 5, e357.	0.8	13
2849	The World's Mountains in the Anthropocene. Sustainable Development Goals Series, 2022, , 1-144.	0.2	3
2850	Convergence of life history and physiology during range expansion toward the phenotype of the native sister species. Science of the Total Environment, 2022, 816, 151530.	3.9	2
2851	Predators balance consequences of climateâ€changeâ€induced habitat shifts for rangeâ€shifting and resident species. Journal of Animal Ecology, 2022, 91, 334-344.	1.3	2
2852	Dynamic analysis of mixed forest species under climate change scenarios. Ecological Indicators, 2021, 133, 108350.	2.6	4
2853	Geographic Variation in the Acoustic Signals of Dendropsophus nanus (Boulenger 1889) (Anura:) Tj ETQq1 1 0.76	84314 rgB 0.2	T <u>{</u> Overlock
2858	Microclimate and Summer Surface Activity in the American Pika (Ochotona princeps). Western North American Naturalist, 2020, 80, .	0.2	5
2861	CLINF: Climate-Change Effects on the Epidemiology of Infectious Diseases, and the Associated Impacts on Northern Societies. Springer Polar Sciences, 2021, , 49-70.	0.0	2
2862	Mountain Biodiversity and Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2021, , 640-660.	0.0	2
2863	Synergies Between Climate Change, Biodiversity, Ecosystem Function and Services, Indirect Drivers of Change and Human Well-Being in Forests. , 2021, , 263-320.		2
2864	The presence of a foreign microbial community promotes plant growth and reduces filtering of root fungi in the arctic-alpine plant <i>Silene acaulis</i> . Plant Ecology and Diversity, 2020, 13, 377-390.	1.0	2
2880	Differences in growth pattern and response to climate warming between Larix olgensis and Pinus koraiensis in Northeast China are related to their distinctions in xylem hydraulics. Agricultural and Forest Meteorology, 2022, 312, 108724.	1.9	16
2881	Life cycle assessment for microalgae-derived biofuels. , 2022, , 523-545.		0
2882	Climate Change Impacts on Biodiversity in Arid and Semi-Arid Areas. , 2022, , 578-602.		1
2883	Limestone quarries are the most important refuge for a formerly widespread grassland butterfly. Insect Conservation and Diversity, 2022, 15, 200-212.	1.4	5
2884	A <i>de novo</i> genome assembly and annotation of the southern flying squirrel (<i>Glaucomys) Tj ETQq1 1 0.75</i>	84314 rgB	T <u>J</u> Overlock

#	Article	IF	CITATIONS
2885	Climate and land-use changes reduce the benefits of terrestrial protected areas. Nature Climate Change, 2021, 11, 1105-1110.	8.1	35
2886	Forest fires and climate-induced tree range shifts in the western US. Nature Communications, 2021, 12, 6583.	5.8	13
2887	MIXED EVIDENCE FOR NICHE CONSERVATISM IN MOUNTAIN BEAVER (APLODONTIA RUFA) LINEAGES. , 2021, 102, .		0
2888	Landscape genomics of the streamside salamander: Implications for species management in the face of environmental change. Evolutionary Applications, 2022, 15, 220-236.	1.5	4
2889	Potential range shifts and climatic refugia of rupicolous reptiles in a biodiversity hotspot of South Africa. Environmental Conservation, 2021, 48, 264-273.	0.7	3
2890	Incorporating Geographical Scale and Multiple Environmental Factors to Delineate the Breeding Distribution of Sea Turtles. Drones, 2021, 5, 142.	2.7	4
2892	Land use and life history constrain adaptive genetic variation and reduce the capacity for climate change adaptation in turtles. BMC Genomics, 2021, 22, 837.	1.2	2
2893	Genomic and common garden approaches yield complementary results for quantifying environmental drivers of local adaptation in rubber rabbitbrush, a foundational Great Basin shrub. Evolutionary Applications, 2021, 14, 2881-2900.	1.5	10
2894	Predicting the impacts of climate change on the potential distribution pattern of endangered Himalayan natives (Ulmus wallichiana and U. villosa) in Pakistan. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
2895	Changes in wetland habitat use by waterbirds wintering in Czechia are related to diet and distribution changes. Freshwater Biology, 2022, 67, 309-324.	1.2	3
2896	Effects of Herbal Adaptogen Feed-Additive on Growth Performance, Carcass Parameters, and Muscle Amino Acid Profile in Heat-Stressed Modern Broilers. Frontiers in Physiology, 2021, 12, 784952.	1.3	11
2897	Impacts of Warming on Reciprocal Subsidies Between Aquatic and Terrestrial Ecosystems. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
2898	Simulation of potential suitable distribution of Alnus cremastogyne Burk. In China under climate change scenarios. Ecological Indicators, 2021, 133, 108396.	2.6	19
2899	Warming Threatens to Propel the Expansion of the Exotic Seagrass Halophila stipulacea. Frontiers in Marine Science, 2021, 8, .	1.2	13
2901	Indications for rapid evolution of trait means and thermal plasticity in rangeâ€expanding populations of a butterfly. Journal of Evolutionary Biology, 2022, 35, 124-133.	0.8	4
2903	Southern Hemisphere Coastal Ecosystems are Biologically Connected by Frequent, Long-Distance Rafting Events. SSRN Electronic Journal, 0, , .	0.4	0
2904	Invasive intraguild predators: Evidence of their effects, not assumptions. Ecological Entomology, 2022, 47, 249-252.	1.1	5
2905	Of mutualism and migration: will interactions with novel ericoid mycorrhizal communities help or hinder northward Rhododendron range shifts?. Oecologia, 2022, , 1.	0.9	5

#	Article	IF	CITATIONS
2907	Population decline in California spotted owls near their southern range boundary. Journal of Wildlife Management, 2022, 86, .	0.7	9
2908	Ecology and extent of freshwater browning - What we know and what should be studied next in the context of global change. Science of the Total Environment, 2022, 812, 152420.	3.9	31
2909	Predicting the in-between: Present and future habitat suitability of an intertidal euryhaline fish. Ecological Informatics, 2022, 68, 101523.	2.3	2
2910	Predicting current and future distributions of Mentha pulegium L. in Tunisia under climate change conditions, using the MaxEnt model. Ecological Informatics, 2022, 68, 101533.	2.3	27
2911	Local and landscape characteristics shape amphibian communities across production landscapes in the Western Ghats. Ecological Solutions and Evidence, 2021, 2, .	0.8	4
2913	Divergent occurrences of juvenile and adult trees are explained by both environmental change and ontogenetic effects. Ecography, 2022, 2022, .	2.1	7
2914	Climate warming may weaken stabilizing mechanisms in old forests. Ecological Monographs, 2022, 92, .	2.4	6
2915	The direct and habitat-mediated influence of climate on the biogeography of boreal caribou in Canada. Climate Change Ecology, 2022, 3, 100052.	0.9	5
2916	Maxent Modelling Predicts a Shift in Suitable Habitats of a Subtropical Evergreen Tree (Cyclobalanopsis glauca (Thunberg) Oersted) under Climate Change Scenarios in China. Forests, 2022, 13, 126.	0.9	18
2917	Environmental patterns of adaptation after range expansion in Leontodon longirostris : the effect of phenological events on fitnessâ€related traits. American Journal of Botany, 2022, , .	0.8	4
2918	The Current and Future Potential Geographical Distribution and Evolution Process of Catalpa bungei in China. Forests, 2022, 13, 96.	0.9	8
2919	Cryoprotective Response as Part of the Adaptive Strategy of the Red Palm Weevil, Rhynchophorus ferrugineus, against Low Temperatures. Insects, 2022, 13, 134.	1.0	5
2920	Modeling the Potential Distribution of Two Species of Shrews (Chodsigoa hypsibia and Anourosorex) Tj ETQq0 0	0 rgBT /Ov 0:7	verjock 10 Tf
2923	Identifying and prioritising climate change adaptation actions for greater one-horned rhinoceros (<i>Rhinoceros unicornis</i>) conservation in Nepal. PeerJ, 2022, 10, e12795.	0.9	0
2924	Montane Temperate-Boreal Forests Retain the Leaf Economic Spectrum Despite Intraspecific Variability. Frontiers in Forests and Global Change, 2022, 4, .	1.0	5
2925	Using camera traps to estimate density of snowshoe hare (<i>Lepus americanus</i>): a keystone boreal forest herbivore. Journal of Mammalogy, 2022, 103, 693-710.	0.6	2
2926	Complex demographic responses to contrasting climate drivers lead to divergent population trends across the range of a threatened alpine plant. Global Ecology and Conservation, 2022, 33, e01954.	1.0	3
2927	Marula (<i>Sclerocarya birrea</i> subsp. <i>caffra</i> , Anacardiaceae) thrives under climate change in sub‣aharan Africa. African Journal of Ecology, 2022, 60, 736-749.	0.4	3

#	Article	IF	CITATIONS
2928	Where should China practice forestry in a warming world?. Global Change Biology, 2022, 28, 2461-2475.	4.2	69
2929	The Native Bees of Lolland (Denmark) Revisited after 100 Years: The Demise of the Specialists. Insects, 2022, 13, 153.	1.0	1
2930	Climate Changes and Their Elevational Patterns in the Mountains of the World. Reviews of Geophysics, 2022, 60, .	9.0	140
2932	Short-lived species move uphill faster under climate change. Oecologia, 2022, 198, 877-888.	0.9	18
2933	Intergrading reef communities across discrete seaweed habitats in a temperate–tropical transition zone: Lessons for species reshuffling in a warming ocean. Ecology and Evolution, 2022, 12, e8538.	0.8	3
2934	Variable vulnerability to climate change in New Zealand lizards. Journal of Biogeography, 2022, 49, 431-442.	1.4	5
2935	Heat-related massive chick mortality in an Imperial Cormorant Leucocarbo atriceps colony from Patagonia, Argentina. Polar Biology, 2022, 45, 275-284.	0.5	11
2936	Assessment of Amphibians Vulnerability to Climate Change in China. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
2937	Evolution of Transient Receptor Potential (TRP) Ion Channels in Antarctic Fishes (Cryonotothenioidea) and Identification of Putative Thermosensors. Genome Biology and Evolution, 2022, 14, .	1.1	8
2938	Climate change leads to range contraction for Japanese population of the Oriental Honey-Buzzards: Implications for future conservation strategies. Global Ecology and Conservation, 2022, 34, e02044.	1.0	1
2939	Where will species on the move go? Insights from climate connectivity modelling across European terrestrial habitats. Journal for Nature Conservation, 2022, 66, 126139.	0.8	6
2940	Scenario modelling of biomass usage in the Australian electricity grid. Resources, Conservation and Recycling, 2022, 180, 106198.	5.3	4
2941	Habitat expansion in response to sea-level rise by the fiddler crab <i>Minuca pugnax</i> (Smith, 1870) (Decapoda: Brachyura: Ocypodidae) in southern New England salt marshes. Journal of Crustacean Biology, 2022, 42, .	0.3	5
2942	Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts. Scientific Reports, 2022, 12, 2348.	1.6	11
2945	Threatened skates exhibit abiotic niche stability despite climate change in the southwestern Atlantic Ocean. Canadian Journal of Zoology, 2022, 100, 273-279.	0.4	0
2946	Vegetation Ecology of Debris-Covered Glaciers (DCGs)—Site Conditions, Vegetation Patterns and Implications for DCGs Serving as Quaternary Cold- and Warm-Stage Plant Refugia. Diversity, 2022, 14, 114.	0.7	5
2947	Climate change threatens native potential agroforestry plant species in Brazil. Scientific Reports, 2022, 12, 2267.	1.6	18
2948	Temporal escape - adaptation to eutrophication by Skeletonema marinoi. FEMS Microbiology Letters, 2022, , .	0.7	1

