Early neuronal dysfunction by amyloid Î² oligomers dep NR2B-containing NMDA receptors

Neurobiology of Aging 32, 2219-2228

DOI: 10.1016/j.neurobiolaging.2010.01.011

Citation Report

#	Article	IF	CITATIONS
1	<i>N</i> â€Methylâ€ <scp>d</scp> â€aspartate receptors are required for synaptic targeting of Alzheimer's toxic amyloidâ€Î² peptide oligomers. Journal of Neurochemistry, 2010, 115, 1520-1529.	2.1	141
2	Prolonged Exposure of Cortical Neurons to Oligomeric Amyloid-β Impairs NMDA Receptor Function Via NADPH Oxidase-Mediated ROS Production: Protective Effect of Green Tea (-)-Epigallocatechin-3-Gallate. ASN Neuro, 2010, 3, AN20100025.	1.5	81
3	ADDLs and the signaling web that leads to Alzheimer's disease. Neuropharmacology, 2010, 59, 230-242.	2.0	96
4	Soluble AÎ ² Oligomers Inhibit Long-Term Potentiation through a Mechanism Involving Excessive Activation of Extrasynaptic NR2B-Containing NMDA Receptors. Journal of Neuroscience, 2011, 31, 6627-6638.	1.7	530
5	The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiology of Learning and Memory, 2011, 96, 529-543.	1.0	386
6	Lipid Rafts: Linking Alzheimer's Amyloid- <i>β</i> Production, Aggregation, and Toxicity at Neuronal Membranes. International Journal of Alzheimer's Disease, 2011, 2011, 1-14.	1.1	156
7	Nuclear Translocation of Jacob in Hippocampal Neurons after Stimuli Inducing Long-Term Potentiation but Not Long-Term Depression. PLoS ONE, 2011, 6, e17276.	1.1	46
8	Between promiscuity and specificity: novel roles of EFâ€hand calcium sensors in neuronal Ca ²⁺ signalling. Journal of Neurochemistry, 2011, 118, 695-713.	2.1	53
9	Proteolysis of calcineurin is increased in human hippocampus during mild cognitive impairment and is stimulated by oligomeric Abeta in primary cell culture. Aging Cell, 2011, 10, 103-113.	3.0	41
10	Selective Hippocampal Neurodegeneration in Transgenic Mice Expressing Small Amounts of Truncated Aβ Is Induced by Pyroglutamate–Aβ Formation. Journal of Neuroscience, 2011, 31, 12790-12801.	1.7	90
11	Fyn, a Potential Target for Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 243-252.	1.2	50
12	The Toxicity of Amyloid ß Oligomers. International Journal of Molecular Sciences, 2012, 13, 7303-7327.	1.8	124
13	Apolipoprotein E and Apolipoprotein E Receptors: Normal Biology and Roles in Alzheimer Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006312-a006312.	2.9	637
14	Postsynaptic Receptors for Amyloid-β Oligomers as Mediators of Neuronal Damage in Alzheimer's Disease. Frontiers in Physiology, 2012, 3, 464.	1.3	84
15	Amyloid-Beta Peptide 1-42 Causes Microtubule Deregulation through N-methyl-D-aspartate Receptors in Mature Hippocampal Cultures. Current Alzheimer Research, 2012, 9, 844-856.	0.7	30
16	Alzheimer's disease, βâ€∎myloid, glutamate, NMDA receptors and memantine – searching for the connections. British Journal of Pharmacology, 2012, 167, 324-352.	2.7	396
17	Spreading of Neurodegenerative Pathology via Neuron-to-Neuron Transmission of Â-Amyloid. Journal of Neuroscience, 2012, 32, 8767-8777.	1.7	219
18	Aging of the NMDA receptor: from a mouse's point of view. Future Neurology, 2012, 7, 627-637.	0.9	36

