Characterization of terrestrial water dynamics in the Co satellite radar altimetry

Remote Sensing of Environment 115, 3530-3538 DOI: 10.1016/j.rse.2011.08.015

Citation Report

#	Article	IF	CITATIONS
1	Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resources Research, 2012, 48, .	4.2	94
2	Detection of Envisat RA2/ICE-1 retracked radar altimetry bias over the Amazon basin rivers using GPS. Advances in Space Research, 2013, 51, 1551-1564.	2.6	36
3	Congo Basin rainfall climatology: can we believe the climate models?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120296.	4.0	177
4	Hydraulic characterization of the middle reach of the Congo River. Water Resources Research, 2013, 49, 5059-5070.	4.2	86
5	Estimation of river depth from remotely sensed hydraulic relationships. Water Resources Research, 2013, 49, 3165-3179.	4.2	69
6	Water Level Fluctuations in the Congo Basin Derived from ENVISAT Satellite Altimetry. Remote Sensing, 2014, 6, 9340-9358.	4.0	59
7	Application of the Regional Water Mass Variations from GRACE Satellite Gravimetry to Large-Scale Water Management in Africa. Remote Sensing, 2014, 6, 7379-7405.	4.0	71
8	GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics, 2014, 77, 116801.	20.1	171
9	Widespread decline of Congo rainforest greenness in the past decade. Nature, 2014, 509, 86-90.	27.8	351
11	Retrieval of river discharge solely from satellite imagery and atâ€manyâ€stations hydraulic geometry: Sensitivity to river form and optimization parameters. Water Resources Research, 2014, 50, 9604-9619.	4.2	119
12	Discharge and waterâ€depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and waterâ€area measurements from satellites. Water Resources Research, 2015, 51, 6017-6035.	4.2	45
13	Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 2015, 51, 7309-7342.	4.2	243
14	Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers. Scientific Reports, 2015, 5, 15614.	3.3	85
15	Simulating streamflow on regulated rivers using characteristic reservoir storage patterns derived from synthetic remote sensing data. Hydrological Processes, 2015, 29, 2014-2026.	2.6	23
16	Toward Estimating Wetland Water Level Changes Based on Hydrological Sensitivity Analysis of PALSAR Backscattering Coefficients over Different Vegetation Fields. Remote Sensing, 2015, 7, 3153-3183.	4.0	32
17	Mapping Regional Inundation with Spaceborne L-Band SAR. Remote Sensing, 2015, 7, 5440-5470.	4.0	78
18	The Challenges of Remote Monitoring of Wetlands. Remote Sensing, 2015, 7, 10938-10950.	4.0	193
19	Predictive Time Series Analysis Linking Bengal Cholera with Terrestrial Water Storage Measured from Gravity Recovery and Climate Experiment Sensors. American Journal of Tropical Medicine and Hygiene,	1.4	7

#	Article	IF	CITATIONS
20	Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetlands Ecology and Management, 2015, 23, 327-346.	1.5	51
21	Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sensing of Environment, 2015, 159, 70-79.	11.0	53
22	Satellite-based hydrological dynamics of the world's largest continuous wetland. Remote Sensing of Environment, 2015, 170, 1-13.	11.0	64
23	Measuring and Mapping Flood Processes. , 2015, , 35-64.		6
24	A Regional Perceptive of Flood Forecasting and Disaster Management Systems for the Congo River Basin. , 2016, , 87-124.		13
25	Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 2016, 54, 378-409.	23.0	145
26	Principles of Radar Satellite Altimetry for Application on Inland Waters. , 2016, , 175-218.		6
27	Water and ecological security: dealing with hydroclimatic challenges at the heart of China's Silk Road. Environmental Earth Sciences, 2016, 75, 1.	2.7	57
28	Flooding hydrology and peak discharge attenuation along the middle Araguaia River in central Brazil. Catena, 2016, 143, 90-101.	5.0	44
29	Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Advances in Water Resources, 2016, 94, 31-44.	3.8	35
30	Remote Sensing-Derived Water Extent and Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in Geophysics, 2016, 37, 977-1034.	4.6	96
31	Assessing and Improving Land Surface Model Outputs Over Africa Using GRACE, Field, and Remote Sensing Data. Surveys in Geophysics, 2016, 37, 529-556.	4.6	49
32	Estimating Flood Discharges in Reservoir-Regulated River Basins by Integrating Synthetic SWOT Satellite Observations and Hydrologic Modeling. Journal of Hydrologic Engineering - ASCE, 2016, 21, .	1.9	21
33	Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 2017, 542, 86-90.	27.8	428
34	Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles. Journal of Hydrology, 2017, 548, 237-250.	5.4	60
35	Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data. International Journal of Remote Sensing, 2017, 38, 7021-7040.	2.9	34
36	Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry. Remote Sensing of Environment, 2017, 201, 57-72.	11.0	42
37	The Potential Applications of Satellite Altimetry with SARAL/AltiKa for Indian Inland Waters. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2017, 87, 661-677.	1.2	12

