Dynamic Changes in the Copy Number of Pluripotency Human ESCs and iPSCs during Reprogramming and Tir

Cell Stem Cell 8, 106-118 DOI: 10.1016/j.stem.2010.12.003

Citation Report

#	Article	IF	CITATIONS
1	Tinkering with Transcription Factors Uncovers Plasticity of Somatic Cells. Genes and Cancer, 2010, 1, 1089-1099.	0.6	6
2	Capturing Alzheimer's disease genomes with induced pluripotent stem cells: prospects and challenges. Genome Medicine, 2011, 3, 49.	3.6	28
3	Transcriptomic analysis of pluripotent stem cells: insights into health and disease. Genome Medicine, 2011, 3, 68.	3.6	7
4	Cell fate conversion by mRNA. Stem Cell Research and Therapy, 2011, 2, 5.	2.4	21
5	Functional Modules Distinguish Human Induced Pluripotent Stem Cells from Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 1937-1950.	1.1	26
6	Self-renewal and scalability of human embryonic stem cells for human therapy. Regenerative Medicine, 2011, 6, 327-334.	0.8	31
7	Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nature Biotechnology, 2011, 29, 1132-1144.	9.4	509
8	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	21.5	417
9	Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nature Protocols, 2011, 6, 1251-1273.	5.5	67
10	iPS cells: five years later. Science-Business EXchange, 2011, 4, 588-588.	0.0	0
11	The quantitative proteomes of humanâ€induced pluripotent stem cells and embryonic stem cells. Molecular Systems Biology, 2011, 7, 550.	3.2	125
12	Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations. Cell, 2011, 146, 318-331.	13.5	703
13	Modeling complex neuropsychiatric disorders with human induced pluripotent stem cells. Current Opinion in Pharmacology, 2011, 11, 521-527.	1.7	11
14	Oligonucleotide microarrays in constitutional genetic diagnosis. Expert Review of Molecular Diagnostics, 2011, 11, 521-532.	1.5	15
15	Aneuploid human embryonic stem cells: origins and potential for modeling chromosomal disorders. Regenerative Medicine, 2011, 6, 493-503.	0.8	6
16	Choreographing pluripotency and cell fate with transcription factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 337-349.	0.9	15
17	iPSCs: Induced Back to Controversy. Cell Stem Cell, 2011, 8, 347-348.	5.2	61
18	Targeted Gene Correction of Laminopathy-Associated LMNA Mutations in Patient-Specific iPSCs. Cell Stem Cell, 2011, 8, 688-694.	5.2	214

#	Article	IF	CITATIONS
19	Assessing the Safety of Stem Cell Therapeutics. Cell Stem Cell, 2011, 8, 618-628.	5.2	205
20	Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult Stem Cells. Cell Stem Cell, 2011, 9, 97-102.	5.2	218
21	Genome Sequencing of Mouse Induced Pluripotent Stem Cells Reveals Retroelement Stability and Infrequent DNA Rearrangement during Reprogramming. Cell Stem Cell, 2011, 9, 366-373.	5.2	102
22	Constructing and Deconstructing Stem Cell Models of Neurological Disease. Neuron, 2011, 70, 626-644.	3.8	141
23	Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 2011, 292, 153-196.	1.6	10
24	Human Embryonic Stem Cells Derived from Embryos at Different Stages of Development Share Similar Transcription Profiles. PLoS ONE, 2011, 6, e26570.	1.1	22
25	Embryonic Stem Cells and iPS Cells: Sources and Characteristics. Veterinary Clinics of North America Equine Practice, 2011, 27, 233-242.	0.3	26
26	Inducing iPSCs to Escape the Dish. Cell Stem Cell, 2011, 9, 103-111.	5.2	65
27	Gene Therapy of Some Genetic Diseases by Transferring Normal Human Genomic DNA into Somatic Cells and Stem Cells from Patients. , 0, , .		2
28	Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells and their reprogramming in mouse chimeras. Nature Precedings, 2011, , .	0.1	1
29	Stem cell toxicity?. European Journal of Cardio-thoracic Surgery, 2011, 40, 1037-1038.	0.6	1
30	Expression Patterns of Cancer-Testis Antigens in Human Embryonic Stem Cells and Their Cell Derivatives Indicate Lineage Tracks. Stem Cells International, 2011, 2011, 1-13.	1.2	37
31	Normal Human Pluripotent Stem Cell Lines Exhibit Pervasive Mosaic Aneuploidy. PLoS ONE, 2011, 6, e23018.	1.1	61
32	Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats. PLoS ONE, 2011, 6, e27345.	1.1	26
33	Will Cell Reprogramming Resolve the Embryonic Stem Cell Controversy? A Narrative Review. Annals of Internal Medicine, 2011, 155, 114.	2.0	18
34	Telomere dynamics in induced pluripotent stem cells: Potentials for Human disease modeling. World Journal of Stem Cells, 2011, 3, 89.	1.3	11
35	iPSç″è∫žã«å•題ã₅ã,Šï¼Ÿ. Nature Digest, 2011, 8, 22-22.	0.0	0
36	Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biology, 2011, 13, 497-505.	4.6	464

#	Article	IF	CITATIONS
37	iPS cells forgive but do not forget. Nature Cell Biology, 2011, 13, 523-525.	4.6	14
38	Transforming ER exit: protein secretion meets oncogenesis. Nature Cell Biology, 2011, 13, 525-526.	4.6	2
39	The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 2011, 11, 268-277.	12.8	785
40	Genomic instability in iPS: time for a break. EMBO Journal, 2011, 30, 991-993.	3.5	50
41	Regenerating the epigenome. EMBO Reports, 2011, 12, 208-215.	2.0	30
42	Copy number variation and selection during reprogramming to pluripotency. Nature, 2011, 471, 58-62.	13.7	870
43	Karyotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nature Biotechnology, 2011, 29, 313-314.	9.4	285
44	The dark side of induced pluripotency. Nature, 2011, 471, 46-47.	13.7	260
45	Genomic instability in induced stem cells. Cell Death and Differentiation, 2011, 18, 745-753.	5.0	138
46	Induced pluripotent stem cells: a new revolution for clinical neurology?. Lancet Neurology, The, 2011, 10, 383-394.	4.9	97
47	The effects of the physical properties of culture substrates on the growth and differentiation of human embryonic stem cells. Biomaterials, 2011, 32, 8816-8829.	5.7	30
48	Expression patterns of germ line specific genes in mouse and human pluripotent stem cells are associated with regulation of ground and primed state of pluripotency. Russian Journal of Developmental Biology, 2011, 42, 355-375.	0.1	7
49	Recurrent trisomy and Robertsonian translocation of chromosome 14 in murine iPS cell lines. Chromosome Research, 2011, 19, 857-868.	1.0	16
50	Human Pluripotent Stem Cell Therapy for Huntington's Disease: Technical, Immunological, and Safety Challenges. Neurotherapeutics, 2011, 8, 562-576.	2.1	27
51	Potential Pathways to Restore β-Cell Mass: Pluripotent Stem Cells, Reprogramming, and Endogenous Regeneration. Current Diabetes Reports, 2011, 11, 392-401.	1.7	17
52	Extended passaging increases the efficiency of neural differentiation from induced pluripotent stem cells. BMC Neuroscience, 2011, 12, 82.	0.8	52
53	Stem cell biology and drug discovery. BMC Biology, 2011, 9, 42.	1.7	39
54	Human Induced Pluripotent Stem Cells Harbor Homoplasmic and Heteroplasmic Mitochondrial DNA Mutations While Maintaining Human Embryonic Stem Cell–like Metabolic Reprogramming. Stem Cells, 2011, 29, 1338-1348.	1.4	124

#	Article	IF	CITATIONS
55	Concise Review: Managing Genotoxicity in the Therapeutic Modification of Stem Cells. Stem Cells, 2011, 29, 1479-1484.	1.4	40
56	Primer and interviews: Promises and realities of induced pluripotent stem cells. Developmental Dynamics, 2011, 240, 2034-2041.	0.8	4
57	A guide to stem cell identification: Progress and challenges in systemâ€wide predictive testing with complex biomarkers. BioEssays, 2011, 33, 880-890.	1.2	17
58	iPSCs: Unstable Origins?. Molecular Therapy, 2011, 19, 1188-1190.	3.7	9
59	Stem cells: The growing pains of pluripotency. Nature, 2011, 473, 272-274.	13.7	29
60	Stem Cell Models for Biomarker Discovery in Brain Disease. International Review of Neurobiology, 2011, 101, 239-257.	0.9	4
61	Flaw in induced-stem-cell model. Nature, 2011, 470, 13-13.	13.7	16
62	The Future of Induced Pluripotent Stem Cells for Cardiac Therapy and Drug Development. Current Pharmaceutical Design, 2011, 17, 3258-3270.	0.9	21
63	iPS cells to model CDKL5-related disorders. European Journal of Human Genetics, 2011, 19, 1246-1255.	1.4	80
64	Telomere dynamics in dyskeratosis congenita: the long and the short of iPS. Cell Research, 2011, 21, 1157-1160.	5.7	19
65	Translating the Lessons From Gene Therapy to the Development of Regenerative Medicine. Molecular Therapy, 2011, 19, 439-441.	3.7	8
66	Recurrent copy number variations in human induced pluripotent stem cells. Nature Biotechnology, 2011, 29, 488-491.	9.4	187
67	Comparison of Human Induced Pluripotent and Embryonic Stem Cells: Fraternal or Identical Twins?. Molecular Therapy, 2011, 19, 635-638.	3.7	113
68	Insulin-producing Surrogate β-cells From Embryonic Stem Cells: Are We There Yet?. Molecular Therapy, 2011, 19, 1759-1768.	3.7	45
69	iPS Genomes Investigated. Circulation Research, 2011, 108, 1163-1164.	2.0	0
70	The labyrinth of nuclear reprogramming. Journal of Molecular Cell Biology, 2011, 3, 327-329.	1.5	4
71	2011 Editors' choice. Nature, 2011, 480, 468-469.	13.7	0
72	Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6537-6542.	3.3	150

#	Article	IF	CITATIONS
73	Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18714-18719.	3.3	137
74	Genomic instability in cultured stem cells: associated risks and underlying mechanisms. Regenerative Medicine, 2011, 6, 653-662.	0.8	25
75	Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	5
76	Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology. Pediatric Hematology and Oncology, 2012, 29, 507-528.	0.3	7
77	Prospect of Induced Pluripotent Stem Cell Genetic Repair to Cure Genetic Diseases. Stem Cells International, 2012, 2012, 1-7.	1.2	6
78	Induced Pluripotent Stem Cells Show Metabolomic Differences to Embryonic Stem Cells in Polyunsaturated Phosphatidylcholines and Primary Metabolism. PLoS ONE, 2012, 7, e46770.	1.1	68
79	A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells. Stem Cells Translational Medicine, 2012, 1, 855-865.	1.6	54
80	Generation of Retinal Pigment Epithelial Cells from Small Molecules and <i>OCT4</i> Reprogrammed Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2012, 1, 96-109.	1.6	83
81	Specimen Collection for Induced Pluripotent Stem Cell Research: Harmonizing the Approach to Informed Consent. Stem Cells Translational Medicine, 2012, 1, 409-421.	1.6	53
82	Recurrent transcriptional clusters in the genome of mouse pluripotent stem cells. Nucleic Acids Research, 2012, 40, e153-e153.	6.5	3
83	Amniotic fluid stem cells to study mTOR signaling in differentiation. Organogenesis, 2012, 8, 96-100.	0.4	2
84	Human Pluripotent Stem Cellâ€Derived Mesenchymal Stem Cells Prevent Allergic Airway Inflammation in Mice. Stem Cells, 2012, 30, 2692-2699.	1.4	170
85	Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Scientific Reports, 2012, 2, 208.	1.6	78
86	Skeletogenic phenotype of human Marfan embryonic stem cells faithfully phenocopied by patient-specific induced-pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 215-220.	3.3	68
87	Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences. Journal of Virology, 2012, 86, 4463-4467.	1.5	18
88	Concise Review: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 2012, 1, 150-159.	1.6	64
89	Modeling psychiatric disorders through reprogramming. DMM Disease Models and Mechanisms, 2012, 5, 26-32.	1.2	58
90	Stem cells and regenerative therapies for Parkinson's disease. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 79.	0.7	3