CITATION REPORT

#	Article	IF	CITATIONS
19	Oligomeric Intermediates in Amyloid Formation: Structure Determination and Mechanisms of Toxicity. Journal of Molecular Biology, 2012, 421, 427-440.	2.0	301
20	Alzheimer Mechanisms and Therapeutic Strategies. Cell, 2012, 148, 1204-1222.	13.5	1,548
21	Neuronal receptors as targets for the action of amyloid-beta protein (Aβ) in the brain. Expert Reviews in Molecular Medicine, 2012, 14, e2.	1.6	46
22	Nâ€Terminal pyroglutamate formation of Aβ38 and Aβ40 enforces oligomer formation and potency to disrupt hippocampal longâ€ŧerm potentiation. Journal of Neurochemistry, 2012, 121, 774-784.	2.1	76
23	NMDA receptors and BAX are essential for $\hat{A^2}$ impairment of LTP. Scientific Reports, 2012, 2, 225.	1.6	38
24	New developments on the role of NMDA receptors in Alzheimer's disease. Current Opinion in Neurobiology, 2012, 22, 559-563.	2.0	104
25	Effect of bFGF on neuronal damage induced by sequential treatment of amyloid β and excitatory amino acid in vitro and in vivo. European Journal of Pharmacology, 2012, 695, 76-82.	1.7	19
26	Laser-Induced Liquid Bead Ion Desorption Mass Spectrometry: An Approach to Precisely Monitor the Oligomerization of the Î ² -Amyloid Peptide. Analytical Chemistry, 2012, 84, 5276-5284.	3.2	30
27	Selective Impairment of Some Forms of Synaptic Plasticity by Oligomeric Amyloid-Î ² Peptide in the Mouse Hippocampus: Implication of Extrasynaptic NMDA Receptors. Journal of Alzheimer's Disease, 2012, 32, 183-196.	1.2	37
28	Pyruvate Prevents the Inhibition of the Long-term Potentiation Induced by Amyloid-Î ² through Protein Phosphatase 2A Inactivation. Journal of Alzheimer's Disease, 2012, 30, 665-673.	1.2	23
29	Long-Distance Signaling from Synapse to Nucleus via Protein Messengers. Advances in Experimental Medicine and Biology, 2012, 970, 355-376.	0.8	15
31	Glutamate receptors in preclinical research on Alzheimer's disease: Update on recent advances. Pharmacology Biochemistry and Behavior, 2012, 100, 855-862.	1.3	84
32	Structural Basis of βâ€Amyloidâ€Dependent Synaptic Dysfunctions. Angewandte Chemie - International Edition, 2012, 51, 1576-1579.	7.2	57
33	NMDA receptors in nervous system diseases. Neuropharmacology, 2013, 74, 69-75.	2.0	228
34	Protective effects of EphB2 on Aβ1–42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons. Neurochemistry International, 2013, 63, 283-290.	1.9	27
35	Dysregulation of synaptic and extrasynaptic N-methyl-D-aspartate receptors induced by amyloid-β. Neuroscience Bulletin, 2013, 29, 752-760.	1.5	42
36	Aβ induces acute depression of excitatory glutamatergic synaptic transmission through distinct phosphatase-dependent mechanisms in rat CA1 pyramidal neurons. Brain Research, 2013, 1515, 88-97.	1.1	15
37	The role of Î ³ -secretase in hippocampal synaptic transmission and activity-dependent synaptic plasticity. Neuroscience Letters, 2013, 554, 16-21.	1.0	6

#	Article	IF	CITATIONS
38	Metabotropic NMDA receptor function is required for β-amyloid–induced synaptic depression. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4033-4038.	3.3	154
39	Diversity in NMDA Receptor Composition. Neuroscientist, 2013, 19, 62-75.	2.6	340
40	β-Amyloid-aluminum complex alters cytoskeletal stability and increases ROS production in cortical neurons. Neurochemistry International, 2013, 62, 566-574.	1.9	20
41	Encoding and Transducing the Synaptic or Extrasynaptic Origin of NMDA Receptor Signals to the Nucleus. Cell, 2013, 152, 1119-1133.	13.5	173
42	Emerging roles of metaplasticity in behaviour and disease. Trends in Neurosciences, 2013, 36, 353-362.	4.2	164
43	NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 2013, 14, 383-400.	4.9	1,928
44	Effects of different amyloid β-protein analogues on synaptic function. Neurobiology of Aging, 2013, 34, 1032-1044.	1.5	56
45	Cellular prion protein and Alzheimer disease. Prion, 2013, 7, 114-116.	0.9	11
46	Mass Transfer and Computational Fluid-dynamics in Bioreactors. , 2013, , 460-486.		0
47	Multiple effects of β-amyloid on single excitatory synaptic connections in the PFC. Frontiers in Cellular Neuroscience, 2013, 7, 129.	1.8	16
48	Amyloid Beta-Protein and Neural Network Dysfunction. Journal of Neurodegenerative Diseases, 2013, 2013, 1-8.	1.1	23
49	Enhanced Expression of NR2B Subunits of NMDA Receptors in the Inherited Glaucomatous DBA/2J Mouse Retina. Neural Plasticity, 2013, 2013, 1-7.	1.0	12
50	Inhibition of the Polyamine System Counteracts β-Amyloid Peptide-Induced Memory Impairment in Mice: Involvement of Extrasynaptic NMDA Receptors. PLoS ONE, 2014, 9, e99184.	1.1	45
51	Parkin overexpression ameliorates hippocampal long-term potentiation and Â-amyloid load in an Alzheimer's disease mouse model. Human Molecular Genetics, 2014, 23, 1056-1072.	1.4	64
52	Longitudinal testing of hippocampal plasticity reveals the onset and maintenance of endogenous human Aß-induced synaptic dysfunction in individual freely behaving pre-plaque transgenic rats: rapid reversal by anti-Aß agents. Acta Neuropathologica Communications, 2014, 2, 175.	2.4	32
53	STAT1 Negatively Regulates Spatial Memory Formation and Mediates the Memory-Impairing Effect of AÎ ² . Neuropsychopharmacology, 2014, 39, 746-758.	2.8	39
54	Chronic GluN2B Antagonism Disrupts Behavior in Wild-Type Mice Without Protecting Against Synapse Loss or Memory Impairment in Alzheimer's Disease Mouse Models. Journal of Neuroscience, 2014, 34, 8277-8288.	1.7	24
55	mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nature Communications, 2014, 5, 3374.	5.8	157

