Chloramination of nitrogenous contaminants (pharmac halogenated DBPs formation

Water Research 45, 3164-3174 DOI: 10.1016/j.watres.2011.03.035

Citation Report

#	Article	IF	CITATIONS
2	ls Neurodegenerative Disease a Long-Latency Response to Early-Life Genotoxin Exposure?. International Journal of Environmental Research and Public Health, 2011, 8, 3889-3921.	1.2	57
3	Disinfection and Antimicrobial Processes. Water Environment Research, 2012, 84, 1286-1309.	1.3	3
4	Nationwide assessment of nitrosamine occurrence and trends. Journal - American Water Works Association, 2012, 104, E205.	0.2	67
5	Chemical and Allied Products. Water Environment Research, 2012, 84, 1432-1484.	1.3	0
6	Formation of NDMA and Halogenated DBPs by Chloramination of Tertiary Amines: The Influence of Bromide Ion. Environmental Science & amp; Technology, 2012, 46, 1581-1589.	4.6	109
7	Fate of N-Nitrosodimethylamine in recycled water after recharge into anaerobic aquifer. Water Research, 2012, 46, 1260-1272.	5.3	20
8	Occurrence of aromatic amines and N-nitrosamines in the different steps of a drinking water treatment plant. Water Research, 2012, 46, 4543-4555.	5.3	56
10	Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis. Journal of Hazardous Materials, 2012, 235-236, 1-16.	6.5	223
11	NDMA Formation by Chloramination of Ranitidine: Kinetics and Mechanism. Environmental Science & amp; Technology, 2012, 46, 11095-11103.	4.6	105
12	Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water – A review. Separation and Purification Technology, 2012, 88, 1-10.	3.9	43
13	Occurrence of THM and NDMA precursors in a watershed: Effect of seasons and anthropogenic pollution. Journal of Hazardous Materials, 2012, 221-222, 86-91.	6.5	20
14	Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems. Environmental Monitoring and Assessment, 2013, 185, 7693-7708.	1.3	21
15	NDMA formation in secondary wastewater effluent. Chemosphere, 2013, 91, 83-87.	4.2	23
16	Reinvestigation on the ozonation of N-nitrosodimethylamine: Influencing factors and degradation mechanism. Water Research, 2013, 47, 4993-5002.	5.3	40
17	Formation of NDMA from ranitidine and sumatriptan: The role of pH. Water Research, 2013, 47, 802-810.	5.3	58
18	The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation. Water Research, 2013, 47, 945-953.	5.3	128
19	NDMA formation from amine-based pharmaceuticals – Impact from prechlorination and water matrix. Water Research, 2013, 47, 2446-2457.	5.3	51
20	The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter. Water Research, 2013, 47, 130 <u>8-1316.</u>	5.3	53

#	Article	IF	CITATIONS
21	Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 2013, 47, 4433-4450.	5.3	445
22	Chlorination and chloramination of high-bromide natural water: DBPs species transformation. Separation and Purification Technology, 2013, 102, 86-93.	3.9	49
23	Monochloramination of Oxytetracycline: Kinetics, Mechanisms, Pathways, and Disinfection Byâ€Products Formation. Clean - Soil, Air, Water, 2013, 41, 969-975.	0.7	3
24	Catalytic Impact of Activated Carbon on the Formation of Nitrosamines from Different Amine Precursors. ACS Symposium Series, 2013, , 79-100.	0.5	3
25	Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment. Journal of Hazardous Materials, 2014, 279, 461-475.	6.5	197
27	Degradation of typical N-nitrosodimethylamine (NDMA) precursors and its formation potential in anoxic-aerobic (AO) activated sludge system. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1727-1739.	0.9	3
28	Occurrence and removal of N-nitrosodimethylamine and its precursors in wastewater treatment plants in and around Shanghai. Frontiers of Environmental Science and Engineering, 2014, 8, 519-530.	3.3	36
29	Drinking water treatment is not associated with an observed increase in neural tube defects in mice. Environmental Monitoring and Assessment, 2014, 186, 3717-3724.	1.3	3
30	Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Science of the Total Environment, 2014, 481, 274-279.	3.9	92
31	Formation potential of nine nitrosamines from corresponding secondary amines by chloramination. Chemosphere, 2014, 95, 81-87.	4.2	24
32	Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 212-228.	0.7	119
33	Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study. Environmental Science & Technology, 2014, 48, 8653-8663.	4.6	72
34	Development of mutagenicity during degradation of N -nitrosamines by advanced oxidation processes. Water Research, 2014, 66, 399-410.	5.3	40
35	Distribution and seasonal variation of estrogenic endocrine disrupting compounds, N-nitrosodimethylamine, and N-nitrosodimethylamine formation potential in the Huangpu River, China. Journal of Environmental Sciences, 2014, 26, 1023-1033.	3.2	25
36	Formation of N-nitrosamines by chloramination or ozonation of amines listed in Pollutant Release and Transfer Registers (PRTRs). Chemosphere, 2014, 95, 88-95.	4.2	25
37	Chlorination and chloramination of tetracycline antibiotics: Disinfection by-products formation and influential factors. Ecotoxicology and Environmental Safety, 2014, 107, 30-35.	2.9	31
38	Characterization of pharmaceuticals and personal care products as N-nitrosodimethylamine precursors during disinfection processes using free chlorine and chlorine dioxide. Journal of Hazardous Materials, 2014, 276, 499-509.	6.5	49
39	Simultaneous organic matter removal and disinfection of wastewater with enhanced power generation in microbial fuel cell. Bioresource Technology, 2014, 163, 328-334.	4.8	63