#	Article	IF	CITATIONS
2949	Effects of climate change on richness distribution patterns of threatened conifers endemic to China. Ecological Indicators, 2022, 136, 108594.	2.6	12
2950	Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
2951	Predicted declines in suitable habitat for greater oneâ€horned rhinoceros (<i>Rhinoceros) Tj ETQq0 0 0 rgBT /Ov 18288-18304.</i>	erlock 10 0.8	Tf 50 667 Td 18
2952	Climate Change and Its Impact on Forest of Indian Himalayan Region: A Review. Springer Climate, 2022, , 207-222.	0.3	7
2953	Sustaining ecosystem services. , 2022, , 753-797.		0
2954	Responses to abiotic conditions. , 2022, , 29-91.		0
2956	Climate Change is not the Biggest Threat to Freshwater Biodiversity. , 2022, , 623-632.		2
2957	Will Climate Change Affect Survival of Tropical and Subtropical Species? Predictions from Bulwer's Petrel Populations Across the Ne Atlantic Ocean. SSRN Electronic Journal, 0, , .	0.4	0
2958	Stem functional traits vary among co-occurring tree species and forest vulnerability to drought. Australian Journal of Botany, 2022, , .	0.3	0
2959	The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environmental Sciences: Processes and Impacts, 2022, 24, 1544-1576.	1.7	33
2960	Decreasing potential suitable habitat of bumble bees in the Great Himalayan National Park Conservation area. Oriental Insects, 2023, 57, 36-53.	0.1	4
2961	The shadow model: how and why small choices in spatially explicit species distribution models affect predictions. PeerJ, 2022, 10, e12783.	0.9	10
2962	Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest <i>Drosophila</i> and European butterflies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210017.	1.8	6
2963	Range expansion decreases the reproductive fitness of Gentiana officinalis (Gentianaceae). Scientific Reports, 2022, 12, 2461.	1.6	7
2964	Conservation biogeography of highâ€altitude longhorn beetles under climate change. Insect Conservation and Diversity, 2022, 15, 429-444.	1.4	5
2965	Global impacts of climate change on avian functional diversity. Ecology Letters, 2022, 25, 673-685.	3.0	26
2966	Hammerhead worms everywhere? Modelling the invasion of bipaliin flatworms in a changing climate. Diversity and Distributions, 2022, 28, 844-858.	1.9	7
2967	Longer daylengths associated with poleward range shifts accelerate aphid extinction by parasitoid wasps. Ecological Entomology, 0, , .	1.1	4

#	Article	IF	CITATIONS
2968	Species distribution models and a 60â€yearâ€old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography, 2022, 49, 537-550.	1.4	10
2969	MaxEnt Modeling to Predict the Current and Future Distribution of Pomatosace filicula under Climate Change Scenarios on the Qinghai–Tibet Plateau. Plants, 2022, 11, 670.	1.6	15
2970	A review on trade-offs at the warm and cold ends of geographical distributions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210022.	1.8	29
2972	Combining the Effects of Global Warming, Land Use Change and Dispersal Limitations to Predict the Future Distributions of East Asian Cerris Oaks (Quercus Section Cerris, Fagaceae) in China. Forests, 2022, 13, 367.	0.9	2
2973	Shifts in climatic realised niches of Iberian species. Oikos, 2022, 2022, .	1.2	7
2974	Factors influencing range contraction of a rodent herbivore in a steppe grassland over the past decades. Ecology and Evolution, 2022, 12, e8546.	0.8	10
2975	Snow depth drives habitat selection by overwintering birds in builtâ€up areas, farmlands and forests. Journal of Biogeography, 2022, 49, 630-639.	1.4	6
2976	Taming the temperature: Sagebrush songbirds modulate microclimate via nest-site selection. Auk, 2022, 139, .	0.7	3
2977	Intraspecific trait variation in alpine plants relates to their elevational distribution. Journal of Ecology, 2022, 110, 860-875.	1.9	21
2978	The role of climate in past forest loss in an ecologically important region of South Asia. Global Change Biology, 2022, 28, 3883-3901.	4.2	10
2979	Ecotypic differentiation in populations of Brazilian coast: recognizing adaptation to temperature in Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). Journal of Applied Phycology, 2022, 34, 2793-2805.	1.5	3
2980	Dynamic species interactions associated with the range-shifting marine gastropod Mexacanthina lugubris. Oecologia, 2022, 198, 749-761.	0.9	4
2981	Differential Adaptive Potential and Vulnerability to Climate-Driven Habitat Loss in Brazilian Mangroves. Frontiers in Conservation Science, 2022, 3, .	0.9	0
2982	Linking ecological niche models and common garden experiments to predict phenotypic differentiation in stressful environments: Assessing the adaptive value of marginal populations in an alpine plant. Global Change Biology, 2022, 28, 4143-4162.	4.2	9
2983	â€~Fly to a Safer North': Distributional Shifts of the Orchid Ophrys insectifera L. Due to Climate Change. Biology, 2022, 11, 497.	1.3	3
2984	Independent variation of avian sensitivity to climate change and traitâ€based adaptive capacity along a tropical elevational gradient. Diversity and Distributions, 0, , .	1.9	1
2985	Changes in precipitation patterns can destabilize plant species coexistence via changes in plant–soil feedback. Nature Ecology and Evolution, 2022, 6, 546-554.	3.4	8
2986	Glacial Expansion or Interglacial Expansion? Contrasting Demographic Models of Four Cold-Adapted Fir Species in North America and East Asia. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	1

#	Article	IF	CITATIONS
2987	Predicted changes in the functional structure of earthworm assemblages in France driven by climate change. Diversity and Distributions, 2022, 28, 1050-1066.	1.9	7
2989	Cool microrefugia accumulate and conserve biodiversity under climate change. Global Change Biology, 2022, 28, 3222-3235.	4.2	9
2990	Evaluating compositional changes in the avian communities of eastern North America using temperature and precipitation indices. Journal of Biogeography, 2022, 49, 739-752.	1.4	3
2991	A framework for climate change adaptation indicators for the natural environment. Ecological Indicators, 2022, 136, 108690.	2.6	18
2992	Understanding the Limiting Climatic Factors on the Suitable Habitat of Chinese Alfalfa. Forests, 2022, 13, 482.	0.9	5
2993	Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations. Heredity, 2022, 128, 364-376.	1.2	2
2994	The response of ants to climate change. Global Change Biology, 2022, 28, 3188-3205.	4.2	39
2995	Climate change effects on the global distribution and range shifts of citrus longhorned beetle <i>Anoplophora chinensis</i> . Journal of Applied Entomology, 2022, 146, 473-485.	0.8	3
2996	Coastal carbon processing rates increase with mangrove cover following a hurricane in Texas, <scp>USA</scp> . Ecosphere, 2022, 13, .	1.0	1
2997	Bibliometric Analysis of the Structure and Evolution of Research on Assisted Migration. Current Forestry Reports, 2022, 8, 199-213.	3.4	12
2998	Altitude and temperature drive anuran community assembly in a Neotropical mountain region. Biotropica, 2022, 54, 607-618.	0.8	3
2999	Climate and Species Traits Drive Changes in Holocene Forest Composition Along an Elevation Gradient in Pacific Canada. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	3
3000	Predicting the potential suitable habitats of forest spices <i>Piper capense</i> and <i>Aframomum corrorima</i> under climate change in Ethiopia. Journal of Tropical Ecology, 2022, 38, 219-232.	0.5	3
3001	Understanding transboundary stocks' availability by combining multiple fisheries-independent surveys and oceanographic conditions in spatiotemporal models. ICES Journal of Marine Science, 2022, 79, 1063-1074.	1.2	17
3002	Landscape Genomics Provides Evidence of Ecotypic Adaptation and a Barrier to Gene Flow at Treeline for the Arctic Foundation Species Eriophorum vaginatum. Frontiers in Plant Science, 2022, 13, 860439.	1.7	0
3003	Rapid radiation of Southern Ocean shags in response to receding sea ice. Journal of Biogeography, 2022, 49, 942-953.	1.4	3
3004	Molecular Phylogenetics and Comparative Examination of Voucher Museums Reveal Two New Species of Gymnophthalmid Lizards (Squamata, Gymnophthalmidae) from the Peruvian Andes, with Comments on Proctoporus guentheri (Boettger, 1891). Diversity, 2022, 14, 215.	0.7	3
3005	Alpine plants are on the move: Quantifying distribution shifts of Australian alpine plants through time. Diversity and Distributions, 2022, 28, 943-955.	1.9	15

#	Article	IF	CITATIONS
3006	Large fires or small fires, will they differ in affecting shifts in species composition and distributions under climate change?. Forest Ecology and Management, 2022, 510, 120131.	1.4	4
3007	Dispersal abilities favor commensalism in animal-plant interactions under climate change. Science of the Total Environment, 2022, 835, 155157.	3.9	12
3008	A river-based approach in reconstructing connectivity among protected areas: Insights and challenges from the Balkan region. Journal for Nature Conservation, 2022, 67, 126182.	0.8	2
3010	Potential geographic distribution of relict plant Pteroceltis tatarinowii in China under climate change scenarios. PLoS ONE, 2022, 17, e0266133.	1.1	6
3011	Anthropocene refugia in Patagonia: A macrogenetic approach to safeguarding the biodiversity of flowering plants. Biological Conservation, 2022, 268, 109492.	1.9	8
3012	Predicted alteration of vertebrate communities in response to climateâ€induced elevational shifts. Diversity and Distributions, 2022, 28, 1180-1190.	1.9	6
3013	Sympatry leads to reduced body condition in chickadees that occasionally hybridize. Ecology and Evolution, 2022, 12, e8756.	0.8	4
3014	Adaptation to climate change through seasonal migration revealed by climatic versus demographic niche models. Clobal Change Biology, 2022, 28, 4260-4275.	4.2	2
3015	Habitat shifts of Jatropha curcas L. in the Asia-Pacific region under climate change scenarios. Energy, 2022, 251, 123885.	4.5	11
3016	Sexual reproduction is lightâ€limited as marsh grasses colonize maritime forest. American Journal of Botany, 2022, , .	0.8	0
3017	Using community science data to help identify threatened species occurrences outside of known ranges. Biological Conservation, 2022, 268, 109523.	1.9	9
3018	A critical review of successional dynamics in boreal forests of North America. Environmental Reviews, 2022, 30, 563-594.	2.1	6
3019	Tropical ant community responses to experimental soil warming. Biology Letters, 2022, 18, 20210518.	1.0	4
3020	Elevational and local climate variability predicts thermal breadth of mountain tropical tadpoles. Ecography, 2022, 2022, .	2.1	13
3021	Prediction of three-dimensional shift in the distribution of largemouth bass (Micropterus salmoides) under climate change in South Korea. Ecological Indicators, 2022, 137, 108731.	2.6	10
3022	Alpine Treeline Dynamics and the Special Exposure Effect in the Hengduan Mountains. Frontiers in Plant Science, 2022, 13, 861231.	1.7	3
3024	Predictions of sardine and the Portuguese continental shelf ecosystem dynamics under future fishing, forced-biomass and SST scenarios. Marine Pollution Bulletin, 2022, 178, 113594.	2.3	6
3025	Mechanisms of forest resilience. Forest Ecology and Management, 2022, 512, 120129.	1.4	70

