Drosophila BTB/POZ Domains of "ttk Group†Can i with Each Other

Journal of Molecular Biology 412, 423-436

DOI: 10.1016/j.jmb.2011.07.052

Citation Report

#	Article	IF	CITATIONS
1	Nuclear Organization and Genome Function. Annual Review of Cell and Developmental Biology, 2012, 28, 163-187.	4.0	99
2	<i>Drosophila</i> CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Research, 2012, 22, 2176-2187.	2.4	115
3	Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors. PLoS ONE, 2012, 7, e49958.	1.1	16
4	GAGA factor repression of transcription is a rare event but the negative regulation of Trl is conserved in Drosophila species. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1056-1065.	0.9	6
5	Following the â€~tracks': Tramtrack69 regulates epithelial tube expansion in the Drosophila ovary through Paxillin, Dynamin, and the homeobox protein Mirror. Developmental Biology, 2013, 378, 154-169.	0.9	23
6	What Goes Up Must Come Down. Current Topics in Developmental Biology, 2013, 103, 35-71.	1.0	68
7	Effective Blocking of the White Enhancer Requires Cooperation between Two Main Mechanisms Suggested for the Insulator Function. PLoS Genetics, 2013, 9, e1003606.	1.5	44
8	Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Research, 2013, 23, 928-940.	2.4	70
9	Mechanisms and proteins involved in long-distance interactions. Frontiers in Genetics, 2014, 5, 28.	1.1	64
10	The evolution of novelty in conserved genes; evidence of positive selection in the Drosophila fruitless gene is localised to alternatively spliced exons. Heredity, 2014, 112, 300-306.	1.2	15
11	Chromatin Insulator Factors Involved in Long-Range DNA Interactions and Their Role in the Folding of the Drosophila Genome. PLoS Genetics, 2014, 10, e1004544.	1.5	101
12	Identification and Expression Profiling of the BTB Domain-Containing Protein Gene Family in the Silkworm, <i>Bombyx mori</i> . International Journal of Genomics, 2014, 2014, 1-14.	0.8	10
13	Making connections: Insulators organize eukaryotic chromosomes into independent cis <i>â€</i> regulatory networks. BioEssays, 2014, 36, 163-172.	1.2	87
14	Chromatin insulators and longâ€distance interactions in <i>Drosophila</i> . FEBS Letters, 2014, 588, 8-14.	1.3	89
15	The contribution of domestic scientists to the discovery and studies of animal messenger RNA. Herald of the Russian Academy of Sciences, 2015, 85, 295-301.	0.2	0
16	EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin. PLoS ONE, 2015, 10, e0140991.	1.1	13
17	The functional diversity of Drosophila Ino80 in development. Mechanisms of Development, 2015, 138, 113-121.	1.7	6
18	Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biology, 2015, 13, 63.	1.7	62

#	ARTICLE	IF	Citations
19	Functional Requirements for <i>Fab-7</i> Boundary Activity in the Bithorax Complex. Molecular and Cellular Biology, 2015, 35, 3739-3752.	1.1	51
20	Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Research, 2015, 25, 89-99.	2.4	106
21	Insulators can disrupt weak transcription derived from the white gene enhancer in Drosophila transgenic lines. Russian Journal of Genetics, 2016, 52, 1204-1207.	0.2	0
22	Protein crystallization under microgravity conditions. Analysis of the results of Russian experiments performed on the International Space Station in 2005â^2015. Crystallography Reports, 2016, 61, 718-729.	0.1	18
23	<i>lolal</i> Is an Evolutionarily New Epigenetic Regulator of <i>dpp</i> Transcription during Dorsal–Ventral Axis Formation. Molecular Biology and Evolution, 2016, 33, 2621-2632.	3.5	5
24	Broadâ€complex, tramtrack, and bricâ€Ãâ€brac (BTB) proteins: Critical regulators of development. Genesis, 2016, 54, 505-518.	0.8	78
25	De Novo Transcriptome Assembly and Sex-Biased Gene Expression in the Cyclical ParthenogeneticDaphnia galeata. Genome Biology and Evolution, 2016, 8, 3120-3139.	1.1	38
26	Pits, a protein interacting with Ttk69 and Sin3A, has links to histone deacetylation. Scientific Reports, 2016, 6, 33388.	1.6	8
27	Distinct Roles of Chromatin Insulator Proteins in Control of the <i>Drosophila</i> Bithorax Complex. Genetics, 2016, 202, 601-617.	1.2	37
28	EAST affects the activity of Su(Hw) insulators by two different mechanisms in Drosophila melanogaster. Chromosoma, 2017, 126, 299-311.	1.0	8
29	Three-Dimensional Genome Organization and Function in <i>Drosophila</i> . Genetics, 2017, 205, 5-24.	1.2	61
30	Different Evolutionary Strategies To Conserve Chromatin Boundary Function in the Bithorax Complex. Genetics, 2017, 205, 589-603.	1.2	14
31	Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. Open Biology, 2017, 7, 170150.	1.5	20
32	Opbp is a new architectural/insulator protein required for ribosomal gene expression. Nucleic Acids Research, 2017, 45, 12285-12300.	6.5	27
33	<i>Drosophila</i> Dosage Compensation Loci Associate with a Boundary-Forming Insulator Complex. Molecular and Cellular Biology, 2017, 37, .	1.1	23
34	Purification, isolation, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 from Drosophila melanogaster. Crystallography Reports, 2017, 62, 909-911.	0.1	0
35	Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster. Crystallography Reports, 2017, 62, 912-915.	0.1	0
36	The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS ONE, 2017, 12, e0173602.	1.1	41