		15	0
#	ARTICLE	IF	CITATIONS
40	formation. Water Research, 2015, 87, 403-411.	5.3	44
41	N-nitrosamines, emerging disinfection by-products of health concern: an overview of occurrence, mechanisms of formation, control and analysis in water. Water Science and Technology: Water Supply, 2015, 15, 11-25.	1.0	21
42	Modeling NDMA Formation Kinetics During Chloramination of Model Compounds and Surface Waters Impacted by Wastewater Discharges. ACS Symposium Series, 2015, , 79-95.	0.5	3
43	Evaluation of the Final UCMR2 Database: Nationwide Trends in NDMA. Journal - American Water Works Association, 2015, 107, E58.	0.2	22
44	Degradation of dimethylamine and three tertiary amines by activated sludge and isolated strains. Journal of Chemical Technology and Biotechnology, 2015, 90, 847-858.	1.6	8
45	Chlorination and monochloramination of 3-aminophenol: kinetics and formation of first by-products. Environmental Technology (United Kingdom), 2015, 36, 2255-2263.	1.2	5
46	Formation of carbonaceous and nitrogenous disinfection by-products during monochloramination of oxytetracycline including N-Nitrosodimethylamine. Desalination and Water Treatment, 2015, 54, 2299-2306.	1.0	3
47	Applying the polarity rapid assessment method to characterize nitrosamine precursors and to understand their removal by drinking water treatment processes. Water Research, 2015, 87, 292-298.	5.3	47
48	Effect of molecular characteristics on the formation of nitrosamines during chlor(am)ination of phenylurea herbicides. Environmental Sciences: Processes and Impacts, 2015, 17, 2092-2100.	1.7	9
49	Compound-Specific Carbon, Nitrogen, and Hydrogen Isotope Analysis of <i>N</i> -Nitrosodimethylamine in Aqueous Solutions. Analytical Chemistry, 2015, 87, 2916-2924.	3.2	28
50	Safe Drinking Water? Effect of Wastewater Inputs and Source Water Impairment and Implications for Water Reuse. Handbook of Environmental Chemistry, 2015, , 155-182.	0.2	4
51	Antibiotic-Resistant Bacteria and Resistance Genes in the Water–Food Nexus of the Agricultural Environment. , 2015, , 325-346.		2
52	Environmental Neurotoxins Linked to a Prototypical Neurodegenerative Disease. , 2015, , 211-252.		7
53	Molecular Mechanism of NDMA Formation from <i>N</i> , <i>N</i> Dimethylsulfamide During Ozonation: Quantum Chemical Insights into a Bromide-Catalyzed Pathway. Environmental Science & Technology, 2015, 49, 4163-4175.	4.6	53
54	N-nitrosodimethylamine formation from ozonation of chlorpheniramine: Influencing factors and transformation mechanism. Journal of Hazardous Materials, 2015, 299, 584-594.	6.5	20
55	Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Research, 2015, 87, 237-270.	5.3	255
56	Role of Chlorine Dioxide in <i>N</i> -Nitrosodimethylamine Formation from Oxidation of Model Amines. Environmental Science & Technology, 2015, 49, 11429-11437.	4.6	28
57	N-nitrosodimethylamine (NDMA) formation at anÂindirect potable reuse facility. Water Research, 2015, 70, 174-183.	5.3	57