#	Article	IF	CITATIONS
3026	Climate warming will widen the lagging gap of global treeline shift relative to densification. Agricultural and Forest Meteorology, 2022, 318, 108917.	1.9	5
3027	Conservation interventions can benefit species impacted by climate change. Biological Conservation, 2022, 269, 109524.	1.9	9
3028	On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. Science of the Total Environment, 2022, 827, 154246.	3.9	17
3029	Elevation gradient distribution of indices of tree population in a montane forest: The role of leaf traits and the environment. Forest Ecosystems, 2022, 9, 100012.	1.3	6
3030	Modeling of cold-temperate tree Pinus koraiensis (Pinaceae) distribution in the Asia-Pacific region: Climate change impact. Forest Ecosystems, 2022, 9, 100015.	1.3	6
3031	No treeline shift despite climate change over the last 70 years. Forest Ecosystems, 2022, 9, 100002.	1.3	18
3032	Population connectivity in voles (Microtus sp.) as a gauge for tall grass prairie restoration in midwestern North America. PLoS ONE, 2021, 16, e0260344.	1.1	1
3034	Long-term gut microbiome dynamics in <i>Drosophila melanogaster</i> reveal environment-specific associations between bacterial taxa at the family level. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20212193.	1.2	4
3035	Are Climates in Canada and the United States Suitable for the European Spruce Bark Beetle, Ips typographus, and Its Fungal Associate, Endoconidiophora polonica?. Forests, 2021, 12, 1725.	0.9	1
3036	Phenology dictates the impact of climate change on geographic distributions of six coâ€occurring North American grasshoppers. Ecology and Evolution, 2021, 11, 18575-18590.	0.8	2
3037	Top–down effects override climate forcing on reproductive success in a declining sea duck. Oikos, 2022, 2022, .	1.2	6
3038	Living on the edge: genetic structure and geographic distribution in the threatened Markham's Storm-Petrel (<i>Hydrobates markhami</i>). PeerJ, 2021, 9, e12669.	0.9	1
3039	Limited Range-Filling Among Endemic Forest Herbs of Eastern North America and Its Implications for Conservation With Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
3040	Wildfire catalyzes upward range expansion of trembling aspen in southern Rocky Mountain beetleâ€killed forests. Journal of Biogeography, 2022, 49, 201-214.	1.4	6
3041	Long-term changes in populations of rainforest birds in the Australia Wet Tropics bioregion: A climate-driven biodiversity emergency. PLoS ONE, 2021, 16, e0254307.	1.1	18
3042	Stepping stones towards Antarctica: Switch to southern spawning grounds explains an abrupt range shift in krill. Global Change Biology, 2022, 28, 1359-1375.	4.2	21
3043	Predicting the growth of the amphibian chytrid fungus in varying temperature environments. Ecology and Evolution, 2021, 11, 17920-17931.	0.8	3
3044	Ocean warming and acidification degrade shoaling performance and lateralization of novel tropical–temperate fish shoals. Global Change Biology, 2022, 28, 1388-1401.	4.2	13

#	Article	IF	CITATIONS
3047	Temperature and soils predict the distribution of plant species along the Himalayan elevational gradient. Journal of Tropical Ecology, 2022, 38, 58-70.	0.5	10
3048	Global Warming: the North will be as impacted as the South. Territoire En Mouvement, 2021, , .	0.1	0
3050	Range Size and Niche Breadth as Predictors of Climate-Induced Habitat Change in Epipactis (Orchidaceae). Frontiers in Ecology and Evolution, 2022, 10, .	1.1	8
3051	A framework to select strategies for conserving and restoring habitat connectivity in complex landscapes. Conservation Science and Practice, 2022, 4, .	0.9	8
3052	Dispersal and habitat dynamics shape the genetic structure of the Northern chamois in the Alps. Journal of Biogeography, 2022, 49, 1848-1861.	1.4	3
3053	Climate and Landscape Controls on Old-Growth Western Juniper Demography in the Northern Great Basin, USA. Ecosystems, 2023, 26, 362-382.	1.6	1
3054	Changes in temperature alter competitive interactions and overall structure of fig wasp communities. Journal of Animal Ecology, 2022, , .	1.3	2
3055	Asymmetrical copper root pruning may improve root traits for reforesting steep and/or windy sites. New Forests, 2022, 53, 1093-1112.	0.7	4
3056	The Future Climate under Different CO2 Emission Scenarios Significantly Influences the Potential Distribution of Achnatherum inebrians in China. Sustainability, 2022, 14, 4806.	1.6	4
3057	Plant biodiversity assessment through soil eDNA reflects temporal and local diversity. Methods in Ecology and Evolution, 2023, 14, 415-430.	2.2	16
3058	Neighbor trees and habitat suitability of Cinnamomum balansae Lecomte in North Central Coast and Northern Vietnam. Modeling Earth Systems and Environment, 0, , 1.	1.9	0
3059	Current warming and likely future impacts. , 0, , 262-366.		0
3105	Overfishing species on the move may burden seafood provision in the low-latitude Atlantic Ocean. Science of the Total Environment, 2022, 836, 155480.	3.9	6
3106	Ecoâ€evolutionary causes and consequences of rarity in plants: a metaâ€enalysis. New Phytologist, 2022, 235, 1272-1286.	3.5	6
3107	Model-based extrapolation of ecological systems under future climate scenarios: The example of Ixodes ricinus ticks. PLoS ONE, 2022, 17, e0267196.	1.1	6
3108	Altitudinal variations of hydraulic traits in Faxon fir (Abies fargesii var. faxoniana): Mechanistic controls and environmental adaptability. Forest Ecosystems, 2022, 9, 100040.	1.3	3
3109	Maximum Entropy Niche-Based Modeling for Predicting the Potential Suitable Habitats of a Traditional Medicinal Plant (Rheum nanum) in Asia under Climate Change Conditions. Agriculture (Switzerland), 2022, 12, 610.	1.4	4
3110	Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 2022, 92, .	2.4	5

#	Article	IF	CITATIONS
3111	Phenotypic plasticity and genetic diversity elucidate rarity and vulnerability of an endangered riparian plant. Ecosphere, 2022, 13, .	1.0	6
3112	Climate change increases cross-species viral transmission risk. Nature, 2022, 607, 555-562.	13.7	361
3114	Development of two common dragonfly species with diverging occupancy trends. Journal of Insect Conservation, 2022, 26, 571-581.	0.8	2
3115	Local Weather Conditions Affect Forager Size and Visitation Rate on Bramble Flowers (Rubus) Tj ETQq1 1 0.7843	14 rgBT /(0.4	Overlock 10
3116	<scp>UK</scp> wildlife recorders cautiously welcome rangeâ€shifting species but incline against intervention to promote or control their establishment. People and Nature, 2022, 4, 879-892.	1.7	2
3117	Orchid species richness of Mexico: opportunities for use and conservation. Acta Horticulturae, 2022, , 241-252.	0.1	0
3118	Efficacy of the global protected area network is threatened by disappearing climates and potential transboundary range shifts. Environmental Research Letters, 2022, 17, 054016.	2.2	4
3119	Climate Change in Africa and Vegetation Response: A Bibliometric and Spatially Based Information Assessment. Sustainability, 2022, 14, 4974.	1.6	11
3120	Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts. Ecology Letters, 2022, 25, 1497-1509.	3.0	6
3121	Differential effects of topography on the timing of the growing season in mountainous grassland ecosystems. Environmental Advances, 2022, 8, 100234.	2.2	4
3122	Static vs dynamic connectivity: how landscape changes affect connectivity predictions in the Iberian Peninsula. Landscape Ecology, 2022, 37, 1855-1870.	1.9	2
3123	A Review on Climate Change Impacts on Forest Ecosystem Services in the Mediterranean Basin. Journal of Landscape Ecology(Czech Republic), 2022, 15, 1-26.	0.2	5
3124	Variability in Arrival Time of White Storks (Ciconia ciconia L.): Impact of Age, Interindividual Variation, and Global Change. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	4
3125	Plant Proxy Evidence for High Rainfall and Productivity in the Eocene of Australia. Paleoceanography and Paleoclimatology, 2022, 37, .	1.3	7
3126	From island biogeography to landscape and metacommunity ecology: A macroecological perspective of bat communities. Annals of the New York Academy of Sciences, 2022, 1514, 43-61.	1.8	1
3127	Climate change vulnerability of terrestrial vertebrates in a major refuge and dispersal corridor in North America. Diversity and Distributions, 2022, 28, 1227-1241.	1.9	6
3128	Competition mediates understorey species range shifts under climate change. Journal of Ecology, 2022, 110, 1813-1825.	1.9	6
3129	Late Pleistocene-Holocene vegetation and climate variability of the western Himalaya, India. Journal of Asian Earth Sciences, 2022, 233, 105245.	1.0	3

#	Article	IF	CITATIONS
3130	Using acoustics and artificial intelligence to monitor pollination by insects and tree use by woodpeckers. Science of the Total Environment, 2022, 838, 155883.	3.9	11
3131	Landscape Connectivity and Genetic Structure in a Mainstem and a Tributary Stonefly (Plecoptera) Species Using a Novel Reference Genome. Journal of Heredity, 2022, 113, 453-471.	1.0	1
3133	Hydrological control of threshold transitions in vegetation over early-period wetland development. Journal of Hydrology, 2022, 610, 127931.	2.3	3
3134	Evolution in response to climate in the native and introduced ranges of a globally distributed plant. Evolution; International Journal of Organic Evolution, 2022, 76, 1495-1511.	1.1	4
3135	Where and why are species' range shifts hampered by unsuitable landscapes?. Global Change Biology, 2022, 28, 4765-4774.	4.2	16
3136	Duodenal Metabolic Profile Changes in Heat-Stressed Broilers. Animals, 2022, 12, 1337.	1.0	4
3138	Negative effects of winter and spring warming on the regeneration of forest spring geophytes. Plant Biology, 2022, 24, 950-959.	1.8	4
3139	Woody species dynamics in Sheka Forest Biosphere Reserve, Southwest Ethiopia. Forest Ecology and Management, 2022, 519, 120313.	1.4	2
3140	Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography, 2022, 49, 1481-1493.	1.4	8
3141	The role of demographic compensation in stabilising marginal tree populations in North America. Ecology Letters, 2022, 25, 1676-1689.	3.0	11
3142	Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	7
3143	Spatial Distribution and Climate Warming Impact on Abies kawakamii Forest on a Subtropical Island. Plants, 2022, 11, 1346.	1.6	2
3144	Assessing the impact of climate change on threatened endemic vascular plants of Argentina. Folia Geobotanica, 2022, 57, 49-69.	0.4	1
3145	Life history consequences of climate change in hibernating mammals: a review. Ecography, 2022, 2022, .	2.1	12
3146	Assessing protected area vulnerability to climate change in a case study of South African national parks. Conservation Biology, 2022, 36, .	2.4	5
3147	Climate-driven range shifts of a rare specialist bee, Macropis nuda (Melittidae), and its host plant, Lysimachia ciliata (Primulaceae). Global Ecology and Conservation, 2022, 37, e02180.	1.0	1
3150	TREE SPECIES OF ATLANTIC FOREST AND PAMPA ALLUVIAL FORESTS IN THE CONTEXT OF CLIMATE CHANGE. Revista Arvore, 0, 46, .	0.5	1
3151	Comparison of the interest of four types of organic mulches to reclaim degraded areas (Part 2): Microbial activities and abiotic factors. Ecological Engineering, 2022, , 106694.	1.6	0