ARTICLE IF CITATIONS # Dysfunctional synapse in Alzheimer's disease – A focus on NMDA receptors. Neuropharmacology, 2014, 2.0 158 56 76, 16-26. Cellular distribution of the NMDA-receptor activated synapto-nuclear messenger Jacob in the rat brain. Brain Structure and Function, 2014, 219, 843-860. 1.2 23 Reciprocal disruption of neuronal signaling and AÎ² production mediated by extrasynaptic NMDA 58 1.5 40 receptors: a downward spiral. Cell and Tissue Research, 2014, 356, 279-286. Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders. Neuron, 2014, 82, 59 279-293. Glutamatergic Dysfunctioning in Alzheimer's Disease and Related Therapeutic Targets. Journal of 60 1.2 64 Alzheimer's Disease, 2014, 42, S177-S187. Nature of the neurotoxic membrane actions of amyloid- \hat{l}^2 on hippocampal neurons in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 472-481. 1.5 Amyloid beta receptors responsible for neurotoxicity and cellular defects in Alzheimer's disease. 62 2.4 42 Cellular and Molecular Life Sciences, 2014, 71, 4803-4813. Oligomer-targeting with a conformational antibody fragment promotes toxicity in AÎ²-expressing flies. 2.4 10 Acta Neuropathologica Communications, 2014, 2, 43. A role for the neurexin–neuroligin complex in Alzheimer's disease. Neurobiology of Aging, 2014, 35, 42 64 1.5 746-756. Neurotransmitter receptor and time dependence of the synaptic plasticity disrupting actions of Alzheimer's disease A \hat{l}^2 <i>in vivo</i>. Philosophical Transactions of the Royal Society B: Biological 1.8 Sciences, 2014, 369, 20130147. Iron overload accelerates neuronal amyloid-Î² production and cognitive impairment in transgenic mice 106 66 1.5 model of Alzheimer's disease. Neurobiology of Aging, 2014, 35, 2288-2301. Disrupted cross-laminar cortical processing in Î² amyloid pathology precedes cell death. Neurobiology 2.1 of Disease, 2014, 63, 62-73. The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer's Disease. Neuron, 2014, 82, 756-771. 68 3.8 862 Amyloid-Î²1-42 Disrupts Synaptic Plasticity by Altering Glutamate Recycling at the Synapse. Journal of Alzheimer's Disease, 2015, 45, 449-456. 1.2 39 Differential Effects of Palmitoylethanolamide against Amyloid-Î² Induced Toxicity in Cortical Neuronal and Astrocytic Primary Cultures from Wild-Type and 3xTg-AD Mice. Journal of Alzheimer's Disease, 70 1.2 26 2015, 46, 407-421. Effects of diazoxide on A^{2} 1-42-induced expression of the NR2B subunit in cultured cholinergic neurons. Molecular Medicine Reports, 2015, 12, 8301-8305. Alzheimer's Disease: Mechanism and Approach to Cell Therapy. International Journal of Molecular 72 1.8 82 Sciences, 2015, 16, 26417-26451. Calpain-Mediated Degradation of Drebrin by Excitotoxicity In vitro and In vivo. PLoS ONE, 2015, 10, 1.1 e0125119.