#	ARTICLE	IF	Citations
37	Interactions between BTB domain of CP190 and two adjacent regions in Su(Hw) are required for the insulator complex formation. Chromosoma, 2018, 127, 59-71.	1.0	20
38	Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cellular and Molecular Life Sciences, 2018, 75, 623-633.	2.4	13
39	Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes and Genomics, 2018 , 40 , $1-15$.	0.5	32
40	Drosophila DNA-Binding Proteins in Polycomb Repression. Epigenomes, 2018, 2, 1.	0.8	22
41	Studying Interactions between the Mod(mdg4)-67.2 Protein and Other Mod(mdg4) Isoforms in the Embryonic Cells of Drosophila melanogaster. Doklady Biochemistry and Biophysics, 2019, 486, 175-180.	0.3	1
42	Shaping of <i>Drosophila</i> Neural Cell Lineages Through Coordination of Cell Proliferation and Cell Fate by the BTB-ZF Transcription Factor Tramtrack-69. Genetics, 2019, 212, 773-788.	1.2	3
43	Functional dissection of the developmentally restricted BEN domain chromatin boundary factor Insensitive. Epigenetics and Chromatin, 2019, 12, 2.	1.8	14
44	A functional assay to classify <i>ZBTB24</i> missense variants of unknown significance. Human Mutation, 2019, 40, 1077-1083.	1.1	6
45	Functions of Insulators in the Context of Modern Whole-Genome Investigations. Russian Journal of Genetics, 2019, 55, 154-162.	0.2	2
46	Identifying Genome-Wide Sequence Variations and Candidate Genes Implicated in Self-Incompatibility by Resequencing Fragaria viridis. International Journal of Molecular Sciences, 2019, 20, 1039.	1.8	6
47	The same domain of Su(Hw) is required for enhancer blocking and direct promoter repression. Scientific Reports, 2019, 9, 5314.	1.6	12
48	The zinc-finger protein CLAMP promotes gypsy chromatin insulator function in Drosophila. Journal of Cell Science, 2019, 132, .	1.2	24
49	HIPP1 stabilizes the interaction between CP190 and Su(Hw) in the Drosophila insulator complex. Scientific Reports, 2019, 9, 19102.	1.6	11
50	Bab2 Functions as an Ecdysone-Responsive Transcriptional Repressor during Drosophila Development. Cell Reports, 2020, 32, 107972.	2.9	15
51	<i>let-7-Complex</i> MicroRNAs Regulate Broad-Z3, Which Together with Chinmo Maintains Adult Lineage Neurons in an Immature State. G3: Genes, Genomes, Genetics, 2020, 10, 1393-1401.	0.8	6
52	Overlapping but Distinct Sequences Play Roles in the Insulator and Promoter Activities of the ⟨i⟩Drosophila⟨ i⟩ BEAF-Dependent scs' Insulator. Genetics, 2020, 215, 1003-1012.	1.2	4
53	The roles of jim lovell and uninflatable in different endopolyploid larval tissues of Drosophila melanogaster. PLoS ONE, 2020, 15, e0237662.	1.1	3
54	Type A2 BTB Members Decrease the ABA Response during Seed Germination by Affecting the Stability of SnRK2.3 in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 3153.	1.8	8