#	Article	IF	CITATIONS
3152	Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS ONE, 2022, 17, e0269673.	1.1	8
3153	Integration of hotspot identification, gap analysis, and niche modeling supports the conservation of Chinese threatened higher plants. Journal of Systematics and Evolution, 2023, 61, 682-697.	1.6	4
3154	Distribution models calibrated with independent field data predict two million ancient and veteran trees in England. Ecological Applications, 2022, 32, .	1.8	5
3155	Use of marine vs. freshwater proteins for eggâ€laying and incubation by sea ducks breeding in Arctic tundra. Ecosphere, 2022, 13, .	1.0	2
3156	Climate change and range restriction of common salamanders in eastern Canada and the United States. Journal of Wildlife Management, 2022, 86, .	0.7	0
3157	Biotic responses to climate extremes in terrestrial ecosystems. IScience, 2022, 25, 104559.	1.9	18
3158	Effects of land-use and climate change on grasshopper assemblages differ between protected and unprotected grasslands. Basic and Applied Ecology, 2022, 63, 83-92.	1.2	5
3159	Choice of climate data affects the performance and interpretation of species distribution models Ecological Modelling, 2022, 471, 110042.	1.2	12
3160	Detection of social-ecological drivers and impact thresholds of ecological degradation and ecological restoration in the last three decades. Journal of Environmental Management, 2022, 318, 115513.	3.8	19
3161	Southern Hemisphere coasts are biologically connected by frequent, long-distance rafting events. Current Biology, 2022, 32, 3154-3160.e3.	1.8	13
3162	Insights into bear evolution from a Pleistocene polar bear genome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
3163	Historical changes in hydroclimatic extreme events over Iran. , 2022, , 101-115.		0
3164	Anna's hummingbird (<i>Calypte anna</i>) physiological response to novel thermal and hypoxic conditions at high elevations. Journal of Experimental Biology, 2022, 225, .	0.8	5
3165	Thermal remote sensing for plant ecology from leaf to globe. Journal of Ecology, 2022, 110, 1996-2014.	1.9	21
3166	Range shifts of overwintering birds depend on habitat type, snow conditions and habitat specialization. Oecologia, 0, , .	0.9	3
3167	Community science data provide evidence for upward elevational range shifts by Eastern Himalayan birds. Biotropica, 2022, 54, 1457-1465.	0.8	7
3168	Passive directed dispersal of plants by animals. Biological Reviews, 2022, 97, 1908-1929.	4.7	13
3169	Are species more harmful in their native, neonative or alien range? Insights from a global analysis of bark beetles. Diversity and Distributions, 2022, 28, 1832-1849.	1.9	8

#	Article	IF	CITATIONS
3170	Comparing management strategies for conserving communities of climate-threatened species with a stochastic metacommunity model. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	6
3171	Maximum Entropy Modeling the Distribution Area of Morchella Dill. ex Pers. Species in China under Changing Climate. Biology, 2022, 11, 1027.	1.3	6
3172	Insect pollinators decline: an emerging concern of Anthropocene epoch. Journal of Apicultural Research, 2023, 62, 23-38.	0.7	4
3173	Responses of Bacterial Communities in Soils under Winter Wheat to Nightly Warming and Nitrogen Addition. Agronomy, 2022, 12, 1616.	1.3	1
3174	eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments. Diversity, 2022, 14, 549.	0.7	6
3175	Forecasting shifts in habitat suitability of three marine predators suggests a rapid decline in interâ€specific overlap under future climate change. Ecology and Evolution, 2022, 12, .	0.8	1
3176	AgriWeedClim database: A repository of vegetation plot data from Central European arable habitats over 100 years. Applied Vegetation Science, 2022, 25, .	0.9	4
3177	Co-designing an Indicator of Habitat Connectivity for England. Frontiers in Ecology and Evolution, 0, 10, .	1.1	2
3178	Little Evidence of Leaf Damage to Dwarf Palmetto (Sabal minor; Arecaceae) during an Unusual Arctic Outbreak. Ecologies, 2022, 3, 267-274.	0.7	0
3179	Life history predicts global population responses to the weather in terrestrial mammals. ELife, 0, 11, .	2.8	7
3180	Breeding ground temperature rises, more than habitat change, are associated with spatially variable population trends in two species of migratory bird. Ibis, 0, , .	1.0	1
3181	Will climate change affect the survival of tropical and subtropical species? Predictions based on Bulwer's petrel populations in the NE Atlantic Ocean. Science of the Total Environment, 2022, 847, 157352.	3.9	0
3182	Late quaternary biotic homogenization of North American mammalian faunas. Nature Communications, 2022, 13, .	5.8	7
3183	Reâ€surveys reveal biotic homogenization of Orthoptera assemblages as a consequence of environmental change. Diversity and Distributions, 2022, 28, 1795-1809.	1.9	11
3184	Riding the elevator to extinction: Disjunct arctic-alpine plants of open habitats decline as their more competitive neighbours expand. Biological Conservation, 2022, 272, 109620.	1.9	8
3185	Analysis of genetic diversity and prediction of Larix species distribution in the Qinghai–Tibet Plateau, China. Journal of Forestry Research, 2023, 34, 705-715.	1.7	9
3187	Predicting Climate Change Impacts on the Rare and Endangered Horsfieldia tetratepala in China. Forests, 2022, 13, 1051.	0.9	6
3188	Analyzing Canopy Height Patterns and Environmental Landscape Drivers in Tropical Forests Using NASA's GEDI Spaceborne LiDAR. Remote Sensing, 2022, 14, 3172.	1.8	7

#	Article	IF	CITATIONS
3189	The rising threat of climate change for arthropods from Earth's cold regions: Taxonomic rather than native status drives species sensitivity. Global Change Biology, 2022, 28, 5914-5927.	4.2	11
3190	Greater sageâ€grouse habitat selection varies across the marginal habitat of its lagging range margin. Ecosphere, 2022, 13, .	1.0	1
3191	Climate change likely to increase co-occurrence of island endemic and invasive wildlife. Climate Change Ecology, 2023, 4, 100061.	0.9	1
3192	The spatial scale of adaptation in a native annual plant and its implications for responses to climate change. Evolution; International Journal of Organic Evolution, 0, , .	1.1	1
3193	Vertebrate Phenological Plasticity: From Molecular Mechanisms to Ecological and Evolutionary Implications. Integrative and Comparative Biology, 2022, 62, 958-971.	0.9	4
3194	Assessment of Land Use Change and Climate Change Impact on Biodiversity and Environment. Springer Proceedings in Earth and Environmental Sciences, 2022, , 73-89.	0.2	4
3195	Genetic architecture of dispersal and local adaptation drives accelerating range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
3196	Projected climate change impacts on the phylogenetic diversity of the world's terrestrial birds: more than species numbers. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	4
3197	Population Dynamics of Wild Mongolian Gerbils: Quadratic Temperature Effects on Survival and Density-Dependent Effects on Recruitment. Diversity, 2022, 14, 586.	0.7	1
3199	Climate Change in the Provenance Regions of Romania over the Last 70 Years: Implications for Forest Management. Forests, 2022, 13, 1203.	0.9	9
3200	Assessing the reliability of species distribution models in the face of climate and ecosystem regime shifts: Small pelagic fishes in the California Current System. Frontiers in Marine Science, 0, 9, .	1.2	0
3201	Prehistoric perspectives can help interpret the present: 14 000 years of moose (<i>Alces alces</i>) in the Western Arctic. Canadian Journal of Zoology, 2022, 100, 732-746.	0.4	1
3202	Mapping the Indian crested porcupine across Iraq: the benefits of species distribution modelling when species data are scarce. Mammalian Biology, 2022, 102, 1851-1866.	0.8	2
3203	Different temporal trends in vascular plant and bryophyte communities along elevational gradients over four decades. Ecology and Evolution, 2022, 12, .	0.8	4
3204	Warmer and Poorer: The Fate of Alpine Calcareous Grasslands in Central Apennines (Italy). Diversity, 2022, 14, 695.	0.7	5
3205	Implications of climate change for environmental niche overlap between five <i>Cuscuta</i> pest species and their two main Leguminosae host crop species. Weed Science, 2022, 70, 543-552.	0.8	7
3206	Call for integrating future patterns of biodiversity into European conservation policy. Conservation Letters, 2022, 15, .	2.8	5
3207	Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants. Ecology, 2023, 104, .	1.5	6

#	Article	IF	CITATIONS
3208	Sustained population decline of rodents is linked to accelerated climate warming and human disturbance. Bmc Ecology and Evolution, 2022, 22, .	0.7	7
3209	Forecasting climate change response in an alpine specialist songbird reveals the importance of considering novel climate. Diversity and Distributions, 2022, 28, 2239-2254.	1.9	4
3210	Legume germination is delayed in dry soils and in sterile soils devoid of microbial mutualists: Speciesâ€specific implications for upward range expansions. Ecology and Evolution, 2022, 12, .	0.8	4
3211	Bat responses to climate change: a systematic review. Biological Reviews, 2023, 98, 19-33.	4.7	31
3212	Projected bioclimatic distributions in Nearctic <i>Bovidae</i> signal the potential for reduced overlap with protected areas. Ecology and Evolution, 2022, 12, .	0.8	1
3213	Global habitat loss of a highly migratory predator, the blue marlin (<i>Makaira nigricans</i>). Diversity and Distributions, 2022, 28, 2020-2034.	1.9	6
3214	Phyto-ecological analysis of Phytolacca acinosa Roxb. assemblages in Kashmir Himalaya, India. Frontiers in Forests and Global Change, 0, 5, .	1.0	5
3215	Contemporary climate change velocity for near-surface temperatures over India. Climatic Change, 2022, 173, .	1.7	2
3216	Over half of known human pathogenic diseases can be aggravated by climate change. Nature Climate Change, 2022, 12, 869-875.	8.1	239
3217	Assessing multitemporal calibration for species distribution models. Ecological Informatics, 2022, 71, 101787.	2.3	2
3218	Multiâ€season climate projections forecast declines in migratory monarch butterflies. Global Change Biology, 2022, 28, 6135-6151.	4.2	9
3219	Rapid restructuring of the odontocete community in an ocean warming hotspot. Global Change Biology, 2022, 28, 6524-6540.	4.2	5
3220	Local adaptation to seasonal cues at the fronts of two parallel, climateâ€induced butterfly range expansions. Ecology Letters, 2022, 25, 2022-2033.	3.0	6
3221	Small mammals in a mountain ecosystem: the effect of topographic, micrometeorological, and biological correlates on their community structure. Community Ecology, 0, , .	O.5	0
3222	Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment. Scientific Reports, 2022, 12, .	1.6	2
3223	Freshwater crabs of the Near East: Increased extinction risk from climate change and underrepresented within protected areas. Global Ecology and Conservation, 2022, 38, e02266.	1.0	5
3224	Enhancing Aboveground Biomass Estimation for Three Pinus Forests in Yunnan, SW China, Using Landsat 8. Remote Sensing, 2022, 14, 4589.	1.8	6
3225	Temporal shifts in avian phenology across the circannual cycle in a rapidly changing climate: A global metaâ€analysis. Ecological Monographs, 2023, 93, .	2.4	9

