Evolution and classification of the CRISPRâ ${\ensuremath{\mathbb C}}^*{\ensuremath{\mathsf{Cas}}}$ system

Nature Reviews Microbiology 9, 467-477 DOI: 10.1038/nrmicro2577

Citation Report

#	Article	IF	CITATIONS
1	Proxy Votes in Elections at the Royal Medical Benevolent College. BMJ: British Medical Journal, 1857, s4-1, 447-447.	2.4	0
2	The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39, 9275-9282.	6.5	701
3	Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microbial Cell Factories, 2011, 10, S20.	1.9	196
5	Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO Journal, 2011, 30, 4616-4627.	3.5	122
6	CRISPR-based adaptive immune systems. Current Opinion in Microbiology, 2011, 14, 321-327.	2.3	358
7	Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends in Microbiology, 2011, 19, 549-556.	3.5	96
8	Short communication: The complete genome sequence of Bifidobacterium animalis subspecies animalis ATCC 25527T and comparative analysis of growth in milk with B. animalis subspecies lactis DSM 10140T. Journal of Dairy Science, 2011, 94, 5864-5870.	1.4	10
9	Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiology Reviews, 2011, 35, 957-976.	3.9	517
10	CRISPR loci reveal networks of gene exchange in archaea. Biology Direct, 2011, 6, 65.	1.9	52
11	CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics, 2011, 45, 273-297.	3.2	747
12	Helicase dissociation and annealing of RNA-DNA hybrids by <i>Escherichia coli</i> Cas3 protein. Biochemical Journal, 2011, 439, 85-95.	1.7	56
13	Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6, 38.	1.9	379
14	Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems. Journal of Bacteriology, 2011, 193, 6039-6056.	1.0	358
15	Structural and Biochemical Analysis of Nuclease Domain of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated Protein 3 (Cas3). Journal of Biological Chemistry, 2011, 286, 31896-31903.	1.6	110
16	High-temperature protein G is essential for activity of the <i>Escherichia coli</i> clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20136-20141.	3.3	94
17	Complete Genome Sequence of the Denitrifying and N ₂ O-Reducing Bacterium Pseudogulbenkiania sp. Strain NH8B. Journal of Bacteriology, 2011, 193, 6395-6396.	1.0	15
18	Acquired Antibiotic Resistance Genes: An Overview. Frontiers in Microbiology, 2011, 2, 203.	1.5	506
19	Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 21218-21222.	3.3	181

2

#	Article	IF	CITATIONS
20	Impact of Small Repeat Sequences on Bacterial Genome Evolution. Genome Biology and Evolution, 2011, 3, 959-973.	1.1	72
21	Persisting Viral Sequences Shape Microbial CRISPR-based Immunity. PLoS Computational Biology, 2012, 8, e1002475.	1.5	136
22	Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO Journal, 2012, 31, 2824-2832.	3.5	90
23	Function and Regulation of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / CRISPR Associated (Cas) Systems. Viruses, 2012, 4, 2291-2311.	1.5	119
24	CRISPR/cas Loci of Type II Propionibacterium acnes Confer Immunity against Acquisition of Mobile Elements Present in Type I P. acnes. PLoS ONE, 2012, 7, e34171.	1.1	64
25	Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa. Molecular and Cellular Proteomics, 2012, 11, 1430-1441.	2.5	74
26	TIGRFAMs and Genome Properties in 2013. Nucleic Acids Research, 2012, 41, D387-D395.	6.5	484
27	Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis. Nucleic Acids Research, 2012, 40, 9887-9896.	6.5	109
28	Non-coding RNA and its potential role in Mycobacterium tuberculosis pathogenesis. RNA Biology, 2012, 9, 427-436.	1.5	107
29	Viral Diversity Threshold for Adaptive Immunity in Prokaryotes. MBio, 2012, 3, e00456-12.	1.8	114
30	Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. Rna, 2012, 18, 661-672.	1.6	133
31	The flexible gene pool of <i><i>Propionibacterium acnes</i></i> . Mobile Genetic Elements, 2012, 2, 145-148.	1.8	28
32	Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2579-86.	3.3	2,217
33	Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs. Journal of Virology, 2012, 86, 5562-5573.	1.5	107
34	Silicon dreams of cells into symbols. Nature Biotechnology, 2012, 30, 838-840.	9.4	10
35	Genome Sequence of the Mesophilic Thermotogales Bacterium Mesotoga prima MesC1.Ag.4.2 Reveals the Largest Thermotogales Genome To Date. Genome Biology and Evolution, 2012, 4, 812-820.	1.1	24
37	The immune system of halophilic archaea. Mobile Genetic Elements, 2012, 2, 228-232.	1.8	18
39	A genome-wide view of the expression and processing patterns of Thermus thermophilus HB8 CRISPR RNAs. Rna, 2012, 18, 783-794.	1.6	36

#	Article	IF	CITATIONS
40	An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA. Journal of Biological Chemistry, 2012, 287, 33351-33363.	1.6	110
41	Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis. PLoS ONE, 2012, 7, e51663.	1.1	71
42	Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications. Current Protein and Peptide Science, 2012, 13, 699-722.	0.7	197
43	Substrate Generation for Endonucleases of CRISPR/Cas Systems. Journal of Visualized Experiments, 2012, , .	0.2	1
44	Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT). Standards in Genomic Sciences, 2012, 7, 91-106.	1.5	55
45	Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T). Standards in Genomic Sciences, 2012, 6, 1-14.	1.5	30
46	Evolution of microbes and viruses: a paradigm shift in evolutionary biology?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 119.	1.8	119
47	Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Scientific Reports, 2012, 2, 696.	1.6	111
48	Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information. Virology, 2012, 434, 202-209.	1.1	188
49	Selective and hyperactive uptake of foreign DNA by adaptive immune systems of an archaeon via two distinct mechanisms. Molecular Microbiology, 2012, 85, 1044-1056.	1.2	134
50	Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Research, 2012, 40, 5569-5576.	6.5	593
51	Nucleic acid binding surface and dimer interface revealed by CRISPRâ€associated CasB protein structures. FEBS Letters, 2012, 586, 3956-3961.	1.3	17
52	Barriers to Horizontal Gene Transfer in Campylobacter jejuni. Advances in Applied Microbiology, 2012, 79, 19-42.	1.3	20
53	CRISPR: A Bacterial Immunity System Based on Small RNAs. , 2012, , 121-143.		1
54	Small RNAs in streptococci. RNA Biology, 2012, 9, 414-426.	1.5	25
55	RNA processing in the minimal organism Nanoarchaeum equitans. Genome Biology, 2012, 13, R63.	13.9	62
56	CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during InÂVivo Bacterial Infection. Cell Host and Microbe, 2012, 12, 177-186.	5.1	284
57	Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. Journal of Biotechnology, 2012, 161, 153-166.	1.9	85

#	Article	IF	CITATIONS
58	The Bacterial CRISPR/Cas System as Analog of the Mammalian Adaptive Immune System. RNA Biology, 2012, 9, 549-554. Cangene Gold Medal Award LectureÅa€" Genomic analysis and modification of Burkholderia	1.5	23
59	cepaciacomplex bacteriophages1This article is based on a presentation by Dr. Karlene Lynch at the 61st Annual Meeting of the Canadian Society of Microbiologists in St.ÂJohn's, Newfoundland and Labrador, on 21ÂJune 2011. Dr. Lynch was the recipient of the 2011 Cangene Gold Medal as the Canadian Graduate Student Microbiologist of the Year, an annual award sponsored by Cangene Corporation intended to	0.8	7
60	Double-stranded Endonuclease Activity in Bacillus halodurans Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Cas2 Protein. Journal of Biological Chemistry, 2012, 287, 35943-35952.	1.6	78
61	Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs. Briefings in Functional Genomics, 2012, 11, 277-288.	1.3	13
62	Cascade-mediated binding and bending of negatively supercoiled DNA. RNA Biology, 2012, 9, 1134-1138.	1.5	37
63	RNA-mediated programmable DNA cleavage. Nature Biotechnology, 2012, 30, 836-838.	9.4	52
64	Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nature Communications, 2012, 3, 945.	5.8	490
65	Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases. Rna, 2012, 18, 2020-2028.	1.6	80
66	Cyanobacterial life at low O ₂ : community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. Geobiology, 2012, 10, 250-267.	1.1	57
67	Tuning in to Interference: R-Loops and Cascade Complexes in CRISPR Immunity. Journal of Molecular Biology, 2012, 422, 607-616.	2.0	28
68	Essential Features and Rational Design of CRISPR RNAs that Function with the Cas RAMP Module Complex to Cleave RNAs. Molecular Cell, 2012, 45, 292-302.	4.5	275
69	The crystal structure of the CRISPR-associated protein Csn2 from Streptococcus agalactiae. Journal of Structural Biology, 2012, 178, 350-362.	1.3	24
70	Nature and Intensity of Selection Pressure on CRISPR-Associated Genes. Journal of Bacteriology, 2012, 194, 1216-1225.	1.0	90
71	Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus. Nucleic Acids Research, 2012, 40, 2470-2480.	6.5	70
72	An Evolutionary Link between Natural Transformation and CRISPR Adaptive Immunity. MBio, 2012, 3, .	1.8	70
73	Antibiotic resistance plasmids spread among natural isolates of Escherichia coli in spite of CRISPR elements. Microbiology (United Kingdom), 2012, 158, 2997-3004.	0.7	67
74	CRISPR Immunity Relies on the Consecutive Binding and Degradation of Negatively Supercoiled Invader DNA by Cascade and Cas3. Molecular Cell, 2012, 46, 595-605.	4.5	475
75	Mechanism of Foreign DNA Selection in a Bacterial Adaptive Immune System. Molecular Cell, 2012, 46, 606-615.	4.5	229

#	Article	IF	CITATIONS
76	Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 2012, 13, 144.	1.2	88
77	Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics, 2012, 13, 533.	1.2	144
78	Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics, 2012, 13, 613.	1.2	52
79	Genome-guided analysis of physiological and morphological traits of the fermentative acetate oxidizer Thermacetogenium phaeum. BMC Genomics, 2012, 13, 723.	1.2	64
80	Does the central dogma still stand?. Biology Direct, 2012, 7, 27.	1.9	49
81	Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes. Biology Direct, 2012, 7, 40.	1.9	119
82	The highly dynamic CRISPR1 system of <i>Streptococcus agalactiae</i> controls the diversity of its mobilome. Molecular Microbiology, 2012, 85, 1057-1071.	1.2	153
83	The genome of the ammoniaâ€oxidizing <i><scp>C</scp>andidatus</i> <scp>N</scp> itrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environmental Microbiology, 2012, 14, 3122-3145.	1.8	332
84	Small RNAs for defence and regulation in archaea. Extremophiles, 2012, 16, 685-696.	0.9	37
85	Genetic engineering of Mycobacterium tuberculosis: A review. Tuberculosis, 2012, 92, 365-376.	0.8	15
86	In Vivo Protein Interactions and Complex Formation in the Pectobacterium atrosepticum Subtype I-F CRISPR/Cas System. PLoS ONE, 2012, 7, e49549.	1.1	69
87	The CRISPRs, They Are A-Changin': How Prokaryotes Generate Adaptive Immunity. Annual Review of Genetics, 2012, 46, 311-339.	3.2	260
88	Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System. Structure, 2012, 20, 1574-1584.	1.6	192
89	Defense Systems Up: Structure of Subtype I-C/Dvulg CRISPR/Cas. Structure, 2012, 20, 1450-1452.	1.6	3
90	Experimental Definition of a Clustered Regularly Interspaced Short Palindromic Duplicon in Escherichia coli. Journal of Molecular Biology, 2012, 423, 14-16.	2.0	46
91	CRISPR-Cas, a Prokaryotic Adaptive Immune System, in Endodontic, Oral, and Multidrug-resistant Hospital-acquired Enterococcus faecalis. Journal of Endodontics, 2012, 38, 1511-1515.	1.4	44
92	Role of CRISPR/cas System in the Development of Bacteriophage Resistance. Advances in Virus Research, 2012, 82, 289-338.	0.9	28
93	Propionibacterium acnes Bacteriophages Display Limited Genetic Diversity and Broad Killing Activity against Bacterial Skin Isolates. MBio, 2012, 3, .	1.8	89

#	Article	IF	CITATIONS
94	CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science and Technology, 2012, 3, 143-162.	5.1	162
95	A Single Promoter Inversion Switches <i>Photorhabdus</i> Between Pathogenic and Mutualistic States. Science, 2012, 337, 88-93.	6.0	114
96	Insights into the CRISPR/Cas system of Gardnerella vaginalis. BMC Microbiology, 2012, 12, 301.	1.3	31
97	Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus. PLoS ONE, 2012, 7, e38077.	1.1	88
98	Cleavage of Phage DNA by the Streptococcus thermophilus CRISPR3-Cas System. PLoS ONE, 2012, 7, e40913.	1.1	96
99	The Success of Acinetobacter Species; Genetic, Metabolic and Virulence Attributes. PLoS ONE, 2012, 7, e46984.	1.1	165
100	Target Motifs Affecting Natural Immunity by a Constitutive CRISPR-Cas System in Escherichia coli. PLoS ONE, 2012, 7, e50797.	1.1	54
101	Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum. Frontiers in Microbiology, 2012, 3, 251.	1.5	28
102	Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPRâ€mediated bacterial immunity. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2573-2582.	1.5	29
103	Intricate Interactions between the Bloom-Forming Cyanobacterium Microcystis aeruginosa and Foreign Genetic Elements, Revealed by Diversified Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Signatures. Applied and Environmental Microbiology, 2012, 78, 5353-5360.	1.4	63
104	RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482, 331-338.	13.7	1,584
106	Characterization of the CRISPR/Cas Subtype I-A System of the Hyperthermophilic Crenarchaeon Thermoproteus tenax. Journal of Bacteriology, 2012, 194, 2491-2500.	1.0	98
107	Genome Sequencing of a Genetically Tractable Pyrococcus furiosus Strain Reveals a Highly Dynamic Genome. Journal of Bacteriology, 2012, 194, 4097-4106.	1.0	50
108	Comparative genomic structures of <i>Mycobacterium</i> CRISPR as. Journal of Cellular Biochemistry, 2012, 113, 2464-2473.	1.2	42
109	Structure and Mechanism of the CMR Complex for CRISPR-Mediated Antiviral Immunity. Molecular Cell, 2012, 45, 303-313.	4.5	279
110	A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 2012, 337, 816-821.	6.0	12,811
111	Crystal structure of Cmr2 suggests a nucleotide cyclaseâ€related enzyme in type III CRISPR as systems. FEBS Letters, 2012, 586, 939-945.	1.3	50
112	Structure of the Cmr2 Subunit of the CRISPR-Cas RNA Silencing Complex. Structure, 2012, 20, 545-553.	1.6	69

#	Article	IF	CITATIONS
113	The rise and fall of CRISPRs – dynamics of spacer acquisition and loss. Molecular Microbiology, 2012, 85, 1021-1025.	1.2	26
114	CRISPR adaptive immunity systems of prokaryotes. Molecular Biology, 2012, 46, 175-182.	0.4	6
115	Prokaryotic systematics in the genomics era. Antonie Van Leeuwenhoek, 2012, 101, 21-34.	0.7	41
116	Metagenomic analysis of hadopelagic microbial assemblages thriving at the deepest part of Mediterranean Sea, Matapanâ€Vavilov Deep. Environmental Microbiology, 2013, 15, 167-182.	1.8	64
117	Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing. Biology Direct, 2013, 8, 15.	1.9	221
118	Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park. Biology Direct, 2013, 8, 9.	1.9	102
119	A virocentric perspective on the evolution of life. Current Opinion in Virology, 2013, 3, 546-557.	2.6	198
121	Novel configurations of type I and II CRISPR–Cas systems in Corynebacterium diphtheriae. Microbiology (United Kingdom), 2013, 159, 2118-2126.	0.7	31
122	Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31, 681-683.	9.4	618
124	Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology, 2013, 11, 675-687.	13.6	572
124 125	Revenge of the phages: defeating bacterial defences. Nature Reviews Microbiology, 2013, 11, 675-687. Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , .	13.6 0.1	572 2
	Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria.		
125	Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , .	0.1	2
125 126	Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , . The double-edged sword of CRISPR-Cas systems. Cell Research, 2013, 23, 15-17.	0.1 5.7	2 7
125 126 127	 Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , . The double-edged sword of CRISPR-Cas systems. Cell Research, 2013, 23, 15-17. Right of admission reserved, no matter the path. Trends in Microbiology, 2013, 21, 446-448. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochemical 	0.1 5.7 3.5	2 7 2
125 126 127 128	Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , . The double-edged sword of CRISPR-Cas systems. Cell Research, 2013, 23, 15-17. Right of admission reserved, no matter the path. Trends in Microbiology, 2013, 21, 446-448. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochemical and Biophysical Research Communications, 2013, 439, 132-136. Exploiting CRISPR/Cas: Interference Mechanisms and Applications. International Journal of Molecular	0.1 5.7 3.5 1.0	2 7 2 170
125 126 127 128 129	Genome-Wide Prediction and Analysis of Protein-Protein Functional Linkages in Bacteria. SpringerBriefs in Systems Biology, 2013, , . The double-edged sword of CRISPR-Cas systems. Cell Research, 2013, 23, 15-17. Right of admission reserved, no matter the path. Trends in Microbiology, 2013, 21, 446-448. Efficient isolation of specific genomic regions and identification of associated proteins by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR. Biochemical and Biophysical Research Communications, 2013, 439, 132-136. Exploiting CRISPR/Cas: Interference Mechanisms and Applications. International Journal of Molecular Sciences, 2013, 14, 14518-14531. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single	0.1 5.7 3.5 1.0 1.8	2 7 2 170 30

#	Article	IF	CITATIONS
133	Structure and Activity of the RNA-Targeting Type III-B CRISPR-Cas Complex of Thermus thermophilus. Molecular Cell, 2013, 52, 135-145.	4.5	212
134	CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 2013, 8, 2180-2196.	5.5	930
135	Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8, 2281-2308.	5.5	9,114
136	Genome as a stochastic evolutionary machine. Physics of Life Reviews, 2013, 10, 341-343.	1.5	2
137	Toroidal Structure and DNA Cleavage by the CRISPR-Associated [4Fe-4S] Cluster Containing Cas4 Nuclease SSO0001 from <i>Sulfolobus solfataricus</i> . Journal of the American Chemical Society, 2013, 135, 17476-17487.	6.6	52
138	Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies. Applied and Environmental Microbiology, 2013, 79, 6903-6910.	1.4	30
139	RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?. Trends in Microbiology, 2013, 21, 562-567.	3.5	61
140	A Ruler Protein in a Complex for Antiviral Defense Determines the Length of Small Interfering CRISPR RNAs. Journal of Biological Chemistry, 2013, 288, 27888-27897.	1.6	123
141	Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics, 2013, 14, 895.	1.2	51
142	The life history of <i>Lactobacillus acidophilus</i> as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiology Letters, 2013, 349, 77-87.	0.7	119
143	Life based on phosphite: a genome-guided analysis of Desulfotignum phosphitoxidans. BMC Genomics, 2013, 14, 753.	1.2	35
144	Bacterial Strain Typing. Clinics in Laboratory Medicine, 2013, 33, 629-650.	0.7	45
145	Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 172-179.	9.4	264
146	Postreplication targeting of transformants by bacterial immune systems?. Trends in Microbiology, 2013, 21, 516-521.	3.5	22
147	Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Marine Drugs, 2013, 11, 2894-2916.	2.2	112
148	Cas9 as a versatile tool for engineering biology. Nature Methods, 2013, 10, 957-963.	9.0	1,073
149	In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO Journal, 2013, 32, 385-394.	3.5	220
150	Characterization of CRISPR RNA Biogenesis and Cas6 Cleavage-Mediated Inhibition of a Provirus in the Haloarchaeon Haloferax mediterranei. Journal of Bacteriology, 2013, 195, 867-875.	1.0	37

		EPORT	
# 151	ARTICLE Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature, 2013, 493, 429-432.	IF 13.7	Citations
152	Multiplex Genome Engineering Using CRISPR/Cas Systems. Science, 2013, 339, 819-823.	6.0	12,725
153	RNA-Guided Human Genome Engineering via Cas9. Science, 2013, 339, 823-826.	6.0	8,009
154	Type II: Streptococcus thermophilus. , 2013, , 171-200.		1
155	Type III CRISPR-Cas Systems and the Roles of CRISPR-Cas in Bacterial Virulence. , 2013, , 201-219.		0
156	crRNA Biogenesis. , 2013, , 115-144.		5
157	Evolution and Classification of CRISPR-Cas Systems and Cas Protein Families. , 2013, , 61-91.		6
158	CRISPR-Cas Systems to Probe Ecological Diversity and Host–Viral Interactions. , 2013, , 221-250.		3
159	Regulation of CRISPR-Based Immune Responses. , 2013, , 93-113.		0
160	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		9
161	Occurrence, Diversity of CRISPR-Cas Systems and Genotyping Implications. , 2013, , 33-59.		1
162	Roles of CRISPR in Regulation of Physiological Processes. , 2013, , 251-266.		2
164	Cas3 stimulates runaway replication of a ColE1 plasmid in <i><i>Escherichia coli</i></i> and antagonises RNaseHI. RNA Biology, 2013, 10, 770-778.	1.5	13
165	Crystal structure and nucleic acidâ€binding activity of the CRISPRâ€associated protein Csx1 of <i>Pyrococcus furiosus</i> . Proteins: Structure, Function and Bioinformatics, 2013, 81, 261-270.	1.5	40
166	Crystal Structure of the Cmr2–Cmr3 Subcomplex in the CRISPR–Cas RNA Silencing Effector Complex. Journal of Molecular Biology, 2013, 425, 3811-3823.	2.0	38
167	Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci. Infection, Genetics and Evolution, 2013, 19, 212-218.	1.0	34
168	First indication for a functional CRISPR/Cas system in Francisella tularensis. International Journal of Medical Microbiology, 2013, 303, 51-60.	1.5	105
169	Same Same but Different: New Structural Insight into CRISPR-Cas Complexes. Molecular Cell, 2013, 52, 4-7.	4.5	11

#	Article	IF	Citations
170	Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System. Molecular Cell, 2013, 52, 146-152.	4.5	117
171	Structure of the CRISPR Interference Complex CSM Reveals Key Similarities with Cascade. Molecular Cell, 2013, 52, 124-134.	4.5	181
172	Diversity of CRISPR systems in the euryarchaeal Pyrococcales. RNA Biology, 2013, 10, 659-670.	1.5	10
173	Reassessment of the Listeria monocytogenespan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics, 2013, 14, 47.	1.2	212
174	Propionibacterium acnes Strain Populations in the Human Skin Microbiome Associated with Acne. Journal of Investigative Dermatology, 2013, 133, 2152-2160.	0.3	557
175	CRISPR as systems and RNAâ€guided interference. Wiley Interdisciplinary Reviews RNA, 2013, 4, 267-278.	3.2	168
176	Dogma Derailed: The Many Influences of RNA on the Genome. Molecular Cell, 2013, 49, 783-794.	4.5	153
177	Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell, 2013, 152, 1173-1183.	13.5	4,090
178	Conservation and Variability in the Structure and Function of the Cas5d Endoribonuclease in the CRISPR-Mediated Microbial Immune System. Journal of Molecular Biology, 2013, 425, 3799-3810.	2.0	35
179	RcsB-BglJ-mediated activation of Cascade operon does not induce the maturation of CRISPR RNAs in <i><i>E. coli</i></i> K12. RNA Biology, 2013, 10, 708-715.	1.5	9
180	Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nature Communications, 2013, 4, 1430.	5.8	180
181	A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature, 2013, 494, 489-491.	13.7	348
182	Bacteriophages in Food Fermentations: New Frontiers in a Continuous Arms Race. Annual Review of Food Science and Technology, 2013, 4, 347-368.	5.1	113
183	Structure of the Cmr2-Cmr3 Subcomplex of the Cmr RNA Silencing Complex. Structure, 2013, 21, 376-384.	1.6	42
184	crRNA and tracrRNA guide Cas9-mediated DNA interference in <i>Streptococcus thermophilus</i> . RNA Biology, 2013, 10, 841-851.	1.5	203
185	RNA-guided genome editing à la carte. Cell Research, 2013, 23, 733-734.	5.7	16
186	CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of <i> <i>Escherichia coli </i> . RNA Biology, 2013, 10, 792-802.</i>	1.5	123
187	Distribution and Mechanism of the Type I CRISPR-Cas Systems. , 2013, , 145-169.		5

	CITATION	Report	
#	Article	IF	CITATIONS
188	A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013, 497, 254-257.	13.7	395
189	Programmable plasmid interference by the CRISPR-Cas system in <i><i>Thermococcus kodakarensis</i></i> . RNA Biology, 2013, 10, 828-840.	1.5	34
190	CRISPRs of Enterococcus faecalis and E. hirae Isolates from Pig Feces Have Species-Specific Repeats But Share Some Common Spacer Sequences. Microbial Ecology, 2013, 66, 182-188.	1.4	8
191	The ring of confidence: a haloarchaeal CRISPR/Cas system. Biochemical Society Transactions, 2013, 41, 374-378.	1.6	13
192	CRISPR-mediated defense mechanisms in the hyperthermophilic archaeal genus <i><i>Sulfolobus</i></i> . RNA Biology, 2013, 10, 671-678.	1.5	21
193	CRISPR decoys. RNA Biology, 2013, 10, 694-699.	1.5	2
194	The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biology, 2013, 10, 726-737.	1.5	311
195	Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Research, 2013, 23, 465-472.	5.7	739
196	Essential requirements for the detection and degradation of invaders by the <i>Haloferax volcanii</i> CRISPR/Cas system I-B. RNA Biology, 2013, 10, 865-874.	1.5	59
197	CRISPR-Mediated Adaptive Immune Systems in Bacteria and Archaea. Annual Review of Biochemistry, 2013, 82, 237-266.	5.0	557
198	Two CRISPR-Cas systems in <i><i>Methanosarcina mazei</i></i> strain Gö1 display common processing features despite belonging to different types I and III. RNA Biology, 2013, 10, 779-791.	1.5	50
199	High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in <i>E. coli</i> . RNA Biology, 2013, 10, 716-725.	1.5	98
200	Evidence for the widespread distribution of CRISPR-Cas system in the Phylum <i>Cyanobacteria</i> . RNA Biology, 2013, 10, 687-693.	1.5	86
201	Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Research, 2013, 23, 720-723.	5.7	504
202	CRISPR-Cas systems preferentially target the leading regions of MOB _F conjugative plasmids. RNA Biology, 2013, 10, 749-761.	1.5	32
203	Emerging Tools for Synthetic Genome Design. Molecules and Cells, 2013, 35, 359-370.	1.0	17
204	Processing-Independent CRISPR RNAs Limit Natural Transformation in Neisseria meningitidis. Molecular Cell, 2013, 50, 488-503.	4.5	256
205	High-Resolution Transcriptome Maps Reveal Strain-Specific Regulatory Features of Multiple Campylobacter jejuni Isolates. PLoS Genetics, 2013, 9, e1003495.	1.5	260

#	Article	IF	CITATIONS
206	CRISPR-Cas and restriction–modification systems are compatible and increase phage resistance. Nature Communications, 2013, 4, 2087.	5.8	242
207	Bacterial sRNAs: Regulation in stress. International Journal of Medical Microbiology, 2013, 303, 217-229.	1.5	116
209	The basic building blocks and evolution of CRISPR–Cas systems. Biochemical Society Transactions, 2013, 41, 1392-1400.	1.6	157
211	In Vitro Reconstitution of an Escherichia coli RNA-guided Immune System Reveals Unidirectional, ATP-dependent Degradation of DNA Target. Journal of Biological Chemistry, 2013, 288, 22184-22192.	1.6	162
212	A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 207-226.	1.3	159
213	Complete Genome Sequence of Clostridium stercorarium subsp. <i>stercorarium</i> Strain DSM 8532, a Thermophilic Degrader of Plant Cell Wall Fibers. Genome Announcements, 2013, 1, e0007313.	0.8	18
214	Complete Genome Sequence of <i>Geobacillus</i> sp. Strain GHH01, a Thermophilic Lipase-Secreting Bacterium. Genome Announcements, 2013, 1, e0009213.	0.8	20
215	Complete Genome Sequence of Mannheimia haemolytica Strain 42548 from a Case of Bovine Respiratory Disease. Genome Announcements, 2013, 1, .	0.8	20
216	The CRISPR-Associated Gene <i>cas2</i> of Legionella pneumophila Is Required for Intracellular Infection of Amoebae. MBio, 2013, 4, e00074-13.	1.8	92
217	In defense of phage. RNA Biology, 2013, 10, 886-890.	1.5	19
217 218	In defense of phage. RNA Biology, 2013, 10, 886-890. Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844.	1.5 1.0	19 87
	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit		
218	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844. Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i>	1.0	87
218 219	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844. Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i> Biochemical Society Transactions, 2013, 41, 1422-1426. Requirements for a successful defence reaction by the CRISPR–Cas subtypeÂl-B system. Biochemical	1.0 1.6	87 28
218 219 220	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844. Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i> Biochemical Society Transactions, 2013, 41, 1422-1426. Requirements for a successful defence reaction by the CRISPR–Cas subtypeÂl-B system. Biochemical Society Transactions, 2013, 41, 1444-1448. CRISPR adaptation in <i>Escherichia coli</i> subtypel-E system. Biochemical Society Transactions, 2013,	1.0 1.6 1.6	87 28 15
218 219 220 221	Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844. Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i> Biochemical Society Transactions, 2013, 41, 1422-1426. Requirements for a successful defence reaction by the CRISPR–Cas subtypeÂI-B system. Biochemical Society Transactions, 2013, 41, 1442-1426. CRISPR adaptation in <i>Escherichia coli</i> subtypeI-E system. Biochemical Society Transactions, 2013, 41, 1444-1448. The subtypeÂI-F CRISPR–Cas system influences pathogenicity island retention in <i>Pectobacterium atrosepticum The subtypeÂI-F CRISPR–Cas system influences pathogenicity island retention in <i>Pectobacterium atrosepticum</i></i>	1.0 1.6 1.6 1.6	87 28 15 10
218 219 220 221 222	 Evolutionary Dynamics of the Prokaryotic Adaptive Immunity System CRISPR-Cas in an Explicit Ecological Context. Journal of Bacteriology, 2013, 195, 3834-3844. Hot and crispy: CRISPR–Cas systems in the hyperthermophile <i>Sulfolobus solfataricus</i>Biochemical Society Transactions, 2013, 41, 1422-1426. Requirements for a successful defence reaction by the CRISPR–Cas subtypeÂl-B system. Biochemical Society Transactions, 2013, 41, 1442-1426. CRISPR adaptation in <i>Escherichia coli</i> subtypel-E system. Biochemical Society Transactions, 2013, 41, 1444-1448. CRISPR adaptation in <i>Escherichia coli</i> subtypel-E system. Biochemical Society Transactions, 2013, 41, 1412-1415. The subtypeÂl-F CRISPR–Cas system influences pathogenicity island retention in <i>Pectobacterium atrosepticum</i> via crRNA generation and Csy complex formation. Biochemical Society Transactions, 2013, 41, 1468-1474. Solution properties of the archaeal CRISPR DNA repeat-binding homeodomain protein Cbp2. Nucleic 	1.0 1.6 1.6 1.6	 87 28 15 10 23

