Production and evaluation of transgenic sweet orange (containing bivalent antibacterial peptide genes (Shiva Agrobacterium-mediated transformation of mature axis

Scientia Horticulturae 128, 99-107

DOI: 10.1016/j.scienta.2011.01.002

Citation Report

#	Article	IF	CITATIONS
1	Citrus Transformation: Challenges and Prospects. , 0, , .		9
2	A Dark Incubation Period Is Important for Agrobacterium-Mediated Transformation of Mature Internode Explants of Sweet Orange, Grapefruit, Citron, and a Citrange Rootstock. PLoS ONE, 2012, 7, e47426.	1.1	25
3	Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Reports, 2013, 32, 1601-1613.	2.8	26
4	Genetic Transformation in <i>Citrus</i> . Scientific World Journal, The, 2013, 2013, 1-8.	0.8	33
5	Activation of three pathogen-inducible promoters in transgenic citrus (Citrus sinensis Osbeck) after Xanthomonas axonopodis pv. citri infection and wounding. Plant Cell, Tissue and Organ Culture, 2014, 117, 85-98.	1.2	24
6	Recent advances in genetic engineering for improvement of fruit crops. Plant Cell, Tissue and Organ Culture, 2014, 116, 1-15.	1.2	66
7	Production of Transgenic Anliucheng Sweet Orange (Citrus sinensis Osbeck) with Xa21 Gene for Potential Canker Resistance. Journal of Integrative Agriculture, 2014, 13, 2370-2377.	1.7	14
8	Early-flowering sweet orange mutant $\hat{a} \in \mathbb{Z} 11 \hat{a} \in \mathbb{Z} 11$ as a model for functional genomic studies of Citrus. BMC Research Notes, 2014, 7, 511.	0.6	4
9	Genetic Transformation of Commercially Important Mature Citrus Scions. Crop Science, 2015, 55, 2786-2797.	0.8	14
10	Efficient production of marker-free transgenic †Tarocco' blood orange (Citrus sinensis Osbeck) with enhanced resistance to citrus canker using a Cre/loxP site-recombination system. Plant Cell, Tissue and Organ Culture, 2015, 123, 1-13.	1.2	32
11	Overexpression of the Bivalent Antibacterial Peptide Genes in <i>Pichia pastoris</i> Delays Sour Rot in Citrus Fruit and Induces <i>Geotrichum citri-aurantii</i> Cell Apoptosis. Food Biotechnology, 2016, 30, 79-97.	0.6	4
12	A simple and efficient in planta transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens. Scientia Horticulturae, 2017, 214, 174-179.	1.7	21
13	Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. European Journal of Plant Pathology, 2017, 149, 865-873.	0.8	25
14	Breeding Avenues in Fruit Crops for Imparting Resistance Against Insect Pests., 2017,, 289-322.		O
15	Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology, 2017, 93, 341-353.	2.0	69
16	Label-free liquid crystal biosensor for cecropin B detection. Talanta, 2018, 186, 60-64.	2.9	26
17	A filter paper-based liquid culture system for citrus shoot organogenesisâ€"a mixture-amount plant growth regulator experiment. In Vitro Cellular and Developmental Biology - Plant, 2018, 54, 658-671.	0.9	3
18	Transgenic Research in Fruit Crops. , 2018, , 63-87.		O

#	Article	IF	CITATIONS
19	Genetic Engineering of Horticultural Crops. , 2018, , 23-46.		13
20	Improved protocol for the transformation of adult Citrus sinensis Osbeck †Tarocco' blood orange tissues. In Vitro Cellular and Developmental Biology - Plant, 2019, 55, 659-667.	0.9	9
21	Citrus Genetic Engineering for Disease Resistance: Past, Present and Future. International Journal of Molecular Sciences, 2019, 20, 5256.	1.8	54
22	Citrus biotechnology: What has been done to improve disease resistance in such an important crop?. Biotechnology Research and Innovation, 2019, 3, 95-109.	0.3	26
23	Recent Advances of In Vitro Culture for the Application of New Breeding Techniques in Citrus. Plants, 2020, 9, 938.	1.6	23
24	New Plant Breeding Techniques in Citrus for the Improvement of Important Agronomic Traits. A Review. Frontiers in Plant Science, 2020, 11, 1234.	1.7	32
25	Xanthomonas citri subsp. citri: host interaction and control strategies. Tropical Plant Pathology, 2020, 45, 213-236.	0.8	28
26	Citrus biotechnology. , 2020, , 171-192.		5
27	Overexpressing a NPR1-like gene from Citrus paradisi enhanced Huanglongbing resistance in C. sinensis. Plant Cell Reports, 2021, 40, 529-541.	2.8	22
28	Pyramiding the antimicrobial PR1aCB and AATCB genes in †Tarocco' blood orange (Citrus sinensis) Tj ETQq	1 1 0.784 1.3	314 rgBT /
29	The CsNPR1 gene expression modulation in citrus and understanding the defense mechanism against Huanglongbing by screening CsNPR1-interacting proteins. Scientia Horticulturae, 2021, 288, 110375.	1.7	1
30	Citrus Transformation Using Mature Tissue Explants. Methods in Molecular Biology, 2015, 1224, 259-273.	0.4	14
31	Biotechnological Approaches for the Resistance to Citrus Diseases. Compendium of Plant Genomes, 2020, , 245-257.	0.3	7
32	<i>Agrobacterium</i> -Mediated Transformation of Mexican Lime (<i>Citrus aurantifolia</i> Swingle) Using Optimized Systems for Epicotyls and Cotyledons. Advances in Bioscience and Biotechnology (Print), 2015, 06, 657-668.	0.3	2
33	Effect of various factors on shoot regeneration from citrus epicotyl explants. Journal of Applied Horticulture, 2015, 17, 121-128.	0.3	1
34	Effect of interaction between different plant growth regulators on in vitro shoot multiplication of Citrus latifolia Tan. (persian lime). International Journal of Environmental & Agriculture Research, 2017, 3, 51-54.	0.0	1
35	A new liquid selection system for mature citrus transformation. Scientia Horticulturae, 2022, 293, 110672.	1.7	0
36	Genetic Basis of Resistance to Citrus Canker Disease. Compendium of Plant Genomes, 2020, , 259-279.	0.3	O

#	Article	IF	Citations
37	Genetically Modified Citrus: Current Status, Prospects, and Future Challenges., 2021,, 161-201.		1
38	Citrus Genetic Transformation: An Overview of the Current Strategies and Insights on the New Emerging Technologies. Frontiers in Plant Science, 2021, 12, 768197.	1.7	9
40	A rapid multiplication system for †Candidatus Liberibacter asiaticus†through regeneration of axillary buds in vitro. Journal of Integrative Agriculture, 2022, 21, 1683-1693.	1.7	0
41	Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to †Candidatus Liberibacter asiaticus'. International Journal of Molecular Sciences, 2022, 23, 9300.	1.8	6
42	Production of marker-free transgenic plants from mature tissues of navel orange using a Cre/loxP site-recombination system. Horticultural Plant Journal, 2023, 9, 473-480.	2.3	2
43	Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts. Plants, 2023, 12, 123.	1.6	11