CITATION REPORT

#	Article	IF	CITATIONS
74	L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death and Disease, 2015, 6, e1965-e1965.	2.7	46
75	Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer's disease. Neurobiology of Disease, 2015, 74, 254-262.	2.1	35
76	Leptin attenuates the detrimental effects of \hat{l}^2 -amyloid on spatial memory and hippocampal later-phase long term potentiation in rats. Hormones and Behavior, 2015, 73, 125-130.	1.0	36
77	Alzheimer's Disease and Mechanism-Based Attempts to Enhance Cognition. , 2015, , 193-231.		Ο
78	The soluble extracellular fragment of neuroligin-1 targets AÎ ² oligomers to the postsynaptic region of excitatory synapses. Biochemical and Biophysical Research Communications, 2015, 466, 66-71.	1.0	23
79	Eph receptors: New players in Alzheimer's disease pathogenesis. Neurobiology of Disease, 2015, 73, 137-149.	2.1	34
80	Sigma-1 (σ1) receptor deficiency reduces β-amyloid25–35-induced hippocampal neuronal cell death and cognitive deficits through suppressing phosphorylation of the NMDA receptor NR2B. Neuropharmacology, 2015, 89, 215-224.	2.0	30
81	Stem Cell Therapy: A Prospective Treatment for Alzheimer's Disease. Psychiatry Investigation, 2016, 13, 583.	0.7	25
82	Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plasticity, 2016, 2016, 1-20.	1.0	111
83	Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity. Neural Plasticity, 2016, 2016, 1-19.	1.0	67
84	Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons. Neural Plasticity, 2016, 2016, 1-15.	1.0	26
85	Synaptic GluN2B/CaMKII-α Signaling Induces Synapto-Nuclear Transport of ERK and Jacob. Frontiers in Molecular Neuroscience, 2016, 9, 66.	1.4	25
86	A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis. PLoS Genetics, 2016, 12, e1005907.	1.5	36
87	Peripheral Interventions Enhancing Brain Clutamate Homeostasis Relieve Amyloid β- and TNFα- Mediated Synaptic Plasticity Disruption in the Rat Hippocampus. Cerebral Cortex, 2017, 27, 3724-3735.	1.6	17
88	What do we learn from the murine Jacob/Nsmf gene knockout for human disease?. Rare Diseases (Austin, Tex), 2016, 4, e1241361.	1.8	8
89	Differential Regulation of N-Methyl-D-Aspartate Receptor Subunits is An Early Event in the Actions of Soluble Amyloid-β1-40 Oligomers on Hippocampal Neurons. Journal of Alzheimer's Disease, 2016, 51, 197-212.	1.2	22
90	Opposite <i>in vivo</i> effects of agents that stimulate or inhibit the glutamate/cysteine exchanger system on the inhibition of hippocampal LTP by Aß. Hippocampus, 2016, 26, 1655-1665.	0.9	6
91	Blocking the Interaction between EphB2 and ADDLs by a Small Peptide Rescues Impaired Synaptic Plasticity and Memory Deficits in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2016, 36. 11959-11973.	1.7	44

