Crystal structure of the \hat{I}^22 adrenergic receptor $\hat{a} \in Gs$ provides the transmission of transmission

Nature 477, 549-555 DOI: 10.1038/nature10361

Citation Report

#	Article	IF	CITATIONS
5	Visualâ€vestibular interaction and cerebellar atrophy. Neurology, 1979, 29, 116-116.	1.5	75
6	Neural map formation in the mouse olfactory system. Neuroscience Research, 2010, 68, e11-e12.	1.0	1
7	Preparation of an Activated Rhodopsin/Transducin Complex Using a Constitutively Active Mutant of Rhodopsin. Biochemistry, 2011, 50, 10399-10407.	1.2	16
8	Assessment of a Fully Active Class A G Protein-Coupled Receptor Isolated from <i>in Vitro</i> Folding. Biochemistry, 2011, 50, 9817-9825.	1.2	11
9	Communicating chirality. Nature Chemistry, 2011, 3, 842-843.	6.6	8
10	Overview of the 13th International Conference on the Crystallization of Biological Macromolecules. Crystal Growth and Design, 2011, 11, 4723-4730.	1.4	3
12	β ₂ -Adrenergic Receptor Polymorphisms and Signaling: Do Variants Influence the "Memory―of Receptor Activation?. Science Signaling, 2011, 4, pe37.	1.6	9
13	Decoding the Signaling of a GPCR Heteromeric Complex Reveals a Unifying Mechanism of Action of Antipsychotic Drugs. Cell, 2011, 147, 1011-1023.	13.5	271
14	Calcium in Color. Science Signaling, 2011, 4, .	1.6	0
15	Rhodopsin–transducin heteropentamer: Three-dimensional structure and biochemical characterization. Journal of Structural Biology, 2011, 176, 387-394.	1.3	55
16	Engineering an Ultra-Thermostable β1-Adrenoceptor. Journal of Molecular Biology, 2011, 413, 628-638.	2.0	53
17	Molecular Dynamics Simulations of the Effect of the G-Protein and Diffusible Ligands on the β2-Adrenergic Receptor. Journal of Molecular Biology, 2011, 414, 611-623.	2.0	33
18	Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins. Methods, 2011, 55, 405-414.	1.9	16
19	GPCR agonist binding revealed by modeling and crystallography. Trends in Pharmacological Sciences, 2011, 32, 637-643.	4.0	56
20	The Effect of Arrestin Conformation on the Recruitment of c-Raf1, MEK1, and ERK1/2 Activation. PLoS ONE, 2011, 6, e28723.	1.1	87
21	Cell signalling: It's all about the structure. Nature, 2011, 476, 387-390.	13.7	8
22	Guide to Receptors and Channels (GRAC), 5th edition. British Journal of Pharmacology, 2011, 164, S1-324.	2.7	827
23	Consultants. British Journal of Pharmacology, 2011, 164, S3-S3.	2.7	10

TION RE

	Сітатіс	on Report	
#	Article	IF	CITATIONS
24	G PROTEIN OUPLED RECEPTORS. British Journal of Pharmacology, 2011, 164, S5.	2.7	16
25	LIGANDâ€GATED ION CHANNELS. British Journal of Pharmacology, 2011, 164, S115.	2.7	13
26	ION CHANNELS. British Journal of Pharmacology, 2011, 164, S137.	2.7	22
27	NUCLEAR RECEPTORS. British Journal of Pharmacology, 2011, 164, S175-S188.	2.7	0
28	CATALYTIC RECEPTORS. British Journal of Pharmacology, 2011, 164, S189-S212.	2.7	1
29	TRANSPORTERS. British Journal of Pharmacology, 2011, 164, S213.	2.7	2
31	Molecular Simulation Approaches to Membrane Proteins. Structure, 2011, 19, 1562-1572.	1.6	152
32	Allostery in GPCRs: â€~MWC' revisited. Trends in Biochemical Sciences, 2011, 36, 663-672.	3.7	64
33	Recent developments in engineering and delivery of protein and antibody therapeutics. Current Opinion in Biotechnology, 2011, 22, 839-842.	3.3	10
34	The structure of active opsin as a basis for identification of GPCR agonists by dynamic homology modelling and virtual screening assays. FEBS Letters, 2011, 585, 3587-3592.	1.3	15
35	Influence of the N-terminus and the E2-loop onto the binding kinetics of the antagonist mepyramine and the partial agonist phenoprodifen to H1R. Biochemical Pharmacology, 2011, 82, 1910-1918.	2.0	15
36	The Significance of G Protein-Coupled Receptor Crystallography for Drug Discovery. Pharmacological Reviews, 2011, 63, 901-937.	7.1	195
37	Update 1 of: Computational Modeling Approaches to Structure–Function Analysis of G Protein-Coupled Receptors. Chemical Reviews, 2011, 111, PR438-PR535.	23.0	71
38	Conformational changes in the G protein Gs induced by the β2 adrenergic receptor. Nature, 2011, 477, 611-615.	13.7	339
40	Structureâ€Based Discovery of Allosteric Modulators of Two Related Classâ€B Gâ€Protein oupled Receptors. ChemMedChem, 2011, 6, 2159-2169.	1.6	62
41	Cell signalling caught in the act. Nature, 2011, 475, 273-274.	13.7	2
42	Inactive-state preassembly of Gq-coupled receptors and Gq heterotrimers. Nature Chemical Biology, 2011, 7, 740-747.	3.9	135
43	Structural flexibility of the Gαs α-helical domain in the β ₂ -adrenoceptor Gs complex. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16086-1609	1. ^{3.3}	204

ARTICLE IF CITATIONS # In Silico Veritas: The Pitfalls and Challenges of Predicting GPCR-Ligand Interactions. Pharmaceuticals, 1.7 16 44 2011, 4, 1196-1215. Gravity tested on large scales. Nature, 2011, 477, 541-543. 13.7 Activation mechanism of the<i>l^2</i>₂-adrenergic receptor. Proceedings of the National 46 3.3 539 Academy of Sciences of the United States of America, 2011, 108, 18684-18689. Structural Determinants of Ubiquitin-CXC Chemokine Receptor 4 Interaction. Journal of Biological Chemistry, 2011, 286, 44145-44152. Snapshot of a signalling complex. Nature, 2011, 477, 540-541. 48 13.7 16 Differential determinants for coupling of distinct G proteins with the class B secretin receptor. American Journal of Physiology - Cell Physiology, 2012, 302, C1202-C1212. 49 2.1 GDP Release Preferentially Occurs on the Phosphate Side in Heterotrimeric G-proteins. PLoS 50 1.5 19 Computational Biology, 2012, 8, e1002595. Ligand-Dependent Conformations and Dynamics of the Serotonin 5-HT2A Receptor Determine Its Activation and Membrane-Driven Oligomerization Properties. PLoS Computational Biology, 2012, 8, 1.5 96 e1002473. 52 Entropic Tension in Crowded Membranes. PLoS Computational Biology, 2012, 8, e1002431. 1.5 68 Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica. PLoS 2.1 Pathogens, 2012, 8, e1003040. Glucagon-Like Peptide-1 and Diabetes 2012. Experimental Diabetes Research, 2012, 2012, 1-1. 54 4 3.8 Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor. Experimental Diabetes Research, 2012, 2012, 1-12. A Key Agonist-induced Conformational Change in the Cannabinoid Receptor CB1 Is Blocked by the 56 1.6 44 Allosteric Ligand Org 27569. Journal of Biological Chemistry, 2012, 287, 33873-33882. Structural Basis for Modulation of Gating Property of G Protein-gated Inwardly Rectifying Potassium Ion Channel (GIRK) by i/o-family G Protein $\hat{I}\pm$ Subunit ($\hat{GI}\pm i/o$). Journal of Biological Chemistry, 2012, 287, 1.6 19537-19549. The Pseudo Signal Peptide of the Corticotropin-releasing Factor Receptor Type 2A Prevents Receptor 58 1.6 33 Oligomerization. Journal of Biological Chemistry, 2012, 287, 27265-27274. Structural Origins of Receptor Bias. Science, 2012, 335, 1055-1056. Signaling States of Rhodopsin in Rod Disk Membranes Lacking Transducin Î²Î³-Complex. , 2012, 53, 1225. 60 2 Structure-Based Design in the GPCR Target Space. Current Medicinal Chemistry, 2012, 19, 544-556. 1.2

ARTICLE IF CITATIONS # Clinical Implications of Recent Insights into the Structural Biology of Beta2 Adrenoceptors. Current 1.0 7 62 Drug Targets, 2012, 13, 1336-1346. Compound Activity Prediction Using Models of Binding Pockets or Ligand Properties in 3D. Current 1.0 Topics in Medicinal Chemistry, 2012, 12, 1869-1882. 64 Ice breaking in GPCR structural biology. Acta Pharmacologica Sinica, 2012, 33, 324-334. 2.8 41 Molecular Biology of Pasteurella multocida Toxin. Current Topics in Microbiology and Immunology, 2012, 361, 73-92. Nucleotide exchange factors. Cellular Logistics, 2012, 2, 140-146. 0.9 7 66 Structure, Function and Control of Complement C5 and its Proteolytic Fragments. Current Molecular Medicine, 2012, 12, 1083-1097. Stability of GABA _B receptor oligomers revealed by dual TRâ€FRET and drugâ€induced cell 68 0.2 32 surface targeting. FASEB Journal, 2012, 26, 3430-3439. Evidence for activity-regulated hormone-binding cooperativity across glycoprotein hormone 5.8 receptor homomers. Nature Communications, 2012, 3, 1007. Deciphering biased-agonism complexity reveals a new active AT1 receptor entity. Nature Chemical 70 3.9 182 Biology, 2012, 8, 622-630. TGFα shedding assay: an accurate and versatile method for detecting GPCR activation. Nature Methods, 2012, 9, 1021-1029 Tools for GPCR drug discovery. Acta Pharmacologica Sinica, 2012, 33, 372-384. 72 2.8 267 Reengineering the Collision Coupling and Diffusion Mode of the A2A-adenosine Receptor. Journal of 1.6 Biological Chemistry, 2012, 287, 42104-42118. Molecular Characterization of Oxysterol Binding to the Epstein-Barr Virus-induced Gene 2 (GPR183). 74 1.6 46 Journal of Biological Chemistry, 2012, 287, 35470-35483. Cell Contact-dependent Functional Selectivity of Î²2-Adrenergic Receptor Ligands in Stimulating cAMP Accumulation and Extracellular Signal-regulated Kinase Phosphorylation. Journal of Biological Chemistry, 2012, 287, 6362-6374. 1.6 Design and Functional Characterization of a Novel, Arrestin-Biased Designer G Protein-Coupled 76 1.0 111 Receptor. Molecular Pharmacology, 2012, 82, 575-582. Modulation of Constitutive Activity and Signaling Bias of the Ghrelin Receptor by Conformational 33 Constraint in the Second Extracellular Loop. Journal of Biological Chemistry, 2012, 287, 33488-33502. Conformation of receptor-bound visual arrestin. Proceedings of the National Academy of Sciences of 78 3.3 104 the United States of America, 2012, 109, 18407-18412. The Thyrotropin Receptor Hinge Region as a Surrogate Ligand: Identification of Loci Contributing to 79 1.4 the Coupling of Thyrotropin Binding and Receptor Activation. Endocrinology, 2012, 153, 5058-5067.

#	Article	IF	CITATIONS
80	Mapping Structural Determinants within Third Intracellular Loop That Direct Signaling Specificity of Type 1 Corticotropin-releasing Hormone Receptor. Journal of Biological Chemistry, 2012, 287, 8974-8985.	1.6	14
81	Sequential Inter- and Intrasubunit Rearrangements During Activation of Dimeric Metabotropic Glutamate Receptor 1. Science Signaling, 2012, 5, ra59.	1.6	82
82	Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nature Communications, 2012, 3, 995.	5.8	69
83	Stabilized G protein binding site in the structure of constitutively active metarhodopsin-II. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 119-124.	3.3	226
84	The Arginine of the DRY Motif in Transmembrane Segment III Functions as a Balancing Micro-switch in the Activation of the β2-Adrenergic Receptor. Journal of Biological Chemistry, 2012, 287, 31973-31982.	1.6	30
85	PheVI:09 (Phe6.44) as a Sliding Microswitch in Seven-transmembrane (7TM) G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2012, 287, 43516-43526.	1.6	31
86	Differences in intradomain and interdomain motion confer distinct activation properties to structurally similar Gα proteins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7275-7279.	3.3	54
87	Chimeric Yeast G-Protein α Subunit Harboring a 37-Residue C-Terminal Gustducin-Specific Sequence Is Functional in <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 512-516.	0.6	6
89	化å¦è³žã•ã€Gã,;ンパã,¯è³ªå±å½¹å⊷容体ã®ç"ç©¶ã«. Nature Digest, 2012, 9, 3-4.	0.0	0
90	Evolution of Class A G-Protein-Coupled Receptors: Implications for Molecular Modeling. Current Medicinal Chemistry, 2012, 19, 1110-1118.	1.2	14
91	Novel Strategies in Drug Discovery of the Calcium-Sensing Receptor Based on Biased Signaling. Current Drug Targets, 2012, 13, 1324-1335.	1.0	15
92	Action of Molecular Switches in GPCRs - Theoretical and Experimental Studies. Current Medicinal Chemistry, 2012, 19, 1090-1109.	1.2	395
93	Recent Advances in Structure and Function Studies on Human Bitter Taste Receptors. Current Protein and Peptide Science, 2012, 13, 501-508.	0.7	26
94	Harvesting and Cryo-cooling Crystals of Membrane Proteins Grown in Lipidic Mesophases for Structure Determination by Macromolecular Crystallography. Journal of Visualized Experiments, 2012, , e4001.	0.2	40
95	Insights into the activation mechanism of the visual receptor rhodopsin. Biochemical Society Transactions, 2012, 40, 389-393.	1.6	15
96	Mechanism of Inverse Agonist Action of Sarpogrelate at the Constitutively Active Mutant of Human 5-HT _{2A} Receptor Revealed by Molecular Modeling. Biological and Pharmaceutical Bulletin, 2012, 35, 1553-1559.	0.6	6
97	The Inhibitory G Protein G _i Identified as Pertussis Toxin-Catalyzed ADP-Ribosylation. Biological and Pharmaceutical Bulletin, 2012, 35, 2103-2111.	0.6	62
98	G-Protein-Coupled Receptors Signal Victory. Cell, 2012, 151, 1148-1150.	13.5	19

#	Article	IF	CITATIONS
99	Dissociation of Membrane-Anchored Heterotrimeric G-Protein Induced by G _α Subunit Binding to GTP. Journal of Chemical Information and Modeling, 2012, 52, 3022-3027.	2.5	2
100	Studies on the Interactions between β ₂ Adrenergic Receptor and Gs Protein by Molecular Dynamics Simulations. Journal of Chemical Information and Modeling, 2012, 52, 1005-1014.	2.5	39
101	Membrane Protein Structure Determination Using Crystallography and Lipidic Mesophases: Recent Advances and Successes. Biochemistry, 2012, 51, 6266-6288.	1.2	106
102	Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science, 2012, 337, 232-236.	6.0	860
103	Recombinant Cannabinoid Type 2 Receptor in Liposome Model Activates G Protein in Response to Anionic Lipid Constituents. Journal of Biological Chemistry, 2012, 287, 4076-4087.	1.6	39
104	GPCRs: Die molekularen Antennen des Körpers. Chemie in Unserer Zeit, 2012, 46, 346-348.	0.1	1
105	Sequential Conformational Rearrangements Dictate the Dynamics of Class C GPCR Activation. Science Signaling, 2012, 5, pe51.	1.6	4
106	C(X)CR in silico: Computer-aided prediction of chemokine receptor–ligand interactions. Drug Discovery Today: Technologies, 2012, 9, e281-e291.	4.0	20
107	Predicted structure of agonist-bound glucagon-like peptide 1 receptor, a class B G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19988-19993.	3.3	51
108	Crystal Structure of a Lipid G Protein–Coupled Receptor. Science, 2012, 335, 851-855.	6.0	600
109	High-resolution crystal structure of human protease-activated receptor 1. Nature, 2012, 492, 387-392.	13.7	416
110	Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. Journal of Chemical Information and Modeling, 2012, 52, 3263-3277.	2.5	86
112	The Seven Pillars of Molecular Pharmacology: GPCR Research Honored with Nobel Prize for Chemistry. Angewandte Chemie - International Edition, 2012, 51, 12172-12175.	7.2	16
113	Structureâ€function studies with G proteinâ€coupled receptors as a paradigm for improving drug discovery and development of therapeutics. Biotechnology Journal, 2012, 7, 1451-1461.	1.8	20
114	Neuropeptides and Neuropeptide Receptors: Drug Targets, and Peptide and Nonâ€Peptide Ligands: a Tribute to Prof. <i>Dieter Seebach</i> . Chemistry and Biodiversity, 2012, 9, 2367-2387.	1.0	91
115	Restructuring G-Protein- Coupled Receptor Activation. Cell, 2012, 151, 14-23.	13.5	247
116	Fragment Screening at Adenosine-A3 Receptors in Living Cells Using a Fluorescence-Based Binding Assay. Chemistry and Biology, 2012, 19, 1105-1115.	6.2	83
117	High-throughput analysis of the structural evolution of the monoolein cubic phase in situ under crystallogenesis conditions. Soft Matter, 2012, 8, 2310.	1.2	35

#	Article	IF	CITATIONS
118	Plenty of room to crystallize: swollen lipidic mesophases for improved and controlled in-meso protein crystallization. Soft Matter, 2012, 8, 6535.	1.2	41
119	A biased ligand for OXE-R uncouples Gα and Gβγ signaling within a heterotrimer. Nature Chemical Biology, 2012, 8, 631-638.	3.9	77
120	Post-Translational Modifications of the Serotonin Type 4 Receptor Heterologously Expressed in Mouse Rod Cells. Biochemistry, 2012, 51, 214-224.	1.2	12
121	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Differentially Regulates Orthosteric but Not Allosteric Agonist Binding and Function. Journal of Biological Chemistry, 2012, 287, 3659-3673.	1.6	30
122	Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation. Journal of Biological Chemistry, 2012, 287, 3642-3658.	1.6	83
123	New Insights for Drug Design from the X-Ray Crystallographic Structures of G-Protein-Coupled Receptors. Molecular Pharmacology, 2012, 82, 361-371.	1.0	77
124	A Structure-Based Approach to Understanding Somatostatin Receptor-4 Agonism (sst4). Journal of Chemical Information and Modeling, 2012, 52, 171-186.	2.5	18
125	Why GPCRs behave differently in cubic and lamellar lipidic mesophases. Journal of the American Chemical Society, 2012, 134, 15858-15868.	6.6	47
126	Myristoylation Exerts Direct and Allosteric Effects on $\hat{Gl_{\pm}}$ Conformation and Dynamics in Solution. Biochemistry, 2012, 51, 1911-1924.	1.2	16
127	Rhodopsin Forms a Dimer with Cytoplasmic Helix 8 Contacts in Native Membranes. Biochemistry, 2012, 51, 1819-1821.	1.2	65
128	A Constitutively Active Gα Subunit Provides Insights into the Mechanism of G Protein Activation. Biochemistry, 2012, 51, 3232-3240.	1.2	10
129	Structural Transitions of Transmembrane Helix 6 in the Formation of Metarhodopsin I. Journal of Physical Chemistry B, 2012, 116, 10477-10489.	1.2	18
130	The C-Terminus of the G Protein α Subunit Controls the Affinity of Nucleotides. Biochemistry, 2012, 51, 2768-2774.	1.2	1
131	Functionally Important Aromatic–Aromatic and Sulfurâ∽ï€ Interactions in the D2 Dopamine Receptor. Journal of the American Chemical Society, 2012, 134, 14890-14896.	6.6	98
132	Fragmentation hydrogen exchange mass spectrometry: A review of methodology and applications. Protein Expression and Purification, 2012, 84, 19-37.	0.6	26
133	Purification and characterization of recombinant human endothelin receptor type A. Protein Expression and Purification, 2012, 84, 14-18.	0.6	18
134	An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization. Protein Expression and Purification, 2012, 84, 224-235.	0.6	3
135	Diversity and modularity of G protein-coupled receptor structures. Trends in Pharmacological Sciences, 2012, 33, 17-27.	4.0	403