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	The Stability of the Induced Epigenetic Programs. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	3
92	Amniotic Fluid Stem Cells: Future Perspectives. Stem Cells International, 2012, 2012, 1-6.	1.2	16
93	Advances in Induced Pluripotent Stem Cell Technologies. Stem Cells International, 2012, 2012, 1-1.	1.2	0
94	Induced pluripotent stem cells in clinical hematology. Current Opinion in Hematology, 2012, 19, 256-260.	1.2	11
95	A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific Reports, 2012, 2, 213.	1.6	57
96	Time to Reconsider Stem Cell Induction Strategies. Cells, 2012, 1, 1293-1312.	1.8	7
97	SNP Genotyping to Detect Genomic Alterations in Human Pluripotent Stem Cells. , 2012, , 203-221.		0
98	Analysis of Genome-Wide Gene Expression Data from Microarrays and Sequencing. , 2012, , 271-291.		0
99	Hematopoietic stem cell engineering at a crossroads. Blood, 2012, 119, 1107-1116.	0.6	67
100	Prospects and challenges of induced pluripotent stem cells as a source of hematopoietic stem cells. Annals of the New York Academy of Sciences, 2012, 1266, 179-188.	1.8	9
101	Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature, 2012, 492, 438-442.	13.7	355
102	Key anticipated regulatory issues for clinical use of human induced pluripotent stem cells. Regenerative Medicine, 2012, 7, 713-720.	0.8	16
103	Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure?. Pediatric Research, 2012, 71, 427-432.	1.1	6
104	Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Research, 2012, 40, 2032-2040.	6.5	68
105	Cellular reprogramming: a small molecule perspective. Current Opinion in Cell Biology, 2012, 24, 784-792.	2.6	40
106	Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive BioMedicine Online, 2012, 24, 235-246.	1.1	74
107	Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Medicine, 2012, 4, 55.	3.6	36
108	Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 8.	2.4	8

		CITATION RE	PORT	
#	Article		IF	Citations
109	Zinc-finger nuclease-mediated correction of \hat{I}_{\pm} -thalassemia in iPS cells. Blood, 2012, 120), 3906-3914.	0.6	90
110	Low Incidence of DNA Sequence Variation in Human Induced Pluripotent Stem Cells Ger Nonintegrating Plasmid Expression. Cell Stem Cell, 2012, 10, 337-344.	herated by	5.2	226
111	Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and Their Difl Derivatives. Cell Stem Cell, 2012, 10, 620-634.	erentiated	5.2	352
112	Background Mutations in Parental Cells Account for Most of the Genetic Heterogeneity Pluripotent Stem Cells. Cell Stem Cell, 2012, 10, 570-582.	of Induced	5.2	199
113	Molecular Signatures of Human Induced Pluripotent Stem Cells Highlight Sex Difference Genes. Cell Stem Cell, 2012, 11, 75-90.	es and Cancer	5.2	143
114	Nonclinical safety strategies for stem cell therapies. Toxicology and Applied Pharmacolo 223-231.	gy, 2012, 262,	1.3	47
115	Strategies for replacing myocytes with induced pluripotent stem in clinical protocols. Transplantation Reviews, 2012, 26, 223-232.		1.2	11
116	Sourcing and using stem cell lines for radiation research: Potential, challenges and good culture practice. International Journal of Radiation Biology, 2012, 88, 703-708.	stem cell	1.0	2
117	Aging in the Mouse and Perspectives of Rejuvenation Through Induced Pluripotent Sten Results and Problems in Cell Differentiation, 2012, 55, 413-427.	ו Cells (iPSCs).	0.2	5
119	Female Sex Bias in Human Embryonic Stem Cell Lines. Stem Cells and Development, 202	12, 21, 363-372.	1.1	27
120	Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews Genet 732-744.	ics, 2012, 13,	7.7	211
121	Role of mass spectrometry-based proteomics in the study of cellular reprogramming and pluripotent stem cells. Expert Review of Proteomics, 2012, 9, 379-399.	d induced	1.3	11
122	Identification of a specific reprogramming-associated epigenetic signature in human ind pluripotent stem cells. Proceedings of the National Academy of Sciences of the United S America, 2012, 109, 16196-16201.	uced States of	3.3	152
123	Equally potent?. EMBO Reports, 2012, 13, 890-894.		2.0	1
124	Extensive genetic variation in somatic human tissues. Proceedings of the National Acade of the United States of America, 2012, 109, 18018-18023.	emy of Sciences	3.3	136
125	Induced Pluripotent Stem Cells: Progress and Future Perspectives in the Stem Cell Worl Reprogramming, 2012, 14, 459-470.	d. Cellular	0.5	8
126	Chromosome dynamic changes in two cultured chinese human embryonic stem cell line nucleotide polymorphism, copy number variation and loss of heterozygosity. Journal of Biochemistry, 2012, 113, 3520-3527.		1.2	7
127	Progress and bottleneck in induced pluripotency. Cell Regeneration, 2012, 1, 1:5.		1.1	4

#	Article	IF	CITATIONS
128	Emerging trends in regenerative medicine: a scientometric analysis in <i>CiteSpace</i> . Expert Opinion on Biological Therapy, 2012, 12, 593-608.	1.4	860
129	Identification of Abnormal Stem Cells Using Raman Spectroscopy. Stem Cells and Development, 2012, 21, 2152-2159.	1.1	29
130	Mouse-Induced Pluripotent Stem Cells. Results and Problems in Cell Differentiation, 2012, 55, 395-411.	0.2	0
131	The role of induced pluripotent stem cells in research and therapy of primary immunodeficiencies. Current Opinion in Immunology, 2012, 24, 617-624.	2.4	12
132	Development of nuclease-mediated site-specific genome modification. Current Opinion in Immunology, 2012, 24, 609-616.	2.4	22
133	Does transcription factor induced pluripotency accurately mimic embryo derived pluripotency?. Current Opinion in Genetics and Development, 2012, 22, 429-434.	1.5	7
134	Human disease modeling with induced pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 509-516.	1.5	47
135	The development of pluripotent stem cells. Current Opinion in Genetics and Development, 2012, 22, 403-408.	1.5	12
136	Genomic stability in reprogramming. Current Opinion in Genetics and Development, 2012, 22, 444-449.	1.5	58
137	Copy number variations (CNVs) in human pluripotent cell-derived neuroprogenitors. Gene, 2012, 506, 377-379.	1.0	11
138	High-throughput karyotyping of human pluripotent stem cells. Stem Cell Research, 2012, 9, 192-195.	0.3	33
139	Culture of Human Pluripotent Stem Cells in Feeder-Free Conditions. , 2012, , 29-40.		Ο
140	Aging and reprogramming: a two-way street. Current Opinion in Cell Biology, 2012, 24, 744-756.	2.6	136
141	Strategies of Regenerative Medicine. , 2012, , 229-260.		Ο
142	Banking stem cells for research and clinical applications. Progress in Brain Research, 2012, 200, 41-58.	0.9	11
143	A Model of Early Human Embryonic Stem Cell Differentiation Reveals Inter- and Intracellular Changes on Transition to Squamous Epithelium. Stem Cells and Development, 2012, 21, 1250-1263.	1.1	16
144	Human Pluripotent Stem Cells for Modeling Toxicity. Advances in Pharmacology, 2012, 63, 207-256.	1.2	23
145	Human ESC/iPSC-based â€~omics' and bioinformatics for translational research. Drug Discovery Today: Disease Models, 2012, 9, e161-e170.	1.2	8

	Сіта	tion Report	
#	Article	IF	CITATIONS
146	Stem Cells and Cancer Stem Cells, Volume 4. , 2012, , .		2
147	Muse cells and induced pluripotent stem cell: implication of the elite model. Cellular and Molecular Life Sciences, 2012, 69, 3739-3750.	2.4	17
148	CD117 ⁺ amniotic fluid stem cells. Organogenesis, 2012, 8, 77-88.	0.4	79
149	The gene expression profiles of induced pluripotent stem cells from individuals with childhood cerebral adrenoleukodystrophy are consistent with proposed mechanisms of pathogenesis. Stem Cell Research and Therapy, 2012, 3, 39.	2.4	28
150	The Directed Differentiation of Human iPS Cells into Kidney Podocytes. PLoS ONE, 2012, 7, e46453.	1.1	163
151	X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Frontiers in Psychiatry, 2012, 3, 24.	1.3	41
152	Implications of aneuploidy for stem cell biology and brain therapeutics. Frontiers in Cellular Neuroscience, 2012, 6, 36.	1.8	21
153	Higher Copy Number Variation and Diverse X Chromosome Inactivation in Parthenote-derived Human Embryonic Stem Cells. Journal of Reproduction and Development, 2012, 58, 642-648.	0.5	3
154	Stem Cell Therapies for Type I Diabetes. , 0, , .		0
155	Elevated Coding Mutation Rate During the Reprogramming of Human Somatic Cells into Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 435-440.	1.4	172
156	Concise Review: Genomic Stability of Human Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 22-2	7. 1.4	113
157	Concise Review: Induced Pluripotent Stem Cellâ€Derived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products. Stem Cells, 2012, 30, 42-47.	² 1.4	242
158	Concise Review: Embryonic Stem Cells Versus Induced Pluripotent Stem Cells: The Game Is On. Stem Cells, 2012, 30, 10-14.	1.4	129
159	Deciphering the complexities of human diseases and disorders by coupling inducedâ€pluripotent stem cells and systems genetics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 339-350.	6.6	6
160	High Prevalence of Evolutionarily Conserved and Species-Specific Genomic Aberrations in Mouse Pluripotent Stem Cells. Stem Cells, 2012, 30, 612-622.	1.4	48
161	Concise Review: Immune Recognition of Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 797-803.	1.4	58
162	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	2.5	81
163	The genomic stability of induced pluripotent stem cells. Protein and Cell, 2012, 3, 271-277.	4.8	14

	CHANON	NKEPORI	
#	Article	IF	CITATIONS
164	Safety of Mesenchymal Stem Cells for Clinical Application. Stem Cells International, 2012, 2012, 1-4.	1.2	338
165	Medical therapies with adult stem/progenitor cells (MSCs): A backward journey from dramatic results in vivo to the cellular and molecular explanations. Journal of Cellular Biochemistry, 2012, 113, 1460-1469.	1.2	101
166	Human induced pluripotent stem cells—from mechanisms to clinical applications. Journal of Molecular Medicine, 2012, 90, 735-745.	1.7	51
167	Derivation of new human embryonic stem cell lines reveals rapid epigenetic progression in vitro that can be prevented by chemical modification of chromatin. Human Molecular Genetics, 2012, 21, 751-764.	1.4	46
168	Haplotype-Based Banking of Human Pluripotent Stem Cells for Transplantation: Potential and Limitations. Stem Cells and Development, 2012, 21, 2364-2373.	1.1	60
169	Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells. BioEssays, 2012, 34, 472-476.	1.2	15
170	Mediators of induced pluripotency and their role in cancer cells – current scientific knowledge and future perspectives. Biotechnology Journal, 2012, 7, 810-821.	1.8	47
171	From Pluripotency to Distinct Cardiomyocyte Subtypes. Physiology, 2012, 27, 119-129.	1.6	22
172	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	13.7	976
173	Non-viral iPSCs: a safe way for therapy?. Protein and Cell, 2012, 3, 241-245.	4.8	3
174	Induced pluripotent stem cell research: A revolutionary approach to face the challenges in drug screening. Archives of Pharmacal Research, 2012, 35, 245-260.	2.7	19
175	Evaluating the genomic and sequence integrity of human ES cell lines; comparison to normal genomes. Stem Cell Research, 2012, 8, 154-164.	0.3	24
176	Therapeutic opportunities: Telomere maintenance in inducible pluripotent stem cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 730, 98-105.	0.4	14
177	Efficient and simultaneous generation of hematopoietic and vascular progenitors from human induced pluripotent stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2013, 83A, 114-126.	1.1	37
178	Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene, 2013, 32, 2249-2260.	2.6	122
179	Reevaluation of the safety of induced pluripotent stem cells: a call from somatic mosaicism. Protein and Cell, 2013, 4, 83-85.	4.8	3
180	Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death and Disease, 2013, 4, e691-e691.	2.7	192
181	The p53–PUMA axis suppresses iPSC generation. Nature Communications, 2013, 4, 2174.	5.8	53

#	Article	IF	CITATIONS
182	Genetic and Epigenetic Variations in iPSCs: Potential Causes and Implications for Application. Cell Stem Cell, 2013, 13, 149-159.	5.2	326
183	Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 2013, 31, 759-765.	9.4	340
184	Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 2013, 19, 998-1004.	15.2	559
186	Substrates and supplements for hESCs: a critical review. Journal of Assisted Reproduction and Genetics, 2013, 30, 315-323.	1.2	14
187	Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming. Nature Communications, 2013, 4, 1382.	5.8	58
188	Karyotypically abnormal human ESCs are sensitive to HDAC inhibitors and show altered regulation of genes linked to cancers and neurological diseases. Stem Cell Research, 2013, 11, 1022-1036.	0.3	10
189	Mapping Science. , 2013, , 259-320.		1
190	Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 2013, 31, 1600-1623.	6.0	80
191	BMP4-directed trophoblast differentiation of human embryonic stem cells is mediated through a ΔNp63+ cytotrophoblast stem cell state. Development (Cambridge), 2013, 140, 3965-3976.	1.2	111
192	BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures. Stem Cell Reports, 2013, 1, 379-386.	2.3	132
193	Genomic Analysis of hESC Pedigrees Identifies De Novo Mutations and Enables Determination of the Timing and Origin of Mutational Events. Cell Reports, 2013, 4, 1288-1302.	2.9	10
194	Mosaic Copy Number Variation in Human Neurons. Science, 2013, 342, 632-637.	6.0	488
195	Resident Neural Stem Cells Restrict Tissue Damage and Neuronal Loss After Spinal Cord Injury in Mice. Science, 2013, 342, 637-640.	6.0	225
196	Clinical Therapy Using iPSCs: Hopes and Challenges. Genomics, Proteomics and Bioinformatics, 2013, 11, 294-298.	3.0	41
197	Induced Pluripotent Stem Cells Are Sensitive to DNA Damage. Genomics, Proteomics and Bioinformatics, 2013, 11, 320-326.	3.0	16
198	Mapping Scientific Frontiers. , 2013, , .		59
199	Potential for pharmacological manipulation of human embryonic stem cells. British Journal of Pharmacology, 2013, 169, 269-289.	2.7	11
200	Mouse and human embryonic stem cells. Russian Journal of Genetics: Applied Research, 2013, 3, 426-434.	0.4	0

