Readily Available Tissue-Engineered Vascular Grafts

Science Translational Medicine

3, 68ra9

DOI: 10.1126/scitranslmed.3001426

Citation Report

#	Article	IF	CITATIONS
1	In the Spotlight: Tissue Engineering— Translation for Tissue Engineering and Regenerative Medicine. IEEE Reviews in Biomedical Engineering, 2011, 4, 24-25.	13.1	0
2	Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. Journal of Molecular and Cellular Cardiology, 2011, 51, 651-664.	0.9	46
3	Organ Printing: A Novel Tissue Engineering Paradigm. IFMBE Proceedings, 2011, , 27-30.	0.2	6
5	Bioengineered Vascular Grafts: Can We Make Them Off-the-Shelf?. Trends in Cardiovascular Medicine, 2011, 21, 83-89.	2.3	62
6	Vascular calcification: Inducers and inhibitors. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1133-1141.	1.7	10
7	Vascular tissue engineering: Towards the next generation vascular grafts. Advanced Drug Delivery Reviews, 2011, 63, 312-323.	6.6	206
8	An Early Study on the Mechanisms that Allow Tissue-Engineered Vascular Grafts to Resist Intimal Hyperplasia. Journal of Cardiovascular Translational Research, 2011, 4, 674-682.	1.1	37
9	Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges. Cardiovascular Engineering and Technology, 2011, 2, 137-148.	0.7	85
10	Challenges in translating vascular tissue engineering to the pediatric clinic. Vascular Cell, 2011, 3, 23.	0.2	24
11	Stacking of aligned cell sheets for layer-by-layer control of complex tissue structure. Biomaterials, 2011, 32, 5625-5632.	5.7	65
12	Taking tissue engineering to heart. Nature Medicine, 2011, 17, 1032-1035.	15.2	23
13	Decellularized tissue-engineered blood vessel as an arterial conduit. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9214-9219.	3.3	316
14	Tissue engineering of non-bladder tubular organs. , 2012, , 87-99.		0
15	Immunosuppression-free transplantation reconsidered from a regenerative medicine perspective. Expert Review of Clinical Immunology, 2012, 8, 179-187.	1.3	19
16	Smooth Muscle and Other Cell Sources for Human Blood Vessel Engineering. Cells Tissues Organs, 2012, 195, 15-25.	1.3	30
17	A Novel Ovine ex vivo Arteriovenous Shunt Model to Test Vascular Implantability. Cells Tissues Organs, 2012, 195, 108-121.	1.3	30
18	Regenerative Medicine as Applied to General Surgery. Annals of Surgery, 2012, 255, 867-880.	2.1	97
19	Back to the Future: How Biology and Technology Could Change the Role of PTFE Grafts in Vascular Access Management Seminars in Dialysis 2012, 25, 495-504	0.7	17

#	Article	IF	CITATIONS
20	The Evolution of Vascular Tissue Engineering and Current State of the Art. Cells Tissues Organs, 2012, 195, 144-158.	1.3	152
21	Engineering Complex Tissues. Science Translational Medicine, 2012, 4, 160rv12.	5.8	436
22	Human fibroblast-derived ECM as a scaffold for vascular tissue engineering. Biomaterials, 2012, 33, 9205-9213.	5.7	82
23	Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1015-1027.	1.4	32
24	Tissue-Engineered Vascular Grafts: Autologous Off-the-Shelf Vascular Access?. Seminars in Nephrology, 2012, 32, 582-591.	0.6	18
25	Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Research and Therapy, 2012, 3, 28.	2.4	143
26	Concise Review: Tissue-Engineered Vascular Grafts for Cardiac Surgery: Past, Present, and Future. Stem Cells Translational Medicine, 2012, 1, 566-571.	1.6	136
27	Micropatterned cell sheets with defined cell and extracellular matrix orientation exhibit anisotropic mechanical properties. Journal of Biomechanics, 2012, 45, 756-761.	0.9	45
28	A Novel Device for the Automatic Decellularization of Biological Tissues. International Journal of Artificial Organs, 2012, 35, 191-198.	0.7	23
29	The effect of stromal cell-derived factor-1α/heparin coating of biodegradable vascular grafts on the recruitment of both endothelial and smooth muscle progenitor cells for accelerated regeneration. Biomaterials, 2012, 33, 8062-8074.	5.7	147
30	Functionality, growth and accelerated aging of tissue engineered living autologous vascular grafts. Biomaterials, 2012, 33, 8277-8285.	5.7	19
31	A prototype tissue engineered blood vessel using amniotic membrane as scaffold. Acta Biomaterialia, 2012, 8, 3342-3348.	4.1	27
32	Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nature Medicine, 2012, 18, 1148-1153.	15.2	379
33	Engineered tissue grafts: opportunities and challenges in regenerative medicine. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 207-220.	6.6	30
34	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	2.5	81
35	Polymerâ€based Scaffold Designs For In Situ Vascular Tissue Engineering: Controlling Recruitment and Differentiation Behavior of Endothelial Colony Forming Cells. Macromolecular Bioscience, 2012, 12, 577-590.	2.1	50
36	Immediate production of a tubular dense collagen construct with bioinspired mechanical properties. Acta Biomaterialia, 2012, 8, 1813-1825.	4.1	61
37	The use of BDNF to enhance the patency rate of small-diameter tissue-engineered blood vessels through stem cell homing mechanisms. Biomaterials, 2012, 33, 473-484.	5.7	57

	CITATION I	Report	
ARTICLE		IF	Citations
Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives homografts. Biomaterials, 2012, 33, 4545-4554.	to xeno- and	5.7	147
Engineered arterial models to correlate blood flow to tissue biological response. Annal York Academy of Sciences, 2012, 1254, 51-56.	s of the New	1.8	6
Tubular Heart Valves from Decellularized Engineered Tissue. Annals of Biomedical Engi 41, 2645-2654.	neering, 2013,	1.3	50
Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tiss engineering. Materials Science and Engineering C, 2013, 33, 1561-1572.	ue	3.8	39
Animal models for vascular tissue-engineering. Current Opinion in Biotechnology, 201	3, 24, 916-925.	3.3	81
Small diameter vascular graft engineered using human embryonic stem cell-derived mo cells. Tissue Engineering - Part A, 2013, 20, 131015043635000.	esenchymal	1.6	14
Bioengineering heart tissue for in vitro testing. Current Opinion in Biotechnology, 201	3, 24, 926-932.	3.3	31
Potency evaluation of tissue engineered and regenerative medicine products. Trends i 2013, 31, 505-514.	n Biotechnology,	4.9	34
Biocompatible Medical Devices: Raise the Bar for Health Care. IEEE Pulse, 2013, 4, 16-2	20.	0.1	0
Arterial Tissue Regeneration for Pediatric Applications: Inspiration From Upâ€ŧoâ€Dato Vascular Bypass Grafts. Artificial Organs, 2013, 37, 423-434.	e Tissueâ€Engineered	1.0	17
Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural an Features. Tissue Engineering - Part A, 2013, 19, 793-807.	d Mechanical	1.6	59
Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenes Research and Therapy, 2013, 4, 8.	is. Stem Cell	2.4	73
State of the art composites comprising electrospun fibres coupled with hydrogels: a re Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 322-335.	eview.	1.7	126
Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition Tissue Engineering - Part B: Reviews, 2013, 19, 1-13.	to Translation.	2.5	216
Biological Grafts for Hemodialysis Access: Historical Lessons, Stateâ€ofâ€theâ€Art and Seminars in Dialysis, 2013, 26, 233-239	d Future Directions.	0.7	19

52	Biological Grafts for Hemodialysis Access: Historical Lessons, Statea€ofa€thea€Art and Future Directions. Seminars in Dialysis, 2013, 26, 233-239.	0.7	19
53	Selfâ€essembled smooth muscle cell tissue rings exhibit greater tensile strength than cellâ€seeded fibrin or collagen gel rings. Journal of Biomedical Materials Research - Part A, 2013, 101A, 428-437.	2.1	23
54	Human progenitor cell recruitment via SDF-1α coacervate-laden PGS vascular grafts. Biomaterials, 2013, 34, 9877-9885.	5.7	73
55	Meeting the Need for Regenerative Therapies: Translation-Focused Analysis of U.S. Regenerative Medicine Opportunities in Cardiovascular and Peripheral Vascular Medicine Using Detailed Incidence Data. Tissue Engineering - Part B: Reviews, 2013, 19, 99-115.	2.5	9

