Graphene-based biosensors for detection of bacteria an

Journal of Materials Chemistry 21, 12358

DOI: 10.1039/c1jm11436k

Citation Report

#	Article	IF	Citations
1	Thinning vertical graphenes, tuning electrical response: from semiconducting to metallic. Journal of Materials Chemistry, 2011, 21, 16339.	6.7	23
2	A graphene nanoribbon network and its biosensing application. Nanoscale, 2011, 3, 5156.	2.8	81
3	Single-bacterium resolution biosensors based on pristine graphenes. , 2012, , .		0
4	Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode. Carbon, 2012, 50, 4865-4870.	5.4	214
5	3D Graphene Foam as a Monolithic and Macroporous Carbon Electrode for Electrochemical Sensing. ACS Applied Materials & Electrochemical Sensing.	4.0	292
6	Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Advances, 2012, 2, 4364.	1.7	285
7	Solution-Gated Graphene Field Effect Transistors Integrated in Microfluidic Systems and Used for Flow Velocity Detection. Nano Letters, 2012, 12, 1404-1409.	4.5	121
8	Synthesis of graphene–carbon nanotube hybrid foam and its use as a novel three-dimensional electrode for electrochemical sensing. Journal of Materials Chemistry, 2012, 22, 17044.	6.7	197
9	3D Graphene–Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection. ACS Nano, 2012, 6, 3206-3213.	7.3	1,510
10	Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano, 2012, 6, 2394-2400.	7.3	520
11	Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. Journal of Materials Chemistry, 2012, 22, 10452.	6.7	109
12	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 2012, 48, 10660.	2.2	471
13	Macroporous foam of reduced graphene oxides prepared by lyophilization. Materials Research Bulletin, 2012, 47, 4335-4339.	2.7	18
14	Detection of bacteria with organic electrochemical transistors. Journal of Materials Chemistry, 2012, 22, 22072.	6.7	118
15	Recent advances on synthesis and application of graphene as novel sensing materials in analytical chemistry. Reviews in Analytical Chemistry, 2012, 31, .	1.5	11
16	Emerging (Bio)Sensing Technology for Assessing and Monitoring Freshwater Contamination - Methods and Applications. , 0, , .		1
17	Electrical Probing of Submicroliter Liquid Using Graphene Strip Transistors Built on a Nanopipette. Small, 2012, 8, 43-46.	5.2	38
18	Fabrication of Flexible MoS ₂ Thinâ€Film Transistor Arrays for Practical Gasâ€6ensing Applications. Small, 2012, 8, 2994-2999.	5.2	817

#	ARTICLE	IF	CITATIONS
19	Biological and chemical sensors based on graphene materials. Chemical Society Reviews, 2012, 41, 2283-2307.	18.7	1,591
20	A graphene–cobalt oxide based needle electrode for non-enzymatic glucose detection in micro-droplets. Chemical Communications, 2012, 48, 6490.	2.2	155
21	Graphene-based electronic sensors. Chemical Science, 2012, 3, 1764.	3.7	663
22	The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound. Carbon, 2012, 50, 1517-1522.	5.4	45
23	Nanobiotechnologies for the detection and reduction of pathogens. Enzyme and Microbial Technology, 2012, 50, 87-95.	1.6	64
24	Supercapacitor electrode based on three-dimensional graphene–polyaniline hybrid. Materials Chemistry and Physics, 2012, 134, 576-580.	2.0	125
25	Fabrication of a CuS/graphene nanocomposite modified electrode and its application for electrochemical determination of esculetin. Analytical Methods, 2013, 5, 3992.	1.3	23
26	Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol–Pd nanoparticles. Sensors and Actuators B: Chemical, 2013, 178, 450-457.	4.0	72
27	Electrochemical biosensors on platforms of graphene. Chemical Communications, 2013, 49, 9526.	2.2	152
28	Preservation of Antibody Selectivity on Graphene by Conjugation to a Tripod Monolayer. Angewandte Chemie - International Edition, 2013, 52, 3177-3180.	7.2	40
30	Graphene bioelectronics. Biomedical Engineering Letters, 2013, 3, 201-208.	2.1	19
31	Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy and Environmental Science, 2013, 6, 3483.	15.6	480
32	Bioinspired Layered Nanoclays for Nutraceutical Delivery System. ACS Symposium Series, 2013, , 207-220.	0.5	12
33	Fabrication of capacitive type biosensor based on CVD grown graphene. , $2013, \ldots$		0
34	A graphene oxide–photosensitizer complex as an enzyme-activatable theranostic agent. Chemical Communications, 2013, 49, 1202.	2.2	72
35	Fabrication, Optimization, and Use of Graphene Field Effect Sensors. Analytical Chemistry, 2013, 85, 509-521.	3.2	99
36	Significantly reduced thermal diffusivity of free-standing two-layer graphene in graphene foam. Nanotechnology, 2013, 24, 415706.	1.3	58
37	Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. ACS Nano, 2013, 7, 1281-1290.	7.3	528