#	Article	IF	CITATIONS
201	Direct Reprogramming of Adult Somatic Cells into other Lineages: Past Evidence and Future Perspectives. Cell Transplantation, 2013, 22, 921-944.	1.2	20
202	TiO ₂ coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication, 2013, 5, 025009.	3.7	29
203	Growth Requirements and Chromosomal Instability of Induced Pluripotent Stem Cells Generated from Adult Canine Fibroblasts. Stem Cells and Development, 2013, 22, 951-963.	1.1	49
204	Return of results in translational iPS cell research: considerations for donor informed consent. Stem Cell Research and Therapy, 2013, 4, 6.	2.4	12
205	Building a microphysiological skin model from induced pluripotent stem cells. Stem Cell Research and Therapy, 2013, 4, S2.	2.4	30
206	Characteristics of stem cells. , 2013, , 1-32.		0
207	Cellular reprogramming and cancer development. International Journal of Cancer, 2013, 132, 1240-1248.	2.3	38
208	The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 2013, 228, 267-275.	2.0	43
209	Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression. Cell Stem Cell, 2013, 12, 88-100.	5.2	164
210	Assessing the Risks of Genotoxicity in the Therapeutic Development of Induced Pluripotent Stem Cells. Molecular Therapy, 2013, 21, 272-281.	3.7	44
211	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
212	DNA Repair in Normal Stem Cells. , 2013, , 53-87.		2
213	Using human induced pluripotent stem cells to treat retinal disease. Progress in Retinal and Eye Research, 2013, 37, 163-181.	7.3	65
214	mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metabolic Engineering, 2013, 18, 9-24.	3.6	41
215	Advances in cellular reprogramming: Moving toward a reprieve from immunogenicity. Immunology Letters, 2013, 155, 14-17.	1.1	4
216	The Therapeutic Potential, Challenges and Future Clinical Directions of Stem Cells from the Wharton's Jelly of the Human Umbilical Cord. Stem Cell Reviews and Reports, 2013, 9, 226-240.	5.6	183
217	Transplantation-potential-related biological properties of decidua basalis mesenchymal stem cells from maternal human term placenta. Cell and Tissue Research, 2013, 352, 301-312.	1.5	7
218	Human pluripotent stem cells: an emerging model in developmental biology. Development (Cambridge), 2013, 140, 705-717.	1.2	155

#	Article	IF	CITATIONS
219	Homologous Recombination DNA Repair Genes Play a Critical Role in Reprogramming to a Pluripotent State. Cell Reports, 2013, 3, 651-660.	2.9	74
221	Genome damage in induced pluripotent stem cells: Assessing the mechanisms and their consequences. BioEssays, 2013, 35, 152-162.	1.2	24
222	Genetic instability in human embryonic stem cells: prospects and caveats. Future Oncology, 2013, 9, 867-877.	1.1	16
223	Cell-based therapies for ocular inflammation. Progress in Retinal and Eye Research, 2013, 35, 82-101.	7.3	14
224	Mechanisms and models of somatic cell reprogramming. Nature Reviews Genetics, 2013, 14, 427-439.	7.7	397
225	DNA doubleâ€strand break response in stem cells: Mechanisms to maintain genomic integrity. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2345-2353.	1.1	65
226	A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death and Differentiation, 2013, 20, 1089-1100.	5.0	44
227	Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency. Nature Cell Biology, 2013, 15, 700-711.	4.6	87
228	Identification of Unsafe Human Induced Pluripotent Stem Cell Lines Using a Robust Surrogate Assay for Pluripotency. Stem Cells, 2013, 31, 1498-1510.	1.4	22
229	Wharton's Jelly-Derived Mesenchymal Stem Cells: Phenotypic Characterization and Optimizing Their Therapeutic Potential for Clinical Applications. International Journal of Molecular Sciences, 2013, 14, 11692-11712.	1.8	247
230	Remodeling Neurodegeneration: Somatic Cell Reprogramming-Based Models of Adult Neurological Disorders. Neuron, 2013, 78, 957-969.	3.8	54
231	Stem Cells and Cellular Therapy. , 2013, , 669-688.		1
232	Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacologica Sinica, 2013, 34, 755-764.	2.8	59
233	X Chromosome Inactivation and Epigenetic Responses to Cellular Reprogramming. Annual Review of Genomics and Human Genetics, 2013, 14, 85-110.	2.5	81
234	Virtual karyotyping of pluripotent stem cells on the basis of their global gene expression profiles. Nature Protocols, 2013, 8, 989-997.	5.5	44
235	Culture under low physiological oxygen conditions improves the stemness and quality of induced pluripotent stem cells. Journal of Cellular Physiology, 2013, 228, 2159-2166.	2.0	30
236	Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, 2013, 153, 1228-1238.	13.5	729
237	Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology, 2013, 14, 357-368.	16.1	283

	CHANON		
#	Article	IF	CITATIONS
238	Defining synthetic surfaces for human pluripotent stem cell culture. Cell Regeneration, 2013, 2, 2:7.	1.1	31
239	Neonatal Desensitization Supports Long-Term Survival and Functional Integration of Human Embryonic Stem Cell-Derived Mesenchymal Stem Cells in Rat Joint Cartilage Without Immunosuppression. Stem Cells and Development, 2013, 22, 90-101.	1.1	41
240	Genome editing of human pluripotent stem cells to generate human cellular disease models. DMM Disease Models and Mechanisms, 2013, 6, 896-904.	1.2	113
241	Embryonic Stem Cells from Blastomeres Maintaining Embryo Viability. Seminars in Reproductive Medicine, 2013, 31, 049-055.	0.5	5
242	Bioinformatics Studies on Induced Pluripotent Stem Cell. Current Bioinformatics, 2013, 8, 80-86.	0.7	2
243	Generation of Human Epidermis-Derived Mesenchymal Stem Cell-like Pluripotent Cells (hEMSCPCs). Scientific Reports, 2013, 3, 1933.	1.6	8
244	No Immunogenicity of IPS Cells in Syngeneic Host Studied by <i>In Vivo</i> Injection and 3D Scaffold Experiments. BioMed Research International, 2013, 2013, 1-7.	0.9	10
245	Human Induced Pluripotent Stem Cells from Basic Research to Potential Clinical Applications in Cancer. BioMed Research International, 2013, 2013, 1-11.	0.9	21
246	Stem Cell Treatments: Applications and Obstacles. , 2013, , 53-91.		0
247	Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 571-617.	1.2	49
248	Human Kidney Cell Reprogramming. Journal of the American Society of Nephrology: JASN, 2013, 24, 1347-1356.	3.0	23
249	Programmed Cells from Basic Neuroscience to Therapy. Research and Perspectives in Neurosciences, 2013, , .	0.4	1
250	A plethora of human pluripotent stem cells. Cell Biology International, 2013, 37, 875-887.	1.4	10
251	Human somatic cell nuclear transfer: A scientist's perspective. Molecular Reproduction and Development, 2013, 80, Fm i-Fm iii.	1.0	3
252	Disease modelling using induced pluripotent stem cells: Status and prospects. BioEssays, 2013, 35, 271-280.	1.2	16
253	Induced Pluripotent Stem Cells and Disorders of the Nervous System. Neuroscientist, 2013, 19, 567-577.	2.6	13
254	Concise Review: New Paradigms for Down Syndrome Research Using Induced Pluripotent Stem Cells: Tackling Complex Human Genetic Disease. Stem Cells Translational Medicine, 2013, 2, 175-184.	1.6	13
255	Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death and Disease, 2013, 4, e950-e950.	2.7	135

#	Article	IF	Citations
256	Concise Review: Adult Mesenchymal Stem Cells, Adult Neural Crest Stem Cells, and Therapy of Neurological Pathologies: A State of Play. Stem Cells Translational Medicine, 2013, 2, 284-296.	1.6	69
257	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
258	Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood, 2013, 122, 2047-2051.	0.6	75
260	Gene expression dynamics during human embryonic development. , 0, , 76-83.		0
261	Embryonic stem cells from blastomeres maintaining embryo viability. , 0, , 84-92.		0
262	Development of Experimental Tumors Formed by Mouse and Human Embryonic Stem and Teratocarcinoma Cells after Subcutaneous and Intraperitoneal Transplantations into Immunodeficient and Immunocompetent Mice. Cell Transplantation, 2013, 22, 1901-1914.	1.2	14
263	Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells. Biological and Pharmaceutical Bulletin, 2013, 36, 182-188.	0.6	33
264	The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability. Chinese Journal of Cancer, 2013, 32, 205-212.	4.9	20
265	Safety Assessment of Reprogrammed Cells Prior to Clinical Applications: Potential Approaches to Eliminate Teratoma Formation. , 2013, , .		1
266	Technological Overview of iPS Induction from Human Adult Somatic Cells. Current Gene Therapy, 2013, 13, 73-92.	0.9	94
267	Immunogenicity and Tumorigenicity of Pluripotent Stem Cells and their Derivatives: Genetic and Epigenetic Perspectives. Current Stem Cell Research and Therapy, 2013, 9, 63-72.	0.6	53
268	Induced pluripotent stem cells. , 0, , 19-33.		0
269	Identification of Proteins Related to Epigenetic Regulation in the Malignant Transformation of Aberrant Karyotypic Human Embryonic Stem Cells by Quantitative Proteomics. PLoS ONE, 2014, 9, e85823.	1.1	12
270	Single Cell Analysis Reveals the Stochastic Phase of Reprogramming to Pluripotency Is an Ordered Probabilistic Process. PLoS ONE, 2014, 9, e95304.	1.1	22
271	Defining Differentially Methylated Regions Specific for the Acquisition of Pluripotency and Maintenance in Human Pluripotent Stem Cells via Microarray. PLoS ONE, 2014, 9, e108350.	1.1	14
272	Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential. Journal of Clinical Medicine, 2014, 3, 1064-1083.	1.0	20
273	Opportunities and Limitations of Modelling Alzheimer's Disease with Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2014, 3, 1357-1372.	1.0	12
274	Solving the puzzle of Parkinson's disease using induced pluripotent stem cells. Experimental Biology and Medicine, 2014, 239, 1421-1432.	1.1	16

<u> </u>		<u> </u>	
(17	ΓΔΤΙ	Repo	DL.
\sim			IX I

#	Article	IF	CITATIONS
275	Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Redifferentiation Capacity: A First Step Toward a Clinical-Grade Cell Source. Stem Cells Translational Medicine, 2014, 3, 433-447.	1.6	58
277	International regulatory landscape and integration of corrective genome editing into in vitro fertilization. Reproductive Biology and Endocrinology, 2014, 12, 108.	1.4	108
278	Integrative genomics and transcriptomics analysis of human embryonic and induced pluripotent stem cells. BioData Mining, 2014, 7, 32.	2.2	2
279	Induced Pluripotent Stem Cells. , 2014, , 581-594.		6
280	Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Research, 2014, 24, 143-160.	5.7	282
281	Increased Genomic Integrity of an Improved Protein-Based Mouse Induced Pluripotent Stem Cell Method Compared With Current Viral-Induced Strategies. Stem Cells Translational Medicine, 2014, 3, 599-609.	1.6	21
282	Concise Review: Drug Discovery in the Age of the Induced Pluripotent Stem Cell. Stem Cells Translational Medicine, 2014, 3, 500-509.	1.6	65
283	CAFE: an R package for the detection of gross chromosomal abnormalities from gene expression microarray data. Bioinformatics, 2014, 30, 1484-1485.	1.8	2
284	Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL. Molecular Human Reproduction, 2014, 20, 168-177.	1.3	97
285	Abnormal Dosage of Ultraconserved Elements Is Highly Disfavored in Healthy Cells but Not Cancer Cells. PLoS Genetics, 2014, 10, e1004646.	1.5	22
286	Human embryonic stem cells (hESCs) for heart regeneration. , 2014, , 266-296.		0
287	Transient p53 Suppression Increases Reprogramming of Human Fibroblasts without Affecting Apoptosis and DNA Damage. Stem Cell Reports, 2014, 3, 404-413.	2.3	114
288	Concise Review: Parthenote Stem Cells for Regenerative Medicine: Genetic, Epigenetic, and Developmental Features. Stem Cells Translational Medicine, 2014, 3, 290-298.	1.6	41
289	Targeted gene therapy and cell reprogramming in <scp>F</scp> anconi anemia. EMBO Molecular Medicine, 2014, 6, 835-848.	3.3	66
290	Use of stem cells in equine musculoskeletal disorders. Equine Veterinary Education, 2014, 26, 492-498.	0.3	1
291	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Development, 2014, 23, 1437-1451.	1.1	9
292	High-resolution chromosomal microarray analysis of early-stage human embryonic stem cells reveals an association between X chromosome instability and skewed X inactivation. Cell and Bioscience, 2014, 4, 74.	2.1	17
293	Disease-in-a-Dish. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S155-S168.	0.7	18

