Shape-Dependent Localization of Carbon Nanotubes an Polymer Blend during Melt Mixing

Macromolecules 44, 6094-6102 DOI: 10.1021/ma200793a

Citation Report

#	Article	lF	CITATIONS
2	A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. Journal of Materials Chemistry, 2012, 22, 22398.	6.7	141
3	Controlled network structure and its correlations with physical properties of polycarboxyl octaphenylsilsesquioxanes-based inorganic–organic polymer nanocomposites. RSC Advances, 2012, 2, 2759.	1.7	9
4	Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. Journal of Materials Chemistry, 2012, 22, 23568.	6.7	123
5	The kinetics of CNT transfer between immiscible blend phases during melt mixing. Polymer, 2012, 53, 411-421.	1.8	109
6	Synthesis and characterization of poly(p-chloromethylstyrene) nanocomposite comprising covalently bonded carbon nanocapsules: Superiority of thermal properties to a physical blend. Polymer, 2012, 53, 2347-2355.	1.8	5
7	Master curve of filler localization in rubber blends at an equilibrium state. Journal of Materials Science, 2012, 47, 4270-4281.	1.7	10
8	Location of dispersing agent in rubber nanocomposites during mixing process. Polymer, 2013, 54, 7009-7021.	1.8	18
9	Trapping carbon nanotubes at the interface of a polymer blend through adding graphene oxide: a facile strategy to reduce electrical resistivity. Journal of Materials Chemistry C, 2013, 1, 7808.	2.7	36
10	Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydrate Polymers, 2013, 98, 189-198.	5.1	58
11	A morphological study on the dispersion and selective localization behavior of graphene nanoplatelets in immiscible polymer blends ofÂPC and SAN. Polymer, 2013, 54, 5875-5882.	1.8	66
12	Hierarchical Structures Composed of Confined Carbon Nanotubes in Cocontinuous Ternary Polymer Blends. Macromolecules, 2013, 46, 1851-1859.	2.2	53
13	High performance hybrid carbon fillers/binary–polymer nanocomposites with remarkably enhanced positive temperature coefficient effect of resistance. Journal of Materials Chemistry A, 2013, 1, 843-851.	5.2	76
14	Improving interfacial adhesion between immiscible polymers by carbon nanotubes. Polymer, 2013, 54, 464-471.	1.8	67
15	Interphase transfer of tackifier between poly(butadiene) and poly(styrene-co-butadiene). Journal of Materials Science, 2013, 48, 2046-2052.	1.7	8
16	Influence of the viscosity ratio in PC/SAN blends filled with MWCNTs on the morphological, electrical, and melt rheological properties. Polymer, 2013, 54, 6801-6808.	1.8	102
17	Selective localization of carbon nanotubes at the interface of Poly(L-lactide)/Ethylene-co-vinyl Acetate resulting in lowered electrical resistivity. Composites Part B: Engineering, 2013, 55, 463-469.	5.9	78
18	Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides. Polymer International, 2013, 62, 1085-1093.	1.6	81
19	Tuning the Dielectric Properties of Polystyrene/Poly(vinylidene fluoride) Blends by Selectively Localizing Carbon Black Nanoparticles. Journal of Physical Chemistry B, 2013, 117, 2505-2515.	1.2	62

#	Article	IF	CITATIONS
20	Electrical double percolation and carbon nanotubes distribution in solution processed immiscible polymer blend. Synthetic Metals, 2013, 175, 75-80.	2.1	30
21	Localization of MWCNTs in PET/LDPE blends. European Polymer Journal, 2013, 49, 1287-1297.	2.6	63
22	Migration of MWCNTs during melt preparation of ABS/PC/MWCNT conductive composites via PC/MWCNT masterbatch approach. Polymer, 2013, 54, 447-455.	1.8	42
23	Conductivity of microfibrillar polymer-polymer composites with CNT-loaded microfibrils or compatibilizer: A comparative study. EXPRESS Polymer Letters, 2013, 7, 607-620.	1.1	16
24	Epoxy resin/polyetherimide/carbon black conductive polymer composites with a double percolation structure by reaction-induced phase separation. Journal of Composite Materials, 2013, 47, 1153-1160.	1.2	37
26	Melt spinning of conductive textile fibers with hybridized graphite nanoplatelets and carbon black filler. Journal of Applied Polymer Science, 2013, 130, 2579-2587.	1.3	45
27	Carbon nanotubes induced poly(vinylidene fluoride) crystallization from a miscible poly(vinylidene) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5 14
28	The transfer of carbon nanotubes in an immiscible high density polyethylene and polyamide 6 blend. Polymers for Advanced Technologies, 2014, 25, 364-371.	1.6	9
29	Combined effect of compatibilizer and carbon nanotubes on the morphology and electrical conductivity of PP/PS blend. Polymers for Advanced Technologies, 2014, 25, 624-630.	1.6	13
30	Viscosity Ratio and Interfacial Tension as Carbon Nanotubes Distributing Factors in Meltâ€Mixed Blends of Polyamide 12 and Highâ€Density Polyethylene. Advances in Polymer Technology, 2014, 33, .	0.8	23
31	Preparation of Core–Shell Nanofibers with Selectively Localized CNTs from Shish Kebabâ€like Hierarchical Composite Micelles. Macromolecular Rapid Communications, 2014, 35, 1450-1457.	2.0	7
32	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	11.8	553
33	Structuration, selective dispersion and compatibilizing effect of (nano)fillers in polymer blends. Progress in Polymer Science, 2014, 39, 1526-1563.	11.8	432
34	An approach to reduce the percolation threshold of MWCNT in ABS/MWCNT nanocomposites through selective distribution of CNT in ABS matrix. RSC Advances, 2014, 4, 24584.	1.7	21
35	Incorporation of modified Stöber silica nanoparticles in polystyrene/polyamide-6 blends: Coalescence inhibition and modification of the thermal degradation via controlled dispersion at the interface. Polymer, 2014, 55, 2704-2715.	1.8	36
36	Styrene–butadiene–styrene copolymer compatibilized carbon black/polypropylene/polystyrene composites with tunable morphology, electrical conduction and rheological stabilities. Soft Matter, 2014, 10, 2685.	1.2	33
37	Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2, 10048-10058.	5.2	82
38	Tuning the interaction of an immiscible poly(<scp>l</scp> -lactide)/poly(vinylidene fluoride) blend by adding poly(methyl methacrylate) via a competition mechanism and the resultant mechanical properties. RSC Advances, 2014, 4, 40569-40579.	1.7	13