#	Article	IF	CITATIONS
136	Domain coupling in GPCRs: the engine for induced conformational changes. Trends in Pharmacological Sciences, 2012, 33, 79-88.	4.0	70
137	Biomolecular membrane protein crystallization. Philosophical Magazine, 2012, 92, 2648-2661.	0.7	11
138	Modulation in Selectivity and Allosteric Properties of Small-Molecule Ligands for CC-Chemokine Receptors. Journal of Medicinal Chemistry, 2012, 55, 8164-8177.	2.9	27
139	Ensemble of G Protein-Coupled Receptor Active States. Current Medicinal Chemistry, 2012, 19, 1146-1154.	1.2	42
140	Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6733-6738.	3.3	173
141	Constitutively active mutant gives novel insights into the mechanism of bitter taste receptor activation. Journal of Neurochemistry, 2012, 122, 537-544.	2.1	36
142	Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling. Science Signaling, 2012, 5, re2.	1.6	21
143	Modeling of mammalian olfactory receptors and docking of odorants. Biophysical Reviews, 2012, 4, 255-269.	1.5	16
144	Identifying Functionally Important Conformational Changes in Proteins: Activation of the Yeast α-factor Receptor Ste2p. Journal of Molecular Biology, 2012, 418, 367-378.	2.0	9
145	Maximizing Detergent Stability and Functional Expression of a GPCR by Exhaustive Recombination and Evolution. Journal of Molecular Biology, 2012, 422, 414-428.	2.0	55
146	Structure and activation of rhodopsin. Acta Pharmacologica Sinica, 2012, 33, 291-299.	2.8	59
147	Structure of the agonist-bound neurotensin receptor. Nature, 2012, 490, 508-513.	13.7	435
148	Role of Detergents in Conformational Exchange of a G Protein-coupled Receptor. Journal of Biological Chemistry, 2012, 287, 36305-36311.	1.6	94
149	Revisiting the homology modeling of C-protein coupled receptors: β1-adrenoceptor as an example. Molecular BioSystems, 2012, 8, 1686.	2.9	6
150	Structure-based drug screening for G-protein-coupled receptors. Trends in Pharmacological Sciences, 2012, 33, 268-272.	4.0	258
151	MT ₁ â€Selective Melatonin Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Dynamics Investigation of <i>N</i> â€{[(3â€ <i>O</i> â€Substituted)anilino]alkyl}amides. ChemMedChem, 2012, 7, 1954-1964.	1.6	24
152	The roles played by highly truncated splice variants of G protein-coupled receptors. Journal of Molecular Signaling, 2012, 7, 13.	0.5	55
153	The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacology & Toxicology, 2012, 13, 3.	1.0	41

#	Article	IF	CITATIONS
154	The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nature Communications, 2012, 3, 1044.	5.8	117
157	Efficacy of the β2-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nature Communications, 2012, 3, 1045.	5.8	176
158	A fast, simple and robust protocol for growing crystals in the lipidic cubic phase. Journal of Applied Crystallography, 2012, 45, 1330-1333.	1.9	32
159	Ligand–receptor interaction platforms and their applications for drug discovery. Expert Opinion on Drug Discovery, 2012, 7, 969-988.	2.5	97
160	Nobel Prize for Chemistry 2012: GPCRs seen through a crystal ball. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1439-1440.	2.5	0
161	Comparison of Fragments Comprising the First Two Helices of the Human Y4 and the Yeast Ste2p G-Protein-Coupled Receptors. Biophysical Journal, 2012, 103, 817-826.	0.2	4
162	Targeting chemokines and chemokine receptors with antibodies. Drug Discovery Today: Technologies, 2012, 9, e237-e244.	4.0	28
163	Using Enhanced Sampling and Structural Restraints to Refine Atomic Structures into Low-Resolution Electron Microscopy Maps. Structure, 2012, 20, 1453-1462.	1.6	39
164	A crystal clear solution for determining G-protein-coupled receptor structures. Trends in Biochemical Sciences, 2012, 37, 343-352.	3.7	117
165	Agonist-bound structures of G protein-coupled receptors. Current Opinion in Structural Biology, 2012, 22, 482-490.	2.6	91
166	Micro-crystallography comes of age. Current Opinion in Structural Biology, 2012, 22, 602-612.	2.6	144
167	Effect of lipid architecture on cubic phase susceptibility to crystallisation screens. Soft Matter, 2012, 8, 6884.	1.2	30
168	Chaperone-Mediated Assembly of G Protein Complexes. Sub-Cellular Biochemistry, 2012, 63, 131-153.	1.0	21
169	Pasteurella multocida. Current Topics in Microbiology and Immunology, 2012, , .	0.7	3
171	Beta2-Adrenergic Receptor and Astrocyte Glucose Metabolism. Journal of Molecular Neuroscience, 2012, 48, 456-463.	1.1	59
172	Contributions of fluorescence techniques to understanding G protein-coupled receptor dimerisation. Biophysical Reviews, 2012, 4, 291-298.	1.5	14
173	A modal analysis of carbon nanotube using elastic network model. Journal of Mechanical Science and Technology, 2012, 26, 3433-3438.	0.7	6
175	2011: Signaling Breakthroughs of the Year. Science Signaling, 2012, 5, eg1.	1.6	1

#	Article	IF	CITATIONS
176	Helix 8 of leukotriene B ₄ receptor 1 inhibits ligandâ€induced internalization. FASEB Journal, 2012, 26, 4068-4078.	0.2	25
178	Comparative Analysis of the Heptahelical Transmembrane Bundles of G Protein-Coupled Receptors. PLoS ONE, 2012, 7, e35802.	1.1	8
179	LGR6 Is a High Affinity Receptor of R-Spondins and Potentially Functions as a Tumor Suppressor. PLoS ONE, 2012, 7, e37137.	1.1	105
180	A Transplantable Phosphorylation Probe for Direct Assessment of G Protein-Coupled Receptor Activation. PLoS ONE, 2012, 7, e39458.	1.1	11
181	N-Terminal T4 Lysozyme Fusion Facilitates Crystallization of a G Protein Coupled Receptor. PLoS ONE, 2012, 7, e46039.	1.1	112
182	Virus Immune Evasion: New Mechanism and Implications in Disease Outcome. Advances in Virology, 2012, 2012, 1-1.	0.5	3
183	Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors—A Consequence of Evolutionary Pressure?. Advances in Virology, 2012, 2012, 1-15.	0.5	14
185	GPCRs and G Protein Activation. , 0, , .		1
186	Nobel work boosts drug development. Nature, 2012, 490, 320-320.	13.7	1
188	Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies. Frontiers in Endocrinology, 2012, 3, 129.	1.5	31
189	Regulation of G Protein-Coupled Receptor Kinases by Phospholipids. Current Medicinal Chemistry, 2012, 20, 39-46.	1.2	24
190	Structural mechanisms of constitutive activation in the C5a receptors with mutations in the extracellular loops: Molecular modeling study. Proteins: Structure, Function and Bioinformatics, 2012, 80, 71-80.	1.5	7
191	Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature, 2012, 485, 321-326.	13.7	1,202
192	Biased Signaling Pathways in β ₂ -Adrenergic Receptor Characterized by ¹⁹ F-NMR. Science, 2012, 335, 1106-1110.	6.0	618
193	Muscarinic receptors become crystal clear. Nature, 2012, 482, 480-481.	13.7	14
194	Structure of the First Sphingosine 1-Phosphate Receptor. Science Signaling, 2012, 5, pe23.	1.6	14
195	Biosynthesis of human β2-adrenergic receptor in methylotrophic yeast Pichia pastoris and its purification. Molecular Biology, 2012, 46, 279-286.	0.4	3
196	Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature, 2012, 482, 552-556.	13.7	714

		CITATION REPORT		
#	Article		IF	CITATIONS
197	Structure of the human \hat{I}^{e} -opioid receptor in complex with JDTic. Nature, 2012, 485, 32	27-332.	13.7	797
198	Optimization of Adenosine 5′-Carboxamide Derivatives as Adenosine Receptor Ago Structure-Based Ligand Design and Fragment Screening. Journal of Medicinal Chemistr 4297-4308.		2.9	57
199	Chemistry and Biology of Vision. Journal of Biological Chemistry, 2012, 287, 1612-161	9.	1.6	238
200	Conus Venom Peptide Pharmacology. Pharmacological Reviews, 2012, 64, 259-298.		7.1	372
201	A new era of GPCR structural and chemical biology. Nature Chemical Biology, 2012, 8,	670-673.	3.9	184
202	Conserved activation pathways in G-protein-coupled receptors. Biochemical Society Tr 2012, 40, 383-388.	ansactions,	1.6	43
203	G-protein-coupled receptor dynamics: dimerization and activation models compared w Biochemical Society Transactions, 2012, 40, 394-399.	ith experiment.	1.6	13
204	Where have all the active receptor states gone?. Nature Chemical Biology, 2012, 8, 67	4-677.	3.9	30
205	Structural insights into electron transfer in caa3-type cytochrome oxidase. Nature, 20	12, 487, 514-518.	13.7	119
206	Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic S an Agonist-Bound A2A Adenosine Receptor. Journal of Medicinal Chemistry, 2012, 55,	tructure of 538-552.	2.9	36
207	C-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Natu 237-240.	re, 2012, 482,	13.7	274
208	Structural aspects of M ₃ muscarinic acetylcholine receptor dimer format activation. FASEB Journal, 2012, 26, 604-616.	tion and	0.2	34
209	Molecular Dynamics Simulations of G Proteinâ€Coupled Receptors. Molecular Informa 222-230.	tics, 2012, 31,	1.4	15
210	Molecular Determinants of Selectivity and Efficacy at the Dopamine D3 Receptor. Jour Chemistry, 2012, 55, 6689-6699.	nal of Medicinal	2.9	153
211	Structure-Guided Design of A ₃ Adenosine Receptor-Selective Nucleosides 2-Arylethynyl and Bicyclo[3.1.0]hexane Substitutions. Journal of Medicinal Chemistry, 4847-4860.	: Combination of 2012, 55,	2.9	76
212	G protein-mediated stretch reception. American Journal of Physiology - Heart and Circu Physiology, 2012, 302, H1241-H1249.	ilatory	1.5	144
213	Molecular Insights into the D1R Agonist and D2R/D3R Antagonist Effects of the Natur (â^')-Stepholidine: Molecular Modeling and Dynamics Simulations. Journal of Physical O 116, 8121-8130.		1.2	13
214	Biosynthesis and Spectroscopic Characterization of 2â€ T M Fragments Encompassing Human GPCR, the Y4 Receptor. ChemBioChem, 2012, 13, 818-828.	the Sequence of a	1.3	6

#	Article	IF	CITATIONS
215	Impact of Helix Irregularities on Sequence Alignment and Homology Modeling of G Protein oupled Receptors. ChemBioChem, 2012, 13, 1393-1399.	1.3	40
216	A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins. Chemistry - A European Journal, 2012, 18, 9485-9490.	1.7	120
217	Protein Conformational Switches: From Nature to Design. Chemistry - A European Journal, 2012, 18, 7984-7999.	1.7	120
218	Allosteric Mechanisms of G Protein-Coupled Receptor Signaling: A Structural Perspective. Methods in Molecular Biology, 2012, 796, 133-174.	0.4	13
219	Signaling by Sensory Receptors. Cold Spring Harbor Perspectives in Biology, 2012, 4, a005991-a005991.	2.3	63
220	Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8304-8309.	3.3	95
221	Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling. Pharmacological Reviews, 2012, 64, 299-336.	7.1	279
222	Pharmacology and Therapeutics of Bronchodilators. Pharmacological Reviews, 2012, 64, 450-504.	7.1	379
223	hβ2R–Gαs complex: prediction versus crystal structure—how valuable are predictions based on molecular modeling studies?. Journal of Molecular Modeling, 2012, 18, 3439-3444.	0.8	1
224	Lifting the lid on GPCRs: the role of extracellular loops. British Journal of Pharmacology, 2012, 165, 1688-1703.	2.7	242
225	Ser/ Thr residues at α3/β5 loop of Gαs are important in morphineâ€induced adenylyl cyclase sensitization but not mitogenâ€activated protein kinase phosphorylation. FEBS Journal, 2012, 279, 650-660.	2.2	7
226	Comparison of Dynamics of Extracellular Accesses to the β ₁ and β ₂ Adrenoceptors Binding Sites Uncovers the Potential of Kinetic Basis of Antagonist Selectivity. Chemical Biology and Drug Design, 2012, 80, 215-226.	1.5	19
227	Computational Design of Membrane Proteins. Structure, 2012, 20, 5-14.	1.6	32
228	Crystal Structures of a Stabilized β1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol. Structure, 2012, 20, 841-849.	1.6	208
229	Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors. Structure, 2012, 20, 967-976.	1.6	367
230	Functional significance of serotonin receptor dimerization. Experimental Brain Research, 2013, 230, 375-386.	0.7	53
231	Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 2013, 499, 438-443.	13.7	378
232	Domain-Opening and Dynamic Coupling in the α-Subunit of Heterotrimeric G Proteins. Biophysical Journal, 2013, 105, L08-L10.	0.2	24

#	Article	IF	CITATIONS
233	Emerging paradigms in GPCR allostery: implications for drug discovery. Nature Reviews Drug Discovery, 2013, 12, 630-644.	21.5	396
234	Recent Structural Advances of β1 and β2 Adrenoceptors Yield Keys for Ligand Recognition and Drug Design. Journal of Medicinal Chemistry, 2013, 56, 8207-8223.	2.9	26
235	Production of GPCR and GPCR complexes for structure determination. Current Opinion in Structural Biology, 2013, 23, 381-392.	2.6	37
236	Nanobody-induced perturbation of LFA-1/L-plastin phosphorylation impairs MTOC docking, immune synapse formation and T cell activation. Cellular and Molecular Life Sciences, 2013, 70, 909-922.	2.4	40
237	Development of 7TM receptor-ligand complex models using ligand-biased, semi-empirical helix-bundle repacking in torsion space: application to the agonist interaction of the human dopamine D2 receptor. Journal of Computer-Aided Molecular Design, 2013, 27, 277-291.	1.3	3
238	Combination of 15N reverse labeling and afterglow spectroscopy for assigning membrane protein spectra by magic-angle-spinning solid-state NMR: application to the multidrug resistance protein EmrE. Journal of Biomolecular NMR, 2013, 55, 391-399.	1.6	32
239	Homogeneous Time-Resolved Fluorescence Assay to Probe Folded G Protein-Coupled Receptors. Methods in Enzymology, 2013, 522, 169-189.	0.4	3
240	The Very Large G Protein Coupled Receptor (Vlgr1) in Hair Cells. Journal of Molecular Neuroscience, 2013, 50, 204-214.	1.1	23
241	A serpentine way to signaling. Resonance, 2013, 18, 530-542.	0.2	0
242	Functionally biased signalling properties of <scp>7TM</scp> receptors – opportunities for drug development for the ghrelin receptor. British Journal of Pharmacology, 2013, 170, 1349-1362.	2.7	55
243	De Novo Mutations in GNAO1, Encoding a Gαo Subunit of Heterotrimeric G Proteins, Cause Epileptic Encephalopathy. American Journal of Human Genetics, 2013, 93, 496-505.	2.6	187
244	Conformational Ensemble View of G Protein-Coupled Receptors and the Effect of Mutations and Ligand Binding. Methods in Enzymology, 2013, 520, 31-48.	0.4	15
245	Unnatural Amino Acid Mutagenesis of GPCRs Using Amber Codon Suppression and Bioorthogonal Labeling. Methods in Enzymology, 2013, 520, 281-305.	0.4	32
246	An automated approach to network features of protein structure ensembles. Protein Science, 2013, 22, 1399-1416.	3.1	55
247	Precision vs Flexibility in GPCR signaling. Journal of the American Chemical Society, 2013, 135, 12305-12312.	6.6	45
248	An Acid Test for G Proteins. Molecular Cell, 2013, 51, 405-406.	4.5	Ο
249	The rat adenine receptor: pharmacological characterization and mutagenesis studies to investigate its putative ligand binding site. Purinergic Signalling, 2013, 9, 367-381.	1.1	16
250	Protons as Second Messenger Regulators of G Protein Signaling. Molecular Cell, 2013, 51, 531-538.	4.5	70

#	Article	IF	CITATIONS
251	Functional selectivity of G-protein-coupled receptors: From recombinant systems to native human cells. Biochemical Pharmacology, 2013, 86, 853-861.	2.0	61
252	Docking and MD study of histamine H4R based on the crystal structure of H1R. Journal of Molecular Graphics and Modelling, 2013, 39, 1-12.	1.3	21
253	Molecular modeling studies give hint for the existence of a symmetric hβ2R-Gαβγ-homodimer. Journal of Molecular Modeling, 2013, 19, 4443-4457.	0.8	7
254	The Role of a Sodium Ion Binding Site in the Allosteric Modulation of the A2A Adenosine G Protein-Coupled Receptor. Structure, 2013, 21, 2175-2185.	1.6	118
255	TNFR1 Signaling is Associated with Backbone Conformational Changes of Receptor Dimers Consistent with Overactivation in the R92Q TRAPS Mutant. Biophysical Journal, 2013, 104, 61a-62a.	0.2	30
256	E. Coli Heptosyltransferase I: Exploring Function and Dynamics to Create Better Inhibitors for GT-B Enzymes. Biophysical Journal, 2013, 104, 61a.	0.2	1
257	Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Current Opinion in Structural Biology, 2013, 23, 740-747.	2.6	81
258	Chemotype-selective Modes of Action of κ-Opioid Receptor Agonists. Journal of Biological Chemistry, 2013, 288, 34470-34483.	1.6	55
259	Molecular Basis for Benzodiazepine Agonist Action at the Type 1 Cholecystokinin Receptor. Journal of Biological Chemistry, 2013, 288, 21082-21095.	1.6	19
260	Single-Molecule Analysis of Conformational Transitions in XPD Helicase. Biophysical Journal, 2013, 104, 61a.	0.2	0
261	Linking receptor activation to changes in Sw I and II of Gα proteins. Journal of Structural Biology, 2013, 184, 63-74.	1.3	9
262	Molecular modeling of vasopressin receptor and <i>in silico</i> screening of V1b receptor antagonists. Expert Opinion on Drug Discovery, 2013, 8, 951-964.	2.5	2
263	Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science, 2013, 341, 1390-1394.	6.0	883
264	Opsin, a Structural Model for Olfactory Receptors?. Angewandte Chemie - International Edition, 2013, 52, 11021-11024.	7.2	66
265	Analytical pharmacology and allosterism: the importance of quantifying drug parameters in drug discovery. Drug Discovery Today: Technologies, 2013, 10, e229-e235.	4.0	13
266	Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature, 2013, 503, 295-299.	13.7	365
267	Structure–Activity Relationships and Identification of Optmized CC-Chemokine Receptor CCR1, 5, and 8 Metal-Ion Chelators. Journal of Chemical Information and Modeling, 2013, 53, 2863-2873.	2.5	2
268	Detection of G Protein-Coupled Receptor (GPCR) Dimerization by Coimmunoprecipitation. Methods in Cell Biology, 2013, 117, 323-340.	0.5	24