#	Article	IF	Citations
3226	A sea of fireworms? New insights on ecology and seasonal density of <i>Hermodice carunculata</i> (Pallas, 1766) (Annelida) in the Ionian Sea (SE Italy). , 2022, 89, 1104-1114.		2
3227	The fate of giant panda and its sympatric mammals under future climate change. Biological Conservation, 2022, 274, 109715.	1.9	7
3228	Microclimate complexities at the trailing edge of the boreal forest. Forest Ecology and Management, 2022, 524, 120533.	1.4	1
3229	Impacts of climate change on the distributions and diversity of the giant panda with its sympatric mammalian species. Ecological Indicators, 2022, 144, 109452.	2.6	3
3230	The impact of climate change and potential distribution of the endangered white winged wood duck (Asarcornis scutulata, 1882) in Indian eastern Himalaya. Journal for Nature Conservation, 2022, 70, 126279.	0.8	6
3231	Based on multiple environmental factors to explore the habitat distribution of licorice (Glycyrrhiza) Tj ETQq1 1 0.	784314 rg 0.6	BT /Overlock
3232	Land-dependent marine species face climate-driven impacts on land and at sea. Marine Ecology - Progress Series, 2022, 699, 181-198.	0.9	5
3234	Conservation Need for a Plant Species with Extremely Small Populations Linked to Ephemeral Streams in Adverse Desert Environments. Water (Switzerland), 2022, 14, 2638.	1.2	3
3235	Similar Pattern of Potential Distribution of Pinus yunnanensis Franch and Tomicusyunnanensis Kirkendall under Climate Change in China. Forests, 2022, 13, 1379.	0.9	2
3236	Evolutionary rescue under environmental stress. Scientia Sinica Vitae, 2022, 52, 1226-1236.	0.1	0
3237	Novel Ecosystems in the Urban-Industrial Landscape–Interesting Aspects of Environmental Knowledge Requiring Broadening: A Review. Sustainability, 2022, 14, 10829.	1.6	5
3239	The Upper Range Limit of Alien Plants Is Not in Equilibrium with Climate in the Andes of Central Chile. Plants, 2022, 11, 2345.	1.6	0
3240	Quantifying population and clone-specific non-linear reaction norms to food gradients in Daphnia magna. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
3241	Comparison of intercept trap fluids and aerial spore collectors to survey fungal spores. Frontiers in Forests and Global Change, 0, 5, .	1.0	1
3242	Coliform pollution mapping in major watersheds along Jhelum River Basin of Kashmir Himalaya. Environmental Science and Pollution Research, 2023, 30, 7930-7941.	2.7	4
3243	Understanding synergies and tradeoffs between forests, water, and climate change. Wiley Interdisciplinary Reviews: Water, 2022, 9, .	2.8	1
3244	Ensemble modeling to predict the impact of future climate change on the global distribution of Olea europaea subsp. cuspidata. Frontiers in Forests and Global Change, 0, 5, .	1.0	4
3245	Siberian Ibex Capra sibirica Respond to Climate Change by Shifting to Higher Latitudes in Eastern Pamir. Diversity, 2022, 14, 750.	0.7	1

#	Article	IF	Citations
3246	Exploring the thermal limits of malaria transmission in the western Himalaya. Ecology and Evolution, 2022, 12, .	0.8	4
3248	Using temporal genomics to understand contemporary climate change responses in wildlife. Ecology and Evolution, 2022, 12, .	0.8	9
3249	The recent Asian elephant range expansion in Yunnan, China, is associated with climate change and enforced protection efforts in human-dominated landscapes. Frontiers in Ecology and Evolution, 0, 10, .	1.1	5
3251	İğne yapraklı orman ağaçlarında tohum ve kozalak zararlıları. Anadolu Orman Araştırmaları De 8, 127-141.	ergisi, 20 0.2)22, ₀
3252	Vegetation change on mountaintops in northern Sweden: Stable vascularâ€plant but reordering of lichen and bryophyte communities. Ecological Research, 2022, 37, 722-737.	0.7	2
3253	Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals, 2022, 12, 2328.	1.0	4
3254	Bioclimatic controls of CO2 assimilation near range limits of the CAM succulent tree <i>Aloidendron dichotomum</i> . Journal of Experimental Botany, 2022, 73, 7434-7449.	2.4	2
3255	Percid Fish Sander lucioperca Displays Broad Hematological Adaptability: Sex-Related Response to Different Seasons and Habitats. Proceedings of the Zoological Society, 0, , .	0.4	Ο
3256	Tactics of evasion: strategies used by signallers to deter eavesdropping enemies from exploiting communication systems. Biological Reviews, 2023, 98, 222-242.	4.7	10
3257	Connectivity among thermal habitats buffers the effects of warm climate on lifeâ€history traits and population dynamics. Journal of Animal Ecology, 2022, 91, 2301-2313.	1.3	6
3258	Differential response to climate change and human activities in three lineages of Sichuan snubâ€nosed monkeys (<i>Rhinopithecus roxellana</i>). Diversity and Distributions, 2022, 28, 2416-2428.	1.9	4
3259	The fall of the summer truffle: Recurring hot, dry summers result in declining fruitbody production of <i>Tuber aestivum</i> in Central Europe. Global Change Biology, 2022, 28, 7376-7390.	4.2	5
3260	Local chronicles reveal the effect of anthropogenic and climatic impacts on local extinctions of Chinese pangolins (<i>Manis pentadactyla</i>) in mainland China. Ecology and Evolution, 2022, 12, .	0.8	1
3261	No Longer "Confined to the Lower Keys of Florida†Mainland United States Cultivation of Breadfruit (<i>Artocarpus altilis</i>) in a Changing Ćlimate. Annals of the American Association of Geographers, 0, , 1-20.	1.5	0
3262	Global warming pushes the distribution range of the two alpine †̃glasshouse' Rheum species north- and upwards in the Eastern Himalayas and the Hengduan Mountains. Frontiers in Plant Science, 0, 13, .	1.7	3
3263	Blowing Hot and Cold: Glacier Microclimate can Help Understand Impacts of Climate Change on Forests Communities. Geophysical Research Letters, 2022, 49, .	1.5	0
3264	Does stress alleviation always intensify plant-plant competition? A case study from alpine meadows with simulation of both climate warming and nitrogen deposition. Ecological Indicators, 2022, 144, 109510.	2.6	0
3265	Distributions of two native ungulates at the third pole are highly sensitive to global warming. Global Ecology and Conservation, 2022, 39, e02292.	1.0	1

# 3266	ARTICLE Quantifying the climate exposure of priority habitat constrained to specific environmental conditions: Boreal aapa mires. Ecological Informatics, 2022, 72, 101828.	IF 2.3	CITATIONS
3267	Extreme escalation of heat failure rates in ectotherms with global warming. Nature, 2022, 611, 93-98.	13.7	49
3268	Impacts of Climate Change on Biodiversity Resources, Especially Forests and Wildlife Distribution. , 2022, , 55-85.		0
3269	Environmental stressors in Amazonian riverine systems. Fish Physiology, 2022, , .	0.2	1
3270	Study of winter avifauna diversity from a man-made reservoir in the West Bengal, India. Journal of Animal Diversity, 2022, 4, 58-73.	0.2	0
3272	Species lifeâ€history strategies affect population responses to temperature and landâ€cover changes. Global Change Biology, 2023, 29, 97-109.	4.2	10
3273	Modeling past and future spatiotemporal distributions of airborne allergenic pollen across the contiguous United States. Frontiers in Allergy, 0, 3, .	1.2	1
3274	Two Centuries of Change in the Native Flora of Franklin County, Massachusetts, U.S.A Rhodora, 2022, 123, .	0.0	2
3275	Mammal use of riparian corridors in semiâ€arid Sonora, Mexico. Journal of Wildlife Management, 0, , .	0.7	2
3276	Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Scientific Reports, 2022, 12, .	1.6	2
3278	Climate Change and Dispersal Ability Jointly Affects the Future Distribution of Crocodile Lizards. Animals, 2022, 12, 2731.	1.0	2
3279	Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses. Environmental Research Letters, 2022, 17, 113001.	2.2	12
3280	Benthic ecosystem functioning under climate change: modelling the bioturbation potential for benthic key species in the southern North Sea. PeerJ, 0, 10, e14105.	0.9	3
3281	Bird Communities in a Changing World: The Role of Interspecific Competition. Diversity, 2022, 14, 857.	0.7	4
3282	Predicting the changes in suitable habitats for six common woody species in Central Asia. International Journal of Biometeorology, 2023, 67, 107-119.	1.3	3
3283	Multi-Directional Rather Than Unidirectional Northward-Dominant Range Shifts Predicted under Climate Change for 99 Chinese Tree Species. Forests, 2022, 13, 1619.	0.9	2
3284	Trends in habitat suitability and conservation status of aquatic spiders in Europe. Biological Conservation, 2022, 275, 109767.	1.9	1
3285	Determining Effective Environmental Factors in the Distribution of Endangered Endemic Medicinal Plant Species Using the BMLR Model: The Example of Wild Celery (Kelussia odoratissima Mozaff.,) Tj ETQq1 1 0.7	78 43 614 rg	BT¢Overloc

#	Article	IF	CITATIONS
3286	Spatial–Temporal Pattern and Influencing Factors of Vegetation Phenology and Net Primary Productivity in the Qilian Mountains of Northwest China. Sustainability, 2022, 14, 14337.	1.6	0
3287	Are Rare Northern Plant Species Retreating from the Southern Edge of Their Ranges in Southern New England?. Northeastern Naturalist, 2022, 29, .	0.1	1
3288	A regionally coherent ecological fingerprint of climate change, evidenced from natural history collections. Ecology and Evolution, 2022, 12, .	0.8	4
3289	Genetic variation of Cerastium alpinum L. from Babia Góra, a critically endangered species in Poland. Journal of Applied Genetics, 0, , .	1.0	2
3290	Protected area network insufficiently represents climatic niches of endemic plants in a Global Biodiversity Hotspot. Biological Conservation, 2022, 275, 109768.	1.9	4
3291	Niche divergence at the intraspecific level in an endemic rare peony (Paeonia rockii): A phylogenetic, climatic and environmental survey. Frontiers in Plant Science, 0, 13, .	1.7	0
3292	A test of the competitive ability–cold tolerance tradeâ€off hypothesis in seasonally breeding beetles. Ecological Entomology, 2023, 48, 55-68.	1.1	7
3293	Riparian areas as a conservation priority under climate change. Science of the Total Environment, 2023, 858, 159879.	3.9	4
3294	Threatened species could be more vulnerable to climate change in tropical countries. Science of the Total Environment, 2023, 858, 159989.	3.9	12
3295	Scienceâ€informed policy decisions lead to the creation of a protected area for a wideâ€ranging species at risk. Conservation Science and Practice, 2022, 4, .	0.9	3
3296	Contrasting short―and longâ€ŧerm outcomes of pairwise interactions between caddisflies at a hydrologically heterogeneous range margin. Freshwater Biology, 0, , .	1.2	0
3297	Extinction risk of Chinese angiosperms varies between woody and herbaceous species. Diversity and Distributions, 2023, 29, 232-243.	1.9	3
3298	The COVID-19 Restrictions and Biological Invasion: A Global Terrestrial Ecosystem Perspective on Propagule Pressure and Invasion Trajectory. Sustainability, 2022, 14, 14783.	1.6	0
3299	Stacked distribution models predict climate-driven loss of variation in leaf phenology at continental scales. Communications Biology, 2022, 5, .	2.0	3
3300	Large variability in response to future climate and landâ€use changes among Chinese Theaceae species. Ecology and Evolution, 2022, 12, .	0.8	6
3301	What is the role of disturbance in catalyzing spatial shifts in forest composition and tree species biomass under climate change?. Clobal Change Biology, 2023, 29, 1160-1177.	4.2	6
3302	Prediction of wild pistachio ecological niche using machine learning models. Ecological Informatics, 2022, 72, 101907.	2.3	6
3303	Climate change threatens the future of rain forest ringtail possums by 2050. Diversity and Distributions, 0, , .	1.9	5