#	Article	IF	Citations
38	pH sensing characteristics and biosensing application of solution-gated reduced graphene oxide field-effect transistors. Biosensors and Bioelectronics, 2013, 45, 70-76.	5.3	97
39	Graphene-based materials: Fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Advances in Colloid and Interface Science, 2013, 195-196, 19-40.	7.0	306
40	Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale, 2013, 5, 3620.	2.8	82
41	Graphene-Based Optical and Electrochemical Biosensors: A Review. Analytical Letters, 2013, 46, 1-17.	1.0	76
42	Graphene and Graphene Oxide Materials for Chemo- and Biosensing of Chemical and Biochemical Hazards. Topics in Current Chemistry, 2013, 348, 237-265.	4.0	13
43	Artificial magnetotactic probiotics for in vivo targeting therapy. Journal of Materials Chemistry B, 2013, 1, 1573.	2.9	1
44	The Electrical Detection of Lead Ions Using Goldâ€Nanoparticle―and DNAzymeâ€Functionalized Graphene Device. Advanced Healthcare Materials, 2013, 2, 271-274.	3.9	73
45	Largeâ€Scale Graphene Micropattern Nanoâ€biohybrids: Highâ€Performance Transducers for FETâ€Type Flexible Fluidic HIV Immunoassays. Advanced Materials, 2013, 25, 4177-4185.	11.1	97
46	Graphene Channel Liquid Container Field Effect Transistor as pH Sensor. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	54
47	Pyrene-wired antibodies on highly oriented pyrolytic graphite as a label-free impedance biosensor for the sepsis biomarker procalcitonin. Journal of Solid State Electrochemistry, 2014, 18, 3245-3249.	1.2	11
48	Hybrid Integrated Label-Free Chemical and Biological Sensors. Sensors, 2014, 14, 5890-5928.	2.1	60
49	Nanotechnology for Detection of Waterborne Pathogens. , 2014, , 291-318.		2
50	Current–voltage modeling of graphene-based DNA sensor. Neural Computing and Applications, 2014, 24, 85-89.	3.2	15
51	Advances in nanodiagnostic techniques for microbial agents. Biosensors and Bioelectronics, 2014, 51, 391-400.	5.3	53
52	Solutionâ€Gated Graphene Transistors for Chemical and Biological Sensors. Advanced Healthcare Materials, 2014, 3, 313-331.	3.9	158
53	The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. Journal of Materials Science, 2014, 49, 2802-2809.	1.7	21
54	Advances in nanowire transistors for biological analysis and cellular investigation. Analyst, The, 2014, 139, 1589.	1.7	52
55	25th Anniversary Article: Labelâ€Free Electrical Biodetection Using Carbon Nanostructures. Advanced Materials, 2014, 26, 1154-1175.	11.1	80

#	Article	IF	CITATIONS
56	Fabrication of integrated field-effect transistors and detecting system based on CVD grown graphene. Sensors and Actuators B: Chemical, 2014, 195, 467-472.	4.0	24
57	Analytical prediction of liquid-gated graphene nanoscroll biosensor performance. RSC Advances, 2014, 4, 16153.	1.7	23
58	Electronic Detection of Bacteria Using Holey Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3805-3810.	4.0	53
59	Graphene oxide as a nanocarrier for gramicidin (GOGD) for high antibacterial performance. RSC Advances, 2014, 4, 50035-50046.	1.7	77
60	Graphene Fieldâ€Effect Transistor and Its Application for Electronic Sensing. Small, 2014, 10, 4042-4065.	5.2	184
61	Highâ€Performance Dopamine Sensors Based on Wholeâ€Graphene Solutionâ€Gated Transistors. Advanced Functional Materials, 2014, 24, 978-985.	7.8	139
62	A graphene coated cotton for oil/water separation. Composites Science and Technology, 2014, 102, 100-105.	3.8	87
63	Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014, 43, 7067-7098.	18.7	1,547
64	High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. Journal of Materials Chemistry A, 2014, 2, 4989-4998.	5.2	216
65	Synthesis and antibacterial activities of graphene decorated with stannous dioxide. RSC Advances, 2014, 4, 3708-3717.	1.7	22
66	Graphene based E. coli sensor on flexible acetate sheet. Sensors and Actuators B: Chemical, 2014, 190, 342-347.	4.0	47
68	Nanoelectronics and nanosensors for space exploration. MRS Bulletin, 2015, 40, 822-828.	1.7	24
69	Graphene-Covered Photonic Structures for Optical Chemical Sensing. Physical Review Applied, 2015, 4,	1.5	21
70	Electrical passivation of nonselective bio molecules in carbon nanotubes: Effect of pulse train in serum. Applied Physics Letters, 2015, 106, 263701.	1.5	1
71	Nanomaterialâ€enabled Rapid Detection of Water Contaminants. Small, 2015, 11, 5336-5359.	5.2	108
72	Effects of electron beam induced Redox processes on the electronic transport in graphene field effect transistors. Carbon, 2015, 93, 693-701.	5.4	8
73	A Development of Graphene Based Chemiresistive Sensor: Demonstrations on pH Sensing, and Cell Detection. Advanced Materials Research, 2015, 1103, 137-143.	0.3	0
74	Impact of different nanostructures of a PEDOT decorated 3D multilayered graphene foam by chemical methods on supercapacitive performance. RSC Advances, 2015, 5, 107864-107871.	1.7	17

#	Article	IF	Citations
75	Graphene-Based Glucose Sensors: A Brief Review. IEEE Transactions on Nanobioscience, 2015, 14, 818-834.	2.2	44
76	Highly selective dengue virus detection using carbon nanotubes: Effect of pulse biasing in serum. , 2015, , .		0
77	A graphene-based physiometer array for the analysis of single biological cells. Scientific Reports, 2014, 4, 6865.	1.6	36
78	Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Research Letters, 2015, 10, 23.	3.1	75
79	Palladium nanoparticles deposited on graphene and its electrochemical performance for glucose sensing. Applied Surface Science, 2015, 355, 587-592.	3.1	36
80	Analytical model of graphene-based biosensors for bacteria detection. International Journal of Environmental Analytical Chemistry, 2015, , 1-8.	1.8	3
81	Discontinuity and misorientation of graphene grown on nickel foil: Effect of the substrate crystallographic orientation. Carbon, 2015, 94, 160-173.	5.4	30
82	Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon, 2015, 89, 328-339.	5.4	132
83	Fabrication of graphene FETs combined with fluorescence and its Double Read-Out System. Sensors and Actuators B: Chemical, 2015, 214, 204-210.	4.0	10
84	Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 2015, 44, 5861-5896.	18.7	1,236
85	Nanobiosensors and Nanobioanalyses. , 2015, , .		10
87	Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale, 2015, 7, 7540-7544.	2.8	41
88	Graphene Biotransistor Interfaced with a Nitrifying Biofilm. Environmental Science and Technology Letters, 2015, 2, 118-122.	3.9	6
89	On-surface derivatisation of aromatic molecules on graphene: the importance of packing density. Chemical Communications, 2015, 51, 16778-16781.	2.2	14
90	High-Performance Capacitive Deionization Disinfection of Water with Graphene Oxide- <i>graft</i> -Quaternized Chitosan Nanohybrid Electrode Coating. ACS Nano, 2015, 9, 10142-57.	7.3	95
91	<i>Escherichia coli</i> bacteria detection by using grapheneâ€based biosensor. IET Nanobiotechnology, 2015, 9, 273-279.	1.9	32
92	A promising electrochemical sensing platform based on a graphene nanomaterials for sensitive sulfite determination. , 2015, , .		0
93	Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale, 2015, 7, 15695-15700.	2.8	57