#	Article	IF	CITATIONS
226	The Cmr complex: an RNA-guided endoribonuclease. Biochemical Society Transactions, 2013, 41, 1464-1467.	1.6	5
227	Alternative Roles for CRISPR/Cas Systems in Bacterial Pathogenesis. PLoS Pathogens, 2013, 9, e1003621.	2.1	41
228	Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands. PLoS Genetics, 2013, 9, e1003454.	1.5	297
229	CRISPR interference: a structural perspective. Biochemical Journal, 2013, 453, 155-166.	1.7	113
230	Genomics and biology of Rudiviruses, a model for the study of virus–host interactions in Archaea. Biochemical Society Transactions, 2013, 41, 443-450.	1.6	37
231	The RNA- and DNA-targeting CRISPR–Cas immune systems of <i>Pyrococcus furiosus</i> . Biochemical Society Transactions, 2013, 41, 1416-1421.	1.6	31
232	Electron microscopy studies of TypeÂIII CRISPR machines in <i>Sulfolobus solfataricus</i> . Biochemical Society Transactions, 2013, 41, 1427-1430.	1.6	2
233	Dealing with the Evolutionary Downside of CRISPR Immunity: Bacteria and Beneficial Plasmids. PLoS Genetics, 2013, 9, e1003844.	1.5	227
234	A Guide RNA Sequence Design Platform for the CRISPR/Cas9 System for Model Organism Genomes. BioMed Research International, 2013, 2013, 1-4.	0.9	62
235	New Group in the Leptospirillum Clade: Cultivation-Independent Community Genomics, Proteomics, and Transcriptomics of the New Species "Leptospirillum Group IV UBA BS― Applied and Environmental Microbiology, 2013, 79, 5384-5393.	1.4	49
236	Programmable DNA cleavage <i>inÂvitro</i> by Cas9. Biochemical Society Transactions, 2013, 41, 1401-1406.	1.6	25
237	Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition. PLoS Genetics, 2013, 9, e1003742.	1.5	187
238	Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile. PLoS Genetics, 2013, 9, e1003493.	1.5	239
239	Structure of a dimeric crenarchaeal Cas6 enzyme with an atypical active site for CRISPR RNA processing. Biochemical Journal, 2013, 452, 223-230.	1.7	32
240	Sequence Analysis of the Cas2 Gene in <i>Riemerella anatipestifer</i> . Advanced Materials Research, 2013, 647, 570-576.	0.3	2
241	Variation of the Virus-Related Elements within Syntenic Genomes of the Hyperthermophilic Archaeon Aeropyrum. Applied and Environmental Microbiology, 2013, 79, 5891-5898.	1.4	3
242	Comparative analysis of Cas6b processing and CRISPR RNA stability. RNA Biology, 2013, 10, 700-707.	1.5	22
243	The Evolutionary Divergence of Shiga Toxin-Producing Escherichia coli Is Reflected in Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Spacer Composition. Applied and Environmental Microbiology, 2013, 79, 5710-5720.	1.4	74

#	Article	IF	CITATIONS
244	Degeneration of a CRISPR/Cas system and its regulatory target during the evolution of a pathogen. RNA Biology, 2013, 10, 1618-1622.	1.5	14
245	Comparative Genomic Analysis of Phylogenetically Closely Related Hydrogenobaculum sp. Isolates from Yellowstone National Park. Applied and Environmental Microbiology, 2013, 79, 2932-2943.	1.4	39
246	Crass: identification and reconstruction of CRISPR from unassembled metagenomic data. Nucleic Acids Research, 2013, 41, e105-e105.	6.5	146
247	Massive Activation of Archaeal Defense Genes during Viral Infection. Journal of Virology, 2013, 87, 8419-8428.	1.5	84
248	CRISPR Regulation of Intraspecies Diversification by Limiting IS Transposition and Intercellular Recombination. Genome Biology and Evolution, 2013, 5, 1099-1114.	1.1	38
249	Complete Genomes of Two Dipteran-Associated Spiroplasmas Provided Insights into the Origin, Dynamics, and Impacts of Viral Invasion in Spiroplasma. Genome Biology and Evolution, 2013, 5, 1151-1164.	1.1	75
250	Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags. Rna, 2013, 19, 1003-1014.	1.6	28
251	A novel interference mechanism by a type <scp>IIIB CRISPR</scp> â€ <scp>Cmr</scp> module in <i><scp>S</scp>ulfolobus</i> . Molecular Microbiology, 2013, 87, 1088-1099.	1.2	224
252	Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Research, 2013, 41, 7429-7437.	6.5	960
253	Reassortment of <scp>CRISPR</scp> repeatâ€spacer loci in <i><scp>S</scp>ulfolobus islandicus</i> . Environmental Microbiology, 2013, 15, 3065-3076.	1.8	35
254	Comparative genome analysis of <i><scp>L</scp>actobacillus casei</i> strains isolated from <scp>A</scp> ctimel and <scp>Y</scp> akult products reveals marked similarities and points to a common origin. Microbial Biotechnology, 2013, 6, 576-587.	2.0	27
255	CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Research, 2013, 41, 8034-8044.	6.5	152
256	Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research, 2013, 41, 4360-4377.	6.5	365
257	Efficient genome engineering in human pluripotent stem cells using Cas9 from <i>Neisseria meningitidis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15644-15649.	3.3	612
258	Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. Mobile Genetic Elements, 2013, 3, e26831.	1.8	20
259	Double-strand DNA end-binding and sliding of the toroidal CRISPR-associated protein Csn2. Nucleic Acids Research, 2013, 41, 6347-6359.	6.5	41
260	Genomic editing opens new avenues for zebrafish as a model for neurodegeneration. Journal of Neurochemistry, 2013, 127, 461-470.	2.1	52
261	Adaptation and modification of three CRISPR loci in two closely related cyanobacteria. RNA Biology, 2013, 10, 852-864.	1.5	106

#	Article	IF	CITATIONS
262	RNA-Seq analyses reveal the order of tRNA processing events and the maturation of C/D box and CRISPR RNAs in the hyperthermophile Methanopyrus kandleri. Nucleic Acids Research, 2013, 41, 6250-6258.	6.5	50
263	CRISPR-Cas. RNA Biology, 2013, 10, 679-686.	1.5	158
264	Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in <i><i>Sulfolobus islandicus</i></i> . RNA Biology, 2013, 10, 738-748.	1.5	50
265	Structure and RNA-binding properties of the Type III-A CRISPR-associated protein Csm3. RNA Biology, 2013, 10, 1670-1678.	1.5	35
266	Special focus CRISPR-Cas. RNA Biology, 2013, 10, 655-658.	1.5	10
267	Characterization of a Novel Composite Staphylococcal Cassette Chromosomemec(SCCmec-SCCcad/ars/cop) in the Neonatal Sepsis-Associated Staphylococcus capitis Pulsotype NRCS-A. Antimicrobial Agents and Chemotherapy, 2013, 57, 6354-6357.	1.4	26
268	Protospacer recognition motifs. RNA Biology, 2013, 10, 891-899.	1.5	309
269	<i>Listeria</i> phages. Bacteriophage, 2013, 3, e26861.	1.9	70
270	Structure of the archaeal Cascade subunit Csa5. RNA Biology, 2013, 10, 762-769.	1.5	24
271	CRISPRTarget. RNA Biology, 2013, 10, 817-827.	1.5	272
272	Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Scientific Reports, 2013, 3, 2101.	1.6	143
273	Title is missing!. Kagaku To Seibutsu, 2013, 51, 441-444.	0.0	0
274	Genomics and genetics of <i>Sulfolobus islandicus</i> LAL14/1, a model hyperthermophilic archaeon. Open Biology, 2013, 3, 130010.	1.5	55
275	Genomic Analysis of Melioribacter roseus, Facultatively Anaerobic Organotrophic Bacterium Representing a Novel Deep Lineage within Bacteriodetes/Chlorobi Group. PLoS ONE, 2013, 8, e53047.	1.1	68
276	CRISPR-Cas Systems in the Cyanobacterium Synechocystis sp. PCC6803 Exhibit Distinct Processing Pathways Involving at Least Two Cas6 and a Cmr2 Protein. PLoS ONE, 2013, 8, e56470.	1.1	144
277	Structure and Genetic Content of the Megaplasmids of Neurotoxigenic Clostridium butyricum Type E Strains from Italy. PLoS ONE, 2013, 8, e71324.	1.1	9
278	Intriguing Arms Race Between Phages and Hosts and Implications for Better Anti-Infectives. Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 215-226.	0.4	1
279	Genomes of Two New Ammonia-Oxidizing Archaea Enriched from Deep Marine Sediments. PLoS ONE, 2014, 9, e96449.	1.1	32

#	Article	IF	Citations
280	Comparative Genome Analysis Reveals Metabolic Versatility and Environmental Adaptations of Sulfobacillus thermosulfidooxidans Strain ST. PLoS ONE, 2014, 9, e99417.	1.1	45
281	Improved Genome Editing in Human Cell Lines Using the CRISPR Method. PLoS ONE, 2014, 9, e109752.	1.1	48
282	MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE, 2014, 9, e110726.	1.1	315
283	Bacteriophages and Their Derivatives as Biotherapeutic Agents in Disease Prevention and Treatment. Journal of Viruses, 2014, 2014, 1-20.	0.4	34
284	CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems. Frontiers in Genetics, 2014, 5, 102.	1.1	164
285	Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Frontiers in Microbiology, 2014, 5, 596.	1.5	61
286	Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. Bioinformatics, 2014, 30, 1805-1813.	1.8	33
287	A Complex of Cas Proteins 5, 6, and 7 Is Required for the Biogenesis and Stability of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-derived RNAs (crRNAs) in Haloferax volcanii. Journal of Biological Chemistry, 2014, 289, 7164-7177.	1.6	65
288	Motif depletion in bacteriophages infecting hosts with CRISPR systems. BMC Genomics, 2014, 15, 663.	1.2	9
289	CRISPR adaptive immune systems of Archaea. RNA Biology, 2014, 11, 156-167.	1.5	129
290	Small regulatory RNAs in Archaea. RNA Biology, 2014, 11, 484-493.	1.5	99
291	Structural analyses of the CRISPR protein Csc2 reveal the RNA-binding interface of the type I-D Cas7 family. RNA Biology, 2014, 11, 1072-1082.	1.5	19
292	Detection and characterization of spacer integration intermediates in type I-E CRISPR–Cas system. Nucleic Acids Research, 2014, 42, 7884-7893.	6.5	121
294	The CRISPR/Cas9 System Facilitates Clearance of the Intrahepatic HBV Templates In Vivo. Molecular Therapy - Nucleic Acids, 2014, 3, e186.	2.3	319
295	Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME Journal, 2014, 8, 126-138.	4.4	107
296	Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Research, 2014, 42, 1341-1353.	6.5	68
297	A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.	1.5	76
298	The CRISPR-associated Cas4 protein Pcal_0546 from Pyrobaculum calidifontis contains a [2Fe-2S] cluster: crystal structure and nuclease activity. Nucleic Acids Research, 2014, 42, 11144-11155.	6.5	29

#	Article	IF	CITATIONS
299	Structure and Function of CRISPR-Cas System. Seibutsu Butsuri, 2014, 54, 247-252.	0.0	0
300	Essential Structural and Functional Roles of the Cmr4 Subunit in RNA Cleavage by the Cmr CRISPR-Cas Complex. Cell Reports, 2014, 9, 1610-1617.	2.9	57
301	Comparative analysis of CRISPR cassettes from the human gut metagenomic contigs. BMC Genomics, 2014, 15, 202.	1.2	25
302	Characterization of bacteriophage communities and CRISPR profiles from dental plaque. BMC Microbiology, 2014, 14, 175.	1.3	83
303	The role of ribonucleases in regulating global mRNA levels in the model organism Thermus thermophilus HB8. BMC Genomics, 2014, 15, 386.	1.2	16
304	Next-Generation Models of Human Cardiogenesis via Genome Editing. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013920-a013920.	2.9	4
305	CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Research, 2014, 42, 9504-9513.	6.5	131
306	Phylogenomics of "Candidatus Hepatoplasma crinochetorum,―a Lineage of Mollicutes Associated with Noninsect Arthropods. Genome Biology and Evolution, 2014, 6, 407-415.	1.1	35
307	Genome sequence of the model sulfate reducer <i>Desulfovibrio gigas</i> : a comparative analysis within the <i>Desulfovibrio</i> genus. MicrobiologyOpen, 2014, 3, 513-530.	1.2	37
308	First Experimental Evidence for the Presence of a CRISPR Toxin in Sulfolobus. Journal of Molecular Biology, 2014, 426, 3683-3688.	2.0	16
309	A CRISPR with Roles in Myxococcus xanthus Development and Exopolysaccharide Production. Journal of Bacteriology, 2014, 196, 4036-4043.	1.0	28
310	Comparative analysis of CRISPR loci in different Listeria monocytogenes lineages. Biochemical and Biophysical Research Communications, 2014, 454, 399-403.	1.0	28
311	<scp>NilD CRISPR RNA</scp> contributes to <scp><i>X</i></scp> <i>enorhabdus nematophila</i> colonization of symbiotic host nematodes. Molecular Microbiology, 2014, 93, 1026-1042.	1.2	23
312	The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346, 1258096.	6.0	4,828
313	Arrangement and number of clustered regularly interspaced short palindromic repeat spacers are associated with erythromycin susceptibility in emm12, emm75 and emm 92 of group A streptococcus. Clinical Microbiology and Infection, 2014, 20, 516-523.	2.8	12
314	Interâ€viral conflicts that exploit host <scp>CRISPR</scp> immune systems of <scp><i>S</i></scp> <i>ulfolobus</i> . Molecular Microbiology, 2014, 91, 900-917.	1.2	68
315	Cas9-Based Genome Editing in Zebrafish. Methods in Enzymology, 2014, 546, 377-413.	0.4	41
316	CRISPR-mediated targeted mRNA degradation in the archaeon Sulfolobus solfataricus. Nucleic Acids Research, 2014, 42, 5280-5288.	6.5	93

#	Article	IF	CITATIONS
317	The genome of Bifidobacterium pseudocatenulatum IPLA 36007, a human intestinal strain with isoflavone-activation activity. Gut Pathogens, 2014, 6, 31.	1.6	11
318	Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Research, 2014, 42, 8516-8526.	6.5	171
319	A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium ThermoanaerobacterÂkivui. BMC Genomics, 2014, 15, 1139.	1.2	63
320	Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light–dark cycle. BMC Genomics, 2014, 15, 1185.	1.2	18
321	CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography. BMC Genomics, 2014, 15, 936.	1.2	10
322	The Genomic Diversification of the Whole Acinetobacter Genus: Origins, Mechanisms, and Consequences. Genome Biology and Evolution, 2014, 6, 2866-2882.	1.1	269
323	Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer. Microbiology (United Kingdom), 2014, 160, 362-372.	0.7	10
324	Insights into organohalide respiration and the versatile catabolism of <scp><i>S</i></scp> <i>ulfurospirillum multivorans</i> gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16, 3562-3580.	1.8	76
325	Staphylococcus epidermidis Csm1 is a 3'-5' exonuclease. Nucleic Acids Research, 2014, 42, 1129-1138.	6.5	34
326	Gene Editing. , 2014, , 229-248.		9
326 327	Gene Editing. , 2014, , 229-248. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496.	1.8	9 57
	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci.	1.8	
327	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective		57
327 328	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens. PLoS ONE, 2014, 9, e91324. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C	1.1	57 27
327 328 329	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496. Streptococcus iniae SF1: Complete Cenome Sequence, Proteomic Profile, and Immunoprotective Antigens. PLoS ONE, 2014, 9, e91324. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system. Nucleic Acids Research, 2014, 42, 3846-3856. Expanding the catalog of <i>cas</i> genes with metagenomes. Nucleic Acids Research, 2014, 42,	1.1 6.5	57 27 25
327 328 329 330	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens. PLoS ONE, 2014, 9, e91324. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system. Nucleic Acids Research, 2014, 42, 3846-3856. Expanding the catalog of <i>cas</i> genes with metagenomes. Nucleic Acids Research, 2014, 42, 2448-2459. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive	1.1 6.5 6.5	57 27 25 25
327 328 329 330 331	CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. Bioinformatics, 2014, 30, i489-i496. Streptococcus iniae SF1: Complete Cenome Sequence, Proteomic Profile, and Immunoprotective Antigens. PLoS ONE, 2014, 9, e91324. Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system. Nucleic Acids Research, 2014, 42, 3846-3856. Expanding the catalog of <i>cas</i> genes with metagenomes. Nucleic Acids Research, 2014, 42, 2448-2459. Comparative genomics of Lactobacillus crispatus suggests novel mechanisms for the competitive exclusion of Cardnerella vaginalis. BMC Genomics, 2014, 15, 1070.	1.1 6.5 6.5 1.2	 57 27 25 25 101

#	Article	IF	CITATIONS
335	Fitting CRISPR-associated Cas3 into the Helicase Family Tree. Current Opinion in Structural Biology, 2014, 24, 106-114.	2.6	59
336	Molecular mechanisms of CRISPR-mediated microbial immunity. Cellular and Molecular Life Sciences, 2014, 71, 449-465.	2.4	93
338	CRISPR-Cas-Mediated Targeted Genome Editing in Human Cells. Methods in Molecular Biology, 2014, 1114, 245-267.	0.4	48
339	CRISPR–Cas systems: beyond adaptive immunity. Nature Reviews Microbiology, 2014, 12, 317-326.	13.6	263
340	Crystal structure and CRISPR RNA-binding site of the Cmr1 subunit of the Cmr interference complex. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 535-543.	2.5	10
341	The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria. Microbiology and Molecular Biology Reviews, 2014, 78, 74-88.	2.9	228
342	In vitro assembly and activity of an archaeal CRISPR-Cas type I-A Cascade interference complex. Nucleic Acids Research, 2014, 42, 5125-5138.	6.5	56
343	Gene regulation by engineered CRISPR-Cas systems. Current Opinion in Microbiology, 2014, 18, 83-89.	2.3	29
344	Feasibility for a large scale mouse mutagenesis by injecting CRISPR/Cas plasmid into zygotes. Development Growth and Differentiation, 2014, 56, 122-129.	0.6	75
345	Precision genetic modifications: a new era in molecular biology and crop improvement. Planta, 2014, 239, 921-939.	1.6	48
346	CRISPR-based technologies: prokaryotic defense weapons repurposed. Trends in Genetics, 2014, 30, 111-118.	2.9	92
347	Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation. Science, 2014, 343, 1247997.	6.0	938
348	CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 2014, 23, R40-R46.	1.4	487
349	CRISPR–Cas system: a powerful tool for genome engineering. Plant Molecular Biology, 2014, 85, 209-218.	2.0	51
350	Cut Site Selection by the Two Nuclease Domains of the Cas9 RNA-guided Endonuclease. Journal of Biological Chemistry, 2014, 289, 13284-13294.	1.6	96
351	To acquire or resist: the complex biological effects of CRISPR–Cas systems. Trends in Microbiology, 2014, 22, 218-225.	3.5	90
352	A versatile framework for microbial engineering using synthetic non-coding RNAs. Nature Reviews Microbiology, 2014, 12, 341-354.	13.6	126
353	Elements and machinery of nonâ€coding <scp>RNA</scp> s: toward their taxonomy. EMBO Reports, 2014, 15, 489-507.	2.0	84

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
354	Exploiting <scp>CRISPR</scp> Cas systems for biotechnology. BioEssays,	2014, 36, 34-38.	1.2	55
355	CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interferer of the National Academy of Sciences of the United States of America, 2014, 111, 6618	ice. Proceedings 6623.	3.3	206
356	CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity. Molecular Cell, 2014,	54, 234-244.	4.5	633
357	Genetic diversity and virulence properties of Streptococcus dysgalactiae subsp. equisim different sources. Journal of Medical Microbiology, 2014, 63, 90-98.	ilis from	0.7	22
358	Bacterial Genome Instability. Microbiology and Molecular Biology Reviews, 2014, 78, 1-	39.	2.9	372
359	The three major types of <scp>CRISPR</scp> â€ <scp>Cas</scp> systems function inde <scp>CRISPR RNA</scp> biogenesis in <scp><i>S</i></scp> <i>treptococcus thermoph Molecular Microbiology, 2014, 93, 98-112.</i>	pendently in ilus.	1.2	81
360	Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Cu Microbiology, 2014, 17, 82-90.	rrent Opinion in	2.3	64
361	Programmable Removal of Bacterial Strains by Use of Genome-Targeting CRISPR-Cas Sy 2014, 5, e00928-13.	stems. MBio,	1.8	315
362	CRISPR-Cas Functional Module Exchange in Escherichia coli. MBio, 2014, 5, e00767-13.		1.8	31
363	A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Ps aeruginosa. MBio, 2014, 5, e00896.	eudomonas	1.8	224
364	<scp>CRP</scp> represses the <scp>CRISPR</scp> / <scp>Cas</scp> system in <scp><i>E</i></scp> <i>scherichia coli</i> : evidence that endogenous <scp>CRISPRimpede phage <scp>P</scp>1 replication. Molecular Microbiology, 2014, 92, 1072-109</scp>		1.2	51
365	Adapting to new threats: the generation of memory by <scp>CRISPRâ€Cas</scp> immu Molecular Microbiology, 2014, 93, 1-9.	ine systems.	1.2	80
366	Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discrimir adaptation. Nucleic Acids Research, 2014, 42, 7226-7235.	native	6.5	64
367	Pervasive generation of oppositely oriented spacers during CRISPR adaptation. Nucleic 2014, 42, 5907-5916.	Acids Research,	6.5	65
368	Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Research, 201	4, 42, 6091-6105.	6.5	401
369	Cas6 specificity and CRISPR RNA loading in a complex CRISPR-Cas system. Nucleic Acid 42, 6532-6541.	s Research, 2014,	6.5	50
370	Association of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Elem Specific Serotypes and Virulence Potential of Shiga Toxin-Producing Escherichia coli. Ap Environmental Microbiology, 2014, 80, 1411-1420.		1.4	41
371	CRISPRs: Molecular Signatures Used for Pathogen Subtyping. Applied and Environment Microbiology, 2014, 80, 430-439.	al	1.4	132

#	Article	IF	CITATIONS
372	Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity. Applied and Environmental Microbiology, 2014, 80, 994-1001.	1.4	62
373	Small RNA-guided adaptive immunity. Physics of Life Reviews, 2014, 11, 139-140.	1.5	3
374	Staphylococcus aureus genomics and the impact of horizontal gene transfer. International Journal of Medical Microbiology, 2014, 304, 103-109.	1.5	146
375	Cas9-Based Tools for Targeted Genome Editing and Transcriptional Control. Applied and Environmental Microbiology, 2014, 80, 1544-1552.	1.4	59
376	Efficient RNA/Cas9-mediated genome editing in <i>Xenopus tropicalis</i> . Development (Cambridge), 2014, 141, 707-714.	1.2	148
377	Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes and Development, 2014, 28, 2432-2443.	2.7	104
378	Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Proceedings of the United States of America, 2014, 111, 16359-16364.	3.3	85
379	Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus. Molecular Cell, 2014, 56, 506-517.	4.5	278
380	RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus. Molecular Cell, 2014, 56, 518-530.	4.5	267
381	Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype. ISME Journal, 2014, 8, 1440-1451.	4.4	119
382	<scp>RNA</scp> â€mediated regulation in <scp>G</scp> ramâ€positive pathogens: an overview punctuated with examples from the group <scp>A <i>S</i></scp> <i>treptococcus</i> . Molecular Microbiology, 2014, 94, 9-20.	1.2	18
383	Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality. Molecular Cell, 2014, 56, 333-339.	4.5	214
384	HIV infection en route to endogenization: two cases. Clinical Microbiology and Infection, 2014, 20, 1280-1288.	2.8	34
385	Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Research, 2014, 42, 2577-2590.	6.5	315
386	Cascading into focus. Science, 2014, 345, 1452-1453.	6.0	3
387	Target specificity of the CRISPRâ€Cas9 system. Quantitative Biology, 2014, 2, 59-70.	0.3	262
388	Remarkable Mechanisms in Microbes to Resist Phage Infections. Annual Review of Virology, 2014, 1, 307-331.	3.0	226
389	Whole-genome sequencing reveals clonal expansion of multiresistant Staphylococcus haemolyticus in European hospitals. Journal of Antimicrobial Chemotherapy, 2014, 69, 2920-2927.	1.3	48

#	Article	IF	CITATIONS
390	Genetic Characterization of Antiplasmid Immunity through a Type III-A CRISPR-Cas System. Journal of Bacteriology, 2014, 196, 310-317.	1.0	154
391	Bacterial sensing of bacteriophages in communities: the search for the Rosetta stone. Current Opinion in Microbiology, 2014, 20, 125-130.	2.3	12
392	The <i>Lactococcus lactis</i> plasmidome: much learnt, yet still lots to discover. FEMS Microbiology Reviews, 2014, 38, 1066-1088.	3.9	56
393	Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity in Cmr4. Molecular Cell, 2014, 56, 43-54.	4.5	129
394	Fulfilling the dream of a perfect genome editing tool. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10029-10030.	3.3	1
395	Dark matter in archaeal genomes: a rich source of novel mobile elements, defense systems and secretory complexes. Extremophiles, 2014, 18, 877-893.	0.9	48
396	Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature, 2014, 514, 633-637.	13.7	257
397	Crystal structure of a CRISPR RNA–guided surveillance complex bound to a ssDNA target. Science, 2014, 345, 1479-1484.	6.0	211
398	Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nature Structural and Molecular Biology, 2014, 21, 771-777.	3.6	167
399	Calorie Restriction à Lamarck. Cell, 2014, 158, 237-238.	13.5	20
400	Genomic Encyclopedia of Type Strains of the Genus Bifidobacterium. Applied and Environmental Microbiology, 2014, 80, 6290-6302.	1.4	203
401	The new CRISPR–Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic Research, 2014, 23, 707-716.	1.3	68
402	Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics, 2014, 15, 473.	1.2	43
403			
	Genomes of Alteromonas australica,a world apart. BMC Genomics, 2014, 15, 483.	1.2	45
404	Cenomes of Alteromonas australica, a world apart. BMC Genomics, 2014, 15, 483. Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 2014, 15, 679.	1.2	45 246
404 405	Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC		
	Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics, 2014, 15, 679.	1.2	246

#	Article	IF	CITATIONS
408	CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nature Protocols, 2014, 9, 2493-2512.	5.5	184
409	Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nature Communications, 2014, 5, 4399.	5.8	117
410	CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods, 2014, 69, 142-150.	1.9	149
411	Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats. FEMS Microbiology Ecology, 2014, 89, 181-197.	1.3	22
412	Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity. BMC Biology, 2014, 12, 36.	1.7	156
413	Observation of Fermi surface deformation in a dipolar quantum gas. Science, 2014, 345, 1484-1487.	6.0	85
414	Degenerate target sites mediate rapid primed CRISPR adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1629-38.	3.3	239
415	Abundant and Diverse Clustered Regularly Interspaced Short Palindromic Repeat Spacers in Clostridium difficile Strains and Prophages Target Multiple Phage Types within This Pathogen. MBio, 2014, 5, e01045-13.	1.8	67
416	Structural and functional characterization of Streptococcus pyogenes Cas2 protein under different pH conditions. Biochemical and Biophysical Research Communications, 2014, 451, 152-157.	1.0	22
417	Whole genome sequencing reveals a novel CRISPR system in industrial <i>Clostridium acetobutylicum</i> . Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1677-1685.	1.4	10
418	Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nature Structural and Molecular Biology, 2014, 21, 528-534.	3.6	389
419	Disrupting the male germ line to find infertility and contraception targets. Annales D'Endocrinologie, 2014, 75, 101-108.	0.6	17
420	The double-edged sword of Lamarck. Physics of Life Reviews, 2014, 11, 141-143.	1.5	5
421	Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9798-9803.	3.3	397
422	Precision genome editing: A small revolution for glycobiology. Glycobiology, 2014, 24, 663-680.	1.3	47
423	Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell, 2014, 157, 1262-1278.	13.5	4,607
424	Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nature Reviews Microbiology, 2014, 12, 479-492.	13.6	600
425	CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Frontiers in Cellular and Infection Microbiology, 2014, 4, 37.	1.8	80

		CITATION RE	PORT	
#	Article		IF	CITATIONS
426	Noncoding RNA in Mycobacteria. Microbiology Spectrum, 2014, 2, .		1.2	14
428	Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia Biotechnology for Biofuels, 2014, 7, 40.		6.2	135
429	Biocontrol of Bacterial Wilt Disease: Utilization of Jumbo Phage RSL1 and Filamentous Phage R Kagaku To Seibutsu, 2014, 52, 371-379.	≀SMs.	0.0	0
430	Genome analyses of the carboxydotrophic sulfate-reducers Desulfotomaculum nigrificans and Desulfotomaculum carboxydivorans and reclassification of Desulfotomaculum caboxydivorans later synonym of Desulfotomaculum nigrificans. Standards in Genomic Sciences, 2014, 9, 655		1.5	25
431	CRISPRâ€Based Technologies and the Future of Food Science. Journal of Food Science, 2015, 8	80, R2367-72.	1.5	60
434	The role of Cas8Âin typeÂl CRISPR interference. Bioscience Reports, 2015, 35, .		1.1	37
435	The CRISPR-Cas Immune System and Genetic Transfers: Reaching an Equilibrium. Microbiology 2015, 3, PLAS-0034-2014.	Spectrum,	1.2	22
436	A newly discovered Bordetella species carries a transcriptionally active CRISPR-Cas with a smal endonuclease. BMC Genomics, 2015, 16, 863.	l Cas9	1.2	21
437	Evolution of an archaeal virus nucleocapsid protein from the CRISPR-associated Cas4 nuclease Biology Direct, 2015, 10, 65.		1.9	16
438	CRISPR as: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Eng Angewandte Chemie - International Edition, 2015, 54, 13508-13514.	;ineering.	7.2	24
439	l can see CRISPR now, even when phage are gone. Current Opinion in Infectious Diseases, 201 267-274.	5, 28,	1.3	45
441	Bacteriophages and Phage-Derived Proteins – Application Approaches. Current Medicinal Ch 2015, 22, 1757-1773.	lemistry,	1.2	163
442	Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive feat according to genetic lineages. Frontiers in Genetics, 2015, 6, 214.	cures	1.1	45
443	A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Frontiers in Genetics, 2015, 6, 300.		1.1	96
444	Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcys aeruginosa, a freshwater bloom-forming cyanobacterium. Frontiers in Microbiology, 2015, 6, 3		1.5	58
445	Comparative Genomic Analysis Identifies Divergent Genomic Features of Pathogenic Enteroco cecorum Including a Type IC CRISPR-Cas System, a Capsule Locus, an epa-Like Locus, and Puta Tissue Binding Proteins. PLoS ONE, 2015, 10, e0121294.		1.1	32
446	CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters ONE, 2015, 10, e0124090.	s. PLoS	1.1	14
447	Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection Model of Prokaryote-Phage Coevolution. PLoS Computational Biology, 2015, 11, e1004603.	on in a	1.5	14