#	Article	IF	CITATIONS
269	The Prevalence, Maintenance, and Relevance of G Protein–Coupled Receptor Oligomerization. Molecular Pharmacology, 2013, 84, 158-169.	1.0	95
270	Interactions of the GnRH receptor with heterotrimeric G proteins. Frontiers in Neuroendocrinology, 2013, 34, 88-94.	2.5	53
271	Ligands Raise the Constraint That Limits Constitutive Activation in G Protein-coupled Opioid Receptors. Journal of Biological Chemistry, 2013, 288, 23964-23978.	1.6	22
272	Development of a cysteine-deprived and C-terminally truncated GLP-1 receptor. Peptides, 2013, 49, 100-108.	1.2	7
273	Unlocking the secrets of the gatekeeper: Methods for stabilizing and crystallizing GPCRs. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 2583-2591.	1.4	32
274	Conformational restriction of Gâ€proteins Coupled Receptors (GPCRs) upon complexation to Gâ€proteins: A putative activation mode of GPCRs?. FEBS Letters, 2013, 587, 2656-2661.	1.3	11
275	Simulating G Protein-Coupled Receptors in Native-Like Membranes. Methods in Cell Biology, 2013, 117, 63-90.	0.5	13
276	Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504, 101-106.	13.7	779
277	The serotonin 5-HT7 receptors: two decades of research. Experimental Brain Research, 2013, 230, 555-568.	0.7	99
278	The Chemokine Receptor CCR1 Is Constitutively Active, Which Leads to G Protein-independent, β-Arrestin-mediated Internalization. Journal of Biological Chemistry, 2013, 288, 32194-32210.	1.6	62
279	Multiparametric Homogeneous Method for Identification of Ligand Binding to G Protein-Coupled Receptors: Receptor–Ligand Binding and β-Arrestin Assay. Analytical Chemistry, 2013, 85, 2276-2281.	3.2	9
280	Modeling Active GPCR Conformations. Methods in Enzymology, 2013, 522, 21-35.	0.4	11
281	Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy of G Protein-Coupled Receptors. Methods in Enzymology, 2013, 522, 365-389.	0.4	9
282	Glutamate Acts as a Partial Inverse Agonist to Metabotropic Glutamate Receptor with a Single Amino Acid Mutation in the Transmembrane Domain. Journal of Biological Chemistry, 2013, 288, 9593-9601.	1.6	12
283	An analysis of oligomerization interfaces in transmembrane proteins. BMC Structural Biology, 2013, 13, 21.	2.3	29
284	Molecular interactions between fenoterol stereoisomers and derivatives and the β2-adrenergic receptor binding site studied by docking and molecular dynamics simulations. Journal of Molecular Modeling, 2013, 19, 4919-4930.	0.8	29
285	GPCR activation: protonation and membrane potential. Protein and Cell, 2013, 4, 747-760.	4.8	26
286	A nanobody targeting the F-actin capping protein CapG restrains breast cancer metastasis. Breast Cancer Research, 2013, 15, R116.	2.2	91

#	Article	IF	CITATIONS
287	Graph analysis of β2 adrenergic receptor structures: a "social network―of GPCR residues. In Silico Pharmacology, 2013, 1, 16.	1.8	9
288	Enhanced membrane protein expression by engineering increased intracellular membrane production. Microbial Cell Factories, 2013, 12, 122.	1.9	35
289	Advances in the study of structure and function of G protein-coupled receptors (about awarding the) Tj ETQq0 0 Biochemistry and Physiology, 2013, 49, 469-480.	0 rgBT /0 0.2	verlock 10 T 1
290	Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor. BMC Structural Biology, 2013, 13, 29.	2.3	25
291	GPCR: G protein complexes—the fundamental signaling assembly. Amino Acids, 2013, 45, 1303-1314.	1.2	38
292	Agonist-Independent GPCR Activity Regulates Anterior-Posterior Targeting of Olfactory Sensory Neurons. Cell, 2013, 154, 1314-1325.	13.5	126
293	Simulations of Biased Agonists in the β ₂ Adrenergic Receptor with Accelerated Molecular Dynamics. Biochemistry, 2013, 52, 5593-5603.	1.2	44
294	β ₂ â€Adrenergic Receptor Activation by Agonists Studied with ¹⁹ Fâ€NMR Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 10762-10765.	7.2	71
295	Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Medicinal Chemistry Letters, 2013, 4, 1005-1010.	1.3	65
296	Insights into AT ₁ Receptor Activation through AngII Binding Studies. Journal of Chemical Information and Modeling, 2013, 53, 2798-2811.	2.5	31
297	Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature, 2013, 502, 575-579.	13.7	436
298	Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex. Science, 2013, 341, 1387-1390.	6.0	606
299	G Proteinâ€Coupled Estrogen Receptor (GPER) Agonist Dual Binding Mode Analyses Toward Understanding of Its Activation Mechanism: A Comparative Homology Modeling Approach. Molecular Informatics, 2013, 32, 647-658.	1.4	28
300	Stabilizing effect of cholesterol on the state of \hat{l}^2 2-adrenergic receptor with a broken ionic lock: a molecular dynamics study. Russian Chemical Bulletin, 2013, 62, 2567-2573.	0.4	3
301	Ester vs. amide on folding: a case study with a 2-residue synthetic peptide. Organic and Biomolecular Chemistry, 2013, 11, 8348.	1.5	17
302	Science Librarians Analysis of the 2012 Nobel Prize in Chemistry: The Work of Robert Lefkowitz and Brian Kobilka. Science and Technology Libraries, 2013, 32, 19-29.	0.8	2
303	The Concise Guide to PHARMACOLOGY 2013/14: G Protein oupled Receptors. British Journal of Pharmacology, 2013, 170, 1459-1581.	2.7	528
304	Analyses of the effects of Gq protein on the activated states of the muscarinic M ₃ receptor and the purinergic P2Y ₁ receptor. Physiological Reports, 2013, 1, e00134.	0.7	9

#	Article	IF	CITATIONS
305	A Strategy Combining Differential Lowâ€Throughput Screening and Virtual Screening (DLSâ€VS) Accelerating the Discovery of new Modulators for the Orphan GPR34 Receptor. Molecular Informatics, 2013, 32, 213-229.	1.4	11
306	Why we need many more G protein-coupled receptor structures. Expert Review of Proteomics, 2013, 10, 1-3.	1.3	9
307	Molecular Modeling of the 3D Structure of 5-HT1AR: Discovery of Novel 5-HT1AR Agonists via Dynamic Pharmacophore-Based Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 3202-3211.	2.5	26
308	Novel Insights on Thyroid-Stimulating Hormone Receptor Signal Transduction. Endocrine Reviews, 2013, 34, 691-724.	8.9	118
309	Design, synthesis, and binding mode prediction of 2-pyridone-based selective CB2 receptor agonists. Bioorganic and Medicinal Chemistry, 2013, 21, 2045-2055.	1.4	32
310	Regulation of <i>µ</i> -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	7.1	673
311	The Role of Hydrophobic Amino Acids in the Structure and Function of the Rhodopsin Family of G Protein-Coupled Receptors. Methods in Enzymology, 2013, 520, 99-115.	0.4	11
312	The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nature Reviews Drug Discovery, 2013, 12, 25-34.	21.5	252
313	Calcium-Dependent Ligand Binding and G-protein Signaling of Family B GPCR Parathyroid Hormone 1 Receptor Purified in Nanodiscs. ACS Chemical Biology, 2013, 8, 617-625.	1.6	38
314	Molecular basis for dramatic changes in cannabinoid CB1 G proteinâ€coupled receptor activation upon single and double point mutations. Protein Science, 2013, 22, 101-113.	3.1	39
315	Mapping the Functional Binding Sites of Cholesterol in β ₂ -Adrenergic Receptor by Long-Time Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2013, 117, 1085-1094.	1.2	80
316	Asymmetry of the rhodopsin dimer in complex with transducin. FASEB Journal, 2013, 27, 1572-1584.	0.2	58
317	Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies. Journal of the Royal Society Interface, 2013, 10, 20120846.	1.5	43
318	Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494, 185-194.	13.7	1,298
319	Conformational Ensembles in GPCR Activation. Cell, 2013, 152, 385-386.	13.5	25
320	Computationallyâ€predicted CB1 cannabinoid receptor mutants show distinct patterns of saltâ€bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1304-1317.	1.5	36
321	The Dynamic Process of \hat{I}^2 2-Adrenergic Receptor Activation. Cell, 2013, 152, 532-542.	13.5	723
322	Modeling G protein-coupled receptors and their interactions with ligands. Current Opinion in Structural Biology, 2013, 23, 185-190.	2.6	34

#	Article	IF	CITATIONS
323	Structure-Function of the G Protein–Coupled Receptor Superfamily. Annual Review of Pharmacology and Toxicology, 2013, 53, 531-556.	4.2	907
324	The Human Bitter Taste Receptor TAS2R10 Is Tailored to Accommodate Numerous Diverse Ligands. Journal of Neuroscience, 2013, 33, 201-213.	1.7	101
326	β ₂ â€Adrenergic Receptor Solutions for Structural Biology Analyzed with Microscale NMR Diffusion Measurements. Angewandte Chemie - International Edition, 2013, 52, 331-335.	7.2	21
327	In vitro correction of disorders of lysosomal transport by microvesicles derived from baculovirus-infected Spodoptera cells. Molecular Genetics and Metabolism, 2013, 109, 77-85.	0.5	12
328	A Toolbox of Fluorescence Microscopic Approaches Reveals Dynamics and Assembly of a Membrane-Associated Protein. Biophysical Journal, 2013, 104, 1844-1845.	0.2	1
329	New factors influencing G protein coupled receptors' system functions. Alexandria Journal of Medicine, 2013, 49, 1-5.	0.4	24
330	New technologies enabling the industrialization of allosteric modulator discovery. Drug Discovery Today: Technologies, 2013, 10, e253-e260.	4.0	1
331	CXCR7 impact on CXCL12 biology and disease. Trends in Molecular Medicine, 2013, 19, 12-22.	3.5	180
332	Application of zero-dipole summation method to molecular dynamics simulations of a membrane protein system. Chemical Physics Letters, 2013, 568-569, 26-32.	1.2	50
333	Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling. Peptides, 2013, 46, 143-149.	1.2	3
334	Molecular Basis of Cannabinoid CB1 Receptor Coupling to the G Protein Heterotrimer Gαiβγ. Journal of Biological Chemistry, 2013, 288, 32449-32465.	1.6	24
335	Identification of the GPR55 Antagonist Binding Site Using a Novel Set of High-Potency GPR55 Selective Ligands. Biochemistry, 2013, 52, 9456-9469.	1.2	59
336	Novel Tripod Amphiphiles for Membrane Protein Analysis. Chemistry - A European Journal, 2013, 19, 15645-15651.	1.7	49
337	A structural chemogenomics analysis of aminergic <scp>GPCRs</scp> : lessons for histamine receptor ligand design. British Journal of Pharmacology, 2013, 170, 101-126.	2.7	74
338	Integrated nonlinear optical imaging microscope for on-axis crystal detection and centering at a synchrotron beamline. Journal of Synchrotron Radiation, 2013, 20, 531-540.	1.0	31
339	Mu Opioids and Their Receptors: Evolution of a Concept. Pharmacological Reviews, 2013, 65, 1257-1317.	7.1	451
340	New concepts and aids to facilitate crystallization. Current Opinion in Structural Biology, 2013, 23, 409-416.	2.6	66
341	Matching structure with function: the GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends in Pharmacological Sciences, 2013, 34, 470-478.	4.0	75

ARTICLE IF CITATIONS # Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by 342 1.7 32 GRKs but differ in arrestin-1 binding. Cellular Signalling, 2013, 25, 2155-2162. Activation of TRPC4 \hat{l}^2 by G \hat{l} ±i subunit increases Ca2+ selectivity and controls neurite morphogenesis in cultured hippocampal neuron. Cell Calcium, 2013, 54, 307-319. 343 1.1 SPIM-FCCS: A Novel Technique to Quantitate Protein-Protein Interaction in Live Cells. Biophysical 344 0.2 4 Journal, 2013, 104, 61a. Developing an Assay to Probe Activtion and Conformational Dynamics of \hat{l}^2 -Adrenergic Receptor on 345 0.2 Single Molecule Level. Biophysical Journal, 2013, 104, 61a. βâ€Arrestinâ€1 directly interacts with Gα_s and regulates its function. FEBS Letters, 2013, 587, 346 1.3 9 410-416. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochemical Pharmacology, 2013, 85, 1317-1329. Evolution of diffraction methods for solving crystal structures. Acta Crystallographica Section A: 348 0.3 23 Foundations and Advances, 2013, 69, 51-59. Structure of Î²-Adrenergic Receptors. Methods in Enzymology, 2013, 520, 117-151. 349 0.4 9 Glucose-Neopentyl Glycol (GNG) amphiphiles for membrane protein study. Chemical Communications, 350 2.2 79 2013, 49, 2287-2289. The importance of interactions with helix 5 in determining the efficacy of \hat{l}^2 -adrenoceptor ligands. 1.6 Biochemical Society Transactions, 2013, 41, 159-165. Directed Evolution of G-Protein-Coupled Receptors for High Functional Expression and Detergent 352 0.4 20 Stability. Methods in Enzymology, 2013, 520, 67-97. Conformation Guides Molecular Efficacy in Docking Screens of Activated Î²-2 Adrenergic G Protein 1.6 101 Coupled Receptor. ACS Chemical Biology, 2013, 8, 1018-1026. Conformational biosensors reveal GPCR signalling from endosomes. Nature, 2013, 495, 534-538. 354 13.7 713 $\label{eq:membrane} Membrane \ Orientation \ of \ G\hat{l} \pm \langle sub \rangle i \langle |sub \rangle \hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^2 \langle sub \rangle 1 \langle |sub \rangle \hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle 2 \langle |sub \rangle and \ G\hat{l}^3 \langle sub \rangle and \ G\hat$ Determined via Combined Vibrational Spectroscopic Studies. Journal of the American Chemical 6.6 Society, 2013, 135, 5044-5051. Signal Transduction During Platelet Plug Formation., 2013, , 367-398. 356 20 The role of Cysteine 6.47 in class A GPCRs. BMC Structural Biology, 2013, 13, 3. 36 Loss of constitutive activity is correlated with increased thermostability of the human adenosine 358 2.7 30 <scp>A_{2A}</scp> receptor. British Journal of Pharmacology, 2013, 169, 988-998. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 34 1.4 1471-1483.

#	Article	IF	CITATIONS
360	Supraâ€physiological efficacy at <scp>GPCRs</scp> : superstition or super agonists?. British Journal of Pharmacology, 2013, 169, 353-356.	2.7	26
361	Structural Features for Functional Selectivity at Serotonin Receptors. Science, 2013, 340, 615-619.	6.0	600
362	New concepts in pharmacological efficacy at 7 <scp>TM</scp> receptors: <scp>IUPHAR R</scp> eview 2. British Journal of Pharmacology, 2013, 168, 554-575.	2.7	136
363	Carbohydrate-containing Triton X-100 analogues for membrane protein solubilization and stabilization. Molecular BioSystems, 2013, 9, 626.	2.9	20
364	From Heptahelical Bundle to Hits from the Haystack. Methods in Enzymology, 2013, 522, 279-336.	0.4	47
365	Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nature Reviews Drug Discovery, 2013, 12, 205-216.	21.5	627
366	Crystal structure of oligomeric β1-adrenergic G protein–coupled receptors in ligand-free basal state. Nature Structural and Molecular Biology, 2013, 20, 419-425.	3.6	235
367	How ligands and signalling proteins affect G-protein-coupled receptors' conformational landscape. Biochemical Society Transactions, 2013, 41, 144-147.	1.6	10
368	Bridging the gap: bitopic ligands of G-protein-coupled receptors. Trends in Pharmacological Sciences, 2013, 34, 59-66.	4.0	150
369	Direct Molecular Evolution of Detergent-Stable G Protein-Coupled Receptors Using Polymer Encapsulated Cells. Journal of Molecular Biology, 2013, 425, 662-677.	2.0	71
370	Critical analysis of the successes and failures of homology models of G proteinâ€coupled receptors. Proteins: Structure, Function and Bioinformatics, 2013, 81, 729-739.	1.5	22
371	Making receptors a reality: the 2012 Nobel Prize in Chemistry. Trends in Pharmacological Sciences, 2013, 34, 2-5.	4.0	10
372	GPCR activation: a mutagenic spotlight on crystal structures. Trends in Pharmacological Sciences, 2013, 34, 67-84.	4.0	69
373	Light Scattering. , 2013, , 1236-1236.		0
374	X-ray structural information of GPCRs in drug design: what are the limitations and where do we go?. Expert Opinion on Drug Discovery, 2013, 8, 607-620.	2.5	16
375	Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis. Biochemistry (Moscow), 2013, 78, 403-411.	0.7	4
376	Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. Journal of Structural Biology, 2013, 182, 209-218.	1.3	63
377	Molecular targeting of Gα and Gβγ subunits: a potential approach for cancer therapeutics. Trends in Pharmacological Sciences, 2013, 34, 290-298.	4.0	57

#	Article	IF	CITATIONS
378	Conformational Flexibility and Structural Dynamics in GPCR-Mediated G Protein Activation: A Perspective. Journal of Molecular Biology, 2013, 425, 2288-2298.	2.0	89
379	Structure-Based Approaches to Ligands for G-Protein-Coupled Adenosine and P2Y Receptors, from Small Molecules to Nanoconjugates. Journal of Medicinal Chemistry, 2013, 56, 3749-3767.	2.9	31
380	Present and future approaches to screening of G-protein-coupled receptors. Future Medicinal Chemistry, 2013, 5, 523-538.	1.1	15
381	Lipid Raft. , 2013, , 1286-1286.		Ο
382	The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nature Reviews Cancer, 2013, 13, 412-424.	12.8	462
383	Breaking the barriers in membrane protein crystallography. International Journal of Biochemistry and Cell Biology, 2013, 45, 636-644.	1.2	80
384	The Role of Ligands on the Equilibria Between Functional States of a G Protein-Coupled Receptor. Journal of the American Chemical Society, 2013, 135, 9465-9474.	6.6	156
385	Advances in recombinant protein expression for use in pharmaceutical research. Current Opinion in Structural Biology, 2013, 23, 393-402.	2.6	150
386	Selective CB2 agonists with anti-pruritic activity: Discovery of potent and orally available bicyclic 2-pyridones. Bioorganic and Medicinal Chemistry, 2013, 21, 3154-3163.	1.4	16
387	Lac Carrier Protein. , 2013, , 1225-1225.		0
388	CURRENT PROGRESS IN STRUCTURE-BASED RATIONAL DRUG DESIGN MARKS A NEW MINDSET IN DRUG DISCOVERY. Computational and Structural Biotechnology Journal, 2013, 5, e201302011.	1.9	173
389	Generation of functional antibodies for mammalian membrane protein crystallography. Current Opinion in Structural Biology, 2013, 23, 563-568.	2.6	38
390	Common and distinct mechanisms of activation of rhodopsin and other G protein-coupled receptors. Scientific Reports, 2013, 3, 1844.	1.6	5
391	Sphingosine-1-Phosphate and Its Receptors: Structure, Signaling, and Influence. Annual Review of Biochemistry, 2013, 82, 637-662.	5.0	184
392	Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor. Journal of the American Chemical Society, 2013, 135, 8749-8759.	6.6	99
393	What Ligand-Gated Ion Channels Can Tell Us About the Allosteric Regulation of G Protein-Coupled Receptors. Progress in Molecular Biology and Translational Science, 2013, 115, 291-347.	0.9	2
394	Measurements of ligand bias and functional affinity. Nature Reviews Drug Discovery, 2013, 12, 483-483.	21.5	57
395	Host Lipid and Temperature as Important Screening Variables for Crystallizing Integral Membrane Proteins in Lipidic Mesophases. Trials with Diacylglycerol Kinase. Crystal Growth and Design, 2013, 13, 2846-2857.	1.4	37