#

38

40

42

44

46

48

50

#	Article	IF	CITATIONS
56	Tissue engineered vascular grafts — Preclinical aspects. International Journal of Cardiology, 2013, 167, 1091-1100.	0.8	62
57	Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomaterialia, 2013, 9, 8067-8074.	4.1	134
58	Tissue Engineering and Regenerative Medicine: Role of Extracellular Matrix Microenvironment. , 2013, , 313-323.		1
59	Decellularized Tissue-Engineered Heart Valve Leaflets with Recellularization Potential. Tissue Engineering - Part A, 2013, 19, 759-769.	1.6	88
60	Vascular access in haemodialysis: strengthening the Achilles' heel. Nature Reviews Nephrology, 2013, 9, 348-357.	4.1	127
61	Detergent-Enzymatic Decellularization of Swine Blood Vessels: Insight on Mechanical Properties for Vascular Tissue Engineering. BioMed Research International, 2013, 2013, 1-8.	0.9	59
62	Novel Therapies for Hemodialysis Vascular Access Dysfunction: Myth or Reality?. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 2202-2212.	2.2	12
63	Improved recellularization of ex vivo vascular scaffolds using directed transport gradients to modulate ECM remodeling. Biotechnology and Bioengineering, 2013, 110, 2035-2045.	1.7	16
64	Immunomodulatory effect of a decellularized skeletal muscle scaffold in a discordant xenotransplantation model. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14360-14365.	3.3	176
65	Polyethylene terephthalate membrane grafted with peptidomimetics: endothelial cell compatibility and retention under shear stress. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 269-286.	1.9	16
66	Design of Biomimetic Vascular Grafts with Magnetic Endothelial Patterning. Cell Transplantation, 2013, 22, 2105-2118.	1.2	28
67	Arteriovenous access failure: more than just intimal hyperplasia?. Nephrology Dialysis Transplantation, 2013, 28, 1085-1092.	0.4	110
68	Incorporation of fibronectin to enhance cytocompatibility in multilayer elastinâ€like protein scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1915-1925.	2.1	28
69	Bioengineering and the cardiovascular system. Global Cardiology Science & Practice, 2013, 2013, 5.	0.3	8
70	In-vitro blood vessel regeneration. , 0, , 603-620.		0
71	Stem cells for vascular engineering. , 0, , 621-639.		0
72	From Endothelial Progenitor Cells to Tissue Engineering: How Far have we Come?. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	1
74	Stem Cells and Tissue Engineering. , 2014, , 353-373.		0

#	Article	IF	CITATIONS
75	Principles of Cardiovascular Tissue Engineering. , 2014, , 627-683.		1
76	Tissue Engineered Scaffolds for an Effective Healing and Regeneration: Reviewing Orthotopic Studies. BioMed Research International, 2014, 2014, 1-27.	0.9	23
77	Vascular Tissue Engineering: Recent Advances in Small Diameter Blood Vessel Regeneration. ISRN Vascular Medicine, 2014, 2014, 1-27.	0.7	98
78	Tissue-engineered cardiovascular grafts and novel applications of tissue engineering by self-assembly (TESAâ"¢). , 2014, , 410-451.		2
79	Skeletal muscle tissue engineering: strategies for volumetric constructs. Frontiers in Physiology, 2014, 5, 362.	1.3	88
80	Stem cells in tissue-engineered blood vessels for cardiac repair. , 2014, , 389-409.		1
82	ENGINEERING OF SURFACE FUNCTIONALITY ONTO POLYSTYRENE MICROCARRIERS FOR THE ATTACHMENT AND GROWTH OF HUMAN ENDOTHELIAL CELLS. Journal of Molecular and Engineering Materials, 2014, 02, 1450003.	0.9	1
83	Crosslinking of saphenous vein ECM by procyanidins for small diameter blood vessel replacement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1190-1198.	1.6	25
84	The Challenge of Imitating Nature. , 2014, , 9-24.		11
85	Implantation of Completely Biological Engineered Grafts Following Decellularization into the Sheep Femoral Artery. Tissue Engineering - Part A, 2014, 20, 1726-1734.	1.6	121
86	Tissue Engineering in the Vasculature. Anatomical Record, 2014, 297, 83-97.	0.8	19
87	Myocardial Tissue Engineering: In Vitro Models. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a014076-a014076.	2.9	97
88	Role of Extracellular Matrix Signaling Cues in Modulating Cell Fate Commitment for Cardiovascular Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 628-641.	3.9	71
89	Vascular tissue engineering: building perfusable vasculature for implantation. Current Opinion in Chemical Engineering, 2014, 3, 68-74.	3.8	58
90	<i>In Vivo</i> Applications of Electrospun Tissue-Engineered Vascular Grafts: A Review. Tissue Engineering - Part B: Reviews, 2014, 20, 628-640.	2.5	136
91	Late-outgrowth endothelial progenitors from patients with coronary artery disease: Endothelialization of confluent stromal cell layers. Acta Biomaterialia, 2014, 10, 893-900.	4.1	10
92	Engineering of arteries in vitro. Cellular and Molecular Life Sciences, 2014, 71, 2103-2118.	2.4	99
93	Biodegradable Polymers. , 2014, , 303-335.		33

#	Article	IF	CITATIONS
94	Tissue-Engineered Cardiovascular Products. , 2014, , 1745-1764.		0
95	Tissue-Engineered Vascular Grafts Created From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 1535-1543.	1.6	55
96	Bioengineered blood vessels. Expert Opinion on Biological Therapy, 2014, 14, 403-410.	1.4	21
97	Organ bioengineering for the newborn. Seminars in Pediatric Surgery, 2014, 23, 314-323.	0.5	2
98	Construction of Tissue-Engineered Small-Diameter Vascular Grafts in Fibrin Scaffolds in 30 Days. Tissue Engineering - Part A, 2014, 20, 1499-1507.	1.6	52
99	Vascular tissue engineering: from <i>in vitro</i> to <i>in situ</i> . Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2014, 6, 61-76.	6.6	135
100	Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials, 2014, 35, 8960-8969.	5.7	111
101	Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Current Opinion in Chemical Engineering, 2014, 3, 83-90.	3.8	40
102	The Use of Optical Clearing and Multiphoton Microscopy for Investigation of Three-Dimensional Tissue-Engineered Constructs. Tissue Engineering - Part C: Methods, 2014, 20, 570-577.	1.1	19
103	Regenerative implants for cardiovascular tissue engineering. Translational Research, 2014, 163, 321-341.	2.2	43
104	Nerve regeneration and elastin formation within poly(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation in a rat model. Biomaterials, 2014, 35, 165-173.	5.7	94
105	Magneticâ€directed patterning of cell spheroids. Journal of Biomedical Materials Research - Part A, 2014, 102, 1537-1547.	2.1	66
106	Stem Cells and Progenitor Cells for Tissue-Engineered Solutions to Congenital Heart Defects. Biomarker Insights, 2015, 10s1, BMI.S20058.	1.0	7
107	Surgical Technique for the Implantation of Tissue Engineered Vascular Grafts and Subsequent In Vivo Monitoring. Journal of Visualized Experiments, 2015, , e52354.	0.2	7
108	The Current Status of Tissue-Engineered Vascular Grafts. Cardiology in Review, 2015, 23, 236-239.	0.6	13
109	Development of Novel, Bioresorbable, Small-Diameter Electrospun Vascular Grafts. Journal of Tissue Science & Engineering, 2015, 06, .	0.2	12
110	Influence of Drugs on Arteriovenous Vascular access Dysfunction. Journal of Vascular Access, 2015, 16, S61-S65.	0.5	3
111	Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management, 2015, 11, 79.	1.0	70