#	Article	IF	CITATIONS
448	Identification of Candidate Adherent-Invasive E. coli Signature Transcripts by Genomic/Transcriptomic Analysis. PLoS ONE, 2015, 10, e0130902.	1.1	40
449	CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli. PLoS ONE, 2015, 10, e0131935.	1.1	47
450	Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS ONE, 2015, 10, e0133661.	1.1	73
451	CRISPR/Cas system: Novel roles for Evolution and Survival of Bacterial Pathogens and Application for Genome Editing . Japanese Journal of Lactic Acid Bacteria, 2015, 26, 14-21.	0.1	0
452	Intraspecies Genomic Diversity and Long-Term Persistence of Bifidobacterium longum. PLoS ONE, 2015, 10, e0135658.	1.1	46
453	Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference. Nucleic Acids Research, 2015, 43, 6038-6048.	6.5	59
454	Crystallization and preliminary X-ray diffraction analysis of the CRISPR–Cas RNA-silencing Cmr complex. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 735-740.	0.4	2
455	Expanding the Biologist's Toolkit with CRISPR-Cas9. Molecular Cell, 2015, 58, 568-574.	4.5	351
456	Virulence related sequences; insights provided by comparative genomics of Streptococcus uberis of differing virulence. BMC Genomics, 2015, 16, 334.	1.2	32
457	Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 2015, 6, 6989.	5.8	128
458	CRISPR-cas Subtype I-Fb in Acinetobacter baumannii: Evolution and Utilization for Strain Subtyping. PLoS ONE, 2015, 10, e0118205.	1.1	57
459	Genome Engineering in Cyanobacteria: Where We Are and Where We Need To Go. ACS Synthetic Biology, 2015, 4, 1186-1196.	1.9	53
460	Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Human Gene Therapy, 2015, 26, 452-462.	1.4	164
461	Advances in New Technology for Targeted Modification of Plant Genomes. , 2015, , .		13
462	Bacteriophage and their potential roles in the human oral cavity. Journal of Oral Microbiology, 2015, 7, 27423.	1.2	109
463	Developing CRISPR Technology in Major Crop Plants. , 2015, , 145-159.		5
464	Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Annual Review of Biophysics, 2015, 44, 229-255.	4.5	21
465	Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting. Analytical Biochemistry, 2015, 478, 131-133.	1.1	10

#	Article	IF	CITATIONS
466	A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila. Journal of Genetics and Genomics, 2015, 42, 141-149.	1.7	44
467	Structural insights into specific crRNA G-rich sequence binding by Meiothermus ruber Cse2. Journal of Structural Biology, 2015, 190, 122-134.	1.3	0
468	A Conserved Structural Chassis for Mounting Versatile CRISPR RNA-Guided Immune Responses. Molecular Cell, 2015, 58, 722-728.	4.5	78
469	Comparative genome analysis of rice-pathogenic Burkholderia provides insight into capacity to adapt to different environments and hosts. BMC Genomics, 2015, 16, 349.	1.2	45
470	Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiology Reviews, 2015, 39, 428-441.	3.9	223
471	Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Scientific Reports, 2015, 5, 10342.	1.6	306
472	Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein. Frontiers in Microbiology, 2014, 5, 744.	1.5	66
473	CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life, 2015, 5, 783-817.	1.1	39
474	A Perspective on the Future of High-Throughput RNAi Screening: Will CRISPR Cut Out the Competition or Can RNAi Help Guide the Way?. Journal of Biomolecular Screening, 2015, 20, 1040-1051.	2.6	32
475	The casposon-encoded Cas1 protein from <i>Aciduliprofundum boonei</i> is a DNA integrase that generates target site duplications. Nucleic Acids Research, 2015, 43, 10576-10587.	6.5	45
476	Foreign DNA acquisition by the I-FÂCRISPR–Cas system requires all components of the interference machinery. Nucleic Acids Research, 2015, 43, 10848-10860.	6.5	88
477	What history tells us XXXIX. CRISPR-Cas: From a prokaryotic immune system to a universal genome editing tool. Journal of Biosciences, 2015, 40, 829-832.	0.5	15
478	Genome sequence of Clostridium sporogenes DSM 795T, an amino acid-degrading, nontoxic surrogate of neurotoxin-producing Clostridium botulinum. Standards in Genomic Sciences, 2015, 10, 40.	1.5	13
479	The Cas6e ribonuclease is not required for interference and adaptation by the <i>E. coli</i> type I-E CRISPR-Cas system. Nucleic Acids Research, 2015, 43, 6049-6061.	6.5	21
480	Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa. MBio, 2015, 6, e01796-15.	1.8	217
481	Gene therapy for Rett syndrome: prospects and challenges. Future Neurology, 2015, 10, 467-484.	0.9	7
482	A quick guide to CRISPR sgRNA design tools. GM Crops and Food, 2015, 6, 266-276.	2.0	80
483	Nuclease Activity of Legionella pneumophila Cas2 Promotes Intracellular Infection of Amoebal Host Cells. Infection and Immunity, 2015, 83, 1008-1018.	1.0	41

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
484	One More Piece Down to Solve the III-A CRISPR Puzzle. Journal of Molecular Biology, 2015, 427, 228-230.	2.0	0
485	Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes and Development, 2015, 29, 356-361.	2.7	188
486	Sequences spanning the leader-repeat junction mediate CRISPR adaptation to phage in <i>Streptococcus thermophilus</i> . Nucleic Acids Research, 2015, 43, 1749-1758.	6.5	97
487	Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature, 2015, 519, 199-202.	13.7	330
488	Harnessing CRISPR–Cas systems for bacterial genome editing. Trends in Microbiology, 2015, 23, 225-232.	3.5	154
489	Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition. Nucleic Acids Research, 2015, 43, 1044-1055.	6.5	60
490	<i>devl</i> Is an Evolutionarily Young Negative Regulator of Myxococcus xanthus Development. Journal of Bacteriology, 2015, 197, 1249-1262.	1.0	28
491	Crystal Structure of the Csm3–Csm4 Subcomplex in the Type III-A CRISPR–Cas Interference Complex. Journal of Molecular Biology, 2015, 427, 259-273.	2.0	19
492	Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Nucleic Acids Research, 2015, 43, 1257-1267.	6.5	42
493	The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current Opinion in Immunology, 2015, 32, 36-41.	2.4	185
494	Evolution of small guide RNA genes in hyperthermophilic archaea. Annals of the New York Academy of Sciences, 2015, 1341, 188-193.	1.8	6
495	Gene silencing by CRISPR interference in mycobacteria. Nature Communications, 2015, 6, 6267.	5.8	207
496	Zebrafish: A New Companion for Translational Research in Oncology. Clinical Cancer Research, 2015, 21, 969-975.	3.2	92
497	Archaeal Extrachromosomal Genetic Elements. Microbiology and Molecular Biology Reviews, 2015, 79, 117-152.	2.9	64
498	The structural biology of CRISPR-Cas systems. Current Opinion in Structural Biology, 2015, 30, 100-111.	2.6	137
499	Insights from 20Âyears of bacterial genome sequencing. Functional and Integrative Genomics, 2015, 15, 141-161.	1.4	580
500	Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015, 6, 6413.	5.8	287
501	Generation of a <scp>CRISPR</scp> database for <scp><i>Y</i></scp> <i>ersinia pseudotuberculosis</i> complex and role of <scp>CRISPR</scp> â€based immunity in conjugation. Environmental Microbiology, 2015, 17, 4306-4321.	1.8	24

#	Article	IF	CITATIONS
502	Genetic screens and functional genomics using <scp>CRISPR</scp> /Cas9 technology. FEBS Journal, 2015, 282, 1383-1393.	2.2	82
503	An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Research, 2015, 43, 406-417.	6.5	147
504	Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes. MBio, 2015, 6, e00129-15.	1.8	48
505	Proteases in Apoptosis: Pathways, Protocols and Translational Advances. , 2015, , .		10
506	Subtyping of the Legionella pneumophila "Ulm―outbreak strain using the CRISPR–Cas system. International Journal of Medical Microbiology, 2015, 305, 828-837.	1.5	12
507	Costs of CRISPR-Cas-mediated resistance in <i>Streptococcus thermophilus</i> . Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151270.	1.2	101
508	The Contribution of Genetic Recombination to CRISPR Array Evolution. Genome Biology and Evolution, 2015, 7, 1925-1939.	1.1	31
509	Application of CRISPR/Cas9 for biomedical discoveries. Cell and Bioscience, 2015, 5, 33.	2.1	52
510	Accurate Whole-Genome Sequencing-Based Epidemiological Surveillance of Mycobacterium Tuberculosis. Methods in Microbiology, 2015, 42, 359-394.	0.4	6
511	Comparative genome analysis and identification of competitive and cooperative interactions in a polymicrobial disease. ISME Journal, 2015, 9, 629-642.	4.4	32
512	Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems. Journal of Bacteriology, 2015, 197, 2631-2641.	1.0	18
513	Comparative Genomics of Streptococcus pyogenes M1 isolates differing in virulence and propensity to cause systemic infection in mice. International Journal of Medical Microbiology, 2015, 305, 532-543.	1.5	37
514	CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annual Review of Microbiology, 2015, 69, 209-228.	2.9	160
515	Analysis of protein–RNA interactions in CRISPR proteins and effector complexes by UV-induced cross-linking and mass spectrometry. Methods, 2015, 89, 138-148.	1.9	25
516	The Bacterial Origins of the CRISPR Genome-Editing Revolution. Human Gene Therapy, 2015, 26, 413-424.	1.4	75
517	Antarctic archaea–virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME Journal, 2015, 9, 2094-2107.	4.4	44
518	A Genetic Strategy for Probing the Functional Diversity of Magnetosome Formation. PLoS Genetics, 2015, 11, e1004811.	1.5	48
519	The Adaptive Immune System of Haloferax volcanii. Life, 2015, 5, 521-537.	1.1	25

#	Article	IF	CITATIONS
520	A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Molecular Plant, 2015, 8, 1274-1284.	3.9	1,635
521	Next-generation sequencing as an approach to dairy starter selection. Dairy Science and Technology, 2015, 95, 545-568.	2.2	38
522	Crystal Structure of the CRISPR-Cas RNA Silencing Cmr Complex Bound to a Target Analog. Molecular Cell, 2015, 58, 418-430.	4.5	121
523	Cas9-mediated targeting of viral RNA in eukaryotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6164-6169.	3.3	222
524	Virus-Induced Dormancy in the Archaeon Sulfolobus islandicus. MBio, 2015, 6, .	1.8	58
525	CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. OMICS A Journal of Integrative Biology, 2015, 19, 261-275.	1.0	11
526	Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense. Current Biology, 2015, 25, 1043-1049.	1.8	244
527	Immunity, suicide or both? Ecological determinants for the combined evolution of anti-pathogen defense systems. BMC Evolutionary Biology, 2015, 15, 43.	3.2	29
528	Effects of Argonaute on Gene Expression in Thermus thermophilus. PLoS ONE, 2015, 10, e0124880.	1.1	44
529	CRISPR. Methods in Molecular Biology, 2015, , .	0.4	15
529 530	CRISPR. Methods in Molecular Biology, 2015, , . Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130.	0.4	15 25
	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology,		
530	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130. Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific	0.8	25
530 531	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130. Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific Nuclease Activity. Structure, 2015, 23, 782-790. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiology	0.8 1.6	25 61
530 531 532	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130. Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific Nuclease Activity. Structure, 2015, 23, 782-790. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiology Reviews, 2015, 39, 442-463.	0.8 1.6 3.9	25 61 98
530 531 532 533	Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130. Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific Nuclease Activity. Structure, 2015, 23, 782-790. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiology Reviews, 2015, 39, 442-463. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell, 2015, 161, 1164-1174. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids	0.8 1.6 3.9 13.5	25 61 98 367
530 531 532 533	 Editing CCR5: A Novel Approach to HIV Gene Therapy. Advances in Experimental Medicine and Biology, 2015, 848, 117-130. Crystal Structure of the Csm1 Subunit of the Csm Complex and Its Single-Stranded DNA-Specific Nuclease Activity. Structure, 2015, 23, 782-790. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiology Reviews, 2015, 39, 442-463. Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity. Cell, 2015, 161, 1164-1174. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Research, 2015, 43, 3407-3419. Application of CRISPR/Cas9 genome editing to the study and treatment of disease. Archives of 	0.8 1.6 3.9 13.5 6.5	25 61 98 367 124

ARTICLE

IF CITATIONS

539 An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic) Tj ETQq0 0 QrgBT /Overlock 10 T

540	The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie, 2015, 117, 119-128.	1.3	367
541	Enabling functional genomics with genome engineering. Genome Research, 2015, 25, 1442-1455.	2.4	89
542	SnapShot: CRISPR-RNA-Guided Adaptive Immune Systems. Cell, 2015, 163, 260-260.e1.	13.5	21
543	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	13.6	2,081
544	Mechanism of CRISPR-RNA guided recognition of DNA targets in <i>Escherichia coli</i> . Nucleic Acids Research, 2015, 43, 8381-8391.	6.5	45
545	Interference activity of a minimal Type I CRISPR–Cas system from <i>Shewanella putrefaciens</i> . Nucleic Acids Research, 2015, 43, 8913-8923.	6.5	28
546	CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526, 55-61.	13.7	657
547	Functionally Structured Genomes in Lactobacillus kunkeei Colonizing the Honey Crop and Food Products of Honeybees and Stingless Bees. Genome Biology and Evolution, 2015, 7, 1455-1473.	1.1	50
548	Research of methods to detect genomic mutations induced by CRISPR/Cas systems. Journal of Biotechnology, 2015, 214, 128-132.	1.9	17
549	Purification, crystallization, crystallographic analysis and phasing of the CRISPR-associated protein Csm2 from <i>Thermotoga maritima</i> . Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 1223-1227.	0.4	1
550	Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature, 2015, 526, 136-139.	13.7	325
551	Using the CRISPR-Cas System to Positively Select Mutants in Genes Essential for Its Function. Methods in Molecular Biology, 2015, 1311, 233-250.	0.4	1
552	Analysis of Nuclease Activity of Cas1 Proteins Against Complex DNA Substrates. Methods in Molecular Biology, 2015, 1311, 251-264.	0.4	4
553	Cas3 Nuclease–Helicase Activity Assays. Methods in Molecular Biology, 2015, 1311, 277-291.	0.4	5
554	In Vitro Co-reconstitution of Cas Protein Complexes. Methods in Molecular Biology, 2015, 1311, 23-33.	0.4	0
555	Analysis of CRISPR Pre-crRNA Cleavage. Methods in Molecular Biology, 2015, 1311, 35-46.	0.4	1
556	Annotation and Classification of CRISPR-Cas Systems. Methods in Molecular Biology, 2015, 1311, 47-75.	0.4	304

ARTICLE IF CITATIONS # High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica 557 0.4 15 Serotype Typhimurium. Methods in Molecular Biology, 2015, 1311, 91-109. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell, 2015, 163, 759-771. 13.5 3,558 DNA targeting by the type I-G and type I-A CRISPR–Cas systems of <i>Pyrococcus furiosus</i>. Nucleic 559 6.5 38 Acids Research, 2015, 43, gkv1140. Host adaption to the bacteriophage carrier state of Campylobacter jejuni. Research in Microbiology, 560 2015, 166, 504-515. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas 561 proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC Research 0.6 37 Notes, 2015, 8, 332. Crystal structures of CRISPR-associated Csx3 reveal a manganese-dependent deadenylation exoribonuclease. RNA Biology, 2015, 12, 749-760. 1.5 24 Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Nucleic Acid Therapeutics, 2015, 563 2.0 26 25, 287-296. Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genomics, 2015, 16, 284. 1.2 564 111 565 Global transcription of CRISPR loci in the human oral cavity. BMC Genomics, 2015, 16, 401. 1.2 14 Foreign DNA capture during CRISPR–Cas adaptive immunity. Nature, 2015, 527, 535-538. 13.7 169 566 Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 567 4.5971 2015, 60, 385-397. Resistance and tolerance to foreign elements by prokaryotic immune systems â€" curating the genome. 568 10.6 29 Nature Reviews Immunology, 2015, 15, 717-724. Rapid generation of endogenously driven transcriptional reporters in cells through CRISPR/Cas9. 569 1.6 38 Scientific Reports, 2015, 5, 9811. Lifestyle Evolution in Cyanobacterial Symbionts of Sponges. MBio, 2015, 6, e00391-15. 570 1.8 Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems. Cell, 571 13.5 228 2015, 163, 840-853. Targeted Large-Scale Deletion of Bacterial Genomes Using CRISPR-Nickases. ACS Synthetic Biology, 2015, 79 <u>4, 1217-1225.</u> Complete Genome Sequence of Streptococcus thermophilus SMQ-301, a Model Strain for Phage-Host 573 0.8 33 Interactions. Genome Announcements, 2015, 3, . Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in 574 thermophiles. Systems and Synthetic Biology, 2015, 9, 97-106.

#	Article	IF	CITATIONS
575	Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 2015, 169, 931-945.	2.3	629
576	Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA(sm) combined system. Applied Microbiology and Biotechnology, 2015, 99, 10575-10585.	1.7	122
577	Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile. MBio, 2015, 6, e01112-15.	1.8	57
578	Polymorphism of CRISPR shows separated natural groupings of <i>Shigella</i> subtypes and evidence of horizontal transfer of CRISPR. RNA Biology, 2015, 12, 1109-1120.	1.5	14
579	Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. Rna, 2015, 21, 1921-1930.	1.6	23
580	Procedures for Generating CRISPR Mutants with Novel Spacers Acquired from Viruses or Plasmids. Methods in Molecular Biology, 2015, 1311, 195-222.	0.4	2
581	Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural <i>Campylobacter coli</i> and <i>Campylobacter jejuni</i> lsolates Correlates with Lack of Shared Environments. Genome Biology and Evolution, 2015, 7, 2663-2679.	1.1	30
582	Identification and characterization of episomal forms of integrative genomic islands in the genus Francisella. International Journal of Medical Microbiology, 2015, 305, 874-880.	1.5	5
583	Investigating CRISPR RNA Biogenesis and Function Using RNA-seq. Methods in Molecular Biology, 2015, 1311, 1-21.	0.4	19
584	Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. Methods in Molecular Biology, 2015, 1332, 205-217.	0.4	34
585	Marine metagenomics as a source for bioprospecting. Marine Genomics, 2015, 24, 21-30.	0.4	51
586	Synthetic CRISPR RNA-Cas9–guided genome editing in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7110-7.	3.3	151
587	Response to a Letter to the Editor by Joachim Denner on HIV infection en route to endogenization: two cases. Clinical Microbiology and Infection, 2015, 21, e35-e37.	2.8	4
588	A Mouse Geneticist's Practical Guide to CRISPR Applications. Genetics, 2015, 199, 1-15.	1.2	290
589	CRISPR RNA binding and DNA target recognition by purified Cascade complexes from Escherichia coli. Nucleic Acids Research, 2015, 43, 530-543.	6.5	22
590	Association of CRISPR/Cas Evolution with <i>Vibrio parahaemolyticus</i> Virulence Factors and Genotypes. Foodborne Pathogens and Disease, 2015, 12, 68-73.	0.8	25
591	Role of the Streptococcus mutans CRISPR-Cas Systems in Immunity and Cell Physiology. Journal of Bacteriology, 2015, 197, 749-761.	1.0	59
592	Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nature Reviews Genetics, 2015, 16, 184-192.	7.7	141

ARTICLE IF CITATIONS # Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology (United Kingdom), 593 0.7 98 2015, 161, 374-386. Efficient programmable gene silencing by Cascade. Nucleic Acids Research, 2015, 43, 237-246. 594 6.5 288 595 Structural Principles of CRISPR RNA Processing. Structure, 2015, 23, 13-20. 1.6 43 Crystal structure of <scp><i>T</i></scp><i>hermobifida fusca</i><scp>C</scp>sel reveals target 3.1 <scp>DNA</scp> binding site. Protein Science, 2015, 24, 236-245. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform 598 1.6 40 bio-chemicals. Scientific Reports, 2014, 4, 3926. The CRISPR–Cas system for plant genome editing: advances and opportunities. Journal of Experimental 599 2.4 160 Botany, 2015, 66, 47-57. Molecular dynamic simulations of protein/RNA complexes: CRISPR/Csy4 endoribonuclease. Biochimica 600 1.1 20 Et Biophysica Acta - General Subjects, 2015, 1850, 1072-1090. Offâ€target assessment of <scp>CRISPR</scp>â€<scp>C</scp>as9 guiding <scp>RNA</scp>s in human 0.8 i<scp>PS</scp> and mouse <scp>ES</scp> cells. Genesis, 2015, 53, 225-236. 602 Genome Engineering Using CRISPR-Cas9 System. Methods in Molecular Biology, 2015, 1239, 197-217. 0.4 262 Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends in Biochemical Sciences, 2015, 40, 58-66. Detection and Analysis of CRISPRs of Shigella. Current Microbiology, 2015, 70, 85-90. 604 1.0 12 Discovery of a Conjugative Megaplasmid in Bifidobacterium breve. Applied and Environmental Microbiology, 2015, 81, 166-176. 1.4 Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids 606 6.5 202 Research, 2015, 43, 674-681. Genome engineering and gene expression control for bacterial strain development. Biotechnology 1.8 59 Journal, 2015, 10, 56-68. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cellular 608 2.4 67 and Molecular Life Sciences, 2015, 72, 383-399. From community approaches to single-cell genomics: the discovery of ubiquitous hyperhalophilic 609 4.4 <i>Bacteroidetes</i> generalists. ISME Journal, 2015, 9, 16-31. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on 610 2.9 47 virus–host coevolution. Molecular BioSystems, 2015, 11, 20-27. Emerging Gene Correction Strategies for Muscular Dystrophies: Scientific Progress and Regulatory 611 Impact., 2016,,.

		CITATION REPORT		
#	Article		IF	CITATIONS
612	Genome-assisted Breeding For Drought Resistance. Current Genomics, 2016, 17, 330-3	342.	0.7	42
613	CRISPR-Cas9: from Genome Editing to Cancer Research. International Journal of Biolog 2016, 12, 1427-1436.	ical Sciences,	2.6	31
614	CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget, 2 52541-52552.	016, 7,	0.8	68
615	The Potential Use of Bacteriophage Therapy as a Treatment Option in a Post-Antibiotic 309-328.	Era. , 2016, ,		2
616	Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Current 0 17, 343-357.	Genomics, 2016,	0.7	66
617	Development and Use of Biotechnology Tools for Grape Functional Analysis. , 0, , .			2
618	Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications. Fro Immunology, 2016, 7, 375.	ontiers in	2.2	33
619	Draft Genomes Shed Light on the Dual Bacterial Symbiosis that Dominates the Microbi Coral Reef Sponge Amphimedon queenslandica. Frontiers in Marine Science, 2016, 3, .		1.2	60
620	Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow. Frontiers i Microbiology, 2016, 7, 398.	n	1.5	58
621	New Insights into the Genetic Diversity of Clostridium botulinum Group III through Externation. Frontiers in Microbiology, 2016, 7, 757.	ensive Genome	1.5	18
622	Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the E Acidophile "Ferrovum― Frontiers in Microbiology, 2016, 7, 797.	xtreme	1.5	42
623	Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microb 1325.	iology, 2016, 7,	1.5	142
624	An Enrichment of CRISPR and Other Defense-Related Features in Marine Sponge-Assoc Metagenomes. Frontiers in Microbiology, 2016, 7, 1751.	iated Microbial	1.5	117
625	CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with Band Disease. Frontiers in Microbiology, 2016, 7, 2077.	n the Coral Black	1.5	13
626	Comparative Genomic Analysis of Two Serotype 1/2b Listeria monocytogenes Isolates Environmental Niches Demonstrates the Influence of Hypervariable Hotspots in Definir Pathogenesis. Frontiers in Nutrition, 2016, 3, 54.		1.6	4
627	RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?. International J Molecular Sciences, 2016, 17, 291.	ournal of	1.8	68
628	What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Gen PLoS Neglected Tropical Diseases, 2016, 10, e0004403.	nus Leptospira.	1.3	253
629	Predominance of Single Prophage Carrying a CRISPR/cas System in "Candidatus Lib Strains in Southern China. PLoS ONE, 2016, 11, e0146422.	eribacter asiaticus―	1.1	38

#	Article	IF	CITATIONS
630	Next-Generation Sequencing — An Overview of the History, Tools, and "Omic―Applications. , 0, , .		94
631	Analysis of defence systems and a conjugative IncPâ€1 plasmid in the marine polyaromatic hydrocarbonsâ€degrading bacterium <i>Cycloclasticus</i> sp. 78â€ME. Environmental Microbiology Reports, 2016, 8, 508-519.	1.0	5
632	The discovery of <scp>CRISPR</scp> in archaea and bacteria. FEBS Journal, 2016, 283, 3162-3169.	2.2	130
633	Genome Editing by <scp>CRISPR</scp> /Cas9: A Game Change in the Genetic Manipulation of Protists. Journal of Eukaryotic Microbiology, 2016, 63, 679-690.	0.8	55
634	On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends in Microbiology, 2016, 24, 811-820.	3.5	143
635	Current and future prospects for CRISPRâ€based tools in bacteria. Biotechnology and Bioengineering, 2016, 113, 930-943.	1.7	100
636	A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Briefings in Bioinformatics, 2017, 18, bbw052.	3.2	15
637	Genome Sequence of Salegentibacter mishustinae KCTC 12263, Containing a Complete Subtype I-B CRISPR-Cas System. Genome Announcements, 2016, 4, .	0.8	1
638	Prediction and Validation of Native and Engineered Cas9 Guide Sequences. Cold Spring Harbor Protocols, 2016, 2016, pdb.prot086785.	0.2	16
639	Guide RNAs: A Glimpse at the Sequences that Drive CRISPR–Cas Systems. Cold Spring Harbor Protocols, 2016, 2016, pdb.top090902.	0.2	13
640	Complete Genome Sequence of Pseudomonas balearica DSM 6083 T. Genome Announcements, 2016, 4, .	0.8	6
641	Understanding the Pathogenicity of Noncoding Mismatch Repair Gene Promoter Variants in Lynch Syndrome. Human Mutation, 2016, 37, 417-426.	1.1	10
642	Dual nuclease activity of a Cas2 protein in <scp>CRISPR</scp> –Cas subtype lâ€B of <i>Leptospira interrogans</i> . FEBS Letters, 2016, 590, 1002-1016.	1.3	27
643	Structure of Csm2 elucidates the relationship between small subunits of CRISPR as effector complexes. FEBS Letters, 2016, 590, 1521-1529.	1.3	21
644	Structural basis for dimer formation of the <scp>CRISPR</scp> â€associated protein Csm2 of <i>Thermotoga maritima</i> . FEBS Journal, 2016, 283, 694-703.	2.2	6
645	To CRISPR and beyond: the evolution of genome editing in stem cells. Regenerative Medicine, 2016, 11, 801-816.	0.8	13
646	Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Reports, 2016, 6, 19675.	1.6	141
647	To Defend or Not To Defend: Thatâ \in ^{IM} s the Question. MSphere, 2016, 1, .	1.3	2

#	Article	IF	Citations
648	Efficient CRISPR-Mediated Post-Transcriptional Gene Silencing in a Hyperthermophilic Archaeon Using Multiplexed crRNA Expression. G3: Genes, Genomes, Genetics, 2016, 6, 3161-3168.	0.8	25
649	Targeted genome editing, an alternative tool for trait improvement in horticultural crops. Horticulture Environment and Biotechnology, 2016, 57, 531-543.	0.7	13
650	Overview of CRISPR–Cas9 Biology. Cold Spring Harbor Protocols, 2016, 2016, pdb.top088849.	0.2	14
651	CRISPR-Cas type I-A Cascade complex couples viral infection surveillance to host transcriptional regulation in the dependence of Csa3b. Nucleic Acids Research, 2017, 45, gkw1265.	6.5	48
652	The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Scientific Reports, 2016, 6, 39197.	1.6	55
653	tCRISPRi: tunable and reversible, one-step control of gene expression. Scientific Reports, 2016, 6, 39076.	1.6	56
654	PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease. Cell, 2016, 167, 1814-1828.e12.	13.5	211
655	Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production. Biotechnology and Genetic Engineering Reviews, 2016, 32, 74-91.	2.4	14
657	Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics, 2016, 17, 732.	1.2	100
658	Deciphering and shaping bacterial diversity through CRISPR. Current Opinion in Microbiology, 2016, 31, 101-108.	2.3	15
659	Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Nucleic Acids Research, 2016, 44, 5872-5882.	6.5	57
660	CRISPR/Cas9 for Human Genome Engineering and Disease Research. Annual Review of Genomics and Human Genetics, 2016, 17, 131-154.	2.5	80
661	Complete genome sequence of â€~Halanaeroarchaeum sulfurireducens' M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee. Standards in Genomic Sciences, 2016, 11, 35.	1.5	15
662	Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research, 2016, 53, 1-20.	7.3	42
663	Adaptation in CRISPR-Cas Systems. Molecular Cell, 2016, 61, 797-808.	4.5	192
664	A bacterial Argonaute with noncanonical guide RNA specificity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4057-4062.	3.3	122
665	Engineering Delivery Vehicles for Genome Editing. Annual Review of Chemical and Biomolecular Engineering, 2016, 7, 637-662.	3.3	93
666	Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants. Plant Cell Reports, 2016, 35, 1439-1450.	2.8	49

#	Article	IF	CITATIONS
667	A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium <i>Myxococcus xanthus</i> . ISME Journal, 2016, 10, 2468-2477.	4.4	52
668	The New Worlds of Synthetic Biology—Synopsis. Wissenschaftsethik Und Technikfolgenbeurteilung, 2016, , 1-25.	0.8	0
669	CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics, 2016, 17, 356.	1.2	277
670	Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnology Journal, 2016, 14, 2203-2216.	4.1	141
671	CRISPR-Cas: biology, mechanisms and relevance. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150496.	1.8	308
672	CRISPR/Cas9 system and its applications in human hematopoietic cells. Blood Cells, Molecules, and Diseases, 2016, 62, 6-12.	0.6	14
673	Characterization of CRISPR-Cas system in clinical Staphylococcus epidermidis strains revealed its potential association with bacterial infection sites. Microbiological Research, 2016, 193, 103-110.	2.5	27
674	Genomic Recoding Broadly Obstructs the Propagation of Horizontally Transferred Genetic Elements. Cell Systems, 2016, 3, 199-207.	2.9	40
675	CRISPR. , 2016, , 87-98.		3
676	Bacteriophage Applications - Historical Perspective and Future Potential. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , .	0.3	3
677	Comparison of Intracellular " <i>Ca.</i> Endomicrobium Trichonymphae―Genomovars Illuminates the Requirement and Decay of Defense Systems against Foreign DNA. Genome Biology and Evolution, 2016, 8, 3099-3107.	1.1	27
678	Casposon integration shows strong target site preference and recapitulates protospacer integration by CRISPR-Cas systems. Nucleic Acids Research, 2016, 44, gkw821.	6.5	33
680	Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium. Applied and Environmental Microbiology, 2016, 82, 6109-6119.	1.4	60
681	Genome- and cell-based strategies in therapy of muscular dystrophies. Biochemistry (Moscow), 2016, 81, 678-690.	0.7	5
682	From embryonic development to human diseases: The functional role of caveolae/caveolin. Birth	0.6	24
	Defects Research Part C: Embryo Today Reviews, 2016, 108, 45-64.	3.6	27
683	Defects Research Part C: Embryo Today Reviews, 2016, 108, 45-64. Active and adaptive <i>Legionella</i> CRISPRâ€Cas reveals a recurrent challenge to the pathogen. Cellular Microbiology, 2016, 18, 1319-1338.	1.1	31
683 684	Active and adaptive <i>Legionella</i> CRISPRâ€Cas reveals a recurrent challenge to the pathogen.		