#	Article	IF	CITATIONS
294	Stem cells for pancreatic β-cell replacement in diabetes mellitus. Current Opinion in Organ Transplantation, 2014, 19, 162-168.	0.8	23
295	Endogenous Stem Cell-Based Brain Remodeling in Mammals. Pancreatic Islet Biology, 2014, , .	0.1	0
296	HIF1 <i>α</i> Modulates Cell Fate Reprogramming Through Early Glycolytic Shift and Upregulation of PDK1–3 and PKM2. Stem Cells, 2014, 32, 364-376.	1.4	226
297	Genetic evaluation of mesenchymal stem cells by G-banded karyotyping in a Cell Technology Center. Revista Brasileira De Hematologia E Hemoterapia, 2014, 36, 202-207.	0.7	38
298	Modeling Heterogeneous Patients With a Clinical Diagnosis of Schizophrenia With Induced Pluripotent Stem Cells. Biological Psychiatry, 2014, 75, 936-944.	0.7	53
299	Mechanics of Biological Systems and Materials, Volume 4. Conference Proceedings of the Society for Experimental Mechanics, 2014, , .	0.3	0
300	In vitro neurogenesis: development and functional implications of iPSC technology. Cellular and Molecular Life Sciences, 2014, 71, 1623-1639.	2.4	39
301	Induced pluripotent stem cell technology and aquatic animal species. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2014, 163, 3-13.	1.3	5
302	Instant Neurons: Directed Somatic Cell Reprogramming Models of Central Nervous System Disorders. Biological Psychiatry, 2014, 75, 945-951.	0.7	19
303	The epigenome in pluripotency and differentiation. Epigenomics, 2014, 6, 121-137.	1.0	20
304	HIV/AIDS: modified stem cells in the spotlight. Cellular and Molecular Life Sciences, 2014, 71, 2641-2649.	2.4	4
305	Stem Cell Epigenetics: Insights from Studies on Embryonic, Induced Pluripotent, and Germline Stem Cells. Current Pathobiology Reports, 2014, 2, 1-9.	1.6	2
306	iPSCs, aging and age-related diseases. New Biotechnology, 2014, 31, 411-421.	2.4	24
307	Generation of iPSCs from Genetically Corrected <i>Brca2</i> Hypomorphic Cells: Implications in Cell Reprogramming and Stem Cell Therapy. Stem Cells, 2014, 32, 436-446.	1.4	15
308	Mutation Frequency Dynamics in <i>HPRT</i> Locus in Culture-Adapted Human Embryonic Stem Cells and Induced Pluripotent Stem Cells Correspond to Their Differentiated Counterparts. Stem Cells and Development, 2014, 23, 2443-2454.	1.1	22
309	Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 319.	0.4	33
310	Ethics of iPSC-Based Clinical Research for Age-Related Macular Degeneration: Patient-Centered Risk-Benefit Analysis. Stem Cell Reviews and Reports, 2014, 10, 743-752.	5.6	18
311	Mesenchymal Stem Cells and Their Subpopulation, Pluripotent Muse Cells, in Basic Research and Regenerative Medicine. Anatomical Record, 2014, 297, 98-110.	0.8	46

#	Article	IF	Citations
312	The onset of p53 loss of heterozygosity is differentially induced in various stem cell types and may involve the loss of either allele. Cell Death and Differentiation, 2014, 21, 1419-1431.	5.0	34
313	Single-Cell Sequencing Technologies: Current and Future. Journal of Genetics and Genomics, 2014, 41, 513-528.	1.7	74
314	Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. Journal of Biological Chemistry, 2014, 289, 4578-4584.	1.6	114
315	Cell Replacement Therapies: Is It Time to Reprogram?. Human Gene Therapy, 2014, 25, 866-874.	1.4	5
316	Diet/Nutrition, Inflammation, Cellular Senescence, Stem Cells, Diseases of Aging, and Aging. , 2014, , 125-144.		0
317	Genome maintenance in pluripotent stem cells. Journal of Cell Biology, 2014, 204, 153-163.	2.3	157
318	Messenger RNA- Versus Retrovirus-Based Induced Pluripotent Stem Cell Reprogramming Strategies: Analysis of Genomic Integrity. Stem Cells Translational Medicine, 2014, 3, 686-691.	1.6	30
319	Reversible Mitochondrial DNA Accumulation in Nuclei of Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 2712-2719.	1.1	7
320	The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014, 15, 295-309.	5.2	137
321	Time-Lapse Analysis of Human Embryonic Stem Cells Reveals Multiple Bottlenecks Restricting Colony Formation and Their Relief upon Culture Adaptation. Stem Cell Reports, 2014, 3, 142-155.	2.3	76
322	The potential and challenges of using stem cells for cardiovascular repair and regeneration. Genes and Diseases, 2014, 1, 113-119.	1.5	67
323	Concise Review: Genomic Instability in Human Stem Cells: Current Status and Future Challenges. Stem Cells, 2014, 32, 2824-2832.	1.4	43
324	Aneuploidy is permissive for hepatocyte-like cell differentiation from human induced pluripotent stem cells. BMC Research Notes, 2014, 7, 437.	0.6	14
325	Aneuploidy in pluripotent stem cells and implications for cancerous transformation. Protein and Cell, 2014, 5, 569-579.	4.8	49
326	Passage Number is a Major Contributor to Genomic Structural Variations in Mouse iPSCs. Stem Cells, 2014, 32, 2657-2667.	1.4	40
327	Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature, 2014, 511, 177-183.	13.7	307
328	The Distribution of Genomic Variations in Human iPSCs Is Related to Replication-Timing Reorganization during Reprogramming. Cell Reports, 2014, 7, 70-78.	2.9	24
329	Platform for Induction and Maintenance of Transgene-free hiPSCs Resembling Ground State Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 366-381.	2.3	142

#	Article	IF	CITATIONS
330	From "ES-like―cells to induced pluripotent stem cells: A historical perspective in domestic animals. Theriogenology, 2014, 81, 103-111.	0.9	58
331	Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Research, 2014, 12, 376-386.	0.3	67
332	Induced Pluripotent Stem Cell Generation-Associated Point Mutations Arise during the Initial Stages of the Conversion of These Cells. Stem Cell Reports, 2014, 2, 52-63.	2.3	59
333	Stemming the Hype: What Can We Learn from iPSC Models of Parkinson's Disease and How Can We Learn It?. Journal of Parkinson's Disease, 2014, 4, 15-27.	1.5	14
334	Antioxidant Supplementation Reduces Genomic Aberrations in Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 44-51.	2.3	69
335	Insensitivity of Human iPS Cells-Derived Mesenchymal Stem Cells to Interferon-Î ³ -induced HLA Expression Potentiates Repair Efficiency of Hind Limb Ischemia in Immune Humanized NOD Scid Gamma Mice. Stem Cells, 2015, 33, 3452-3467.	1.4	71
336	The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines. Scientific Reports, 2015, 5, 17258.	1.6	54
337	An Atypical Human Induced Pluripotent Stem Cell Line With a Complex, Stable, and Balanced Genomic Rearrangement Including a Large De Novo 1q Uniparental Disomy. Stem Cells Translational Medicine, 2015, 4, 224-229.	1.6	6
338	Derivation of induced pluripotent stem cells from orangutan skin fibroblasts. BMC Research Notes, 2015, 8, 577.	0.6	27
339	Genomic instability of human embryonic stem cell lines using different passaging culture methods. Molecular Cytogenetics, 2015, 8, 30.	0.4	21
340	Induced pluripotent stem cell models of Zellweger spectrum disorder show impaired peroxisome assembly and cell type-specific lipid abnormalities. Stem Cell Research and Therapy, 2015, 6, 158.	2.4	12
341	From "Directed Differentiation―to "Neuronal Induction― Modeling Neuropsychiatric Disease. Biomarker Insights, 2015, 10s1, BMI.S20066.	1.0	24
342	Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance. Biotechnology Journal, 2015, 10, 1600-1611.	1.8	20
343	Development of the endocrine pancreas and novel strategies for Î ² -cell mass restoration and diabetes therapy. Brazilian Journal of Medical and Biological Research, 2015, 48, 765-776.	0.7	22
344	The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. Journal of Clinical Medicine, 2015, 4, 37-65.	1.0	21
345	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	1.8	19
346	Using iPS Cells toward the Understanding of Parkinson's Disease. Journal of Clinical Medicine, 2015, 4, 548-566.	1.0	47
347	Increased Risk of Genetic and Epigenetic Instability in Human Embryonic Stem Cells Associated with Specific Culture Conditions. PLoS ONE, 2015, 10, e0118307.	1.1	126

#	Article	IF	CITATIONS
348	Genetic Heterogeneity of Induced Pluripotent Stem Cells: Results from 24 Clones Derived from a Single C57BL/6 Mouse. PLoS ONE, 2015, 10, e0120585.	1.1	12
349	Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0131128.	1.1	57
350	Nucleosome Organization in Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0136314.	1.1	22
351	Variations in the Intragene Methylation Profiles Hallmark Induced Pluripotency. BioMed Research International, 2015, 2015, 1-9.	0.9	0
352	Repairing organs: lessons from intestine and liver. Trends in Genetics, 2015, 31, 344-351.	2.9	27
353	Future Perspectives in the Diagnosis and Management of Unexplained Male Infertility. , 2015, , 347-354.		2
354	Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Medical Genomics, 2015, 8, 23.	0.7	45
355	Modern stem cell therapy: approach to disease. Wiener Klinische Wochenschrift, 2015, 127, 199-203.	1.0	7
356	Differentiation of human pluripotent stem cells into \hat{l}^2 -cells: Potential and challenges. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 833-847.	2.2	40
357	Simultaneous Reprogramming and Gene Correction of Patient Fibroblasts. Stem Cell Reports, 2015, 5, 1109-1118.	2.3	89
359	Gene delivery in tissue engineering and regenerative medicine. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1679-1699.	1.6	22
360	Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell, 2015, 160, 299-312.	13.5	1,166
361	Teratoma Formation: A Tool for Monitoring Pluripotency in Stem Cell Research. Current Protocols in Stem Cell Biology, 2015, 32, 4A.8.1-4A.8.17.	3.0	75
363	Hematopoiesis in Regenerative Medicine. , 2015, , 375-401.		0
364	Concise Review: Induced Pluripotency by Defined Factors: Prey of Oxidative Stress. Stem Cells, 2015, 33, 1371-1376.	1.4	16
365	Notch-mediated expansion of cord blood progenitors: maintenance of transcriptional and epigenetic fidelity. Leukemia, 2015, 29, 1948-1951.	3.3	9
366	Unique features of mutations revealed by sequentially reprogrammed induced pluripotent stem cells. Nature Communications, 2015, 6, 6318.	5.8	26
367	Identification of copy number variations in Qinchuan cattle using BovineHD Genotyping Beadchip array. Molecular Genetics and Genomics, 2015, 290, 319-327.	1.0	48