#	Article	IF	CITATIONS
39	Formation of Conductive Networks with Both Segregated and Double-Percolated Characteristic in Conductive Polymer Composites with Balanced Properties. ACS Applied Materials & Interfaces, 2014, 6, 6835-6844.	4.0	92
40	Conductive polymer nanocomposites with hierarchical multi-scale structures via self-assembly of carbon-nanotubes on graphene on polymer-microspheres. Nanoscale, 2014, 6, 7877-7888.	2.8	66
41	Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39, 1908-1933.	11.8	617
42	Modeling the electrical percolation of mixed carbon fillers in polymer blends. Carbon, 2014, 70, 233-240.	5.4	51
43	Influence of Noncovalent Modification on Dispersion State of Multiwalled Carbon Nanotubes in Melt-Mixed Immiscible Polymer Blends. ACS Applied Materials & Interfaces, 2014, 6, 11054-11067.	4.0	35
44	Electrically conductive multiphase polymer blend carbon-based composites. Polymer Engineering and Science, 2014, 54, 1-16.	1.5	120
45	Positive temperature coefficient and structural relaxations in selectively localized MWNTs in PE/PEO blends. RSC Advances, 2014, 4, 4943.	1.7	34
46	Effect of organoclay on morphology and electrical conductivity of PC/PVDF/CNT blend composites. Composites Science and Technology, 2014, 94, 30-38.	3.8	49
47	Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon, 2014, 73, 267-274.	5.4	225
48	Advanced dielectric polymer nanocomposites by constructing a ternary continuous structure in polymer blends containing poly(methyl methacrylate) (PMMA) modified carbon nanotubes. Journal of Materials Chemistry A, 2014, 2, 10614.	5.2	50
49	Dynamic-mechanical analysis of MWNTs-filled PC/ABS blends. Polymer Engineering and Science, 2014, 54, 2696-2706.	1.5	4
50	Well dispersion of rGOs in PLLA matrix mediated by incorporation of EVA and its resultant electrical property. Polymer Composites, 2014, 35, 1051-1059.	2.3	5
51	Effect of the selective localization of carbon nanotubes in polystyrene/poly(vinylidene fluoride) blends on their dielectric, thermal, and mechanical properties. Materials & Design, 2014, 56, 807-815.	5.1	89
52	Preparation of conductive polyphenylene sulfide/polyamide 6/multiwalled carbon nanotube composites using the slow migration rate of multiwalled carbon nanotubes from polyphenylene sulfide to polyamide 6. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
54	Effect of selective localization of carbon nanotubes in PA6 dispersed phase of PP/PA6 blends on the morphology evolution with time, part 1: Droplet deformation under simple shear flows. Polymer Engineering and Science, 2015, 55, 1504-1519.	1.5	35
55	In Situ Self Assembly of Nanocomposites: Competition of Chaotic Advection and Interfacial Effects as Observed by X-Ray Diffreaction. Nanomaterials, 2015, 5, 351-365.	1.9	2
56	Selective localisation of multi walled carbon nanotubes in polypropylene/natural rubber blends to reduce the percolation threshold. Composites Science and Technology, 2015, 116, 9-17.	3.8	86
57	Smarter–lighter–greener: research innovations for the automotive sector. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140938.	1.0	3

	Сітатіо	n Report	
#	Article	IF	CITATIONS
58	Largely enhanced fracture toughness of an immiscible polyamide 6/acrylonitrile–butadiene–styrene blend achieved by adding chemically modified graphene oxide. RSC Advances, 2015, 5, 101466-101474.	1.7	11
59	Enhancing the conductivity of carbon nanotube filled blends by tuning their phase separated morphology with a copolymer. Polymer, 2015, 79, 271-282.	1.8	20
60	Localization of micro and nano- silica particles in a high interfacial tension poly(lactic acid)/low density polyethylene system. Polymer, 2015, 77, 156-166.	1.8	47
61	Mechanical Properties of Epoxy/Thermoplastic Blends. , 2015, , 1-32.		0
62	Tuning of vapor sensing behaviors of eco-friendly conductive polymer composites utilizing ramie fiber. Sensors and Actuators B: Chemical, 2015, 221, 1279-1289.	4.0	64
63	Microwave absorbers designed from PVDF/SAN blends containing multiwall carbon nanotubes anchored cobalt ferrite via a pyrene derivative. Journal of Materials Chemistry A, 2015, 3, 12413-12426.	5.2	81
64	Studies on the selective localization of multi-walled carbon nanotubes in blends of poly(vinylidene) Tj ETQqQ) 0 0 rgBT /Ove	erlock 10 Tf 50
65	Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Advances, 2015, 5, 32880-32890.	1.7	94
66	Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylene) Tj ETQq0 0 0 r	gBT /Oyerlock	10,Tf 50 422
67	A Change of Phase Morphology in Poly Lactic Acid/Poly Methyl Methacrylate Blends Induced by Graphene Nano Sheets. Journal of Macromolecular Science - Physics, 2015, 54, 1466-1478.	0.4	4
68	Influence of phase coarsening and filler agglomeration on electrical and rheological properties of MWNTs-filled PP/PMMA composites under annealing. Polymer, 2015, 79, 159-170.	1.8	30
69	Interphase transfer of plasticizer between immiscible rubbers. Polymer, 2015, 78, 208-211.	1.8	10
70	Effect of glass fiber on the electrical resistivities of polyoxymethylene/maleic anhydrideâ€grafted polyethylene/multiwalled carbon nanotube composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
71	Morphology and rheological properties of silica-filled poly(carbonate)/poly(methyl methacrylate) blends. Polymer Engineering and Science, 2015, 55, 1951-1959.	1.5	16
72	The simultaneous addition of styrene maleic anhydride copolymer and multiwall carbon nanotubes during melt-mixing on the morphology of binary blends of polyamide6 and acrylonitrile butadiene styrene copolymer. Polymer Engineering and Science, 2015, 55, 457-465.	1.5	17
74	Enhancement of Carbon Nanotube Particle Distribution in PPS/PEEK/Carbon Nanotube Ternary Composites with Sausage-Like Structure. Polymers, 2016, 8, 50.	2.0	10
75	Interphase Transfer of Tackifier between Immiscible Rubbers. Journal of Macromolecular Science - Physics, 2016, 55, 262-271.	0.4	0
78	Control of the Crystalline Morphology of Poly(<scp>l</scp> -lactide) by Addition of High-Melting-Point Poly(<scp>l</scp> -lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2016, 120, 7423-7437.	1.2	40