#	Article	IF	CITATIONS
94	Simulation of carrier mobility through Graphene Nanoribbon based DNA sensor. , 2015, , .		1
95	Exploitation of Nanotechnology for the Monitoring of Waterborne Pathogens: State-of-the-Art and Future Research Priorities. Environmental Science & En	4.6	22
96	Graphene electronic sensors – review of recent developments and future challenges. IET Circuits, Devices and Systems, 2015, 9, 446-453.	0.9	51
97	A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors. Nanoscale, 2015, 7, 1290-1295.	2.8	56
99	Graphene oxide: from fundamentals to applications. Journal of Physics Condensed Matter, 2015, 27, 013002.	0.7	113
100	Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A, 2015, 3, 43-59.	5. 2	523
101	Graphene-Based FET Detector forE. coliK12 Real-Time Monitoring and Its Theoretical Analysis. Journal of Sensors, 2016, 2016, 1-9.	0.6	5
102	Recent Trends in Field-Effect Transistors-Based Immunosensors. Chemosensors, 2016, 4, 20.	1.8	78
103	Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria. ACS Nano, 2016, 10, 8403-8412.	7.3	35
104	Chemical and biological sensors based on defect-engineered graphene mesh field-effect transistors. Nano Convergence, 2016, 3, 14.	6.3	14
105	Graphene-Based Materials in Biosensing, Bioimaging, and Therapeutics. Carbon Nanostructures, 2016, , 35-61.	0.1	4
106	Research Update: Nanoscale surface potential analysis of MoS2 field-effect transistors for biomolecular detection using Kelvin probe force microscopy. APL Materials, 2016, 4, .	2.2	7
107	Bioelectronics with two-dimensional materials. Microelectronic Engineering, 2016, 161, 18-35.	1.1	47
108	Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials, 2016, 89, 38-55.	5 . 7	63
109	Graphene Network. , 2016, , 67-88.		0
110	A facile in situ synthesis of highly active and reusable ternary Ag-PPy-GO nanocomposite for catalytic oxidation of hydroquinone in aqueous solution. Journal of Catalysis, 2016, 344, 795-805.	3.1	48
111	Emerging Nanomaterials for Analytical Detection. Comprehensive Analytical Chemistry, 2016, 74, 195-246.	0.7	10
112	Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles. Analytica Chimica Acta, 2016, 933, 196-206.	2.6	5

#	Article	IF	CITATIONS
113	Cultureâ€Independent Rapid Detection Methods for Bacterial Pathogens and Toxins in Food Matrices. Comprehensive Reviews in Food Science and Food Safety, 2016, 15, 183-205.	5.9	210
114	Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection. Materials Research Express, 2016, 3, 076203.	0.8	11
115	Sensing of Biological Contaminants. Comprehensive Analytical Chemistry, 2016, 74, 73-91.	0.7	3
116	Cristae remodeling causes acidification detected by integrated graphene sensor during mitochondrial outer membrane permeabilization. Scientific Reports, 2016, 6, 35907.	1.6	18
117	Sentaurus \hat{A}^{\otimes} based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. Journal of Semiconductors, 2016, 37, 014005.	2.0	1
118	Indirect Coupling between Localized Magnetic Moments in Graphene Nanostructures. , 2016, , 91-108.		0
119	Graphene-Based DNA Sensors. , 2016, , 13-26.		2
120	Graphene Biodevices., 2016,, 57-70.		0
121	<scp>ANFIS</scp> modeling for bacteria detection based on <scp>GNR</scp> biosensor. Journal of Chemical Technology and Biotechnology, 2016, 91, 1728-1736.	1.6	4
122	Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnology Reviews, 2016, 5, .	2.6	26
123	Engineer-able optical properties of trilayer graphene nanoribbon. Physica Scripta, 2016, 91, 035802.	1.2	4
124	Improving charge-sensitive biomolecule sensors with the right choice of electrolyte. Sensors and Actuators B: Chemical, 2016, 230, 281-288.	4.0	4
125	Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites. Biotechnology Advances, 2016, 34, 234-249.	6.0	86
126	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
127	Reversible and Irreversible Responses of Defect-Engineered Graphene-Based Electrolyte-Gated pH Sensors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 834-839.	4.0	45
128	Biofunctionalized carbon nanocomposites: New-generation diagnostic tools. TrAC - Trends in Analytical Chemistry, 2016, 82, 12-21.	5.8	13
129	Applications of graphene in electrochemical sensing and biosensing. TrAC - Trends in Analytical Chemistry, 2016, 76, 1-14.	5.8	189
130	Temperature dependent compressive behavior of graphene mediated three-dimensional cellular assembly. Carbon, 2016, 96, 439-447.	5.4	17