#	Article	IF	CITATIONS
368	A dangerous method? The use of induced pluripotent stem cells as a model for schizophrenia. Schizophrenia Research, 2015, 168, 563-568.	1.1	13
369	Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer. Cell Cycle, 2015, 14, 1282-1290.	1.3	8
370	Genetic Evaluation of Copy Number Variations, Loss of Heterozygosity, and Single-Nucleotide Variant Levels in Human Embryonic Stem Cells With or Without Skewed X Chromosome Inactivation. Stem Cells and Development, 2015, 24, 1779-1792.	1.1	2
371	The safety of human pluripotent stem cells in clinical treatment. Annals of Medicine, 2015, 47, 370-380.	1.5	72
372	CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Experimental Hematology, 2015, 43, 838-848.e3.	0.2	116
373	Current Methods and Challenges in the Comprehensive Characterization of Human Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2015, 11, 357-372.	5.6	10
374	Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome. American Journal of Human Genetics, 2015, 96, 753-764.	2.6	62
375	Early induction of a prechondrogenic population allows efficient generation of stable chondrocytes from human induced pluripotent stem cells. FASEB Journal, 2015, 29, 3399-3410.	0.2	48
376	Can cord blood banks transform into induced pluripotent stem cell banks?. Cytotherapy, 2015, 17, 756-764.	0.3	14
377	Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs). Journal of Biological Chemistry, 2015, 290, 12079-12089.	1.6	31
378	Refining Ethical Guidelines for Early Clinical Trials of Pluripotent Stem-Cell-Derived Therapeutics for Parkinson's Disease. AJOB Neuroscience, 2015, 6, 65-66.	0.6	1
379	Lymphoproliferative disease and cancer among patients with common variable immunodeficiency. Leukemia Research, 2015, 39, 389-396.	0.4	75
380	Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regenerative Medicine, 2015, 10, 1-44.	0.8	100
381	Transcriptome Characteristics and X-Chromosome Inactivation Status in Cultured Rat Pluripotent Stem Cells. Stem Cells and Development, 2015, 24, 2912-2924.	1.1	18
382	Methods of Reprogramming to Induced Pluripotent Stem Cell Associated with Chromosomal Integrity and Delineation of a Chromosome 5q Candidate Region for Growth Advantage. Stem Cells and Development, 2015, 24, 2032-2040.	1.1	20
383	Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Progress in Neurobiology, 2015, 134, 161-177.	2.8	26
385	Development of stem cell-based therapy for Parkinson's disease. Translational Neurodegeneration, 2015, 4, 16.	3.6	52
386	Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges. Biopreservation and Biobanking, 2015, 13, 231-239.	0.5	60

~		~	
(Repo	DT
\sim	плп	KLFU	

#	Article	IF	CITATIONS
387	Limiting replication stress during somatic cell reprogramming reduces genomic instability in induced pluripotent stem cells. Nature Communications, 2015, 6, 8036.	5.8	84
388	Self-Destruct Genetic Switch to Safeguard iPS Cells. Molecular Therapy, 2015, 23, 1417-1420.	3.7	6
389	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	9.4	424
390	Cellular Therapy for Stroke and CNS Injuries. , 2015, , .		0
391	Reprint of "iPSCs, aging and age-related diseases― New Biotechnology, 2015, 32, 169-179.	2.4	5
392	Precise Correction of the Dystrophin Gene in Duchenne Muscular Dystrophy Patient Induced Pluripotent Stem Cells by TALEN and CRISPR-Cas9. Stem Cell Reports, 2015, 4, 143-154.	2.3	459
393	Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. New Biotechnology, 2015, 32, 212-228.	2.4	34
394	Generation of induced pluripotent stem cells without genetic defects by small molecules. Biomaterials, 2015, 39, 47-58.	5.7	18
395	Genomic instability, driver genes and cell selection: Projections from cancer to stem cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 427-435.	0.9	20
396	Temporal Analysis of Genome Alterations Induced by Single-Cell Passaging in Human Embryonic Stem Cells. Stem Cells and Development, 2015, 24, 653-662.	1.1	72
397	Results from a horizon scan on risks associated with transplantation of human organs, tissues and cells: from donor to patient. Cell and Tissue Banking, 2015, 16, 1-17.	0.5	5
398	Pluripotent Stem Cells and Their Dynamic Niche. , 2016, , .		4
399	Induced Pluripotent Stem Cells inÂHuntington's Disease Research: ProgressÂand Opportunity. Journal of Huntington's Disease, 2016, 5, 99-131.	0.9	32
400	Stem Cell Therapy for Parkinson's Disease. , 0, , .		0
401	Stem Cell Therapy and Immunological Rejection in Animal Models. Current Molecular Pharmacology, 2016, 9, 284-288.	0.7	36
402	Advantage of Genetic Modifications Using Genome Editing Technology in Stem Cells vs. Zygotes in Genetic Diseases. Journal of Fertilization in Vitro IVF Worldwide Reproductive Medicine Genetics & Stem Cell Biology, 2016, 4, .	0.2	0
403	A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investigation, 2016, 3, 52-52.	1.3	15
404	High-Fidelity Reprogrammed Human IPSCs Have a High Efficacy of DNA Repair and Resemble hESCs in Their MYC Transcriptional Signature. Stem Cells International, 2016, 2016, 1-14.	1.2	8

#	Article	IF	Citations
405	A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Frontiers in Aging Neuroscience, 2016, 8, 117.	1.7	20
406	An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. International Journal of Molecular Sciences, 2016, 17, 141.	1.8	32
407	Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio Journal of Medicine, 2016, 66, 1-8.	0.5	6
408	SETD7 Regulates the Differentiation of Human Embryonic Stem Cells. PLoS ONE, 2016, 11, e0149502.	1.1	18
409	Review: Induced pluripotent stem cell models of frontotemporal dementia. Neuropathology and Applied Neurobiology, 2016, 42, 497-520.	1.8	8
410	Teratoma: from spontaneous tumors to the pluripotency/malignancy assay. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 186-209.	5.9	46
411	Modeling the autistic cell: iPSCs recapitulate developmental principles of syndromic and nonsyndromic ASD. Development Growth and Differentiation, 2016, 58, 481-491.	0.6	16
412	Neural Stem Cells Derived from Human Parthenogenetic Stem Cells Engraft and Promote Recovery in a Nonhuman Primate Model of Parkinson's Disease. Cell Transplantation, 2016, 25, 1945-1966.	1.2	59
413	Neural Stem Cell Tumorigenicity and Biodistribution Assessment for Phase I Clinical Trial in Parkinson's Disease. Scientific Reports, 2016, 6, 34478.	1.6	54
414	Bioethical and legal perspectives on cell reprogramming technologies. Medical Law International, 2016, 16, 206-228.	0.4	0
415	Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nature Medicine, 2016, 22, 1392-1401.	15.2	131
416	Clinical Application of Pluripotent Stem Cells. Transplantation, 2016, 100, 2548-2557.	0.5	33
417	Derivation of Huntington disease affected Genea020 human embryonic stem cell line. Stem Cell Research, 2016, 16, 430-433.	0.3	6
418	Derivation of Genea043 human embryonic stem cell line. Stem Cell Research, 2016, 16, 152-154.	0.3	1
419	Derivation of FSHD1 affected human embryonic stem cell line Genea050. Stem Cell Research, 2016, 16, 503-506.	0.3	0
420	Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells and Development, 2016, 25, 1060-1072.	1.1	23
421	White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Developmental Biology, 2016, 417, 229-251.	0.9	112
422	Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. Cell Stem Cell, 2016, 18, 625-636.	5.2	190

		REPORT	
#	Article	IF	CITATIONS
423	Derivation of Genea016 human embryonic stem cell line. Stem Cell Research, 2016, 16, 24-28.	0.3	2
424	Induced Pluripotent Stem Cells in Regenerative Medicine. , 2016, , 51-75.		2
425	Increased DNA methylation of Dnmt3b targets impairs leukemogenesis. Blood, 2016, 127, 1575-1586.	0.6	38
426	Recent Advances in Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	1
427	Ethical issues in biomedical use of human embryonic stem cells (hESCs). Journal of Reproductive Health and Medicine, 2016, 2, S37-S47.	0.3	6
428	Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions. Cell Reports, 2016, 16, 1536-1547.	2.9	112
430	Rewinding the process of mammalian extinction. Zoo Biology, 2016, 35, 280-292.	0.5	99
431	The tumorigenic potential of pluripotent stem cells: What can we do to minimize it?. BioEssays, 2016, 38, S86-95.	1.2	23
432	Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Scientific Reports, 2016, 6, 27059.	1.6	14
433	p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming. Scientific Reports, 2016, 6, 37281.	1.6	29
435	Dynamic Variations in Genetic Integrity Accompany Changes in Cell Fate. Stem Cells and Development, 2016, 25, 1698-1708.	1.1	4
436	Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell, 2016, 19, 298-309.	5.2	116
437	Brain in a Dish. , 2016, , 117-132.		2
438	Epigenetic Modifications upon Senescence of Mesenchymal Stem Cells. Current Stem Cell Reports, 2016, 2, 248-254.	0.7	5
439	The Promise and Challenge of InducedÂPluripotent Stem Cells forÂCardiovascular Applications. JACC Basic To Translational Science, 2016, 1, 510-523.	1.9	41
440	Derivation of Genea047 human embryonic stem cell line. Stem Cell Research, 2016, 16, 322-326.	0.3	0
441	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
442	Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?. Current Diabetes Reports, 2016, 16, 70.	1.7	13

	Сіт	ATION REPORT	
#	Article	IF	CITATIONS
443	Derivation of Genea042 human embryonic stem cell line. Stem Cell Research, 2016, 16, 318-321.	0.3	0
444	Derivation of Trisomy 21 affected human embryonic stem cell line Genea021. Stem Cell Research, 2010 16, 401-404.	6, 0.3	3
445	Derivation of FSHD1 affected human embryonic stem cell line Genea049. Stem Cell Research, 2016, 16 469-471.	5, 0.3	1
446	Derivation of Genea015 human embryonic stem cell line. Stem Cell Research, 2016, 16, 534-536.	0.3	0
447	Derivation of human embryonic stem cell line Genea022. Stem Cell Research, 2016, 16, 472-475.	0.3	5
448	Derivation of human embryonic stem cell line Genea023. Stem Cell Research, 2016, 16, 456-459.	0.3	0
449	Derivation of Huntington Disease affected Genea018 human embryonic stem cell line. Stem Cell Research, 2016, 16, 423-426.	0.3	2
450	Derivation of Huntington Disease affected Genea017 human embryonic stem cell line. Stem Cell Research, 2016, 16, 493-496.	0.3	2
451	Derivation of human embryonic stem cell line Genea019. Stem Cell Research, 2016, 16, 397-400.	0.3	2
452	Guidelines for Preclinical Development. , 2016, , 51-82.		0
453	Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Reviews and Reports, 2016, 12, 394-420.	5.6	65
454	Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation (PMM2-CDG). Molecular and Cellular Proteomics, 2016, 15, 1435-1452.	2.5	51
455	Genomic stability during cellular reprogramming: Mission impossible?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 788, 12-16.	0.4	15
456	Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opinion on Biological Therapy, 2016, 16, 317-330.	1.4	20
457	Sunflower-type nanogels carrying a quantum dot nanoprobe for both superior gene delivery efficacy and tracing of human mesenchymal stem cells. Biomaterials, 2016, 77, 14-25.	5.7	33
458	New Insights into Diabetes Cell Therapy. Current Diabetes Reports, 2016, 16, 38.	1.7	17
459	Derivation of Huntington Disease affected Genea046 human embryonic stem cell line. Stem Cell Research, 2016, 16, 446-448.	0.3	2
460	Organoids derived from digestive tract, liver, and pancreas. Journal of Digestive Diseases, 2016, 17, 3-1	.0. 0.7	14

	Article	IF	CITATIONS
461	Influence ofATM-Mediated DNA Damage Response on Genomic Variation in Human Induced Pluripotent Stem Cells. Stem Cells and Development, 2016, 25, 740-747.	1.1	9
462	A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regenerative Medicine, 2016, 11, 181-191.	0.8	27
463	Whole-genome mutational burden analysis of three pluripotency induction methods. Nature Communications, 2016, 7, 10536.	5.8	109
464	The potential of induced pluripotent stem cell derived hepatocytes. Journal of Hepatology, 2016, 65, 182-199.	1.8	80
465	Achilles' heel of pluripotent stem cells: genetic, genomic and epigenetic variations during prolonged culture. Cellular and Molecular Life Sciences, 2016, 73, 2453-2466.	2.4	30
466	Induced Pluripotent Stem Cells Can Effectively Differentiate into Multiple Functional Lymphocyte Lineages In Vivo with Negligible Bias. Stem Cells and Development, 2016, 25, 462-471.	1.1	8
467	Reprogramming triggers endogenous L1 and Alu retrotransposition in human induced pluripotent stem cells. Nature Communications, 2016, 7, 10286.	5.8	113
468	Nonclinical Studies for Cell-Based Medicines. , 2016, , 49-106.		2
469	Some Ethical Concerns About Human Induced Pluripotent Stem Cells. Science and Engineering Ethics, 2016, 22, 1277-1284.	1.7	46
470	The hematopoietic system in the context of regenerative medicine. Methods, 2016, 99, 44-61.		
		1.9	46
471	Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674.	1.9	46 27
471 472	Techniques for the induction of human pluripotent stem cell differentiation towards		
	Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Molecular Therapy - Methods	1.3	27
472	Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Molecular Therapy - Methods and Clinical Development, 2017, 4, 72-82. Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports,	1.3 1.8	27 30
472 473	 Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Molecular Therapy - Methods and Clinical Development, 2017, 4, 72-82. Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports, 2017, 8, 519-528. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord 	1.3 1.8 2.3	27 30 11
472 473 474	 Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Molecular Therapy - Methods and Clinical Development, 2017, 4, 72-82. Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports, 2017, 8, 519-528. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury. American Journal of Veterinary Research, 2017, 78, 371-380. iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations. Proceedings of the National Academy of Sciences of the United States of America, 	1.3 1.8 2.3 0.3	27 30 11 4
472 473 474 475	 Techniques for the induction of human pluripotent stem cell differentiation towards cardiomyocytes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1658-1674. Bringing Neural Cell Therapies to the Clinic: Past and Future Strategies. Molecular Therapy - Methods and Clinical Development, 2017, 4, 72-82. Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports, 2017, 8, 519-528. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury. American Journal of Veterinary Research, 2017, 78, 371-380. iPSCs and fibroblast subclones from the same fibroblast population contain comparable levels of sequence variations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1964-1969. 	1.3 1.8 2.3 0.3 3.3	27 30 11 4 61