#	Article	IF	CITATIONS
58	Contribution of Arab countries to pharmaceutical wastewater literature: a bibliometric and comparative analysis of research output. Annals of Occupational and Environmental Medicine, 2016, 28, 28.	0.3	27
59	NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation. Water Research, 2016, 95, 300-309.	5.3	26
60	Veterinary antibiotics used in animal agriculture as NDMA precursors. Chemosphere, 2016, 164, 330-338.	4.2	32
61	High-Resolution Mass Spectrometry Identification of Micropollutants Transformation Products Produced During Water Disinfection With Chlorine and Related Chemicals. Comprehensive Analytical Chemistry, 2016, 71, 283-334.	0.7	1
62	Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan. Chemosphere, 2016, 161, 546-554.	4.2	28
63	The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups. Science of the Total Environment, 2016, 572, 1231-1237.	3.9	9
64	Identification of nitrosamine precursors from urban drainage during storm events: A case study in southern China. Chemosphere, 2016, 160, 323-331.	4.2	27
65	Rejection of pharmaceutically-based N-nitrosodimethylamine precursors using nanofiltration. Water Research, 2016, 93, 179-186.	5.3	6
66	Wastewater Reuse and Current Challenges. Handbook of Environmental Chemistry, 2016, , .	0.2	7
67	N-Nitrosamine formation kinetics in wastewater effluents and surface waters. Environmental Science: Water Research and Technology, 2016, 2, 312-319.	1.2	11
68	LC/QTOF-MS fragmentation of N-nitrosodimethylamine precursors in drinking water supplies is predictable and aids their identification. Journal of Hazardous Materials, 2017, 323, 18-25.	6.5	23
69	Degradation of N-Nitrosodimethylamine by UV-Based Advanced Oxidation Processes for Potable Reuse: a Short Review. Current Pollution Reports, 2017, 3, 79-87.	3.1	18
70	Capability of cation exchange technology to remove proven N-nitrosodimethylamine precursors. Journal of Environmental Sciences, 2017, 58, 331-339.	3.2	14
71	Characterization of N-nitrosodimethylamine formation from the ozonation of ranitidine. Journal of Environmental Sciences, 2017, 58, 116-126.	3.2	21
72	A novel assay to measure tertiary and quaternary amines in wastewater: An indicator for NDMA wastewater precursors. Chemosphere, 2017, 179, 298-305.	4.2	8
73	Defining the molecular properties of N-nitrosodimethylamine (NDMA) precursors using computational chemistry. Environmental Science: Water Research and Technology, 2017, 3, 502-512.	1.2	9
74	Increase of cytotoxicity during wastewater chlorination: Impact factors and surrogates. Journal of Hazardous Materials, 2017, 324, 681-690.	6.5	69
75	Equilibria and Speciation of Chloramines, Bromamines, and Bromochloramines in Water. Environmental Science & Technology, 2017, 51, 128-140.	4.6	26

#	Article	IF	CITATIONS
76	Carbon, Hydrogen, and Nitrogen Isotope Fractionation Trends in <i>N</i> -Nitrosodimethylamine Reflect the Formation Pathway during Chloramination of Tertiary Amines. Environmental Science & Technology, 2017, 51, 13170-13179.	4.6	16
77	Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins. Water Research, 2017, 124, 20-28.	5.3	29
78	Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM. Water Research, 2017, 109, 114-121.	5.3	54
79	Formation of <i>N</i> -Nitrosodimethylamine during Chloramination of Secondary and Tertiary Amines: Role of Molecular Oxygen and Radical Intermediates. Environmental Science & Technology, 2017, 51, 280-290.	4.6	58
80	Comparison of N-nitrosodimethylamine formation mechanisms from dimethylamine during chloramination and ozonation: A computational study. Journal of Hazardous Materials, 2017, 321, 362-370.	6.5	26
81	Toward N-nitrosamines free water: Formation, prevention, and removal. Critical Reviews in Environmental Science and Technology, 2017, 47, 2448-2489.	6.6	20
82	Practical Considerations for Implementing Nitrosamine Control Strategies. Journal - American Water Works Association, 2017, 109, E226-E242.	0.2	6
83	Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 617-628.	0.9	8
84	Re-Examining the Role of Dichloramine in High-Yield <i>N</i> -Nitrosodimethylamine Formation from <i>N</i> , <i>N</i> -Dimethyl-α-arylamines. Environmental Science and Technology Letters, 2018, 5, 154-159.	3.9	35
85	The role of chloramine species in NDMA formation. Water Research, 2018, 140, 100-109.	5.3	45
86	Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. Science of the Total Environment, 2018, 635, 1383-1391.	3.9	10
87	Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine. Science of the Total Environment, 2018, 633, 352-359.	3.9	19
88	Role of tertiary amines in enhancing trihalomethane and haloacetic acid formation during chlorination of aromatic compounds and a natural organic matter extract. Environmental Science: Water Research and Technology, 2018, 4, 663-679.	1.2	7
89	Specific and total N-nitrosamines formation potentials of nitrogenous micropollutants during chloramination. Water Research, 2018, 135, 311-321.	5.3	30
90	Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms. Environmental Science and Pollution Research, 2018, 25, 13489-13498.	2.7	27
91	Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation: A critical review. Water Research, 2018, 147, 112-131.	5.3	108
92	Conventional and Advanced Processes for the Removal of Pharmaceuticals and Their Human Metabolites from Wastewater. ACS Symposium Series, 2018, , 15-67.	0.5	4
93	Regulated and emerging disinfection by-products in recycled waters. Science of the Total Environment, 2018, 637-638, 1607-1616.	3.9	59