ARTICLE IF CITATIONS Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube 112 0.9 33 Bioreactor for Potential Vascular Prosthesis. BioMed Research International, 2015, 2015, 1-9. Regeneration of the Vascular System., 2015, , 357-373. Arterial Decellularized Scaffolds Produced Using an Innovative Automatic System. Cells Tissues 114 1.3 26 Organs, 2014, 200, 363-373. Influence of culture conditions and extracellular matrix alignment on human mesenchymal stem cells invasion into decellularized engineered tissues. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 605-618. Click-coated, heparinized, decellularized vascular grafts. Acta Biomaterialia, 2015, 13, 177-187. 116 4.1 65 Clinical Applications of Naturally Derived Biopolymer-Based Scaffolds for Regenerative Medicine. Annals of Biomedical Engineering, 2015, 43, 657-680. 1.3 119 Arterial grafts exhibiting unprecedented cellular infiltration and remodeling inÂvivo: The role of cells 118 5.7 49 in the vascular wall. Biomaterials, 2015, 50, 115-126. Laminar tendon composites with enhanced mechanical properties. Journal of Materials Science, 2015, 1.7 20 50, 2616-2625. Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. 120 1.7 53 Biochemical Journal, 2015, 465, 185-194. Development and evaluation of elastomeric hollow fiber membranes as small diameter vascular graft 3.8 substitutes. Materials Science and Engineering C, 2015, 49, 541-548. Proteomic Analysis of the Pericyte Derived Extracellular Matrix. Cellular and Molecular 122 7 1.0 Bioengineering, 2015, 8, 349-363. Imparting electroactivity to polycaprolactone fibers with heparin-doped polypyrrole: Modulation of 4.1 hemocompatibility and inflammatory responses. Acta Biomaterialia, 2015, 23, 240-249. Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking. ACS Applied Materials & Amp; Interfaces, 2015, 7, 124 4.0 60 12099-12108. Capture of endothelial cells under flow using immobilized vascular endothelial growth factor. Biomaterials, 2015, 51, 303-312. Adipose-derived stromal cells mediate inÂvivo adipogenesis, angiogenesis and inflammation in 126 123 5.7decellularized adipose tissue bioscaffolds. Biomaterials, 2015, 72, 125-137. Tri-layered silk fibroin and poly-É>-caprolactone small diameter vascular grafts tested in vitro and in 127 1.0 vivo. Macromolecular Research, 2015, 23, 924-936. Leaf-inspired artificial microvascular networks (LIAMN) for three-dimensional cell culture. RSC 128 1.7 12 Advances, 2015, 5, 90596-90601. Cells and stimuli in small-caliber blood vessel tissue engineering. Regenerative Medicine, 2015, 10, 129 505-527.

#	Article	IF	Citations
130	Medical, Dental, and Pharmaceutical Applications. , 2015, , 291-405.		5
131	A new tissue-engineered biodegradable surgical patch for high-pressure systems. Interactive Cardiovascular and Thoracic Surgery, 2015, 20, 768-776.	0.5	13
132	Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14452-14459.	3.3	651
133	Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomaterials Science, 2015, 3, 12-24.	2.6	168
134	Tailoring the Foreign Body Response for <i>In Situ</i> Vascular Tissue Engineering. Tissue Engineering - Part C: Methods, 2015, 21, 436-446.	1.1	26
135	A Cautionary Tale for Autologous Vascular Tissue Engineering: Impact of Human Demographics on the Ability of Adipose-Derived Mesenchymal Stem Cells to Recruit and Differentiate into Smooth Muscle Cells. Tissue Engineering - Part A, 2015, 21, 426-437.	1.6	32
136	Heparinized <scp>PLLA/PLCL</scp> nanofibrous scaffold for potential engineering of smallâ€diameter blood vessel: Tunable elasticity and anticoagulation property. Journal of Biomedical Materials Research - Part A, 2015, 103, 1784-1797.	2.1	54
137	Biomaterials in myocardial tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 11-28.	1.3	182
138	Advancing cardiovascular tissue engineering. F1000Research, 2016, 5, 1045.	0.8	19
139	In VivoRemodeling of Fibroblast-Derived Vascular Scaffolds Implanted for 6 Months in Rats. BioMed Research International, 2016, 2016, 1-12.	0.9	5
140	Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials, 2016, 102, 120-129.	5.7	111
141	Human Vascular Microphysiological System for in vitro Drug Screening. Scientific Reports, 2016, 6, 21579.	1.6	78
142	Bioengineered vascular grafts off the shelf. Lancet, The, 2016, 387, 1976-1978.	6.3	7
143	Synthesis and characterization of polycaprolactone urethane hollow fiber membranes as small diameter vascular grafts. Materials Science and Engineering C, 2016, 64, 61-73.	3.8	16
144	Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Engineering - Part C: Methods, 2016, 22, 524-533.	1.1	63
145	Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet, The, 2016, 387, 2026-2034.	6.3	291
146	3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. Journal of Materials Chemistry B, 2016, 4, 7521-7539.	2.9	64
148	Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 5-22.	3.3	17

ARTICLE IF CITATIONS Engineered Tissueâ€"Stent Biocomposites as Tracheal Replacements. Tissue Engineering - Part A, 2016, 22, 149 30 1.6 1086-1097. Promoting Tropoelastin Expression in Arterial and Venous Vascular Smooth Muscle Cells and 1.1 Fibroblasts for Vascular Tissue Engineering. Tissue Engineering - Part C: Methods, 2016, 22, 923-931. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nature 151 5.8 136 Communications, 2016, 7, 12951. Orthogonally Functionalizable Polyurethane with Subsequent Modification with Heparin and Endothelium-Inducing Peptide Aiming for Vascular Reconstruction. ACS Applied Materials & amp; Interfaces, 2016, 8, 14442-14452. Decellularized tissues and organs: an historical perspective and prospects for the future. Biomedical 154 1.7 15 Materials (Bristol), 2016, 11, 020201. Mechanocompatible Polymerâ€Extracellularâ€Matrix Composites for Vascular Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1594-1605. 156 Regenerative Implants for Cardiovascular Tissue Engineering., 2016, , 39-64. 1 Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. 1.4 20 Expert Opinion on Biological Therapy, 2016, 16, 317-330. Long-Term Functional Efficacy of a Novel Electrospun Poly(Glycerol Sebacate)-Based Arterial Graft in 158 1.3 71 Mice. Annals of Biomedical Engineering, 2016, 44, 2402-2416. 159 Editorial: Tissue engineering of the heart. Advanced Drug Delivery Reviews, 2016, 96, 1-2. 6.6 Non-invasive and Non-destructive Characterization of Tissue Engineered Constructs Using 160 1.3 31 Ultrasound Imaging Technologies: A Review. Annals of Biomedical Engineering, 2016, 44, 621-635. Cardiovascular Tissue Engineering: Preclinical Validation to Bedside Application. Physiology, 2016, 31, 1.6 7-15. Successful endothelialization and remodeling of a cell-free small-diameter arterial graft in a large 162 5.7 129 animal model. Biomaterials, 2016, 76, 344-358. Development and evaluation of inÂvivo tissue engineered blood vessels in a porcine model. 5.7 Biomaterials, 2016, 75, 82-90. The Tissue-Engineered Vascular Graftâ€"Past, Present, and Future. Tissue Engineering - Part B: Reviews, 164 2.5576 2016, 22, 68-100. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical 1.9 application. Methods, 2016, 99, 13-19, Stem cells for tissue engineered vascular bypass grafts. Artificial Cells, Nanomedicine and 166 1.9 9 Biotechnology, 2017, 45, 999-1010. Decellularized biological matrices: an interesting approach for cardiovascular tissue repair and 1.3 regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1648-1657.