#	Article	IF	Citations
131	Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere, 2016, 143, 85-98.	4.2	170
132	Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosensors and Bioelectronics, 2017, 89, 28-42.	5.3	54
133	Ultrasensitive detection of orthophosphate ions with reduced graphene oxide/ferritin field-effect transistor sensors. Environmental Science: Nano, 2017, 4, 856-863.	2.2	28
134	A new hybrid model to simulate interaction between DNA and carbon nanostructure. , 2017, , .		0
135	Defect-Mediated Molecular Interaction and Charge Transfer in Graphene Mesh–Glucose Sensors. ACS Applied Materials & Defect-Mediated Molecular Interfaces, 2017, 9, 14216-14221.	4.0	25
136	Graphene for amino acid biosensing: Theoretical study of the electronic transport. Applied Surface Science, 2017, 419, 540-545.	3.1	38
137	Graphene-based electronic biosensors. Journal of Materials Research, 2017, 32, 2954-2965.	1.2	24
138	Graphene based biosensors for healthcare. Journal of Materials Research, 2017, 32, 2905-2929.	1.2	45
139	Electrical conductance change of graphene-based devices upon surface modification for detecting botulinum neurotoxin. Japanese Journal of Applied Physics, 2017, 56, 067001.	0.8	3
140	A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sensors and Actuators B: Chemical, 2017, 251, 927-933.	4.0	61
141	A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochimica Acta, 2017, 236, 319-327.	2.6	62
142	Graphene based biosensors—Accelerating medical diagnostics to new-dimensions. Journal of Materials Research, 2017, 32, 2860-2882.	1.2	102
143	Development of Engineered Bacteriophages for <i>Escherichia coli</i> Detection and High-Throughput Antibiotic Resistance Determination. ACS Sensors, 2017, 2, 484-489.	4.0	38
144	Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms. Journal of Materials Chemistry B, 2017, 5, 2459-2467.	2.9	106
145	Computational study of transport properties of graphene upon adsorption of an amino acid: importance of including $\hat{a} \in \$\$ \$\text{NH}_{2}\\$ NH 2 and $\hat{a} \in COOH$ groups. Journal of Computational Electronics, 2017, 16, 127-132.	1.3	11
146	Graphene-interfaced electrical biosensor for label-free and sensitive detection of foodborne pathogenic E. coli O157:H7. Biosensors and Bioelectronics, 2017, 91, 225-231.	5.3	129
147	A Survey of Graphene-Based Field Effect Transistors for Bio-sensing. Springer Series on Chemical Sensors and Biosensors, 2017, , 165-200.	0.5	2
148	Field-Effect Transistor Biosensor for Rapid Detection of Ebola Antigen. Scientific Reports, 2017, 7, 10974.	1.6	112

#	Article	IF	Citations
149	Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews, 2017, 46, 6872-6904.	18.7	316
150	Carbon allotropes as sensors for environmental monitoring. Current Opinion in Electrochemistry, 2017, 3, 106-113.	2.5	48
151	Graphene Fieldâ€Effect Transistors for the Sensitive and Selective Detection of <i>Escherichia coli</i> Using Pyreneâ€Tagged DNA Aptamer. Advanced Healthcare Materials, 2017, 6, 1700736.	3.9	84
152	Measurement on the Thermal Properties of Graphene Powder. International Journal of Thermophysics, 2017, 38, 1.	1.0	3
153	Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta, 2017, 162, 511-522.	2.9	132
154	Nanomaterialsâ€based biosensors for detection of microorganisms and microbial toxins. Biotechnology Journal, 2017, 12, .	1.8	46
155	Applications of graphene in microbial fuel cells: The gap between promise and reality. Renewable and Sustainable Energy Reviews, 2017, 72, 1389-1403.	8.2	148
156	Large scale commercial fabrication of high quality graphene-based assays for biomolecule detection. Sensors and Actuators B: Chemical, 2017, 239, 1261-1267.	4.0	45
157	The Growing Influence of Nanotechnology in Our Lives. , 2017, , 1-20.		5
158	Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. International Journal of Nanomedicine, 2017, Volume 12, 2887-2898.	3.3	35
159	Graphene-based biosensors. Interface Focus, 2018, 8, 20160132.	1.5	110
160	Lipid-Modified Graphene-Transistor Biosensor for Monitoring Amyloid-Î ² Aggregation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12311-12316.	4.0	21
161	All-carbon suspended nanowire sensors as a rapid highly-sensitive label-free chemiresistive biosensing platform. Biosensors and Bioelectronics, 2018, 107, 145-152.	5.3	82
162	Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6055-6072.	4.0	115
163	Differential Stability of Biosensing Proteins on Transferred Mono/Bilayer Graphene. ACS Biomaterials Science and Engineering, 2018, 4, 675-681.	2.6	7
164	Reduced graphene oxide/polyethylenimine based immunosensor for the selective and sensitive electrochemical detection of uropathogenic Escherichia coli. Sensors and Actuators B: Chemical, 2018, 260, 255-263.	4.0	86
165	Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosensors and Bioelectronics, 2018, 105, 173-181.	5.3	69
166	3-Dimensional hollow graphene balls for voltammetric sensing of levodopa in the presence of uric acid. Mikrochimica Acta, 2018, 185, 91.	2.5	22