#	Article	IF	CITATIONS
38	Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chemical Geology, 2017, 466, 454-465.	3.3	28
39	Hydraulic visibility: Using satellite altimetry to parameterize a hydraulic model of an ungauged reach of a braided river. Hydrological Processes, 2017, 31, 756-767.	2.6	45
40	Simulated hydrologic response to projected changes in precipitation and temperature in the Congo River basin. Hydrology and Earth System Sciences, 2017, 21, 4115-4130.	4.9	34
41	A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth System Dynamics, 2017, 8, 653-675.	7.1	52
42	A forensic look into the lineament, vegetation, groundwater linkage: Study of Ranchi District, Jharkhand (India). Remote Sensing Applications: Society and Environment, 2018, 10, 138-152.	1.5	4
43	Changes in hydro-meteorological conditions over tropical West Africa (1980–2015) and links to global climate. Global and Planetary Change, 2018, 162, 321-341.	3.5	51
44	Satellite-based estimates of surface water dynamics in the Congo River Basin. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 196-209.	2.8	55
45	A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2-17.	3.8	31
46	A comparative study of available water in the major river basins of the world. Journal of Hydrology, 2018, 567, 510-532.	5.4	73
47	Potential Disruption of Flood Dynamics in the Lower Mekong River Basin Due to Upstream Flow Regulation. Scientific Reports, 2018, 8, 17767.	3.3	71
48	Rainfall Variability, Wetland Persistence, and Water–Carbon Cycle Coupling in the Upper Zambezi River Basin in Southern Africa. Remote Sensing, 2018, 10, 692.	4.0	6
49	Greater Water Surface Variability Revealed by New Congo River Field Data: Implications for Satellite Altimetry Measurements of Large Rivers. Geophysical Research Letters, 2019, 46, 8093-8101.	4.0	30
50	Estimating daily streamflow in the Congo Basin using satellite-derived data and a semi-distributed hydrological Mydrological Sciences Journal, 2019, 64, 1472-1487.	2.6	26
51	Analysis of the Relationship among Flood Severity, Precipitation, and Deforestation in the Tonle Sap Lake Area, Cambodia Using Multi-Sensor Approach. KSCE Journal of Civil Engineering, 2019, 23, 1330-1340.	1.9	13
52	Downscaling GRACE TWSA Data into High-Resolution Groundwater Level Anomaly Using Machine Learning-Based Models in a Glacial Aquifer System. Remote Sensing, 2019, 11, 824.	4.0	80
53	Glacier and snow variations and their impacts on regional water resources in mountains. Journal of Chinese Geography, 2019, 29, 84-100.	3.9	28
54	Long-Range River Discharge Forecasting Using the Gravity Recovery and Climate Experiment. Journal of Water Resources Planning and Management - ASCE, 2019, 145, .	2.6	8
55	Phase Unwrapping in InSAR : A Review. IEEE Geoscience and Remote Sensing Magazine, 2019, 7, 40-58.	9.6	192