	CITATION	Report	
#	Article	IF	CITATIONS
168	Microstructured human fibroblast-derived extracellular matrix scaffold for vascular media fabrication. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2479-2489.	1.3	7
169	End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomaterialia, 2017, 51, 138-147.	4.1	79
170	Cell-free vascular grafts: Recent developments and clinical potential. Technology, 2017, 05, 13-20.	1.4	18
171	Preparation and characterization of small-diameter decellularized scaffolds for vascular tissue engineering in an animal model. BioMedical Engineering OnLine, 2017, 16, 55.	1.3	33
172	A short discourse on vascular tissue engineering. Npj Regenerative Medicine, 2017, 2, .	2.5	116
173	Tissue engineered vascular grafts: current state of the field. Expert Review of Medical Devices, 2017, 14, 383-392.	1.4	61
174	Biomaterial-driven in situ cardiovascular tissue engineering—a multi-disciplinary perspective. Npj Regenerative Medicine, 2017, 2, 18.	2.5	181
175	3D-printed vascular networks direct therapeutic angiogenesis in ischaemia. Nature Biomedical Engineering, 2017, 1, .	11.6	118
176	Implanted scaffolds: Pre-ordered vessels halt ischaemia. Nature Biomedical Engineering, 2017, 1, .	11.6	1
177	Compositions Including Synthetic and Natural Blends for Integration and Structural Integrity: Engineered for Different Vascular Graft Applications. Advanced Healthcare Materials, 2017, 6, 1700001.	3.9	25
178	Combining Electrospun Fiber Mats and Bioactive Coatings for Vascular Graft Prostheses. Biomacromolecules, 2017, 18, 303-310.	2.6	29
179	A completely biological "off-the-shelf―arteriovenous graft that recellularizes in baboons. Science Translational Medicine, 2017, 9, .	5.8	120
180	Netrinâ€l Promotes Inflammation Resolution to Achieve Endothelialization of Smallâ€Diameter Tissue Engineering Blood Vessels by Improving Endothelial Progenitor Cells Function In Situ. Advanced Science, 2017, 4, 1700278.	5.6	26
181	Vascular scaffolds with enhanced antioxidant activity inhibit graft calcification. Biomaterials, 2017, 144, 166-175.	5.7	41
182	Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models. Tissue Engineering - Part C: Methods, 2017, 23, 728-735.	1,1	24
183	Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method. Journal of Visualized Experiments, 2017, , .	0.2	4
184	Special Issue on Tissue Engineering. ACS Biomaterials Science and Engineering, 2017, 3, 1880-1883.	2.6	4
185	Vascular smooth muscle cells derived from inbred swine induced pluripotent stem cells for vascular tissue engineering. Biomaterials, 2017, 147, 116-132.	5.7	38

# 186	ARTICLE Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2026-2037.	IF 1.1	Citations
187	Tissue-engineered vascular grafts for congenital cardiac disease: Clinical experience and current status. Trends in Cardiovascular Medicine, 2017, 27, 521-531.	2.3	53
188	In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development. Journal of Cardiovascular Translational Research, 2017, 10, 480-488.	1.1	23
189	Arterial graft with elastic layer structure grown from cells. Scientific Reports, 2017, 7, 140.	1.6	31
190	Cellular Self-Assembly with Microsphere Incorporation for Growth Factor Delivery Within Engineered Vascular Tissue Rings. Tissue Engineering - Part A, 2017, 23, 143-155.	1.6	24
191	CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammationâ€Resistant Tissues. Arthritis and Rheumatology, 2017, 69, 1111-1121.	2.9	61
192	Building a bioartificial heart: A 3-song saga. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 744-747.	0.4	0
193	Collagen and Elastin Biomaterials for the Fabrication of Engineered Living Tissues. ACS Biomaterials Science and Engineering, 2017, 3, 694-711.	2.6	137
194	Bioengineered hemodialysis access grafts. Journal of Vascular Access, 2017, 18, S56-S63.	0.5	11
195	Vascular Mechanobiology: Towards Control of In Situ Regeneration. Cells, 2017, 6, 19.	1.8	42
196	Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers. International Journal of Biomaterials, 2017, 2017, 1-10.	1.1	21
197	Animal models of cardiovascular disease as test beds of bioengineered vascular grafts. Drug Discovery Today: Disease Models, 2017, 24, 37-45.	1.2	7
198	6.14 Cardiovascular Tissue Engineering â~†. , 2017, , 236-255.		1
199	Hemocompatible tissue-engineered vascular grafts using adult mesenchymal stem cells. Current Opinion in Biomedical Engineering, 2018, 5, 66-73.	1.8	7
200	Development and characterisation of a large diameter decellularised vascular allograft. Cell and Tissue Banking, 2018, 19, 287-300.	0.5	10
201	Tissue engineering: Still facing a long way ahead. Journal of Controlled Release, 2018, 279, 181-197.	4.8	34
202	Viscoelastic properties of multi-layered cellularized vascular tissues fabricated from collagen gel. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80, 155-163.	1.5	13
203	Tissue-Engineered Heart Valves: A Call for Mechanistic Studies. Tissue Engineering - Part B: Reviews, 2018, 24, 240-253.	2.5	41

		CITATION RE	PORT	
#	Article		IF	CITATIONS
204	3D Bioprinting in Nipple-Areola Complex Reconstruction. , 2018, , 587-606.			1
205	<i>In vitro</i> physical and biological characterization of biodegradable elastic polyureth containing ferulic acid for small-caliber vascular grafts. Biomedical Materials (Bristol), 20 035007.	ane 18, 13,	1.7	24
207	Fabrication and characterization of electrospun polycaprolactone and gelatin composite tissue engineered blood vessels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 817-826.	cuffs for 1	1.6	28
208	Review: bioreactor design towards generation of relevant engineered tissues: focus on cl translation. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e7-e22.	inical	1.3	45
209	Historical Perspective and Future Direction of Blood Vessel Developments. Cold Spring H Perspectives in Medicine, 2018, 8, a025742.	larbor	2.9	47
210	Susceptibility of ePTFE vascular grafts and bioengineered human acellular vessels to infer Journal of Surgical Research, 2018, 221, 143-151.	ction.	0.8	31
211	Review of Vascular Graft Studies in Large Animal Models. Tissue Engineering - Part B: Rev 133-143.	iews, 2018, 24,	2.5	60
212	Disruptive technological advances in vascular access for dialysis: an overview. Pediatric N 2018, 33, 2221-2226.	lephrology,	0.9	4
213	Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinic Clinical Studies. Stem Cells, 2018, 36, 161-171.	al and	1.4	154
214	iPSCs-based generation of vascular cells: reprogramming approaches and applications. C Molecular Life Sciences, 2018, 75, 1411-1433.	ellular and	2.4	52
215	Biomaterials and heart recovery: cardiac repair, regeneration and healing in the MCS era: the "heart― Journal of Thoracic Disease, 2018, 10, S2346-S2362.	a state of	0.6	18
216	Enhanced Collagen Production from Human Dermal Fibroblasts on Poly(glycerol) Tj ETQo	q1 1 0.784314 rgBT /Ove	rlock 10 T	f 50 302 Td
217	Tissue engineered vascular grafts for pediatric cardiac surgery. Translational Pediatrics, 2 188-195.	018, 7,	0.5	25
218	Targeted Delivery of Bioactive Molecules for Vascular Intervention and Tissue Engineering in Pharmacology, 2018, 9, 1329.	g. Frontiers	1.6	19
219	Tissue engineering strategies for the induction of angiogenesis using biomaterials. Journ Biological Engineering, 2018, 12, 36.	al of	2.0	91
220	Systematic in vitro comparison of decellularization protocols for blood vessels. PLoS ON e0209269.	E, 2018, 13,	1.1	73
221	Development of long in vivo tissue-engineered "Biotube―vascular grafts. Biomateria 232-239.	als, 2018, 185,	5.7	34
222	Enhancement of synthesis of extracellular matrix proteins on retinoic acid loaded electro scaffolds. Journal of Materials Chemistry B, 2018, 6, 6468-6480.	spun	2.9	7