#	ARTICLE	IF	CITATIONS
167	Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst, The, 2018, 143, 1650-1661.	1.7	37
168	Recent advances in nanowires-based field-effect transistors for biological sensor applications. Biosensors and Bioelectronics, 2018, 100, 312-325.	5. 3	110
169	Emerging biosensor platforms for the assessment of water-borne pathogens. Analyst, The, 2018, 143, 359-373.	1.7	69
170	Conductivity Measurement of Defect Induced Multilayer Graphene for Escherichia coli Detection. , 2018, , .		0
171	Development of Clay Nanoparticles Toward Bio and Medical Applications. , 0, , .		19
172	Recent advances in graphene-based biosensor technology with applications in life sciences. Journal of Nanobiotechnology, 2018, 16, 75.	4.2	343
173	Detection of Peanut Allergen Ara h 6 in Commercially Processed Foods using a Single-Walled Carbon Nanotube–Based Biosensor. Journal of AOAC INTERNATIONAL, 2018, 101, 1558-1565.	0.7	14
174	Minireview: Trends in Optical-Based Biosensors for Point-Of-Care Bacterial Pathogen Detection for Food Safety and Clinical Diagnostics. Analytical Letters, 2018, 51, 2933-2966.	1.0	53
175	Graphene Field-Effect Transistor Sensors. , 2018, , 113-132.		9
176	Mithrene Is a Self-Assembling Robustly Blue Luminescent Metal–Organic Chalcogenolate Assembly for 2D Optoelectronic Applications. ACS Applied Nano Materials, 2018, 1, 3498-3508.	2.4	30
177	Graphene FET Array Biosensor Based on ssDNA Aptamer for Ultrasensitive Hg2+ Detection in Environmental Pollutants. Frontiers in Chemistry, 2018, 6, 333.	1.8	46
178	Magnetic Nanoparticle Encapsulation for the Manipulation of Bacterial Movement and Spontaneous Detection by Reduced Graphene Oxide. Advanced Biology, 2018, 2, 1800095.	3.0	6
179	Electrochemical Biosensors: A Solution to Pollution Detection with Reference to Environmental Contaminants. Biosensors, 2018, 8, 29.	2.3	139
180	Lectin- and Saccharide-Functionalized Nano-Chemiresistor Arrays for Detection and Identification of Pathogenic Bacteria Infection. Biosensors, 2018, 8, 63.	2.3	9
181	Selective Detection of Lysozyme Biomarker Utilizing Large Area Chemical Vapor Deposition-Grown Graphene-Based Field-Effect Transistor. Frontiers in Bioengineering and Biotechnology, 2018, 6, 29.	2.0	36
182	Label-Free Sensors Based on Graphene Field-Effect Transistors for the Detection of Human Chorionic Gonadotropin Cancer Risk Biomarker. Diagnostics, 2018, 8, 5.	1.3	38
183	Electrochemical genosensor based on carboxylated graphene for detection of water-borne pathogen. Sensors and Actuators B: Chemical, 2018, 275, 312-321.	4.0	36
184	Multivalent Interactions between 2D Nanomaterials and Biointerfaces. Advanced Materials, 2018, 30, e1706709.	11.1	112

#	Article	IF	CITATIONS
185	Heterogeneous Integration of 2D Materials and Devices on a Si Platform. , 2019, , 43-84.		5
186	Graphene–Metal Nanoparticles for Enhancing Thermoelectric Power Factor. IEEE Nanotechnology Magazine, 2019, 18, 1114-1118.	1,1	5
188	Ion Sensing With Solution-Gated Graphene Field-Effect Sensors in the Frequency Domain. IEEE Sensors Journal, 2019, 19, 8758-8766.	2.4	2
189	Carbon Nanomaterial-Based Biosensors: A Review of Design and Applications. IEEE Nanotechnology Magazine, 2019, 13, 4-14.	0.9	32
190	A review on exfoliation, characterization, environmental and energy applications of graphene and graphene-based composites. Advances in Colloid and Interface Science, 2019, 273, 102036.	7.0	74
191	Comprehensive Application of Graphene: Emphasis on Biomedical Concerns. Nano-Micro Letters, 2019, 11, 6.	14.4	150
192	Development of an advanced electrochemical biosensing platform for E. coli using hybrid metal-organic framework/polyaniline composite. Environmental Research, 2019, 171, 395-402.	3.7	56
193	Physical Structure and Electrochemical Response of Diamond–Graphite Nanoplatelets: From CVD Synthesis to Label-Free Biosensors. ACS Applied Materials & Diamond†(1978) amp; Interfaces, 2019, 11, 8470-8482.	4.0	16
194	Znâ€incorporation with graphene oxide on Ti substrates surface to improve osteogenic activity and inhibit bacterial adhesion. Journal of Biomedical Materials Research - Part A, 2019, 107, 2310-2326.	2.1	32
195	Fibroin-like Peptides Self-Assembling on Two-Dimensional Materials as a Molecular Scaffold for Potential Biosensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20670-20677.	4.0	28
196	Point-of-care rapid detection of Vibrio parahaemolyticus in seafood using loop-mediated isothermal amplification and graphene-based screen-printed electrochemical sensor. Biosensors and Bioelectronics, 2019, 132, 271-278.	5. 3	91
197	Highly sensitive and selective sulfite sensors based on solution-gated graphene transistors with multi-walled carbon nanotube functionalized gate electrodes. Food Chemistry, 2019, 290, 101-106.	4.2	27
198	Electrochemical Biosensor for Rapid Detection of Viable Bacteria and Antibiotic Screening. Journal of Analysis and Testing, 2019, 3, 117-122.	2.5	13
199	Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem, 2019, 6, 31-59.	1.7	46
200	Carbon-Based Nanosensor Technology. Springer Series on Chemical Sensors and Biosensors, 2019, , .	0.5	3
201	Adsorption of amino acids on graphene: assessment of current force fields. Soft Matter, 2019, 15, 2359-2372.	1.2	24
202	Development of a filtration-based SERS mapping platform for specific screening of Salmonella enterica serovar Enteritidis. Analytical and Bioanalytical Chemistry, 2019, 411, 7899-7906.	1.9	16
203	Chemical sensors for environmental pollutant determination., 2019,, 147-160.		10