#	Article	IF	CITATIONS
94	Removal of N-nitrosodimethylamine precursors by cation exchange resin: The effects of pH and calcium. Chemosphere, 2018, 211, 1091-1097.	4.2	6
95	Characterization of seven psychoactive pharmaceuticals as Nâ€nitrosodimethylamine precursors during free chlorine and chlorine dioxide chlorination processes. Journal of Chemical Technology and Biotechnology, 2019, 94, 53-62.	1.6	6
96	Effect of disinfection processes and anthropogenic pollutants on comparative formation of trihalomethanes and N-nitrosodimethylamine. International Journal of Environmental Science and Technology, 2019, 16, 4083-4090.	1.8	2
97	Regeneration of porous electrospun membranes embedding alumina nanoparticles saturated with minocycline by UV radiation. Chemosphere, 2019, 237, 124495.	4.2	4
98	Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Research, 2019, 160, 313-329.	5.3	141
99	Removals of pharmaceuticals in municipal wastewater using a staged anaerobic fluidized membrane bioreactor. International Biodeterioration and Biodegradation, 2019, 140, 29-36.	1.9	38
100	Determination of acid dissociation constants and reaction kinetics of dimethylamine-based PPCPs with O ₃ , NaClO, ClO ₂ and KMnO ₄ . Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 528-535.	0.9	6
101	The contribution of biofilm to nitrogenous disinfection by-product formation in full-scale cyclically-operated drinking water biofilters. Water Research, 2019, 155, 403-409.	5.3	16
103	Formation of N-nitrosodimethylamine by chloramination of anthropogenic nitrogenous compounds with dimethylamine monitored by Japanese water authorities. Journal of Hazardous Materials, 2019, 367, 620-628.	6.5	12
104	Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere, 2019, 216, 224-233.	4.2	7
105	Removal of micropollutants and cyanobacteria from drinking water using KMnO4 pre-oxidation coupled with bioaugmentation. Chemosphere, 2019, 215, 1-7.	4.2	32
106	Adsorption of organic including pharmaceutical and inorganic contaminants in water toward graphene-based materials. , 2020, , 93-113.		4
107	Application of stabilized hypobromite for controlling membrane fouling and N-nitrosodimethylamine formation. Chemosphere, 2020, 240, 124939.	4.2	3
108	Chlorination and bromination of 1,3-diphenylguanidine and 1,3-di-o-tolylguanidine: Kinetics, transformation products and toxicity assessment. Journal of Hazardous Materials, 2020, 385, 121590.	6.5	35
109	Effect of bromide on NDMA formation during chloramination of model precursor compounds and natural waters. Water Research, 2020, 170, 115323.	5.3	12
110	Sunlight photolysis mitigates the formation of N-nitrosodimethylamine (NDMA) during the chloramination of methadone. Chemical Engineering Journal, 2020, 384, 123307.	6.6	11
111	Controlling disinfection byproducts from treated wastewater using adsorption with granular activated carbon: Impact of pre-ozonation and pre-chlorination. Water Research X, 2020, 9, 100068.	2.8	14
112	Oxidation of betrixaban to yield N-nitrosodimethylamine by water disinfectants. Water Research, 2020, 186, 116309.	5.3	15