	СПАПО	N REPORT	
#	Article	IF	CITATIONS
3304	Climate, geography, and the mating phenology of ants. Insectes Sociaux, 0, , .	0.7	1
3305	Identifying the Past, Present, and Future Distribution Patterns of the Balkan Wall Lizard (Sauria:) Tj ETQq1 1 146-159.	0.784314 rgB 0.1	T /Overlock 0
3306	Climateâ€mediated population dynamics of a migratory songbird differ between the trailing edge and range core. Ecological Monographs, 2023, 93, .	2.4	2
3307	Climate change will redefine taxonomic, functional, and phylogenetic diversity of Odonata in space and time. , 2022, 1, .		5
3308	Quantifying thermal cues that initiate mass emigrations in juvenile white sharks. Scientific Reports, 2022, 12, .	1.6	3
3309	Combined threats of climate change and land use to boreal protected areas with red-listed forest species in Finland. Global Ecology and Conservation, 2023, 41, e02348.	1.0	1
3310	Climate driven shifts in the synchrony of apple (Malus x domestica Borkh.) flowering and pollinating bee flight phenology. Agricultural and Forest Meteorology, 2023, 329, 109281.	1.9	7
3311	Submarine Cables as Precursors of Persistent Systems for Large Scale Oceans Monitoring and Autonomous Underwater Vehicles Operation. , 2022, , .		2
3312	Impact Of Global Warming On Endangered Species Using Data Science. , 2022, , .		0
3313	Extensive range contraction predicted under climate warming for two endangered mountaintop frogs from the rainforests of subtropical Australia. Scientific Reports, 2022, 12, .	1.6	3
3314	Soil legacy effects of plants and drought on aboveground insects in native and rangeâ€expanding plant communities. Ecology Letters, 2023, 26, 37-52.	3.0	4
3315	Analysis of the Potential Range of Anticlea sibirica L. (Kunth) and Its Changes under Moderate Climate Change in the 21st Century. Plants, 2022, 11, 3270.	1.6	1
3316	Global patterns and drivers of raptor phylogenetic and functional diversity. Global Ecology and Biogeography, 2023, 32, 281-294.	2.7	2
3317	Commentary: using prey naÃ ⁻ veté to inform ecological management. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	1
3318	Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade. Diversity and Distributions, 2023, 29, 272-288.	1.9	3
3319	Habitat suitability, range dynamics, and threat assessment of Swertia petiolata D. Don: a Himalayan endemic medicinally important plant under climate change. Environmental Monitoring and Assessment, 2023, 195, .	1.3	4
3320	Climate and Land-Cover Change Impacts and Extinction Risk Assessment of Rare and Threatened Endemic Taxa of Chelmos-Vouraikos National Park (Peloponnese, Greece). Plants, 2022, 11, 3548.	1.6	2
3321	Rearâ€edge daylily populations show legacies of habitat fragmentation due to the Holocene climate warming. Journal of Biogeography, 2023, 50, 551-563.	1.4	2

#	Article	IF	CITATIONS
3322	Environmental Patterns of Distribution of Sparganium emersum and S. hyperboreum (Typhaceae) in Northeast Asia. Inland Water Biology, 2022, 15, 784-793.	0.2	1
3323	Effects of diversity on thermal niche variation in bird communities under climate change. Scientific Reports, 2022, 12, .	1.6	0
3324	Climate warming has compounded plant responses to habitat conversion in northern Europe. Nature Communications, 2022, 13, .	5.8	4
3325	Different roles of concurring climate and regional land-use changes in past 40 years' insect trends. Nature Communications, 2022, 13, .	5.8	24
3326	Species, growth form, and biogeographic diversity of summit vegetation along an elevation gradient in the tropical Andes: a baseline for climate change monitoring. Journal of Mountain Science, 2022, 19, 3441-3457.	0.8	2
3327	Predicting habitat suitability for Townsend's bigâ€eared bats across California in relation to climate change. Ecology and Evolution, 2022, 12, .	0.8	1
3328	Rarity, geography, and plant exposure to global change in the California Floristic Province. Global Ecology and Biogeography, 2023, 32, 218-232.	2.7	4
3329	Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. International Journal of Environmental Research and Public Health, 2022, 19, 17082.	1.2	3
3330	Climate Change and Wetlands in the Southern Great Plains: How Are Managers Dealing with an Uncertain Future?. Environmental Management, 2023, 71, 379-392.	1.2	2
3331	Prediction of Climate Change Effects on Siberian Crane (Grus leucogeranus) Habitat Suitability by Using Ensemble Modeling in Asia Wetlands. Wetlands, 2023, 43, .	0.7	1
3332	The roles of species' relatedness and climate of origin in determining optical leaf traits over a large set of taxa growing at high elevation and high latitude. Frontiers in Plant Science, 0, 13, .	1.7	3
3333	Change in climatically suitable breeding distributions reduces hybridization potential between <i>Vermivora</i> warblers. Diversity and Distributions, 0, , .	1.9	0
3334	Changes in the Ground Beetle and Darkling Beetle Communities (Coleoptera: Carabidae, Tenebrionidae) in the Mountain Hollows of the Tuva and Altai Republics over 60 Years: A Trend or a Fluctuation?. Contemporary Problems of Ecology, 2022, 15, 579-596.	0.3	2
3335	<scp>Temporal</scp> analysis of <scp>GBIF</scp> data reveals the restructuring of communities following climate change. Journal of Animal Ecology, 2023, 92, 391-402.	1.3	7
3336	Preserving the woody plant tree of life in China under future climate and land-cover changes. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
3337	Potential distribution of threatened maples in China under climate change: Implications for conservation. Clobal Ecology and Conservation, 2022, 40, e02337.	1.0	2
3338	Informed selection of corridors through network and graph analyses to enhance dispersal potentialÂthrough an agricultural matrix. Landscape Ecology, 0, , .	1.9	0
3339	Field observations and remote assessment identify climate change, recreation, invasive species, and livestock as top threats to critically imperiled rare plants in Nevada. Frontiers in Conservation Science, 0, 3, .	0.9	0

#	Article	IF	CITATIONS
3340	Prediction of the Potential Distribution of Vaccinium uliginosum in China Based on the Maxent Niche Model. Horticulturae, 2022, 8, 1202.	1.2	2
3341	Hedging at the rear edge: Intraspecific trait variability drives the trajectory of marginal populations in a widespread boreal tree species. Journal of Ecology, 2023, 111, 479-494.	1.9	3
3342	100 million years of turtle paleoniche dynamics enable the prediction of latitudinal range shifts in a warming world. Current Biology, 2023, 33, 109-121.e3.	1.8	3
3343	Land suitability modelling for rainbow trout farming in the Eastern Himalayan Region, India, using GIS–MCE approach. Modeling Earth Systems and Environment, 0, , .	1.9	0
3345	Stress-associated metabolites vary with both season and habitat across populations of a climate sentinel species. Arctic, Antarctic, and Alpine Research, 2022, 54, 603-623.	0.4	1
3346	Ecological niche models reveal divergent habitat use of Pallas's cat in the Eurasian cold steppes. Ecology and Evolution, 2022, 12, .	0.8	4
3348	Global patterns of climate change impacts on desert bird communities. Nature Communications, 2023, 14, .	5.8	8
3349	Forest-clearing to create early-successional habitats: Questionable benefits, significant costs. Frontiers in Forests and Global Change, 0, 5, .	1.0	3
3350	Species richness, endemism, and conservation of wild Rhododendron in China. Global Ecology and Conservation, 2023, 41, e02375.	1.0	1
3352	Increasing precipitation weakened the negative effects of simulated warming on soil microbial community composition in a semi-arid sandy grassland. Frontiers in Microbiology, 0, 13, .	1.5	1
3353	Genomic vulnerability to climate change in <i>Quercus acutissima</i> , a dominant tree species in East Asian deciduous forests. Molecular Ecology, 2023, 32, 1639-1655.	2.0	4
3354	Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range. Scientific Reports, 2023, 13, .	1.6	6
3355	Future temperature extremes threaten land vertebrates. Nature, 2023, 615, 461-467.	13.7	24
3356	Molecular mechanisms of flowering phenology in trees. Forestry Research, 2023, 3, 0-0.	0.5	2
3357	Associations of 16-Year Population Dynamics in Range-Expanding Moths with Temperature and Years since Establishment. Insects, 2023, 14, 55.	1.0	3
3359	Dominant temperate and subalpine Japanese trees have variable photosynthetic thermal optima according to site mean annual temperature. Global Ecology and Biogeography, 2023, 32, 397-407.	2.7	2
3360	Thermal unmanned aerial vehicles for the identification of microclimatic refugia in topographically complex areas. Remote Sensing of Environment, 2023, 286, 113427.	4.6	2
3361	Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. Journal for Nature Conservation, 2023, 72, 126333.	0.8	5

#	Article	IF	CITATIONS
3362	Maxent Modeling for Predicting Habitat Suitability and Potential Distribution of Plateau Pika (Ochotona curzoniae) on the Qinghai-Tibet Plateau, China. Rangeland Ecology and Management, 2023, 87, 34-43.	1.1	0
3363	The rate of environmental change as an important driver across scales in ecology. Oikos, 2023, 2023, .	1.2	3
3364	Assessing the Potential Distribution of a Vulnerable Tree under Climate Change: Perkinsiodendron macgregorii (Chun) P.W.Fritsch (Styracaceae). Sustainability, 2023, 15, 666.	1.6	1
3365	Climate Change and Animal Movement Integration in the Environmental Niche Model. Health Sciences Quarterly, 2023, 3, 37-41.	0.0	0
3366	Selection of territorial habitat in a declining population of Lapland Longspurs (Calcarius lapponicus). Ornis Norvegica, 0, 46, 1-11.	0.5	0
3368	Bioclimatic drivers of forage growth and cover in alpine rangelands. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
3369	Staying in situ or shifting range under ongoing climate change: A case of an endemic herb in the <scp>Himalayaâ€Hengduan</scp> Mountains across elevational gradients. Diversity and Distributions, 2023, 29, 524-542.	1.9	3
3370	Predicting Spruce Taiga Distribution in Northeast Asia Using Species Distribution Models: Glacial Refugia, Mid-Holocene Expansion and Future Predictions for Global Warming. Forests, 2023, 14, 219.	0.9	1
3371	The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species. Avian Research, 2023, 14, 100079.	0.5	2
3372	Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology, 2023, 12, 226.	1.3	3
3373	Differential climatic conditions drive <i>Acacia tortilis</i> tree growth in its opposite range edges in Africa and Asia. American Journal of Botany, 0, , .	0.8	1
3374	The climatic drivers of longâ€ŧerm population changes in rainforest montane birds. Global Change Biology, 2023, 29, 2132-2140.	4.2	8
3375	Predicting the current and future suitable-habitat distribution of tropical adult and juvenile targeted fishes in multi-sector fisheries of central Queensland, Australia. Marine and Freshwater Research, 2023, , .	0.7	0
3376	Northward range expansion of <i>Leptogorgia dakarensis</i> and <i>Eunicella racemosa</i> (Cnidaria:) Tj ETQq1 United Kingdom, 2023, 103, .	1 0.78431 0.4	4 rgBT /Ove 0
3377	Spring phenology is advancing at a faster rate than arrival times of Common Starling. Journal of Ornithology, 0, , .	0.5	1
3378	Predicted changes in the distribution of Ostracoda (Crustacea) from river basins in the southern cone of South America, under two climate change scenarios. Hydrobiologia, 2023, 850, 1443-1460.	1.0	2
3379	Undetected but Widespread: the Cryptic Invasion of Non-Native Cattail (Typha) in a Pacific Northwest Estuary. Estuaries and Coasts, 2023, 46, 802-817.	1.0	3
3380	Climate Change and Transmissible Diseases. Climate Change Management, 2023, , 99-113.	0.6	0