#	Article	IF	CITATIONS
686	Using CRISPR-Cas9 Genome Editing to Enhance Cell Based Therapies for the Treatment of Diabetes Mellitus. , 2016, , 127-147.		1
687	Genetic Engineering in Stem Cell Biomanufacturing. , 2016, , 1-25.		0
688	CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis. MSphere, 2016, 1, .	1.3	95
689	DNA Targeting by a Minimal CRISPR RNA-Guided Cascade. Molecular Cell, 2016, 63, 840-851.	4.5	75
690	CRISPR Diversity and Microevolution in <i>Clostridium difficile</i> . Genome Biology and Evolution, 2016, 8, 2841-2855.	1.1	60
691	CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34, 1180-1209.	6.0	124
692	Evolution and Ecology of CRISPR. Annual Review of Ecology, Evolution, and Systematics, 2016, 47, 307-331.	3.8	79
693	Tools and applications in synthetic biology. Advanced Drug Delivery Reviews, 2016, 105, 20-34.	6.6	46
695	Genome Editing with Targetable Nucleases. , 2016, , 1-29.		0
696	Application of NanoLuc to monitor the intrinsic promoter activity of GRP78 using the CRISPR/Cas9 system. Genes To Cells, 2016, 21, 1137-1143.	0.5	7
697	A genomic island in Vibrio cholerae with VPI-1 site-specific recombination characteristics contains CRISPR-Cas and type VI secretion modules. Scientific Reports, 2016, 6, 36891.	1.6	40
698	Development of Commercial Thermo-sensitive Genic Male Sterile Rice Accelerates Hybrid Rice Breeding Using the CRISPR/Cas9-mediated TMS5 Editing System. Scientific Reports, 2016, 6, 37395.	1.6	183
699	Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array. Cell Reports, 2016, 16, 2811-2818.	2.9	27
700	Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Putten Strain CRJJGF_00159 (Phylum Gammaproteobacteria). Genome Announcements, 2016, 4, .	0.8	4
701	Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer. BMC Genomics, 2016, 17, 689.	1.2	21
702	Diversity of CRISPR-Cas-mediated mechanisms of adaptive immunity in prokaryotes and their application in biotechnology. Biochemistry (Moscow), 2016, 81, 653-661.	0.7	12
703	Structural features of Cas2 from <i>Thermococcus onnurineus</i> in CRISPR as system type IV. Protein Science, 2016, 25, 1890-1897.	3.1	10
704	Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Human Genetics, 2016, 135, 1093-1105.	1.8	41

#	Article	IF	CITATIONS
705	CRISPR-Cas9 System as a Versatile Tool for Genome Engineering in Human Cells. Molecular Therapy - Nucleic Acids, 2016, 5, e388.	2.3	22
706	Hyperlipidemia and hepatitis in liver-specific CREB3L3 knockout mice generated using a one-step CRISPR/Cas9 system. Scientific Reports, 2016, 6, 27857.	1.6	31
707	Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales. Nature Microbiology, 2016, 1, 16146.	5.9	207
708	Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum. Scientific Reports, 2016, 6, 26228.	1.6	17
709	Complete genome of Nitrosospira briensis C-128, an ammonia-oxidizing bacterium from agricultural soil. Standards in Genomic Sciences, 2016, 11, 46.	1.5	22
710	Phage Probiotics. SpringerBriefs in Biochemistry and Molecular Biology, 2016, , 39-58.	0.3	0
711	CRISPR/Cas in genome defense and gene editing. Acta Chimica Slovaca, 2016, 9, 68-74.	0.5	0
712	Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Scientific Reports, 2016, 6, 25666.	1.6	144
713	The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice. Scientific Reports, 2016, 6, 32463.	1.6	70
714	CRISPR System Acquisition and Evolution of an Obligate Intracellular <i>Chlamydia</i> -Related Bacterium. Genome Biology and Evolution, 2016, 8, 2376-2386.	1.1	23
715	Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nature Communications, 2016, 7, 13350.	5.8	94
716	Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates. MSphere, 2016, 1, .	1.3	25
717	Draft Genome Sequence of <i>Salmonella enterica</i> subsp. <i>enterica</i> Serovar Kiambu Strain CRJJGF_00061 (Phylum <i>Gammaproteobacteria</i>). Genome Announcements, 2016, 4, .	0.8	4
718	Complete genome sequence of thermophilic Bacillus smithii type strain DSM 4216T. Standards in Genomic Sciences, 2016, 11, 52.	1.5	13
719	Characterization of CRISPR RNA transcription by exploiting stranded metatranscriptomic data. Rna, 2016, 22, 945-956.	1.6	11
720	Review article: novel therapies for hepatitis B virus cure – advances and perspectives. Alimentary Pharmacology and Therapeutics, 2016, 44, 213-222.	1.9	44
721	Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics, 2016, 17, 21.	1.2	97
722	New and improved tools and methods for enhanced biosynthesis of natural products in microorganisms. Current Opinion in Biotechnology, 2016, 42, 159-168.	3.3	23

ARTICLE IF CITATIONS # RNA therapeutics – The potential treatment for myocardial infarction. Regenerative Therapy, 2016, 4, 723 1.4 5 83-91. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Research, 2016, 44, 6614-6624. 724 4,711 6.5 C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 2016, 353, 725 6.0 1.647 aaf5573. Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and 726 Molecular Biology Reviews, 2016, 80, 523-543. Viruses Infecting a Freshwater Filamentous Cyanobacterium (<i>Nostoc</i> sp.) Encode a Functional 727 1.8 47 CRISPR Array and a Proteobacterial DNA Polymerase B. MBio, 2016, 7, . Ecological and genetic interactions between cyanobacteria and viruses in a lowâ€oxygen mat 728 community inferred through metagenomics and metatranscriptomics. Environmental Microbiology, 1.8 2016, 18, 358-371. Genomic comparison of virulent and nonâ€virulent <i><scp>S</scp>treptococcus agalactiae</i> in fish. 729 0.9 42 Journal of Fish Diseases, 2016, 39, 13-29. Reevaluation of possible outcomes of infections with human immunodeficiency virus. Clinical 2.8 Microbiology and Infection, 2016, 22, 299-311. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Cell, 2016, 164, 29-44. 731 13.5 889 Recent Mobility of Casposons, Self-Synthesizing Transposons at the Origin of the CRISPR-Cas Immunity. 1.1 Genome Biology and Evolution, 2016, 8, 375-386. Multiple nucleic acid cleavage modes in divergent type III CRISPR systems. Nucleic Acids Research, 2016, 733 6.5 53 44, 1789-1799. Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6. 734 1.6 128 Rna, 2016, 22, 318-329. CRISPR-Based Typing and Next-Generation Tracking Technologies. Annual Review of Food Science and 735 5.1 78 Technology, 2016, 7, 395-411. The CRISPR-associated Csx1 protein of <i>Pyrococcus furiosus</i> is an adenosine-specific endoribonuclease. Rna, 2016, 22, 216-224. 1.6 79 Crystal Structure of Streptococcus pyogenes Cas1 and Its Interaction with Csn2 in the Type II 737 1.6 21 CRISPR-Cas System. Structure, 2016, 24, 70-79. Potential pitfalls of <scp>CRISPR</scp>/Cas9â€mediated genome editing. FEBS Journal, 2016, 283, 1218-1231. 2.2 196 Strategies of genome editing in mycobacteria: Achievements and challenges. Tuberculosis, 2016, 98, 739 0.8 17 132-138. 740 Tandem repeat knockout utilizing the CRISPR/Cas9 system in human cells. Gene, 2016, 582, 122-127.

ARTICLE IF CITATIONS # Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Reports, 741 2.9 237 2016, 14, 1555-1566. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nature 742 5.8 224 Communications, 2016, 7, 10613. Degradation of Phage Transcripts by CRISPR-Associated RNases Enables Type III CRISPR-Cas Immunity. 743 13.5 194 Cell, 2016, 164, 710-721. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes 744 and Development, 2016, 30, 447-459. RNA-activated DNA cleavage by the Type III-B CRISPRâ€"Cas effector complex. Genes and Development, 2016, 745 2.7 177 30, 460-470. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature 746 5.8 189 Communications, 2016, 7, 10476. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. 747 7.1 72 Nature Neuroscience, 2016, 19, 517-522. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. 748 6.0 Science, 2016, 351, aad4234. Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis 749 5.7 131 and Other Mycobacteria. Clinical Microbiology Reviews, 2016, 29, 239-290. CRISPRâ€"Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology, 2016, 14, 13.6 324 67-76. Exploiting CRISPR–Cas immune systems for genome editing in bacteria. Current Opinion in 751 3.3 57 Biotechnology, 2016, 37, 61-68. Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Éngineering. Journal of Bacteriology, 2016, 198, 578-590. Complete genome analysis of Clostridium bornimense strain M2/40T: A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor. Journal of 753 1.9 19 Biotechnology, 2016, 232, 38-49. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories. ISME Journal, 754 4.4 2016, 10, 858-870. Tracing Origins of the<i>Salmonella</i>Bareilly Strain Causing a Food-borne Outbreak in the United 755 1.9 145 States. Journal of Infectious Diseases, 2016, 213, 502-508. Engineering Translational Activators with CRISPR-Cas System. ACS Synthetic Biology, 2016, 5, 74-80. 757 Synthetic Biology., 2016,,. 2 Harnessing Type I and Type III CRISPR-Cas systems for genome editing. Nucleic Acids Research, 2016, 44, 758 6.5 176 е34-е34.

#	Article	IF	CITATIONS
759	Application of genome editing technologies to the study and treatment of hematological disease. Advances in Biological Regulation, 2016, 60, 122-134.	1.4	14
760	Improved traceability of Shiga-toxin-producing Escherichia coli using CRISPRs for detection and typing. Environmental Science and Pollution Research, 2016, 23, 8163-8174.	2.7	13
761	Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 2017, 37, 229-237.	5.1	62
762	Efficacy of Phage and Ciprofloxacin Co-therapy on the Formation and Eradication of Pseudomonas aeruginosa Biofilms. Arabian Journal for Science and Engineering, 2017, 42, 95-103.	1.7	16
763	Complete Sequence and Organization of pFR260, the <i>Bacillus thuringiensis</i> INTA Fr7-4 Plasmid Harboring Insecticidal Genes. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 43-54.	1.0	5
764	Diversity and evolution of class 2 CRISPR–Cas systems. Nature Reviews Microbiology, 2017, 15, 169-182.	13.6	792
765	Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME Journal, 2017, 11, 1245-1260.	4.4	79
766	Genomic approaches to characterizing and reducing antimicrobial resistance in beef cattle production systems. Canadian Journal of Animal Science, 0, , .	0.7	0
767	Comparative analysis of CRISPR as systems in <i>Klebsiella</i> genomes. Journal of Basic Microbiology, 2017, 57, 325-336.	1.8	41
768	Adaptive Evolution of Extreme Acidophile Sulfobacillus thermosulfidooxidans Potentially Driven by Horizontal Gene Transfer and Gene Loss. Applied and Environmental Microbiology, 2017, 83, .	1.4	48
769	Genome reprogramming for synthetic biology. Frontiers of Chemical Science and Engineering, 2017, 11, 37-45.	2.3	5
770	Comparative pan genome analysis of oral Prevotella species implicated in periodontitis. Functional and Integrative Genomics, 2017, 17, 513-536.	1.4	49
771	Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats. Journal of the Royal Society Interface, 2017, 14, 20160905.	1.5	17
772	Structure and variation of CRISPR and CRISPR-flanking regions in deleted-direct repeat region Mycobacterium tuberculosis complex strains. BMC Genomics, 2017, 18, 168.	1.2	32
773	Not all predicted CRISPR–Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC Bioinformatics, 2017, 18, 92.	1.2	160
774	CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules. Journal of Bacteriology, 2017, 199, .	1.0	17
775	The <i>dev</i> Operon Regulates the Timing of Sporulation during Myxococcus xanthus Development. Journal of Bacteriology, 2017, 199, .	1.0	16
776	The Impact of DNA Topology and Guide Length on Target Selection by a Cytosine-Specific Cas9. ACS Synthetic Biology, 2017, 6, 1103-1113.	1.9	27

		CITATION RE	PORT	
#	Article		IF	CITATIONS
777	Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B, 2017, 7, 292	-302.	5.7	150
778	Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b. Biochimica Et Bioph General Subjects, 2017, 1861, 2993-3000.	ysica Acta -	1.1	10
779	Modern Genome Editing Technologies in Huntington's Disease Research. Journal of Disease, 2017, 6, 19-31.	Huntington's	0.9	20
780	CRISPR-Cas Technologies and Applications in Food Bacteria. Annual Review of Food Scie Technology, 2017, 8, 413-437.	ence and	5.1	44
781	Therapeutic gene editing: delivery and regulatory perspectives. Acta Pharmacologica Sir 738-753.	ıica, 2017, 38,	2.8	95
782	A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes. A Biochemistry, 2017, 530, 40-49.	nalytical	1.1	5
783	Use of CRISPR/Cas9 for Symbiotic Nitrogen Fixation Research in Legumes. Progress in N Biology and Translational Science, 2017, 149, 187-213.	1olecular	0.9	24
784	Engineering CRISPR–Cpf1 crRNAs and mRNAs to maximize genome editing efficiency Engineering, 2017, 1, .	. Nature Biomedical	11.6	95
785	RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes. Molecular Ce 373-383.e3.	ıll, 2017, 66,	4.5	229
786	Emergence and Evolution of Multidrug-Resistant Klebsiella pneumoniae with both <i>bla _{KPC} and <i>bla</i> _{CTX-M} Integrated in the Chromosome. An Agents and Chemotherapy, 2017, 61, .</i>	a timicrobial	1.4	66
787	CRISPR-Cas9 technology: applications in genome engineering, development of sequenc antimicrobials, and future prospects. Integrative Biology (United Kingdom), 2017, 9, 10	e-specific 9-122.	0.6	47
788	Magnesium aminoclay-based transformation of Paenibacillus riograndensis and Paeniba polymyxa and development of tools for gene expression. Applied Microbiology and Biot 2017, 101, 735-747.		1.7	18
789	Insights from the complete genome sequence of <i>Clostridium tyrobutyricum</i> prov for biotechnological and industrial applications. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 1245-1260.	ide a platform	1.4	16
790	Bacteriophages Infecting Lactic Acid Bacteria. , 2017, , 249-272.			5
791	CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in virus transgenic mice. Scientific Reports, 2017, 7, 2796.	n adult hepatitis B	1.6	44
792	CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus. Journa Microbiological Methods, 2017, 139, 79-86.	of	0.7	25
793	Review. Development, Applications, Benefits, Challenges and Limitations of the New Ge Engineering Technique. An Update Study. Acta Marisiensis - Seria Medica, 2017, 63, 4-9		0.3	5
794	Understanding neurodevelopmental disorders using human pluripotent stem cellâ€deri Brain Pathology, 2017, 27, 508-517.	ved neurons.	2.1	6

CITATION REPOR	Т

#	Article	IF	CITATIONS
795	Structural and dynamic insights into the role of conformational switching in the nuclease activity of the Xanthomonas albilineans Cas2 in CRISPR-mediated adaptive immunity. Structural Dynamics, 2017, 4, 054701.	0.9	8
796	Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017, 37, 67-78.	2.3	1,076
797	Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Molecular Cell, 2017, 67, 117-127.e5.	4.5	143
798	Suppressing the CRISPR/Cas adaptive immune system in bacterial infections. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2043-2051.	1.3	29
799	RNA activationâ€independent DNA targeting of the Type III CRISPR as system by a Csm complex. EMBO Reports, 2017, 18, 826-840.	2.0	23
800	The CRISPR-Cas9 system in Neisseria spp Pathogens and Disease, 2017, 75, .	0.8	13
801	Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex. Cell, 2017, 169, 47-57.e11.	13.5	191
803	Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. Applied Microbiology and Biotechnology, 2017, 101, 3953-3976.	1.7	56
804	Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renewable and Sustainable Energy Reviews, 2017, 74, 1080-1107.	8.2	31
805	Deciphering, Communicating, and Engineering the CRISPR PAM. Journal of Molecular Biology, 2017, 429, 177-191.	2.0	147
806	Single-Molecule Insight Into Target Recognition by CRISPR–Cas Complexes. Methods in Enzymology, 2017, 582, 239-273.	0.4	20
807	C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell, 2017, 65, 310-322.	4.5	136
808	Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back. Genome Biology and Evolution, 2017, 9, 2812-2825.	1.1	131
809	Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nature Reviews Neurology, 2017, 13, 647-661.	4.9	68
810	Mechanism of Genome Interrogation: How CRISPR RNA-Guided Cas9 Proteins Locate Specific Targets on DNA. Biophysical Journal, 2017, 113, 1416-1424.	0.2	9
811	The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry, 2017, 1, .	13.8	111
812	RNA Metabolism and Gene Expression in Archaea. Nucleic Acids and Molecular Biology, 2017, , .	0.2	6
813	CRISPR/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy - Nucleic Acids, 2017, 9, 230-241.	2.3	82

#	Article	IF	CITATIONS
814	Transcription control engineering and applications in synthetic biology. Synthetic and Systems Biotechnology, 2017, 2, 176-191.	1.8	70
815	Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nature Structural and Molecular Biology, 2017, 24, 882-892.	3.6	55
816	Current technics for visualizing RNA in a cell. Russian Journal of Genetics, 2017, 53, 1080-1090.	0.2	2
817	Genome Sequences of Two Naphthalene-Degrading Strains of Pseudomonas balearica, Isolated from Polluted Marine Sediment and from an Oil Refinery Site. Genome Announcements, 2017, 5, .	0.8	3
818	Single nucleotide editing without DNA cleavage using CRISPR/Cas9â€deaminase in the sea urchin embryo. Developmental Dynamics, 2017, 246, 1036-1046.	0.8	25
819	Discovery of Variants Underlying Host Susceptibility to Virus Infection Using Whole-Exome Sequencing. Methods in Molecular Biology, 2017, 1656, 209-227.	0.4	0
820	CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Applied Microbiology and Biotechnology, 2017, 101, 7435-7443.	1.7	126
821	Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 2017, 266, 17-26.	4.8	376
822	Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) RNAs in the Porphyromonas gingivalis CRISPR-Cas I-C System. Journal of Bacteriology, 2017, 199, .	1.0	6
823	Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains. Journal of Virology, 2017, 91, .	1.5	35
824	Coupling transcriptional activation of CRISPR–Cas system and DNA repair genes by Csa3a in Sulfolobus islandicus. Nucleic Acids Research, 2017, 45, 8978-8992.	6.5	60
825	Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature, 2017, 548, 543-548.	13.7	377
826	Priming in a permissive type I-C CRISPR–Cas system reveals distinct dynamics of spacer acquisition and loss. Rna, 2017, 23, 1525-1538.	1.6	48
827	Comparative genomic and phylogenetic analysis of a toxigenic clinical isolate of Corynebacterium diphtheriae strain B-D-16-78 from Malaysia. Infection, Genetics and Evolution, 2017, 54, 263-270.	1.0	19
828	Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT. Scientific Reports, 2017, 7, 3682.	1.6	21
829	The Reverse Transcriptases Associated with CRISPR-Cas Systems. Scientific Reports, 2017, 7, 7089.	1.6	30
830	Comparative Genomic Analysis Identifies a Campylobacter Clade Deficient in Selenium Metabolism. Genome Biology and Evolution, 2017, 9, 1843-1858.	1.1	20
831	Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance. Molecular Cell, 2017, 67, 622-632.e4.	4.5	67

#	Article	IF	CITATIONS
832	Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Archives of Oral Biology, 2017, 83, 174-180.	0.8	30
833	Recent advances in CRISPR/Cas mediated genome editing for crop improvement. Plant Biotechnology Reports, 2017, 11, 193-207.	0.9	37
835	Singleâ€cell sequencing unveils the lifestyle and CRISPRâ€based population history of <i>Hydrotalea</i> sp. in acid mine drainage. Molecular Ecology, 2017, 26, 5541-5551.	2.0	8
837	Repair of the TGFBI gene in human corneal keratocytes derived from a granular corneal dystrophy patient via CRISPR/Cas9-induced homology-directed repair. Scientific Reports, 2017, 7, 16713.	1.6	29
838	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
839	Viral Vectors, Engineered Cells and the CRISPR Revolution. Advances in Experimental Medicine and Biology, 2017, 1016, 3-27.	0.8	15
840	Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Scientific Reports, 2017, 7, 15480.	1.6	12
841	The Biology and Epidemiology of Mycobacterium canettii. Advances in Experimental Medicine and Biology, 2017, 1019, 27-41.	0.8	25
842	The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex. Advances in Experimental Medicine and Biology, 2017, 1019, 43-78.	0.8	43
843	Diverse Functions of Small RNAs (sRNAs) in Halophilic Archaea: From Non-coding Regulatory sRNAs to Microprotein-Encoding sRNAs. Nucleic Acids and Molecular Biology, 2017, , 225-242.	0.2	2
844	Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools. Infection, Genetics and Evolution, 2017, 54, 355-373.	1.0	33
845	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017, 2, 17092.	5.9	238
846	Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiology, 2017, 17, 52.	1.3	83
847	Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annual Review of Microbiology, 2017, 71, 233-261.	2.9	256
848	Clustered, regularly interspaced short palindromic repeat (CRISPR) diversity and virulence factor distribution in avian Escherichia coli. Research in Microbiology, 2017, 168, 147-156.	1.0	13
849	The discovery and development of the CRISPR system in applications in genome manipulation. Biochemistry and Cell Biology, 2017, 95, 203-210.	0.9	10
850	Structural constraints and enzymatic promiscuity in the Cas6-dependent generation of crRNAs. Nucleic Acids Research, 2017, 45, 915-925.	6.5	53
851	Assessing the intra-species genetic variability in the clonal pathogen Campylobacter fetus: CRISPRs are highly polymorphic DNA markers. Journal of Microbiological Methods, 2017, 132, 86-94.	0.7	16

		CITATION RE	EPORT	
#	Article		IF	Citations
852	Adaptation of CRISPR nucleases for eukaryotic applications. Analytical Biochemistry, 2	017, 532, 90-94.	1.1	8
853	Target DNA recognition and cleavage by a reconstituted Type I-G CRISPR-Cas immune Extremophiles, 2017, 21, 95-107.	effector complex.	0.9	21
854	CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Archivum Immunolog Experimentalis, 2017, 65, 233-240.	iae Et Therapiae	1.0	102
855	Structured Populations of Sulfolobus acidocaldarius with Susceptibility to Mobile Gene Genome Biology and Evolution, 2017, 9, 1699-1710.	etic Elements.	1.1	17
856	Relevance of the clustered regularly interspaced short palindromic repeats of Enterocc strains isolated from retreatment root canals on periapical lesions, resistance to irrigar biofilms. Experimental and Therapeutic Medicine, 2017, 14, 5491-5496.	iccus faecalis its and	0.8	14
857	First Insights into the Genome Sequence of the Cellulolytic Bacterium Clostridium hun 14427. Genome Announcements, 2017, 5, .	gatei DSM	0.8	1
858	Phage Life Cycles Behind Bacterial Biodiversity. Current Medicinal Chemistry, 2017, 24	-, 3987-4001.	1.2	53
859	Progress in Genome Editing Technology and Its Application in Plants. Frontiers in Plant 8, 177.	Science, 2017,	1.7	78
860	Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Frontiers in Plant Sci	ence, 2017, 8, 1932.	1.7	244
861	Molecular Characterization ofCorynebacterium diphtheriaeOutbreak Isolates, South A March–June 2015. Emerging Infectious Diseases, 2017, 23, 1308-1315.	frica,	2.0	36
862	New directions in hepatitis B therapy research. Clinical and Experimental Hepatology, 2	2017, 3, 119-126.	0.6	12
863	Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persisten Cellular and Infection Microbiology, 2017, 7, 39.	ce. Frontiers in	1.8	950
864	Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. From Microbiology, 2016, 7, 2160.	ntiers in	1.5	24
865	The Mobilome; A Major Contributor to Escherichia coli stx2-Positive O26:H11 Strains I Diversity. Frontiers in Microbiology, 2017, 8, 1625.	ntra-Serotype	1.5	13
866	Characterization and Exploitation of CRISPR Loci in Bifidobacterium longum. Frontiers Microbiology, 2017, 8, 1851.	in	1.5	64
867	Challenges and Advances for Genetic Engineering of Non-model Bacteria and Uses in C Bioprocessing. Frontiers in Microbiology, 2017, 8, 2060.	Consolidated	1.5	68
868	Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRN Frontiers in Microbiology, 2017, 8, 2139.	IA Production.	1.5	5
869	CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gu Frontiers in Microbiology, 2017, 8, 2234.	t Microbiome.	1.5	31

#	Article	IF	CITATIONS
870	Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems. ELife, 2017, 6, .	2.8	81
871	In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented AloreA±a green table olives. PLoS ONE, 2017, 12, e0176801.	1.1	23
872	Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS ONE, 2017, 12, e0178008.	1.1	34
873	Investigation of potential targets of Porphyromonas CRISPRs among the genomes of Porphyromonas species. PLoS ONE, 2017, 12, e0183752.	1.1	12
874	Genomic features of "Candidatus Venteria ishoeyiâ€ , a new sulfur-oxidizing macrobacterium from the Humboldt Sulfuretum off Chile. PLoS ONE, 2017, 12, e0188371.	1.1	12
875	CRISPR History: Discovery, Characterization, and Prosperity. Progress in Molecular Biology and Translational Science, 2017, 152, 1-21.	0.9	20
876	Optimal number of spacers in CRISPR arrays. PLoS Computational Biology, 2017, 13, e1005891.	1.5	48
877	On the global CRISPR array behavior in class I systems. Biology Direct, 2017, 12, 20.	1.9	12
878	Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4+ T cells from HIV-1 infection. Cell and Bioscience, 2017, 7, 47.	2.1	108
879	The Smart Programmable CRISPR Technology: A Next Generation Genome Editing Tool for Investigators. Current Drug Targets, 2017, 18, 1653-1663.	1.0	8
880	Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Research, 2017, 45, 10740-10750.	6.5	43
881	CRISPR-Cas Genome Surgery in Ophthalmology. Translational Vision Science and Technology, 2017, 6, 13.	1.1	15
882	Differentiation and Structure in Sulfolobus islandicus Rod-Shaped Virus Populations. Viruses, 2017, 9, 120.	1.5	26
883	CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Korean Journal of Internal Medicine, 2017, 32, 42-61.	0.7	45
884	Future Perspectives for Cancer Therapy Using the CRISPR Genome Editing Technology. Journal of Clinical & Cellular Immunology, 2017, 08, .	1.5	2
885	Editing plants for virus resistance using CRISPR-Cas. Acta Virologica, 2017, 61, 138-142.	0.3	29
885 886	Editing plants for virus resistance using CRISPR-Cas. Acta Virologica, 2017, 61, 138-142. Current Progress and Future Prospects in Nucleic Acid Based Therapeutics. , 2017, , 280-313.	0.3	29 4

#	Article	IF	CITATIONS
888	The Biology of CRISPR-Cas: Backward and Forward. Cell, 2018, 172, 1239-1259.	13.5	737
889	Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metabolic Engineering, 2018, 47, 49-59.	3.6	172
890	Diagnosis and therapy with CRISPR advanced CRISPR based tools for point of care diagnostics and early therapies. Gene, 2018, 656, 22-29.	1.0	33
891	Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae. Infection, Genetics and Evolution, 2018, 63, 326-331.	1.0	8
892	Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nature Microbiology, 2018, 3, 461-469.	5.9	118
893	Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018, 50, 16-46.	3.6	250
894	CRISPR/Cas9 genome editing technology significantly accelerated herpes simplex virus research. Cancer Gene Therapy, 2018, 25, 93-105.	2.2	41
895	Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Biomaterials, 2018, 171, 207-218.	5.7	289
896	CRISPR-Cas9: A Precise Approach to Genome Engineering. Therapeutic Innovation and Regulatory Science, 2018, 52, 701-707.	0.8	4
897	Genome Editing in Induced Pluripotent Stem Cells using CRISPR/Cas9. Stem Cell Reviews and Reports, 2018, 14, 323-336.	5.6	107
898	<scp>CRISPR</scp> /Cas9â€mediated resistance to cauliflower mosaic virus. Plant Direct, 2018, 2, e00047.	0.8	61
899	IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1025-1033.	1.9	13
900	CRISPR/Cas9 Inhibits Multiple Steps of HIV-1 Infection. Human Gene Therapy, 2018, 29, 1264-1276.	1.4	33
901	Knockout of zebrafish interleukin 7 receptor (IL7R) by the CRISPR/Cas9 system delays retinal neurodevelopment. Cell Death and Disease, 2018, 9, 273.	2.7	10
902	Personalised genome editing – The future for corneal dystrophies. Progress in Retinal and Eye Research, 2018, 65, 147-165.	7.3	31
903	CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. MBio, 2018, 9, .	1.8	103
904	Comparative Genomics of Clostridium difficile. Advances in Experimental Medicine and Biology, 2018, 1050, 59-75.	0.8	11
905	Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. Journal of Bacteriology, 2018, 200, .	1.0	15

#	Article	IF	CITATIONS
906	Natural and Artificial Strategies To Control the Conjugative Transmission of Plasmids. Microbiology Spectrum, 2018, 6, .	1.2	59
907	Application of Genome Editing Techniques in Immunology. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 289-298.	1.0	14
908	CRISPR/Cas9: A tool for immunological research. European Journal of Immunology, 2018, 48, 576-583.	1.6	19
909	The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex. Nucleic Acids Research, 2018, 46, 350-361.	6.5	128
910	CRISPR RNA and anti-CRISPR protein binding to the Xanthomonas albilineans Csy1-Csy2 heterodimer in the type I-F CRISPR-Cas system. Journal of Biological Chemistry, 2018, 293, 2744-2754.	1.6	17
911	History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Journal of Bacteriology, 2018, 200, .	1.0	273
912	CRISPR genome editing and its medical applications. Biotechnology and Biotechnological Equipment, 2018, 32, 286-292.	0.5	11
913	A history of genome editing in <scp><i>Saccharomyces cerevisiae</i></scp> . Yeast, 2018, 35, 355-360.	0.8	14
914	Precise editing of <i><scp>CLAVATA</scp></i> genes in <i>Brassica napus</i> L. regulates multilocular silique development. Plant Biotechnology Journal, 2018, 16, 1322-1335.	4.1	133
915	The CRISPR-Cas system in Enterobacteriaceae. Pathogens and Disease, 2018, 76, .	0.8	39
916	Fundamental principles in bacterial physiology—history, recent progress, and the future with focus on cell size control: a review. Reports on Progress in Physics, 2018, 81, 056601.	8.1	136
918	Optimized pairedâ€sgRNA/Cas9 cloning and expression cassette triggers highâ€efficiency multiplex genome editing in kiwifruit. Plant Biotechnology Journal, 2018, 16, 1424-1433.	4.1	131
919	Advances in Engineering the Fly Genome with the CRISPR-Cas System. Genetics, 2018, 208, 1-18.	1.2	154
920	Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins. BMC Biology, 2018, 16, 32.	1.7	36
921	The CRISPR/Cas9 system sheds new lights on the biology of protozoan parasites. Applied Microbiology and Biotechnology, 2018, 102, 4629-4640.	1.7	17
922	Structural insights into the CRISPR-Cas-associated ribonuclease activity of Staphylococcus epidermidis Csm3 and Csm6. Science Bulletin, 2018, 63, 691-699.	4.3	5
923	Harnessing "A Billion Years of Experimentation― The Ongoing Exploration and Exploitation of CRISPR–Cas Immune Systems. CRISPR Journal, 2018, 1, 141-158.	1.4	44
924	Making point mutations in Escherichia coli BL21 genome using the CRISPR-Cas9 system. FEMS Microbiology Letters, 2018, 365, .	0.7	8