#	Article	IF	CITATIONS
396	Structure-based studies of chemokine receptors. Current Opinion in Structural Biology, 2013, 23, 539-546.	2.6	23
397	Protein structure and function. , 2013, , 57-79.		5
398	Sulfur-containing amino acids in 7TMRs: molecular gears for pharmacology and function. Trends in Pharmacological Sciences, 2013, 34, 320-331.	4.0	21
399	Rational Design of Sulfonated A ₃ Adenosine Receptor-Selective Nucleosides as Pharmacological Tools To Study Chronic Neuropathic Pain. Journal of Medicinal Chemistry, 2013, 56, 5949-5963.	2.9	44
400	From Atomic Structures to Neuronal Functions of G Protein–Coupled Receptors. Annual Review of Neuroscience, 2013, 36, 139-164.	5.0	38
401	Molecular Details of the Activation of the μ Opioid Receptor. Journal of Physical Chemistry B, 2013, 117, 7907-7917.	1.2	28
402	Regulation of G Protein-Coupled Receptors by Allosteric Ligands. ACS Chemical Neuroscience, 2013, 4, 527-534.	1.7	47
403	Optimized Method of G-Protein-Coupled Receptor Homology Modeling: Its Application to the Discovery of Novel CXCR7 Ligands. Journal of Medicinal Chemistry, 2013, 56, 4236-4251.	2.9	36
404	The rhodopsin-transducin complex houses two distinct rhodopsin molecules. Journal of Structural Biology, 2013, 182, 164-172.	1.3	41
405	The Structural Basis of Gâ€Protein oupled Receptor Signaling (Nobel Lecture). Angewandte Chemie - International Edition, 2013, 52, 6380-6388.	7.2	152
406	X-ray structure of the mammalian GIRK2–βγ G-protein complex. Nature, 2013, 498, 190-197.	13.7	281
407	Thermostabilization of the l² ₁ -Adrenergic Receptor Correlates with Increased Entropy of the Inactive State. Journal of Physical Chemistry B, 2013, 117, 7283-7291.	1.2	16
408	Predicting the Effect of Lipid Structure on Mesophase Formation during in Meso Crystallization. Crystal Growth and Design, 2013, 13, 3126-3137.	1.4	7
409	Modulation of the CXC Chemokine Receptor 4 Agonist Activity of Ubiquitin through C-Terminal Protein Modification. Biochemistry, 2013, 52, 4184-4192.	1.2	21
410	Virtual Screening of CB ₂ Receptor Agonists from Bayesian Network and Highâ€Throughput Docking: Structural Insights into Agonistâ€Modulated GPCR Features. Chemical Biology and Drug Design, 2013, 81, 442-454.	1.5	19
411	METHODS FOR RECOMBINANT EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF HUMAN CANNABINOID RECEPTOR CB2. Computational and Structural Biotechnology Journal, 2013, 6, e201303011.	1.9	8
412	Distinct CCK-2 Receptor Conformations Associated with β-Arrestin-2 Recruitment or Phospholipase-C Activation Revealed by a Biased Antagonist. Journal of the American Chemical Society, 2013, 135, 2560-2573.	6.6	29
413	Mapping the conformational space accessible to BACE2 using surface mutants and cocrystals with Fab fragments, Fynomers and Xaperones. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1124-1137.	2.5	28

#	Article	IF	CITATIONS
414	Enhanced Sampling and Overfitting Analyses in Structural Refinement of Nucleic Acids into Electron Microscopy Maps. Journal of Physical Chemistry B, 2013, 117, 3738-3746.	1.2	12
415	Structural Determinants of Arrestin Functions. Progress in Molecular Biology and Translational Science, 2013, 118, 57-92.	0.9	62
416	Drug Discovery: Structure-led design. Nature, 2013, 502, S50-S52.	13.7	5
417	Novel Structural and Functional Insights into M3 Muscarinic Receptor Dimer/Oligomer Formation. Journal of Biological Chemistry, 2013, 288, 34777-34790.	1.6	26
418	Binding of Gq protein stabilizes the activated state of the muscarinic receptor type 1. Neuropharmacology, 2013, 65, 173-181.	2.0	13
419	Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochemical Pharmacology, 2013, 85, 153-162.	2.0	45
420	Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A _{2A} receptor. MedChemComm, 2013, 4, 52-67.	3.5	25
421	Double Mutation at the Putative Protein Kinase C Phosphorylation Sites Thr ¹⁵¹ Plus Thr ³²³ in the Mouse LeukotrieneD ₄ Receptor Eliminates Homologous Desensitization. Cellular Physiology and Biochemistry, 2013, 31, 366-378.	1.1	3
422	The hydrophobic amino acid cluster at the cytoplasmic end of transmembrane helix III modulates the coupling of the ÄYl-adrenergic receptor to Gs. Journal of Receptor and Signal Transduction Research, 2013, 33, 79-88.	1.3	2
423	Emergent biological properties of arrestin pathway-selective biased agonism. Journal of Receptor and Signal Transduction Research, 2013, 33, 153-161.	1.3	11
424	Strategies for Studying the Ligand Binding Site of GPCRs. Methods in Enzymology, 2013, 520, 219-237.	0.4	4
425	Functional Residues Essential for the Activation of the CB1 Cannabinoid Receptor. Methods in Enzymology, 2013, 520, 337-355.	0.4	6
426	Linear Prediction in NMR Spectroscopy. , 2013, , 1249-1250.		1
427	Eukaryotic G Protein Signaling Evolved to Require G Protein–Coupled Receptors for Activation. Science Signaling, 2013, 6, ra37.	1.6	66
428	Functional fusions of T4 lysozyme in the third intracellular loop of a G protein-coupled receptor identified by a random screening approach in yeast. Protein Engineering, Design and Selection, 2013, 26, 59-71.	1.0	12
429	Revisiting the putative TCR Cα dimerization model through structural analysis. Frontiers in Immunology, 2013, 4, 16.	2.2	7
430	Intragenic suppression of a constitutively active allele of Gsα associated with McCune–Albright syndrome. Journal of Molecular Endocrinology, 2013, 50, 193-201.	1.1	4
431	Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors. Journal of Visualized Experiments, 2013, , .	0.2	9

	CITATION RE	PORT	
#	Article	IF	CITATIONS
432	The Role of MC1R in Speciation & Phylogeny. American Biology Teacher, 2013, 75, 670-676.	0.1	1
433	Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Human Reproduction Update, 2013, 19, 583-602.	5.2	88
434	Attenuated Desensitization of β-Adrenergic Receptor by Water-Soluble N-Nitrosamines That Induce S-Nitrosylation Without NO Release. Circulation Research, 2013, 112, 327-334.	2.0	24
435	The role of ECL2 in CCRP receptor activation: a combined modelling and experimental approach. Journal of the Royal Society Interface, 2013, 10, 20130589.	1.5	27
436	Pasteurella multocida Toxin as a Transporter of Non-Cell-Permeating Proteins. Infection and Immunity, 2013, 81, 2459-2467.	1.0	14
437	Biased and Constitutive Signaling in the CC-chemokine Receptor CCR5 by Manipulating the Interface between Transmembrane Helices 6 and 7. Journal of Biological Chemistry, 2013, 288, 12511-12521.	1.6	59
438	Autonomic Nervous System Pharmacology. , 2013, , 218-234.		2
439	G protein signaling in the parasite Entamoeba histolytica. Experimental and Molecular Medicine, 2013, 45, e15-e15.	3.2	52
440	Detection of G Protein-selective G Protein-coupled Receptor (GPCR) Conformations in Live Cells. Journal of Biological Chemistry, 2013, 288, 17167-17178.	1.6	60
441	Conformational Dynamics of Kir3.1/Kir3.2 Channel Activation Via <i>δ</i> -Opioid Receptors. Molecular Pharmacology, 2013, 83, 416-428.	1.0	45
442	Laser Processing of Biomaterials and Cells. , 2013, , 1226-1233.		0
443	Sticky Signaling—Adhesion Class G Protein–Coupled Receptors Take the Stage. Science Signaling, 2013, 6, re3.	1.6	226
445	Segregation of Family A G Protein–Coupled Receptor Protomers in the Plasma Membrane. Molecular Pharmacology, 2013, 84, 346-352.	1.0	26
446	Heterotrimeric G protein signalling in the plant kingdom. Open Biology, 2013, 3, 120186.	1.5	218
447	"Round Up the Usual Suspectsâ€: A Comment on Nonexistent Plant G Protein-Coupled Receptors Â. Plant Physiology, 2013, 161, 1097-1102.	2.3	45
448	Applications of molecular replacement to G protein-coupled receptors. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2287-2292.	2.5	3
449	Brian Kobilka. Circulation Research, 2013, 112, 1538-1541.	2.0	1
450	Nanostructures from Selfâ€Assembling Triazine Tertiary Amine <i>N</i> â€Oxide Amphiphiles. ChemPhysChem, 2013, 14, 3909-3915.	1.0	2

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
451	Mapping cytoskeletal protein function in cells by means of nanobodies. Cytoskeleton, 2013, 70, 604-622.	1.0	37
452	Selective and Potent Agonists and Antagonists for Investigating the Role of Mouse Oxytocin Receptors. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 318-327.	1.3	84
453	Simultaneous prediction of protein secondary structure and transmembrane spans. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1127-1140.	1.5	56
454	Detailed analysis of biased histamine <scp>H</scp> ₄ receptor signalling by <scp>JNJ</scp> 7777120 analogues. British Journal of Pharmacology, 2013, 170, 78-88.	2.7	34
455	Regulation of phospholipase C-β1GTPase-activating protein (GAP) function and relationship to Gqefficacy. IUBMB Life, 2013, 65, 936-940.	1.5	4
456	Proton Shuttle Mechanism in the Transition State of Lipaseâ€Catalyzed Nâ€Acylation of Amino Alcohols. ChemCatChem, 2013, 5, 1842-1853.	1.8	20
457	Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10982-10987.	3.3	210
458	Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5211-5216.	3.3	203
459	Critical Hydrogen Bond Formation for Activation of the Angiotensin II Type 1 Receptor. Journal of Biological Chemistry, 2013, 288, 2593-2604.	1.6	17
460	Identification of C-terminal Phosphorylation Sites of N-Formyl Peptide Receptor-1 (FPR1) in Human Blood Neutrophils. Journal of Biological Chemistry, 2013, 288, 27042-27058.	1.6	14
461	New Insights into Structural Determinants for Prostanoid Thromboxane A2 Receptor- and Prostacyclin Receptor-G Protein Coupling. Molecular and Cellular Biology, 2013, 33, 184-193.	1.1	23
462	β-Arrestin Recruitment and G Protein Signaling by the Atypical Human Chemokine Decoy Receptor CCX-CKR. Journal of Biological Chemistry, 2013, 288, 7169-7181.	1.6	35
463	Inhibition of melanocortin-4 receptor dimerization by substitutions in intracellular loop 2. Journal of Molecular Endocrinology, 2013, 51, 109-118.	1.1	36
464	Substrate specificity of <i>Pasteurella multocida</i> toxin for α subunits of heterotrimeric G proteins. FASEB Journal, 2013, 27, 832-842.	0.2	37
465	Profile of Brian K. Kobilka and Robert J. Lefkowitz, 2012 Nobel Laureates in Chemistry. Proceedings of the United States of America, 2013, 110, 5274-5275.	3.3	10
466	Distinct Roles of β-Arrestin 1 and β-Arrestin 2 in ORG27569-induced Biased Signaling and Internalization of the Cannabinoid Receptor 1 (CB1). Journal of Biological Chemistry, 2013, 288, 9790-9800.	1.6	114
467	Recent Developments in the Study of Opioid Receptors. Molecular Pharmacology, 2013, 83, 723-728.	1.0	55
468	Molecular properties of muscarinic acetylcholine receptors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2013, 89, 226-256.	1.6	96

#	Article	IF	CITATIONS
469	Predicted optical performance of the GM/CA@APS micro-focus beamline. Journal of Physics: Conference Series, 2013, 425, 012006.	0.3	5
470	Die strukturelle Grundlage der Signaltransduktion mit Gâ€Proteinâ€gekoppelten Rezeptoren (Nobelâ€Aufsatz). Angewandte Chemie, 2013, 125, 6508-6517.	1.6	12
472	Hemifluorinated Maltoseâ€Neopentyl Glycol (HFâ€MNG) Amphiphiles for Membrane Protein Stabilisation. ChemBioChem, 2013, 14, 452-455.	1.3	32
475	Influence of Lipid Composition on the Structural Stability of G-Protein Coupled Receptor. Chemical and Pharmaceutical Bulletin, 2013, 61, 426-437.	0.6	33
478	Allosteric Drugs and Seven Transmembrane Receptors. Current Topics in Medicinal Chemistry, 2013, 13, 5-13.	1.0	9
479	Computational Approaches for Ligand Discovery and Design in Class-A G Protein- Coupled Receptors. Current Pharmaceutical Design, 2013, 19, 2216-2236.	0.9	17
480	Histamine Modulates Isoproterenol Efficacy at the β2 Adrenoceptor: Inferences Regarding Allosteric Modulation by Imidazole-Containing Compounds. Biochemistry & Physiology, 2013, 02, .	0.2	0
481	Structural Aspects of GPCR-G Protein Coupling. Toxicological Research, 2013, 29, 149-155.	1.1	14
482	Towards Improved Quality of GPCR Models by Usage of Multiple Templates and Profile-Profile Comparison. PLoS ONE, 2013, 8, e56742.	1.1	49
483	Full and Partial Agonists of Thromboxane Prostanoid Receptor Unveil Fine Tuning of Receptor Superactive Conformation and G Protein Activation. PLoS ONE, 2013, 8, e60475.	1.1	12
484	Computational Study on the Different Ligands Induced Conformation Change of β2 Adrenergic Receptor-Gs Protein Complex. PLoS ONE, 2013, 8, e68138.	1.1	16
485	Nanobody Mediated Crystallization of an Archeal Mechanosensitive Channel. PLoS ONE, 2013, 8, e77984.	1.1	20
486	L-Plastin Nanobodies Perturb Matrix Degradation, Podosome Formation, Stability and Lifetime in THP-1 Macrophages. PLoS ONE, 2013, 8, e78108.	1.1	30
487	Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors. PLoS ONE, 2013, 8, e78515.	1.1	9
488	Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward. Frontiers in Neuroscience, 2013, 7, 148.	1.4	74
489	The Therapeutic Potential of Allosteric Ligands for Free Fatty Acid Sensitive GPCRs. Current Topics in Medicinal Chemistry, 2013, 13, 14-25.	1.0	26
490	Protein Crystallography. , 2013, , .		0
491	Neurotransmitter Receptors. , 2014, , 552-564.		4

#	Article	IF	CITATIONS
492	Discovery of Novel Ligands for Mouse Olfactory Receptor MOR42-3 Using an In Silico Screening Approach and In Vitro Validation. PLoS ONE, 2014, 9, e92064.	1.1	34
493	The 2.1 à Resolution Structure of Cyanopindolol-Bound β1-Adrenoceptor Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor. PLoS ONE, 2014, 9, e92727.	1.1	157
494	Mechanism for Adhesion G Protein-Coupled Receptor GPR56-Mediated RhoA Activation Induced By Collagen III Stimulation. PLoS ONE, 2014, 9, e100043.	1.1	65
495	Active-State Model of a Dopamine D2 Receptor - Gαi Complex Stabilized by Aripiprazole-Type Partial Agonists. PLoS ONE, 2014, 9, e100069.	1.1	29
496	Search for β2 Adrenergic Receptor Ligands by Virtual Screening via Grid Computing and Investigation of Binding Modes by Docking and Molecular Dynamics Simulations. PLoS ONE, 2014, 9, e107837.	1.1	13
497	Kir3 channel signaling complexes: focus on opioid receptor signaling. Frontiers in Cellular Neuroscience, 2014, 8, 186.	1.8	56
498	G Protein Coupled Receptors: Druggability and Structural Aspects. , 2014, 05, .		0
500	Heterotrimeric G Proteins. , 2014, , 560-563.		0
502	A Conserved Phenylalanine as a Relay between the α5 Helix and the GDP Binding Region of Heterotrimeric Gi Protein α Subunit. Journal of Biological Chemistry, 2014, 289, 24475-24487.	1.6	42
503	Beyond Standard Molecular Dynamics: Investigating the Molecular Mechanisms of G Protein-Coupled Receptors with Enhanced Molecular Dynamics Methods. Advances in Experimental Medicine and Biology, 2014, 796, 95-125.	0.8	15
504	Production, crystallization and preliminary X-ray diffraction of the Cαs α-helical domain in complex with a nanobody. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1504-1507.	0.4	0
505	Development and Characterization of Pepducins as Gs-biased Allosteric Agonists*. Journal of Biological Chemistry, 2014, 289, 35668-35684.	1.6	71
506	Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 2014, 15, 399.	1.2	292
507	Characterization of the Anopheles gambiae octopamine receptor and discovery of potential agonists and antagonists using a combined computational-experimental approach. Malaria Journal, 2014, 13, 434.	0.8	35
508	Functional map of arrestin-1 at single amino acid resolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1825-1830.	3.3	56
509	G Protein and β-Arrestin Signaling Bias at the Ghrelin Receptor. Journal of Biological Chemistry, 2014, 289, 33442-33455.	1.6	64
510	M3 Muscarinic Receptor Interaction with Phospholipase C β3 Determines Its Signaling Efficiency. Journal of Biological Chemistry, 2014, 289, 11206-11218.	1.6	17
511	Disheveled regulates precoupling of heterotrimeric G proteins to Frizzled 6. FASEB Journal, 2014, 28, 2293-2305	0.2	58

#	Article	IF	CITATIONS
512	Constitutive Gαi Coupling Activity of Very Large G Protein-coupled Receptor 1 (VLGR1) and Its Regulation by PDZD7 Protein. Journal of Biological Chemistry, 2014, 289, 24215-24225.	1.6	60
513	The identification of high-affinity G protein-coupled receptor ligands from large combinatorial libraries using multicolor quantum dot-labeled cell-based screening. Future Medicinal Chemistry, 2014, 6, 809-823.	1.1	7
514	Energetic analysis of the rhodopsin–G-protein complex links the α5 helix to GDP release. Nature Structural and Molecular Biology, 2014, 21, 56-63.	3.6	64
515	Molecular Signalling, Pharmacology, and Physiology of Octopamine and Tyramine Receptors as Potential Insect Pest Control Targets. Advances in Insect Physiology, 2014, 46, 73-166.	1.1	54
516	Ligand-specific endocytic dwell times control functional selectivity of the cannabinoid receptor 1. Nature Communications, 2014, 5, 4589.	5.8	81
517	Covalent agonists for studying G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10744-10748.	3.3	82
518	Outward-facing conformers of LacY stabilized by nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18548-18553.	3.3	23
519	Real-Time Monitoring of GPCR/cAMP Signalling by FRET and Single-Molecule Microscopy. Hormone and Metabolic Research, 2014, 46, 827-832.	0.7	11
520	Structural Basis of G Protein-coupled Receptor-Gi Protein Interaction. Journal of Biological Chemistry, 2014, 289, 20259-20272.	1.6	32
521	Biased and G Protein-Independent Signaling of Chemokine Receptors. Frontiers in Immunology, 2014, 5, 277.	2.2	152
522	Kinetics of the early events of GPCR signalling. FEBS Letters, 2014, 588, 4701-4707.	1.3	15
523	Somatostatin Receptor-4 Agonists as Candidates for Treatment of Alzheimer's Disease. , 2014, , 566-597.		3
524	Quantifying Biased β-Arrestin Signaling. Handbook of Experimental Pharmacology, 2014, 219, 57-83.	0.9	13
525	Odor and Pheromone Molecules, Receptors, and Behavioral Responses. , 2014, , 19-38.		3
526	Olfactory Map Formation in the Mouse. , 2014, , 39-58.		0
527	Molecular Insights into the Dynamics of Pharmacogenetically Important N-Terminal Variants of the Human β2-Adrenergic Receptor. PLoS Computational Biology, 2014, 10, e1004006.	1.5	27
528	Alpha-Bulges in G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2014, 15, 7841-7864.	1.8	34
529	Membrane Protein Production for Structural Analysis. , 2014, , 1-44.		1