#	Article	IF	CITATIONS
223	Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials, 2018, 183, 306-318.	5.7	84
224	Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules, 2018, 19, 3597-3611.	2.6	39
225	Engineering Vessels as Good as New?. JACC Basic To Translational Science, 2018, 3, 119-121.	1.9	7
226	Recellularization of Decellularized Venous Grafts Using Peripheral Blood: A Critical Evaluation. EBioMedicine, 2018, 32, 215-222.	2.7	15
227	Accurate and continuous ultrasonography evaluation of small diameter vascular prostheses inÃ ⁻ ¿½ vivo. Experimental and Therapeutic Medicine, 2018, 15, 3899-3907.	0.8	2
228	Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Reviews and Reports, 2018, 14, 642-667.	5.6	34
229	In Vivo Performance of Decellularized Vascular Grafts: A Review Article. International Journal of Molecular Sciences, 2018, 19, 2101.	1.8	97
230	An exploratory study on the preparation and evaluation of a "same-day―adipose stem cell–based tissue-engineered vascular graft. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1814-1822.e3.	0.4	18
231	Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells International, 2018, 2018, 1-24.	1.2	246
232	Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration. Frontiers in Cardiovascular Medicine, 2018, 5, 86.	1.1	40
233	Improving Surgical Methods for Studying Vascular Grafts in Animal Models. Tissue Engineering - Part C: Methods, 2018, 24, 457-464.	1.1	16
234	Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 2018, 8, 15.	1.4	94
235	Vascularization of Natural and Synthetic Bone Scaffolds. Cell Transplantation, 2018, 27, 1269-1280.	1.2	36
236	Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts. Frontiers in Bioengineering and Biotechnology, 2018, 6, 41.	2.0	150
237	A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomaterialia, 2018, 74, 90-111.	4.1	168
238	Tissue Engineering at the Bloodâ€Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development. Advanced Healthcare Materials, 2018, 7, e1701461.	3.9	178
239	Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials, 2018, 173, 71-86.	5.7	69
240	Rapid Endothelialization of Off-the-Shelf Small Diameter Silk Vascular Grafts. JACC Basic To Translational Science, 2018, 3, 38-53.	1.9	51

#	Article	IF	CITATIONS
241	Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Advanced Drug Delivery Reviews, 2019, 149-150, 95-106.	6.6	52
242	Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Advanced Healthcare Materials, 2019, 8, e1900742.	3.9	70
243	Nanofibrous vascular scaffold prepared from miscible polymer blend with heparin/stromal cell-derived factor-1 alpha for enhancing anticoagulation and endothelialization. Colloids and Surfaces B: Biointerfaces, 2019, 181, 963-972.	2.5	25
244	Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts. Tissue and Cell, 2019, 60, 25-32.	1.0	11
245	Major Histocompatibility Complex–Matched Arteries Have Similar Patency to Autologous Arteries in a Mauritian Cynomolgus Macaque Major Histocompatibility Complex–Defined Transplant Model. Journal of the American Heart Association, 2019, 8, e012135.	1.6	7
246	Comparison of the impact of preservation methods on amniotic membrane properties for tissue engineering applications. Materials Science and Engineering C, 2019, 104, 109903.	3.8	33
247	<p>Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-Îμ-caprolactone)/silk fibroin in vitro and in vivo</p> . International Journal of Nanomedicine, 2019, Volume 14, 4261-4276.	3.3	37
248	Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Applied Physics Reviews, 2019, 6, .	5.5	92
249	Application of Human Induced Pluripotent Stem Cells in Generating Tissue-Engineered Blood Vessels as Vascular Grafts. Stem Cells and Development, 2019, 28, 1581-1594.	1.1	13
250	Remodeling of a Cell-Free Vascular Graft with Nanolamellar Intima into a Neovessel. ACS Nano, 2019, 13, 10576-10586.	7.3	34
251	Subcutaneously engineered autologous extracellular matrix scaffolds with aligned microchannels for enhanced tendon regeneration. Biomaterials, 2019, 224, 119488.	5.7	26
252	Biomaterials for tissue repair. Science, 2019, 363, 340-341.	6.0	123
253	Evaluation of an elastic decellularized tendonâ€derived scaffold for the vascular tissue engineering application. Journal of Biomedical Materials Research - Part A, 2019, 107, 1225-1234.	2.1	22
254	Scaffolds for corneal tissue engineering. , 2019, , 649-672.		2
255	Decellularized porcine coronary artery with adipose stem cells for vascular tissue engineering. Biomedical Materials (Bristol), 2019, 14, 045014.	1.7	15
256	Autologous endothelialized vein allografts in coronary artery bypass surgery – Long term results. Biomaterials, 2019, 212, 87-97.	5.7	19
257	Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. Tissue Engineering - Part B: Reviews, 2019, 25, 259-290.	2.5	20
258	Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Science Translational Medicine, 2019, 11, .	5.8	145

#	Article	IF	CITATIONS
259	The biophysics and mechanics of blood from a materials perspective. Nature Reviews Materials, 2019, 4, 294-311.	23.3	61
260	Carboxymethyl kappa carrageenanâ€modified decellularized smallâ€diameter vascular grafts improving thromboresistance properties. Journal of Biomedical Materials Research - Part A, 2019, 107, 1690-1701.	2.1	14
261	Concise Review: Patency of Small-Diameter Tissue-Engineered Vascular Grafts: A Meta-Analysis of Preclinical Trials. Stem Cells Translational Medicine, 2019, 8, 671-680.	1.6	51
262	Chasing the Paradigm: Clinical Translation of 25 Years of Tissue Engineering. Tissue Engineering - Part A, 2019, 25, 679-687.	1.6	77
263	Emergence of Three Dimensional Printed Cardiac Tissue: Opportunities and Challenges in Cardiovascular Diseases. Current Cardiology Reviews, 2019, 15, 188-204.	0.6	8
264	Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink. Journal of Materials Science: Materials in Medicine, 2019, 30, 8.	1.7	41
265	Formation of Neoarteries with Optimal Remodeling Using Rapidly Degrading Textile Vascular Grafts. Tissue Engineering - Part A, 2019, 25, 632-641.	1.6	13
266	Three-year efficacy and patency follow-up of decellularized human internal mammary artery as a novel vascular graft in animal models. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1494-1502.	0.4	17
267	Regeneration of a neoartery through a completely autologous acellular conduit in a minipig model: a pilot study. Journal of Translational Medicine, 2019, 17, 24.	1.8	7
268	Cell Seeding on UVâ€Câ€Treated 3D Polymeric Templates Allows for Costâ€Effective Production of Smallâ€Caliber Tissueâ€Engineered Blood Vessels. Biotechnology Journal, 2019, 14, e1800306.	1.8	10
269	Design, Preparation, and Performance of a Novel Bilayer Tissueâ€Engineered Smallâ€Diameter Vascular Graft. Macromolecular Bioscience, 2019, 19, e1800189.	2.1	27
270	In vitro construction of artificial blood vessels using spider silk as a supporting matrix. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 101, 103436.	1.5	23
271	Hypothermic and cryogenic preservation of tissueâ€engineered human bone. Annals of the New York Academy of Sciences, 2020, 1460, 77-87.	1.8	10
272	Strategies in cellâ€free tissueâ€engineered vascular grafts. Journal of Biomedical Materials Research - Part A, 2020, 108, 426-445.	2.1	32
273	Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 203-214.	1.3	25
274	Commentary: Hybrid graft to the rescue of the bilateral internal thoracic artery debate—Is it time for new technology or new techniques?. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 474-475.	0.4	0
275	Long-term nitric oxide release for rapid endothelialization in expanded polytetrafluoroethylene small-diameter artificial blood vessel grafts. Applied Surface Science, 2020, 507, 145028.	3.1	34
276	The History of Engineered Tracheal Replacements: Interpreting the Past and Guiding the Future. Tissue Engineering - Part B: Reviews, 2021, 27, 341-352.	2.5	19

	CITATION	Report	
# 277	ARTICLE Riboflavin-mediated photooxidation to improve the characteristics of decellularized human arterial	IF 4.1	CITATIONS
278	Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 159.	1.1	19
279	Bioengineered human blood vessels. Science, 2020, 370, .	6.0	120
280	Engineered biomaterials for heart disease. Current Opinion in Biotechnology, 2020, 66, 246-254.	3.3	21
281	Electronic Blood Vessel. Matter, 2020, 3, 1664-1684.	5.0	58
282	3D Bioprinting-Tunable Small-Diameter Blood Vessels with Biomimetic Biphasic Cell Layers. ACS Applied Materials & Interfaces, 2020, 12, 45904-45915.	4.0	70
283	Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials, 2020, 257, 120251.	5.7	39
284	Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials, 2020, 257, 120226.	5.7	48
285	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. Biomacromolecules, 2020, 21, 3582-3595.	2.6	17
286	Extracellular Matrix for Small-Diameter Vascular Grafts. Tissue Engineering - Part A, 2020, 26, 1388-1401.	1.6	11
287	<p>Preparation of PU/Fibrin Vascular Scaffold with Good Biomechanical Properties and Evaluation of Its Performance in vitro and in vivo</p> . International Journal of Nanomedicine, 2020, Volume 15, 8697-8715.	3.3	20
288	Aortic "Disease-in-a-Dish― Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Frontiers in Cell and Developmental Biology, 2020, 8, 550504.	1.8	13
289	Tissue engineering: from the bedside to the bench and back to the bedside. Pediatric Surgery International, 2020, 36, 1123-1133.	0.6	11
290	Cellâ€Free Vascular Grafts That Grow with the Host. Advanced Functional Materials, 2020, 30, 2005769.	7.8	14
291	Advances in Cell Seeding of Tissue Engineered Vascular Grafts. , 2020, , 295-319.		0
292	Vascular Tissue Engineering: Pathological Considerations, Mechanisms, and Translational Implications. , 2020, , 95-134.		2
293	Challenges and novel therapies for vascular access in haemodialysis. Nature Reviews Nephrology, 2020, 16, 586-602.	4.1	54
294	Electrospun biomimetic polymer nanofibers as vascular grafts. Material Design and Processing Communications, 2021, 3, e203.	0.5	6