#	Article	IF	CITATIONS
56	The water resources of tropical West Africa: problems, progress, and prospects. Acta Geophysica, 2019, 67, 621-649.	2.0	45
57	Radar Altimetry as a Proxy for Determining Terrestrial Water Storage Variability in Tropical Basins. Remote Sensing, 2019, 11, 2487.	4.0	6
58	Simulating sediment supply from the Congo watershed over the last 155 ka. Quaternary Science Reviews, 2019, 203, 38-55.	3.0	12
59	Ensemble learning regression for estimating river discharges using satellite altimetry data: Central Congo River as a Test-bed. Remote Sensing of Environment, 2019, 221, 741-755.	11.0	42
60	Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the Congo basin. Science of the Total Environment, 2019, 651, 1569-1587.	8.0	49
61	A LISFLOOD-FP hydraulic model of the middle reach of the Congo. Journal of Hydrology, 2020, 580, 124203.	5.4	37
62	Recent Budget of Hydroclimatology and Hydrosedimentology of the Congo River in Central Africa. Water (Switzerland), 2020, 12, 2613.	2.7	20
63	Establishing uncertainty ranges of hydrologic indices across climate and physiographic regions of the Congo River Basin. Journal of Hydrology: Regional Studies, 2020, 30, 100710.	2.4	5
64	Combining and Comparing an Unmanned Aerial Vehicle and Multiple Remote Sensing Satellites to Calculate Long-Term River Discharge in an Ungauged Water Source Region on the Tibetan Plateau. Remote Sensing, 2020, 12, 2155.	4.0	26
65	Measuring Floodplain Inundation Using Diel Amplitude of Temperature. Sensors, 2020, 20, 6189.	3.8	1
66	Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sensing, 2020, 12, 1107.	4.0	79
67	Benefits of representing floodplains in a Land Surface Model: Pantanal simulated with ORCHIDEE CMIP6 version. Climate Dynamics, 2020, 55, 1303-1323.	3.8	14
68	Agricultural innovation and environmental change on the floodplains of the Congo River. Geographical Journal, 2020, 186, 16-30.	3.1	2
69	Characterizing channel-floodplain connectivity using satellite altimetry: Mechanism, hydrogeomorphic control, and sediment budget. Remote Sensing of Environment, 2020, 243, 111783.	11.0	33
70	Hindcast and forecast of daily inundation extents using satellite SAR and altimetry data with rotated empirical orthogonal function analysis: Case study in Tonle Sap Lake Floodplain. Remote Sensing of Environment, 2020, 241, 111732.	11.0	19
71	Combining Optical Remote Sensing, McFLI Discharge Estimation, Global Hydrologic Modeling, and Data Assimilation to Improve Daily Discharge Estimates Across an Entire Large Watershed. Water Resources Research, 2021, 57, e2020WR027794.	4.2	16
72	GRACE reveals depletion of water storage in northwestern South America between ENSO extremes. Journal of Hydrology, 2021, 596, 125687.	5.4	9
73	Hydrological Dynamics of the Congo Basin From Water Surfaces Based on Lâ€Band Microwave. Water Resources Research, 2021, 57, e2020WR027259.	4.2	7