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
530	Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release. Bioscience Reports, 2014, 34, e00158.	1.1	10
531	Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in <i>JBluIce</i> beamline control system. Journal of Applied Crystallography, 2014, 47, 1992-1999.	1.9	12
532	SnapShot: GPCR-Ligand Interactions. Cell, 2014, 159, 1712-1712.e1.	13.5	15
533	G Protein-Coupled Receptors and G Protein and Arrestin Signaling. , 2014, , 253-299.		0
534	Novel Screening Paradigms for the Identification of Allosteric Modulators and/or Biased Ligands for Challenging G-Protein-Coupled Receptors. Annual Reports in Medicinal Chemistry, 2014, 49, 285-300.	0.5	3
535	Molecular mechanism of phosphorylation-dependent arrestin activation. Current Opinion in Structural Biology, 2014, 29, 143-151.	2.6	25
536	A GTPase Chimera Illustrates an Uncoupled Nucleotide Affinity and Release Rate, Providing Insight into the Activation Mechanism. Biophysical Journal, 2014, 107, L45-L48.	0.2	4
537	Allosteric interactions at adenosine <scp>A₁</scp> and <scp>A₃</scp> receptors: new insights into the role of small molecules and receptor dimerization. British Journal of Pharmacology, 2014, 171, 1102-1113.	2.7	52
538	Quantification of Ligand Bias for Clinically Relevant <i>β</i> ₂ -Adrenergic Receptor Ligands: Implications for Drug Taxonomy. Molecular Pharmacology, 2014, 85, 492-509.	1.0	207
539	Insights into the Role of Asp79 ^{2.50} in β ₂ Adrenergic Receptor Activation from Molecular Dynamics Simulations. Biochemistry, 2014, 53, 7283-7296.	1.2	67
540	Microsecond Molecular Dynamics Simulations Provide Insight into the Allosteric Mechanism of the Gs Protein Uncoupling from the β2Adrenergic Receptor. Journal of Physical Chemistry B, 2014, 118, 141212122505008.	1.2	10
541	Rebuilding a macromolecular membrane complex at the atomic scale: Case of the Kir6.2 potassium channel coupled to the muscarinic acetylcholine receptor M2. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1694-1707.	1.5	4
542	Focal Molography: Coherent Microscopic Detection of Biomolecular Interaction. Physical Review X, 2014, 4, .	2.8	9
543	What is biased efficacy? Defining the relationship between intrinsic efficacy and free energy coupling. Trends in Pharmacological Sciences, 2014, 35, 639-647.	4.0	37
544	Hydrophobic Variations of <i>N</i> â€Oxide Amphiphiles for Membrane Protein Manipulation: Importance of Nonâ€hydrocarbon Groups in the Hydrophobic Portion. Chemistry - an Asian Journal, 2014, 9, 110-116.	1.7	8
545	Structure-based simulations reveal concerted dynamics of GPCR activation. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2538-2551.	1.5	6
546	In Vivo Phenotypic Screening for Treating Chronic Neuropathic Pain: Modification of <i>C</i> 2-Arylethynyl Group of Conformationally Constrained A ₃ Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2014, 57, 9901-9914.	2.9	48
547	A conformationâ€equilibrium model captures ligand–ligand interactions and ligandâ€biased signalling by <scp>G</scp> â€protein coupled receptors. FEBS Journal, 2014, 281, 4659-4671.	2.2	7

#	Article	IF	CITATIONS
548	Mapping the intramolecular signal transduction of Gâ€protein coupled receptors. Proteins: Structure, Function and Bioinformatics, 2014, 82, 727-743.	1.5	64
549	Evolution of Visual and Non-visual Pigments. , 2014, , .		33
550	Global fold of human cannabinoid type 2 receptor probed by solidâ€state ¹³ Câ€; ¹⁵ Nâ€MAS NMR and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2014, 82, 452-465.	1.5	19
551	Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: Molecular modeling and experimental validation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5363-72.	3.3	70
552	Structure-Based Drug Design for G Protein-Coupled Receptors. Progress in Medicinal Chemistry, 2014, 53, 1-63.	4.1	62
553	Gating function of isoleucineâ€116 in <scp>TM</scp> â€3 (position <scp>III</scp> :16/3.40) for the activity state of the <scp>CC</scp> â€chemokine receptor 5 (<scp>CCR</scp> 5). British Journal of Pharmacology, 2014, 171, 1566-1579.	2.7	10
554	Renaturing Membrane Proteins in the Lipid Cubic Phase, a Nanoporous Membrane Mimetic. Scientific Reports, 2014, 4, 5806.	1.6	22
555	Beyond Small-Molecule SAR. Advances in Pharmacology, 2014, 69, 267-300.	1.2	41
556	Targeting leukotriene B ₄ in inflammation. Expert Opinion on Therapeutic Targets, 2014, 18, 79-93.	1.5	34
557	Lipidic Cubic Phase Technologies for Structural Studies of Membrane Proteins. , 2014, , 289-314.		5
558	Structure and Dynamics of G-Protein Coupled Receptors. Advances in Experimental Medicine and Biology, 2014, 796, 37-54.	0.8	23
559	Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC Biophysics, 2014, 7, 5.	4.4	21
560	CANDLES, an assay for monitoring GPCR induced cAMP generation in cell cultures. Cell Communication and Signaling, 2014, 12, 70.	2.7	17
561	Minireview: More Than Just a Hammer: Ligand "Bias―and Pharmaceutical Discovery. Molecular Endocrinology, 2014, 28, 281-294.	3.7	108
562	â€~Hit and run' serial femtosecond crystallography of a membrane kinase in the lipid cubic phase. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130621.	1.8	25
563	The Application of Signaling Bias to New Therapeutic Drug Therapy for Seven Transmembrane (G) Tj ETQq1 1 0.7	'84314 rgl	3T 1 Overlock
564	Promises of Biased Signaling in the Development of Improved Therapeutics. , 2014, , 251-292.		0
565	From Three-Dimensional GPCR Structure to Rational Ligand Discovery. Advances in Experimental Medicine and Biology, 2014, 796, 129-157.	0.8	30

#	Article	IF	CITATIONS
566	The Organization of the Sphingosine 1-Phosphate Signaling System. Current Topics in Microbiology and Immunology, 2014, 378, 1-21.	0.7	19
567	Structural Biology of the S1P1 Receptor. Current Topics in Microbiology and Immunology, 2014, 378, 23-53.	0.7	6
568	Diagnostic and therapeutic aspects of β1-adrenergic receptor autoantibodies in human heart disease. Autoimmunity Reviews, 2014, 13, 954-962.	2.5	43
569	Chronic stress enhances progression of periodontitis via α1-adrenergic signaling: a potential target for periodontal disease therapy. Experimental and Molecular Medicine, 2014, 46, e118-e118.	3.2	21
570	Antibody Fragments Defining Biologically Relevant Conformations of Target Proteins. Antibodies, 2014, 3, 289-302.	1.2	2
571	Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E655-62.	3.3	197
572	Structural-Functional Analysis of the Third Transmembrane Domain of the Corticotropin-releasing Factor Type 1 Receptor. Journal of Biological Chemistry, 2014, 289, 18966-18977.	1.6	16
573	Membrane channels as integrators of G-protein-mediated signaling. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 521-531.	1.4	26
574	Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 15-33.	1.4	95
575	Gαq signalling: The new and the old. Cellular Signalling, 2014, 26, 833-848.	1.7	81
576	Estimation of ligand affinity constants for receptor states in functional studies involving the allosteric modulation of G protein-coupled receptors: Implications for ligand bias. Journal of Pharmacological and Toxicological Methods, 2014, 69, 253-279.	0.3	13
577	Solubilization and reconstitution of the mu-opioid receptor expressed in human neuronal SH-SY5Y and CHO cells. Peptides, 2014, 55, 79-84.	1.2	6
578	Comparative molecular field analysis of fenoterol derivatives interacting with an agonist-stabilized form of the β2-adrenergic receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 234-246.	1.4	18
579	Biophysical Highlights from 54 Years of Macromolecular Crystallography. Biophysical Journal, 2014, 106, 510-525.	0.2	10
580	Investigation of a thiazolidinone derivative as an allosteric modulator of follicle stimulating hormone receptor: Evidence for its ability to support follicular development and ovulation. Biochemical Pharmacology, 2014, 89, 266-275.	2.0	31
581	Structureâ€Based and Fragmentâ€Based GPCR Drug Discovery. ChemMedChem, 2014, 9, 256-275.	1.6	66
582	Structure of <scp>C</scp> lass <scp>B GPCRs</scp> : new horizons for drug discovery. British Journal of Pharmacology, 2014, 171, 3132-3145.	2.7	96
583	Femtosecond Crystallography with Ultrabright Electrons and X-rays: Capturing Chemistry in Action. Science, 2014, 343, 1108-1116.	6.0	260

#	Article	IF	CITATIONS
584	Developments in X-ray Crystallographic Structure Determination of Biological Macromolecules. Science, 2014, 343, 1102-1108.	6.0	119
585	G-protein-coupled receptor participates in 20-hydroxyecdysone signaling on the plasma membrane. Cell Communication and Signaling, 2014, 12, 9.	2.7	35
586	A yeast screening method to decipher the interaction between the adenosine A2B receptor and the C-terminus of different G protein I±-subunits. Purinergic Signalling, 2014, 10, 441-453.	1.1	16
587	Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated <scp>GDP</scp> release rate. FEBS Journal, 2014, 281, 2254-2265.	2.2	12
588	Molecular Determinants of Allosteric Modulation at the M1 Muscarinic Acetylcholine Receptor. Journal of Biological Chemistry, 2014, 289, 6067-6079.	1.6	51
589	Structural features of the C-protein/GPCR interactions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 16-33.	1.1	100
590	Double Suppression of the GÎ \pm Protein Activity by RGS Proteins. Molecular Cell, 2014, 53, 663-671.	4.5	40
591	Bias in chemokine receptor signalling. Trends in Immunology, 2014, 35, 243-252.	2.9	75
592	Muscarinic acetylcholine receptor X-ray structures: potential implications for drug development. Current Opinion in Pharmacology, 2014, 16, 24-30.	1.7	38
593	Single-Molecule Observation of the Ligand-Induced Population Shift of Rhodopsin, A G-Protein-Coupled Receptor. Biophysical Journal, 2014, 106, 915-924.	0.2	16
594	Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites. Biophysical Journal, 2014, 106, 1290-1300.	0.2	142
595	β-Adrenoceptors as Molecular Targets in the Treatment of Hypertension. Canadian Journal of Cardiology, 2014, 30, S3-S8.	0.8	15
596	Free energy landscape of G-protein coupled receptors, explored by accelerated molecular dynamics. Physical Chemistry Chemical Physics, 2014, 16, 6398.	1.3	74
597	A general protocol for the generation of Nanobodies for structural biology. Nature Protocols, 2014, 9, 674-693.	5.5	571
598	A brief history of macromolecular crystallography, illustrated by a family tree and its <scp>N</scp> obel fruits. FEBS Journal, 2014, 281, 3985-4009.	2.2	83
599	A Transient Interaction between the Phosphate Binding Loop and Switch I Contributes to the Allosteric Network between Receptor and Nucleotide in Gαi1. Journal of Biological Chemistry, 2014, 289, 11331-11341.	1.6	7
600	GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics. Trends in Pharmacological Sciences, 2014, 35, 247-255.	4.0	79
601	Allosteric sodium in class A GPCR signaling. Trends in Biochemical Sciences, 2014, 39, 233-244.	3.7	417

#	Article	IF	CITATIONS
602	Toward activated homology models of the human M1 muscarinic acetylcholine receptor. Journal of Molecular Graphics and Modelling, 2014, 49, 91-98.	1.3	13
603	cerebral beta-adrenoceptors. Nuclear Medicine and Biology, 2014, 41, 203-209.	0.3	3
604	Modulation of the cAMP Response by G\$\$alpha _i\$\$ and G\$\$eta gamma \$\$: A Computational Study of G Protein Signaling in Immune Cells. Bulletin of Mathematical Biology, 2014, 76, 1352-1375.	0.9	6
606	Snapshot of Antidepressants at Work: The Structure of Neurotransmitter Transporter Proteins. Angewandte Chemie - International Edition, 2014, 53, 5008-5009.	7.2	6
607	Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, 2014, , .	0.9	12
608	Arrestin Interactions with G Protein-Coupled Receptors. Handbook of Experimental Pharmacology, 2014, 219, 15-56.	0.9	62
610	Activators of G Protein Signaling Exhibit Broad Functionality and Define a Distinct Core Signaling Triad. Molecular Pharmacology, 2014, 85, 388-396.	1.0	54
611	Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. Journal of Biomolecular Screening, 2014, 19, 1000-1013.	2.6	11
612	G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews, 2014, 66, 413-434.	7.1	497
613	Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall. Pharmacological Reviews, 2014, 66, 513-569.	7.1	95
614	Modeling G protein-coupled receptors in complex with biased agonists. Trends in Pharmacological Sciences, 2014, 35, 277-283.	4.0	7
615	Membrane protein structure determination — The next generation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 78-87.	1.4	190
616	Structural insights into G protein-coupled receptor kinase function. Current Opinion in Cell Biology, 2014, 27, 25-31.	2.6	51
617	Sphingosine-1-Phosphate Signaling in Immunology and Infectious Diseases. Current Topics in Microbiology and Immunology, 2014, , .	0.7	2
618	Structural biology of glycoprotein hormones and their receptors: Insights to signaling. Molecular and Cellular Endocrinology, 2014, 382, 424-451.	1.6	161
619	Biased signalling in follicle stimulating hormone action. Molecular and Cellular Endocrinology, 2014, 382, 452-459.	1.6	54
620	Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nature Chemistry, 2014, 6, 15-21.	6.6	388
621	SuperBiHelix method for predicting the pleiotropic ensemble of G-protein–coupled receptor conformations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E72-8.	3.3	38

#	Article	IF	CITATIONS
622	Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chemical Reviews, 2014, 114, 126-163.	23.0	897
623	G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, 2014, , .	0.8	7
624	Amino acid conservation and interactions in rhodopsin: Probing receptor activation by NMR spectroscopy. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 683-693.	0.5	16
625	Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer. Computational Biology and Chemistry, 2014, 48, 29-39.	1.1	28
626	MT ₁ and MT ₂ Melatonin Receptors: Ligands, Models, Oligomers, and Therapeutic Potential. Journal of Medicinal Chemistry, 2014, 57, 3161-3185.	2.9	136
627	Collective Variable Approaches for Single Molecule Flexible Fitting and Enhanced Sampling. Chemical Reviews, 2014, 114, 3353-3365.	23.0	25
628	Biasing GPCR Signaling from Inside. Science Signaling, 2014, 7, pe3.	1.6	39
629	LIBSA – A Method for the Determination of Ligand-Binding Preference to Allosteric Sites on Receptor Ensembles. Journal of Chemical Information and Modeling, 2014, 54, 530-538.	2.5	14
630	Insights into the structure of class B GPCRs. Trends in Pharmacological Sciences, 2014, 35, 12-22.	4.0	218
631	Functional dynamics of cell surface membrane proteins. Journal of Magnetic Resonance, 2014, 241, 86-96.	1.2	11
632	Relevance of rhodopsin studies for GPCR activation. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 674-682.	0.5	53
633	Functional Assay for T4 Lysozyme-Engineered G Protein-Coupled Receptors with an Ion Channel Reporter. Structure, 2014, 22, 149-155.	1.6	9
634	Diversity and Functional Properties of Bistable Photopigments. , 2014, , 219-239.		6
635	A Glimpse of Structural Biology through X-Ray Crystallography. Cell, 2014, 159, 995-1014.	13.5	227
636	The ligand binding ability of dopamine D1 receptors synthesized using a wheat germ cell-free protein synthesis system with liposomes. European Journal of Pharmacology, 2014, 745, 117-122.	1.7	18
637	Emerging structural insights into biased GPCR signaling. Trends in Biochemical Sciences, 2014, 39, 594-602.	3.7	97
638	Translation of structureâ€activity relationships from cyclic mixed efficacy opioid peptides to linear analogues. Biopolymers, 2014, 102, 107-114.	1.2	2
639	Elastic network normal mode dynamics reveal the GPCR activation mechanism. Proteins: Structure, Function and Bioinformatics, 2014, 82, 579-586.	1.5	18

#	Article	IF	CITATIONS
640	Signal Transduction: From the Atomic Age to the Post-Genomic Era. Cold Spring Harbor Perspectives in Biology, 2014, 6, a022913-a022913.	2.3	21
641	The Specific Monomer/Dimer Equilibrium of the Corticotropin-releasing Factor Receptor Type 1 Is Established in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2014, 289, 24250-24262.	1.6	35
642	Mechanistic Insights into the Allosteric Modulation of Opioid Receptors by Sodium Ions. Biochemistry, 2014, 53, 5140-5149.	1.2	85
643	Flexible membrane proteins: functional dynamics captured by mass spectrometry. Current Opinion in Structural Biology, 2014, 28, 122-130.	2.6	18
644	Constitutive Activities and Inverse Agonism in Dopamine Receptors. Advances in Pharmacology, 2014, 70, 175-214.	1.2	35
645	Three intragenic suppressors of a GTPase-deficient allele of GNAS associated with McCune–Albright syndrome. Journal of Molecular Endocrinology, 2014, 52, 321-331.	1.1	1
646	Ligand induced change of β ₂ adrenergic receptor from active to inactive conformation and its implication for the closed/open state of the water channel: insight from molecular dynamics simulation, free energy calculation and Markov state model analysis. Physical Chemistry Chemical Physics, 2014, 16, 15874.	1.3	35
647	Heavy atom-bearing tripod amphiphiles for the membrane protein study. New Journal of Chemistry, 2014, 38, 2354.	1.4	3
648	Advances in G Protein-Coupled Receptor Allostery: From Function to Structure. Molecular Pharmacology, 2014, 86, 463-478.	1.0	192
649	New ganglio-tripod amphiphiles (TPAs) for membrane protein solubilization and stabilization: implications for detergent structure–property relationships. Organic and Biomolecular Chemistry, 2014, 12, 8480-8487.	1.5	12
650	High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875. Nature, 2014, 513, 124-127.	13.7	298
651	Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nature Communications, 2014, 5, 4801.	5.8	149
652	Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nature Communications, 2014, 5, 4355.	5.8	208
653	Polymorphic Variants of Adrenoceptors: Pharmacology, Physiology, and Role in Disease. Pharmacological Reviews, 2014, 66, 598-637.	7.1	98
654	Dynamics of bovine opsin bound to G-protein fragments. Journal of Structural Biology, 2014, 188, 79-86.	1.3	4
655	Structured and disordered facets of the GPCR fold. Current Opinion in Structural Biology, 2014, 27, 129-137.	2.6	68
656	Exploration of the antagonist CP-376395 escape pathway for the corticotropin-releasing factor receptor 1 by random acceleration molecular dynamics simulations. Molecular BioSystems, 2014, 10, 1958.	2.9	23
657	A Functional Selectivity Mechanism at the Serotonin-2A GPCR Involves Ligand-Dependent Conformations of Intracellular Loop 2. Journal of the American Chemical Society, 2014, 136, 16044-16054.	6.6	72