CITATION REPORT

#	Article	IF	CITATIONS
92	When, where and how? Focus on neuronal calcium dysfunctions in Alzheimer's Disease. Cell Calcium, 2016, 60, 289-298.	1.1	31
93	Local and Use-Dependent Effects of β-Amyloid Oligomers on NMDA Receptor Function Revealed by Optical Quantal Analysis. Journal of Neuroscience, 2016, 36, 11532-11543.	1.7	46
94	Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors. Nature Communications, 2016, 7, 11915.	5.8	184
95	Dose-Dependent Neuroprotection andÂNeurotoxicity of Simvastatin throughÂReduction of Farnesyl Pyrophosphate in Mice Treated withÂIntracerebroventricular InjectionÂofÂAβ 1-42. Journal of Alzheimer's Disease, 2016, 50, 501-516.	1.2	14
96	Parishin C's prevention of Aβ1–42-induced inhibition of long-term potentiation is related to NMDA receptors. Acta Pharmaceutica Sinica B, 2016, 6, 189-197.	5.7	29
97	Dopamine agonists rescue Aβ–induced LTP impairment byÂSrc-family tyrosine kinases. Neurobiology of Aging, 2016, 40, 98-102.	1.5	26
98	Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer's disease. Neurological Research, 2016, 38, 177-186.	0.6	18
99	Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron, 2016, 89, 983-999.	3.8	138
100	Dysfunction of NMDA receptors in Alzheimer's disease. Neurological Sciences, 2016, 37, 1039-1047.	0.9	186
101	Discovery of CluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design. Journal of Medicinal Chemistry, 2016, 59, 2760-2779.	2.9	84
102	The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 1905-1924.	1.9	73
103	Involvement of CluN2B subunit containing N-methyl- d -aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer's disease (AD). Neuropharmacology, 2017, 123, 100-115.	2.0	29
104	Targeting glutamatergic and cellular prion protein mechanisms of amyloid β-mediated persistent synaptic plasticity disruption: Longitudinal studies. Neuropharmacology, 2017, 121, 231-246.	2.0	26
105	Posttranslational modification impact on the mechanism by which amyloidâ€Î² induces synaptic dysfunction. EMBO Reports, 2017, 18, 962-981.	2.0	50
106	Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5527-5532.	3.3	48
107	Overexpression of EphB2 in hippocampus rescues impaired NMDA receptors trafficking and cognitive dysfunction in Alzheimer model. Cell Death and Disease, 2017, 8, e2717-e2717.	2.7	60
108	Modulating the Balance of Synaptic and Extrasynaptic NMDA Receptors Shows Positive Effects against Amyloid-β-Induced Neurotoxicity. Journal of Alzheimer's Disease, 2017, 57, 885-897.	1.2	32
109	Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 2017, 38, 1205-1235.	2.8	1,094

#	Article	IF	CITATIONS
110	Epigenetic regulation by G9a/ <scp>GLP</scp> complex ameliorates amyloidâ€beta 1â€42 induced deficits in longâ€ŧerm plasticity and synaptic tagging/capture in hippocampal pyramidal neurons. Aging Cell, 2017, 16, 1062-1072.	3.0	34
111	SORLA attenuates EphA4 signaling and amyloid β–induced neurodegeneration. Journal of Experimental Medicine, 2017, 214, 3669-3685.	4.2	35
112	Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology, 2017, 112, 34-45.	2.0	76
113	Cholesterol and Fat Metabolism in Alzheimer's Disease. , 2017, , 161-193.		0
114	Chronic Monoarthritis Pain Accelerates the Processes of Cognitive Impairment and Increases the NMDAR Subunits NR2B in CA3 of Hippocampus from 5-month-old Transgenic APP/PS1 Mice. Frontiers in Aging Neuroscience, 2017, 9, 123.	1.7	26
115	Amyloid-β Impairs Vesicular Secretion in Neuronal and Astrocyte Peptidergic Transmission. Frontiers in Molecular Neuroscience, 2017, 10, 202.	1.4	9
116	Molecular Mechanisms of Synaptic Plasticity and Memory andÂTheir Dysfunction in Alzheimer's Disease â~†. , 2017, , 65-135.		1
117	Fluorinated CluN2B Receptor Antagonists with a 3â€Benzazepine Scaffold Designed for PET Studies. ChemMedChem, 2018, 13, 1058-1068.	1.6	13
118	Hydroxymethyl bioisosteres of phenolic GluN2B-selective NMDA receptor antagonists: Design, synthesis and pharmacological evaluation. European Journal of Medicinal Chemistry, 2018, 144, 672-681.	2.6	16
119	Synapse-to-nucleus communication: from developmental disorders to Alzheimer's disease. Current Opinion in Neurobiology, 2018, 48, 160-166.	2.0	34
120	HIPK2-Mediated Transcriptional Control of NMDA Receptor Subunit Expression Regulates Neuronal Survival and Cell Death. Journal of Neuroscience, 2018, 38, 4006-4019.	1.7	28
121	DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer's disease. European Journal of Pharmacology, 2018, 827, 215-226.	1.7	49
122	Receptor-heteromer mediated regulation of endocannabinoid signaling in activated microglia. Role of CB1 and CB2 receptors and relevance for Alzheimer's disease and levodopa-induced dyskinesia. Brain, Behavior, and Immunity, 2018, 67, 139-151.	2.0	99
123	Hippocampale synaptische Plastizitäbei neurodegenerativen Erkrankungen: Aβ, Tau und darüber hinaus. Neuroforum, 2018, 24, 203-212.	0.2	1
124	Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer's Disease. Frontiers in Neuroscience, 2018, 12, 963.	1.4	65
125	Astrocytic α7 Nicotinic Receptor Activation Inhibits Amyloid-β Aggregation by Upregulating Endogenous αB-crystallin through the PI3K/Akt Signaling Pathway. Current Alzheimer Research, 2018, 16, 39-48.	0.7	21
126	Excitotoxicity. , 2018, , 70-100.		0
127	N-Methyl-D-Aspartate Receptor Link to the MAP Kinase Pathway in Cortical and Hippocampal Neurons and Microglia Is Dependent on Calcium Sensors and Is Blocked by α-Synuclein, Tau, and Phospho-Tau in Non-transgenic and Transgenic APPSw,Ind Mice. Frontiers in Molecular Neuroscience, 2018, 11, 273.	1.4	19