#	Article	IF	CITATIONS
479	Induced Pluripotent Stem Cells and Cartilage Regeneration. , 2017, , 73-93.		1
481	Common genetic variation drives molecular heterogeneity in human iPSCs. Nature, 2017, 546, 370-375.	13.7	491
482	Trends in Scientific Discovery. , 2017, , 31-64.		0
483	Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature, 2017, 545, 229-233.	13.7	409
484	Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1359-1369.	1.9	68
485	Clinical potential of human-induced pluripotent stem cells. Cell Biology and Toxicology, 2017, 33, 99-112.	2.4	31
486	Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells. Stem Cell Research and Therapy, 2017, 8, 139.	2.4	16
487	Hematopoietic Developmental Potential of Human Pluripotent Stem Cell Lines Is Accompanied by the Morphology of Embryoid Bodies and the Expression of Endodermal and Hematopoietic Markers. Cellular Reprogramming, 2017, 19, 270-284.	0.5	0
488	Next generation human skin constructs as advanced tools for drug development. Experimental Biology and Medicine, 2017, 242, 1657-1668.	1.1	71
489	New genes for accurate normalization of qRT-PCR results in study of iPS and iPS-derived cells. Gene, 2017, 626, 234-240.	1.0	13
490	iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports, 2017, 8, 1086-1100.	2.3	147
491	DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing. Stem Cell Research and Therapy, 2017, 8, 73.	2.4	31
492	Disease Modeling in Stem Cell-Derived 3D Organoid Systems. Trends in Molecular Medicine, 2017, 23, 393-410.	3.5	575
494	Stem Cell Therapy for Ischemic Heart Disease. Stem Cells in Clinical Applications, 2017, , 165-195.	0.4	1
495	Influence of donor age on induced pluripotent stem cells. Nature Biotechnology, 2017, 35, 69-74.	9.4	159
496	Acquired Genetic and Epigenetic Variation in Human Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 187-206.	0.6	5
497	Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell–Derived Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2014-2025.	1.1	68
498	Quality control towards the application of induced pluripotent stem cells. Current Opinion in Genetics and Development, 2017, 46, 164-169.	1.5	4

ARTICLE

Genomic Analysis of the DNA Replication Timing Program during Mitotic S Phase in Maize ($\langle i \rangle$ Zea) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

500	Genome stability of programmed stem cell products. Advanced Drug Delivery Reviews, 2017, 120, 108-117.	6.6	19
501	(Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Reviews, 2017, 120, 142-167.	6.6	13
502	Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Research Reviews, 2017, 37, 94-116.	5.0	64
503	Behavior of Xeno-Transplanted Undifferentiated Human Induced Pluripotent Stem Cells Is Impacted by Microenvironment Without Evidence of Tumors. Stem Cells and Development, 2017, 26, 1409-1423.	1.1	6
504	How to tame an endogenous retrovirus: HERVH and the evolution of human pluripotency. Current Opinion in Virology, 2017, 25, 49-58.	2.6	35
506	Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. Advances in Experimental Medicine and Biology, 2017, 1013, 219-240.	0.8	5
507	Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology, 2017, ,	0.8	4
508	Manufacturing Cell Therapies Using Engineered Biomaterials. Trends in Biotechnology, 2017, 35, 971-982.	4.9	35
509	Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans. BMC Genomics, 2017, 18, 321.	1.2	60
510	The various aspects of genetic and epigenetic toxicology: testing methods and clinical applications. Journal of Translational Medicine, 2017, 15, 110.	1.8	52
511	Genomic Instability of iPSCs: Challenges Towards Their Clinical Applications. Stem Cell Reviews and Reports, 2017, 13, 7-16.	5.6	198
512	Spontaneous Single-Copy Loss of <i>TP53</i> in Human Embryonic Stem Cells Markedly Increases Cell Proliferation and Survival. Stem Cells, 2017, 35, 872-885.	1.4	32
513	Stem Cell Biology. , 2017, , 54-75.e5.		0
514	Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice. Frontiers in Surgery, 2017, 4, 4.	0.6	37
515	Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. International Journal of Molecular Sciences, 2017, 18, 1952.	1.8	45
516	Recapitulating and Correcting Marfan Syndrome in a Cellular Model. International Journal of Biological Sciences, 2017, 13, 588-603.	2.6	19
517	Tumorigenic and Differentiation Potentials of Embryonic Stem Cells Depend on TGFβFamily Signaling: Lessons from Teratocarcinoma Cells Stimulated to Differentiate with Retinoic Acid. Stem Cells International, 2017, 2017, 1-14.	1.2	14

#	Article	IF	Citations
518	Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. BMC Biology, 2017, 15, 114.	1.7	20
519	Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells. Oncotarget, 2017, 8, 47425-47439.	0.8	56
520	Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Development & Reproduction, 2017, 21, 1-10.	0.1	168
521	The role of the reprogramming method and pluripotency state in gamete differentiation from patient-specific human pluripotent stem cells. Molecular Human Reproduction, 2018, 24, 173-184.	1.3	14
522	Engineering and Application of Pluripotent Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2018, , .	0.6	0
523	The Dynamics of Cell Properties during Long-Term Cultivation of Two Lines of Mesenchymal Stem Cells Derived from Wharton's Jelly of Human Umbilical Cord. Cell and Tissue Biology, 2018, 12, 7-19.	0.2	12
524	Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Progress in Neurobiology, 2018, 168, 1-20.	2.8	84
525	Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics?. Stem Cells, 2018, 36, 814-821.	1.4	51
526	Long-Term Maintenance of Human Pluripotent Stem Cells on cRGDfK-Presenting Synthetic Surfaces. Scientific Reports, 2018, 8, 701.	1.6	26
527	Regenerative Medicine/Cardiac Cell Therapy: Pluripotent Stem Cells. Thoracic and Cardiovascular Surgeon, 2018, 66, 053-062.	0.4	13
528	Epigenetics and cerebral organoids: promising directions in autism spectrum disorders. Translational Psychiatry, 2018, 8, 14.	2.4	50
529	Current advanced therapy cell-based medicinal products for type-1-diabetes treatment. International Journal of Pharmaceutics, 2018, 543, 107-120.	2.6	17
530	Pathways governing development of stem cellâ€derived pancreatic β cells: lessons from embryogenesis. Biological Reviews, 2018, 93, 364-389.	4.7	37
531	Ring chromosomes: from formation to clinical potential. Protoplasma, 2018, 255, 439-449.	1.0	39
532	Historical Perspectives and Advances in Mesenchymal Stem Cell Research for the Treatment of Liver Diseases. Gastroenterology, 2018, 154, 46-56.	0.6	79
533	The Use and Delivery of Stem Cells in Nerve Regeneration. Annals of Plastic Surgery, 2018, 80, 448-456.	0.5	8
534	Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells. Stem Cells and Development, 2018, 27, 10-22.	1.1	14
535	Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology, 2018, , .	0.8	4

#	Article	IF	Citations
536	Enhanced intrinsic CYP3A4 activity in human hepatic C3A cells with optically controlled CRISPR/dCas9 activator complex. Integrative Biology (United Kingdom), 2018, 10, 780-790.	0.6	4
537	Stem cell therapy and regenerative medicine in RPE degenerative disease: advances and challenges. Expert Review of Ophthalmology, 2018, 13, 321-327.	0.3	0
538	Major changes of cell function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural genetic drift. Archives of Toxicology, 2018, 92, 3487-3503.	1.9	27
539	Need for high-resolution Genetic Analysis in iPSC: Results and Lessons from the ForIPS Consortium. Scientific Reports, 2018, 8, 17201.	1.6	70
540	Highlight report: the need of †fit-for-purpose' controls for cell lines used in toxicity assays. Archives of Toxicology, 2018, 92, 3605-3606.	1.9	0
541	The Winding Road of Cardiac Regeneration—Stem Cell Omics in the Spotlight. Cells, 2018, 7, 255.	1.8	6
542	Application of induced pluripotent stem cell transplants: Autologous or allogeneic?. Life Sciences, 2018, 212, 145-149.	2.0	18
543	Advances and Current Challenges Associated with the Use of Human Induced Pluripotent Stem Cells in Modeling Neurodegenerative Disease. Cells Tissues Organs, 2018, 205, 331-349.	1.3	42
544	Corneal cell therapy: with iPSCs, it is no more a far-sight. Stem Cell Research and Therapy, 2018, 9, 287.	2.4	51
545	Concise Review: Molecular Cytogenetics and Quality Control: Clinical Guardians for Pluripotent Stem Cells. Stem Cells Translational Medicine, 2018, 7, 867-875.	1.6	33
546	Clonal dynamics studied in cultured induced pluripotent stem cells reveal major growth imbalances within a few weeks. Stem Cell Research and Therapy, 2018, 9, 165.	2.4	8
547	Repurposing the Cord Blood Bank for Haplobanking of HLA-Homozygous iPSCs and Their Usefulness to Multiple Populations. Stem Cells, 2018, 36, 1552-1566.	1.4	60
548	Insights into the Mutational Burden of Human Induced Pluripotent Stem Cells from an Integrative Multi-Omics Approach. Cell Reports, 2018, 24, 883-894.	2.9	85
549	Lower genomic stability of induced pluripotent stem cells reflects increased nonâ€homologous end joining. Cancer Communications, 2018, 38, 1-22.	3.7	24
550	Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling. Advances in Experimental Medicine and Biology, 2018, 1119, 169-183.	0.8	12
551	The mesenchymoangioblast, mesodermal precursor for mesenchymal and endothelial cells. Cellular and Molecular Life Sciences, 2018, 75, 3507-3520.	2.4	35
552	Stem Cell Applications in Spinal Cord Injury: A Primer. , 2018, , 43-72.		2
553	Embryonic Stem Cells. , 2018, , 1-51.		1

#	Article	IF	CITATIONS
554	Stem Cells to Inform the Neurobiology of Mental Illness. Current Topics in Behavioral Neurosciences, 2018, 40, 13-43.	0.8	4
555	Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions. , 2018, , 1-33.		2
556	The limited application of stem cells in medicine: a review. Stem Cell Research and Therapy, 2018, 9, 1.	2.4	266
557	High Basal Levels of Î ³ H2AX in Human Induced Pluripotent Stem Cells Are Linked to Replication-Associated DNA Damage and Repair. Stem Cells, 2018, 36, 1501-1513.	1.4	38
558	Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. Journal of Visualized Experiments, 2018, , .	0.2	13
559	Decoding cell signalling and regulation of oligodendrocyte differentiation. Seminars in Cell and Developmental Biology, 2019, 95, 54-73.	2.3	25
560	Induced Pluripotent Stem Cells. , 2019, , 169-180.		0
561	De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nature Biotechnology, 2019, 37, 1137-1144.	9.4	74
562	Gain of 20q11.21 in Human Pluripotent Stem Cells Impairs TGF-β-Dependent Neuroectodermal Commitment. Stem Cell Reports, 2019, 13, 163-176.	2.3	39
563	Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1317-1329.	1.1	67
564	Modeling Leukemia with Human Induced Pluripotent Stem Cells. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a034868.	2.9	7
565	Chromosomal Instability and Karyotype Correction in Human Induced Pluripotent Stem Cells. Russian Journal of Genetics, 2019, 55, 1183-1195.	0.2	4
566	Using human Pompe disease-induced pluripotent stem cell-derived neural cells to identify compounds with therapeutic potential. Human Molecular Genetics, 2019, 28, 3880-3894.	1.4	7
568	Are cell-based therapies for kidney disease safe? A systematic review of preclinical evidence. , 2019, 197, 191-211.		8
569	Reprogramming of bone marrow derived mesenchymal stromal cells to human induced pluripotent stem cells from pediatric patients with hematological diseases using a commercial mRNA kit. Blood Cells, Molecules, and Diseases, 2019, 76, 32-39.	0.6	6
570	Generation and comprehensive characterization of induced pluripotent stem cells for translational research. Regenerative Medicine, 2019, 14, 505-524.	0.8	1
571	Modeling blood diseases with human induced pluripotent stem cells. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	23
572	Early Developmental Zebrafish Embryo Extract to Modulate Senescence in Multisource Human Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2019, 20, 2646.	1.8	4