#	Article	IF	CITATIONS
925	Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique. Analytical and Bioanalytical Chemistry, 2018, 410, 2889-2900.	1.9	54
926	The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Physical Biology, 2018, 15, 041002.	0.8	13
927	Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 599-614.	1.4	15
928	CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Progress in Retinal and Eye Research, 2018, 65, 28-49.	7.3	64
929	CRISPR/Cas9: An RNAâ€guided highly precise synthetic tool for plant genome editing. Journal of Cellular Physiology, 2018, 233, 1844-1859.	2.0	82
930	Gene editing and genetic engineering approaches for advanced probiotics: A review. Critical Reviews in Food Science and Nutrition, 2018, 58, 1735-1746.	5.4	73
931	Generation of Genomic Deletions (of <i>Rig-l</i> GENE) in Goat Primary Cell Culture Using CRISPR/ <i>CAS9</i> Method. Animal Biotechnology, 2018, 29, 142-152.	0.7	2
932	<i>In situ</i> metabolomic- and transcriptomic-profiling of the host-associated cyanobacteria <i>Prochloron</i> and <i>Acaryochloris marina</i> . ISME Journal, 2018, 12, 556-567.	4.4	7
933	CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biology, 2018, 15, 35-43.	1.5	78
934	Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion. Current Genetics, 2018, 64, 405-412.	0.8	7
935	Functional validation of ATF4 and GADD34 in Neuro2a cells by CRISPR/Cas9-mediated genome editing. Molecular and Cellular Biochemistry, 2018, 440, 65-75.	1.4	13
936	Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnology Advances, 2018, 36, 295-310.	6.0	87
937	The independent loss model with ordered insertions for the evolution of CRISPR spacers. Theoretical Population Biology, 2018, 119, 72-82.	0.5	2
938	Generation of Bacteriophage-Insensitive Mutants of Streptococcus thermophilus via an Antisense RNA CRISPR-Cas Silencing Approach. Applied and Environmental Microbiology, 2018, 84, .	1.4	18
939	Functional divergence and comparative inâ€silico study of Cas4 proteins of DUF83 class. Journal of Molecular Recognition, 2018, 31, e2694.	1.1	0
940	Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. Journal of Materials Chemistry B, 2018, 6, 210-235.	2.9	85
941	Revolutionizing male fertility factor research in mice by using the genome editing tool <scp>CRISPR</scp> /Cas9. Reproductive Medicine and Biology, 2018, 17, 3-10.	1.0	28
942	Phylogeny and genomics of SAUL, an enigmatic bacterial lineage frequently associated with marine sponges. Environmental Microbiology, 2018, 20, 561-576.	1.8	32

		CITATION R	EPORT	
#	Article		IF	CITATIONS
943	A guard-killer phage cocktail effectively lyses the host and inhibits the development of pha strains of Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 971-983.	ıge-resistant	1.7	44
944	Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. ACS C Biology, 2018, 13, 347-356.	hemical	1.6	25
945	Methods for Plant Genetic Modification. , 2018, , 385-401.			0
946	DNA molecular markers in plant breeding: current status and recent advancements in gen selection and genome editing. Biotechnology and Biotechnological Equipment, 2018, 32,	omic 261-285.	O.5	487
947	CRISPR-Cas based antiviral strategies against HIV-1. Virus Research, 2018, 244, 321-332.		1.1	69
948	CRISPR editing in biological and biomedical investigation. Journal of Cellular Physiology, 20 3875-3891.	018, 233,	2.0	19
949	Application of Arrayed CRISPR/cas9 Screen and its Data Analysis: a Systematic Review. , 20)18,,.		0
950	Selective Maintenance of Multiple CRISPR Arrays Across Prokaryotes. CRISPR Journal, 201	8, 1, 405-413.	1.4	17
951	Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations. Physical Cl Chemical Physics, 2018, 20, 27439-27448.	nemistry	1.3	16
952	Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discovery, 2018, 4	, 63.	3.1	183
953	CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines, 2018, 6, 105.		1.4	76
954	A Small RNA Isolation and Sequencing Protocol and Its Application to Assay CRISPR RNA B Bacteria. Bio-protocol, 2018, 8, .	iogenesis in	0.2	5
955	Prediction of Horizontally and Widely Transferred Genes in Prokaryotes. Evolutionary Bioinformatics, 2018, 14, 117693431881078.		0.6	3
956	Genome Editing Using Crispr/Cas System: New Era Genetic Technology in Agriculture to B Output. European Journal of Experimental Biology, 2018, 07, .	oost Crop	0.3	3
957	Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS ONE, 2018, 13, e020	9357.	1.1	8
958	Potential for CRISPR Genetic Engineering to Increase Xenobiotic Degradation Capacities ir Fungi. Nanotechnology in the Life Sciences, 2018, , 61-78.	n Model	0.4	25
959	Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a lifestyle. BMC Genomics, 2018, 19, 889.	pathogenic	1.2	53
960	Targeted genome editing in algae using CRISPR/Cas9. Indian Journal of Plant Physiology, 2 653-669.	018, 23,	0.8	21

	CITATION	Report	
#	Article	IF	CITATIONS
961	Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics. AAPS Journal, 2018, 20, 108.	2.2	67
962	RIG-I is responsible for activation of type I interferon pathway in Seneca Valley virus-infected porcine cells to suppress viral replication. Virology Journal, 2018, 15, 162.	1.4	17
963	CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions. Communications Biology, 2018, 1, 180.	2.0	64
964	In silico Analysis Suggests Common Appearance of scaRNAs in Type II Systems and Their Association With Bacterial Virulence. Frontiers in Genetics, 2018, 9, 474.	1.1	8
965	First genome sequencing and comparative analyses of Corynebacterium pseudotuberculosis strains from Mexico. Standards in Genomic Sciences, 2018, 13, 21.	1.5	8
966	Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Frontiers in Microbiology, 2018, 9, 2394.	1.5	6
967	Genome Structure of the Opportunistic Pathogen Paracoccus yeei (Alphaproteobacteria) and Identification of Putative Virulence Factors. Frontiers in Microbiology, 2018, 9, 2553.	1.5	37
968	Molecular mechanisms of III-B CRISPR–Cas systems in archaea. Emerging Topics in Life Sciences, 2018, 2, 483-491.	1.1	8
969	Genome editing in <i>Streptococcus mutans</i> through selfâ€ŧargeting CRISPR arrays. Molecular Oral Microbiology, 2018, 33, 440-449.	1.3	39
970	A Unified Resource for Tracking Anti-CRISPR Names. CRISPR Journal, 2018, 1, 304-305.	1.4	94
971	CRISPR/Cas9-Mediated Multiplex Genome Editing of the BnWRKY11 and BnWRKY70 Genes in Brassica napus L. International Journal of Molecular Sciences, 2018, 19, 2716.	1.8	103
972	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .	0.2	3
973	Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS ONE, 2018, 13, e0198714.	1.1	46
974	Adeno-associated Virus Vectors in Gene Therapy. , 2018, , 29-56.		1
975	Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Nature, 2018, 562, 277-280.	13.7	105
976	Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique. Analytical Biochemistry, 2018, 561-562, 37-46.	1.1	35
977	The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. Microbial Cell, 2018, 5, 262-268.	1.4	21
978	Genome Editing in Human Neural Stem and Progenitor Cells. Results and Problems in Cell Differentiation, 2018, 66, 163-182.	0.2	1

#	Article	IF	CITATIONS
979	Genomic Editing—From Human Health to the "Perfect Child― , 2018, , 1-30.		0
980	Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils. Frontiers in Microbiology, 2018, 9, 1982.	1.5	23
981	Delivering CRISPR: a review of the challenges and approaches. Drug Delivery, 2018, 25, 1234-1257.	2.5	776
982	Proteiniphilum saccharofermentans str. M3/6T isolated from a laboratory biogas reactor is versatile in polysaccharide and oligopeptide utilization as deduced from genome-based metabolic reconstructions. Biotechnology Reports (Amsterdam, Netherlands), 2018, 18, e00254.	2.1	30
983	The Role of Gene Editing in Neurodegenerative Diseases. Cell Transplantation, 2018, 27, 364-378.	1.2	11
984	Generation of genetically-engineered animals using engineered endonucleases. Archives of Pharmacal Research, 2018, 41, 885-897.	2.7	24
985	Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Advanced Science, 2018, 5, 1700964.	5.6	61
986	The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9, 1911.	5.8	1,159
987	Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS ONE, 2018, 13, e0194368.	1.1	50
988	Biotechnology of extremely thermophilic archaea. FEMS Microbiology Reviews, 2018, 42, 543-578.	3.9	67
989	Is Pooled CRISPR-Screening the Dawn of a New Era for Functional Genomics. Advances in Experimental Medicine and Biology, 2018, 1068, 171-176.	0.8	3
991	Biomolecular Therapeutics for HIV. , 2018, , 541-567.		2
992	CRISPR/Cas9 genome surgery for retinal diseases. Drug Discovery Today: Technologies, 2018, 28, 23-32.	4.0	10
993	Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiological Reviews, 2018, 98, 1205-1240.	13.1	31
994	Bacteriophages: Protagonists of a Post-Antibiotic Era. Antibiotics, 2018, 7, 66.	1.5	127
995	Fishing for understanding: Unlocking the zebrafish gene editor's toolbox. Methods, 2018, 150, 3-10.	1.9	22
996	Enumeration and Identification of Probiotic Bacteria in Food Matrices. , 2018, , 167-196.		5
997	Lycopene Is Enriched in Tomato Fruit by CRISPR/Cas9-Mediated Multiplex Genome Editing. Frontiers in Plant Science, 2018, 9, 559.	1.7	249

		REPORT	
#	ARTICLE Characterization of CRISPR-Cas Systems in Clinical Klebsiella pneumoniae Isolates Uncovers Its	IF	CITATIONS
998	Potential Association With Antibiotic Susceptibility. Frontiers in Microbiology, 2018, 9, 1595.	1.5	42
999	A functional type II-A CRISPR–Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Research, 2018, 46, 6920-6933.	6.5	58
1000	Targeted Genome Editing for Crop Improvement in Post Genome-Sequencing Era. , 2018, , 373-390.		1
1001	Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application. Frontiers in Microbiology, 2018, 9, 257.	1.5	55
1002	Pan-Genome Analysis Links the Hereditary Variation of Leptospirillum ferriphilum With Its Evolutionary Adaptation. Frontiers in Microbiology, 2018, 9, 577.	1.5	18
1003	Plant Tissue Culture: A Battle Horse in the Genome Editing Using CRISPR/Cas9. Methods in Molecular Biology, 2018, 1815, 131-148.	0.4	8
1004	Phage Therapy: What Have We Learned?. Viruses, 2018, 10, 288.	1.5	101
1005	CRISPR as9: A cornerstone for the evolution of precision medicine. Annals of Human Genetics, 2018, 82, 331-357.	0.3	13
1006	CRISPR–Cas13 Precision Transcriptome Engineering in Cancer. Cancer Research, 2018, 78, 4107-4113.	0.4	66
1007	Engineering virus resistance via CRISPR–Cas systems. Current Opinion in Virology, 2018, 32, 1-8.	2.6	53
1008	Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6585-E6594.	3.3	69
1009	Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nature Communications, 2018, 9, 2832.	5.8	108
1010	Genome analysis of Mycoplasma synoviae strain MS-H, the most common M. synoviae strain with a worldwide distribution. BMC Genomics, 2018, 19, 117.	1.2	14
1011	Genetics of CRISPR arrays in Salmonella Typhimurium 14028 associated with foreign DNA decay. Genes and Genomics, 2018, 40, 865-872.	0.5	0
1012	Shooting the messenger: RNA-targetting CRISPR-Cas systems. Bioscience Reports, 2018, 38, .	1.1	28
1013	RNA virus interference via CRISPR/Cas13a system in plants. Genome Biology, 2018, 19, 1.	3.8	1,148
1014	Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. Journal of Biological Engineering, 2018, 12, 13.	2.0	26
1015	Genome Variation in the Model Halophilic Bacterium Salinibacter ruber. Frontiers in Microbiology, 2018, 9, 1499.	1.5	12

#	Article	IF	CITATIONS
1016	New Insights Into Functions and Possible Applications of Clostridium difficile CRISPR-Cas System. Frontiers in Microbiology, 2018, 9, 1740.	1.5	11
1017	Precision gene editing technology andÂapplications in nephrology. Nature Reviews Nephrology, 2018, 14, 663-677.	4.1	38
1018	CRISPR/Cas system as an emerging technology to enhance plant viral immunity. Physiological and Molecular Plant Pathology, 2018, 103, 107-113.	1.3	2
1019	Multiplexed CRISPR-Cpf1-Mediated Genome Editing in <i>Clostridium difficile</i> toward the Understanding of Pathogenesis of <i>C. difficile</i> Infection. ACS Synthetic Biology, 2018, 7, 1588-1600.	1.9	66
1020	Draft Genome Sequence of Aeromonas cavernicola sp. nov. DSM 24474 ^T , Isolated from a Cavern Brook in the Moravia Region of the Czech Republic. Genome Announcements, 2018, 6, .	0.8	0
1021	Genome Editing in Agricultural Biotechnology. Advances in Botanical Research, 2018, 86, 245-286.	0.5	7
1022	Opportunities in biotechnology. Journal of Biotechnology, 2018, 282, 38-45.	1.9	14
1023	Genome Editing. , 2018, , 19-31.		1
1024	DnaQ exonucleaseâ€like domain of Cas2 promotes spacer integration in a type lâ€E CRISPR as system. EMBO Reports, 2018, 19, .	2.0	31
1025	Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR- <i>cas</i> gene cassettes reveals 39 new <i>cas</i> gene families. RNA Biology, 2019, 16, 530-542.	1.5	97
1026	CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. Journal of Molecular Biology, 2019, 431, 88-101.	2.0	113
1027	The CRISPR/Cas system in <i>Neisseria meningitidis</i> affects bacterial adhesion to human nasopharyngeal epithelial cells. RNA Biology, 2019, 16, 390-396.	1.5	27
1028	<i>Mycobacterium tuberculosis</i> type IIIâ€A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB Journal, 2019, 33, 1496-1509.	0.2	34
1029	Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR–Cas Systems. Journal of Molecular Biology, 2019, 431, 66-87.	2.0	247
1030	Extrachromosomal circular elements targeted by CRISPR-Cas in <i>Dehalococcoides mccartyi</i> are linked to mobilization of reductive dehalogenase genes. ISME Journal, 2019, 13, 24-38.	4.4	16
1031	The advances in CRISPR technology and 3D genome. Seminars in Cell and Developmental Biology, 2019, 90, 54-61.	2.3	10
1032	CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	1.4	8
1033	Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. International Journal of Molecular Sciences, 2019, 20, 4045.	1.8	133

#	Article	IF	CITATIONS
	Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chemical Reviews, 2019, 119,		
1034	6326-6369.	23.0	506
1035	Single-Cell Editing: The CRISPR/Cas9 and Applications. , 2019, , 397-415.		1
1036	Nanotechnology based CRISPR/Cas9 system delivery for genome editing: Progress and prospect. Nano Research, 2019, 12, 2437-2450.	5.8	46
1037	Delivery Methods for Treatment of Genetic Disorders. , 2019, , 447-461.		0
1038	Genome Editing for Muscle Gene Therapy. , 2019, , 275-287.		0
1039	Divergent methylation of CRISPR repeats and cas genes in a subtype I-D CRISPR-Cas-system. BMC Microbiology, 2019, 19, 147.	1.3	7
1040	Friend or Foe? Evidence Indicates Endogenous Exosomes Can Deliver Functional gRNA and Cas9 Protein. Small, 2019, 15, e1902686.	5.2	58
1041	<i>Porphyromonas gingivalis</i> and its CRISPR-Cas system. Journal of Oral Microbiology, 2019, 11, 1638196.	1.2	16
1042	Inserting DNA with CRISPR. Science, 2019, 365, 25-26.	6.0	11
1043	Efficient and Precise Genome Editing in <i>Shewanella</i> with Recombineering and CRISPR/Cas9-Mediated Counter-Selection. ACS Synthetic Biology, 2019, 8, 1877-1889.	1.9	33
1044	CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Annals of Clinical Microbiology and Antimicrobials, 2019, 18, 21.	1.7	63
1045	CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Research, 2020, 48, D535-D544.	6.5	88
1046	Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microbial Pathogenesis, 2019, 136, 103706.	1.3	9
1047	CRISPR/Cas9 facilitates genomic editing for large-scale functional studies in pluripotent stem cell cultures. Human Genetics, 2019, 138, 1217-1225.	1.8	13
1048	Mutagenesis in Rice: The Basis for Breeding a New Super Plant. Frontiers in Plant Science, 2019, 10, 1326.	1.7	82
1049	Microevolution within ST11 group Clostridioides difficile isolates through mobile genetic elements based on complete genome sequencing. BMC Genomics, 2019, 20, 796.	1.2	5
1050	Molecular Simulations have Boosted Knowledge of CRISPR/Cas9: A Review. Journal of Self-Assembly and Molecular Electronics (SAME), 2019, 7, 45-72.	0.0	2
1051	Efficient and modular CRISPRâ€Cas9 vector system for <i>Physcomitrella patens</i> . Plant Direct, 2019, 3, e00168.	0.8	39

		CITATION REPORT		
#	Article		IF	CITATIONS
1052	Elimination of infectious HIV DNA by CRISPR–Cas9. Current Opinion in Virology, 201	.9, 38, 81-88.	2.6	28
1053	Recruitment of Reverse Transcriptase-Cas1 Fusion Proteins by Type VI-A CRISPR-Cas Sy Microbiology, 2019, 10, 2160.	stems. Frontiers in	1.5	27
1054	CRISPR-Cas System of a Prevalent Human Gut Bacterium Reveals Hyper-targeting agair Human Virome Catalog. Cell Host and Microbe, 2019, 26, 325-335.e5.	nst Phages in a	5.1	53
1056	Characterization of CRISPR-Cas Systems in Serratia marcescens Isolated from Rhyncho ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms, 2019, 7, 368.		1.6	11
1057	CRISPR-Cas systems ushered in an era of facile DNA-free genome editing. Seminars in C Developmental Biology, 2019, 96, 1-3.	Cell and	2.3	0
1058	Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Bi Biophysical Research Communications, 2019, 519, 819-823.	ochemical and	1.0	30
1059	Bioinformatics Identification of Anti-CRISPR Loci by Using Homology, Guilt-by-Associati Self-Targeting Spacer Approaches. MSystems, 2019, 4, .	ion, and CRISPR	1.7	38
1060	CRISPR analysis suggests that small circular single-stranded DNA smacoviruses infect A of humans. Nature Communications, 2019, 10, 294.	Archaea instead	5.8	46
1061	Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases sensitivity. Archives of Oral Biology, 2019, 99, 190-197.	s fluoride	0.8	46
1062	CRISPR/Cas9 technology as a potent molecular tool for gene therapy. Journal of Cellula 2019, 234, 12267-12277.	ar Physiology,	2.0	87
1063	CRISPR: a new principle of genome engineering linked to conceptual shifts in evolution Biology and Philosophy, 2019, 34, 9.	1ary biology.	0.7	26
1064	Analysis of genetic diversity of Xanthomonas oryzae pv. oryzae populations in Taiwan. Reports, 2019, 9, 316.	Scientific	1.6	11
1065	<p>Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of tri cancer cells</p> . OncoTargets and Therapy, 2019, Volume 12, 3849-3858.	ple-negative breast	1.0	40
1066	Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX30 novel insights into its genetic and phenotypic features. BMC Genomics, 2019, 20, 486		1.2	29
1067	GalK limits type I-F CRISPR-Cas expression in a CRP-dependent manner. FEMS Microbio 366, .	logy Letters, 2019,	0.7	7
1068	Development of CRISPR-Cas systems for genome editing and beyond. Quarterly Review 2019, 52, .	vs of Biophysics,	2.4	108
1069	Analysis of CRISPR/Cas system of Proteus and the factors affected the functional mech Sciences, 2019, 231, 116531.	nanism. Life	2.0	6
1070	Role of the R349 Gene and Its Repeats in the MIMIVIRE Defense System. Frontiers in M 10, 1147.	licrobiology, 2019,	1.5	13

#	Article	IF	CITATIONS
1071	Diversity of CRISPR/Cas system in Clostridium perfringens. Molecular Genetics and Genomics, 2019, 294, 1263-1275.	1.0	7
1072	Data Mining by Pluralistic Approach on CRISPR Gene Editing in Plants. Frontiers in Plant Science, 2019, 10, 801.	1.7	12
1073	Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radical Biology and Medicine, 2019, 144, 279-292.	1.3	18
1074	CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4+ T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4+ T cell enrichment in humanized mice. Retrovirology, 2019, 16, 15.	0.9	36
1075	Marine Microbe Stress Responses to Bacteriophage Infection. , 2019, , 141-174.		0
1076	CRISPR/Cas System for Genome Editing: Progress and Prospects as a Therapeutic Tool. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 725-735.	1.3	27
1077	Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Molecular Biology, 2019, 53, 157-175.	0.4	13
1079	Genome Editing in Zebrafish Using CRISPR-Cas9: Applications for Developmental Toxicology. Methods in Molecular Biology, 2019, 1965, 235-250.	0.4	2
1080	Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea. Frontiers in Microbiology, 2019, 10, 839.	1.5	10
1081	CRISPR-Cas: more than ten years and still full of mysteries. RNA Biology, 2019, 16, 377-379.	1.5	4
1082	Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering. Applied Microbiology and Biotechnology, 2019, 103, 4313-4324.	1.7	15
1083	Precise editing of plant genomes – Prospects and challenges. Seminars in Cell and Developmental Biology, 2019, 96, 115-123.	2.3	15
1084	Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment. Scientific Reports, 2019, 9, 6091.	1.6	16
1085	Social genes are selection hotspots in kin groups of a soil microbe. Science, 2019, 363, 1342-1345.	6.0	32
1086	Characterization of CRISPR as systems in <i>Leptospira</i> reveals potential application of CRISPR in genotyping of <i>Leptospira interrogans</i> . Apmis, 2019, 127, 202-216.	0.9	14
1087	Applications of CRISPR Technologies Across the Food Supply Chain. Annual Review of Food Science and Technology, 2019, 10, 133-150.	5.1	38
1088	Plant Genome Engineering for Targeted Improvement of Crop Traits. Frontiers in Plant Science, 2019, 10, 114.	1.7	149
1089	Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnology Advances, 2019, 37, 708-729.	6.0	95

#	Article	IF	CITATIONS
1090	Origins and evolution of CRISPR-Cas systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180087.	1.8	258
1091	The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180094.	1.8	29
1092	CRISPR-Cas in <i>Streptococcus pyogenes</i> . RNA Biology, 2019, 16, 380-389.	1.5	86
1093	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. , 2019, 9, 665-714.		7
1094	CRISPR-Cas, a highly effective tool for genome editing in <i>Clostridium saccharoperbutylacetonicum</i> N1-4(HMT). FEMS Microbiology Letters, 2019, 366, .	0.7	21
1095	CRISPR-Cas based targeting of host and viral genes as an antiviral strategy. Seminars in Cell and Developmental Biology, 2019, 96, 53-64.	2.3	22
1096	Independent Microevolution Mediated by Mobile Genetic Elements of Individual Clostridium difficile Isolates from Clade 4 Revealed by Whole-Genome Sequencing. MSystems, 2019, 4, .	1.7	16
1097	CRISPR-mediated gene editing for the surgeon scientist. Surgery, 2019, 166, 129-137.	1.0	5
1098	Cas4 Nucleases Can Effect Specific Integration of CRISPR Spacers. Journal of Bacteriology, 2019, 201, .	1.0	41
1099	An approach for accelerated isolation of genetically manipulated cell clones with reduced clonal variability. Journal of Cell Science, 2019, 132, .	1.2	1
1100	DNA stretching induces Cas9 off-target activity. Nature Structural and Molecular Biology, 2019, 26, 185-192.	3.6	105
1101	CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics, 2019, 20, 105.	1.2	75
1102	Probing the Behaviour of Cas1-Cas2 upon Protospacer Binding in CRISPR-Cas Systems using Molecular Dynamics Simulations. Scientific Reports, 2019, 9, 3188.	1.6	10
1103	A CRISPR Technology and Biomolecule Production by Synthetic Biology Approach. , 2019, , 143-161.		6
1104	Structural organization of a Type III-A CRISPR effector subcomplex determined by X-ray crystallography and cryo-EM. Nucleic Acids Research, 2019, 47, 3765-3783.	6.5	7
1105	Recent advancement of lightâ€based singleâ€molecule approaches for studying biomolecules. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1445.	6.6	4
1106	Philosophy of CRISPR-Cas: Introduction to Eugene Koonin's target paper and commentaries. Biology and Philosophy, 2019, 34, 1.	0.7	2
1107	Survey on the <scp>CRISPR</scp> arrays in <i>Lactobacillus helveticus</i> genomes. Letters in Applied Microbiology, 2019, 68, 394-402.	1.0	10

		CITATION REPORT		
#	ARTICLE Natural and Artificial Strategies to Control the Conjugative Transmission of Plasmids. , 2019,	, 33-64.	IF	CITATIONS
1109	The War between Bacteria and Bacteriophages. , 0, , .			6
1110	Composition and Diversity of CRISPR-Cas13a Systems in the Genus Leptotrichia. Frontiers in Microbiology, 2019, 10, 2838.		1.5	25
1112	Staphylococci: Evolving Genomes. , 2019, , 485-498.			1
1113	Using the Endogenous CRISPR-Cas System of <i>Heliobacterium modesticaldum</i> To Delet Photochemical Reaction Center Core Subunit Gene. Applied and Environmental Microbiology		1.4	16
1114	Staphylococci: Evolving Genomes. Microbiology Spectrum, 2019, 7, .		1.2	19
1115	CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biology, 2019, 20,	263.	3.8	124
1116	Prokaryotic Genome Expansion Is Facilitated by Phages and Plasmids but Impaired by CRISPR in Microbiology, 2019, 10, 2254.	Frontiers	1.5	6
1117	Efficient methods for determining folding free energies in single-molecule pulling experiments Journal of Statistical Mechanics: Theory and Experiment, 2019, 2019, 124001.	5.	0.9	10
1118	Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. Rice, 2	.019, 12, 95.	1.7	53
1120	Genetically Modified Babies and a First Application of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas9). Obstetrics and Gynecology, 2019, 134, 157-162.		1.2	6
1121	Interaction between cyanophage MaMV-DC and eight Microcystis strains, revealed by genetic systems. Harmful Algae, 2019, 85, 101699.	: defense	2.2	14
1122	Understanding CRISPR/Cas9: A Magnificent Tool for Plant Genome Editing. , 2019, , .			1
1123	Gene therapy for visual loss: Opportunities and concerns. Progress in Retinal and Eye Researc 68, 31-53.	h, 2019,	7.3	78
1124	Bioinformatic evidence of widespread priming in type I and II CRISPR-Cas systems. RNA Biolog 566-576.	;y, 2019, 16,	1.5	45
1125	Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1. RNA Biology, 2019, 16, 492-503.		1.5	11
1126	Genome sequence analysis of the Indian strain Mannheimia haemolytica serotype A2 from ov pneumonic pasteurellosis. Annals of Microbiology, 2019, 69, 151-160.	ine	1.1	2
1127	Atolypenes, Tricyclic Bacterial Sesterterpenes Discovered Using a Multiplexed <i>In Vitro</i> Gene Cluster Refactoring Approach. ACS Synthetic Biology, 2019, 8, 109-118.	Cas9-TAR	1.9	38

#	Article	IF	CITATIONS
1128	Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environmental Microbiology, 2019, 21, 1529-1551.	1.8	29
1130	Methodologies for Improving HDR Efficiency. Frontiers in Genetics, 2018, 9, 691.	1.1	211
1131	CRISPR/Cas-based genome engineering in natural product discovery. Natural Product Reports, 2019, 36, 1262-1280.	5.2	88
1132	A hypothesis: CRISPR-Cas as a minimal cognitive system. Adaptive Behavior, 2019, 27, 167-173.	1.1	7
1133	CRISPR-Cas immunity: beyond nonself and defence. Biology and Philosophy, 2019, 34, 1.	0.7	5
1134	CRISPR-Mediated Approaches to Regulate YAP/TAZ Levels. Methods in Molecular Biology, 2019, 1893, 203-214.	0.4	0
1135	Structure–Function Relationship of Negative-Stranded Viral RNA Polymerases. , 2019, , 43-67.		0
1136	The first genetically geneâ€edited babies: It's "irresponsible and too earlyâ€. Animal Models and Experimental Medicine, 2019, 2, 1-4.	1.3	7
1137	The CRISPR/Cas9 system and its applications in crop genome editing. Critical Reviews in Biotechnology, 2019, 39, 321-336.	5.1	109
1138	Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research. BMC Biotechnology, 2019, 19, 1.	1.7	67
1139	Characterization and distribution of CRISPR–Cas systems in Lactobacillus sakei. Archives of Microbiology, 2019, 201, 337-347.	1.0	13
1140	Live-cell single-particle tracking photoactivated localization microscopy of Cascade-mediated DNA surveillance. Methods in Enzymology, 2019, 616, 133-171.	0.4	4
1141	CRISPR/Cas Systems towards Next-Generation Biosensing. Trends in Biotechnology, 2019, 37, 730-743.	4.9	600
1142	Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry, 2019, 58, 234-244.	1.2	92
1143	Rice Grain Quality. Methods in Molecular Biology, 2019, , .	0.4	5
1144	CRISPR-Cas9-Mediated Genome Editing of Rice Towards Better Grain Quality. Methods in Molecular Biology, 2019, 1892, 311-336.	0.4	7
1145	CRISPR-Cpf1-mediated genome editing and gene regulation in human cells. Biotechnology Advances, 2019, 37, 21-27.	6.0	21
1146	CRISP Points on Establishing CRISPR-Cas9 In Vitro Culture Experiments in a Resource Constraint Haematology Oncology Research Lab. Indian Journal of Hematology and Blood Transfusion, 2019, 35, 208-214.	0.3	2

#	Article	IF	CITATIONS
1147	CRISPR RNA-guided DNA cleavage by reconstituted Type I-A immune effector complexes. Extremophiles, 2019, 23, 19-33.	0.9	14
1148	Frequency of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in non-clinical Enterococcus faecalis and Enterococcus faecium strains. Brazilian Journal of Biology, 2019, 79, 460-465.	0.4	5
1149	Exploiting a conjugative CRISPR/Cas9 system to eliminate plasmid harbouring the mcr-1 gene from Escherichia coli. International Journal of Antimicrobial Agents, 2019, 53, 1-8.	1.1	54
1150	The application of CRISPR-Cas9 genome editing tool in cancer immunotherapy. Briefings in Functional Genomics, 2019, 18, 129-132.	1.3	13
1151	Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803. RNA Biology, 2019, 16, 481-491.	1.5	16
1152	HMMCAS: A Web Tool for the Identification and Domain Annotations of CAS Proteins. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1313-1315.	1.9	43
1153	Prophages contribute to genome plasticity of Klebsiella pneumoniae and may involve the chromosomal integration of ARGs in CG258. Genomics, 2020, 112, 998-1010.	1.3	24
1154	New evolving strategies revealed by transcriptomic analysis of a <i>fur</i> ^{<i>â^²</i>} mutant of the cyanotrophic bacterium <i>Pseudomonas pseudoalcaligenes </i> <scp>CECT</scp> 5344. Microbial Biotechnology, 2020, 13, 148-161.	2.0	5
1155	Role of biogeochemistry in efficient shale oil and gas production. Fuel, 2020, 259, 116207.	3.4	24
1156	PADS Arsenal: a database of prokaryotic defense systems related genes. Nucleic Acids Research, 2020, 48, D590-D598.	6.5	25
1157	Genome editing in animals: an overview. , 2020, , 75-104.		2
1158	Applications of genome editing in farm animals. , 2020, , 131-149.		5
1159	A critical look on CRISPRâ€based genome editing in plants. Journal of Cellular Physiology, 2020, 235, 666-682.	2.0	39
1160	Approaches to study CRISPR RNA biogenesis and the key players involved. Methods, 2020, 172, 12-26.	1.9	18
1161	CRISPR-Cas bioinformatics. Methods, 2020, 172, 3-11.	1.9	45
1162	A glance at genome editing with CRISPR–Cas9 technology. Current Genetics, 2020, 66, 447-462.	0.8	57
1163	Direct observation of the formation of a CRISPR–Cas12a R-loop complex at the single-molecule level. Chemical Communications, 2020, 56, 2123-2126.	2.2	10
1164	Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduction and Targeted Therapy, 2020, 5, 1.	7.1	1,354