#	Article	IF	CITATIONS
79	Progress in Conductive-Polymer Carbon Nanotube Composites. Materials Science Forum, 2016, 848, 13-17.	0.3	0
80	Polymer Blending for Packaging Applications. , 2016, , 173-204.		2
81	ãfŠãfŽã,«ãf¼ãfœãf³ææ–™ã®å±€åœ¨åŒ–ã,'å^©ç"¨ã⊷ã¥å°Žé›»æ€§æ¨¹è,,,ã®é–‹ç™º. Seikei-Kakou, 2016, 28,	37076380.	0
83	A morphological study on the migration and selective localization of graphene in the PLA/PMMA blends. Journal of Applied Polymer Science, 2016, 133, .	1.3	20
84	The role of conductive pathways in the conductivity and rheological behavior of poly(methyl) Tj ETQq0 0 0 rgBT /	Overlock 1	0 ₆ Tf 50 582
85	Quantification of the Effect of Shish-Kebab Structure on the Mechanical Properties of Polypropylene Samples by Controlling Shear Layer Thickness. Macromolecules, 2016, 49, 4571-4578.	2.2	86

86	Morphology evolution of a thermotropic liquid rystalline polymer in a polyamide 6,6 matrix regulated by graphene. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
87	Immiscible Polymer Blends Stabilized with Nanophase. , 2016, , 215-237.		2
88	Structuring tri-continuous structure multiphase composites with ultralow conductive percolation threshold and excellent electromagnetic shielding effectiveness using simple melt mixing. Polymer, 2016, 83, 34-39.	1.8	57
89	Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ran-butylene-b-styrene) and carbon nanotubes. European Polymer Journal, 2016, 77, 43-53.	2.6	65
90	Influence of carbon nanotubes localization and transfer on electrical conductivity in PA66/(PS/PPE)/CNTs nanocomposites. Polymer, 2016, 84, 198-208.	1.8	34
91	Effects of glass fiber on the properties of polyoxymethylene/thermoplastic polyurethane/multiwalled carbon nanotube composites. Polymer Composites, 2017, 38, 1319-1326.	2.3	8
92	Selective localization of reduced graphene oxides at the interface of PLA/EVA blend and its resultant electrical resistivity. Polymer Composites, 2017, 38, 1982-1991.	2.3	39
94	Ultralow Percolation Threshold in Poly(<scp>l</scp> -lactide)/Poly(ε-caprolactone)/Multiwall Carbon Nanotubes Composites with a Segregated Electrically Conductive Network. Journal of Physical Chemistry C, 2017, 121, 3087-3098.	1.5	83
95	Achieving a low electrical percolation threshold andÂsuperior mechanical performance in poly(<scp>l</scp> -lactide)/thermoplastic polyurethane/carbon nanotubes composites via tailoring phase morphology with the aid of stereocomplex crystallites. RSC Advances, 2017, 7, 11076-11084.	1.7	19
96	Viscoelastic and electrical behavior of poly(methyl methacrylate)/carbon black composites prior to and after annealing. Polymer, 2017, 113, 34-38.	1.8	58
97	Evaluation of carbon black distribution in different phases of compatible blend of EVA/NBR through electrical, mechanical and morphological test. Polymer Testing, 2017, 59, 404-413.	2.3	13
98	Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(<scp>l</scp> -lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. Journal of Materials Chemistry C, 2017, 5, 2807-2817.	2.7	144