#	Article	IF	Citations
573	Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals. Experimental and Molecular Medicine, 2019, 51, 1-8.	3.2	28
574	Pluripotent Stem Cell Heterogeneity. Advances in Experimental Medicine and Biology, 2019, 1123, 71-94.	0.8	34
575	Absence of cyclin-dependent kinase inhibitor p27 or p18 increases efficiency of iPSC generation without induction of iPSC genomic instability. Cell Death and Disease, 2019, 10, 271.	2.7	14
577	Biomaterials and Scaffolds for Cell Replacement Therapy. Pancreatic Islet Biology, 2019, , 109-140.	0.1	0
578	iPS-Cell Technology and the Problem of Genetic Instability—Can It Ever Be Safe for Clinical Use?. Journal of Clinical Medicine, 2019, 8, 288.	1.0	54
579	The impact of transposable element activity on therapeutically relevant human stem cells. Mobile DNA, 2019, 10, 9.	1.3	18
580	Derivation of adult canine intestinal organoids for translational research in gastroenterology. BMC Biology, 2019, 17, 33.	1.7	82
581	Genome-Scale CRISPR Screens Identify Human Pluripotency-Specific Genes. Cell Reports, 2019, 27, 616-630.e6.	2.9	64
582	Interaction Between Sympk and Oct4 Promotes Mouse Embryonic Stem Cell Proliferation. Stem Cells, 2019, 37, 743-753.	1.4	2
583	Identifying Extrinsic versus Intrinsic Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors. Cell Reports, 2019, 26, 2078-2087.e3.	2.9	36
584	CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26846-26852.	3.3	87
585	Patient-derived induced pluripotent stem cells for modelling genetic retinal dystrophies. Progress in Retinal and Eye Research, 2019, 68, 54-66.	7.3	37
586	Cardiac tissue models. , 2019, , 209-248.		0
587	Transplantation of photoreceptors into the degenerative retina: Current state and future perspectives. Progress in Retinal and Eye Research, 2019, 69, 1-37.	7.3	130
588	An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 2019, 686, 146-159.	1.0	77
589	Ethics of Issues and Stem Cell Research: the Unresolved Issues. , 2019, , 584-597.		3
590	New considerations for hiPSC-based models of neuropsychiatric disorders. Molecular Psychiatry, 2019, 24, 49-66.	4.1	64
591	Bioprocessing of Recombinant CHO-K1, CHO-DG44, and CHO-S: CHO Expression Hosts Favor Either mAb Production or Biomass Synthesis. Biotechnology Journal, 2019, 14, 1700686.	1.8	44

#	Article	IF	CITATIONS
592	The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Molecular Psychiatry, 2020, 25, 368-378.	4.1	29
593	Direct conversion of somatic cells towards oligodendroglial lineage cells: A novel strategy for enhancement of myelin repair. Journal of Cellular Physiology, 2020, 235, 2023-2036.	2.0	8
594	Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer's disease treatment. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2020, 98, 109820.	2.5	9
595	Acquired genetic changes in human pluripotent stem cells: origins and consequences. Nature Reviews Molecular Cell Biology, 2020, 21, 715-728.	16.1	59
596	SOX2 and p53 Expression Control Converges in PI3K/AKT Signaling with Versatile Implications for Stemness and Cancer. International Journal of Molecular Sciences, 2020, 21, 4902.	1.8	22
597	Humanâ€Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions. Current Protocols in Stem Cell Biology, 2020, 54, e117.	3.0	33
598	Copy number variant hotspots in Han Taiwanese population induced pluripotent stem cell lines - lessons from establishing the Taiwan human disease iPSC Consortium Bank. Journal of Biomedical Science, 2020, 27, 92.	2.6	9
599	Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. Npj Regenerative Medicine, 2020, 5, 15.	2.5	94
600	Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Reviews and Reports, 2020, 16, 1049-1061.	1.7	25
601	Functional in vivo and in vitro effects of 20q11.21 genetic aberrations on hPSC differentiation. Scientific Reports, 2020, 10, 18582.	1.6	17
602	Differentiation of Human Parthenogenetic Embryonic Stem Cells into Functional Hepatocyte-like Cells. Organogenesis, 2020, 16, 137-148.	0.4	5
603	The mutational impact of culturing human pluripotent and adult stem cells. Nature Communications, 2020, 11, 2493.	5.8	61
604	Cellular effects and clinical implications of <i>SLC2A3</i> copy number variation. Journal of Cellular Physiology, 2020, 235, 9021-9036.	2.0	28
605	Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. Annals of Translational Medicine, 2020, 8, 566-566.	0.7	16
607	Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Molecular Autism, 2020, 11, 42.	2.6	14
608	The Evolution of Stem Cells, Disease Modeling, and Drug Discovery for Neurological Disorders. Stem Cells and Development, 2020, 29, 1131-1141.	1.1	3
609	Development of genetic quality tests for good manufacturing practice-compliant induced pluripotent stem cells and their derivatives. Scientific Reports, 2020, 10, 3939.	1.6	22
610	Modeling and Targeting Alzheimer's Disease With Organoids. Frontiers in Pharmacology, 2020, 11, 396.	1.6	71

#	ARTICLE	IF	CITATIONS
611	Reprogramming and transdifferentiation - two key processes for regenerative medicine. European Journal of Pharmacology, 2020, 882, 173202.	1.7	10
612	Novel patient-derived preclinical models of liver cancer. Journal of Hepatology, 2020, 72, 239-249.	1.8	41
613	Applications for stem cells. , 2020, , 445-455.		0
614	Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxidants and Redox Signaling, 2021, 34, 335-349.	2.5	16
615	Induced pluripotent stem-cell-derived corneal grafts and organoids. , 2021, , 99-127.		1
616	iPSC-derived erythroid cells. , 2021, , 1-30.		0
617	Standardized Quality Control Workflow to Evaluate the Reproducibility and Differentiation Potential of Human iPSCs into Neurons. SSRN Electronic Journal, 0, , .	0.4	2
619	Induced pluripotent stem cells in liver disease. , 2021, , 225-250.		0
620	Naked mole rat iPSCs and their noncanonical features: a novel tool for aging research. , 2021, , 205-220.		0
621	OCT4 expression in human embryonic stem cells: spatio-temporal dynamics and fate transitions. Physical Biology, 2021, 18, 026003.	0.8	6
622	The Role of Nkx3.1 in Cancers and Stemness. International Journal of Stem Cells, 2021, 14, 168-179.	0.8	7
624	Rewinding Extinction in the Northern White Rhinoceros: Genetically Diverse Induced Pluripotent Stem Cell Bank for Genetic Rescue. Stem Cells and Development, 2021, 30, 177-189.	1.1	19
625	The L1-dependant and Pol III transcribed Alu retrotransposon, from its discovery to innate immunity. Molecular Biology Reports, 2021, 48, 2775-2789.	1.0	6
626	SREBP1 suppresses the differentiation and epithelial function of hiPSC-derived endothelial cells by inhibiting the microRNA199b-5p pathway. Stem Cell Research, 2021, 51, 102174.	0.3	2
627	Advances in development and application of human organoids. 3 Biotech, 2021, 11, 257.	1.1	31
628	A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nature Communications, 2021, 12, 3144.	5.8	51
629	Contiguous erosion of the inactive X in human pluripotency concludes with global DNA hypomethylation. Cell Reports, 2021, 35, 109215.	2.9	11
630	Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 639699.	1.8	16

#	Article	IF	CITATIONS
631	<i>ARHGDIA</i> Confers Selective Advantage to Dissociated Human Pluripotent Stem Cells. Stem Cells and Development, 2021, 30, 705-713.	1.1	3
632	The Application of Induced Pluripotent Stem Cells Against Liver Diseases: An Update and a Review. Frontiers in Medicine, 2021, 8, 644594.	1.2	5
633	Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. Molecular Therapy, 2021, 29, 3219-3229.	3.7	14
634	A Multistep Workflow to Evaluate Newly Generated iPSCs and Their Ability to Generate Different Cell Types. Methods and Protocols, 2021, 4, 50.	0.9	40
635	Induced endothelial cells from peripheral arterial disease patients and neonatal fibroblasts have comparable angiogenic properties. PLoS ONE, 2021, 16, e0255075.	1.1	1
636	Advanced Techniques and Awaited Clinical Applications for Human Pluripotent Stem Cell Differentiation into Hepatocytes. Hepatology, 2021, 74, 1101-1116.	3.6	29
637	Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells International, 2021, 2021, 1-30.	1.2	38
638	Cellular models of pain: New technologies and their potential to progress preclinical research. Neurobiology of Pain (Cambridge, Mass), 2021, 10, 100063.	1.0	8
639	Advanced technologies for the preservation of mammalian biospecimens. Nature Biomedical Engineering, 2021, 5, 793-804.	11.6	23
640	Immunological aspects of RPE cell transplantation. Progress in Retinal and Eye Research, 2021, 84, 100950.	7.3	39
641	The therapeutic potential ofÂadipose tissue-derived mesenchymal stromal cellsÂin theÂtreatmentÂof busulfan-induced azoospermic mice. Journal of Assisted Reproduction and Genetics, 2021, , 1.	1.2	3
644	Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Frontiers in Cell and Developmental Biology, 2021, 9, 748576.	1.8	13
645	Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Research, 2021, 56, 102512.	0.3	8
646	Stem Cells for Next Level Toxicity Testing in the 21st Century. Small, 2021, 17, e2006252.	5.2	41
647	Utilizing Stem Cell-Derived RPE Cells as A Therapeutic Intervention for Age-Related Macular Degeneration. Advances in Experimental Medicine and Biology, 2014, 801, 323-329.	0.8	14
648	Essential Requirements for Setting Up a Stem Cell Laboratory. Neuromethods, 2017, , 225-237.	0.2	1
649	Biomanufacturing Human Pluripotent Stem Cells for Therapeutic Applications. , 2012, , 29-48.		1
650	Potential Clinical Applications of Stem Cells in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2019, 1201, 1-22.	0.8	63

#	Article	IF	CITATIONS
651	Genomic Instability of iPSCs and Challenges in Their Clinical Applications. Advances in Experimental Medicine and Biology, 2019, 1201, 23-47.	0.8	40
652	Investigation of Schizophrenia with Human Induced Pluripotent Stem Cells. Advances in Neurobiology, 2020, 25, 155-206.	1.3	11
653	Cell Culture Conditions: Cultivation of Stem Cells Under Dynamic Conditions. , 2020, , 415-447.		1
654	Interspecies Mixtures and the Status of Humanity. , 2011, , 129-155.		1
656	Genomic integrity of human induced pluripotent stem cells across nine studies in the NHLBI NextGen program. Stem Cell Research, 2020, 46, 101803.	0.3	10
657	Amniotic fluid stem cell-based models to study the effects of gene mutations and toxicants on male germ cell formation. Asian Journal of Andrology, 2012, 14, 247-250.	0.8	5
658	Can we grow sperm? A translational perspective on the current animal and human spermatogenesis models. Asian Journal of Andrology, 2011, 13, 677-682.	0.8	6
664	Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells. JCI Insight, 2016, 1, .	2.3	75
665	Recurrent genomic instability of chromosome 1q in neural derivatives of human embryonic stem cells. Journal of Clinical Investigation, 2012, 122, 569-574.	3.9	50
666	Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle. Journal of Clinical Investigation, 2015, 125, 4463-4482.	3.9	56
667	Stem Cells in the Development of Products for Regenerative Medicine. , 2012, , 77-97.		1
668	Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway. Development & Reproduction, 2016, 20, 163-169.	0.1	11
669	Comparing DNA replication programs reveals large timing shifts at centromeres of endocycling cells in maize roots. PLoS Genetics, 2020, 16, e1008623.	1.5	4
670	Intramyocardial Transplantation of Undifferentiated Rat Induced Pluripotent Stem Cells Causes Tumorigenesis in the Heart. PLoS ONE, 2011, 6, e19012.	1.1	69
671	Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations. PLoS ONE, 2011, 6, e27352.	1.1	100
672	A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e33544.	1.1	107
673	Culture Conditions Affect Cardiac Differentiation Potential of Human Pluripotent Stem Cells. PLoS ONE, 2012, 7, e48659.	1.1	32
674	Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e59908.	1.1	31