#	Article	IF	CITATIONS
113	Microcystin-LR degradation kinetics during chlorination: Role of water quality conditions. Water Research, 2020, 185, 116305.	5.3	9
114	Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. Water Research, 2020, 186, 116315.	5.3	4
115	Formation of N-nitrosodimethylamine precursors through the microbiological metabolism of nitrogenous substrates in water. Water Research, 2020, 183, 116055.	5.3	16
116	Reinvestigation of NDMA formation mechanisms from tertiary amines during chloramination: a DFT study. Environmental Science: Water Research and Technology, 2020, 6, 2078-2088.	1.2	3
117	Formation of Nitrosodipropylamine from Nitrogenous Contaminants (Amines and Amine-Based) Tj ETQq0 0 0 rgE	BT /Overloo	ck 10 Tf 50 5

118	Predicting unregulated disinfection by-products in small water distribution networks: an empirical modelling framework. Environmental Monitoring and Assessment, 2020, 192, 497.	1.3	16
119	Determination of N-Nitrosamines by Gas Chromatography Coupled to Quadrupole–Time-of-Flight Mass Spectrometry in Water Samples. Separations, 2020, 7, 3.	1.1	15
120	N-nitrosodimethylamine formation potential (NDMA-FP) of ranitidine remains after chlorination and/or photo-irradiation: Identification of transformation products in combination with NDMA-FP test. Chemosphere, 2021, 267, 129200.	4.2	6
121	The competitive effect of different chlorination disinfection methods and additional inorganic nitrogen on nitrosamine formation from aromatic and heterocyclic amine-containing pharmaceuticals. Chemosphere, 2021, 267, 128922.	4.2	11
122	Reaction of phenazone-type drugs and metabolites with chlorine and monochloramine. Science of the Total Environment, 2021, 757, 143770.	3.9	8
123	Phenylurea herbicide degradation and N-nitrosodimethylamine formation under various oxidation conditions: Relationships and transformation pathways. Environmental Pollution, 2021, 269, 116122.	3.7	14
124	Detection of N-nitrosodimethylamine (NDMA) and its formation potential in hospital wastewater. Environmental Science and Pollution Research, 2021, 28, 14199-14206.	2.7	3
125	N-nitrosodimethylamine (NDMA) Contamination of Ranitidine Products: A review of recent findings. Journal of Food and Drug Analysis, 2021, 29, 39-45.	0.9	13
126	Inhibitory effect of alkyl groups on N-nitrosamine formation from secondary and tertiary alkylamines with monochloramine. Environmental Technology and Innovation, 2021, 22, 101520.	3.0	5
127	Research on reclaimed water from the past to the future: a review. Environment, Development and Sustainability, 2022, 24, 112-137.	2.7	9
128	Determining the leading sources of N-nitrosamines and dissolved organic matter in four reservoirs in Southern China. Science of the Total Environment, 2021, 771, 145409.	3.9	12
129	Aqueous <i>N</i> -nitrosamines: Precursors, occurrence, oxidation processes, and role of inorganic ions. Critical Reviews in Environmental Science and Technology, 2022, 52, 3604-3650.	6.6	13
130	Efficient separation of small organic contaminants in water using functionalized nanoporous graphene membranes: Insights from molecular dynamics simulations. Journal of Membrane Science,	4.1	30