#	Article	IF	CITATIONS
74	An Integrative Conceptualization of Floodplain Storage. Reviews of Geophysics, 2021, 59, e2020RG000724.	23.0	40
75	An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale. Remote Sensing, 2021, 13, 1824.	4.0	7
76	Opportunities for Gravity and GNSS Surveying to Monitor Changes in the Terrestrial Water Storage in the Congo River Basin. Remote Sensing in Earth Systems Sciences, 0, , 1.	1.8	0
77	Automatic Detection of Inland Water Bodies along Altimetry Tracks for Estimating Surface Water Storage Variations in the Congo Basin. Remote Sensing, 2021, 13, 3804.	4.0	16
78	Remote Sensing of Water in Wetlands: Inundation Patterns and Extent. , 2016, , 1-9.		1
79	Satellite Remote Sensing of Lakes and Wetlands. , 2016, , 57-72.		2
80	Exploring constraints on a wetland methane emission ensemble (WetCHARTs) using GOSAT observations. Biogeosciences, 2020, 17, 5669-5691.	3.3	16
81	Data-driven estimates of evapotranspiration and its controls in the Congo Basin. Hydrology and Earth System Sciences, 2020, 24, 4189-4211.	4.9	20
82	Surface Water Storage in Rivers and Wetlands Derived from Satellite Observations: A Review of Current Advances and Future Opportunities for Hydrological Sciences. Remote Sensing, 2021, 13, 4162.	4.0	26
83	Amazon Hydrology From Space: Scientific Advances and Future Challenges. Reviews of Geophysics, 2021, 59, e2020RG000728.	23.0	53
84	Remote Sensing of Water in Wetlands: Inundation Patterns and Extent. , 2018, , 1609-1617.		0
88	Current knowledge on the Cuvette Centrale peatland complex and future research directions. Bois Et Forets Des Tropiques, 0, 350, 3-14.	0.2	5
109	Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surveys in Geophysics, 2023, 44, 43-93.	4.6	38
110	A combined use of in situ and satellite-derived observations to characterize surface hydrology and its variability in the Congo River basin. Hydrology and Earth System Sciences, 2022, 26, 1857-1882.	4.9	10
111	Google earth engine based computational system for the earth and environment monitoring applications during the COVID-19 pandemic using thresholding technique on SAR datasets. Physics and Chemistry of the Earth, 2022, 127, 103163.	2.9	3
114	Mapping peat thickness and carbon stocks of the central Congo Basin using field data. Nature Geoscience, 2022, 15, 639-644.	12.9	20
115	Understanding Water Level Changes in the Great Lakes by an ICA-Based Merging of Multi-Mission Altimetry Measurements. Remote Sensing, 2022, 14, 5194.	4.0	2
116	Areal extent of vegetative cover: A challenge to regional upscaling of methane emissions. Aquatic Botany, 2023, 184, 103592.	1.6	5

		CITATION REPORT	
#	Article	IF	CITATIONS
117	Inland Water Altimetry: Technological Progress and Applications. Springer Water, 2022, , 111-13		3
118	Evaluation of wetland CH ₄ in the Joint UK Land Environment Simulator (JULES) land surface model using satellite observations. Biogeosciences, 2022, 19, 5779-5805.	3.3	0
119	Water cycle science enabled by the GRACE and GRACE-FO satellite missions. , 2023, 1, 47-59.		13
120	Phytoremediation Using Tropical Wetlands: Are Temperate Treatment Wetlands Sound Models? Wetlands: Ecology, Conservation and Management, 2023, , 15-30.	0.2	0
121	Mapping Water Levels across a Region of the Cuvette Centrale Peatland Complex. Remote Sens 2023, 15, 3099.	ng, 4.0	0
122	Current availability and distribution of Congo Basin's freshwater resources. Communications Environment, 2023, 4, .	: Earth & 6.8	3
123	Soil Attributes Mapping with Online Near-Infrared Spectroscopy Requires Spatio-Temporal Local Calibrations. AgriEngineering, 2023, 5, 1163-1177.	3.2	0
124	A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015. Ear System Science Data, 2023, 15, 2957-2982.	.h 9.9	1
125	Monitoring Inland Water Quantity Variations: A Comprehensive Analysis of Multi-Source Satellit Observation Technology Applications. Remote Sensing, 2023, 15, 3945.	2 4.0	1
126	Understanding global groundwater-climate interactions. Science of the Total Environment, 2023 166571.	, 904, 8.0	7
127	Inland Surface Waters Quantity Monitored from Remote Sensing. Surveys in Geophysics, 2023, 1519-1552.	44, 4.6	4
128	Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation ove Pantanal wetlands. Geoscientific Model Development, 2023, 16, 5755-5782.	r the 3.6	0