#	Article	IF	CITATIONS
1165	Monitoring of Lactobacillus sanfranciscensis strains during wheat and rye sourdough fermentations by CRISPR locus length polymorphism PCR. International Journal of Food Microbiology, 2020, 316, 108475.	2.1	17
1166	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	13.6	1,427
1168	Antiâ€CRISPR proteins targeting the CRISPRâ€Cas system enrich the toolkit for genetic engineering. FEBS Journal, 2020, 287, 626-644.	2.2	25
1169	CRISPR-Cas System for RNA Detection and Imaging. Chemical Research in Chinese Universities, 2020, 36, 157-163.	1.3	8
1170	CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae. Frontiers in Microbiology, 2019, 10, 2934.	1.5	50
1171	The interaction of phages and bacteria: the co-evolutionary arms race. Critical Reviews in Biotechnology, 2020, 40, 119-137.	5.1	37
1172	Characterization and comparison of CRISPR Loci in Streptococcus thermophilus. Archives of Microbiology, 2020, 202, 695-710.	1.0	10
1173	CasCollect: targeted assembly of CRISPR-associated operons from high-throughput sequencing data. NAR Genomics and Bioinformatics, 2020, 2, Iqaa063.	1.5	2
1174	CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 2020, 5, 277-292.	1.8	33
1175	Analysis of CRISPR-Cas systems in Gardnerella suggests its potential role in the mechanisms of bacterial vaginosis. Computational Biology and Chemistry, 2020, 89, 107381.	1.1	3
1176	Type II anti-CRISPR proteins as a new tool for synthetic biology. RNA Biology, 2021, 18, 1085-1098.	1.5	7
1177	CRISPR-Cas12a-Assisted Genome Editing in Amycolatopsis mediterranei. Frontiers in Bioengineering and Biotechnology, 2020, 8, 698.	2.0	14
1178	CRISPR-Cas13a Inhibits HIV-1 Infection. Molecular Therapy - Nucleic Acids, 2020, 21, 147-155.	2.3	46
1179	InÂvivo imaging of synaptogenesis. , 2020, , 33-53.		0
1180	Applications of CRISPR for musculoskeletal research. Bone and Joint Research, 2020, 9, 351-359.	1.3	6
1181	CRISPR–Cas immune systems and genome engineering. , 2020, , 157-177.		0
1183	CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy. Epigenomics, 2020, 12, 1845-1859.	1.0	15
1184	CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes, 2020, 11, 1365.	1.0	9

#	Article	IF	CITATIONS
1185	Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. MSphere, 2020, 5, .	1.3	8
1186	Diverse CRISPR-Cas Complexes Require Independent Translation of Small and Large Subunits from a Single Gene. Molecular Cell, 2020, 80, 971-979.e7.	4.5	27
1187	Structural basis for inhibition of an archaeal CRISPR–Cas type I-D large subunit by an anti-CRISPR protein. Nature Communications, 2020, 11, 5993.	5.8	17
1188	Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1. Molecular Therapy, 2020, 28, 2527-2539.	3.7	15
1189	Heavily Armed Ancestors: CRISPR Immunity and Applications in Archaea with a Comparative Analysis of CRISPR Types in Sulfolobales. Biomolecules, 2020, 10, 1523.	1.8	14
1190	Overcoming the delivery problem for therapeutic genome editing: Current status and perspective of non-viral methods. Biomaterials, 2020, 258, 120282.	5.7	58
1191	A Revolution toward Gene-Editing Technology and Its Application to Crop Improvement. International Journal of Molecular Sciences, 2020, 21, 5665.	1.8	62
1192	Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains. Nucleic Acids Research, 2020, 48, 9204-9217.	6.5	28
1193	CRISPR as system for biomedical diagnostic platforms. View, 2020, 1, 20200008.	2.7	20
1194	CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology. Frontiers in Plant Science, 2020, 11, 1126.	1.7	31
1195	In vivo locus-specific editing of the neuroepigenome. Nature Reviews Neuroscience, 2020, 21, 471-484.	4.9	44
1196	Type I-F CRISPR-Cas Distribution and Array Dynamics in <i>Legionella pneumophila</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1039-1050.	0.8	12
1197	CRISPR/Cas9-related technologies in liver diseases: from feasibility to future diversity. International Journal of Biological Sciences, 2020, 16, 2283-2295.	2.6	11
1199	Designing Safer CRISPR/Cas9 Therapeutics for HIV: Defining Factors That Regulate and Technologies Used to Detect Off-Target Editing. Frontiers in Microbiology, 2020, 11, 1872.	1.5	11
1200	CRISPR: a journey of gene-editing based medicine. Genes and Genomics, 2020, 42, 1369-1380.	0.5	4
1201	Phage-Bacteria Associations: Analyze. Match. Develop Therapies Cell Host and Microbe, 2020, 28, 353-355.	5.1	2
1202	Aptamerâ€Mediated Reversible Transactivation of Gene Expression by Light. Angewandte Chemie, 2020, 132, 22600-22604.	1.6	6
1203	Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Frontiers in Bioengineering and Biotechnology, 2020, 8, 575393.	2.0	7

#	Article	IF	CITATIONS
1204	DNA targeting by subtype I-D CRISPR–Cas shows type I and type III features. Nucleic Acids Research, 2020, 48, 10470-10478.	6.5	24
1205	Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. Journal of Oral Microbiology, 2020, 12, 1801090.	1.2	26
1206	CRISPR- <i>cas</i> system in the acquisition of virulence genes in dental-root canal and hospital-acquired isolates of <i>Enterococcus faecalis</i> . Virulence, 2020, 11, 1257-1267.	1.8	16
1207	Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nature Microbiology, 2020, 5, 1608-1615.	5.9	160
1208	A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus. Nucleic Acids Research, 2020, 48, 9681-9693.	6.5	3
1209	A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans. Applied and Environmental Microbiology, 2020, 86, .	1.4	16
1210	CRISPR-Associated Factor Csa3b Regulates CRISPR Adaptation and Cmr-Mediated RNA Interference in Sulfolobus islandicus. Frontiers in Microbiology, 2020, 11, 2038.	1.5	10
1211	Aptamerâ€Mediated Reversible Transactivation of Gene Expression by Light. Angewandte Chemie - International Edition, 2020, 59, 22414-22418.	7.2	21
1212	CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biological Procedures Online, 2020, 22, 22.	1.4	69
1213	Various Aspects of a Gene Editing System—CRISPR–Cas9. International Journal of Molecular Sciences, 2020, 21, 9604.	1.8	57
1214	Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Computational and Structural Biotechnology Journal, 2020, 18, 3649-3665.	1.9	7
1215	The Clustered Regularly Interspaced Short Palindromic Repeat System and Argonaute: An Emerging Bacterial Immunity System for Defense Against Natural Transformation?. Frontiers in Microbiology, 2020, 11, 593301.	1.5	1
1216	Genome editing in plants using CRISPR type I-D nuclease. Communications Biology, 2020, 3, 648.	2.0	53
1217	Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes. Analytica Chimica Acta, 2020, 1125, 162-168.	2.6	45
1218	Primed CRISPR DNA uptake in Pyrococcus furiosus. Nucleic Acids Research, 2020, 48, 6120-6135.	6.5	20
1219	Synergetic performance of isothermal amplification techniques and lateral flow approach for nucleic acid diagnostics. Analytical Biochemistry, 2020, 600, 113762.	1.1	23
1220	Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli. Applied and Environmental Microbiology, 2020, 86, .	1.4	5
1221	Phages Actively Challenge Niche Communities in Antarctic Soils. MSystems, 2020, 5, .	1.7	17

#	Article	IF	Citations
1222	Progress and Challenges in the Improvement of Ornamental Plants by Genome Editing. Plants, 2020, 9, 687.	1.6	27
1223	Applications of CRISPR-Cas systems in lactic acid bacteria. FEMS Microbiology Reviews, 2020, 44, 523-537.	3.9	34
1224	Introducing Chemistry Students to Emerging Technologies in Gene Editing, Their Applications, and Ethical Considerations. Journal of Chemical Education, 2020, 97, 1931-1943.	1.1	5
1225	Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biology, 2020, 17, 1472-1479.	1.5	10
1226	CRISPRcasIdentifier: Machine learning for accurate identification and classification of CRISPR-Cas systems. GigaScience, 2020, 9, .	3.3	31
1227	Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria. Enzyme and Microbial Technology, 2020, 140, 109619.	1.6	22
1228	Development of a DNA double-strand break-free base editing tool in Corynebacterium glutamicum for genome editing and metabolic engineering. Metabolic Engineering Communications, 2020, 11, e00135.	1.9	9
1229	Intrinsic disorder is essential for Cas9 inhibition of anti-CRISPR AcrIIA5. Nucleic Acids Research, 2020, 48, 7584-7594.	6.5	12
1230	CRISPR/Cas system of prokaryotic extremophiles and its applications. , 2020, , 155-168.		1
1231	Molecular tools for engineering resistance in hosts against plant viruses. , 2020, , 637-647.		0
1232	Dual catalytic DNA circuit-induced gold nanoparticle aggregation: An enzyme-free and colorimetric strategy for amplified detection of nucleic acids. International Journal of Biological Macromolecules, 2020, 154, 896-903.	3.6	11
1233	Cyanobacterial genome editing toolboxes: recent advancement and future projections for basic and synthetic biology researches. , 2020, , 129-149.		1
1234	Functional understanding of CRISPR interference: its advantages and limitations for gene silencing in bacteria. , 2020, , 199-218.		3
1235	The current progress of CRISPR/Cas9 development in plants. , 2020, , 123-129.		16
1236	Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 2020, 5, 970-977.	4.0	117
1237	The CRISPR-Cas systems were selectively inactivated during evolution of <i>Bacillus cereus</i> group for adaptation to diverse environments. ISME Journal, 2020, 14, 1479-1493.	4.4	32
1239	The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Frontiers in Bioengineering and Biotechnology, 2020, 8, 232.	2.0	29
1240	Targeted assemblies of <i>cas1</i> suggest CRISPR-Cas's response to soil warming. ISME Journal, 2020, 14, 1651-1662.	4.4	6

#	Article	IF	CITATIONS
1241	Evolution and molecular mechanism of CRISPR/Cas9 systems. , 2020, , 15-25.		4
1242	CRISPR/Cas9 engineered viral immunity in plants. , 2020, , 147-154.		0
1243	Alphaherpesvirus-vectored vaccines against animal diseases: Current progress. Journal of Integrative Agriculture, 2020, 19, 1928-1940.	1.7	0
1244	Descubrimiento de fármacos basado en imagenologÃa de células vivas. Revista Colombiana De Ciencias QuÃmico Farmacéuticas, 2020, 49, .	0.3	2
1245	<p>Association of CRISPR/Cas System with the Drug Resistance in Klebsiella pneumoniae</p> . Infection and Drug Resistance, 2020, Volume 13, 1929-1935.	1.1	21
1246	Metagenome Data on Intestinal Phage-Bacteria Associations Aids the Development of Phage Therapy against Pathobionts. Cell Host and Microbe, 2020, 28, 380-389.e9.	5.1	51
1247	Progress and challenges towards CRISPR/Cas clinical translation. Advanced Drug Delivery Reviews, 2020, 154-155, 176-186.	6.6	33
1248	Universal and Naked-Eye Gene Detection Platform Based on the Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a/13a System. Analytical Chemistry, 2020, 92, 4029-4037.	3.2	184
1249	Impact of CRISPR interference on strain development in biotechnology. Biotechnology and Applied Biochemistry, 2020, 67, 7-21.	1.4	31
1250	Comparative Genomic Analysis of a Novel Strain of Taiwan Hot-Spring Cyanobacterium Thermosynechococcus sp. CL-1. Frontiers in Microbiology, 2020, 11, 82.	1.5	38
1251	CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 2020, 70, 109577.	1.7	37
1252	Deep learning improves the ability of sgRNA off-target propensity prediction. BMC Bioinformatics, 2020, 21, 51.	1.2	41
1253	CRISPR/Cas9 for cancer treatment: technology, clinical applications and challenges. Briefings in Functional Genomics, 2020, 19, 209-214.	1.3	16
1254	Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures. Molecular Biology and Evolution, 2020, 37, 1020-1040.	3.5	6
1255	Endogenous Type I CRISPR-Cas: From Foreign DNA Defense to Prokaryotic Engineering. Frontiers in Bioengineering and Biotechnology, 2020, 8, 62.	2.0	67
1256	The best CRISPR/Cas9 versus RNA interference approaches for Arabinogalactan proteins' study. Molecular Biology Reports, 2020, 47, 2315-2325.	1.0	11
1257	CRISPR as systems in oral microbiome: From immune defense to physiological regulation. Molecular Oral Microbiology, 2020, 35, 41-48.	1.3	24
1258	Comparative Genomics Analysis of Lactobacillus mucosae from Different Niches. Genes, 2020, 11, 95.	1.0	15

#	Article	IF	CITATIONS
1259	CRISPR/Cas9 gene editing in a chicken model: current approaches and applications. Journal of Applied Genetics, 2020, 61, 221-229.	1.0	23
1260	Bacterial expression, purification, and initial characterization of a full-length Cas13b protein from Porphyromonas gingivalis. Protein Expression and Purification, 2020, 169, 105588.	0.6	0
1261	Gene regulations and delivery vectors for treatment of cancer. Journal of Pharmaceutical Investigation, 2020, 50, 309-326.	2.7	5
1262	Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREfm) in Latin America: Revisiting The Global VRE Population Structure. Scientific Reports, 2020, 10, 5636.	1.6	39
1263	Rapid and assured genetic engineering methods applied to Acinetobacter baylyi ADP1 genome streamlining. Nucleic Acids Research, 2020, 48, 4585-4600.	6.5	14
1264	Occurrence and Diversity of CRISPR Loci in Lactobacillus casei Group. Frontiers in Microbiology, 2020, 11, 624.	1.5	21
1265	A hydrogenâ€oxidizing bacterium enriched from the open ocean resembling a symbiont. Environmental Microbiology Reports, 2020, 12, 396-405.	1.0	4
1266	A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus. MBio, 2020, 11, .	1.8	24
1267	<p>How CRISPR-Cas System Could Be Used to Combat Antimicrobial Resistance</p> . Infection and Drug Resistance, 2020, Volume 13, 1111-1121.	1.1	87
1268	Target Specificity of the CRISPR-Cas9 System in Arabidopsis thaliana, Oryza sativa, and Glycine max Genomes. Journal of Computational Biology, 2020, 27, 1544-1552.	0.8	2
1269	Second Generation Genome Editing Technologies in Drug Discovery. , 2020, , 213-242.		0
1270	Harnessing the type I <scp>CRISPR as</scp> systems for genome editing in prokaryotes. Environmental Microbiology, 2021, 23, 542-558.	1.8	23
1271	Gene editing technology for improving life quality: A dream coming true?. Clinical Genetics, 2021, 99, 67-83.	1.0	1
1272	CRISPR-Cas adaptive immune systems in Sulfolobales: genetic studies and molecular mechanisms. Science China Life Sciences, 2021, 64, 678-696.	2.3	14
1273	Technological and microbiological characteristics of indigenous food produced in Gabon. Journal of Food Science and Technology, 2021, 58, 1027-1041.	1.4	0
1274	The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. ChemTexts, 2021, 7, 1.	1.0	2
1275	Reporter gene imaging "visualized―the integration of two growing technologies: CRISPR/Cas9-based genome editing and induced pluripotent stem cell therapy. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 664-665.	3.3	0
1276	Identification of Natural CRISPR Systems and Targets in the Human Microbiome. Cell Host and Microbe, 2021, 29, 94-106.e4.	5.1	20

#	Article	IF	CITATIONS
1277	CRISPRidentify: identification of CRISPR arrays using machine learning approach. Nucleic Acids Research, 2021, 49, e20-e20.	6.5	44
1278	Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	6.6	39
1279	CRISPR Guide RNA Design. Methods in Molecular Biology, 2021, , .	0.4	2
1280	Targeted mutagenesis of <i>EOD3</i> gene in <i>Brassica napus</i> L. regulates seed production. Journal of Cellular Physiology, 2021, 236, 1996-2007.	2.0	30
1281	CRISPR/Cas9: A magic bullet to deal with plant viruses. , 2021, , 443-460.		0
1282	Gene editing in filamentous fungi and oomycetes using CRISPR-Cas technology. , 2021, , 723-753.		1
1285	Concepts of Molecular Plant Breeding and Genome Editing. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 1-15.	0.3	0
1286	Targeted Breeding in Cotton Using CRISPR/Cas9 Genome Editing. , 2021, , 313-327.		1
1287	History, evolution and classification of CRISPR-Cas associated systems. Progress in Molecular Biology and Translational Science, 2021, 179, 11-76.	0.9	18
1288	Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Research, 2021, 49, 10868-10878.	6.5	92
1290	SELECTED ASPECTS OF THE CRISPR-CAS BIOLOGY AND APPLICATIONS. Postepy Mikrobiologii, 2021, 60, 3-12.	0.1	0
1291	CRISPR–Cas systems as antimicrobial agents for agri-food pathogens. , 2021, , 361-386.		1
1292	Neglected and Underutilized Crop Species: Are They Future Smart Crops in Fighting Poverty, Hunger and Malnutrition Under Changing Climate?. , 2021, , 1-50.		6
1293	Mitochondrial DNA modification by CRISPR/Cas system: Challenges and future direction. Progress in Molecular Biology and Translational Science, 2021, 178, 193-211.	0.9	3
1294	CRISPR/Cas13: A Novel and Emerging Tool for RNA Editing in Plants. Concepts and Strategies in Plant Sciences, 2021, , 301-337.	0.6	6
1295	Methods CRISPR-Cas, A Prokaryotic Adaptive Immune System. , 2021, , 717-741.		0
1296	Empowering of reproductive health of farm animals through genome editing technology. , 0, 2, 4.		2
1297	Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology, 2021, 63, 3-33.	4.1	70

#	Article	IF	CITATIONS
1298	Gene Editing and Gene Therapies in Cancer Treatment. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 205-224.	0.1	0
1299	Genome-scale CRISPRa screening identifies MTX1 as a contributor for sorafenib resistance in hepatocellular carcinoma by augmenting autophagy. International Journal of Biological Sciences, 2021, 17, 3133-3144.	2.6	8
1300	Mutagenomics for Functional Analysis of Plant Genome using CRISPR Library Screen. Concepts and Strategies in Plant Sciences, 2021, , 339-367.	0.6	0
1301	CRISPR/Cas Genome Editing in Filamentous Fungi. Biochemistry (Moscow), 2021, 86, S120-S139.	0.7	9
1302	Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases. Journal of Biomedical Research, 2021, 35, 148.	0.7	6
1303	CRISPR – Bacterial immune system. , 2021, , 91-105.		0
1304	Genomic Analysis of a Newly Isolated Acidithiobacillus ferridurans JAGS Strain Reveals Its Adaptation to Acid Mine Drainage. Minerals (Basel, Switzerland), 2021, 11, 74.	0.8	15
1305	The CRISPR Technology and Application in Rice. , 2021, , 197-226.		0
1306	Gene Editing Technology and Ethical Issues. Advances in Information Quality and Management, 2021, , 1952-1966.	0.3	0
1307	Genetic transformation methods and advancement of CRISPR/Cas9 technology in wheat. , 2021, , 253-275.		Ο
1309	Applications of CRISPR/Cas Beyond Simple Traits in Crops. , 2021, , 231-260.		0
1311	Distinct clonal lineages and within-host diversification shape invasive Staphylococcus epidermidis populations. PLoS Pathogens, 2021, 17, e1009304.	2.1	41
1312	Induced mutagenesis in wheat: from ionizing radiation to site-specific gene editing. Fiziologia Rastenij I Genetika, 2021, 53, 29-54.	0.1	1
1313	Improving lignocellulosic biofuel production by CRISPR/Cas9â€mediated lignin modification in barley. GCB Bioenergy, 2021, 13, 742-752.	2.5	32
1314	Genome-editing approaches and applications: a brief review on CRISPR technology and its role in cancer. 3 Biotech, 2021, 11, 146.	1.1	7
1315	First Description of a Temperate Bacteriophage (vB_FhiM_KIRK) of Francisella hispaniensis Strain 3523. Viruses, 2021, 13, 327.	1.5	1
1316	The bridge helix of Cas12a imparts selectivity in cis â€DNA cleavage and regulates trans â€DNA cleavage. FEBS Letters, 2021, 595, 892-912.	1.3	9
1317	Crop gene editing against biotic stresses via CRISPR/Cas9 tools: a review. Archives of Phytopathology and Plant Protection, 2021, 54, 1159-1181.	0.6	2

#	Article	IF	CITATIONS
1318	Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Biomolecules, 2021, 11, 473.	1.8	10
1319	Genomic Insights Into the Pathogenicity of a Novel Biofilm-Forming Enterococcus sp. Bacteria (Enterococcus lacertideformus) Identified in Reptiles. Frontiers in Microbiology, 2021, 12, 635208.	1.5	6
1320	Distribution of CRISPR Types in Fluoroquinolone-Resistant Campylobacter jejuni Isolates. Pathogens, 2021, 10, 345.	1.2	5
1321	Novel CRISPR–Cas Systems: An Updated Review of the Current Achievements, Applications, and Future Research Perspectives. International Journal of Molecular Sciences, 2021, 22, 3327.	1.8	105
1322	Gene Silencing Through CRISPR Interference in Bacteria: Current Advances and Future Prospects. Frontiers in Microbiology, 2021, 12, 635227.	1.5	40
1323	Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Analytical and Bioanalytical Chemistry, 2021, 413, 2447-2456.	1.9	4
1324	Structural basis for self-cleavage prevention by tag:anti-tag pairing complementarity in type VI Cas13 CRISPR systems. Molecular Cell, 2021, 81, 1100-1115.e5.	4.5	34
1325	The CRISPR-Cas System Is Involved in OmpR Genetic Regulation for Outer Membrane Protein Synthesis in Salmonella Typhi. Frontiers in Microbiology, 2021, 12, 657404.	1.5	10
1326	Survival of Salmonella Under Heat Stress is Associated with the Presence/Absence of CRISPR Cas Genes and Iron Levels. Current Microbiology, 2021, 78, 1741-1751.	1.0	5
1327	Evolution and Biology of CRISPR System: A New Era Tool for Genome Editing in Plants. Botanical Review, The, 2021, 87, 496-517.	1.7	3
1328	CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Research, 2021, 294, 198282.	1.1	36
1329	Diversity of the type I-U CRISPR-Cas system in Bifidobacterium. Archives of Microbiology, 2021, 203, 3235-3243.	1.0	3
1330	Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. MBio, 2021, 12, .	1.8	24
1331	Efficient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant. Scientific Reports, 2021, 11, 9586.	1.6	22
1333	A rooted phylogeny resolves early bacterial evolution. Science, 2021, 372, .	6.0	128
1334	Phages and their lysins: Toolkits in the battle against foodborne pathogens in the postantibiotic era. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3319-3343.	5.9	13
1335	Characterization of type I-F CRISPR-Cas system in Laribacter hongkongensis isolates from animals, the environment and diarrhea patients. International Journal of Food Microbiology, 2021, 346, 109153.	2.1	4
1336	New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Genes, 2021, 12, 723.	1.0	12

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
1337	CRISPR-Based Genome Editing as a New Therapeutic Tool in Retinal Diseases. Molecular Biotechnology, 2021, 63, 768-779.	1.3	9
1338	The application of genome editing technology in fish. Marine Life Science and Technology, 2021, 3, 326-346.	1.8	9
1339	A computational approach to identify CRISPR-Cas loci in the complete genomes of the lichen-associated Burkholderia sp. PAMC28687 and PAMC26561. Genomics, 2021, 113, 881-888.	1.3	2
1340	De Novo Sequencing Provides Insights Into the Pathogenicity of Foodborne Vibrio parahaemolyticus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 652957.	1.8	4
1341	Prediction of sgRNA Off-Target Activity in CRISPR/Cas9 Gene Editing Using Graph Convolution Network. Entropy, 2021, 23, 608.	1.1	8
1342	Safety and robustness aspects analysis of Lactobacillus delbrueckii ssp. bulgaricus LDB-C1 based on the genome analysis and biological tests. Archives of Microbiology, 2021, 203, 3955-3964.	1.0	6
1343	History of plant genetic mutations ± human influences. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 554.	0.9	1
1344	Inhibition of <i>Streptococcus mutans</i> biofilm formation by strategies targeting the metabolism of exopolysaccharides. Critical Reviews in Microbiology, 2021, 47, 667-677.	2.7	55
1345	A Review: Computational Approaches to Design sgRNA of CRISPR-Cas9. Current Bioinformatics, 2022, 17, 2-18.	0.7	3
1346	CRISPR-Cas System: The Powerful Modulator of Accessory Genomes in Prokaryotes. Microbial Physiology, 2022, 32, 2-17.	1.1	12
1348	A catalog of tens of thousands of viruses from human metagenomes reveals hidden associations with chronic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	138
1349	At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Frontiers in Cellular and Infection Microbiology, 2021, 11, 660007.	1.8	14
1350	An extensive review to facilitate understanding of CRISPR technology as a gene editing possibility for enhanced therapeutic applications. Gene, 2021, 785, 145615.	1.0	9
1351	CRISPR/Cas9 in cancer: An attempt to the present trends and future prospects. Biotechnology and Applied Biochemistry, 2022, 69, 1238-1251.	1.4	2
1352	Stem Cell Models and Gene Targeting for Human Motor Neuron Diseases. Pharmaceuticals, 2021, 14, 565.	1.7	8
1353	<tt>CRISPRloci:</tt> Âcomprehensive and accurate annotation of CRISPR–Cas systems. Nucleic Acids Research, 2021, 49, W125-W130.	6.5	16
1354	Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech, 2021, 11, 340.	1.1	10
1355	Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Biology, 2021, 10, 530.	1.3	7

#	Article	IF	CITATIONS
1356	Application of bacteriophage in rapid detection of Escherichia coli in foods. Current Opinion in Food Science, 2021, 39, 43-50.	4.1	13
1357	Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomedical Engineering Letters, 2021, 11, 217-233.	2.1	11
1358	Advances in CRISPR/Cas9-mediated genome editing on vegetable crops. In Vitro Cellular and Developmental Biology - Plant, 2021, 57, 672-682.	0.9	6
1359	Role of CRISPR-Cas system on antibiotic resistance patterns of Enterococcus faecalis. Annals of Clinical Microbiology and Antimicrobials, 2021, 20, 49.	1.7	9
1360	Comment on Tanmoy et al. CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes 2020, 11, 1365. Genes, 2021, 12, 1142.	1.0	2
1361	Phylogenomic disentangling of the Bifidobacterium longum subsp. infantis taxon. Microbial Genomics, 2021, 7, .	1.0	9
1362	Rational gRNA design based on transcription factor binding data. Synthetic Biology, 2021, 6, ysab014.	1.2	0
1363	Novel hyperthermophilic crenarchaeon Infirmifilum lucidum gen. nov. sp. nov., reclassification of Thermofilum uzonense as Infirmifilum uzonense comb. nov. and assignment of the family Thermofilaceae to the order Thermofilales ord. nov Systematic and Applied Microbiology, 2021, 44, 126230.	1.2	15
1364	Advancing sensing technology with CRISPR: From the detection of nucleic acids to a broad range of analytes $\hat{a} \in A$ review. Analytica Chimica Acta, 2021, 1185, 338848.	2.6	45
1365	Advances in Genomics Approaches Shed Light on Crop Domestication. Plants, 2021, 10, 1571.	1.6	1
1366	The era of gene therapy: From preclinical development to clinical application. Drug Discovery Today, 2021, 26, 1602-1619.	3.2	26
1367	CRISPR-based diagnostics. Nature Biomedical Engineering, 2021, 5, 643-656.	11.6	492
1368	Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach. Communications Biology, 2021, 4, 996.	2.0	12
1369	Machine learning applications for therapeutic tasks with genomics data. Patterns, 2021, 2, 100328.	3.1	14
1370	Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. Frontiers in Plant Science, 2021, 12, 663851.	1.7	15
1371	Functional Identification of the Xanthomonas oryzae pv. oryzae Type I-C CRISPR-Cas System and Its Potential in Gene Editing Application. Frontiers in Microbiology, 2021, 12, 686715.	1.5	3
1372	Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology, 2021, 19, 128.	1.5	117
1373	Adeno-Associated Vector-Delivered CRISPR/SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses, 2021, 13, 1636.	1.5	5

#	Article	IF	CITATIONS
1374	Recent progress on rapid SARS-CoV-2/COVID-19 detection by CRISPR-Cas13-based platforms. Drug Discovery Today, 2021, 26, 2025-2035.	3.2	17
1375	Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. Journal of Bacteriology, 2021, 203, e0017721.	1.0	10
1376	CRISPR/Cas-Based In Vitro Diagnostic Platforms for Cancer Biomarker Detection. Analytical Chemistry, 2021, 93, 11899-11909.	3.2	54
1377	Optimising PHBV biopolymer production in haloarchaea via CRISPRi-mediated redirection of carbon flux. Communications Biology, 2021, 4, 1007.	2.0	14
1378	The endless battle between phages and CRISPR–Cas systems in Streptococcus thermophilus. Biochemistry and Cell Biology, 2021, 99, 397-402.	0.9	3
1379	Protospacer-Adjacent Motif Specificity during Clostridioides difficile Type I-B CRISPR-Cas Interference and Adaptation. MBio, 2021, 12, e0213621.	1.8	4
1380	Analysis of Probiotic Bacteria Genomes: Comparison of CRISPR/Cas Systems and Spacer Acquisition Diversity. Indian Journal of Microbiology, 2022, 62, 40-46.	1.5	5
1381	Novel Strategies to Combat the Emerging Drug Resistance in Human Pathogenic Microbes. Current Drug Targets, 2021, 22, 1424-1436.	1.0	34
1382	Description, Taxonomy, and Comparative Genomics of a Novel species, Thermoleptolyngbya sichuanensis sp. nov., Isolated From Hot Springs of Ganzi, Sichuan, China. Frontiers in Microbiology, 2021, 12, 696102.	1.5	14
1383	PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biology, 2021, 22, 281.	3.8	26
1384	Digging into the lesser-known aspects of CRISPR biology. International Microbiology, 2021, 24, 473-498.	1.1	10
1385	Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. Frontiers in Plant Science, 2021, 12, 705249.	1.7	36
1386	Efficient RNA Virus Targeting via CRISPR/CasRx in Fish. Journal of Virology, 2021, 95, e0046121.	1.5	11
1387	RNA-Centric Methods: Toward the Interactome of Specific RNA Transcripts. Trends in Biotechnology, 2021, 39, 890-900.	4.9	19
1388	CRISPR Cas/Exosome Based Diagnostics: Future of Early Cancer Detection. , 0, , .		3
1389	Structural and biochemical insights into CRISPR RNA processing by the Cas5c ribonuclease SMU1763 from Streptococcus mutans. Journal of Biological Chemistry, 2021, 297, 101251.	1.6	2
1390	Evolution of Type IV CRISPR-Cas Systems: Insights from CRISPR Loci in Integrative Conjugative Elements of <i>Acidithiobacillia</i> . CRISPR Journal, 2021, 4, 656-672.	1.4	21
1391	RNA Interference and CRISPR/Cas Gene Editing for Crop Improvement: Paradigm Shift towards Sustainable Agriculture. Plants, 2021, 10, 1914.	1.6	17