ARTICLE IF CITATIONS Seed limitation interacts with biotic and abiotic factors to constrain novel species' impact on 3382 3.0 2 community biomass and richness. Ecology Letters, 2023, 26, 908-918. CMIP6 Earth System Models Project Greater Acceleration of Climate Zone Change Due To Stronger 2.4 Warming Rates. Earth's Future, 2023, 11, . Changes of <i>Cinchona</i> distribution over the past two centuries in the northern Andes. Royal 3384 1.1 3 Society Open Science, 2023, 10, . Environmental drivers of earthworm communities along an elevational gradient in the French Alps. 1.4 European Journal of Soil Biology, 2023, 116, 103477. Conservation challenges to the useful neotropical palm Babaçu (Attalea pindobassu Bondar) in the face of climate change. Flora: Morphology, Distribution, Functional Ecology of Plants, 2023, 302, 3386 0.6 0 152262. The impact of climate change and human activities over the past 2000Âyears has increased the 3387 spatial-temporal extinction rate of gibbons. Biological Conservation, 2023, 281, 109998. CubeSats show persistence of bull kelp refugia amidst a regional collapse in California. Remote 3388 4.6 3 Sensing of Environment, 2023, 290, 113521. Impacts of climate change on vicennial spatial behaviors of Trichiurus japonicus in the East China Sea. 3389 Estuarine, Coastal and Shelf Science, 2023, 285, 108305. Detecting low fragmented sites surrounding European protected areas – Implications for expansion 3390 0.8 2 of the Natura 2000 network. Journal for Nature Conservation, 2023, 73, 126398. Threatened birds face new distribution under future climate change on the Qinghai-Tibet Plateau 3391 2.6 (QTP). Ecological Indicators, 2023, 150, 110217. Warming and nutrient enrichment can trigger seaweed loss by dysregulation of the microbiome 3392 0 3.9 structure and predicted function. Science of the Total Environment, 2023, 879, 162919. The combined effects of temperature and fragment area on the demographic rates of an Afrotropical 3393 bird community over 34Âyears. Biological Conservation, 2023, 282, 110051. Identifying stable and overlapping habitats for a predator (common leopard) and prey species 3394 (Himalayan grey goral & amp; Himalayan grey langur) in northern Pakistan. Global Ecology and 1.0 2 Conservation, 2023, 43, e02418. Potential Geographic Range of the Endangered Reed Parrotbill Paradoxornis heudei under Climate 1.3 Change. Biology, 2023, 12, 560. Untapping the potential of bioenergy for achieving sustainable energy future in Pakistan. Energy, 2023, 3396 9 4.5 275, 127472. Pollination and Dispersal in Fragmented Landscape., 2022, , 93-100. Evaporative cooling via panting and its metabolic and water balance costs for lizards in the American 3398 0.8 3 Southwest. Journal of Experimental Biology, 2023, 226, . Ensemble modelling under multiple climate change scenarios predicts reduction in highly suitable 3399 range of habitats of Dactylorhiza hatagirea (D.Don) Soo in Himachal Pradesh, western Himalaya. 1.2 South African Journal of Botany, 2023, 154, 203-218.

#	Article	IF	Citations
3401	A resilient and connected network of sites to sustain biodiversity under a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
3402	Divergent sensory and immune gene evolution in sea turtles with contrasting demographic and life histories. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
3403	Evaluation of Germination under Different Storage Conditions of Four Endemic Plant Species from Ethiopia: Implications for Ex Situ Conservation in Seed Banks. Seeds, 2023, 2, 45-59.	0.7	0
3404	Effects of climate change and anthropogenic activity on ranges of vertebrate species endemic to the Qinghai–Tibet Plateau over 40Âyears. Conservation Biology, 2023, 37, .	2.4	4
3405	Investigation of the effects of atorvastatin and Lactobacillus acidophilus on some hormones and oxidative stress in experimental hypercholesterolemia. Prostaglandins and Other Lipid Mediators, 2023, 165, 106716.	1.0	1
3406	Climateâ€related range shifts in Arcticâ€breeding shorebirds. Ecology and Evolution, 2023, 13, .	0.8	2
3407	Modeling climateâ€driven range shifts in populations of two bird species limited by habitat independent of climate. Ecosphere, 2023, 14, .	1.0	3
3408	Dealing with global threats to biodiversity: A pressing but realistic challenge. Frontiers in Conservation Science, 0, 4, .	0.9	1
3409	Evolutionary rescue and geographic range shifts under climate change for global amphibians. Frontiers in Ecology and Evolution, 0, 11, .	1.1	3
3410	High winds and melting sea ice trigger landward movement in a polar bear population of concern. Ecosphere, 2023, 14, .	1.0	2
3411	Rapid range shifts in African <i>Anopheles</i> mosquitoes over the last century. Biology Letters, 2023, 19, .	1.0	11
3412	High-velocity upward shifts in vegetation are ubiquitous in mountains of western North America. , 2023, 2, e0000071.		4
3413	Climate change, host plant availability, and irrigation shape future regionâ€specific distributions of the <i>Sitobion</i> grain aphid complex. Pest Management Science, 2023, 79, 2311-2324.	1.7	1
3414	Climate-driven convergent evolution in riparian ecosystems on sky islands. Scientific Reports, 2023, 13,	1.6	4
3415	Evidence for 40 Years of Treeline Shift in a Central Alpine Valley. Forests, 2023, 14, 412.	0.9	1
3416	Drink safely: common swifts (<i>Apus apus</i>) dissipate mechanical energy to decrease flight speed before touch-and-go drinking. Journal of Experimental Biology, 2023, 226, .	0.8	0
3417	Eco-Oriented Formulation and Stabilization of Oil–Colloidal Biodelivery Systems Based on GC-MS/MS-Profiled Phytochemicals from Wild Tomato for Long-Term Retention and Penetration on Applied Surfaces for Effective Crop Protection. Journal of Agricultural and Food Chemistry, 2023, 71, 3719-3731.	2.4	3
3418	Patterns of Plant Taxonomic, Life-Form and Phylogenetic Diversity at a Treeline Ecotone in Northwestern Himalaya: Role of Aspect and Elevation. , 2023, , 205-245.		0

#	Article	IF	CITATIONS
3419	Potential effects of future climate change on global reptile distributions and diversity. Clobal Ecology and Biogeography, 2023, 32, 519-534.	2.7	3
3420	The genomic and epigenetic footprint of local adaptation to variable climates in kiwifruit. Horticulture Research, 2023, 10, .	2.9	3
3421	More warmâ€ a dapted species in soil seed banks than in herb layer plant communities across Europe. Journal of Ecology, 2023, 111, 1009-1020.	1.9	2
3422	Decoupling pioneering traits from latitudinal patterns in a north American bird experiencing a southward range shift. Journal of Animal Ecology, 2023, 92, 1149-1160.	1.3	5
3423	Predicting how climate change and globally invasive piscivorous fishes will interact to threaten populations of endemic fishes in a freshwater biodiversity hotspot. Biological Invasions, 2023, 25, 1907-1920.	1.2	4
3424	Environmental DNA metabarcoding describes biodiversity across marine gradients. ICES Journal of Marine Science, 2023, 80, 953-971.	1.2	2
3425	Linking Histone Methylation States and hsp Transcriptional Regulation in Thermo-Tolerant and Thermo-Susceptible A. mellifera L. Subspecies in Response to Heat Stress. Insects, 2023, 14, 225.	1.0	4
3426	MaxEnt Modeling for Predicting the Potential Wintering Distribution of Eurasian Spoonbill (Platalea) Tj ETQq1 1	0.784314 1.0	rgBT /Over
3427	Machine learning methods reveal processes affecting abundance at multiple scales. A commentary on â€~Global and regional drivers of abundance patterns in the hart's tongue fern complex (Aspleniaceae)'. Annals of Botany, 2023, 131, i-ii.	1.4	0
3428	Distinct responses and range shifts of lizard populations across an elevational gradient under climate change. Global Change Biology, 2023, 29, 2669-2680.	4.2	6
3429	New Horizons in Plant Photoperiodism. Annual Review of Plant Biology, 2023, 74, 481-509.	8.6	12
3430	Current Symptoms of Climate Change in Boreal Forest Trees and Wildlife. Advances in Global Change Research, 2023, , 747-771.	1.6	1
3431	Anthropogenically-induced range expansion as an invasion front in native species: An example in North American flying squirrels. Frontiers in Ecology and Evolution, 0, 11, .	1.1	2
3432	Protected areas not likely to serve as steppingstones for species undergoing climateâ€induced range shifts. Global Change Biology, 2023, 29, 2681-2696.	4.2	17
3433	Mountain Hare Lepus timidus Linnaeus, 1758. Handbook of the Mammals of Europe, 2022, , 1-29.	0.1	0
3434	Primeiro registro do catatau, Campylorhynchus turdinus (Wied, 1831) (aves: Troglodytidae), no estado de Santa Catarina, Brasil. , 2023, 2, 84-87.		0
3435	Lags in the response of plant assemblages to global warming depends on temperatureâ€change velocity. Global Ecology and Biogeography, 2023, 32, 719-733.	2.7	2
3436	A rapid transition from spruce-fir to pine-broadleaf forests in response to disturbances and climate warming on the southeastern Qinghai-Tibet Plateau. Plant Diversity, 2023, , .	1.8	3

#	Article	IF	CITATIONS
3437	The role of climate change and niche shifts in divergent range dynamics of a sister-species pair. , 0, 3, .		4
3438	Facilitated Adaptation as A Conservation Tool in the Present Climate Change Context: A Methodological Guide. Plants, 2023, 12, 1258.	1.6	1
3439	Global warming leads to habitat loss and genetic erosion of alpine biodiversity. Journal of Biogeography, 2023, 50, 961-975.	1.4	7
3441	Bacterial diversity and coâ€occurrence patterns differ across a worldâ€wide spatial distribution of habitats in glacier ecosystems. Functional Ecology, 2023, 37, 1520-1535.	1.7	2
3442	Multiscale ecological niche modeling exhibits varying climate change impacts on habitat suitability of Madrean Pine-Oak trees. Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
3443	Red-listed plants are contracting their elevational range faster than common plants in the European Alps. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
3444	Building a mechanistic understanding of climate-driven elevational shifts in birds. , 2023, 2, e0000174.		2
3445	Potentially suitable habitat prediction of Pinus massoniana Lamb. in China under climate change using Maxent model. Frontiers in Forests and Global Change, 0, 6, .	1.0	3
3446	Mapping nationally and globally at-risk species to identify hotspots for (and gaps in) conservation. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	3
3448	Evolutionary responses of energy metabolism, development, and reproduction to artificial selection for increasing heat tolerance in <i>Drosophila subobscura</i> . Evolution; International Journal of Organic Evolution, 2023, 77, 509-518.	1.1	2
3449	Accelerating global mountain forest loss threatens biodiversity hotspots. One Earth, 2023, 6, 303-315.	3.6	7
3450	Habitat changes and catch rate variability for greater amberjack in the Taiwan Strait: The effects of El Niño–southern oscillation events. Frontiers in Marine Science, 0, 10, .	1.2	4
3451	Predicting the Potential Distribution of the Endangered Plant Eucommia ulmoides in China under the Background of Climate Change. Sustainability, 2023, 15, 5349.	1.6	2
3452	Poleward shifts and altered periodicity in boreal bird irruptions over six decades. Journal of Animal Ecology, 0, , .	1.3	1
3453	Widespread gene flow following range expansion in Anna's Hummingbird. Molecular Ecology, 2023, 32, 3089-3101.	2.0	3
3454	Patterns of host–parasite coinvasion promote enemy release and specialist parasite spillover. Journal of Animal Ecology, 2023, 92, 1029-1041.	1.3	0
3455	Prediction of the Potential Distribution of the Endangered Species Meconopsis punicea Maxim under Future Climate Change Based on Four Species Distribution Models. Plants, 2023, 12, 1376.	1.6	3
3456	Rapid expansion of the golden jackal in Greece: research, management and conservation priorities. Endangered Species Research, 2023, 51, 1-13.	1.2	1