#	Article	IF	CITATIONS
99	Controlling MWCNT partitioning and electrical conductivity in melt compounded polypropylene/poly(ethylene- co -octene) blends. Polymer, 2017, 114, 231-241.	1.8	11
100	Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties. Polymer, 2017, 114, 122-134.	1.8	106
101	Compatibility-tuned distribution of nanoparticles in co-continuous rubber structures toward microwave absorption enhancement. RSC Advances, 2017, 7, 1093-1100.	1.7	15
102	Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 271-278.	1.5	51
103	Localizing graphene at the interface of cocontinuous polymer blends: Morphology, rheology, and conductivity of cocontinuous conductive polymer composites. Journal of Rheology, 2017, 61, 575-587.	1.3	107
104	On the phase affinity of multi-walled carbon nanotubes in PMMA:LDPE immiscible polymer blends. Polymer, 2017, 118, 1-11.	1.8	30
105	Design of high-performance poly(l-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereocomplex crystallization. Polymer, 2017, 108, 38-49.	1.8	41
106	Thermodynamics favoured preferential location of nanoparticles in co-continuous rubber blend toward improved electromagnetic properties. European Polymer Journal, 2017, 92, 275-286.	2.6	17
107	Morphology and properties of electrically and rheologically percolated PLA/PCL/CNT nanocomposites. Journal of Applied Polymer Science, 2017, 134, 45265.	1.3	31
108	Development and characterization of expanded graphite filledâ€PET/PVDF blend: thermodynamic and kinetic effects. Polymers for Advanced Technologies, 2017, 28, 590-599.	1.6	3
109	Two-step positive temperature coefficient effect with favorable reproducibility achieved by specific "island-bridge―electrical conductive networks in HDPE/PVDF/CNF composite. Composites Part A: Applied Science and Manufacturing, 2017, 94, 21-31.	3.8	51
110	Constructing a special â€~sosatie' structure to finely dispersing MWCNT for enhanced electrical conductivity, ultra-high dielectric performance and toughness of iPP/OBC/MWCNT nanocomposites. Composites Science and Technology, 2017, 139, 17-25.	3.8	51
111	Selective distribution and migration of carbon nanotubes enhanced electrical and mechanical performances in polyolefin elastomers. Polymer, 2017, 110, 1-11.	1.8	59
112	Electrically conductive polycarbonate/ethyleneâ€propylene copolymer/multiâ€walled carbon nanotubes nanocomposites with improved mechanical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
113	Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates. Composite Structures, 2017, 180, 378-385.	3.1	26
114	Tunable electrical conductivity of polystyrene/polyamide-6/carbon nanotube blend nanocomposites via control of morphology and nanofiller localization. European Polymer Journal, 2017, 95, 418-429.	2.6	47
115	Graphene Derivatives Doped with Nickel Ferrite Nanoparticles as Excellent Microwave Absorbers in Soft Nanocomposites. ChemistrySelect, 2017, 2, 5984-5999.	0.7	14
116	Reinforced local heterogeneities in interfacial tension distribution in polymer blends by incorporating carbon nanotubes. Polymer, 2017, 125, 90-101.	1.8	15

#	Article	IF	CITATIONS
117	Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(<scp>l</scp> -lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry C, 2017, 5, 9359-9369.	2.7	322
118	CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites. European Polymer Journal, 2017, 93, 545-555.	2.6	71
119	Promoting compatibilization effect of graphene oxide on immiscible PS/PVDF blend via water-assisted mixing extrusion. Composites Science and Technology, 2017, 149, 286-293.	3.8	31
120	The formation of interfacial morphologies of iPP derived from transverse flow during multi-penetration in secondary melt flow. Materials Today Communications, 2017, 12, 43-54.	0.9	7
121	Conducting Polymer Nanocomposites: Recent Developments and Future Prospects. Springer Series on Polymer and Composite Materials, 2017, , 1-44.	0.5	13
122	Influence of melt-mixing processing sequence on electrical conductivity of polyethylene/polypropylene blends filled with graphene. Polymer Bulletin, 2017, 74, 1237-1252.	1.7	33
123	Inner surface modification of halloysite nanotubes and its influence on morphology and thermal properties of polystyrene/polyamideâ€11 blends. Polymer International, 2017, 66, 300-312.	1.6	22
124	Dynamically cured poly(vinylidene fluoride)/epoxidized natural rubber blends filled with ferroelectric ceramic barium titanate. Composites Part A: Applied Science and Manufacturing, 2017, 93, 107-116.	3.8	19
125	Melt mixing functionalized graphite nanoplates into PC/SAN blends. AIP Conference Proceedings, 2017,	0.3	3
126	Synthesis, characterization, and applications of biodegradable microfibrillar and nanofibrillar composites. , 2017, , 113-124.		0
127	Polymer Blending for Packaging Applications. , 2017, , 149-177.		1
128	Conductive poly(vinylidene fluoride)/polyethylene/graphene blendâ€nanocomposites: Relationship between rheology, morphology, and electrical conductivity. Journal of Applied Polymer Science, 2018, 135, 46333.	1.3	19
129	Interfacial modification mechanism of nanocellulose as a compatibilizer for immiscible binary poly(vinyl alcohol)/poly(ethylene oxide) blends. Journal of Applied Polymer Science, 2018, 135, 45896.	1.3	14
130	Tailored distribution of nanoparticles in bi-phasic polymeric blends as emerging materials for suppressing electromagnetic radiation: challenges and prospects. Journal of Materials Chemistry C, 2018, 6, 3120-3142.	2.7	73
131	Constructing a filler network for thermal conductivity enhancement in epoxy composites via reaction-induced phase separation. Composites Part A: Applied Science and Manufacturing, 2018, 110, 62-69.	3.8	50
132	Tailored pyroresistive performance and flexibility by introducing a secondary thermoplastic elastomeric phase into graphene nanoplatelet (GNP) filled polymer composites for self-regulating heating devices. Journal of Materials Chemistry C, 2018, 6, 2760-2768.	2.7	28
133	Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. European Polymer Journal, 2018, 100, 209-218.	2.6	42
134	Carbon nanotubes toughened immiscible polymer blends. Composites Communications, 2018, 7, 51-64.	3.3	52