#	Article	IF	CITATIONS
1393	Investigation into the prevalent CRISPR–Cas systems among the Aeromonas genus. Journal of Basic Microbiology, 2021, 61, 874-882.	1.8	1
1394	Alleviation of neurological disease by RNA editing. Methods, 2021, 194, 94-99.	1.9	5
1395	Latest progress in the study of nanoparticle-based delivery of the CRISPR/Cas9 system. Methods, 2021, 194, 48-55.	1.9	6
1396	CRISPR/Cas correction of muscular dystrophies. Experimental Cell Research, 2021, 408, 112844.	1.2	11
1397	The activation and limitation of the bacterial natural transformation system: The function in genome evolution and stability. Microbiological Research, 2021, 252, 126856.	2.5	8
1398	CRISPR/Cas9-mediated genome editing is revolutionizing the improvement of horticultural crops: Recent advances and future prospects. Scientia Horticulturae, 2021, 289, 110476.	1.7	10
1399	The core Cas1 protein of CRISPR-Cas I-B in Leptospira shows metal-tunable nuclease activity. Current Research in Microbial Sciences, 2021, 2, 100059.	1.4	1
1400	DNAzyme based three-way junction assay for antibody-free detection of locus-specific N6-methyladenosine modifications. Biosensors and Bioelectronics, 2021, 194, 113625.	5.3	20
1401	The CRISPR-associated Cas4 protein from Leptospira interrogans demonstrate versatile nuclease activity. Current Research in Microbial Sciences, 2021, 2, 100040.	1.4	9
1402	CRISPR/Cas12a collateral cleavage activity for simple and rapid detection of protein/small molecule interaction. Biosensors and Bioelectronics, 2021, 194, 113587.	5.3	25
1403	The evolution and history of gene editing technologies. Progress in Molecular Biology and Translational Science, 2021, 178, 1-62.	0.9	7
1405	Erratic journey of CRISPR/Cas9 in oncology from bench-work to successful-clinical therapy. Cancer Treatment and Research Communications, 2021, 27, 100289.	0.7	7
1406	Tricks and trends in CRISPR/Cas9-based genome editing and use of bioinformatics tools for improving on-target efficiency. , 2021, , 441-462.		0
1407	CRISPR based development of RNA editing and the diagnostic platform. Progress in Molecular Biology and Translational Science, 2021, 179, 117-159.	0.9	0
1408	CRISPR/Cas-mediated genome editing for improved stress tolerance in plants. , 2021, , 259-291.		6
1409	First Report of CRISPR/Cas9 Mediated DNA-Free Editing of 4CL and RVE7 Genes in Chickpea Protoplasts. International Journal of Molecular Sciences, 2021, 22, 396.	1.8	92
1410	In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems. Methods in Molecular Biology, 2021, 2162, 215-232.	0.4	3
1411	Chromosomal Proximity of Genes as an Indicator of Functional Linkage. SpringerBriefs in Systems Biology, 2013, , 33-42.	0.1	1

# 1412	ARTICLE Bacteriophages for Environmental Applications: Effect of Trans-organismic Communication on Wastewater Treatments. , 2020, , 485-502.	IF	Citations
1413	Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. , 2016, , 101-141.		4
1414	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		8
1415	crRNA Biogenesis. , 2013, , 115-144.		5
1416	Distribution and Mechanism of the Type I CRISPR-Cas Systems. , 2013, , 145-169.		7
1417	Type II: Streptococcus thermophilus. , 2013, , 171-200.		1
1418	CRISPR-Cas Systems to Probe Ecological Diversity and Host–Viral Interactions. , 2013, , 221-250.		6
1419	Genome Editing: Advances and Prospects. , 2019, , 147-174.		5
1420	Challenges and Advances in TB Drug Discovery. , 2019, , 463-495.		2
1421	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
1422	Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene, 2020, 753, 144795.	1.0	9
1423	Hepatitis B. Gastroenterology Clinics of North America, 2020, 49, 215-238.	1.0	36
1424	Microfluidic-based approaches for COVID-19 diagnosis. Biomicrofluidics, 2020, 14, 061504.	1.2	11
1425	CRISPR-Cas technology in modifying food crops CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-16.	0.6	24
1426	Casboundary: automated definition of integral Cas cassettes. Bioinformatics, 2021, 37, 1352-1359.	1.8	8
1427	Genome-based population structure analysis of the strawberry plant pathogen Xanthomonas fragariae reveals two distinct groups that evolved independently before its species description. Microbial Genomics, 2018, 4, .	1.0	23
1428	Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri. Microbiology (United) Tj ETQq0 () 0 rgBT /C	overlock 10 Tf 42

CRISPR-Cas system presents multiple transcriptional units including antisense RNAs that are expressed in minimal medium and upregulated by pH in Salmonella enterica serovar Typhi. Microbiology (United) Tj ETQq1 1 00784314 1gBT /Over

#	Article	IF	CITATIONS
1447	Control of gene expression by CRISPR-Cas systems. F1000prime Reports, 2013, 5, 47.	5.9	41
1448	A CRISPR method for genome engineering. F1000prime Reports, 2014, 6, 3.	5.9	35
1449	Current Status of Production of Transgenic Livestock by Genome Editing Technology. Journal of Animal Reproduciton and Biotechnology, 2019, 34, 148-156.	0.3	6
1450	Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict. PLoS Biology, 2016, 14, e1002394.	2.6	127
1451	Dynamics of adaptive immunity against phage in bacterial populations. PLoS Computational Biology, 2017, 13, e1005486.	1.5	30
1452	Crystal Structure of Streptococcus pyogenes Csn2 Reveals Calcium-Dependent Conformational Changes in Its Tertiary and Quaternary Structure. PLoS ONE, 2012, 7, e33401.	1.1	29
1453	CRISPR Interference Directs Strand Specific Spacer Acquisition. PLoS ONE, 2012, 7, e35888.	1.1	335
1454	The Susceptibility of Pseudomonas aeruginosa Strains from Cystic Fibrosis Patients to Bacteriophages. PLoS ONE, 2013, 8, e60575.	1.1	73
1455	Cultivation and Complete Genome Sequencing of Gloeobacter kilaueensis sp. nov., from a Lava Cave in Kīlauea Caldera, Hawai'i. PLoS ONE, 2013, 8, e76376.	1.1	85
1456	Comparative Genomic Characterization of Three Streptococcus parauberis Strains in Fish Pathogen, as Assessed by Wide-Genome Analyses. PLoS ONE, 2013, 8, e80395.	1.1	11
1457	Identification of Proteins Associated with an IFNÎ ³ -Responsive Promoter by a Retroviral Expression System for enChIP Using CRISPR. PLoS ONE, 2014, 9, e103084.	1.1	45
1458	DNA Binding Properties of the Small Cascade Subunit Csa5. PLoS ONE, 2014, 9, e105716.	1.1	11
1459	Genome Analysis of Environmental and Clinical P. aeruginosa Isolates from Sequence Type-1146. PLoS ONE, 2014, 9, e107754.	1.1	9
1460	Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases. PLoS ONE, 2014, 9, e114083.	1.1	56
1461	CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection. PLoS ONE, 2014, 9, e115987.	1.1	165
1462	Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains. PLoS ONE, 2015, 10, e0138890.	1.1	30
1463	Incidence of Type II CRISPR1-Cas Systems in Enterococcus Is Species-Dependent. PLoS ONE, 2015, 10, e0143544.	1.1	16
1464	Comparative Genomic Analysis of Mannheimia haemolytica from Bovine Sources. PLoS ONE, 2016, 11, e0149520.	1.1	41

	CHATION R		
#	ARTICLE	IF	CITATIONS
1465	An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis. PLoS ONE, 2016, 11, e0149533.	1,1	22
1466	Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture. PLoS ONE, 2016, 11, e0157953.	1.1	13
1467	Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome. PLoS ONE, 2016, 11, e0165499.	1.1	96
1468	Comparative pathogenomics of Clostridium tetani. PLoS ONE, 2017, 12, e0182909.	1.1	36
1469	Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis. PLoS ONE, 2017, 12, e0183005.	1.1	13
1470	Phages Fight Back: Inactivation of the CRISPR-Cas Bacterial Immune System by Anti-CRISPR Proteins. PLoS Pathogens, 2016, 12, e1005282.	2.1	51
1471	The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Zoological Research, 2016, 37, 191-204.	0.6	13
1472	Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis. Journal of Clinical and Translational Hepatology, 2016, 4, 248-257.	0.7	4
1473	Efficient and stable transformation of Dunaliella pseudosalina by 3 strains of Agrobacterium tumefaciens. BioImpacts, 2017, 7, 247-254.	0.7	17
1474	Beyond cells – The virome in the human holobiont. Microbial Cell, 2019, 6, 373-396.	1.4	17
1475	An Overview of Computational Tools of Nucleic Acid Binding Site Prediction for Site-specific Proteins and Nucleases. Protein and Peptide Letters, 2020, 27, 370-384.	0.4	2
1476	Genetic Variants and Oxidative Stress in Alzheimer's Disease. Current Alzheimer Research, 2020, 17, 208-223.	0.7	23
1477	Bacterial CRISPR Regions: General Features and their Potential for Epidemiological Molecular Typing Studies. Open Microbiology Journal, 2018, 12, 59-70.	0.2	28
1478	Generation of Mutant Pigs by Direct Pronuclear Microinjection of CRISPR/Cas9 Plasmid Vectors. Bio-protocol, 2017, 7, e2321.	0.2	5
1479	Gene editing (CRISPR-Cas) technology and fisheries sector. Canadian Journal of Biotechnology, 2017, 1, 65-72.	0.3	16
1480	CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life, 2021, 11, 13.	1.1	23
1481	Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World Journal of Gastroenterology, 2015, 21, 9554.	1.4	96
1482	Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). International Journal of Molecular Medicine, 2020, 46, 521-534.	1.8	19

#	Article	IF	CITATIONS
1483	Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models. Asian Journal of Andrology, 2015, 17, 623.	0.8	11
1484	A CRISPR/Cas9 library to map the HIV-1 provirus genetic fitness. Acta Virologica, 2019, 63, 129-138.	0.3	3
1485	Functional Characterization of CRISPR-Cas System in the Ethanologenic Bacterium <i>Zymomonas mobilis</i> ZM4. Advances in Microbiology, 2016, 06, 178-189.	0.3	7
1486	Progress and prospects of engineered sequence-specific DNA modulating technologies for the management of liver diseases. World Journal of Hepatology, 2015, 7, 859.	0.8	5
1487	CRISPR-Cas Systems in Prokaryotes. Polish Journal of Microbiology, 2015, 64, 193-202.	0.6	20
1488	Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. ELife, 2018, 7, .	2.8	39
1489	DNA translocation mechanism of an XPD family helicase. ELife, 2018, 7, .	2.8	38
1490	Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. ELife, 2020, 9, .	2.8	22
1491	Comparative genomics of non-pseudomonal bacterial species colonising paediatric cystic fibrosis patients. PeerJ, 2015, 3, e1223.	0.9	35
1492	The evolutionary history and diagnostic utility of the CRISPR-Cas system within <i>Salmonella enterica</i> ssp. <i>enterica</i> . PeerJ, 2014, 2, e340.	0.9	31
1493	Strain-level genetic diversity of <i>Methylophaga nitratireducenticrescens</i> confers plasticity to denitrification capacity in a methylotrophic marine denitrifying biofilm. PeerJ, 2018, 6, e4679.	0.9	9
1494	Genome sequencing and analysis of <i>Salmonella enterica</i> subsp. <i>enterica</i> serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ, 2019, 7, e6948.	0.9	1
1495	A review of COVID-19: Treatment strategies and CRISPR/Cas9 gene editing technology approaches to the coronavirus disease. Saudi Journal of Biological Sciences, 2021, 29, 860-860.	1.8	5
1496	Distribution and genomic characterization of tigecycline-resistant tet(X4)-positive Escherichia coli of swine farm origin. Microbial Genomics, 2021, 7, .	1.0	14
1497	Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses, 2021, 13, 1996.	1.5	6
1499	Hepatitis B Core-Related Antigen and New Therapies for Hepatitis B. Microorganisms, 2021, 9, 2083.	1.6	16
1500	Type III CRISPR-Cas Systems: Deciphering the Most Complex Prokaryotic Immune System. Biochemistry (Moscow), 2021, 86, 1301-1314.	0.7	26
1501	Characterization of 67 Confirmed Clustered Regularly Interspaced Short Palindromic Repeats Loci in 52 Strains of Staphylococci. Frontiers in Microbiology, 2021, 12, 736565.	1.5	5

IF ARTICLE CITATIONS # Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine. Molecular Biology 1502 1.0 4 Reports, 2022, 49, 657-673. CRISPR/Cas 9-Based Editing in the Production of Bioactive Molecules. Molecular Biotechnology, 2022, 64, 245-251. 1.3 Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing. 1504 1.8 13 International Journal of Molecular Sciences, 2021, 22, 11300. Application of second-generation sequencing (SGS) and third generation sequencing (TGS) in aquaculture breeding program. Aquaculture, 2022, 548, 737633.

CITATION REPORT

1506 Đ'Đ,Đ¾Đ»Đ¾Đ³Đ,чеÑĐºĐ°Ñ•Ñ€Đ¾Đ»ÑŒ Đ, ÑĐ2Đ¾Đ»ŇŽŇ†Đ,Đ¾Đ½Đ½Đ°Ñ•Đ,ŇŇ,Đ¾Ñ€Đ,ÑŇ,еĐ¼OORISPR-Cas Ñ,Đ,Đ,Đ

1507	Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science, 2021, 374, 488-492.	6.0	96
1508	Gene editing to enhance the efficacy of cancer cell therapies. Molecular Therapy, 2021, 29, 3153-3162.	3.7	5
1509	The widespread presence of a family of fish virulence plasmids in <i>Vibrio vulnificus</i> stresses its relevance as a zoonotic pathogen linked to fish farms. Emerging Microbes and Infections, 2021, 10, 2128-2140.	3.0	12
1510	Identification of docosahexaenoic and eicosapentaenoic acids multiple targets facing periodontopathogens. Microbial Pathogenesis, 2021, 161, 105266.	1.3	2
1511	Bacterial Survival and Evolutional Strategies via CRISPR/Cas System. Dental Medicine Research, 2013, 33, 236-241.	0.1	0
1512	基å›ç»"工程. å®žéªŒææ–™å'Œæ–1法, 0, cn3, .	0.0	0
1513	Immunity and the Emergence of Individuality. , 2013, , 77-96.		13
1514	Genomic Engineering. Materials and Methods, 0, 3, .	0.0	2
1515	Advances in Genome Directional Editing Technologies of CRISPR/Cas9. Hans Journal of Agricultural Sciences, 2014, 04, 142-150.	0.0	0
1516	Evolutionary Analysis of CRISPRs in Archaea: An Evidence for Horizontal Gene Transfer. Journal of Proteomics and Bioinformatics, 0, s9, .	0.4	2
1517	The CRISPR-Cas9 System: A New Dawn in Gene Editing. OMICS Journal of Radiology, 2014, 06, .	0.0	0
1518	CRISPR-Cas Systems: Making the Cut. Microbe Magazine, 2014, 9, 204-210.	0.4	2
1519	Developing CRISPR/Cas9 Technologies for Research and Medicine. MOJ Cell Science & Report, 2014, 1, .	0.1	0

#	Article	IF	Citations
1520	Genome Editing in Mice Using CRISPR/Cas9: Achievements and Prospects. Cloning & Transgenesis, 2015, 04, .	0.1	2
1521	Proteases in Apoptosis: Protocols and Methods. , 2015, , 143-202.		1
1522	The CRISPR-Cas Immune System and Genetic Transfers: Reaching an Equilibrium. , 0, , 209-218.		0
1523	Cut and paste the genome: Genome editing for research and therapy. Journal of Cellular Biotechnology, 2015, 1, 95-106.	0.1	1
1525	Noncoding RNA in Mycobacteria. , 0, , 183-207.		0
1526	Major Events in the Evolution of Planet Earth: Some Origin Stories. , 2016, , 11-26.		2
1527	Type III CRISPR complexes from Thermus thermophilus Acta Biochimica Polonica, 2016, 63, 377-86.	0.3	1
1528	Characterising mechanisms of aberrant androgen receptor signalling in advanced prostate cancer. Endocrine Abstracts, 0, , .	0.0	0
1529	Regulatory Mechanisms of Special Significance: Role of Small RNAs in Virulence Regulation. , 0, , 491-527.		1
1530	BIoInfoRmatIonal analySIS of YersiniapseudotuberculosisIP32953 CRISPR/CaSSyStem. Biulleten' Vostochno-Sibirskogo Nauchnogo Tsentra, 2016, 1, 64-67.	0.1	2
1531	A CRISPR View of Biological Mechanisms. Discoveries, 2016, 4, e69.	1.5	2
1533	Optimizing Crispr Cas9 Genome Editing System:A Review. International Journal of Endorsing Health Science Research (ijehsr), 2017, 5, 48.	0.0	0
1541	DNA Unwinding Is the Primary Determinant of CRISPR-Cas9 Activity. SSRN Electronic Journal, 0, , .	0.4	0
1548	CRISPR-Cas Immune System of a Prevalent Human Gut Bacterium Reveals Hypertargeting Against Gut Virome Phages. SSRN Electronic Journal, 0, , .	0.4	0
1549	Trying to Reveal the Mysteries of Stem Cells Using "Omics―Strategies. Pancreatic Islet Biology, 2019, , 1-50.	0.1	4
1550	CRISPR/CAS تز1⁄2 ADAPTIVE IMMUNE SYSTEM IN THE BATTERIES AND THE PENOMENES OF ITS APPLICATION IN THE DITING OF GENES. Bulletin of Problems Biology and Medicine, 2019, 1, 46.	HE _{0.0}	0
1551	Biophysics of RNA-Guided CRISPR Immunity. Biological and Medical Physics Series, 2019, , 189-210.	0.3	0
1552	Collapse of Antibiotic Resistance with the Help of Genetic Approaches. , 2019, , 127-134.		0

\sim	 	D	PORT
	ON	ᆝᄼᅣ	ד גוראנ
\sim		IVEL	

#	Article	IF	CITATIONS
1555	In Silico Analysis of CRISPR-Cas-mediated Bacteriophage Resistance in Lactobacilli. Journal of Gastrointestinal Infections, 2019, 9, 15-22.	0.1	0
1558	Inhibition of PD-1 protein by the CRISPR-Cas9 method as antitumor therapy of non-small cell lung cancers. Revista Da Faculdade De Ciências Médicas De Sorocaba, 2019, 21, 2-7.	0.2	4
1562	CRISPR Technique for Gene Deletions in Drosophila. Springer Protocols, 2020, , 189-198.	0.1	0
1563	Improvement of Crop's Stress Tolerance by Gene Editing CRISPR/CAS9 System. , 2020, , 557-587.		5
1565	Structure and assembly pattern of a freshwater short-tailed cyanophage Pam1. Structure, 2022, 30, 240-251.e4.	1.6	9
1567	Xenotransplantation 1.0 to 2.0. , 2021, , 279-304.		0
1568	Genome Editing and CRISPR/Cas System of Extremophiles and Its Applications. Advances in Environmental Engineering and Green Technologies Book Series, 2022, , 136-160.	0.3	0
1569	A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. Advances in Experimental Medicine and Biology, 2020, 1236, 1-38.	0.8	3
1570	Genomics and Biotechnological Approaches in Generating Salinity and Drought Tolerance in Rice. , 2020, , 269-291.		0
1574	Application of Lab-on-Chip for Detection of Microbial Nucleic Acid in Food and Environment. Frontiers in Microbiology, 2021, 12, 765375.	1.5	5
1576	Roles of CRISPR in Regulation of Physiological Processes. , 2013, , 251-266.		1
1577	CRISPRs in the Microbial Community Context. , 2013, , 287-291.		1
1578	Regulation of CRISPR-Based Immune Responses. , 2013, , 93-113.		0
1579	Laktik Asit Bakterilerinde CRISPR/Cas Sisteminin Biyoteknoloji ve Genetik Mühendisliğinde Kullanımı. Akademik Gıda, 0, , 303-311.	0.5	1
1581	Proteomic analysis of keratitis-associated Pseudomonas aeruginosa. Molecular Vision, 2014, 20, 1182-91.	1.1	10
1582	TALEN and CRISPR/Cas Genome Editing Systems: Tools of Discovery. Acta Naturae, 2014, 6, 19-40.	1.7	78
1584	Use of dual-transfection for programmed death cell protein 1 disruption mediated by CRISPR-Cas9 in human peripheral blood mononuclear cells. Iranian Journal of Basic Medical Sciences, 2021, 24, 44-50.	1.0	0
1585	Specificity and sensitivity of an RNA targeting type III CRISPR complex coupled with a NucC endonuclease effector. Nucleic Acids Research, 2021, 49, 13122-13134.	6.5	38

#	Article	IF	CITATIONS
1586	Application of CRISPR-Based Diagnostic Tools in Detecting SARS-CoV-2 Infection. , 2022, , 1-13.		2
1587	CRISPR/Cas System and Factors Affecting Its Precision and Efficiency. Frontiers in Cell and Developmental Biology, 2021, 9, 761709.	1.8	20
1588	Optimizing sgRNA to Improve CRISPR/Cas9 Knockout Efficiency: Special Focus on Human and Animal Cell. Frontiers in Bioengineering and Biotechnology, 2021, 9, 775309.	2.0	11
1589	CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Pharmaceuticals, 2021, 14, 1171.	1.7	11
1590	Lipid Nanoparticle–mRNA Formulations for Therapeutic Applications. Accounts of Chemical Research, 2021, 54, 4283-4293.	7.6	87
1591	Bacteriophages and phage-delivered CRISPR-Cas system as antibacterial therapy. International Journal of Antimicrobial Agents, 2022, 59, 106475.	1.1	13
1592	CRISPR-Cas9-Mediated Gene Therapy in Neurological Disorders. Molecular Neurobiology, 2022, 59, 968-982.	1.9	19
1593	A Critical Review: Recent Advancements in the Use of CRISPR/Cas9 Technology to Enhance Crops and Alleviate Global Food Crises. Current Issues in Molecular Biology, 2021, 43, 1950-1976.	1.0	48
1594	Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence. Biochemistry, 2021, , .	1.2	11
1595	Genomic Analysis of Global Staphylococcus argenteus Strains Reveals Distinct Lineages With Differing Virulence and Antibiotic Resistance Gene Content. Frontiers in Microbiology, 2021, 12, 795173.	1.5	10
1596	CRISPR-Cas9‒Based Genomic Engineering in Keratinocytes: From Technology to Application. JID Innovations, 2022, 2, 100082.	1.2	4
1597	The power and the promise of CRISPR/Cas9 genome editing for clinical application with gene therapy. Journal of Advanced Research, 2022, 40, 135-152.	4.4	16
1598	Phylogeny and Potential Virulence of Cryptic Clade <i>Escherichia Coli</i> Species Complex Isolates Derived from an Arable Field Trial. SSRN Electronic Journal, 0, , .	0.4	0
1599	Alternative functions of CRISPR–Cas systems in the evolutionary arms race. Nature Reviews Microbiology, 2022, 20, 351-364.	13.6	44
1600	CRISPR/Cas9: A Revolutionary Tool for Recent Advances in Crop Improvement: A Review. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 200-214.	0.0	3
1601	CRISPR/Cas genome editing: A frontier for transforming precision cassava breeding. African Journal of Biotechnology, 2021, 20, 237-250.	0.3	5
1602	First Comparative Analysis of Clostridium septicum Genomes Provides Insights Into the Taxonomy, Species Genetic Diversity, and Virulence Related to Gas Gangrene. Frontiers in Microbiology, 2021, 12, 771945.	1.5	5
1603	CRISPR/Cas: The New Frontier in Plant Improvement. ACS Agricultural Science and Technology, 2022, 2, 202-214.	1.0	4

#	Article	IF	CITATIONS
1604	History and Classification of CRISPR/Cas System. , 2022, , 29-52.		4
1605	Phylogeny and potential virulence of cryptic clade Escherichia coli species complex isolates derived from an arable field trial. Current Research in Microbial Sciences, 2022, 3, 100093.	1.4	0
1606	Immunomodulatory and antiinflammatory mechanisms of probiotics. , 2022, , 321-341.		1
1607	The Trend of CRISPR-Based Technologies in COVID-19 Disease: Beyond Genome Editing. Molecular Biotechnology, 2022, , 1.	1.3	2
1608	Advances in potato functional genomics: implications for crop improvement. Plant Cell, Tissue and Organ Culture, 2022, 148, 447-464.	1.2	4
1609	Classification of CRISPR/Cas system and its application in tomato breeding. Theoretical and Applied Genetics, 2022, 135, 367-387.	1.8	29
1610	An Introduction to Genome Editing Techniques. , 2022, , 1-28.		1
1611	Crop Quality Improvement Through Genome Editing Strategy. Frontiers in Genome Editing, 2021, 3, 819687.	2.7	3
1612	Programmable Biosensors Based on RNA-Guided CRISPR/Cas Endonuclease. Biological Procedures Online, 2022, 24, 2.	1.4	16
1613	Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems. Journal of Biological Chemistry, 2022, 298, 101591.	1.6	2
1614	The Clustered Regularly Interspaced Short Palindromic Repeats-Associated System and Its Relationship With Mobile Genetic Elements in Klebsiella. Frontiers in Microbiology, 2021, 12, 790673.	1.5	4
1615	Unraveling the promise and limitations of CRISPR/Cas system in natural product research: Approaches and challenges. Biotechnology Journal, 2022, 17, e2100507.	1.8	10
1616	CRISPR-Cas system in microbial hosts for terpenoid production. Critical Reviews in Biotechnology, 2022, 42, 1116-1133.	5.1	3
1617	Quorum Sensing Controls the CRISPR and Type VI Secretion Systems in Aliivibrio wodanis 06/09/139. Frontiers in Veterinary Science, 2022, 9, 799414.	0.9	7
1618	Cleavage of viral DNA by restriction endonucleases stimulates the type II CRISPR-Cas immune response. Molecular Cell, 2022, 82, 907-919.e7.	4.5	29
1619	Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Frontiers in Cell and Developmental Biology, 2021, 9, 803252.	1.8	10
1620	Efficient CRISPR Mutagenesis in Sturgeon Demonstrates Its Utility in Large, Slow-Maturing Vertebrates. Frontiers in Cell and Developmental Biology, 2022, 10, 750833.	1.8	7
1621	CRISPR Approaches for the Diagnosis of Human Diseases. International Journal of Molecular Sciences, 2022–23–1757	1.8	9

# 1622	ARTICLE Delivery strategies for CRISPR/Cas genome editing tool for retinal dystrophies: challenges and opportunities. Asian Journal of Pharmaceutical Sciences, 2022, 17, 153-176.	IF 4.3	CITATIONS
1623	Insights into the Function of Regulatory RNAs in Bacteria and Archaea. International Journal of Translational Medicine, 2021, 1, 403-423.	0.1	3
1624	Alteration of Salmonella enterica Virulence and Host Pathogenesis through Targeting sdiA by Using the CRISPR-Cas9 System. Microorganisms, 2021, 9, 2564.	1.6	35
1625	Current applications and future perspective of CRISPR/Cas9 gene editing in cancer. Molecular Cancer, 2022, 21, 57.	7.9	85
1626	Metal Dependence and Functional Diversity of Type I Cas3 Nucleases. Biochemistry, 2022, 61, 327-338.	1.2	4
1627	The recent progress of CRISPR/Cas genome editing technology and its application in crop improvement. Chinese Science Bulletin, 2022, 67, 1923-1937.	0.4	1
1628	The Central Dogma revisited: Insights from protein synthesis, CRISPR, and beyond. Wiley Interdisciplinary Reviews RNA, 2022, 13, e1718.	3.2	10
1629	Genomic Analysis of Molecular Bacterial Mechanisms of Resistance to Phage Infection. Frontiers in Microbiology, 2021, 12, 784949.	1.5	13
1630	å^©ç""CRISPR/Cas9基å›ç¼–辑技æœ⁻治疗β-地ä,æµ·è´«èj€çš,,最新èį›å±•. Chinese Scier	nceoBulletin	n, 2022, , .
1631	CRISPR-Cas gene editing technology and its application prospect in medicinal plants. Chinese Medicine, 2022, 17, 33.	1.6	19
1632	Guide RNAs containing universal bases enable Cas9/Cas12a recognition of polymorphic sequences. Nature Communications, 2022, 13, 1617.	5.8	13
1633	CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Research, 2022, 50, 3616-3637.	6.5	69
1634	Cas13d: A New Molecular Scissor for Transcriptome Engineering. Frontiers in Cell and Developmental Biology, 2022, 10, 866800.	1.8	21
1635	Characterization of Xanthomonas citri pv. citri from China based on spoligotyping. Horticultural Plant Journal, 2022, 8, 727-736.	2.3	2
1636	Application of CRISPR/Cas9 in Rapeseed for Gene Function Research and Genetic Improvement. Agronomy, 2022, 12, 824.	1.3	7
1637	Development of Cas12a-Based Cell-Free Small-Molecule Biosensors via Allosteric Regulation of CRISPR Array Expression. Analytical Chemistry, 2022, 94, 4617-4626.	3.2	25
1638	Genotyping Based on CRISPR Loci Diversity and Pathogenic Potential of Diarrheagenic Escherichia coli. Frontiers in Microbiology, 2022, 13, 852662.	1.5	2
1639	The External Communication in Organizational Performance at Court Of Justice. GATR Global Journal of Business Social Sciences Review, 2022, 10, 30-37.	0.1	Ο

#	Article	IF	CITATIONS
1640	Reprogramming the endogenous type I CRISPR as system for simultaneous gene regulation and editing in <i>Haloarcula hispanica</i> . , 2022, 1, 40-50.		7
1642	Nanoparticlesâ€Mediated CRISPR/Cas Gene Editing Delivery System. ChemMedChem, 2022, 17, .	1.6	6
1643	Isolation and Characterization of Lytic Bacteriophages Targeting Diverse <i>Enterobacter</i> spp. Clinical Isolates. Phage, 2022, 3, 50-58.	0.8	1
1644	Sequence Conservation, Domain Architectures, and Phylogenetic Distribution of the HD-GYP Type c-di-GMP Phosphodiesterases. Journal of Bacteriology, 2022, 204, jb0056121.	1.0	15
1645	Effect of cryopreservation on A172 and U251 glioma cells infected with lentiviral vectors designed for CRISPR/Cas9-mediated aquaporin-8 knock-out. PLoS ONE, 2022, 17, e0263162.	1.1	0
1646	CPR-C4 is a highly conserved novel protease from the Candidate Phyla Radiation with remote structural homology to human vasohibins. Journal of Biological Chemistry, 2022, 298, 101919.	1.6	2
1647	Sensitive and simultaneous detection of hygiene indicator bacteria using an enhanced CRISPR/Cas system in combination with a portable fluorescence detector. Sensors and Actuators B: Chemical, 2022, 365, 131871.	4.0	15
1648	Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. Future Journal of Pharmaceutical Sciences, 2022, 8, 24.	1.1	25
1649	CRISPR Cas system: A strategic approach in detection of nucleic acids. Microbiological Research, 2022, 259, 127000.	2.5	7
1650	CRISPR-Based Genetic Switches and Other Complex Circuits: Research and Application. Life, 2021, 11, 1255.	1.1	5
1651	Advances in Editing Silkworms (Bombyx mori) Genome by Using the CRISPR-Cas System. Insects, 2022, 13, 28.	1.0	14
1652	Reprogramming Mycobacterium tuberculosis CRISPR System for Gene Editing and Genome-wide RNA Interference Screening. Genomics, Proteomics and Bioinformatics, 2022, 20, 1180-1196.	3.0	7
1653	CRISPR-Cas systems are present predominantly on chromosome and its relationship with MEGs in Vibrio species. Archives of Microbiology, 2022, 204, 76.	1.0	2
1654	Biotechnological Techniques for Nutritional Quality Improvement in Forages. , 2022, , 465-492.		1
1655	A dual identification strategy based on padlock ligation and CRISPR/Cas14a for highly specific detection of BRAF V600E mutation in clinical samples. Analytical Methods, 2022, 14, 1913-1921.	1.3	3
1656	CRISPR Technology: Emerging Tools of Genome Editing and Protein Detection. , 0, , .		Ο
1657	Adaptation by Type III CRISPR-Cas Systems: Breakthrough Findings and Open Questions. Frontiers in Microbiology, 2022, 13, 876174.	1.5	4
1731	Type III CRISPR-Cas Systems and the Roles of CRISPR-Cas in Bacterial Virulence. , 2013, , 201-219.		Ο