# 658	ARTICLE Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation. Chemical Communications, 2014, 50, 12300-12303.	IF 2.2	Citations
659	Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Current Opinion in Structural Biology, 2014, 27, 138-148.	2.6	10
660	Explicit Spatiotemporal Simulation of Receptor-G Protein Coupling in Rod Cell Disk Membranes. Biophysical Journal, 2014, 107, 1042-1053.	0.2	38
662	Label-Free Monitoring of <i>μ</i> -Opioid Receptor–Mediated Signaling. Molecular Pharmacology, 2014, 86, 138-149.	1.0	10
663	Position of Transmembrane Helix 6 Determines Receptor G Protein Coupling Specificity. Journal of the American Chemical Society, 2014, 136, 11244-11247.	6.6	105
664	Overexpression of membrane proteins from higher eukaryotes in yeasts. Applied Microbiology and Biotechnology, 2014, 98, 7671-7698.	1.7	27
665	The evolution of vision. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 1-40.	5.9	101
666	Differences in Allosteric Communication Pipelines in the Inactive and Active States of a GPCR. Biophysical Journal, 2014, 107, 422-434.	0.2	103
667	Assembly of an Activated Rhodopsin–Transducin Complex in Nanoscale Lipid Bilayers. Biochemistry, 2014, 53, 127-134.	1.2	14
668	Probing the N-Terminal β-Sheet Conversion in the Crystal Structure of the Human Prion Protein Bound to a Nanobody. Journal of the American Chemical Society, 2014, 136, 937-944.	6.6	97
669	What is pharmacological â€~affinity'? Relevance to biased agonism and antagonism. Trends in Pharmacological Sciences, 2014, 35, 434-441.	4.0	58
670	Mapping of Allosteric Druggable Sites in Activationâ€Associated Conformers of the M2 Muscarinic Receptor. Chemical Biology and Drug Design, 2014, 83, 237-246.	1.5	43
671	Constitutive Activity in Gonadotropin Receptors. Advances in Pharmacology, 2014, 70, 37-80.	1.2	29
672	Constitutive Activities in the Thyrotropin Receptor. Advances in Pharmacology, 2014, 70, 81-119.	1.2	25
673	Recent advances in magic angle spinning solid state NMR of membrane proteins. Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 82, 1-26.	3.9	74
674	Strategies for Improved Modeling of GPCR-Drug Complexes: Blind Predictions of Serotonin Receptors Bound to Ergotamine. Journal of Chemical Information and Modeling, 2014, 54, 2004-2021.	2.5	21
675	Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature, 2014, 512, 218-222.	13.7	433
676	Soya bean G_{\pm}^{1} proteins with distinct biochemical properties exhibit differential ability to complement <i>Saccharomyces cerevisiae gpa1</i> mutant, Biochemical Journal, 2014, 461, 75-85.	1.7	15

#	Article	IF	CITATIONS
677	Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure, 2014, 22, 1120-1139.	1.6	149
678	The Receptor Concept in 3D: From Hypothesis and Metaphor to GPCR–Ligand Structures. Neurochemical Research, 2014, 39, 1850-1861.	1.6	6
679	Biased Agonism at G Proteinâ€Coupled Receptors: The Promise and the Challenges—A Medicinal Chemistry Perspective. Medicinal Research Reviews, 2014, 34, 1286-1330.	5.0	92
680	Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry. ACS Chemical Biology, 2014, 9, 2563-2571.	1.6	19
681	The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein and Cell, 2014, 5, 658-672.	4.8	87
682	Boronic Acids as Probes for Investigation of Allosteric Modulation of the Chemokine Receptor CXCR3. ACS Chemical Biology, 2014, 9, 2664-2677.	1.6	23
683	Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nature Communications, 2014, 5, 4733.	5.8	197
684	Computational Analysis of Negative and Positive Allosteric Modulator Binding and Function in Metabotropic Glutamate Receptor 5 (In)Activation. Journal of Chemical Information and Modeling, 2014, 54, 1476-1487.	2.5	28
685	Cryoprotection of lipid membranes for high-resolution solid-state NMR studies of membrane peptides and proteins at low temperature. Journal of Biomolecular NMR, 2014, 59, 263-277.	1.6	22
686	One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3036-3051.	1.4	16
687	Neural map formation in the mouse olfactory system. Cellular and Molecular Life Sciences, 2014, 71, 3049-3057.	2.4	58
688	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	7.1	189
689	Biased signaling through Gâ€proteinâ€coupled PROKR2 receptors harboring missense mutations. FASEB Journal, 2014, 28, 3734-3744.	0.2	37
690	Mathematical analysis of the sodium sensitivity of the human histamine H3 receptor. In Silico Pharmacology, 2014, 2, 1.	1.8	16
691	Structural approaches to understanding retinal proteins needed for vision. Current Opinion in Cell Biology, 2014, 27, 32-43.	2.6	12
692	Structure and function of LGR5: An enigmatic G-protein coupled receptor marking stem cells. Protein Science, 2014, 23, 551-565.	3.1	27
693	Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers, 2014, 102, 223-243.	1.2	8
694	Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 2014, 511, 557-562.	13.7	378

#	Article	IF	CITATIONS
695	Heterotrimeric G Protein–Coupled Signaling in Plants. Annual Review of Plant Biology, 2014, 65, 365-384.	8.6	173
696	Investigation of novel ropinirole analogues: synthesis, pharmacological evaluation and computational analysis of dopamine D2 receptor functionalized congeners and homobivalent ligands. MedChemComm, 2014, 5, 891-898.	3.5	23
697	Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Science China Life Sciences, 2014, 57, 645-646.	2.3	7
698	Why is dimerization essential for class-C GPCR function? New insights from mGluR1 crystal structure analysis. Protein and Cell, 2014, 5, 492-495.	4.8	14
699	Constitutively Active Chemokine CXC Receptors. Advances in Pharmacology, 2014, 70, 265-301.	1.2	24
700	Evidence for Follicle-stimulating Hormone Receptor as a Functional Trimer. Journal of Biological Chemistry, 2014, 289, 14273-14282.	1.6	98
701	Serial crystallography on <i>in vivo</i> grown microcrystals using synchrotron radiation. IUCrJ, 2014, 1, 87-94.	1.0	204
702	Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. Chemistry and Biology, 2014, 21, 1224-1237.	6.2	38
703	Discovery and Characterization of a G Protein–Biased Agonist That Inhibits <i>β</i> -Arrestin Recruitment to the D2 Dopamine Receptor. Molecular Pharmacology, 2014, 86, 96-105.	1.0	74
704	Modeling, Molecular Dynamics Simulation, and Mutation Validation for Structure of Cannabinoid Receptor 2 Based on Known Crystal Structures of GPCRs. Journal of Chemical Information and Modeling, 2014, 54, 2483-2499.	2.5	84
705	Regulation of <i>β</i> ₂ -Adrenergic Receptor Function by Conformationally Selective Single-Domain Intrabodies. Molecular Pharmacology, 2014, 85, 472-481.	1.0	121
706	Strike a pose: Cαq complexes at the membrane. Trends in Pharmacological Sciences, 2014, 35, 23-30.	4.0	31
707	Dynamic Behavior of the Active and Inactive States of the Adenosine A _{2A} Receptor. Journal of Physical Chemistry B, 2014, 118, 3355-3365.	1.2	23
708	The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Current Opinion in Cell Biology, 2014, 27, 136-143.	2.6	204
709	Tocopherol inhibits the relaxing effect of terbutaline in the respiratory and reproductive tracts of the rat: The role of the oxidative stress index. Life Sciences, 2014, 105, 48-55.	2.0	8
710	Cell-free synthesis of membrane proteins: Tailored cell models out of microsomes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1382-1388.	1.4	43
711	Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 278-286.	1.4	29
712	Employing novel animal models in the design of clinically efficacious GPCR ligands. Current Opinion in Cell Biology, 2014, 27, 117-125.	2.6	7

#	ARTICLE	IF	CITATIONS
713	Unifying Family A GPCR Theories of Activation. , 2014, 143, 51-60.		169
714	Recent developments in biased agonism. Current Opinion in Cell Biology, 2014, 27, 18-24.	2.6	247
715	Application of Amphipols for Structure–Functional Analysis of TRP Channels. Journal of Membrane Biology, 2014, 247, 843-851.	1.0	26
716	Protein and Lipid Interactions Driving Molecular Mechanisms of <i>in meso</i> Crystallization. Journal of the American Chemical Society, 2014, 136, 3271-3284.	6.6	17
717	Improved Glucoseâ€Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization and Stabilization. Chemistry - an Asian Journal, 2014, 9, 632-638.	1.7	32
718	Crystallizing Membrane Proteins in the Lipidic Mesophase. Experience with Human Prostaglandin E2 Synthase 1 and an Evolving Strategy. Crystal Growth and Design, 2014, 14, 2034-2047.	1.4	61
719	<i>TACR3</i> mutations disrupt NK3R function through distinct mechanisms in GnRHâ€deficient patients. FASEB Journal, 2014, 28, 1924-1937.	0.2	10
720	Monitoring protein conformational changes and dynamics using stable-isotope labeling and mass spectrometry. Nature Protocols, 2014, 9, 1301-1319.	5.5	49
721	Agonist-bound structure of the human P2Y12 receptor. Nature, 2014, 509, 119-122.	13.7	279
722	Interactive Features of Proteins Composing Eukaryotic Circadian Clocks. Annual Review of Biochemistry, 2014, 83, 191-219.	5.0	121
723	New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. Biochemical Pharmacology, 2014, 90, 307-319.	2.0	16
724	A stress response pathway in mice upregulates somatostatin level and transcription in pancreatic delta cells through Gs and β-arrestin 1. Diabetologia, 2014, 57, 1899-1910.	2.9	39
725	Muscarinic acetylcholine receptors: novel opportunities for drug development. Nature Reviews Drug Discovery, 2014, 13, 549-560.	21.5	337
726	Preferential Binding of an Odor Within Olfactory Receptors: A Precursor to Receptor Activation. Chemical Senses, 2014, 39, 107-123.	1.1	16
727	Self-assembling peptides form nanodiscs that stabilize membrane proteins. Soft Matter, 2014, 10, 738-752.	1.2	65
728	Synthesis and evaluation of N6-substituted apioadenosines as potential adenosine A3 receptor modulators. Bioorganic and Medicinal Chemistry, 2014, 22, 4257-4268.	1.4	5
729	Asymmetric perturbations of signalling oligomers. Progress in Biophysics and Molecular Biology, 2014, 114, 153-169.	1.4	13
730	Sequence-structure based phylogeny of GPCR Class A Rhodopsin receptors. Molecular Phylogenetics and Evolution, 2014, 74, 66-96.	1.2	55

			2
#	ARTICLE	IF	CITATIONS
731	Identifying subset errors in multiple sequence alignments. Journal of Biomolecular Structure and Dynamics, 2014, 32, 364-371.	2.0	4
732	Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3-14.	1.4	29
734	The lipid cubic phase orin mesomethod for crystallizing proteins. Bushings for better manual dispensing. Journal of Applied Crystallography, 2014, 47, 1804-1806.	1.9	3
735	Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood, 2014, 124, 3450-3458.	0.6	107
736	Analysis of Agonism and Inverse Agonism in Signaling Pathways that Exhibit Constitutive Activity. , 2014, , 459-517.		0
740	Functional Dynamics of Deuterated β ₂ â€Adrenergic Receptor in Lipid Bilayers Revealed by NMR Spectroscopy. Angewandte Chemie - International Edition, 2014, 53, 13376-13379.	7.2	147
741	Stealth carriers for low-resolution structure determination of membrane proteins in solution. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 317-328.	2.5	63
742	Three-Dimensional Structure of the Smoothened Receptor: Implications for Drug Discovery. Topics in Medicinal Chemistry, 2014, , 127-146.	0.4	4
743	Functional importance of two conserved residues in intracellular loop 1 and transmembrane region 2 of Family A GPCRs: Insights from ligand binding and signal transduction responses of D1 and D5 dopaminergic receptor mutants. Cellular Signalling, 2015, 27, 2014-2025.	1.7	9
744	Membrane protein structures without crystals, by single particle electron cryomicroscopy. Current Opinion in Structural Biology, 2015, 33, 103-114.	2.6	49
746	Identifying ligandâ€specific signalling within biased responses: focus on δ opioid receptor ligands. British Journal of Pharmacology, 2015, 172, 435-448.	2.7	33
747	- Pharmacophore Modeling and Pharmacophore-Based Virtual Screening. , 2015, , 140-171.		1
748	Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Scientific Reports, 2015, 5, 13180.	1.6	40
749	Referenced Single-Molecule Measurements Differentiate between GPCR Oligomerization States. Biophysical Journal, 2015, 109, 1798-1806.	0.2	29
751	Thermodynamics of GPCR activation. Biophysics Reports, 2015, 1, 115-119.	0.2	4
752	Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles. Scientific Reports, 2015, 5, 14948.	1.6	26
753	A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu. Scientific Reports, 2015, 5, 7677.	1.6	12
754	Unraveling the molecular architecture of a G protein-coupled receptor/β-arrestin/Erk module complex. Scientific Reports, 2015, 5, 10760.	1.6	50

#	Article	IF	CITATIONS
755	Structures for G-Protein-Coupled Receptor Tetramers in Complex with G Proteins. Trends in Biochemical Sciences, 2015, 40, 548-551.	3.7	60
756	An intact helical domain is required for Gα14 to stimulate phospholipase Cβ. BMC Structural Biology, 2015, 15, 18.	2.3	3
757	Rational Modification of the Biological Profile of GPCR Ligands through Combination with Other Biologically Active Moieties. Archiv Der Pharmazie, 2015, 348, 531-540.	2.1	7
758	Micelleâ€Enhanced Bioorthogonal Labeling of Genetically Encoded Azido Groups on the Lipidâ€Embedded Surface of a GPCR. ChemBioChem, 2015, 16, 1314-1322.	1.3	18
760	Novel Xylene‣inked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation. Chemistry - A European Journal, 2015, 21, 10008-10013.	1.7	17
761	Gas Phase Spectroscopy of Catecholamines and Relevant Molecules by Laser Desorption Supersonic Jet Technique. Molecular Science, 2015, 9, A0075.	0.2	0
762	Deoxycholateâ€Based Glycosides (DCGs) for Membrane Protein Stabilisation. ChemBioChem, 2015, 16, 1454-1459.	1.3	5
763	β2-Adrenoreceptor-Mediated Proliferation Inhibition of Embryonic Pluripotent Stem Cells. Journal of Cellular Physiology, 2015, 230, 2640-2646.	2.0	5
764	Arrestinâ€Bound Rhodopsin: A Molecular Structure and its Impact on the Development of Biased GPCR Ligands. Angewandte Chemie - International Edition, 2015, 54, 13166-13168.	7.2	2
765	Investigation of the conformational dynamics of the apo A _{2A} adenosine receptor. Protein Science, 2015, 24, 1004-1012.	3.1	11
766	Structural characterization of triple transmembrane domain containing fragments of a yeast G proteinâ€coupled receptor in an organic : aqueous environment by solutionâ€state NMR spectroscopy. Journal of Peptide Science, 2015, 21, 212-222.	0.8	3
767	Crucial role of the orexinâ€B Câ€terminus in the induction of OX ₁ receptorâ€mediated apoptosis: analysis by alanine scanning, molecular modelling and siteâ€directed mutagenesis. British Journal of Pharmacology, 2015, 172, 5211-5223.	2.7	19
768	<scp>G</scp> addum <scp>M</scp> emorial <scp>L</scp> ecture 2014: receptors as an evolving concept: from switches to biased microprocessors. British Journal of Pharmacology, 2015, 172, 4238-4253.	2.7	38
769	Structural Studies of G Protein-Coupled Receptors. Molecules and Cells, 2015, 38, 836-842.	1.0	87
770	Ion-pumping microbial rhodopsins. Frontiers in Molecular Biosciences, 2015, 2, 52.	1.6	98
771	Sequence, Structure and Ligand Binding Evolution of Rhodopsin-Like G Protein-Coupled Receptors: A Crystal Structure-Based Phylogenetic Analysis. PLoS ONE, 2015, 10, e0123533.	1.1	44
772	Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor. PLoS ONE, 2015, 10, e0135998.	1.1	20
773	An Approach to Heterologous Expression of Membrane Proteins. The Case of Bacteriorhodopsin. PLoS ONE, 2015, 10, e0128390.	1.1	22

#	Article	IF	CITATIONS
774	Receptor, Ligand and Transducer Contributions to Dopamine D2 Receptor Functional Selectivity. PLoS ONE, 2015, 10, e0141637.	1.1	18
775	In Vitro Mutational Analysis of the β2 Adrenergic Receptor, an In Vivo Surrogate Odorant Receptor. PLoS ONE, 2015, 10, e0141696.	1.1	10
776	Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor. PLoS ONE, 2015, 10, e0142250.	1.1	12
777	Differential Regulation of 6- and 7-Transmembrane Helix Variants of μ-Opioid Receptor in Response to Morphine Stimulation. PLoS ONE, 2015, 10, e0142826.	1.1	14
778	Role of Structural Dynamics at the Receptor G Protein Interface for Signal Transduction. PLoS ONE, 2015, 10, e0143399.	1.1	12
779	Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Frontiers in Pharmacology, 2015, 6, 264.	1.6	61
780	Llama immunization with full-length VAR2CSA generates cross-reactive and inhibitory single-domain antibodies against the DBL1X domain. Scientific Reports, 2014, 4, 7373.	1.6	15
781	Comprehensive analysis of heterotrimeric G-protein complex diversity and their interactions with GPCRs in solution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1181-90.	3.3	41
782	Elucidation of G-protein and β-arrestin functional selectivity at the dopamine D2 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7097-7102.	3.3	75
783	Molecular recognition of ketamine by a subset of olfactory G protein–coupled receptors. Science Signaling, 2015, 8, ra33.	1.6	14
784	Nanobodies and recombinant binders in cell biology. Journal of Cell Biology, 2015, 209, 633-644.	2.3	195
786	Pasteurella multocida toxin. , 2015, , 463-498.		3
787	Functional elements of the gastric inhibitory polypeptide receptor: Comparison between secretin- and rhodopsin-like G protein-coupled receptors. Biochemical Pharmacology, 2015, 96, 237-246.	2.0	17
788	Integration of Fourier Transform Infrared Spectroscopy, Fluorescence Spectroscopy, Steady-state Kinetics and Molecular Dynamics Simulations of Gαi1 Distinguishes between the GTP Hydrolysis and GDP Release Mechanism. Journal of Biological Chemistry, 2015, 290, 17085-17095.	1.6	14
789	Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. European Journal of Pharmacology, 2015, 763, 196-205.	1.7	57
790	Covalent Molecular Probes for Class A G Protein-Coupled Receptors: Advances and Applications. ACS Chemical Biology, 2015, 10, 1376-1386.	1.6	53
791	A comprehensive review of the lipid cubic phase or <i>in meso</i> method for crystallizing membrane and soluble proteins and complexes. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 3-18.	0.4	217
792	A positive genotype–phenotype correlation in a large cohort of patients with Pseudohypoparathyroidism Type Ia and Pseudoâ€pseudohypoparathyroidism and 33 newly identified mutations in the <i><scp>GNAS</scp></i> gene. Molecular Genetics & Genomic Medicine, 2015, 3, 111-120.	0.6	46