#	Article	IF	Citations
55	Structure of Neuroglobin from Cold-Water Sponge Halisarca dujardinii. Molecular Biology, 2020, 54, 416-420.	0.4	2
56	Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. International Journal of Molecular Sciences, 2021, 22, 671.	1.8	43
57	A gene regulatory network for antenna size control in carbon dioxide-deprived <i>Chlamydomonas reinhardtii</i> cells. Plant Cell, 2021, 33, 1303-1318.	3.1	10
58	GAGA factor: a multifunctional pioneering chromatin protein. Cellular and Molecular Life Sciences, 2021, 78, 4125-4141.	2.4	37
59	TTK Isoforms Interact with Two Regions of the Mep-1 Protein of Drosophila melanogaster. Doklady Biochemistry and Biophysics, 2021, 498, 177-179.	0.3	1
60	The Elongation Regulators and Architectural Proteins as New Participants of Eukaryotic Gene Transcription. Russian Journal of Genetics, 2021, 57, 751-763.	0.2	2
61	M1BP cooperates with CP190 to activate transcription at TAD borders and promote chromatin insulator activity. Nature Communications, 2021, 12, 4170.	5.8	35
63	Structural analysis of the PATZ1 BTB domain homodimer. Acta Crystallographica Section D: Structural Biology, 2020, 76, 581-593.	1.1	5
64	Regulation of Gonad Morphogenesis in Drosophila melanogaster by BTB Family Transcription Factors. PLoS ONE, 2016, 11, e0167283.	1.1	11
65	Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila. PLoS ONE, 2018, 13, e0193497.	1.1	12
66	The Functions and Mechanisms of Action of Insulators in the Genomes of Higher Eukaryotes. Acta Naturae, 2020, 12, 15-33.	1.7	16
67	iscovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA. Acta Naturae, 2016, 8, 6-12.	1.7	1
70	Functional properties of the Su(Hw) complex are determined by its regulatory environment and multiple interactions on the Su(Hw) protein platform. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 168-173.	0.4	1
74	Discovery of Nuclear DNA-like RNA (dRNA, hnRNA) and Ribonucleoproteins Particles Containing hnRNA. Acta Naturae, 2016, 8, 6-12.	1.7	0
75	Mechanisms of CP190 Interaction with Architectural Proteins in Drosophila Melanogaster. International Journal of Molecular Sciences, 2021, 22, 12400.	1.8	11
77	Polycomb repressive complex 1 initiates and maintains tailless repression in Drosophila embryo. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2022, 1865, 194786.	0.9	O
78	Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Molecular Biology, 2022, 56, 307-338.	0.4	1
79	Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9

#	Article	IF	CITATION
82	$\label{lem:mod} Mod(mdg4)\ variants\ repress\ telomeric\ retrotransposon\ \ \ \ \ \ \ \ by\ blocking\ subtelomeric\ enhancers.\ Nucleic\ Acids\ Research,\ 0,\ ,\ .$	6.5	2
83	BTB domains: A structural view of evolution, multimerization, and protein–protein interactions. BioEssays, 2023, 45, .	1.2	6
84	Homologous chromosomes are stably conjoined for Drosophila male meiosis I by SUM, a multimerized protein assembly with modules for DNA-binding and for separase-mediated dissociation co-opted from cohesin. PLoS Genetics, 2022, 18, e1010547.	1.5	5
86	Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. International Journal of Molecular Sciences, 2023, 24, 2855.	1.8	11
87	Topological screen identifies hundreds of Cp190- and CTCF-dependent $\langle i \rangle$ Drosophila $\langle i \rangle$ chromatin insulator elements. Science Advances, 2023, 9, .	4.7	7
88	Age-related ceRNA networks in adult Drosophila ageing. Frontiers in Genetics, 0, 14, .	1.1	2
89	GACA-associated factor fosters loop formation in the Drosophila genome. Molecular Cell, 2023, 83, 1519-1526.e4.	4.5	16