#	Article	IF	CITATIONS
1732	Dynamic modulation of enzyme activity by synthetic CRISPR–Cas6 endonucleases. Nature Chemical Biology, 2022, 18, 492-500.	3.9	13
1733	Species divergence in gut-restricted bacteria of social bees. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115013119.	3.3	20
1734	Characterization of CRISPR-Cas systems in Bifidobacterium breve. Microbial Genomics, 2022, 8, .	1.0	1
1735	Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2016, 38, 756-64.	0.1	1
1736	Lessons from a genome-wide CRISPR-Cas9 screening: what researchers should know before start EXCLI Journal, 2021, 20, 1615-1620.	0.5	0
1739	CRISPR accelerates the cancer drug discovery. Biocell, 2022, .	0.4	0
1740	Genetically modified lactic acid bacteria in food and beverages: Safety concerns for industry and clinical use. , 2022, , 349-363.		2
1742	Recent advances in CRISPRâ€based systems for the detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3010-3029.	5.9	23
1743	CRISPR/Cas9 technology and its application in horticultural crops. Horticultural Plant Journal, 2022, 8, 395-407.	2.3	12
1745	Recent advances in high-throughput metabolic engineering: Generation of oligonucleotide-mediated genetic libraries. Biotechnology Advances, 2022, 59, 107970.	6.0	3
1746	CRISPR/Cas9 application in cancer therapy: a pioneering genome editing tool. Cellular and Molecular Biology Letters, 2022, 27, 35.	2.7	12
1747	CRISPR/Cas9-Mediated Targeted Mutagenesis of FtMYB45 Promotes Flavonoid Biosynthesis in Tartary Buckwheat (Fagopyrum tataricum). Frontiers in Plant Science, 2022, 13, .	1.7	17
1748	Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. Molecular Therapy - Nucleic Acids, 2022, 28, 643-655.	2.3	11
1749	Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense. Annual Review of Virology, 2022, 9, 451-468.	3.0	37
1751	Modulation of CRISPR/Cas12a trans-cleavage activity by various DNA-modifying enzymes. Microchemical Journal, 2022, 180, 107606.	2.3	4
1752	Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome. Biomedicine and Pharmacotherapy, 2022, 151, 113122.	2.5	23
1753	Cas9 Nickase-Based Genome Editing in Clostridium cellulolyticum. Methods in Molecular Biology, 2022, 2479, 227-243.	0.4	0
1755	Biological control of problematic bacterial populations causing foaming in activated sludge wastewater treatment plants—phage therapy and beyond. Letters in Applied Microbiology, 2022, 75, 776-784.	1.0	3

		CITATION REF	ORT	
#	Article		IF	CITATIONS
1756	CRISPR-Cas Systems-Based Bacterial Detection: A Scoping Review. Diagnostics, 2022, 12, 1	335.	1.3	7
1757	Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Technic Frontiers in Plant Science, 2022, 13, .	jues.	1.7	4
1758	Genome Mining Approach Reveals the Occurrence and Diversity Pattern of Clustered Regula Interspaced Short Palindromic Repeats/CRISPR-Associated Systems in Lactobacillus brevis S Frontiers in Microbiology, 2022, 13, .		1.5	7
1759	Development of an efficient iterative genome editing method in <i>Bacillus subtilis</i> usin CRISPRâ€AsCpf1 system. Journal of Basic Microbiology, 2022, 62, 824-832.	g the	1.8	5
1760	CRISPRå•ç®¡ç‰æ,©æ‰©å¢žæŠ€æœ⁻é«~çµæ•œ£€æµ‹æ,é;: 以检测新型å†çжç–	æ ⁻ '(SARS-CoV-2) RN	A0äç2ä3/4<.	S o ientia Sini

1761	Revealing the CRISPR array in bacteria living in our organism. Studia Universitatis Babes-Bolyai Biologia, 2022, 67, 131-142.	0.2	0
1762	Genome Editing and Human Pluripotent Stem Cell Technologies for in vitro Monogenic Diabetes Modeling. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 1785-1797.	1.1	0
1763	The Off-Target Effect of CRISPR-Cas12a System toward Insertions and Deletions between Target DNA and crRNA Sequences. Analytical Chemistry, 2022, 94, 8596-8604.	3.2	9
1764	CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses. Current Issues in Molecular Biology, 2022, 44, 2664-2682.	1.0	20
1765	Structural and mechanistic insights into the inhibition of type I-F CRISPR-Cas system by anti-CRISPR protein AcrIF23. Journal of Biological Chemistry, 2022, , 102124.	1.6	8
1767	CRISPR Modeling and Correction of Cardiovascular Disease. Circulation Research, 2022, 130, 1827-1850.	2.0	32
1768	CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Molecular Biology Reports, 2022, 49, 7079-7086.	1.0	10
1769	Growth rate determines prokaryote-provirus network modulated by temperature and host genetic traits. Microbiome, 2022, 10, .	4.9	0
1770	Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Molecular Biology Reports, 2022, 49, 7087-7100.	1.0	15
1771	Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nature Communications, 2022, 13, .	5.8	35
1772	Origin of the genome editing systems: application for crop improvement. , 2022, 77, 3353-3383.		1
1774	The Mechanisms of Genome Editing Technologies in Crop Plants. , 2022, , 295-313.		2
1775	Technical considerations towards commercialization of porcine respiratory and reproductive syndrome (PRRS) virus resistant pigs. CABI Agriculture and Bioscience, 2022, 3, .	1.1	3

#	Article	IF	CITATIONS
1776	A DNA-Free Editing Platform for Genetic Screens in Soybean via CRISPR/Cas9 Ribonucleoprotein Delivery. Frontiers in Plant Science, 0, 13, .	1.7	7
1777	Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. Environmental Microbiology, 2022, 24, 4853-4868.	1.8	12
1778	CRISPR-Cas12a nucleases function with structurally engineered crRNAs: SynThetic trAcrRNA. Scientific Reports, 2022, 12, .	1.6	5
1779	Genomic and proteomic characterization of two strains of Shigella flexneri 2 isolated from infants' stool samples in Argentina. BMC Genomics, 2022, 23, .	1.2	4
1780	Engineering and Design of Programmable Genome Editors. Journal of Physical Chemistry B, 2022, 126, 5140-5150.	1.2	0
1781	Genome editing provides a valuable biological toolkit for soybean improvement. Plant Biotechnology Reports, 0, , .	0.9	1
1782	CRISPR-Cas9 mediated genome tailoring to improve nutritional quality and shelf life in crops: A review. Plant Gene, 2022, 31, 100369.	1.4	1
1783	The CRISPR-Cas system as a tool for diagnosing and treating infectious diseases. Molecular Biology Reports, 2022, 49, 11301-11311.	1.0	13
1784	CRISPR-Cas systems: role in cellular processes beyond adaptive immunity. Folia Microbiologica, 2022, 67, 837-850.	1.1	1
1785	Epidemiological and evolutionary consequences of different types of CRISPR-Cas systems. PLoS Computational Biology, 2022, 18, e1010329.	1.5	6
1786	Efektivitas Buku Ajar Happy Thinking Unit II My Family untuk Meningkatkan Kosa Kata Awal Anak Usia Dini. Jurnal Obsesi, 2022, 6, 5103-5112.	0.4	1
1787	Transcriptional analysis of CRISPR I-B arrays of Leptospira interrogans serovar Lai and its processing by Cas6. Frontiers in Microbiology, 0, 13, .	1.5	2
1788	CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. Molecular Biomedicine, 2022, 3, .	1.7	7
1790	Genetic advancements in obesity management and CRISPR–Cas9-based gene editing system. Molecular and Cellular Biochemistry, 2023, 478, 491-501.	1.4	2
1791	Comparative Genomics and Physiology of Akkermansia muciniphila Isolates from Human Intestine Reveal Specialized Mucosal Adaptation. Microorganisms, 2022, 10, 1605.	1.6	5
1792	Genetic determinants of antimicrobial resistance in three multi-drug resistant strains of Cutibacterium acnes isolated from patients with acne: a predictive in silico study. Access Microbiology, 2022, 4, .	0.2	3
1793	Recent Advances and Therapeutic Strategies Using CRISPR Genome Editing Technique for the Treatment of Cancer. Molecular Biotechnology, 0, , .	1.3	0
1794	Comparative analysis reveals distinctive genomic features of Taiwan hot-spring cyanobacterium Thermosynechococcus sp. TA-1. Frontiers in Microbiology, 0, 13, .	1.5	2

#	Article	IF	CITATIONS
1795	In silico analysis reveals the co-existence of CRISPR-Cas type I-F1 and type I-F2 systems and its association with restricted phage invasion in Acinetobacter baumannii. Frontiers in Microbiology, 0, 13, .	1.5	5
1796	The application of CRISPR /Cas mediated gene editing in synthetic biology: Challenges and optimizations. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
1797	Engineering cell morphology by <scp>CRISPR</scp> interference in <i>Acinetobacter baylyi</i> <scp>ADP1</scp> . Microbial Biotechnology, 2022, 15, 2800-2818.	2.0	6
1798	Applications of CRISPR-Cas9 in Alzheimer's Disease and Related Disorders. International Journal of Molecular Sciences, 2022, 23, 8714.	1.8	14
1799	Treatment strategies for HIV infection with emphasis on role of CRISPR/Cas9 gene: Success so far and road ahead. European Journal of Pharmacology, 2022, 931, 175173.	1.7	7
1800	Computation empowers CRISPR discovery and technology. Nature Computational Science, 2022, 2, 533-535.	3.8	1
1801	Capturing nucleic acid variants with precision using CRISPR diagnostics. Biosensors and Bioelectronics, 2022, 217, 114712.	5.3	4
1802	CRISPR–Cas9: current and future utilities in ocular diseases. , 2022, , 615-623.		0
1803	CRISPR Genome Editing Brings Global Food Security into the First Lane: Enhancing Nutrition and Stress Resilience in Crops. , 2022, , 285-344.		2
1804	Adaptive immunity systems of bacteria: connection with self-synthesizing transposons, polyfunctionality. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2022, 40, 13.	0.1	0
1806	CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Molecular Biology Reports, 2022, 49, 12133-12150.	1.0	9
1810	CRISPR/Cas: History and Perspectives. Russian Journal of Developmental Biology, 2022, 53, 272-282.	0.1	4
1811	CRISPR/Cas systems accelerating the development of aptasensors. TrAC - Trends in Analytical Chemistry, 2023, 158, 116775.	5.8	7
1812	A comprehensive overview of CRISPR/Cas 9 technology and application thereof in drug discovery. Journal of Cellular Biochemistry, 2022, 123, 1674-1698.	1.2	7
1813	Phylogenetic Analysis of Anti-CRISPR and Member Addition in the Families. Molecular Biotechnology, 0,	1.3	2
1814	Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. International Journal of Molecular Sciences, 2022, 23, 11400.	1.8	9
1815	A Review on the Mechanism and Applications of CRISPR/Cas9/Cas12/Cas13/Cas14 Proteins Utilized for Genome Engineering. Molecular Biotechnology, 2023, 65, 311-325.	1.3	42
1817	A conserved signaling pathway activates bacterial <scp>CBASS</scp> immune signaling in response to <scp>DNA</scp> damage. EMBO Journal, 2022, 41, .	3.5	8

#	Article	IF	CITATIONS
1818	CRISPR-Cas9: Taming protozoan parasites with bacterial scissor. Journal of Parasitic Diseases, 2022, 46, 1204-1212.	0.4	2
1819	Characterization of the self-targeting Type IV CRISPR interference system in Pseudomonas oleovorans. Nature Microbiology, 2022, 7, 1870-1878.	5.9	13
1820	Whole-Genome Analysis of Acinetobacter baumannii Strain AB43 Containing a Type I-Fb CRISPR-Cas System: Insights into the Relationship with Drug Resistance. Molecules, 2022, 27, 5665.	1.7	1
1821	Emerging Non-Traditional Approaches to Combat Antibiotic Resistance. Current Microbiology, 2022, 79, .	1.0	9
1822	Structural and functional characterization of Cas2 of CRISPR-Cas subtype I-C lacking the CRISPR component. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
1823	Research progress of CRISPR-based biosensors and bioassays for molecular diagnosis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
1824	Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis. International Journal of Molecular Sciences, 2022, 23, 10492.	1.8	5
1825	Functional inhibition of the StERF3 gene by dual targeting through CRISPR/Cas9 enhances resistance to the late blight disease in Solanum tuberosum L Molecular Biology Reports, 2022, 49, 11675-11684.	1.0	5
1826	CRISPR-Cas13 technology portfolio and alliance with other genetic tools. Biotechnology Advances, 2022, , 108047.	6.0	6
1827	CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacological Research, 2022, 185, 106480.	3.1	3
1828	CRISPR-Cas: A continuously evolving technology. , 2021, 91, .		0
1829	Polymer-Mediated Delivery of CRISPR-Cas9 Genome-Editing Therapeutics for CNS Disease. , 2022, , 229-258.		0
1830	Phages, anti-CRISPR proteins, and drug-resistant bacteria: what do we know about this triad?. Pathogens and Disease, 2022, 80, .	0.8	0
1831	CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Frontiers in Microbiology, 0, 13, .	1.5	7
1832	CRISPR-Cas Genome Editing Technique for Fish Disease Management: Current Study and Future Perspective. Microorganisms, 2022, 10, 2012.	1.6	4
1833	Simplified CRISPR-Mediated DNA Editing in Multicellular Eukaryotes. Methods in Molecular Biology, 2023, , 241-260.	0.4	0
1834	Eco-Friendly Biocontrol Strategies of Alternaria Phytopathogen Fungus: A Focus on Gene-Editing Techniques. Agriculture (Switzerland), 2022, 12, 1722.	1.4	4
1836	Clustered Regularly Interspaced short palindromic repeatsâ€Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives. Advanced Science, 2022, 9, .	5.6	12

#	Article	IF	CITATIONS
1837	Site-Directed DNA Sequence Modification Using CRISPR/Cas 9. , 2022, , 149-173.		0
1838	Enhanced Fusobacterium nucleatum Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems. Journal of Bacteriology, 2022, 204, .	1.0	7
1839	DNA topology regulates PAM-Cas9 interaction and DNA unwinding to enable near-PAMless cleavage by thermophilic Cas9. Molecular Cell, 2022, 82, 4160-4175.e6.	4.5	13
1840	An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. International Immunopharmacology, 2022, 113, 109341.	1.7	5
1841	Genome Editing in Plants for Resistance Against Bacterial Pathogens. , 2022, , 217-235.		1
1842	Recent Advances and Application of CRISPR Base Editors for Improvement of Various Traits in Crops. , 2022, , 105-131.		0
1843	Genome Editing: A Review of the Challenges and Approaches. , 2022, , 71-101.		0
1844	Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Cells, 2022, 11, 3590.	1.8	11
1845	CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells, 2022, 11, 3615.	1.8	4
1846	Integrated genomics and proteomics analysis of Paenibacillus peoriae IBSD35 and insights into its antimicrobial characteristics. Scientific Reports, 2022, 12, .	1.6	3
1847	Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines?. Nano Today, 2022, 47, 101665.	6.2	11
1848	RNA interference and gene editing. , 2023, , 375-408.		0
1849	Synergy and regulation of antiphage systems: towardÂthe existence of a bacterial immune system?. Current Opinion in Microbiology, 2023, 71, 102238.	2.3	15
1850	CRISPR/CAS9: A new paradigm for crop improvement revolutionizing agriculture. Journal of Agriculture and Food Research, 2023, 11, 100484.	1.2	0
1851	Adaptive Immunity Systems of Bacteria: Association with Self-Synthesizing Transposons, Polyfunctionality. Molecular Genetics, Microbiology and Virology, 2022, 37, 117-126.	0.0	0
1852	CRISPR/Cas systems: Delivery and application in gene therapy. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	12
1853	CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals, 2022, 15, 1498.	1.7	8
1854	Developing New Tools to Fight Human Pathogens: A Journey through the Advances in RNA Technologies. Microorganisms, 2022, 10, 2303.	1.6	1

#	Article	IF	CITATIONS
1855	A review on bioinformatics advances in CRISPR-Cas technology. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 791-807.	0.9	1
1856	A Protocol to Produce Genetically Edited Primary Oral Keratinocytes Using the CRISPR-Cas9 System. Methods in Molecular Biology, 2023, , 217-229.	0.4	0
1857	CRISPR-Based Diagnostics: Challenges and Potential Solutions toward Point-of-Care Applications. ACS Synthetic Biology, 2023, 12, 1-16.	1.9	13
1858	"Toehold Switches; a foothold for Synthetic Biology― Biotechnology and Bioengineering, 2023, 120, 932-952.	1.7	2
1859	CRISPR-Mediated Genome Engineering in Cell Lines. Methods in Molecular Biology, 2023, , 267-278.	0.4	0
1860	Genome editing advancements in potato (Solanum tuberosumÂL.): operational challenges and solutions. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 730-742.	0.9	5
1861	Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria. Nucleic Acids Research, 2023, 51, 765-782.	6.5	16
1862	CRISPR-Cas13a system: A novel tool for molecular diagnostics. Frontiers in Microbiology, 0, 13, .	1.5	16
1863	Global phylogenomic novelty of the Cas1 gene from hot spring microbial communities. Frontiers in Microbiology, 0, 13, .	1.5	0
1864	Generation of Endogenous Promoter-Driven Luciferase Reporter System Using CRISPR/Cas9 for Investigating Transcriptional Regulation of the Core Clock Gene BMAL1. Biomedicines, 2022, 10, 3108.	1.4	1
1865	An Ultrasensitive PCR-Based CRISPR-Cas13a Method for the Detection of Helicobacter pylori. Journal of Personalized Medicine, 2022, 12, 2082.	1.1	2
1866	Mutation introduced in DDTFR10/A gene of ethylene response element-binding protein (EREBP) family through CRISPR/Cas9 genome editing confers increased Fusarium wilt tolerance in tomato. Physiology and Molecular Biology of Plants, 0, , .	1.4	2
1867	Recent Advances in Genome-Engineering Strategies. Genes, 2023, 14, 129.	1.0	8
1868	Smart Plant Breeding for Potato in the Post-genomics Era. , 2023, , 337-356.		0
1869	CRISPR/Cas9 therapeutics: progress and prospects. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	73
1870	Bacterial drug-resistance and viability phenotyping upon disinfectant exposure revealed by single-nucleotide resolved-allele specific isothermal RNA amplification. Journal of Hazardous Materials, 2023, 448, 130800.	6.5	2
1871	Anti-CRISPR Discovery: Using Magnets to Find Needles in Haystacks. Journal of Molecular Biology, 2023, 435, 167952.	2.0	4
1872	A Landscape of CRISPR/Cas Technique for Emerging Viral Disease Diagnostics and Therapeutics: Progress and Prospects. Pathogens, 2023, 12, 56.	1.2	6

#	Article	IF	CITATIONS
1873	Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. ACS Omega, 2023, 8, 1817-1837.	1.6	2
1874	Genome editing for vegetatively propagated crops improvement: a new horizon of possibilities. Journal of Plant Biochemistry and Biotechnology, 2023, 32, 718-729.	0.9	2
1875	Temperature-dependent affinity changes in substrate binding affect the cleavage activity of BthC2c1. Protein and Peptide Letters, 2023, 30, .	0.4	0
1876	Molecular Neurosurgery: Introduction to Gene Therapy and Clinical Applications. Journal of Pediatric Epilepsy, 2023, 12, 050-062.	0.1	0
1877	Prevalence and Characterization of CRISPR Locus 2.1 Spacers in Escherichia coli Isolates Obtained from Feces of Animals and Humans. Microbiology Spectrum, 0, , .	1.2	1
1878	Enzyme-Assisted Nucleic Acid Amplification in Molecular Diagnosis: A Review. Biosensors, 2023, 13, 160.	2.3	4
1879	Updates and Applications of CRISPR/Cas Technology in Plants. Journal of Plant Biology, 0, , .	0.9	3
1880	The genome editing revolution. Trends in Biotechnology, 2023, 41, 396-409.	4.9	22
1881	CRISPR-Cas engineering in food science and sustainable agriculture: recent advancements and applications. Bioprocess and Biosystems Engineering, 2023, 46, 483-497.	1.7	7
1882	Cryo-EM structure and protease activity of the type III-E CRISPR-Cas effector. Nature Microbiology, 2023, 8, 522-532.	5.9	4
1883	Involvement of CRISPR-Cas Systems in <i>Salmonella</i> Immune Response, Genome Editing, and Pathogen Typing in Diagnosis and Surveillance. , 0, , .		0
1884	Methanocaldococcus lauensis sp. nov., a novel deep-sea hydrothermal vent hyperthermophilic methanogen. International Journal of Systematic and Evolutionary Microbiology, 2023, 73, .	0.8	0
1885	CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification. Analytical Chemistry, 2023, 95, 2303-2311.	3.2	8
1886	CRISPR and CAS Editing Tools Employent in the Control of AMR Pathogens. , 2023, , 1-19.		0
1887	Application of CRISPR Cas systems in DNA recorders and writers. BioSystems, 2023, 225, 104870.	0.9	0
1888	Mining microbial resources from water. Resources, Conservation and Recycling, 2023, 191, 106883.	5.3	0
1889	CRISPR/Cas9 system and its applications in nervous system diseases. Genes and Diseases, 2023, , .	1.5	0
1890	Cas12a-based primer production enables isothermal amplification for nucleic acid detection. Sensors and Actuators B: Chemical, 2023, 381, 133401.	4.0	6

#	Article	IF	CITATIONS
1891	CRISPR-Cas for genome editing: Classification, mechanism, designing and applications. International Journal of Biological Macromolecules, 2023, 238, 124054.	3.6	17
1892	Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Gene, 2023, 866, 147334.	1.0	10
1893	CRISPR/Cas9 mediated gene editing in non-model nematode Panagrolaimus sp. PS1159. Frontiers in Genome Editing, 0, 5, .	2.7	7
1894	Deduplication Improves Cost-Efficiency and Yields of <i>De Novo</i> Assembly and Binning of Shotgun Metagenomes in Microbiome Research. Microbiology Spectrum, 2023, 11, .	1.2	1
1895	The Role of Advanced Therapeutic Techniques to Combat Multi-drug Resistance. , 2023, , 29-55.		0
1896	Revolutionizing DNA repair research and cancer therapy with CRISPR–Cas screens. Nature Reviews Molecular Cell Biology, 2023, 24, 477-494.	16.1	17
1897	<scp>CRISPR</scp> /Cas9 knockout of <scp>MTA1</scp> enhanced <scp>RANKL</scp> â€induced osteoclastogenesis in <scp>RAW264</scp> .7 cells partly via increasing <scp>ROS</scp> activities. Journal of Cellular and Molecular Medicine, 2023, 27, 701-713.	1.6	4
1898	Nutrigenomics in Cereals. , 2023, , 311-345.		0
1899	An Efficient CRISPR/Cas12e System for Genome Editing in <i>Sinorhizobium meliloti</i> . ACS Synthetic Biology, 2023, 12, 898-903.	1.9	0
1900	Comparative genome identification of accessory genes associated with strong biofilm formation in Vibrio parahaemolyticus. Food Research International, 2023, 166, 112605.	2.9	4
1901	Structure, substrate binding and activity of a unique AAA+Âprotein: the BrxL phage restriction factor. Nucleic Acids Research, 2023, 51, 3513-3528.	6.5	3
1902	Structural snapshots of R-loop formation by a type I-C CRISPR Cascade. Molecular Cell, 2023, 83, 746-758.e5.	4.5	5
1903	Research and Therapeutic Approaches in Stem Cell Genome Editing by CRISPR Toolkit. Molecules, 2023, 28, 1982.	1.7	2
1904	CRISPR-Cas adaptation in <i>Escherichia coli</i> . Bioscience Reports, 2023, 43, .	1.1	0
1905	SARS-CoV-2 pandemics: An update of CRISPR in diagnosis and host–virus interaction studies. Biomedical Journal, 2023, 46, 100587.	1.4	4
1906	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in Cardiovascular Disease: A Comprehensive Clinical Review on Dilated Cardiomyopathy. Cureus, 2023, , .	0.2	0
1907	Therapeutic applications of <scp>CRISPR</scp> /Cas9 gene editing technology for the treatment of ocular diseases. FEBS Journal, 2023, 290, 5248-5269.	2.2	1
1910	Functional and Phylogenetic Diversity of Cas10 Proteins. CRISPR Journal, 2023, 6, 152-162.	1.4	3

#	Article	IF	CITATIONS
1911	Structures of apo Cas12a and its complex with crRNA and DNA reveal the dynamics of ternary complex formation and target DNA cleavage. PLoS Biology, 2023, 21, e3002023.	2.6	2
1912	Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi (Basel, Switzerland), 2023, 9, 362.	1.5	9
1914	Application of CRISPR-Cas9 gene editing technology in basic research, diagnosis and treatment of colon cancer. Frontiers in Endocrinology, 0, 14, .	1.5	4
1915	CRISPR/Cas systems for the detection of nucleic acid and non-nucleic acid targets. Nano Research, 2023, 16, 9940-9953.	5.8	3
1916	Current Approaches to and the Application of Intracytoplasmic Sperm Injection (ICSI) for Avian Genome Editing. Genes, 2023, 14, 757.	1.0	1
1918	Nanotechnology and CRISPR/Cas9 system for sustainable agriculture. Environmental Science and Pollution Research, 0, , .	2.7	1
1919	Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects. International Journal of Molecular Sciences, 2023, 24, 6261.	1.8	6
1920	Temperate bacteriophages infecting the mucin-degrading bacterium <i>Ruminococcus gnavus</i> from the human gut. Gut Microbes, 2023, 15, .	4.3	2
1921	The CRISPR/Cas System: A Customizable Toolbox for Molecular Detection. Genes, 2023, 14, 850.	1.0	5
1922	Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Animals, 2023, 13, 1250.	1.0	3
1923	CRISPR-Based Biosensing Strategies: Technical Development and Application Prospects. Annual Review of Analytical Chemistry, 2023, 16, 311-332.	2.8	9
1925	Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Critical Reviews in Analytical Chemistry, 0, , 1-18.	1.8	4
1926	Molecular detection and characterization of foodborne bacteria: Recent progresses and remaining challenges. Comprehensive Reviews in Food Science and Food Safety, 2023, 22, 2433-2464.	5.9	3
1927	The biology and type I/III hybrid nature of type I-D CRISPR–Cas systems. Biochemical Journal, 2023, 480, 471-488.	1.7	0
1928	Genome-edited crops. , 2023, , 73-99.		0
1929	CRISPR technology and its potential role in treating rare imprinting diseases. , 2023, , 273-300.		0
1930	RNA leaving DNAzymeâ€Based Amplification Strategies for Biosensing and Therapy. Advanced Healthcare Materials, 2023, 12, .	3.9	10
1931	Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry, 2023, 62, 3465-3487.	1.2	13

#	Article	IF	Citations
1943	Gene editing for stem cells by CRISPR-Cas9. , 2023, , 153-175.		0
1953	CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infectious Diseases, 2023, 9, 1283-1302.	1.8	7
1959	A comprehensive review on CRISPR and artificial intelligence based emerging food packaging technology to ensure "safe foodâ€, , 2023, 1, 641-657.		1
1961	Application of CRISPR/Cas system in optimizing nutrients and anti-nutrients content in fruits. Vegetos, 0, , .	0.8	1
1964	Strategies for Strain Improvement of Economically Important Microorganisms. , 2023, , 695-727.		1
1967	CRISPR Libraries and Whole-Genome Screening to Identify Essential Factors for Viral Infections. Advances in Experimental Medicine and Biology, 2023, , 157-172.	0.8	0
1968	What Is the CRISPR System and How It Is Used?. Advances in Experimental Medicine and Biology, 2023, , 1-11.	0.8	1
1971	CRISPR and CAS Editing Tools Employment in the Control of AMR Pathogens. , 2023, , 999-1017.		0
1972	CRISPR/Cas-Based Diagnostics in Agricultural Applications. Journal of Agricultural and Food Chemistry, 2023, 71, 11765-11788.	2.4	1
1983	Genome editing in the treatment of ocular diseases. Experimental and Molecular Medicine, 2023, 55, 1678-1690.	3.2	3
1989	BacWGSpipe: A Snakemake Workflow for a Complete Analysis of Bacterial Whole-Genome Sequencing Data. , 2023, , .		0
2002	Microfluidics-integrated biosensor platform for modern clinical analysis. , 2024, , 153-179.		0
2003	Therapeutic approaches to imprinting diseases. , 2024, , 1077-1112.		0
2008	Epigenome editing in cancer: Advances and challenges for potential therapeutic options. International Review of Cell and Molecular Biology, 2024, , 191-230.	1.6	0
2012	Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nature Reviews Microbiology, 0, , .	13.6	2
2014	Bacterial Small RNAs: Diversity of Structure and Function. RNA Technologies, 2023, , 259-277.	0.2	0
2016	Research on Variation of Sars-Cov-2 and Rapid Detection. , 2023, , .		0
2020	Exosomes for CRISPR-Cas9 Delivery: The Cutting Edge in Genome Editing. Molecular Biotechnology, 0, ,	1.3	1

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
2032	Modern Tools of Genome Engineering and Their Applications. , 2023, , 193-232.		0
2040	Comparative Genomics of Clostridioides difficile. Advances in Experimental Medicine and Biology, 2024, , 199-218.	0.8	0
2044	CRISPR/Cas systems and techniques. , 2024, , 21-41.		0
2045	The CRISPR-Cas technology: trends in healthcare. , 2024, , 109-130.		0
2046	CRISPR-Cas-led advancements in translational biotechnology. , 2024, , 71-91.		0
2048	CRISPR technology commercialization and biosafety. , 2024, , 461-514.		0
2066	CRISPR-Cas and Its Applications in Food Production. , 2024, , 349-391.		0
2067	Concepts of Molecular Plant Breeding and Genome Editing. , 2023, , 504-513.		0
2068	CRISPR-Cas9 genome editing of crops: Food and nutritional security. , 2024, , 161-190.		0
2069	Redesigning Saccharomyces cerevisiae Meyen ex E.C. Hansen Using CRISPR to Combat Industrial Needs. , 2024, , 113-137.		0
2070	Different Classes of CRISPR-Cas Systems. , 2024, , 73-94.		0
2071	Detailed Insight into Various Classes of the CRISPR/Cas System to Develop Future Crops. , 2024, , 227-279.		0
2072	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Associated Proteins (Cas) [CRISPR–Cas]: An Emerging Technique in Plant Disease Detection and Management. , 2024, , 589-645.		0
2073	CRISPRi-Mediated Gene Silencing in Biofilm Cycle and Quorum Sensing. , 2024, , 139-178.		0
2074	Genome Editing and CRISPR/Cas System of Extremophiles and Its Applications. , 2023, , 856-880.		0
2075	Gene Editing and Gene Therapies in Cancer Treatment. , 2023, , 690-710.		0
2076	Genome-Editing Technologies in Crop Improvement. , 2024, , 89-111.		0