#	Article	IF	Citations
793	Identification of a Conformational Equilibrium That Determines the Efficacy and Functional Selectivity of the μâ€Opioid Receptor. Angewandte Chemie - International Edition, 2015, 54, 15771-15776.	7.2	118
794	Transient conformers of LacY are trapped by nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13839-13844.	3.3	22
795	The Molecular Basis of Oligomeric Organization of the Human M ₃ Muscarinic Acetylcholine Receptor. Molecular Pharmacology, 2015, 87, 936-953.	1.0	20
796	Selectivity in the Use of G _{i/o} Proteins Is Determined by the DRF Motif in CXCR6 and Is Cell-Type Specific. Molecular Pharmacology, 2015, 88, 894-910.	1.0	9
798	Protein Targeting Compounds. , 2015, , .		1
799	Accessible glyco-tripod amphiphiles for membrane protein analysis. Analytical Methods, 2015, 7, 5808-5813.	1.3	2
800	Flaws in foldamers: conformational uniformity and signal decay in achiral helical peptide oligomers. Chemical Science, 2015, 6, 2313-2322.	3.7	36
801	<i>MeshAndCollect</i> : an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2328-2343.	2.5	108
802	Differences in the Antinociceptive Effects and Binding Properties of Propranolol and Bupranolol Enantiomers. Journal of Pain, 2015, 16, 1321-1333.	0.7	27
803	Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochemical Journal, 2015, 470, 155-167.	1.7	17
804	Novel dimensions of D3 receptor function: Focus on heterodimerisation, transactivation and allosteric modulation. European Neuropsychopharmacology, 2015, 25, 1470-1479.	0.3	34
805	Advances in receptor conformation research: the quest for functionally selective conformations focusing on the <scp>β</scp> ₂ â€adrenoceptor. British Journal of Pharmacology, 2015, 172, 5477-5488.	2.7	9
806	α ₂ -Adrenoceptor Antagonists: Synthesis, Pharmacological Evaluation, and Molecular Modeling Investigation of Pyridinoguanidine, Pyridino-2-aminoimidazoline and Their Derivatives. Journal of Medicinal Chemistry, 2015, 58, 963-977.	2.9	26
807	Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 2015, 36, 22-31.	4.0	387
808	GPCR crystal structures: Medicinal chemistry in the pocket. Bioorganic and Medicinal Chemistry, 2015, 23, 3880-3906.	1.4	105
809	A kinetic model of GPCRs: analysis of G protein activity, occupancy, coupling and receptor-state affinity constants. Journal of Receptor and Signal Transduction Research, 2015, 35, 269-283.	1.3	8
810	Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves. Small, 2015, 11, 2733-2737.	5.2	49
811	Conformational Selection and Equilibrium Governs the Ability of Retinals to Bind Opsin. Journal of Biological Chemistry, 2015, 290, 4304-4318.	1.6	26

	CITATION	Report	
#	ARTICLE Modeling and protein engineering studies of active and inactive states of human dopamine D2 receptor	IF	CITATIONS
812	(D2R) and investigation of drug/receptor interactions. Molecular Diversity, 2015, 19, 321-332.	2.1	29
813	Activation of Corticotropin-Releasing Factor 1 Receptor: Insights from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2015, 119, 2806-2817.	1.2	25
814	Bound in flight. Nature Chemistry, 2015, 7, 189-190.	6.6	1
815	Molecular Docking Screening Using Agonist-Bound GPCR Structures: Probing the A _{2A} Adenosine Receptor. Journal of Chemical Information and Modeling, 2015, 55, 550-563.	2.5	65
816	Proton transfer-mediated GPCR activation. Protein and Cell, 2015, 6, 12-17.	4.8	28
817	The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1404-1409.	3.3	23
818	Identification of Destabilizing and Stabilizing Mutations of Ste2p, a G Protein-Coupled Receptor in <i>Saccharomyces cerevisiae</i> . Biochemistry, 2015, 54, 1787-1806.	1.2	7
819	Predicted Structures for Kappa Opioid G-Protein Coupled Receptor Bound to Selective Agonists. Journal of Chemical Information and Modeling, 2015, 55, 614-627.	2.5	16
820	Potential Application of Alchemical Free Energy Simulations to Discriminate GPCR Ligand Efficacy. Journal of Chemical Theory and Computation, 2015, 11, 1255-1266.	2.3	13
821	Structure and function of serotonin G protein-coupled receptors. , 2015, 150, 129-142.		275
822	The importance of ligands for G protein-coupled receptor stability. Trends in Biochemical Sciences, 2015, 40, 79-87.	3.7	65
823	Camelid nanobodies: killing two birds with one stone. Current Opinion in Structural Biology, 2015, 32, 1-8.	2.6	101
824	Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor:Gq complex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1601-1606.	3.3	69
825	Structural Insight into Tetrameric hTRPV1 from Homology Modeling, Molecular Docking, Molecular Dynamics Simulation, Virtual Screening, and Bioassay Validations. Journal of Chemical Information and Modeling, 2015, 55, 572-588.	2.5	56
826	Methodological advances: the unsung heroes of the GPCR structural revolution. Nature Reviews Molecular Cell Biology, 2015, 16, 69-81.	16.1	175
827	Extracellular Surface Residues of the <i>α</i> _{1B} -Adrenoceptor Critical for G Protein–Coupled Receptor Function. Molecular Pharmacology, 2015, 87, 121-129.	1.0	9
828	Expression, purification, crystallization, and preliminary X-ray crystallographic studies of the human adiponectin receptors, AdipoR1 and AdipoR2. Journal of Structural and Functional Genomics, 2015, 16, 11-23.	1.2	14
829	Pivotal Role of Extended Linker 2 in the Activation of \hat{Gt} by G Protein-coupled Receptor. Journal of Biological Chemistry, 2015, 290, 272-283.	1.6	7

#	Article	IF	CITATIONS
830	Interhelical Interaction and Receptor Phosphorylation Regulate the Activation Kinetics of Different Human β1-Adrenoceptor Variants. Journal of Biological Chemistry, 2015, 290, 1760-1769.	1.6	10
831	Downregulation of 5-HT ₇ Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1. ACS Chemical Neuroscience, 2015, 6, 1206-1218.	1.7	10
832	Single Molecule Analysis of Functionally Asymmetric G Protein-coupled Receptor (GPCR) Oligomers Reveals Diverse Spatial and Structural Assemblies. Journal of Biological Chemistry, 2015, 290, 3875-3892.	1.6	105
833	The GPCR heterotetramer: challenging classical pharmacology. Trends in Pharmacological Sciences, 2015, 36, 145-152.	4.0	106
834	How genetic errors in GPCRs affect their function: Possible therapeutic strategies. Genes and Diseases, 2015, 2, 108-132.	1.5	60
835	Structural basis for chemokine recognition and activation of a viral G protein–coupled receptor. Science, 2015, 347, 1113-1117.	6.0	261
836	Viral chemokine mimicry. Science, 2015, 347, 1071-1072.	6.0	7
837	G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes. Journal of Biological Chemistry, 2015, 290, 6689-6696.	1.6	128
838	Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond. Molecules and Cells, 2015, 38, 105-111.	1.0	37
839	Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 104-122.	2.5	20
840	Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 2015, 6, 82.	1.6	60
841	Modulation of cellular signaling by herpesvirus-encoded G protein-coupled receptors. Frontiers in Pharmacology, 2015, 6, 40.	1.6	43
842	Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Analyst, The, 2015, 140, 3157-3163.	1.7	47
843	The role of experimental and computational structural approaches in 7TM drug discovery. Expert Opinion on Drug Discovery, 2015, 10, 1071-1084.	2.5	14
844	Introduction. Progress in Molecular Biology and Translational Science, 2015, 133, 1-11.	0.9	61
845	A mechanistic role of Helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1–PDZ-domain. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 976-983.	1.4	36
846	Structural prerequisites for C-protein activation by the neurotensin receptor. Nature Communications, 2015, 6, 7895.	5.8	89
847	Thematic Minireview Series: New Directions in G Protein-coupled Receptor Pharmacology. Journal of Biological Chemistry, 2015, 290, 19469-19470.	1.6	23

#	Article	IF	CITATIONS
848	The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. Biochemical and Biophysical Research Communications, 2015, 462, 358-364.	1.0	40
849	Biochemical characterization of a heterotrimeric Gi-protein activator peptide designed from the junction between the intracellular third loop and sixth transmembrane helix in the m4 muscarinic acetylcholine receptor. Biochemical and Biophysical Research Communications, 2015, 463, 64-69.	1.0	0
850	Propagation of conformational changes during \hat{l} ¼-opioid receptor activation. Nature, 2015, 524, 375-378.	13.7	227
851	Structural insights into µ-opioid receptor activation. Nature, 2015, 524, 315-321.	13.7	743
852	Explaining the mobility of retinal in activated rhodopsin and opsin. Photochemical and Photobiological Sciences, 2015, 14, 1952-1964.	1.6	3
853	Histidine7.36(305) in the conserved peptide receptor activation domain of the gonadotropin releasing hormone receptor couples peptide binding and receptor activation. Molecular and Cellular Endocrinology, 2015, 402, 95-106.	1.6	4
854	Protein Crystallography and Drug Discovery. , 2015, , 511-537.		3
855	Functional studies cast light on receptor states. Trends in Pharmacological Sciences, 2015, 36, 596-604.	4.0	29
856	From G Protein-coupled Receptor Structure Resolution to Rational Drug Design. Journal of Biological Chemistry, 2015, 290, 19489-19495.	1.6	81
857	Universal allosteric mechanism for GÎ \pm activation by GPCRs. Nature, 2015, 524, 173-179.	13.7	291
858	Communication over the Network of Binary Switches Regulates the Activation of A2A Adenosine Receptor. PLoS Computational Biology, 2015, 11, e1004044.	1.5	28
859	Mutations in the †DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants. Journal of Molecular Endocrinology, 2015, 54, 75-89.	1.1	33
861	Novel Allosteric Modulators of G Protein-coupled Receptors. Journal of Biological Chemistry, 2015, 290, 19478-19488.	1.6	173
862	Expanding the horizons of G protein-coupled receptor structure-based ligand discovery and optimization using homology models. Chemical Communications, 2015, 51, 13576-13594.	2.2	40
863	Arresting developments in receptor signalling. Nature, 2015, 523, 538-539.	13.7	2
864	Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 2015, 523, 561-567.	13.7	683
865	Cell-Penetrating Peptides. Methods in Molecular Biology, 2015, 1324, v-viii.	0.4	18
866	A Molecular Pharmacologist's Guide to G Protein–Coupled Receptor Crystallography. Molecular Pharmacology, 2015, 88, 536-551.	1.0	50

#	Article	IF	CITATIONS
867	Characterizing rhodopsin signaling by EPR spectroscopy: from structure to dynamics. Photochemical and Photobiological Sciences, 2015, 14, 1586-1597.	1.6	14
868	Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics. Journal of Biological Chemistry, 2015, 290, 15785-15798.	1.6	33
869	Conformational activation of visual rhodopsin in native disc membranes. Science Signaling, 2015, 8, ra26.	1.6	37
870	Structural basis for nucleotide exchange in heterotrimeric G proteins. Science, 2015, 348, 1361-1365.	6.0	250
871	Structural mechanism of G protein activation by G protein-coupled receptor. European Journal of Pharmacology, 2015, 763, 214-222.	1.7	57
872	Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors. Scientific Reports, 2014, 4, 3828.	1.6	20
873	Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science, 2015, 348, 1365-1368.	6.0	219
874	Structural dynamics and energetics underlying allosteric inactivation of the cannabinoid receptor CB ₁ . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8469-8474.	3.3	39
875	The RCSB PDB "Molecule of the Month― Inspiring a Molecular View of Biology. PLoS Biology, 2015, 13, e1002140.	2.6	88
876	How To Minimize Artifacts in Atomistic Simulations of Membrane Proteins, Whose Crystal Structure Is Heavily Engineered: β ₂ -Adrenergic Receptor in the Spotlight. Journal of Chemical Theory and Computation, 2015, 11, 3432-3445.	2.3	16
877	Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Frontiers in Pharmacology, 2015, 6, 66.	1.6	55
878	A Mutational Analysis of Residues in Cholera Toxin A1 Necessary for Interaction with Its Substrate, the Stimulatory G Protein Gs1±. Toxins, 2015, 7, 919-935.	1.5	12
879	Cross-linking Strategies to Study Peptide Ligand–Receptor Interactions. Methods in Enzymology, 2015, 556, 527-547.	0.4	4
880	Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3991-3999.	1.4	11
881	Surface Plasmon Resonance Analysis of Seven-Transmembrane Receptors. Methods in Enzymology, 2015, 556, 499-525.	0.4	23
882	Amphipathic Agents for Membrane Protein Study. Methods in Enzymology, 2015, 557, 57-94.	0.4	30
883	Molecular Determinants of CCS21680 Binding to the Human Adenosine A _{2A} Receptor. Molecular Pharmacology, 2015, 87, 907-915.	1.0	120
884	Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy. Journal of Magnetic Resonance, 2015, 253, 111-118.	1.2	11

#	Article	IF	Citations
885	The Nâ€ŧerminal acidic residue of the cytosolic helix 8 of an odorant receptor is responsible for different response dynamics via Gâ€protein. FEBS Letters, 2015, 589, 1136-1142.	1.3	10
886	Developmental regulation of neural map formation in the mouse olfactory system. Developmental Neurobiology, 2015, 75, 594-607.	1.5	24
887	Structure-Based Prediction of G-Protein-Coupled Receptor Ligand Function: A β-Adrenoceptor Case Study. Journal of Chemical Information and Modeling, 2015, 55, 1045-1061.	2.5	49
888	Structure-Based Biophysical Analysis of the Interaction of Rhodopsin with G Protein and Arrestin. Methods in Enzymology, 2015, 556, 563-608.	0.4	19
889	Agonist binding by the β2-adrenergic receptor: an effect of receptor conformation on ligand association–dissociation characteristics. European Biophysics Journal, 2015, 44, 149-163.	1.2	15
890	Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 808-817.	1.2	50
891	Antibody Fragments for Stabilization and Crystallization of G Protein-Coupled Receptors and Their Signaling Complexes. Methods in Enzymology, 2015, 557, 247-258.	0.4	10
892	Ion Channel Reporter for Monitoring the Activity of Engineered GPCRs. Methods in Enzymology, 2015, 556, 425-454.	0.4	9
893	Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5702-5707.	3.3	38
894	Structural Insights into the Dynamic Process of \hat{I}^2 2 -Adrenergic Receptor Signaling. Cell, 2015, 161, 1101-1111.	13.5	562
895	Baculovirus-Mediated Expression of GPCRs in Insect Cells. Methods in Enzymology, 2015, 556, 185-218.	0.4	15
896	GPCR structure, function, drug discovery and crystallography: report from Academia-Industry International Conference (UK Royal Society) Chicheley Hall, 1–2 September 2014. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 883-903.	1.4	34
897	The Cardiovascular Adrenergic System. , 2015, , .		2
898	Dynamics and modulation of metabotropic glutamate receptors. Current Opinion in Pharmacology, 2015, 20, 95-101.	1.7	57
899	Allosteric Binding Site and Activation Mechanism of Class C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. AAPS Journal, 2015, 17, 737-753.	2.2	32
900	Promiscuity and selectivity of bitter molecules and their receptors. Bioorganic and Medicinal Chemistry, 2015, 23, 4082-4091.	1.4	100
901	An insight into antagonist binding and induced conformational dynamics of class B GPCR corticotropin-releasing factor receptor 1. Molecular BioSystems, 2015, 11, 2042-2050.	2.9	8
902	A Novel Screening Approach for Optimal and Functional Fusion of T4 Lysozyme in GPCRs. Methods in Enzymology, 2015, 557, 27-43.	0.4	1

		CITATION REPORT		
#	Article		IF	CITATIONS
903	Solubilization of G Protein-Coupled Receptors. Methods in Enzymology, 2015, 557, 11	7-134.	0.4	17
904	Conformational Analysis of G Protein-Coupled Receptor Signaling by Hydrogen/Deuteri Mass Spectrometry. Methods in Enzymology, 2015, 557, 261-278.	um Exchange	0.4	17
905	Fluorescence Recovery After Photobleaching in Lipidic Cubic Phase (LCP-FRAP). Metho Enzymology, 2015, 557, 417-437.	ds in	0.4	11
906	Cation Diffusion Facilitator family: Structure and function. FEBS Letters, 2015, 589, 12	83-1295.	1.3	175
907	Peptide ligand recognition by G protein-coupled receptors. Frontiers in Pharmacology,	2015, 6, 48.	1.6	27
908	Identification of Distinct Conformations of the Angiotensin-II Type 1 Receptor Associat Gq/11 Protein Pathway and the β-Arrestin Pathway Using Molecular Dynamics Simulat Biological Chemistry, 2015, 290, 15835-15854.	ed with the ions. Journal of	1.6	27
909	Dodecyl Maltopyranoside Enabled Purification of Active Human GABA Type A Receptor Direct Proteomic Sequencing*. Molecular and Cellular Proteomics, 2015, 14, 724-738.		2.5	14
910	The Evolving Impact of G Protein-Coupled Receptor Kinases in Cardiac Health and Dise Physiological Reviews, 2015, 95, 377-404.	ase.	13.1	123
911	G protein-coupled receptors in cardiac biology: old and new receptors. Biophysical Revi 77-89.	ews, 2015, 7,	1.5	18
912	Native Serotonin 5-HT2C Receptors Are Expressed as Homodimers on the Apical Surface Plexus Epithelial Cells. Molecular Pharmacology, 2015, 87, 660-673.	e of Choroid	1.0	54
913	Generation of Recombinant Antibody Fragments for Membrane Protein Crystallization. Enzymology, 2015, 557, 201-218.	Methods in	0.4	4
914	Heterologous Expression of G-Protein-Coupled Receptors in Yeast. Methods in Enzymo 141-164.	logy, 2015, 556,	0.4	7
915	Allosteric Effects of Sodium Ion Binding on Activation of the M3 Muscarinic G-Protein-C Receptor. Biophysical Journal, 2015, 108, 1796-1806.	Coupled	0.2	79
916	Endogenous Allosteric Modulators of G Protein–Coupled Receptors. Journal of Pharn Experimental Therapeutics, 2015, 353, 246-260.	nacology and	1.3	127
917	Crystal structures of the human adiponectin receptors. Nature, 2015, 520, 312-316.		13.7	176
918	Structural Dynamics and Thermostabilization of Neurotensin Receptor 1. Journal of Phy Chemistry B, 2015, 119, 4917-4928.	vsical	1.2	31
919	Mutational mapping of the transmembrane binding site of the G-protein coupled recep binding mode prediction of TGR5 agonists. European Journal of Medicinal Chemistry, 2	tor TGR5 and 015, 104, 57-72.	2.6	27
920	The ins and outs of adrenergic signaling. Journal of Molecular Medicine, 2015, 93, 955-	962.	1.7	21