#	Article	IF	CITATIONS
135	Unraveling the localization behavior of MWCNTs in binary polymer blends using thermodynamics and viscoelastic approaches. Polymer Composites, 2018, 39, 2356-2367.	2.3	54
136	Selective localization of organic montmorillonite nanoparticles in multilayered highâ€density polyethylene/polyamide 6 composites. Advances in Polymer Technology, 2018, 37, 1526-1536.	0.8	3
137	Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polymer Composites, 2018, 39, 3147-3156.	2.3	18
138	Kinetic Control of Graphene Localization in Co-continuous Polymer Blends via Melt Compounding. Langmuir, 2018, 34, 1073-1083.	1.6	74
139	Cellulose nanocrystal in poly(lactic acid)/polyamide11 blends: Preparation, morphology and co-continuity. European Polymer Journal, 2018, 98, 11-20.	2.6	43
140	Compatibilization and ultraviolet blocking of PLA/PCL blends via interfacial localization of titanium dioxide nanoparticles. Journal of Applied Polymer Science, 2018, 135, 44849.	1.3	24
141	A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2018, 105, 118-125.	3.8	81
142	Highly stretchable conductive thermoplastic vulcanizate/carbon nanotube nanocomposites with segregated structure, low percolation threshold and improved cyclic electromechanical performance. Journal of Materials Chemistry C, 2018, 6, 350-359.	2.7	48
143	Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite. Composites Science and Technology, 2018, 154, 45-52.	3.8	26
144	Influence of Silica Size on Properties of Poly[(Butylene Succinate)â€Coâ€Adipate]/Butylâ€Etherified Highâ€Amylose Starch Blend Composites. Starch/Staerke, 2018, 70, 1700181.	1.1	0
145	sPS/PPS/Carbon Nanotube Ternary Composites with Improved Conductivity by Controlled Melt Blending Process. Polymer-Plastics Technology and Engineering, 2018, 57, 850-859.	1.9	3
146	Electrical properties of EVA/LLDPE blends with selectively located graphene nanoplatelets. , 2018, , .		1
147	Electrical properties of EVA/LLDPE blends with selectively located graphene nanoplatelets. , 2018, , .		2
148	Incorporation of Carbon Nanofillers Tunes Mechanical and Electrical Percolation in PHBV:PLA Blends. Polymers, 2018, 10, 1371.	2.0	13
150	High Impact Polystyrene/CNT nanocomposites: Application of volume segregation strategy and behavior under extensional deformation. Polymer, 2018, 157, 156-165.	1.8	9
151	Processing of Polymer Blends, Emphasizing: Melt Compounding; Influence of Nanoparticles on Blend Morphology and Rheology; Reactive Processing in Ternary Systems; Morphology–Property Relationships; Performance and Application Challenges; and Opportunities and Future Trends. Springer Series in Materials Science. 2018 167-197.	0.4	8
152	Facile and Low-Cost Route for Sensitive Stretchable Sensors by Controlling Kinetic and Thermodynamic Conductive Network Regulating Strategies. ACS Applied Materials & Interfaces, 2018, 10, 22678-22691.	4.0	45
153	An effective EMI shielding material based on poly(trimethylene terephthalate) blend nanocomposites with multiwalled carbon nanotubes. New Journal of Chemistry, 2018, 42, 13915-13926.	1.4	28

#	Article	IF	CITATIONS
154	The Role of Selectively Located Commercial Graphene Nanoplatelets in the Electrical Properties, Morphology, and Stability of EVA/LLDPE Blends. Macromolecular Materials and Engineering, 2018, 303, 1800187.	1.7	24
155	Investigating the mechanical, morphological, and thermal behavior of PAâ€6/SAN/MWCNT blends: Application of Taguchi experimental design. Polymer Composites, 2019, 40, 4753-4762.	2.3	10
156	Kinetically Controlled Localization of Carbon Nanotubes in Polylactide/Poly(vinylidene fluoride) Blend Nanocomposites and Their Influence on Electromagnetic Interference Shielding, Electrical Conductivity, and Rheological Properties. Journal of Physical Chemistry C, 2019, 123, 19195-19207.	1.5	40
157	Fabrication of PLA/CNC/CNT conductive composites for high electromagnetic interference shielding based on Pickering emulsions method. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105558.	3.8	83
158	Key factors in mechanical reinforcement by double percolation network: Particle migration and shear stability of filler network. Polymer, 2019, 182, 121820.	1.8	5
159	Characterization of the Effect of Clay on Morphological Evaluations of PLA/Biodegradable Polymer Blends by FT-Rheology. Macromolecules, 2019, 52, 7904-7919.	2.2	38
160	Correlation between morphology, rheological behavior, and electrical behavior of conductive cocontinuous LLDPE/EVA blends containing commercial graphene nanoplatelets. Journal of Rheology, 2019, 63, 961-976.	1.3	20
161	Cooperative influences of nanoparticle localization and phase coarsening on thermal conductivity of polypropylene/polyolefin elastomer blends. Composites Part A: Applied Science and Manufacturing, 2019, 126, 105602.	3.8	10
162	Polymer/Graphene Composites via Spinodal Decomposition of Miscible Polymer Blends. Macromolecules, 2019, 52, 7625-7637.	2.2	28
163	Unraveling the Effect of 3D Particle Localization on Coarsening Dynamics and Rheological Properties in Cocontinuous Polymer Blend Nanocomposites. Macromolecules, 2019, 52, 7678-7687.	2.2	12
164	Selectively localized nanosilica particles at the phase interface of PS/PA6/nanosilica composites with co-continuous structure via reactive extrusion. Composites Science and Technology, 2019, 172, 125-133.	3.8	21
165	Enhancing thermal conductivity and nearâ€infrared radiation reflectance of poly(εâ€caprolactone)/poly(lactic acid)â€based nanocomposites by incorporating hexagonal boron nitride. Polymer Composites, 2019, 40, 3464-3471.	2.3	7
166	Improvement of the thermal/electrical conductivity of PA6/PVDF blends via selective MWCNTs-NH2 distribution at the interface. Materials and Design, 2019, 177, 107835.	3.3	36
167	Microstructure of Rod-Based Capillary Suspensions with Different Rod Aspect Ratios under Quiescent and Shear Flow. Industrial & Engineering Chemistry Research, 2019, 58, 9422-9430.	1.8	6
168	Selective localization of multiâ€walled carbon nanotubes in epoxy/polyetherimide system and properties of the conductive composites. Journal of Applied Polymer Science, 2019, 136, 47911.	1.3	16
169	Rheology of poly (lactic acid)-based systems. Polymer Reviews, 2019, 59, 465-509.	5.3	101
170	The Influence of the Blend Ratio in PA6/PA66/MWCNT Blend Composites on the Electrical and Thermal Properties. Polymers, 2019, 11, 122.	2.0	17
171	Strategies for interfacial localization of graphene/polyethyleneâ€based cocontinuous blends for electrical percolation. AICHE Journal, 2019, 65, e16579.	1.8	23