#	Article	IF	CITATIONS
204	Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. Bulletin of the Chemical Society of Japan, 2019, 92, 216-244.	2.0	108
205	Carbon Nanomaterial-Based Electrochemical Biosensors for Foodborne Bacterial Detection. Critical Reviews in Analytical Chemistry, 2019, 49, 510-533.	1.8	74
206	The design, fabrication, and applications of flexible biosensing devices. Biosensors and Bioelectronics, 2019, 124-125, 96-114.	5.3	124
207	Engineered nanomaterials (ENMs) and their role at the nexus of Food, Energy, and Water. Materials Science for Energy Technologies, 2019, 2, 29-40.	1.0	44
208	A bio-inspired 3D micro-structure for graphene-based bacteria sensing. Biosensors and Bioelectronics, 2019, 123, 77-84.	5.3	43
209	Nano-carbon based sensors for bacterial detection and discrimination in clinical diagnosis: A junction between material science and biology. Applied Materials Today, 2020, 18, 100467.	2.3	52
210	MoS ₂ /TiO ₂ Hybrid Nanostructureâ€Based Fieldâ€Effect Transistor for Highly Sensitive, Selective, and Rapid Detection of Gramâ€Positive Bacteria. Advanced Materials Technologies, 2020, 5, 1900615.	3.0	36
211	Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors, 2020, , .	1.2	30
212	Electrochemical Aspects for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2020, , 121-149.	0.3	1
213	Green Methods for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2020, , .	0.3	4
214	Improving the neutrality point uniformity for SG-FET-based DNA sensor. Solid-State Electronics, 2020, 167, 107750.	0.8	6
215	Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules. Analyst, The, 2020, 145, 1550-1562.	1.7	53
216	Graphene based sensors. Comprehensive Analytical Chemistry, 2020, , 175-199.	0.7	56
217	Polymer Electrochromism Driven by Metabolic Activity Facilitates Rapid and Facile Bacterial Detection and Susceptibility Evaluation. Advanced Functional Materials, 2020, 30, 2005192.	7.8	17
218	In situ electrochemical exfoliation of embedded graphite to superficial graphene sheets for electroanalytical purposes. Electrochimica Acta, 2020, 354, 136762.	2.6	9
219	Label-free RNA-based electrochemical nanobiosensor for detection of Hepatitis C. Current Research in Biotechnology, 2020, 2, 187-192.	1.9	8
220	Nanoscale characterization of plasma functionalized graphitic flakes using tip-enhanced Raman spectroscopy. Journal of Chemical Physics, 2020, 153, 184708.	1.2	14
222	Advances on the Use of Graphene as a Label for Electrochemical Biosensors. ChemElectroChem, 2020, 7, 4177-4185.	1.7	4

#	ARTICLE	IF	CITATIONS
223	Recent advances in graphene monolayers growth and their biological applications: A review. Advances in Colloid and Interface Science, 2020, 283, 102225.	7.0	20
224	A Wearable and Deformable Graphene-Based Affinity Nanosensor for Monitoring of Cytokines in Biofluids. Nanomaterials, 2020, 10, 1503.	1.9	43
225	Theoretical elucidation of the amino acid interaction with graphene and functionalized graphene nanosheets: insights from DFT calculation and MD simulation. Amino Acids, 2020, 52, 1465-1478.	1.2	22
226	Supported and Suspended 2D Material-Based FET Biosensors. Electrochem, 2020, 1, 260-277.	1.7	15
227	Development of a Graphene-Based Biosensor for Detecting Recombinant Cyanovirin-N. Biosensors, 2020, 10, 206.	2.3	10
229	Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale, 2020, 12, 11364-11394.	2.8	41
230	A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21. Biosensors and Bioelectronics, 2020, 164, 112320.	5.3	41
231	A novel, portable Escherichia coli bacteria sensor using graphene as sensing material. Materials Chemistry and Physics, 2020, 254, 123459.	2.0	6
232	Biomedical properties and applications. , 2020, , 449-483.		0
233	Switchable Graphene-Based Bioelectronics Interfaces. Chemosensors, 2020, 8, 45.	1.8	14
234	Graphene-Based Biosensor for Early Detection of Iron Deficiency. Sensors, 2020, 20, 3688.	2.1	28
235	Graphene grown by chemical vapor deposition on metal foams. AIP Conference Proceedings, 2020, , .	0.3	5
236	Graphene Aerogels for In Situ Synthesis of Conductive Poly(para-phenylenediamine) Polymers, and Their Sensor Application. Micromachines, 2020, 11, 626.	1.4	7
237	Usage of Graphene Oxide in Fluorescence Quenching-Linked Immunosorbent Assay for the Detection of Cry2Ab Protein Present in Transgenic Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 3656-3662.	2.4	16
238	Lab-on-a-Chip Systems for Aptamer-Based Biosensing. Micromachines, 2020, 11, 220.	1.4	77
239	Dielectrophoresis assisted rapid, selective and single cell detection of antibiotic resistant bacteria with G-FETs. Biosensors and Bioelectronics, 2020, 156, 112123.	5.3	62
240	Atomistic simulations of vibration and damping in three-dimensional graphene honeycomb nanomechanical resonators. Superlattices and Microstructures, 2020, 139, 106420.	1.4	8
241	Reviewâ€"Graphene-Based Water Quality Sensors. Journal of the Electrochemical Society, 2020, 167, 037539.	1.3	40

#	Article	IF	CITATIONS
242	Graphene-based electrochemical genosensor incorporated loop-mediated isothermal amplification for rapid on-site detection of Mycobacterium tuberculosis. Journal of Pharmaceutical and Biomedical Analysis, 2020, 186, 113333.	1.4	35
243	Green Nanoparticles. Nanotechnology in the Life Sciences, 2020, , .	0.4	5
244	Nanoparticles in Biomedical Applications. Nanotechnology in the Life Sciences, 2020, , 227-250.	0.4	5
245	Electrochemical biosensors for pathogen detection. Biosensors and Bioelectronics, 2020, 159, 112214.	5.3	509
246	Nanomaterials in Biomedical Application and Biosensors (NAP-2019). Springer Proceedings in Physics, 2020, , .	0.1	1
247	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
248	Graphene field-effect transistors as bioanalytical sensors: design, operation and performance. Analyst, The, 2021, 146, 403-428.	1.7	101
249	Carbon-based materials approach for environmental sensing. , 2021, , 77-106.		1
250	Biosensors based on two-dimensional materials. , 2021, , 245-312.		1
251	Green synthesis of carbon nanoparticles: characterization and their biocidal properties. , 2021, , 277-306.		3
252	Differential Detection System for Liquid Gate_Graphene Field Effect Transistor Biochemical Sensor. Journal of Sensor Technology and Application, 2021, 09, 241-246.	0.1	0
253	Nanostructures for Biosensing, with a Brief Overview on Cancer Detection, IoT, and the Role of Machine Learning in Smart Biosensors. Sensors, 2021, 21, 1253.	2.1	43
254	Fundamental aspects of graphene and its biosensing applications. Functional Composites and Structures, 2021, 3, 012001.	1.6	13
255	Carbon-Dot-Enhanced Graphene Field-Effect Transistors for Ultrasensitive Detection of Exosomes. ACS Applied Materials & Detection of Exosomes.	4.0	52
256	Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana De Quimica, 2021, 50, 51-85.	0.2	0
257	Graphene FET Sensors for Alzheimer's Disease Protein Biomarker Clusterin Detection. Frontiers in Molecular Biosciences, 2021, 8, 651232.	1.6	20
258	Optimization of Glutathione Adhesion Process to Modified Graphene Surfaces. Nanomaterials, 2021, 11, 756.	1.9	2
259	Scalable chemical vapor deposited graphene field-effect transistors for bio/chemical assay. Applied Physics Reviews, 2021, 8, .	5.5	10