#	Article	IF	CITATIONS
128	Commentary: GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1. Frontiers in Molecular Neuroscience, 2018, 11, 315.	1.4	2
129	Hippocampal synaptic plasticity in neurodegenerative diseases: Aß, tau and beyond. Neuroforum, 2018, 24, A133-A141.	0.2	1
130	NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice. Acta Neuropathologica Communications, 2018, 6, 110.	2.4	26
131	The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer's Disease Therapeutics and Diagnostics. Pharmaceutics, 2018, 10, 190.	2.0	28
132	Neurotoxic Agent-Induced Injury in Neurodegenerative Disease Model: Focus on Involvement of Glutamate Receptors. Frontiers in Molecular Neuroscience, 2018, 11, 307.	1.4	42
133	Effects of NMDAR Antagonist on the Regulation of P-MARCKS Protein to Aβ1â^'42 Oligomers Induced Neurotoxicity. Neurochemical Research, 2018, 43, 2008-2015.	1.6	9
134	Pyridine bioisosteres of potent GluN2B subunit containing NMDA receptor antagonists with benzo[7]annulene scaffold. European Journal of Medicinal Chemistry, 2018, 157, 397-404.	2.6	6
135	Inhibition of NMDA Receptors Prevents the Loss of BDNF Function Induced by Amyloid β. Frontiers in Pharmacology, 2018, 9, 237.	1.6	54
136	Synaptic Alterations in Mouse Models for Alzheimer Disease—A Special Focus on N-Truncated Abeta 4-42. Molecules, 2018, 23, 718.	1.7	20
137	The NMDA receptor antagonist Radiprodil reverses the synaptotoxic effects of different amyloid-beta (Aβ) species on long-term potentiation (LTP). Neuropharmacology, 2018, 140, 184-192.	2.0	22
138	Dysregulation of Intracellular Calcium Signaling in Alzheimer's Disease. Antioxidants and Redox Signaling, 2018, 29, 1176-1188.	2.5	71
139	CaMKII Metaplasticity Drives AÎ ² Oligomer-Mediated Synaptotoxicity. Cell Reports, 2018, 23, 3137-3145.	2.9	61
140	Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease. Neurology, 2018, 91, 125-132.	1.5	65
141	Senescent neurophysiology: Ca2+ signaling from the membrane to the nucleus. Neurobiology of Learning and Memory, 2019, 164, 107064.	1.0	13
142	Paricalcitol accelerates BACE1 lysosomal degradation and inhibits calpain-1 dependent neuronal loss in APP/PS1 transgenic mice. EBioMedicine, 2019, 45, 393-407.	2.7	18
143	Acute and Chronic Sleep Deprivation-Related Changes in N-methyl-D-aspartate Receptor—Nitric Oxide Signalling in the Rat Cerebral Cortex with Reference to Aging and Brain Lateralization. International Journal of Molecular Sciences, 2019, 20, 3273.	1.8	13
144	Synapse-to-Nucleus Signaling in Neurodegenerative and Neuropsychiatric Disorders. Biological Psychiatry, 2019, 86, 87-96.	0.7	24
145	Modification of the 4-phenylbutyl side chain of potent 3-benzazepine-based CluN2B receptor antagonists. Bioorganic and Medicinal Chemistry, 2019, 27, 3559-3567.	1.4	4