#	Article	IF	CITATIONS
172	Localization control of carbon nanotubes in immiscible polylactide/vulcanized epoxidized soybean oil blends. Composites Communications, 2019, 11, 6-11.	3.3	15
173	Designing formulation variables of extrusion-based manufacturing of carbon black conductive polymer composites for piezoresistive sensing. Composites Science and Technology, 2019, 171, 78-85.	3.8	53
174	Experimental study of particle migration in polymer processing. Polymer Composites, 2019, 40, 2165-2177.	2.3	10
175	Tuning the Conductivity of Nanocomposites through Nanoparticle Migration and Interface Crossing in Immiscible Polymer Blends: A Review on Fundamental Understanding. Macromolecular Materials and Engineering, 2019, 304, 1800431.	1.7	62
176	Constructing the core–shell structured island domain in polymer blends to achieve high dielectric constant and low loss. Polymer International, 2020, 69, 228-238.	1.6	8
177	Compatibilization of polymer blends by micro and nanofillers. , 2020, , 179-203.		15
178	Effects of processing conditions on hybrid filler selective localization, rheological, and thermal properties of poly(εâ€caprolactone)/poly(lactic acid) blends. Journal of Applied Polymer Science, 2020, 137, 48711.	1.3	6
179	Rheological characterization of compatibilized polymer blends. , 2020, , 453-487.		8
180	Effects associated with constituents. , 2020, , 143-159.		1
181	Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic) Tj ETQq1 1 0.784314 r	gBT/Qverlo	ock 10 Tf 50 3
181 182	Thermal annealing to influence the vapor sensing behavior of co-continuous poly(lactic) Tj ETQq1 1 0.784314 r Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & amp; Engineering Chemistry Research, 2020, 59, 15929-15935.	gBT ₃ Qverlo 1.8	ock 10 Tf 50 3
	Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & Engineering Chemistry	- 0.0	24
182	Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & Engineering Chemistry Research, 2020, 59, 15929-15935. Manipulating the morphology of PA6/POE blends using graphene to achieve balanced electrical and	1.8	1
182 183	Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & amp; Engineering Chemistry Research, 2020, 59, 15929-15935. Manipulating the morphology of PA6/POE blends using graphene to achieve balanced electrical and mechanical properties. Composites Science and Technology, 2020, 200, 108412. Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and	1.8 3.8 1.7	24 1 20 3
182 183 184	Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & Engineering Chemistry Research, 2020, 59, 15929-15935. Manipulating the morphology of PA6/POE blends using graphene to achieve balanced electrical and mechanical properties. Composites Science and Technology, 2020, 200, 108412. Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 2021, 78, 5623-5639. Interface Bridging of Multiwalled Carbon Nanotubes in Polylactic Acid/Poly(butylene) Tj ETQq1 1 0.784314 rg8	1.8 3.8 1.7 [/Overlock	24 1 20 3 10 Tf 50 227
182 183 184 185	 Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & Engineering Chemistry Research, 2020, 59, 15929-15935. Manipulating the morphology of PA6/POE blends using graphene to achieve balanced electrical and mechanical properties. Composites Science and Technology, 2020, 200, 108412. Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 2021, 78, 5623-5639. Interface Bridging of Multiwalled Carbon Nanotubes in Polylactic Acid/Poly(butylene) Tj ETQq1 1 0.784314 rgB³ Macromolecules, 2020, 53, 10267-10277. Interfacially located nanoparticles: Barren nanorods versus polymer grafted nanorods. Composites 	1.8 3.8 1.7 [/Overlock 2.2	1 20 3 10 Tf 50 227 39
182 183 184 185 186	 Imprinting Graphene on Polymer Substrates via Coextrusion. Industrial & amp; Engineering Chemistry Research, 2020, 59, 15929-15935. Manipulating the morphology of PA6/POE blends using graphene to achieve balanced electrical and mechanical properties. Composites Science and Technology, 2020, 200, 108412. Effect of maleic anhydride and oxygen functionalized carbon nanotube on polyamide 6 and polypropylene blend properties. Polymer Bulletin, 2021, 78, 5623-5639. Interface Bridging of Multiwalled Carbon Nanotubes in Polylactic Acid/Poly(butylene) Tj ETQq1 1 0.784314 rg8rd Macromolecules, 2020, 53, 10267-10277. Interfacially located nanoparticles: Barren nanorods versus polymer grafted nanorods. Composites Part B: Engineering, 2020, 198, 108153. Simultaneous improvement of processability and toughness of highly filled MH/LLDPE composites by using fluorine-containing flow modifiers. Composites Part A: Applied Science and Manufacturing, 	1.8 3.8 1.7 [/Overlock 2.2 5.9	24 1 20 3 10 Tf 50 227 39