#	Article	IF	CITATIONS
260	Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Analytica Chimica Acta, 2021, 1150, 338232.	2.6	19
261	Wafer-scalable chemical modification of amino groups on graphene biosensors. Langmuir, 2021, 37, 4997-5004.	1.6	7
262	Detection of Bacterial Metabolic Volatile Indole Using a Graphene-Based Field-Effect Transistor Biosensor. Nanomaterials, 2021, 11, 1155.	1.9	14
263	Optical strong coupling in hybrid metal-graphene metamaterial for terahertz sensing*. Chinese Physics B, 2021, 30, 118702.	0.7	2
264	Application of DNA sequences in anti-counterfeiting: Current progress and challenges. International Journal of Pharmaceutics, 2021, 602, 120580.	2.6	9
265	Solution-gated graphene transistor based sensor for histamine detection with gold nanoparticles decorated graphene and multi-walled carbon nanotube functionalized gate electrodes. Food Chemistry, 2021, 347, 128980.	4.2	25
266	Towards prevention and prediction of infectious diseases with virus sterilization using ultraviolet light and low-temperature plasma and bio-sensing devices for health and hygiene care. Japanese Journal of Applied Physics, 0, , .	0.8	2
267	The role of graphene patterning in field-effect transistor sensors to detect the tau protein for Alzheimer's disease: Simplifying the immobilization process and improving the performance of graphene-based immunosensors. Biosensors and Bioelectronics, 2021, 192, 113519.	5.3	17
268	New analytical methods using carbon-based nanomaterials for detection of Salmonella species as a major food poisoning organism in water and soil resources. Chemosphere, 2022, 287, 132243.	4.2	18
269	Next generation biosensors as a cancer diagnostic tool. , 2022, , 179-196.		9
270	Utility of Nanobiosensors in Environmental Analysis and Monitoring. Environmental Chemistry for A Sustainable World, 2021, , 229-246.	0.3	4
271	Interfacing cells with organic transistors: a review of (i) in vitro (i) and (i) in vivo (i) applications. Lab on A Chip, 2021, 21, 795-820.	3.1	37
273	Materials in Bio-Sensing of Water Pollutants. Advanced Functional Materials and Sensors, 2020, , 187-211.	1.2	2
274	Future of analytical chemistry with graphene. Comprehensive Analytical Chemistry, 2020, 91, 355-389.	0.7	7
275	Fast scan voltammetry-derived ultrasensitive Faraday cage-type electrochemical immunoassay for large-size targets. Biosensors and Bioelectronics, 2020, 163, 112277.	5.3	19
276	Micro- and Nanopatterning for Bacteria- and Virus-Based Biosensing Applications. Series in Sensors, 2013, , 681-694.	0.0	1
277	A Comprehensive Review: Development of Biosensors Based on Graphene-Mesoporous Combined Materials. Asian Journal of Materials Chemistry, 2019, , 24-33.	0.2	1
278	Graphene and CNT Field Effect Transistors Based Biosensor Models. Advances in Computer and Electrical Engineering Book Series, 2017, , 294-333.	0.2	2

#	Article	IF	CITATIONS
279	Device Architecture and Biosensing Applications for Attractive One- and Two-Dimensional Nanostructures., 2015,, 41-70.		1
281	Surface Plasmon Resonance-Based Sensor Modeling. Advances in Computer and Electrical Engineering Book Series, 2017, , 361-394.	0.2	O
282	Optimization of Current-Voltage Characteristics of Graphene-Based Biosensors. Advances in Computer and Electrical Engineering Book Series, 2017, , 244-264.	0.2	0
283	Development of Gas Sensor Model for Detection of NO2 Molecules Adsorbed on Defect-Free and Defective Graphene. Advances in Computer and Electrical Engineering Book Series, 2017, , 208-223.	0.2	O
285	Graphene Oxide Influences on Mechanical Properties and Drug Release Ability of Hydroxyapatite Based Composite Material. Springer Proceedings in Physics, 2020, , 139-149.	0.1	0
286	The Electrical Property of SiO2/Graphene/PBA-NHS/anti O and K E. coli Antibodies as Sensing Layer for Escherichia coli Bacteria Sensor. IOP Conference Series: Materials Science and Engineering, 0, 982, 012024.	0.3	O
287	Potential interference of graphene nanosheets in immune response <i>via</i> disrupting the recognition of HLA-presented KK10 by TCR: a molecular dynamics simulation study. Nanoscale, 2021, 13, 19255-19263.	2.8	4
288	Biosensors for simplistic detection of pathogenic bacteria: A review with special focus on field-effect transistors. Materials Science in Semiconductor Processing, 2022, 141, 106404.	1.9	14
289	RECENT ADVANCEMENTS IN GRAPHENE BIOSENSORS FOR THE DETECTION OF PATHOGENS - A REVIEW. Indian Drugs, 2018, 55, 7-17.	0.1	1
290	Ultrasensitive and Selective Bacteria Sensors Based on Functionalized Graphene Transistors. IEEE Sensors Journal, 2022, 22, 5514-5520.	2.4	14
291	Nanocarbon for bioelectronics and biosensing. , 2022, , 689-714.		7
292	Porous carbons for environment remediation. , 2022, , 541-802.		O
293	Recent progress in the graphene functionalized nanomaterial-based electrochemical sensors. , 2022, , 27-38.		0
294	The holy grail of pyrene-based surface ligands on the sensitivity of graphene-based field effect transistors. Sensors & Diagnostics, 2022, 1, 235-244.	1.9	17
295	Recent Developments for the Detection of Escherichia Coli Biosensors Based on Nano-Objectsâ€"A Review. IEEE Sensors Journal, 2022, 22, 9177-9188.	2.4	6
296	Nanostructured Carbons: Towards Softâ€Bioelectronics, Biosensing and Theraputic Applications. Chemical Record, 2022, 22, e202100319.	2.9	7
297	Specific Chemical Modification of Nanohole Edges in Membrane Graphene for Protein Binding. ACS Applied Nano Materials, 2022, 5, 3733-3742.	2.4	3
298	Recent Trends in Graphene/Polymer Nanocomposites for Sensing Devices: Synthesis and Applications in Environmental and Human Health Monitoring. Polymers, 2022, 14, 1030.	2.0	19