#	Article	IF	CITATIONS
295	Tissueâ€engineered vessel derived from human fibroblasts with an electrospun scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1652-1660.	1.3	4
296	Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovascular Engineering and Technology, 2020, 11, 495-521.	0.7	57
297	Effectiveness of distal arterial bypass with porcine decellularized vascular graft for treating diabetic lower limb ischemia. International Journal of Artificial Organs, 2021, 44, 580-586.	0.7	4
298	Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering, 2020, 7, 160.	1.6	59
299	Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch. Biomedical Materials (Bristol), 2020, 15, 055006.	1.7	8
300	Decellularized human umbilical artery: Biocompatibility and in vivo functionality in sheep carotid bypass model. Materials Science and Engineering C, 2020, 112, 110955.	3.8	6
301	Expanded Poly(tetrafluoroethylene) Blood Vessel Grafts with Embedded Reactive Oxygen Species (ROS)-Responsive Antithrombogenic Drug for Elimination of Thrombosis. ACS Applied Materials & Interfaces, 2020, 12, 29844-29853.	4.0	9
302	Bioinspired Vascular Grafts. , 2020, , 1-20.		0
303	Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 999-1023.	1.9	23
304	Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease. Journal of Vascular Surgery, 2020, 72, 1247-1258.	0.6	59
305	Comparative Studies of Fibrin-Based Engineered Vascular Tissues and Notch Signaling from Progenitor Cells. ACS Biomaterials Science and Engineering, 2020, 6, 2696-2706.	2.6	6
306	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	5.8	81
307	Histology and Mechanics of InÂVivo Tissue-Engineered Vascular Graft for Children. Annals of Thoracic Surgery, 2020, 110, 1050-1054.	0.7	11
308	Bioprinting small diameter blood vessel constructs with an endothelial and smooth muscle cell bilayer in a single step. Biofabrication, 2020, 12, 045012.	3.7	73
309	Engineering anisotropic 3D tubular tissues with flexible thermoresponsive nanofabricated substrates. Biomaterials, 2020, 240, 119856.	5.7	28
310	Complicity of degradable polymers in health-care applications. Materials Today Chemistry, 2020, 16, 100236.	1.7	38
311	Tissue-Engineered Vascular Grafts with Advanced Mechanical Strength from Human iPSCs. Cell Stem Cell, 2020, 26, 251-261.e8.	5.2	96
312	Human textiles: A cell-synthesized yarn as a truly "bio―material for tissue engineering applications. Acta Biomaterialia, 2020, 105, 111-120.	4.1	36

#	Article	IF	CITATIONS
313	Evaluation of 1â€mmâ€diameter endothelialized dense collagen tubes in vascular microsurgery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2441-2449.	1.6	9
314	Biodegradable polymers. , 2020, , 317-342.		5
315	Modification of decellularized vascular xenografts with 8â€arm polyethylene glycol suppresses macrophage infiltration but maintains graft degradability. Journal of Biomedical Materials Research - Part A, 2020, 108, 2005-2014.	2.1	11
316	Glycocalyxâ€Like Hydrogel Coatings for Small Diameter Vascular Grafts. Advanced Functional Materials, 2020, 30, 1908963.	7.8	33
317	Vascular Tissue Engineering: Advanced Techniques and Gene Editing in Stem Cells for Graft Generation. Tissue Engineering - Part B: Reviews, 2021, 27, 14-28.	2.5	17
318	Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomaterialia, 2021, 119, 155-168.	4.1	11
319	Efficient Differentiation of Human Induced Pluripotent Stem Cells into Endothelial Cells under Xenogeneic-free Conditions for Vascular Tissue Engineering. Acta Biomaterialia, 2021, 119, 184-196.	4.1	22
320	Cellular remodeling of fibrotic conduit as vascular graft. Biomaterials, 2021, 268, 120565.	5.7	16
321	Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Reviews and Reports, 2021, 17, 862-877.	1.7	9
322	Engineering of the Bladder and Urethra. , 2021, , 1-26.		0
322 323	Engineering of the Bladder and Urethra. , 2021, , 1-26. Midterm results of pulmonary artery plasty with <i>in vivo</i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959.	0.5	0
322 323 324	Engineering of the Bladder and Urethra. , 2021, , 1-26. Midterm results of pulmonary artery plasty with <i>in vivo</i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130.	0.5 0.8	0 4 3
322 323 324 326	Engineering of the Bladder and Urethra., 2021, , 1-26. Midterm results of pulmonary artery plasty with <i>in vivo </i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, .	0.5 0.8 3.7	0 4 3 22
322 323 324 326 327	Engineering of the Bladder and Urethra., 2021, , 1-26. Midterm results of pulmonary artery plasty with <i>in vivo</i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, . A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes, 2021, 9, 474.	0.5 0.8 3.7 1.3	0 4 3 22 10
322 323 324 326 327 328	Engineering of the Bladder and Urethra. , 2021, , 1-26. Midterm results of pulmonary artery plasty with <i>in vivo </i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, . A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes, 2021, 9, 474. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration. PLoS ONE, 2021, 16, e0248346.	0.5 0.8 3.7 1.3 1.1	0 4 3 22 10 7
 322 323 324 326 327 328 329 	Engineering of the Bladder and Urethra., 2021,, 1-26. Midterm results of pulmonary artery plasty with <i>in vivo</i> tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, . A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes, 2021, 9, 474. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration. PLoS ONE, 2021, 16, e0248346. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells, 2021, 10, 713.	0.5 0.8 3.7 1.3 1.1 1.1	0 4 3 22 10 7 37
 322 323 324 326 327 328 329 330 	Engineering of the Bladder and Urethra., 2021, ,1-26. Midterm results of pulmonary artery plasty with <i>> in vivo</i> > tissue-engineered vascular grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 956-959. Small diameter polycaprolactone vascular grafts are patent in sheep carotid bypass but require antithrombotic therapy. Regenerative Medicine, 2021, 16, 117-130. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. Cyborg and Bionic Systems, 2021, 2021, . A Novel Bioreactor for the Mechanical Stimulation of Clinically Relevant Scaffolds for Muscle Tissue Engineering Purposes. Processes, 2021, 9, 474. Modifications of the mechanical properties of in vivo tissue-engineered vascular grafts by chemical treatments for a short duration. PLoS ONE, 2021, 16, e0248346. Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells, 2021, 10, 713. Standardized User-Independent Confocal Microscopy Image Acquisition and Analysis for Thickness Measurements of Microscale Collagen Scaffolds. Microscopy and Microanalysis, 2021, 27, 543-548.	0.5 0.8 3.7 1.3 1.1 1.8 0.2	0 4 3 22 10 7 37 0