#	Article	IF	CITATIONS
190	Antistatic Fibers for High-Visibility Workwear: Challenges of Melt-Spinning Industrial Fibers. Materials, 2020, 13, 2645.	1.3	10
191	Improving Resistanceâ€Temperature Characteristic of Polyethylene/Carbon Black Composites by Poly(3,4â€Ethylenedioxythiophene)â€Functionalized Multilayer Graphene. Macromolecular Chemistry and Physics, 2020, 221, 2000144.	1.1	6
192	Particle localization at the equilibrium state and migration mechanism. , 2020, , 99-106.		0
193	Efficient construction of boron nitride network in epoxy composites combining reaction-induced phase separation and three-roll milling. Composites Part B: Engineering, 2020, 198, 108232.	5.9	22
194	Kinetic and thermodynamic parameters guiding the localization of regioselectively modified kaolin platelets into a PS/PA6 co-continuous blend. Polymer, 2020, 191, 122277.	1.8	5
195	Migration vs. properties including the hybrid effect. , 2020, , 161-208.		1
196	Comparative performance of carbon nanotube and nanoclay on thermal properties and flammability behavior of amorphous polyamide/ SEBS blend. Polymer Engineering and Science, 2020, 60, 1333-1342.	1.5	6
197	Stretchable conductors of multi-walled carbon nanotubes (MWCNTs) filled thermoplastic vulcanizate (TPV) composites with enhanced electromagnetic interference shielding performance. Composites Science and Technology, 2020, 195, 108195.	3.8	27
198	Coalescence Suppression in Flowing Polymer Blends Using Silica Rods with Different Surface Chemistries. Chinese Journal of Polymer Science (English Edition), 2021, 39, 474-483.	2.0	0
199	Morphological properties, rheological behaviors, and phase interaction of nylon 11/polypropylene blends by in situ reactive compatibilization and dispersion through polyhydroxybutyrate. Journal of Applied Polymer Science, 2021, 138, 49728.	1.3	3
200	Morphology Evolution, Molecular Simulation, Electrical Properties, and Rheology of Carbon Nanotube/Polypropylene/Polystyrene Blend Nanocomposites: Effect of Molecular Interaction between Styrene-Butadiene Block Copolymer and Carbon Nanotube. Polymers, 2021, 13, 230.	2.0	10
201	Construction and Mechanism Analysis of a Self-Assembled Conductive Network in DGEBA/PEI/HRGO Nanocomposites by Controlling Filler Selective Localization. Nanomaterials, 2021, 11, 228.	1.9	5
202	PLA blend nanocomposites. , 2021, , 311-355.		1
203	Polystyrene and poly(methyl methacrylate) interfaces reinforced with diblock carbon nanotubes. Polymer Engineering and Science, 2021, 61, 1186-1194.	1.5	2
205	The Localization Behavior of Different CNTs in PC/SAN Blends Containing a Reactive Component. Molecules, 2021, 26, 1312.	1.7	2
206	Blend Structure and n-Type Thermoelectric Performance of PA6/SAN and PA6/PMMA Blends Filled with Singlewalled Carbon Nanotubes. Nanomaterials, 2021, 11, 1146.	1.9	9
207	3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer. Small, 2021, 17, e2101233.	5.2	26
208	Generic Method to Create Segregated Structures toward Robust, Flexible, Highly Conductive Elastomer Composites. ACS Applied Materials & Interfaces, 2021, 13, 24154-24163.	4.0	17

#	Article	IF	Citations
209	Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Composites Part B: Engineering, 2021, 215, 108845.	5.9	54
210	Evolution of the electrical resistivity at rest and during oscillatory shearing of co ontinuous morphology (PP / PMMA)/ MWCNT systems. Journal of Applied Polymer Science, 2021, 138, 51343.	1.3	0
211	Strengthened interface as flame retarding belt: Compatibilized PLLA/PP blends by reactive boehmite nanorods. Polymer, 2021, 228, 123879.	1.8	10
212	Nanoclay Migration and the Rheological Response of PBAT/LDPE Blends. International Polymer Processing, 2021, 36, 287-296.	0.3	2
213	Enhanced thermal conductivity and microwave dielectric properties by mesostructural design of multiphase nanocomposite. Nano Materials Science, 2022, 4, 133-138.	3.9	4
214	Interface Strengthening of PS/aPA Polymer Blend Nanocomposites via In Situ Compatibilization: Enhancement of Electrical and Rheological Properties. Materials, 2021, 14, 4813.	1.3	5
215	Structural relaxation and dielectric response of PVDF/PMMA blend in the presence of graphene oxide. Polymer, 2021, 229, 123998.	1.8	14
216	Relationship between microstructure evolution and properties enhancement of carbon nanotubesâ€filled polybutylene terephthalate/polypropylene blends induced by thermal annealing. Journal of Applied Polymer Science, 2022, 139, 51689.	1.3	2
217	Increased Continuity of the PA6 Phase from the PS Matrix Induced by Migrating Janus Particles and Its Application in Thermal Conductivity. Industrial & Engineering Chemistry Research, 2021, 60, 13905-13913.	1.8	2
218	A review on the processing–morphology–property relationship in biodegradable polymer composites containing carbon nanotubes and nanofibers. Polymer Engineering and Science, 2021, 61, 2719-2756.	1.5	14
219	Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties. Composites Science and Technology, 2021, 213, 108919.	3.8	12
220	Reduced percolation threshold of conductive adhesive through nonuniform filler localization: Monte Carlo simulation and experimental study. Composites Science and Technology, 2021, 214, 108964.	3.8	3
221	Robust networks of interfacial localized graphene in cocontinuous polymer blends. Journal of Rheology, 2021, 65, 1139-1153.	1.3	12
222	Mechanical Properties of Epoxy/Thermoplastic Blends. , 2017, , 743-774.		6
223	In-situ co-continuous conductive network induced by carbon nanotubes in epoxy composites with enhanced electromagnetic interference shielding performance. Chemical Engineering Journal, 2020, 398, 125559.	6.6	46
224	Achieving improved electromagnetic interference shielding performance and balanced mechanical properties in polyketone nanocomposites via a composite MWCNTs carrier. Composites Part A: Applied Science and Manufacturing, 2020, 136, 105967.	3.8	43
225	Dispersion of graphite nanoplates in melt mixed PC/SAN polymer blends and its influence on rheological and electrical properties. Polymer, 2020, 200, 122577.	1.8	22
226	Strainâ€sensing behavior of flexible polypropylene/poly(ethyleneâ€coâ€octene)/multiwalled carbon nanotube nanocomposites under cyclic tensile deformation. Polymer Composites, 2022, 43, 7-20.	2.3	14

