From computed microtomography images to resistivity heterogeneous carbonates using a dual-porosity pore-n percolation on the electrical transport properties

Physical Review E 84, 011133 DOI: 10.1103/physreve.84.011133

Citation Report

#	Article	IF	CITATIONS
1	Re-examining Archie's law: Conductance description by tortuosity and constriction. Physical Review E, 2012, 86, 046314.	0.8	50
2	Improving the Estimations of Petrophysical Transport Behavior of Carbonate Rocks Using a Dual Pore Network Approach Combined with Computed Microtomography. Transport in Porous Media, 2012, 94, 505-524.	1.2	80
3	Assessment of the two relaxation time Latticeâ€Boltzmann scheme to simulate Stokes flow in porous media. Water Resources Research, 2012, 48, .	1.7	87
4	Numerical homogenization of electrokinetic equations in porous media using lattice-Boltzmann simulations. Physical Review E, 2013, 88, 013019.	0.8	21
5	Computing the Longtime Behaviour of NMR Propagators in Porous Media Using a Pore Network Random Walk Model. Transport in Porous Media, 2014, 101, 251-267.	1.2	3
6	Determination of electrical conductivity of double-porosity formations by using generalized differential effective medium approximation. Journal of Applied Geophysics, 2014, 108, 104-109.	0.9	13
7	The effects of rock heterogeneity on compaction localization in porous carbonates. Journal of Structural Geology, 2014, 67, 75-93.	1.0	62
8	Universal Stochastic Multiscale Image Fusion: An Example Application for Shale Rock. Scientific Reports, 2015, 5, 15880.	1.6	89
9	A new electrical formation factor model for bimodal carbonates: numerical studies using dual-pore percolation network. Geophysical Journal International, 2015, 201, 1456-1470.	1.0	16
10	Multi-scale, micro-computed tomography-based pore network models to simulate drainage in heterogeneous rocks. Advances in Water Resources, 2015, 78, 36-49.	1.7	183
11	A Multi-Scale Investigation of Pore Structure Impact on the Mobilization of Trapped Oil by Surfactant Injection. Transport in Porous Media, 2015, 109, 673-692.	1.2	42
12	Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation. Geophysical Journal International, 2015, 200, 701-719.	1.0	56
13	The Impact of Sub-Resolution Porosity of X-ray Microtomography Images on the Permeability. Transport in Porous Media, 2016, 113, 227-243.	1.2	139
14	Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an imageâ€based, multiscale pore network model. Water Resources Research, 2016, 52, 6833-6850.	1.7	13
15	Imaging and image-based fluid transport modeling at the pore scale in geological materials: A practical introduction to the current state-of-the-art. Earth-Science Reviews, 2016, 155, 93-128.	4.0	336
16	Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates. Advances in Water Resources, 2016, 95, 254-263.	1.7	29
17	Improved method for effective rock microporosity estimation using X-ray microtomography. Micron, 2017, 97, 11-21.	1.1	18
18	Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations. Advances in Water Resources, 2017, 107, 139-146.	1.7	11

#	Article	IF	Citations
19	Migration mode of brine and supercritical CO2 during steady-state relative permeability measurements at very slow fluid flow velocity. Geophysical Journal International, 0, , .	1.0	2
20	Electrical conductivity models in saturated porous media: A review. Earth-Science Reviews, 2017, 171, 419-433.	4.0	219
21	Nanoscale and multiresolution models for shale samples. Fuel, 2018, 217, 218-225.	3.4	51
22	Rapid multiscale modeling of flow in porous media. Physical Review E, 2018, 98, .	0.8	41
23	Effective Stress Law for the Permeability and Deformation of Four Porous Limestones. Journal of Geophysical Research: Solid Earth, 2018, 123, 4707-4729.	1.4	29
24	Relating Topological and Electrical Properties of Fractured Porous Media: Insights into the Characterization of Rock Fracturing. Minerals (Basel, Switzerland), 2018, 8, 14.	0.8	16
25	Pore-scale network modeling of microporosity in low-resistivity pay zones of carbonate reservoir. Journal of Natural Gas Science and Engineering, 2019, 71, 103005.	2.1	21
26	Effects of micropores on geometric, topological and transport properties of pore systems for low-permeability porous media. Journal of Hydrology, 2019, 575, 327-342.	2.3	58
27	The Effect of Stress on Limestone Permeability and Effective Stress Behavior of Damaged Samples. Journal of Geophysical Research: Solid Earth, 2019, 124, 376-399.	1.4	22
28	Bridging Scales to Model Reactive Diffusive Transport in Porous Media. Journal of the Electrochemical Society, 2020, 167, 013524.	1.3	9
29	A Triple Pore Network Model (T-PNM) for Gas Flow Simulation in Fractured, Micro-porous and Meso-porous Media. Transport in Porous Media, 2020, 132, 707-740.	1.2	22
30	The development of intermittent multiphase fluid flow pathways through a porous rock. Advances in Water Resources, 2021, 150, 103868.	1.7	16
31	The Brittleâ€Ductile Transition in Porous Limestone: Failure Mode, Constitutive Modeling of Inelastic Deformation and Strain Localization. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021602.	1.4	14
32	Digital rock physics, chemistry, and biology: challenges and prospects of pore-scale modelling approach. Applied Geochemistry, 2021, 131, 105028.	1.4	43
33	Rapid multiscale pore network modeling for drainage in tight sandstone. Journal of Petroleum Science and Engineering, 2021, 204, 108682.	2.1	9
34	MicroPoreNet: Complex and Multilevels Microporosity Characterization of Carbonate Rocks through Semisupervised CNN. , 2021, , .		1
35	The impact of sub-resolution porosity on numerical simulations of multiphase flow. Advances in Water Resources, 2022, 161, 104094.	1.7	9
36	Studies and Applications of Dual Pore Saturation Model Based on Pore Structure Classification in Tight Reservoirs. Frontiers in Earth Science, 2022, 9, .	0.8	0

CITATION REPORT

#	Article	IF	CITATIONS
37	The Role of Poreâ€Shape and Poreâ€Space Heterogeneity in Nonâ€Archie Behavior of Resistivity Index Curves. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
38	An evaluation method of rock pore volume compressibility determination using a computed tomography scanned-based finite element model. Acta Geophysica, 2023, 71, 147-159.	1.0	2
39	The dual laterolog response of fractured-vuggy reservoirs based on conductivity tensor and Maxwell–Garnett mixing rule. , 2023, 223, 211504.		0
40	Characterization of Pore Electrical Conductivity in Porous Media by Weakly Conductive and Nonconductive Pores. Surveys in Geophysics, 2023, 44, 877-923.	2.1	3

CITATION REPORT