#	Article	IF	CITATIONS
131	Predictive modeling of haloacetonitriles under uniform formation conditions. Water Research, 2021, 201, 117322.	5.3	8
132	Quantitative analysis of source and fate of N-nitrosamines and their precursors in an urban water system in East China. Journal of Hazardous Materials, 2021, 415, 125700.	6.5	19
133	Nitrosamine Contamination in Pharmaceuticals: Threat, Impact, and Control. Journal of Pharmaceutical Sciences, 2021, 110, 3118-3128.	1.6	49
134	Formation of organic chloramines during chlorination of 18 compounds. Water Research, 2021, 204, 117570.	5.3	13
135	Formation of nitrosamines during chloramination of two algae species in source water—Microcystis aeruginosa and Cyclotella meneghiniana. Science of the Total Environment, 2021, 798, 149210.	3.9	11
136	UV-induced activation of organic chloramine: Radicals generation, transformation pathway and DBP formation. Journal of Hazardous Materials, 2022, 421, 126459.	6.5	13
137	An Organic Chemist's Guide to <i>N</i> -Nitrosamines: Their Structure, Reactivity, and Role as Contaminants. Journal of Organic Chemistry, 2021, 86, 2037-2057.	1.7	82
138	Updated Reaction Pathway for Dichloramine Decomposition: Formation of Reactive Nitrogen Species and <i>N</i> -Nitrosodimethylamine. Environmental Science & Technology, 2021, 55, 1740-1749.	4.6	18
139	Catalytic degradation of chlorpheniramine over GO-Fe3O4 in the presence of H2O2 in water: The synergistic effect of adsorption. Science of the Total Environment, 2020, 736, 139468.	3.9	22
140	Evaluating and modeling the activated carbon adsorption of wastewater-derived N-nitrosodimethylamine precursors. Environmental Science: Water Research and Technology, 2017, 3, 844-856.	1.2	5
141	Occurrence and control of N-nitrosodimethylamine in water engineering systems. Environmental Engineering Research, 2019, 24, 1-16.	1.5	15
142	Evaluation of N-Nitrosamines Removal Capability by Using Simulated Advanced Drinking Water Treatment Process for the Downstream of Nakdong River. Daehan Hwan'gyeong Gonghag Hoeji, 2019, 41, 1-9.	0.4	4
143	Understanding N-nitrosodimethylamine (NDMA) formation during chloramination: Precursor characteristics, pathways and mitigation. Journal of the Korean Society of Water and Wastewater, 2018, 32, 279-289.	0.3	0
144	Production of <i>N</i> -Nitrosodimethylamine Precursors by Biofilters Is Highly Dynamic and Affected by Filter Media Type and Backwashing Conditions. ACS ES&T Water, 2021, 1, 661-671.	2.3	3
145	Chlorination By-Products of Anticancer Drugs. , 2020, , 87-102.		0
146	Metallocalix[4]arene Polymers for Gravimetric Detection of <i>N-</i> Nitrosodialkylamines. Journal of the American Chemical Society, 2021, 143, 19809-19815.	6.6	12
147	Degradation of Minocycline by the Adsorption–Catalysis Multifunctional PVDF–PVP–TiO2 Membrane: Degradation Kinetics, Photocatalytic Efficiency, and Toxicity of Products. International Journal of Environmental Research and Public Health, 2021, 18, 12339.	1.2	5
148	Predictable Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry Fragmentation of Ozone-Reactive <i>N</i> -Nitrosodimethylamine Precursors Coupled with <i>In Silico</i> Fragmentation and Ion Mobility-Quadrupole Time-of-Flight Facilitates Their Identification in Sewage. Environmental Science & amp: Technology, 2022, 56, 2345-2354.	4.6	2

#	Article	IF	CITATIONS
149	Removal of Organic Compounds with an Amino Group during the Nanofiltration Process. Membranes, 2022, 12, 58.	1.4	3
150	Dissolved Organic Nitrogen, Ndma, and Ndma Precursors' Removal During Simulated Soil Aquifer Treatment. SSRN Electronic Journal, 0, , .	0.4	0
151	Degradation of 1,4-dioxane by reactive species generated during breakpoint chlorination: Proposed mechanisms and implications for water treatment and reuse. Journal of Hazardous Materials Letters, 2022, 3, 100054.	2.0	3
152	A balancing act: Optimizing free chlorine contact time to minimize iodo-DBPs, NDMA, and regulated DBPs in chloraminated drinking water. Journal of Environmental Sciences, 2022, 117, 315-325.	3.2	9
153	Efficacy of emerging technologies in addressing reductive dechlorination for environmental bioremediation: A review. Journal of Hazardous Materials Letters, 2022, 3, 100065.	2.0	5
154	Chlorination disinfection by-products in Southeast Asia: A review on potential precursor, formation, toxicity assessment, and removal technologies. Chemosphere, 2023, 316, 137817.	4.2	13
155	Drinking water treatment and associated toxic byproducts: Concurrence and urgence. Environmental Pollution, 2023, 320, 121009.	3.7	10
156	Release regularity and cleaning measures of magnetic anion exchange resin during application. Chemosphere, 2023, 323, 138285.	4.2	1
157	Current Threat of Nitrosamines in Pharmaceuticals and Scientific Strategies for Risk Mitigation. Journal of Pharmaceutical Sciences, 2023, 112, 1192-1209.	1.6	5
158	Investigation of the formation of <scp> NDMA _{UFC} </scp> across biofilters. AWWA Water Science, 2023, 5, .	1.0	0
159	Evaluation of Alternative-to-Gas Chlorination Disinfection Technologies in the Treatment of Maltese Potable Water. Water (Switzerland), 2023, 15, 1450.	1.2	0