ARTICLE IF CITATIONS # Efficient Differentiation of Steroidogenic and Germ-Like Cells from Epigenetically-Related iPSCs 675 1.1 19 Derived from Ovarian Granulosa Cells. PLoS ONE, 2015, 10, e0119275. Integrity of Induced Pluripotent Stem Cell (iPSC) Derived Megakaryocytes as Assessed by Genetic and 676 1.1 9 Transcríptomic Analysis. PLoS ONE, 2017, 12, e0167794. A computational modelling framework to quantify the effects of passaging cell lines. PLoS ONE, 2017, 677 1.1 14 12, e0181941. Genomic comparison of early-passage conditionally reprogrammed breast cancer cells to their 1.1 24 corresponding primary tumors. PLoS ONE, 2017, 12, e0186190. Evolution of Energy Metabolism, Stem Cells and Cancer Stem Cells: How the Warburg and Barker 679 0.8 28 Hypotheses Might Be Linked. International Journal of Stem Cells, 2012, 5, 39-56. Human pluripotent stem cells in regenerative medicine: where do we stand?. Reproduction, 2018, 156, R143-R153. 680 1.1 Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late 681 1.4 33 G2. Aging, 2011, 3, 584-596. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells. Aging, 2014, 6, 496-510. 1.4 Genomic landscape analyses of reprogrammed cells using integrative and non-integrative methods 683 0.8 2 reveal variable cancer-associated alterations. Oncotarget, 2019, 10, 2693-2708. Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic 684 0.8 diseases or oncogenesis. Oncotarget, 2011, 2, 705-712. Quantifying signaling pathway activation to monitor the quality of induced pluripotent stem cells. 685 0.8 11 Oncotarget, 2015, 6, 23204-23212. Embryonic Stem Cells or Induced Pluripotent Stem Cells? A DNA Integrity Perspective. Current Gene 686 Therapy, 2013, 13, 93-98. Disease-Specific iPS Cell Models in Neuroscience. Current Molecular Medicine, 2013, 13, 832-841. 687 0.6 29 NANOG priming before full reprogramming may generate germ cell tumours., 2011, 22, 258-274. Evaluation of safety of induced pluripotent stem cells by genome integrity. Inflammation and 689 1.5 2 Regeneration, 2014, 34, 087-093. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in 1.8 neuropsychiatric disorders. Dialogues in Clinical Neuroscience, 2016, 18, 267-276. 691 Analyzing the genomic integrity of stem cells. Stembook, 2014, , . 0.3 4 Assessment of human pluripotent stem cells with PluriTest. Stembook, 2014, , .

#	Article	IF	CITATIONS
693	Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surgery, 2016, 5, 227-41.	0.5	30
694	Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World Journal of Stem Cells, 2019, 11, 729-747.	1.3	19
695	Modeling diseases of noncoding unstable repeat expansions using mutant pluripotent stem cells. World Journal of Stem Cells, 2015, 7, 823.	1.3	8
696	Investigating the role of Sirtuins in cell reprogramming. BMB Reports, 2018, 51, 500-507.	1.1	17
697	Illuminating Hidden Features of Stem Cells. , 0, , .		1
698	Induced Pluripotent Stem Cells for Inherited Optic Neuropathies—Disease Modeling and Therapeutic Development. Journal of Neuro-Ophthalmology, 2022, 42, 35-44.	0.4	12
700	Progress and Future Challenges of Human Induced Pluripotents Stem Cell in Regenerative Medicine. Indonesian Biomedical Journal, 2011, 3, 76.	0.2	0
701	Pluripotent Stem Cells and Human Diseases*. Progress in Biochemistry and Biophysics, 2011, 38, 982-987.	0.3	Ο
702	Induced Pluripotent Stem Cell Production and Characterization: An Overview of Somatic Cell Reprogramming. , 2012, , 125-137.		0
703	Transdifferentiation in the Nervous System. , 2012, , 245-264.		0
705	MSCs: Changing Hypotheses, Paradigms, and Controversies on Mechanisms of Action in Repairing Tissues. , 2013, , 17-42.		0
706	Modeling Autism Spectrum Disorders Using Human Neurons. Research and Perspectives in Neurosciences, 2013, , 101-117.	0.4	0
707	Human-Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Their Cardiomyocyte Derivatives: An Overview. , 2013, , 321-345.		0
708	Inducible Pluripotent Stem Cells In Autism Spectrum Disorders. , 2013, , 391-399.		0
709	Bioinformatics Studies on Induced Pluripotent Stem Cell. Current Bioinformatics, 2013, 8, 80-86.	0.7	0
711	Genomic Integrity of Embryonic and Neural Stem Cells. Pancreatic Islet Biology, 2014, , 177-198.	0.1	0
712	Understanding Retinal Development Can Inform Future Regenerative Therapies. Pancreatic Islet Biology, 2014, , 1-33.	0.1	0
713	Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming. Reproductive & Developmental Biology, 2014, 38, 79-84.	0.1	Ο

#	Article	IF	CITATIONS
716	Induced pluripotent stem cells are induced pluripotent stem cell-like cells. Journal of Biomedical Research, 2015, 29, 1.	0.7	10
717	Stem cell therapies in multiple sclerosis – united we stand, divided we fail. Clinical Case Reports and Reviews, 2015, 1, .	0.1	0
718	Induced pluripotent stem cell generation-associated point mutationsy. Inflammation and Regeneration, 2015, 35, 226-232.	1.5	0
719	Amniotic Fluid-Derived Stem Cells (AFSC) and Their Application in Cell Therapy and Tissue Engineering. Razavi International Journal of Medicine, 2015, 3, .	0.1	2
720	Induced Pluripotent Cells: Ethical Answer or a Source of Continuing Ethical Dilemmas?. , 2015, , 1-20.		0
721	Patient-Derived Induced Pluripotent Stem Cells to Target Kidney Disease. , 2016, , 491-505.		0
722	Clinical Applications of Induced Pluripotent Stem Cells in Cancer. Pancreatic Islet Biology, 2016, , 131-158.	0.1	0
723	7: Stem cells. , 2016, , 101-112.		0
724	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.		0
726	Genome-Scale CRISPR Screening Identifies Novel Human Pluripotent Gene Networks. SSRN Electronic Journal, 0, , .	0.4	0
727	Cells for Cartilage Regeneration. , 2018, , 1-67.		0
732	Genomics, Proteomics, and Metabolomics for Stem Cells Monitoring in Regenerative Medicine. Pancreatic Islet Biology, 2019, , 51-66.	0.1	1
734	Duty Of Confidentiality In Arbitration Process In Ethiopia. International Journal of Social Sciences and Economic Review, 2019, 1, 92-100.	0.2	2
737	The application of iPSCs in Parkinson's disease. Acta Neurobiologiae Experimentalis, 2020, 80, 273-285.	0.4	2
738	Cells for Cartilage Regeneration. , 2020, , 33-99.		1
740	Embryonic Stem Cells. , 2020, , 315-365.		0
741	Molecular mechanisms of induced pluripotency. Acta Naturae, 2012, 4, 12-22.	1.7	6
742	Genetic instability of modified stem cells - a first step towards malignant transformation?. American Journal of Stem Cells, 2013, 2, 39-51.	0.4	19

#	Article	IF	CITATIONS
744	Stem cell-based approach for the treatment of Parkinson's disease. Medical Journal of the Islamic Republic of Iran, 2015, 29, 168.	0.9	39
745	CMD kinetics and regenerative medicine. American Journal of Translational Research (discontinued), 2016, 8, 1615-24.	0.0	1
747	Induced pluripotent stem cells–derived hematopoietic progenitors for cellular immunotherapies. , 2022, , 233-263.		1
748	Highly Effective Protocol for Differentiation of Induced Pluripotent Stem Cells (iPS) into Melanin-Producing Cells. International Journal of Molecular Sciences, 2021, 22, 12787.	1.8	3
749	Applications for induced pluripotent stem cells in reproductive medicine. , 2022, , 225-273.		0
750	An update on clinical applications of iPSCs from a genomic point of view. , 2022, , 147-175.		0
751	Replication-associated DNA damage in induced pluripotent stem cells. , 2022, , 177-196.		2
752	Human induced pluripotent stem cells display a similar mutation burden as embryonic pluripotent cells inÂvivo. IScience, 2022, 25, 103736.	1.9	5
753	A Multilevel Approach to the Causes of Genetic Instability in Stem Cells. , 2022, , 1-55.		0
755	Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells, 2022, 40, 546-555.	1.4	37
756	Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell, 2022, 29, 472-486.e7.	5.2	27
757	A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Reviews and Reports, 2022, 18, 1525-1545.	1.7	66
758	The Human Induced Pluripotent Stem Cell Test as an Alternative Method for Embryotoxicity Testing. International Journal of Molecular Sciences, 2022, 23, 3295.	1.8	5
759	Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annual Review of Biomedical Engineering, 2022, 24, 231-248.	5.7	9
760	â€~Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends in Pharmacological Sciences, 2022, 43, 392-405.	4.0	10
764	Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells. Cells, 2022, 11, 1629.	1.8	9
766	In vitro Germ Cell Induction From Fertile and Infertile Research Participants. SSRN Electronic Journal, 0, , .	0.4	0
767	Potential and challenges of placenta-derived decidua stromal cell therapy in inflammation-associated disorders. Human Immunology, 2022, , .	1.2	2

#	Article	IF	CITATIONS
768	Induced pluripotent stem cells: a tool for modeling Parkinson's disease. Trends in Neurosciences, 2022, 45, 608-620.	4.2	17
771	Cellular and Engineered Organoids for Cardiovascular Models. Circulation Research, 2022, 130, 1780-1802.	2.0	27
772	From retinal organoids to "retinal organ". Scientia Sinica Vitae, 2022, , .	0.1	0
773	Standardization of Cell Culture Conditions and Routine Genomic Screening under a Quality Management System Leads to Reduced Genomic Instability in hPSCs. Cells, 2022, 11, 1984.	1.8	6
774	Dynamic Features of Chromosomal Instability during Culture of Induced Pluripotent Stem Cells. Genes, 2022, 13, 1157.	1.0	2
775	The Tumorigenic Potential of Human Pluripotent Stem Cells. Stem Cells Translational Medicine, 2022, 11, 791-796.	1.6	8
776	Carnegie in 4D? Stem-cell-based models of human embryo development. Seminars in Cell and Developmental Biology, 2022, 131, 44-57.	2.3	10
777	Cellular direct conversion by cell penetrable OCT4-30Kc19 protein and BMP4 growth factor. Biomaterials Research, 2022, 26, .	3.2	2
778	Opportunities and impediments of human pluripotent stem cell-derived islets in the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2022, 17, 100064.	0.2	2
779	Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells. Nature Genetics, 2022, 54, 1406-1416.	9.4	31
780	Chromosome silencing inÂvitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Reports, 2022, 40, 111174.	2.9	5
782	Passage number affects differentiation of sensory neurons from human induced pluripotent stem cells. Scientific Reports, 2022, 12, .	1.6	8
783	InÂvitro germ cell induction from fertile and infertile monozygotic twin research participants. Cell Reports Medicine, 2022, 3, 100782.	3.3	4
784	Stabilization of hESCs in two distinct substates along the continuum of pluripotency. IScience, 2022, 25, 105469.	1.9	2
785	A Multilevel Approach to the Causes of Genetic Instability in Stem Cells. , 2022, , 1445-1498.		0
786	Application of stem cells in engineered vascular graft and vascularized organs. Seminars in Cell and Developmental Biology, 2023, 144, 31-40.	2.3	4
787	BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination. Cell Death and Disease, 2022, 13, .	2.7	1
788	Single Nucleotide Polymorphism (SNP) Arrays and Their Sensitivity for Detection of Genetic Changes in Human Pluripotent Stem Cell Cultures. Current Protocols, 2022, 2, .	1.3	2

#	Article	IF	CITATIONS
789	Retrotransposon instability dominates the acquired mutation landscape of mouse induced pluripotent stem cells. Nature Communications, 2022, 13, .	5.8	7
790	Gene Editing and Human iPSCs in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, 2023, , 275-298.	0.8	0
791	A reference human induced pluripotent stem cell line for large-scale collaborative studies. Cell Stem Cell, 2022, 29, 1685-1702.e22.	5.2	59
792	The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell, 2022, 29, 1624-1636.	5.2	22
793	Wnt signaling and the regulation of pluripotency. Current Topics in Developmental Biology, 2023, , 95-119.	1.0	1
794	Pluripotent Stem Cells of Order Carnivora: Technical Perspective. International Journal of Molecular Sciences, 2023, 24, 3905.	1.8	0
795	Human iPS Cells for Clinical Applications and Cellular Products. Handbook of Experimental Pharmacology, 2023, , .	0.9	3
796	Prediction of Stem Cell State Using Cell Imageâ€Based Deep Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	2
797	Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. CRISPR Journal, 2023, 6, 176-182.	1.4	2
808	Multifaceted Role of Induced Pluripotent Stem Cells in Preclinical Cardiac Regeneration Research. , 2023, , 1-61.		0
813	Clinical limitation in stem cells therapy. , 2024, , 355-362.		0
814	Paradigm shift in stem cell research with computational tools, techniques, and databases. , 2024, , 17-32.		0
815	Safety Issues Related to Pluripotent Stem Cell-Based Therapies: Tumour Risk. , 2023, , 419-457.		0