#	Article	IF	CITATIONS
299	Graphene based highly sensitive refractive index sensor using double split ring resonator metasurface. Optical and Quantum Electronics, 2022, 54, 1.	1.5	31
300	Synthesis and application of graphene-based sensors in biology: a review. Environmental Chemistry Letters, 2022, 20, 2189-2212.	8.3	18
301	Graphene-Fiber Microelectrodes for Ultrasensitive Neurochemical Detection. Analytical Chemistry, 2022, 94, 4803-4812.	3. 2	10
302	Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS Nano, 2021, 15, 18708-18741.	7.3	70
304	Molecular Engineering of 2D Nanomaterial Fieldâ€Effect Transistor Sensors: Fundamentals and Translation across the Innovation Spectrum. Advanced Materials, 2022, 34, e2106975.	11.1	11
305	Role of graphene in biomedical applications. Materials Today: Proceedings, 2022, 63, 542-546.	0.9	6
307	Silicon Nanowires-Based Biosensors for the Electrical Detection of Escherichia Coli. SSRN Electronic Journal, $0, , .$	0.4	0
308	A Highly Sensitive Graphene-based Field Effect Transistor for the Detection of Myoglobin. Silicon, 2022, 14, 11741-11748.	1.8	9
309	Opportunities for graphene, single-walled and multi-walled carbon nanotube applications in agriculture: A review., 2022, 1, 100006.		14
311	Photoisomerization of Covalently Attached Diarylethene on Locally Functionalized Single-Walled Carbon Nanotubes for Photoinduced Wavelength Switching of Near-Infrared Photoluminescence. Journal of Physical Chemistry C, 2022, 126, 10478-10486.	1.5	2
312	Manufacturable biosensors based on graphene films. , 2022, , 243-307.		0
313	Current Perspectives in Graphene Oxide-Based Electrochemical Biosensors for Cancer Diagnostics. Biosensors, 2022, 12, 607.	2.3	12
314	Silicon nanowires-based biosensors for the electrical detection of Escherichia coli. Biosensors and Bioelectronics, 2022, 216, 114625.	5 . 3	6
315	Capture and detection of <i>Escherichia coli</i> with graphene aerogels. Journal of Materials Chemistry B, 2022, 10, 8211-8217.	2.9	5
316	Biochemical Sensors Based on Graphene and Its Composites. Chemistry and Technology of Fuels and Oils, 2022, 58, 717-724.	0.2	0
317	Biosensors Based on Graphene Nanomaterials. Moscow University Chemistry Bulletin, 2022, 77, 307-321.	0.2	4
318	Fabrication and Functionalisation of Nanocarbonâ€Based Fieldâ€Effect Transistor Biosensors. ChemBioChem, 2022, 23, .	1.3	9
319	Graphene and Carbon Nanotubes (CNTs)-Based Biosensor for Life Sciences Applications. Smart Innovation, Systems and Technologies, 2023, , 61-79.	0.5	1

#	Article	IF	CITATIONS
320	A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & covid-19 detection. Measurement: Journal of the International Measurement Confederation, 2023, 206, 112202 .	2.5	7
321	Adsorption behavior of methylene blue on graphene and hexagonal boron nitride monolayers in aqueous solution: A first-principles treatment. Journal of Physics and Chemistry of Solids, 2023, 174, 111151.	1.9	2
322	Nanobiosensor: Advancement in Disease Diagnostic. , 2022, , 257-279.		1
323	Silver nanoparticle doped graphene-based impedimetric biosensor towards sensitive detection of procalcitonin. Materials Chemistry and Physics, 2023, 297, 127339.	2.0	11
324	Electrolyte-Gated Graphene Field Effect Transistor-Based Ca2+ Detection Aided by Machine Learning. Sensors, 2023, 23, 353.	2.1	2
325	Graphene in Field Effect Transistor-Based Biosensors. , 2023, , 49-78.		0
329	Graphene oxide-based nanocomposite hydrogels for biosensor applications. , 2023, , 149-180.		1
331	Electrochemical biosensors based on graphene and its allied derivatives for lifestyle disease diagnosis., 2023,, 536-568.		0
333	Flexible Nanobiosensors in Biomolecular Detection and Point of Care Testing., 2023, , 175-198.		0
337	Graphene-Based Nanocomposite Solutions for Different Environmental Problems. Materials Horizons, 2023, , 85-106.	0.3	O
339	Graphene-based Nanocomposite Sensors for Detection of Pathogenic Bacteria., 2023,, 427-456.		0