щ		IF	CITATION
# 146	ARTICLE Pharmacokinetic properties of enantiomerically pure GluN2B selective NMDA receptor antagonists	lF 1.4	CITATIONS
140	with 3-benzazepine scaffold. Journal of Pharmaceutical and Biomedical Analysis, 2019, 172, 214-222.	1,4	15
147	Excitatory-inhibitory imbalance in Alzheimer's disease and therapeutic significance. Neurobiology of Disease, 2019, 127, 605-615.	2.1	79
148	Amyloid-β Oligomers Regulate ADAM10 Synaptic Localization Through Aberrant Plasticity Phenomena. Molecular Neurobiology, 2019, 56, 7136-7143.	1.9	9
149	Hippocampal Mossy Fibers Synapses in CA3 Pyramidal Cells Are Altered at an Early Stage in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2019, 39, 4193-4205.	1.7	41
150	Ca ²⁺ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB Journal, 2019, 33, 6697-6712.	0.2	62
151	Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Frontiers in Neuroscience, 2019, 13, 164.	1.4	221
152	The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology, 2019, 151, 21-32.	2.0	7
153	Potentiation of NMDA-Mediated Responses by Amyloid-β Peptide 1-40 in Rat Sympathetic Preganglionic Neurons. Journal of Alzheimer's Disease, 2019, 67, 1291-1303.	1.2	5
154	The Role of NMDA Receptors in Alzheimer's Disease. Frontiers in Neuroscience, 2019, 13, 43.	1.4	275
155	Tau- but not Aß -pathology enhances NMDAR-dependent depotentiation in AD-mouse models. Acta Neuropathologica Communications, 2019, 7, 202.	2.4	0
156	Involvement of calpain in the neuropathogenesis of Alzheimer's disease. Medicinal Research Reviews, 2019, 39, 608-630.	5.0	70
157	Intradomain Interactions in an NMDA Receptor Fragment Mediate N-Glycan Processing and Conformational Sampling. Structure, 2019, 27, 55-65.e3.	1.6	9
158	Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035212.	2.3	55
159	Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells, 2020, 9, 2513.	1.8	22
160	Amyloid Beta Secreted during Consolidation Prevents Memory Malleability. Current Biology, 2020, 30, 1934-1940.e4.	1.8	13
161	The two faces of synaptic failure in AppNL-G-F knock-in mice. Alzheimer's Research and Therapy, 2020, 12, 100.	3.0	25
162	Evaluation of 5 H â€Thiazolo[3,2â€Ì±]pyrimidinâ€5â€ones as Potential GluN2A PET Tracers. ChemMedChem, 202 15, 2448-2461.	0. 1.6	2
163	Novel huperzine A based NMDA antagonists: insights from molecular docking, ADME/T and molecular dynamics simulation studies. RSC Advances, 2020, 10, 25446-25455.	1.7	2

CITATION REPORT

#	Article	IF	CITATIONS
164	Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. International Journal of Molecular Sciences, 2020, 21, 1538.	1.8	69
165	A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology, 2020, 170, 108042.	2.0	24
166	Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2020, 14, 90.	1.8	145
167	Amyloidâ€Î² oligomers in cellular models of Alzheimer's disease. Journal of Neurochemistry, 2020, 155, 348-369.	2.1	50
168	Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer's diseases. Journal of Neurochemistry, 2021, 156, 539-552.	2.1	4
169	Differential inhibitory effects of resveratrol on excitotoxicity and synaptic plasticity: involvement of NMDA receptor subtypes. Nutritional Neuroscience, 2021, 24, 443-458.	1.5	6
170	AÎ ² Oligomers Dysregulate Calcium Homeostasis by Mechanosensitive Activation of AMPA and NMDA Receptors. ACS Chemical Neuroscience, 2021, 12, 766-781.	1.7	35
171	Involvement of Cholinergic, Adrenergic, and Glutamatergic Network Modulation with Cognitive Dysfunction in Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 2283.	1.8	39
172	A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer's Pathogenesis—And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. International Journal of Molecular Sciences, 2021, 22, 2140.	1.8	11
173	System-Level Analysis of Alzheimer's Disease Prioritizes Candidate Genes for Neurodegeneration. Frontiers in Genetics, 2021, 12, 625246.	1.1	9
174	NSMF promotes the replication stress-induced DNA damage response for genome maintenance. Nucleic Acids Research, 2021, 49, 5605-5622.	6.5	6
175	Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Marine Drugs, 2021, 19, 343.	2.2	8
176	Amyloid Beta-Mediated Changes in Synaptic Function and Spine Number of Neocortical Neurons Depend on NMDA Receptors. International Journal of Molecular Sciences, 2021, 22, 6298.	1.8	5
177	Amyloid-β (1-42) peptide induces rapid NMDA receptor-dependent alterations at glutamatergic synapses in the entorhinal cortex. Neurobiology of Aging, 2021, 105, 296-309.	1.5	6
178	Transferrin-Pep63-liposomes accelerate the clearance of Aβ and rescue impaired synaptic plasticity in early Alzheimer's disease models. Cell Death Discovery, 2021, 7, 256.	2.0	13
179	Distinct types of amyloidâ€Î² oligomers displaying diverse neurotoxicity mechanisms in Alzheimer's disease. Journal of Cellular Biochemistry, 2021, 122, 1594-1608.	1.2	15
180	p38 MAPKâ€mediated loss of nuclear RNase III enzyme Drosha underlies amyloid betaâ€induced neuronal stress in Alzheimer's disease. Aging Cell, 2021, 20, e13434.	3.0	14
181	Role of Ionotropic Glutamate Receptors in Neurodegenerative and Other Disorders. , 2021, , 1-29.		0