#	Article	IF	CITATIONS
332	Biofabrication of tissue engineering vascular systems. APL Bioengineering, 2021, 5, 021507.	3.3	19
333	Tissueâ€Engineered Vascular Grafts: Emerging Trends and Technologies. Advanced Functional Materials, 2021, 31, 2100027.	7.8	54
334	The performance of heparin modified poly(εâ€caprolactone) small diameter tissue engineering vascular graft in canine—A longâ€term pilot experiment in vivo. Journal of Biomedical Materials Research - Part A, 2021, 109, 2493-2505.	2.1	6
335	Biomimetic tubular scaffold with heparin conjugation for rapid degradation in in situ regeneration of a small diameter neoartery. Biomaterials, 2021, 274, 120874.	5.7	6
336	Coatings in Decellularized Vascular Scaffolds for the Establishment of a Functional Endothelium: A Scoping Review of Vascular Graft Refinement. Frontiers in Cardiovascular Medicine, 2021, 8, 677588.	1.1	9
337	Evaluation of the probe burst test as a measure of strength for a biologically-engineered vascular graft. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104527.	1.5	2
338	Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 633-664.	2.5	44
339	Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. Npj Regenerative Medicine, 2021, 6, 46.	2.5	24
340	3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Hostâ€Toâ€Implant Perfusion. Advanced Materials, 2021, 33, e2102661.	11.1	65
341	Biomimetic Elastin Fiber Patch in Rat Aorta Angioplasty. ACS Omega, 2021, 6, 26715-26721.	1.6	7
342	Tissue-Engineered Vascular Graft with Co-Culture of Smooth Muscle Cells and Human Endothelial Vein Cells on an Electrospun Poly(lactic-co-glycolic acid) Microtube Array Membrane. Membranes, 2021, 11, 732.	1.4	7
343	End-Point Immobilization of Heparin on Electrospun Polycarbonate-Urethane Vascular Graft. Methods in Molecular Biology, 2022, 2375, 47-59.	0.4	2
344	Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering – Do patient characteristics warrant precision engineering?. Advanced Drug Delivery Reviews, 2021, 178, 113960.	6.6	29
345	Stem cells, tissue engineering, and regenerative medicine. , 2022, , 389-409.		2
346	Considerations for Conduit Repair of Vascular Injury. , 2022, , 300-311.		0
347	Bioinspired Vascular Grafts. Reference Series in Biomedical Engineering, 2021, , 3-22.	0.1	0
348	Engineering of the Bladder and Urethra. Reference Series in Biomedical Engineering, 2021, , 259-284.	0.1	0
349	Cell-assembled extracellular matrix (CAM) sheet production: Translation from using human to large animal cells. Journal of Tissue Engineering, 2021, 12, 204173142097832.	2.3	9

#	Article	IF	CITATIONS
350	Elastin in Vascular Grafts. , 2019, , 1-32.		3
351	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 1-50.		1
352	Nanofiber composites in vascular tissue engineering. , 2017, , 455-481.		13
353	Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. Journal of Materials Chemistry B, 2020, 8, 1801-1822.	2.9	90
354	Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. Progress in Biomedical Engineering, 2020, 2, 042003.	2.8	11
355	Strategies toward Engineering Vascularized Bone Graft Substitutes. , 0, , 299-332.		1
356	Induced pluripotent stem cell-derived vascular smooth muscle cells. Vascular Biology (Bristol,) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 502

357	Animal Models for Studying Pathophysiology of Hemodialysis Access. The Open Urology & Nephrology Journal, 2014, 7, 14-21.	0.2	15
358	Vascular repair and regeneration in cardiometabolic diseases. European Heart Journal, 2022, 43, 450-459.	1.0	8
359	Pharmacological manipulation of macrophage autophagy effectively rejuvenates the regenerative potential of biodegrading vascular graft in aging body. Bioactive Materials, 2022, 11, 283-299.	8.6	11
360	Extracellular Matrix-Based Biomaterials for Cardiovascular Tissue Engineering. Journal of Cardiovascular Development and Disease, 2021, 8, 137.	0.8	27
361	Surgical management of an infected external iliac artery interposition graft with a bioengineered human acellular vessel. Journal of Vascular Surgery Cases and Innovative Techniques, 2022, 8, 111-114.	0.3	3
362	Formidable Challenges in the Search for Biomarkers of Psychiatric Disorders. Journal of Tissue Science & Engineering, 2011, 02, .	0.2	0
363	Use of Large Animal and Nonhuman Primate Models for Cell Therapy and Tissue Engineering. , 2011, , 393-413.		0
365	Vascular Stem Cell Therapy. Cell Engineering, 2014, , 49-69.	0.4	0
366	Current Status of Cardiovascular Tissue Engineering. International Journal of Clinical Therapeutics and Diagnosis, 0, , 1-10.	0.0	0
367	Cardiovascular Tissue Engineering: Polymeric Starter Matrices for. , 0, , 1-25.		0
368	Tissue Engineering and Stem Cell Research. , 2017, , 1-15.		0

#	Article	IF	CITATIONS
369	Exotic Arteriovenous Graft Creation. , 2017, , 85-91.		0
370	Vascular Tissue Engineering: Pathological Considerations, Mechanisms, and Translational Implications. , 2020, , 1-41.		0
371	Off-the-Shelf Tissue-Engineered Vascular Conduits: Clinical Translation. , 2020, , 1-44.		0
372	Preclinical In-Vivo Assessment of Tissue Engineered Vascular Grafts and Selection of Appropriate Animal Models. , 2020, , 1-31.		1
373	Bioengineered Human Acellular Vessels. , 2020, , 1-26.		0
374	Advances in Cell Seeding of Tissue Engineered Vascular Grafts. , 2020, , 1-25.		0
375	In Vivo Tissue-Engineered Vascular Grafts. , 2020, , 1-21.		0
376	Induced pluripotent stem cells for modeling elastin-associated vasculopathy. , 2020, , 221-236.		0
377	Small-Diameter Engineered Arteries: The Gel Approach. , 2020, , 1-12.		1
379	In Vivo Tissue-Engineered Vascular Grafts. , 2020, , 187-206.		0
380	Small-Diameter Engineered Arteries: The Gel Approach. , 2020, , 365-376.		0
381	Recent advances in regenerative medicine. , 2020, , 367-412.		0
382	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 137-186.		2
383	Tissue Engineering and Stem Cell Research. , 2020, , 577-592.		0
384	Off-the-Shelf Tissue-Engineered Vascular Conduits: Clinical Translation. , 2020, , 489-531.		2
385	Preclinical In Vivo Assessment of Tissue Engineered Vascular Grafts and Selection of Appropriate Animal Models. , 2020, , 63-93.		0
386	Graft Materials: Present and Future. , 2020, , 621-651.		0
387	A tissueâ€engineered, decellularized, connective tissue membrane for allogeneic arterial patch implantation. Artificial Organs, 2021, , .	1.0	1

#	Article	IF	CITATIONS
388	Vascular grafts and valves that animate, made from decellularized biologically-engineered tissue tubes. Journal of Cardiovascular Surgery, 2020, 61, 577-585.	0.3	4
389	Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease. Yale Journal of Biology and Medicine, 2012, 85, 229-38.	0.2	22
390	Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomaterialia, 2022, 138, 92-111.	4.1	42
391	Tissue-engineered vascular grafts and regeneration mechanisms. Journal of Molecular and Cellular Cardiology, 2022, 165, 40-53.	0.9	10
392	3D bioprinting of cell-laden constructs for regenerative medicine. Engineered Regeneration, 2021, 2, 195-205.	3.0	20
393	Accelerated tissue regeneration in decellularized vascular grafts with a patterned pore structure. Journal of Materials Chemistry B, 2022, 10, 2544-2550.	2.9	4
394	Five Year Outcomes in Patients with End Stage Renal Disease Who Received a Bioengineered Human Acellular Vessel for Dialysis Access. EJVES Vascular Forum, 2022, 54, 58-63.	0.2	15
395	Klotho functionalization on vascular graft for improved patency and endothelialization. Materials Science and Engineering C, 2022, 133, 112630.	3.8	4
396	Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth. Communications Medicine, 2022, 2, .	1.9	18
397	Advances and applications of biofiber polymer composites in regenerative medicine. , 2022, , 275-314.		2
398	Clinical Research Progress on Establishment and Maturation of Artificial Arteriovenous Fistula. Advances in Clinical Medicine, 2022, 12, 537-544.	0.0	0
399	Direct thrombin inhibitor-bivalirudin improved the hemocompatibility of electrospun polycaprolactone vascular grafts. Composites Part B: Engineering, 2022, 234, 109702.	5.9	8
400	Epigallocatechin gallate facilitates extracellular elastin fiber formation in induced pluripotent stem cell derived vascular smooth muscle cells for tissue engineering. Journal of Molecular and Cellular Cardiology, 2022, 163, 167-174.	0.9	3
401	A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model. Tissue Engineering and Regenerative Medicine, 2022, , 1.	1.6	7
402	Endothelial Progenitor Cell-Based in vitro Pre-Endothelialization of Human Cell-Derived Biomimetic Regenerative Matrices for Next-Generation Transcatheter Heart Valves Applications. Frontiers in Bioengineering and Biotechnology, 2022, 10, 867877.	2.0	5
403	Immunomodulation Strategies for the Successful Regeneration of a Tissueâ€Engineered Vascular Graft. Advanced Healthcare Materials, 2022, 11, e2200045.	3.9	21
404	Readily Available Tissue-Engineered Vascular Grafts Derived From Human Induced Pluripotent Stem Cells. Circulation Research, 2022, 130, 925-927.	2.0	5
405	Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. Science Advances, 2022, 8, eabl3888.	4.7	31