#	ARTICLE	IF	CITATIONS
227	Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Progress in Polymer Science, 2021, 123, 101471.	11.8	55
228	Polymer Blend. Seikei-Kakou, 2012, 24, 393-397.	0.0	Ο
229	Electric Conductive Composites using Carbon Nanotube Localized in Polymer Blend. Seikei-Kakou, 2018, 30, 117-119.	0.0	0
230	Processing and Perspective of Multifunctional Composite Materials. Seikei-Kakou, 2018, 30, 321-325.	0.0	0
231	Polymer Composites Laboratory, Life Science & Applied Chemistry, Nagoya Institute of Technology. Seikei-Kakou, 2018, 30, 547-549.	0.0	0
232	The Role of Phase Migration of Carbon Nanotubes in Melt-Mixed PVDF/PE Polymer Blends for High Conductivity and EMI Shielding Applications. Molecules, 2022, 27, 933.	1.7	15
233	Cellulose Nanocrystals-mediated Phase Morphology of PLLA/TPU Blends for 3D Printing. Chinese Journal of Polymer Science (English Edition), 2022, 40, 299-309.	2.0	4
234	Enhanced Electromagnetic Interference Shielding Properties of Immiscible Polyblends with Selective Localization of Reduced Graphene Oxide Networks. Polymers, 2022, 14, 967.	2.0	6
235	The effects of nanoclay and carbon nanotube coâ€addition on properties of an amorphous polyamide/maleated styreneâ€ethyleneâ€coâ€butyleneâ€styrene blend. Polymer Engineering and Science, 0, , .	1.5	0
236	Morphological stabilization efficiencies of nanoparticles toward flowing polymer blends: Role of roughness and viscosity ratio. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129094.	2.3	1
237	Migration mechanism of carbon nanotubes and matching viscosity-dependent morphology in Co-continuous Poly(lactic acid)/Poly(ε-caprolactone) blend: Towards electromagnetic shielding enhancement. Polymer, 2022, 252, 124963.	1.8	37
238	Polymer blending for packaging applications. , 2022, , 167-201.		Ο
239	h-BN Modification Using Several Hydroxylation and Grafting Methods and Their Incorporation into a PMMA/PA6 Polymer Blend. Nanomaterials, 2022, 12, 2735.	1.9	3
240	Segregated structures induced linear mechanoelectrical responses to low strains for elastomer/CNTs composites. Composites Science and Technology, 2022, 230, 109752.	3.8	7
241	Effect of multiâ€walled carbon nanotubes on rheological behavior and electrical conductivity of poly(ethyleneâ€coâ€vinyl acetate)/acrylonitrileâ€butadiene rubber/multiâ€walled carbon nanotubes nanocomposites. Polymer Composites, 2022, 43, 8877-8889.	2.3	1
242	Enhancement of electrical conductivity and electromagnetic interference shielding performance via supercritical CO2 induced phase coarsening for double percolated polymer blends. Nano Research, 2023, 16, 613-623.	5.8	15
243	Carbon Nanotube Migration in Melt-Compounded PEO/PE Blends and Its Impact on Electrical and Rheological Properties. Nanomaterials, 2022, 12, 3772.	1.9	4
244	Polyelectrolytes Enabled Reduced Graphite Oxide Water Dispersions: Effects of the Structure, Molecular Weight, and Charge Density. Polymers, 2022, 14, 4165.	2.0	1

#	Article	IF	CITATIONS
245	Fractal structures of PA6/POE blend nanocomposites and their dynamic properties. Journal of Rheology, 2023, 67, 183-196.	1.3	1
246	Polymer positive temperature coefficient composites with room-temperature Curie point and superior flexibility for self-regulating heating devices. Polymer, 2023, 265, 125587.	1.8	4
247	The Fabrication of High-Hardness and Transparent PMMA-Based Composites by an Interface Engineering Strategy. Molecules, 2023, 28, 304.	1.7	3
248	From <scp>twoâ€dimensional</scp> materials to polymer nanocomposites with emerging multifunctional applications: A critical review. Polymer Composites, 2023, 44, 1438-1470.	2.3	14
249	Superior electrical conductivity and mechanical properties of phaseâ€separated polymer blend composites by tuning the localization of nanoparticles for electromagnetic interference shielding applications. Journal of Polymer Science, 0, , .	2.0	4
250	Chemical modification strategies for the control of graphene localization in PS/PMMA blend. FlatChem, 2023, 39, 100500.	2.8	1
251	Compatibilized polylactide/polyamide 11 blends containing multiwall carbon nanotubes: Morphology, rheology, electrical and mechanical properties. Polymer, 2023, , 125906.	1.8	0
253	Morphological Studies and Its Effects on PTT-Based Micro, Nanocomposites, and Polymer Blends Properties. Materials Horizons, 2023, , 187-213.	0.3	Ο