	CITATION REL		
#	Article	IF	CITATIONS
183	Pathogenesis of Abeta Oligomers in Synaptic Failure. Current Alzheimer Research, 2013, 10, 316-323.	0.7	77
184	PNU282987 inhibits amyloidâ€Î² aggregation by upregulating astrocytic endogenous αBâ€ʿcrystallin and HSP‴ via regulation of the α7AChR, PI3K/Akt/HSFâ€ʿ1 signaling axis. Molecular Medicine Reports, 2020, 22, 201-208.	70 1.1	13
185	Pathophysiological Ionotropic Glutamate Signalling in Neuroinflammatory Disease as a Therapeutic Target. Frontiers in Neuroscience, 2021, 15, 741280.	1.4	11
186	Jacob, a Synapto-Nuclear Protein Messenger Linking N-methyl-D-aspartate Receptor Activation to Nuclear Gene Expression. Frontiers in Synaptic Neuroscience, 2021, 13, 787494.	1.3	7
187	Synaptic dysfunction in early phases of Alzheimer's Disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, 184, 417-438.	1.0	27
188	Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: Relevance to the synapse pathology of Alzheimer's disease. Neuroscience Research, 2022, , .	1.0	12
189	Differential vulnerability of hippocampal CA3-CA1 synapses to Aβ. Acta Neuropathologica Communications, 2022, 10, 45.	2.4	4
203	Involvement of cholesterol and β-amyloid in the initiation and progression of Alzheimer's disease. , 2022, , 715-745.		0
204	Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Molecular Psychiatry, 2022, 27, 3182-3191.	4.1	14
205	EVALUATION OF ANTAGONIST ACTIVITY OF IFENPRODIL AND THEIR ANALOGOUS AGAINST GLUN1/GLUN2B USING IN SILICO MOLECULAR DOCKING AND ABSORPTION-DISTRIBUTIONMETABOLISM- EXCRETION TOXICITY. Asian Journal of Pharmaceutical and Clinical Research, 0, , 34-40.	0.3	0
206	Î ³ -secretase promotes Drosophila postsynaptic development through the cleavage of a Wnt receptor. Developmental Cell, 2022, 57, 1643-1660.e7.	3.1	14
207	Synapse pathology in Alzheimer's disease. Seminars in Cell and Developmental Biology, 2023, 139, 13-23.	2.3	30
208	Sphingosine 1â€phosphate attenuates neuronal dysfunction induced by amyloidâ€Î² oligomers through endocytic internalization of <scp>NMDA</scp> receptors. FEBS Journal, 2023, 290, 112-133.	2.2	4
209	Aß Pathology and Neuron–Glia Interactions: A Synaptocentric View. Neurochemical Research, 2023, 48, 1026-1046.	1.6	12
210	Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. Annals of Clinical and Experimental Neurology, 2022, 16, 74-82.	0.1	1
211	Altered Functional Connectivity of Basal Ganglia in Mild Cognitive Impairment and Alzheimer's Disease. Brain Sciences, 2022, 12, 1555.	1.1	6
212	Synaptic degeneration in Alzheimer disease. Nature Reviews Neurology, 2023, 19, 19-38.	4.9	84
213	Role of Ionotropic Clutamate Receptors in Neurodegenerative and Other Disorders. , 2022, , 1969-1997.		0

#	Article	IF	CITATIONS
214	Jacobâ€induced transcriptional inactivation of <scp>CREB</scp> promotes Aβâ€induced synapse loss in Alzheimer's disease. EMBO Journal, 2023, 42, .	3.5	9
221	Targeting metaplasticity mechanisms to promote sustained antidepressant actions. Molecular Psychiatry, 0, , .	4.1	1
223	The glutamatergic system in Alzheimer's disease: a systematic review with meta-analysis. Molecular Psychiatry, 0, , .	4.1	0