#	Article	IF	CITATIONS
3457	Extreme shifts in habitat suitability under contemporary climate change for a high-Arctic herbivore. Climatic Change, 2023, 176, .	1.7	0
3458	Predicting Distribution and Range Dynamics of Three Threatened Cypripedium Species under Climate Change Scenario in Western Himalaya. Forests, 2023, 14, 633.	0.9	6
3459	A metricâ€based framework for climateâ€smart conservation planning. Ecological Applications, 2023, 33, .	1.8	9
3460	Widespread latitudinal asymmetry in the performance of marginal populations: A metaâ€analysis. Global Ecology and Biogeography, 2023, 32, 842-854.	2.7	1
3461	Precipitation buffers temperatureâ€driven local extinctions of moths at warm range margins. Ecology Letters, 2023, 26, 805-815.	3.0	6
3462	Factors affecting recent population decline and range contraction of the greater long-tailed hamster in China. Wildlife Research, 2024, 51, .	0.7	1
3463	A regional integrated assessment of the impacts of climate change and of the potential adaptation avenues for Quebec's forests. Canadian Journal of Forest Research, 2023, 53, 556-578.	0.8	3
3464	Does adding community science observations to museum records improve distribution modeling of a rare endemic plant?. Ecosphere, 2023, 14, .	1.0	8
3465	Plant functional traits predict heterogeneous distributional shifts in response to climate change. Functional Ecology, 0, , .	1.7	2
3467	Longâ€ŧerm increase in female body condition and its effect on reproduction in two European redâ€isted species, Common Pochard (<i>Aythya ferina</i>) and Tufted Duck (<i>Aythya fuligula</i>). Ibis, 0, , .	1.0	Ο
3468	Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Tropical Medicine and Infectious Disease, 2023, 8, 187.	0.9	3
3469	Warmer and more seasonal climates reduce the effect of topâ€down population control: An example with aphids and ladybirds. Functional Ecology, 0, , .	1.7	Ο
3470	Potential role of the seed bank in spreading invasive plants in a tundra-edge environment. Botany, 0, , .	0.5	0
3471	Clustering future scenarios based on predicted range maps. Methods in Ecology and Evolution, 2023, 14, 1346-1360.	2.2	0
3472	Climate Change: Anticipating and Adapting to the Impacts on Terrestrial Species. , 2024, , 642-666.		0
3473	Potential Westward Spread of Emerald Ash Borer, Agrilus planipennis Fairmaire, 1888 (Coleoptera:) Tj ETQq1 1	0.784314	rgBT /Overloc
3474	Drivers of strong isolation and small effective population size at a leading range edge of a widespread plant. Heredity, 2023, 130, 347-357.	1.2	2
3475	Largeâ€scale longâ€term passiveâ€acoustic monitoring reveals spatioâ€temporal activity patterns of boreal bats. Ecography, 2023, 2023, .	2.1	5

#	Article	IF	CITATIONS
3476	Mapping the habitat suitability of endemic and sub-endemic almond species in Iran under current and future climate conditions. Environment, Development and Sustainability, 0, , .	2.7	2
3477	Consequences of climate-induced range expansions on multiple ecosystem functions. Communications Biology, 2023, 6, .	2.0	1
3478	Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. Environmental Evidence, 2023, 12, .	1.1	10
3479	Negative outcomes of novel trophic interactions along mangrove range edges. Ecology, 2023, 104, .	1.5	1
3480	Climate change, wildfire, and past forest management challenge conservation of Canada lynx in Washington, USA. Journal of Wildlife Management, 2023, 87, .	0.7	2
3481	Achieving conservation targets by jointly addressing climate change and biodiversity loss. Ecosphere, 2023, 14, .	1.0	2
3482	Current distribution of two species of Chinese macaques (<i>Macaca arctoides</i> and <i>Macaca) Tj ETQq0 0 C of Primatology, 2023, 85, .</i>	0 rgBT /Ove 0.8	erlock 10 Tf 5 2
3483	Using mechanistic insights to predict the climateâ€induced expansion of a key aquatic predator. Ecological Monographs, 2023, 93, .	2.4	0
3484	Predicting the suitable habitats of <i>Elwendia persica</i> in the Indian Himalayan Region (IHR). Plant Biosystems, 2023, 157, 769-778.	0.8	0
3485	Carbon stock and uptake in the high-elevation tropical montane forests of the threatened Atlantic Forest hotspot: Ecosystem function and effects of elevation variation. Science of the Total Environment, 2023, 882, 163503.	3.9	4
3486	Pattern and drivers of danaine butterfly migration in Southern India: implications for conservation. Journal of Insect Conservation, 0, , .	0.8	1
3487	Divergent vegetation variation and the response to extreme climate events in the National Nature Reserves in Southwest China, 1961–2019. Ecological Indicators, 2023, 150, 110247.	2.6	3
3488	Littleseed canarygrass (<i>Phalaris minor</i> Retz.) a major weed of rice-wheat system in India is predicted to experience range contraction under future climate. International Journal of Pest Management, 0, , 1-12.	0.9	0
3489	Applications of environmental DNA (eDNA) to detect subterranean and aquatic invasive species: A critical review on the challenges and limitations of eDNA metabarcoding. Environmental Advances, 2023, 12, 100370.	2.2	10
3490	Integrating presenceâ€only and presence–absence data to model changes in species geographic ranges: An example in the Neotropics. Journal of Biogeography, 2023, 50, 1561-1575.	1.4	3
3491	Southernmost occurrence of <i>Gobiosoma hemigymnum</i> (Eigenmann & Eigenmann, 1888) on salt marshes of the Bahia Blanca estuary, Argentina: an unusual finding. Journal of the Marine Biological Association of the United Kingdom, 2023, 103, .	0.4	0
3492	Sedimentary organic molecular compositions reveal the influence of glacier retreat on ecology on the Tibetan Plateau. Science of the Total Environment, 2023, 882, 163629.	3.9	4
3495	Spatial non-stationarity effect of determinants regulates variation in amphibian species richness. Ecological Indicators, 2023, 150, 110268.	2.6	0

#	Article	IF	CITATIONS
3496	Temperature Induced Flowering Phenology of Olea ferruginea Royle: A Climate Change Effect. Sustainability, 2023, 15, 6936.	1.6	2
3497	Physiological responses of cooccurring intertidal limpets (Cellana spp.) to acute and repeated heat stress. Journal of Experimental Marine Biology and Ecology, 2023, 565, 151912.	0.7	1
3514	Detailed Evaluation of Ciant Panda Habitats and Countermeasures Against the Future Impacts of Climate. , 2023, , 305-362.		0
3530	Mountain Hare Lepus timidus Linnaeus, 1758. Handbook of the Mammals of Europe, 2023, , 191-219.	0.1	1
3536	Fifteen research needs for understanding climate change impacts on ecosystems and society in the Norwegian High North. Ambio, 0, , .	2.8	0
3541	Plants' Anatomical and Genetic Responses to Anthropogenic Climate Change and Human-Induced Activities. , 2023, , 403-441.		0
3558	Application of Species Distribution Modeling for Conservation and Restoration of Forest Ecosystems. , 2023, , 249-264.		0
3559	Soil Microflora and Their Interaction with Plants Under Changing Climatic Scenarios. Rhizosphere Biology, 2023, , 19-40.	0.4	0
3584	Climate Change Impacts on Mountain Birds. , 2023, , 215-259.		0
3585	Population Trends of Mountain Birds in Europe and North America. , 2023, , 176-214.		0
3604	Climate Change and Health in the Tropics: Current Status and Future Trends. , 2024, , 33-42.		0
3612	Going up the Andes: patterns and drivers of non-native plant invasions across latitudinal and elevational gradients. Biodiversity and Conservation, 0, , .	1.2	0
3631	Climate change and multiple stressors. , 2024, , 261-283.		0
3656	Upslope migration is slower in insects that depend on metabolically demanding flight. Nature Climate Change, 2023, 13, 1063-1066.	8.1	0
3675	Climate Change and Extinctions. , 2024, , 324-330.		0
3681	Climate Change: Adapting for Resilience. , 2023, , 287-321.		0
3682	Disturbances and Disturbance Regimes. , 2023, , 55-83.		0
3691	Latitudinal and Elevational Range Shifts Under Contemporary Climate Change. , 2024, , 690-709.		0

#	Article	IF	CITATIONS
3704	Temperate forests. , 2024, , 177-202.		0
3758	The potential environmental and climate impacts of stratospheric aerosol injection: a review. Environmental Science Atmospheres, 2024, 4, 114-143.	0.9	0
3773	Land degradation and drought in mountains. , 2024, , 17-22.		0
3782	The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. Natural Products and Bioprospecting, 2024, 14, .	2.0	Ο
3789	6. Naturbegriffe und NaturverhÃlanisse. Edition Transcript, 2024, , 147-170.	0.0	0
3790	2. Im Anthropozä. Edition Transcript, 2024, , 43-64.	0.0	о
3791	9. Intrinsische Werte. Edition Transcript, 2024, , 213-232.	0.0	0
3792	7. Tiere und Menschen. Edition Transcript, 2024, , 171-186.	0.0	Ο
3797	12. Insektensterben. Edition Transcript, 2024, , 291-316.	0.0	0
3798	11. Evolution. Edition Transcript, 2024, , 263-290.	0.0	0
3799	5. Land als biotische Gemeinschaft. Edition Transcript, 2024, , 111-146.	0.0	0
3800	4. Gesichter der Biodiversitä Edition Transcript, 2024, , 83-110.	0.0	Ο
3802	1. KÃfer an Flussufern. Edition Transcript, 2024, , 31-42.	0.0	0
3803	14. Konviviale Lebensformen. Edition Transcript, 2024, , 345-370.	0.0	0
3804	10. Nichtwissen. Edition Transcript, 2024, , 233-262.	0.0	0
3805	8. Grenzen anthropozentrischer Umweltethiken. Edition Transcript, 2024, , 187-212.	0.0	0
3807	3. GefÃ ¤ rdete Vielfalt. Edition Transcript, 2024, , 65-82.	0.0	0
3808	13. Eine Ethik der Achtung. Edition Transcript, 2024, , 317-344.	0.0	0

ARTICLE

IF CITATIONS