#	Article	IF	CITATIONS
406	Anti-Sca-1 antibody-functionalized vascular grafts improve vascular regeneration via selective capture of endogenous vascular stem/progenitor cells. Bioactive Materials, 2022, 16, 433-450.	8.6	8
407	Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. International Journal of Molecular Sciences, 2021, 22, 13120.	1.8	6
408	Development of alginate-based hydrogels for blood vessel engineering. Materials Science and Engineering C, 2022, 134, 112588.	3.8	15
409	Bioengineering artificial blood vessels from natural materials. Trends in Biotechnology, 2022, 40, 693-707.	4.9	36
410	Immune and Genome Engineering as the Future of Transplantable Tissue. New England Journal of Medicine, 2021, 385, 2451-2462.	13.9	28
411	Current methods for fabricating 3D cardiac engineered constructs. IScience, 2022, 25, 104330.	1.9	4
412	Engineering the multiscale complexity of vascular networks. Nature Reviews Materials, 2022, 7, 702-716.	23.3	61
413	Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. Advanced Materials, 2022, 34, .	11.1	46
414	Biotextile-based scaffolds in tissue engineering. , 2022, , 285-313.		0
415	The Translational Mindset Is Essential for Taking Tissue-Engineered Therapeutics from Lab to Clinic. ACS Biomaterials Science and Engineering, 2022, 8, 4629-4633.	2.6	0
416	Bioengineering Human Tissues and the Future of Vascular Replacement. Circulation Research, 2022, 131, 109-126.	2.0	27
417	Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Reports, 2022, 39, 110981.	2.9	17
418	Molecular Circuit Discovery for Mechanobiology of Cardiovascular Disease. Regenerative Engineering and Translational Medicine, 0, , .	1.6	0
419	The loading of C-type natriuretic peptides improved hemocompatibility and vascular regeneration of electrospun poly(Iµ-caprolactone) grafts. Acta Biomaterialia, 2022, 151, 304-316.	4.1	5
420	Development of a vascular substitute produced by weaving yarn made from human amniotic membrane. Biofabrication, 2022, 14, 045010.	3.7	7
421	Engineered tissue vascular grafts: Are we there yet?. Applications in Engineering Science, 2022, 12, 100114.	0.5	2
422	Monocyte Recruitment for Vascular Tissue Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	4
423	Biological small-calibre tissue engineered blood vessels developed by electrospinning and in-body tissue architecture. Journal of Materials Science: Materials in Medicine, 2022, 33, .	1.7	1

#	Article	IF	CITATIONS
424	The regenerative potential of Pax3/Pax7 on skeletal muscle injury. Journal of Genetic Engineering and Biotechnology, 2022, 20, 143.	1.5	0
425	The Eve of commercialization: Decellularized vascular matrix as small-diameter blood vessel. , 2022, 6, 019-021.		Ο
426	Acellular Vascular Scaffolds Preloaded With Heparin and Hepatocyte Growth Factor for Small-Diameter Vascular Grafts Might Inhibit Intimal Hyperplasia. Cell Transplantation, 2022, 31, 096368972211345.	1.2	2
427	Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers, 2022, 14, 4825.	2.0	16
428	Enhancement of biocompatibility and patency for small-diameter vascular graft derived from polyurethane composite fibers with added tourmaline nanoparticles by electrospinning technology. Journal of Materials Science, 2022, 57, 20702-20715.	1.7	1
429	Endothelialization and smooth muscle cell regeneration capabilities of a bi-layered small diameter vascular graft for blood vessel reconstruction. Materials and Design, 2023, 225, 111488.	3.3	9
430	Densified collagen tubular grafts for human tissue replacement and disease modelling applications. , 2023, 145, 213245.		1
431	Tissue-engineered vascular graft based on a bioresorbable tubular knit scaffold with flexibility, durability, and suture-ability for implantation. Journal of Materials Chemistry B, O, , .	2.9	1
432	Advances in the development of tubular structures using extrusion-based 3D cell-printing technology for vascular tissue regenerative applications. Biomaterials Research, 2022, 26, .	3.2	8
433	Investigation of Cell Adhesion and Cell Viability of the Endothelial and Fibroblast Cells on Electrospun PCL, PLGA and Coaxial Scaffolds for Production of Tissue Engineered Blood Vessel. Journal of Functional Biomaterials, 2022, 13, 282.	1.8	6
434	Six-year outcomes of a phase II study of human-tissue engineered blood vessels for peripheral arterial bypass. JVS Vascular Science, 2023, 4, 100092.	0.4	3
435	Vascular Grafts: Technology Success/Technology Failure. BME Frontiers, 2023, 4, .	2.2	3
436	Mitigating challenges and expanding the future of vascular tissue engineering—are we there yet?. Frontiers in Physiology, 0, 13, .	1.3	15
437	Application of decellularized vascular matrix in small-diameter vascular grafts. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
438	Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back. Arteriosclerosis, Thrombosis, and Vascular Biology, 0, , .	1.1	4
439	Multiscale analysis of human tissue engineered matrices for next generation heart valve applications. Acta Biomaterialia, 2023, 158, 101-114.	4.1	3
440	An Aligned Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Scaffold Fixed with Fibronectin to Enhance the Attachment and Growth of Human Endothelial Progenitor Cells. Biotechnology and Bioprocess Engineering, 2023, 28, 428-438.	1.4	2
441	Advancements in the fabrication technologies and biomaterials for small diameter vascular grafts: A fine-tuning of physicochemical and biological properties. Applied Materials Today, 2023, 31, 101778.	2.3	4

		CITATION R	CITATION REPORT	
#	Article		IF	CITATIONS
442	Evaluation of mechanical properties and biocompatibility of three-layer PCL/PLLA small- vascular graft with pore diameter gradient. European Polymer Journal, 2023, 186, 1118	diameter 364.	2.6	2
443	Construction of Rapid Extracellular Matrix-Deposited Small-Diameter Vascular Grafts In Hypoxia in a Bioreactor. ACS Biomaterials Science and Engineering, 2023, 9, 844-855.	duced by	2.6	3
444	An optical coherence tomography and endothelial shear stress study of a novel bioresc graft. Scientific Reports, 2023, 13, .	rbable bypass	1.6	1
445	Current biofabrication methods for vascular tissue engineering and an introduction to textiles. Biofabrication, 2023, 15, 022004.	biological	3.7	6
446	Bioreactors for engineering patient-specific tissue grafts. , 2023, 1, 361-377.			6
447	First-in-human evaluation of a biological regenerative vascular conduit for hemodialysis Journal of Vascular Access, 0, , 112972982211477.	access.	0.5	1
448	Biomimetic vascular tissue engineering by decellularized scaffold and concurrent cyclic shear stresses. Journal of Materials Science: Materials in Medicine, 2023, 34, .	tensile and	1.7	0
449	Drug loaded implantable devices to treat cardiovascular disease. Expert Opinion on Dru 2023, 20, 507-522.	ıg Delivery,	2.4	5
463	Regeneration of Blood Vessels. , 2023, , 451-495.			0
466	Scaffolds in Vascular Tissue Engineering Research. , 2024, , 119-139.			0