#	Article	IF	CITATIONS
921	Biased Gs Versus Gq Proteins and β-Arrestin Signaling in the NK1 Receptor Determined by Interactions in the Water Hydrogen Bond Network. Journal of Biological Chemistry, 2015, 290, 24495-24508.	1.6	31
922	Pharmacological Analysis and Structure Determination of 7-Methylcyanopindolol–Bound β1-Adrenergic Receptor. Molecular Pharmacology, 2015, 88, 1024-1034.	1.0	23
923	Organization and Dynamics of Receptor Proteins in a Plasma Membrane. Journal of the American Chemical Society, 2015, 137, 14694-14704.	6.6	91
924	Purification and Crystallization of a Thermostabilized Agonist-Bound Conformation of the Human Adenosine A2A Receptor. Methods in Molecular Biology, 2015, 1335, 17-27.	0.4	2
925	Mutation-Guided Unbiased Modeling of the Fat Sensor GPR119 for High-Yield Agonist Screening. Structure, 2015, 23, 2377-2386.	1.6	6
926	Activation and Allosteric Modulation of Human μ Opioid Receptor in Molecular Dynamics. Journal of Chemical Information and Modeling, 2015, 55, 2421-2434.	2.5	31
927	Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures. Journal of Structural Biology, 2015, 192, 545-553.	1.3	18
928	TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins. BMC Bioinformatics, 2015, 16, 266.	1.2	4
929	Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β ₂ AR. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14254-14259.	3.3	87
930	Loss-of-Function Variants in a Hungarian Cohort Reveal Structural Insights on TSH Receptor Maturation and Signaling. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1039-E1045.	1.8	16
931	Conformational dynamics of a class C G-protein-coupled receptor. Nature, 2015, 524, 497-501.	13.7	144
932	Probing Gαi1 protein activation at single–amino acid resolution. Nature Structural and Molecular Biology, 2015, 22, 686-694.	3.6	58
933	Analysis of Human Dopamine D3 Receptor Quaternary Structure. Journal of Biological Chemistry, 2015, 290, 15146-15162.	1.6	23
934	Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2. British Journal of Pharmacology, 2015, 172, 2383-2396.	2.7	37
935	New paradigms in GPCR drug discovery. Biochemical Pharmacology, 2015, 98, 541-555.	2.0	152
936	Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Trends in Molecular Medicine, 2015, 21, 687-701.	3.5	68
937	A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1987-1997.	2.5	73
938	Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?. Biophysical Journal, 2015, 109, 1652-1662.	0.2	58

# 939	ARTICLE The power of mass spectrometry in structural characterization of GPCR signaling. Journal of Receptor and Signal Transduction Research, 2015, 35, 213-219.	IF 1.3	Citations 9
940	Retinal Attachment Instability Is Diversified among Mammalian Melanopsins. Journal of Biological Chemistry, 2015, 290, 27176-27187.	1.6	21
941	Quantitative Signaling and Structure-Activity Analyses Demonstrate Functional Selectivity at the Nociceptin/Orphanin FQ Opioid Receptor. Molecular Pharmacology, 2015, 88, 502-511.	1.0	30
942	Structures of G protein-coupled receptors reveal new opportunities for drug discovery. Drug Discovery Today, 2015, 20, 1355-1364.	3.2	120
943	GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM. Structure, 2015, 23, 1769-1775.	1.6	96
944	G Protein-Coupled Receptors in Drug Discovery. Methods in Molecular Biology, 2015, 1335, v.	0.4	7
945	Less is More: Membrane Protein Digestion Beyond Urea–Trypsin Solution for Next-level Proteomics. Molecular and Cellular Proteomics, 2015, 14, 2441-2453.	2.5	48
946	Protein NMR. Biological Magnetic Resonance, 2015, , .	0.4	4
947	Post-expression strategies for structural investigations of membrane proteins. Current Opinion in Structural Biology, 2015, 32, 131-138.	2.6	14
948	Binding mechanism of nine N-phenylpiperazine derivatives and α _{1A} -adrenoceptor using site-directed molecular docking and high performance affinity chromatography. RSC Advances, 2015, 5, 57050-57057.	1.7	6
949	Chemical synthesis of crystalline proteins. Science China Chemistry, 2015, 58, 1779-1781.	4.2	39
950	Docking and Virtual Screening Strategies for GPCR Drug Discovery. Methods in Molecular Biology, 2015, 1335, 251-276.	0.4	17
951	The Dynamic Process of Drug–GPCR Binding at Either Orthosteric or Allosteric Sites Evaluated by Metadynamics. Methods in Molecular Biology, 2015, 1335, 277-294.	0.4	26
952	G Protein-Coupled Receptors: Dynamic Machines for Signaling Pain and Itch. Neuron, 2015, 88, 635-649.	3.8	115
953	Discovery of trace amine-associated receptor 1 ligands by molecular docking screening against a homology model. MedChemComm, 2015, 6, 2216-2223.	3.5	19
954	Structure of the BoNT/A1 – receptor complex. Toxicon, 2015, 107, 25-31.	0.8	6
955	Lipid modulation of early G protein-coupled receptor signalling events. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2889-2897.	1.4	47
956	John Daly Lecture: Structure-guided Drug Design for Adenosine and P2Y Receptors. Computational and Structural Biotechnology Journal, 2015, 13, 286-298.	1.9	17

#	Article	IF	CITATIONS
957	Gαi/o-coupled receptor-mediated sensitization of adenylyl cyclase: 40 years later. European Journal of Pharmacology, 2015, 763, 223-232.	1.7	43
958	The High-Resolution Structure of Activated Opsin Reveals a Conserved Solvent Network in the Transmembrane Region Essential for Activation. Structure, 2015, 23, 2358-2364.	1.6	31
959	Helical rearrangement of photoactivated rhodopsin in monomeric and dimeric forms probed by high-angle X-ray scattering. Photochemical and Photobiological Sciences, 2015, 14, 1965-1973.	1.6	10
960	What can we learn from molecular dynamics simulations for GPCR drug design?. Computational and Structural Biotechnology Journal, 2015, 13, 111-121.	1.9	60
961	Structure and function of G protein oupled receptor oligomers: implications for drug discovery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 408-427.	3.3	22
962	Mammalian Olfactory Receptors. Progress in Molecular Biology and Translational Science, 2015, 130, 1-36.	0.9	18
963	What Can Crystal Structures of Aminergic Receptors Tell Us about Designing Subtype-Selective Ligands?. Pharmacological Reviews, 2015, 67, 198-213.	7.1	99
964	Understanding the conformation transition in the activation pathway of β2 adrenergic receptor via a targeted molecular dynamics simulation. Physical Chemistry Chemical Physics, 2015, 17, 2512-2522.	1.3	21
965	Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nature Chemical Biology, 2015, 11, 134-140.	3.9	172
967	Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors. Journal of Leukocyte Biology, 2015, 97, 39-47.	1.5	30
968	Computational Approaches in the Structure–Function Studies of Dopamine Receptors. Neuromethods, 2015, , 31-42.	0.2	1
969	Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB Journal, 2015, 29, 116-130.	0.2	54
970	Correlation of transducin photoaffinity labeling with the specific formation of intermolecular disulfide linkages in its α-subunit. Biochimie, 2015, 108, 120-132.	1.3	1
971	Molecular Basis for Small Molecule Inhibition of G Protein-Coupled Receptor Kinases. ACS Chemical Biology, 2015, 10, 246-256.	1.6	44
972	Neuropeptides: Metabolism to Bioactive Fragments and the Pharmacology of Their Receptors. Medicinal Research Reviews, 2015, 35, 464-519.	5.0	55
973	Hologram Quantitative Structure Activity Relationship, Docking, and Molecular Dynamics Studies of Inhibitors for <scp>CXCR</scp> 4. Chemical Biology and Drug Design, 2015, 85, 119-136.	1.5	17
974	A new crystal structure fragment-based pharmacophore method for G protein-coupled receptors. Methods, 2015, 71, 104-112.	1.9	19
975	Leukocyte Chemoattractant Receptors in Human Disease Pathogenesis. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 51-81.	9.6	74

#	Article	IF	CITATIONS
976	The A ₃ Adenosine Receptor: History and Perspectives. Pharmacological Reviews, 2015, 67, 74-102.	7.1	204
977	The G Protein <i>α</i> Chaperone Ric-8 as a Potential Therapeutic Target. Molecular Pharmacology, 2015, 87, 52-63.	1.0	35
978	A Nanobodyâ \in Based Approach to Amyloid Diseases, the Gelsolin Case Study. , 0, , .		0
979	Computational methods for studying G protein-coupled receptors (GPCRs). Methods in Cell Biology, 2016, 132, 359-399.	0.5	31
980	Functional Role of the C-Terminal Amphipathic Helix 8 of Olfactory Receptors and Other G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2016, 17, 1930.	1.8	32
981	Differential Modulation of Adrenergic Receptor Signaling by Octopamine, Tyramine, Phenylethylamine, and 3-lodothyronamine. , 2016, , 63-81.		2
982	Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations. PLoS Computational Biology, 2016, 12, e1004746.	1.5	85
983	Homology Modeling and Ligand-Based Molecule Design. , 2016, , 109-160.		3
984	Regulation of Muscle Contraction by Adrenoceptors. , 2016, , 185-262.		0
985	Identifying and Visualizing Macromolecular Flexibility in Structural Biology. Frontiers in Molecular Biosciences, 2016, 3, 47.	1.6	49
986	Resonance Energy Transfer-Based Approaches to Study GPCRs. Methods in Cell Biology, 2016, 132, 255-292.	0.5	14
987	Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. PLoS Computational Biology, 2016, 12, e1004805.	1.5	72
988	Functional Stability of the Human Kappa Opioid Receptor Reconstituted in Nanodiscs Revealed by a Time-Resolved Scintillation Proximity Assay. PLoS ONE, 2016, 11, e0150658.	1.1	9
989	The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands. PLoS ONE, 2016, 11, e0154002.	1.1	41
990	Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model. PLoS ONE, 2016, 11, e0159528.	1.1	3
991	Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83. PLoS ONE, 2016, 11, e0168260.	1.1	16
992	Identifying ligands at orphan GPCRs: current status using structureâ€based approaches. British Journal of Pharmacology, 2016, 173, 2934-2951.	2.7	70
993	Update on melatonin receptors: IUPHAR Review 20. British Journal of Pharmacology, 2016, 173, 2702-2725.	2.7	312

#	Article	IF	CITATIONS
994	Conformationally selective RNA aptamers allosterically modulate the β2-adrenoceptor. Nature Chemical Biology, 2016, 12, 709-716.	3.9	65
995	<i>In silico</i> Exploration of the Conformational Universe of GPCRs. Molecular Informatics, 2016, 35, 227-237.	1.4	7
996	Functional reversal of (â^')â€Stepholidine analogues by replacement of benzazepine substructure using the ringâ€expansion strategy. Chemical Biology and Drug Design, 2016, 88, 599-607.	1.5	5
997	Macrophage Migration Inhibitory Factor-CXCR4 Receptor Interactions. Journal of Biological Chemistry, 2016, 291, 15881-15895.	1.6	65
998	<scp>DIRECTâ€ID</scp> : An automated method to identify and quantify conformational variations—application to β ₂ â€adrenergic <scp>GPCR</scp> . Journal of Computational Chemistry, 2016, 37, 416-425.	1.5	13
999	G-protein coupled receptors: advances in simulation and drug discovery. Current Opinion in Structural Biology, 2016, 41, 83-89.	2.6	80
1000	Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias. Molecular and Cellular Proteomics, 2016, 15, 3665-3684.	2.5	4
1001	Optical probes based on G proteinâ€coupled receptors – added work or added value?. British Journal of Pharmacology, 2016, 173, 255-266.	2.7	24
1002	General trends of dihedral conformational transitions in a globular protein. Proteins: Structure, Function and Bioinformatics, 2016, 84, 501-514.	1.5	8
1003	Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties. Journal of Biological Chemistry, 2016, 291, 11657-11675.	1.6	36
1004	Invited review: Activation of G proteins by GTP and the mechanism of Gα atalyzed GTP hydrolysis. Biopolymers, 2016, 105, 449-462.	1.2	71
1005	Accessible Mannitolâ€Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation. Chemistry - A European Journal, 2016, 22, 7068-7073.	1.7	43
1006	Aminobenzimidazoles and Structural Isomers as Templates for Dualâ€Acting Butyrylcholinesterase Inhibitors and <i>h</i> CB ₂ R Ligands To Combat Neurodegenerative Disorders. ChemMedChem, 2016, 11, 1270-1283.	1.6	28
1007	A Three‣ite Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors. Angewandte Chemie - International Edition, 2016, 55, 8008-8012.	7.2	38
1008	Allosteric Modulation of the Calcium-sensing Receptor Rectifies Signaling Abnormalities Associated with G-protein α-11 Mutations Causing Hypercalcemic and Hypocalcemic Disorders. Journal of Biological Chemistry, 2016, 291, 10876-10885.	1.6	31
1009	Emerging insights into heterotrimeric G protein signaling in plants. Journal of Genetics and Genomics, 2016, 43, 495-502.	1.7	26
1011	Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJâ€46281222. British Journal of Pharmacology, 2016, 173, 588-600.	2.7	39
1012	Integrating the GPCR transactivationâ€dependent and biased signalling paradigms in the context of PAR1 signalling. British Journal of Pharmacology, 2016, 173, 2992-3000.	2.7	12

ARTICLE IF CITATIONS Probing the Binding Pocket of the Broadly Tuned Human Bitter Taste Receptor TAS2R14 by Chemical 1013 53 1.5 Modification of Cognate Agonists. Chemical Biology and Drug Design, 2016, 88, 66-75. 2016 Lucian Award. Circulation Research, 2016, 119, 978-980. 1014 An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology. Cell 1015 3.144 Discovery, 2016, 2, 16012. Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. 1016 5.8 Nature Communications, 2016, 7, 10583. Dominant-negative Gl[±] subunits are a mechanism of dysregulated heterotrimeric G protein signaling in 1017 1.6 28 human disease. Science Signaling, 2016, 9, ra37. The Human Orexin/Hypocretin Receptor Crystal Structures. Current Topics in Behavioral 0.8 Neurosciences, 2016, 33, 1-15. Structure and dynamics of a constitutively active neurotensin receptor. Scientific Reports, 2016, 6, 1019 1.6 59 38564. Structure-Based Scaffold Repurposing for G Protein-Coupled Receptors: Transformation of Adenosine Derivatives into 5HT_{2B}/5HT_{2C} Serotonin Receptor Antagonists. Journal of Medicinal Chemistry, 2016, 59, 11006-11026. 1020 2.9 Minireview: Insights Into the Structural and Molecular Consequences of the TSH-Î² Mutation 1021 3.7 10 C105Vfs114X. Molecular Endocrinology, 2016, 30, 954-964. Engineering a minimal G protein to facilitate crystallisation of G protein-coupled receptors in their 1.0 active conformation. Protein Engineering, Design and Selection, 2016, 29, 583-594. Molecular Mechanism of Action for Allosteric Modulators and Agonists in CC-chemokine Receptor 5 1023 11 1.6 (CCR5). Journal of Biological Chemistry, 2016, 291, 26860-26874. Construction of Structural Mimetics of the Thyrotropin Receptor Intracellular Domain. Biophysical 1024 Journal, 2016, 111, 2620-2628. 1025 Inside-out receptor inhibition. Nature, 2016, 540, 344-345. 13.7 6 Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540, 13.7 458-461. Intracellular allosteric antagonism of the CCR9 receptor. Nature, 2016, 540, 462-465. 192 1027 13.7 Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors. 24 Scientific Reports, 2016, 6, 37290. Directed evolution of G protein-coupled receptors in yeast for higher functional production in 1029 1.6 55 eukaryotic expression hosts. Scientific Reports, 2016, 6, 21508. A structural snapshot of the rhodopsin–arrestin complex. FEBS Journal, 2016, 283, 816-821. 2.2

			0
#	ARTICLE Conformational Restriction and Enantioseparation Increase Potency and Selectivity of	IF	CITATIONS
1031	Cyanoguanidine-Type Histamine H ₄ Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 3452-3470.	2.9	9
1033	Synthetic and Receptor Signaling Explorations of the <i>Mitragyna</i> Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. Journal of the American Chemical Society, 2016, 138, 6754-6764.	6.6	233
1034	Interaction between GPR120 p.R270H loss-of-function variant and dietary fat intake on incident type 2 diabetes risk in the D.E.S.I.R. study. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 931-936.	1.1	9
1035	Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery. Journal of Chemical Information and Modeling, 2016, 56, 1152-1163.	2.5	26
1036	What are they waiting for?—Tethered agonism in G protein-coupled receptors. Pharmacological Research, 2016, 108, 9-15.	3.1	21
1037	Comparing Class AÂGPCRs to bitter taste receptors. Methods in Cell Biology, 2016, 132, 401-427.	0.5	80
1038	Application of an Integrated GPCR SAR-Modeling Platform To Explain the Activation Selectivity of Human 5-HT _{2C} over 5-HT _{2B} . ACS Chemical Biology, 2016, 11, 1372-1382.	1.6	11
1039	An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods, 2016, 100, 3-15.	1.9	178
1040	Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes. Nature Reviews Molecular Cell Biology, 2016, 17, 439-450.	16.1	28
1041	The Unique Dopamine/Ecdysteroid Receptor Modulates Ethanol-Induced Sedation in <i>Drosophila</i> . Journal of Neuroscience, 2016, 36, 4647-4657.	1.7	25
1042	Activation of the A2A adenosine C-protein-coupled receptor by conformational selection. Nature, 2016, 533, 265-268.	13.7	290
1043	The Molecular Pharmacology of G Protein Signaling Then and Now: A Tribute to Alfred G. Gilman. Molecular Pharmacology, 2016, 89, 585-592.	1.0	11
1044	Hijacking GPCRs by viral pathogens and tumor. Biochemical Pharmacology, 2016, 114, 69-81.	2.0	27
1045	Structural modeling of G-protein coupled receptors: An overview on automatic web-servers. International Journal of Biochemistry and Cell Biology, 2016, 77, 264-274.	1.2	11
1046	Interaction of G protein coupled receptors and cholesterol. Chemistry and Physics of Lipids, 2016, 199, 61-73.	1.5	167
1047	Antibody Sensor Shows when the M1 Muscarinic Acetylcholine Receptor Is Active during Learning and Memory♦. Journal of Biological Chemistry, 2016, 291, 8876.	1.6	0
1049	Structural Reconstruction of Protein-Protein Complexes Involved in Intracellular Signaling. Advances in Experimental Medicine and Biology, 2016, 896, 315-326.	0.8	0
1050	G protein-coupled receptor kinases as regulators of dopamine receptor functions. Pharmacological Research, 2016, 111, 1-16.	3.1	100

#	Article	IF	CITATIONS
1051	WNT Stimulation Dissociates a Frizzled 4 Inactive-State Complex with G <i>α</i> _{12/13} . Molecular Pharmacology, 2016, 90, 447-459.	1.0	33
1052	Activation mechanism of endothelin ETB receptor by endothelin-1. Nature, 2016, 537, 363-368.	13.7	148
1053	Biased Allostery. Biophysical Journal, 2016, 111, 902-908.	0.2	19
1054	A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor. Journal of Biological Chemistry, 2016, 291, 19674-19686.	1.6	23
1055	Development and Application of Functionalized Protein Binders in Multicellular Organisms. International Review of Cell and Molecular Biology, 2016, 325, 181-213.	1.6	25
1056	R- and S-terbutaline activate large conductance and Ca 2+ dependent K + (BK Ca) channel through interacting with β 2 and M receptor respectively. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2745-2752.	1.4	5
1057	Nanosecond Dynamics of G α i1 Bound to Nucleotides or Ric-8A, a G α Chaperone with GEF Activity. Biophysical Journal, 2016, 111, 722-731.	0.2	3
1058	Gas phase ultraviolet and infrared spectroscopy on a partial peptide of β ₂ -adrenoceptor SIVSF-NH ₂ by a laser desorption supersonic jet technique. Physical Chemistry Chemical Physics, 2016, 18, 23277-23284.	1.3	19
1059	Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled. Molecular Cell, 2016, 64, 92-104.	4.5	125
1060	Successful Strategies to Determine High-Resolution Structures of GPCRs. Trends in Pharmacological Sciences, 2016, 37, 1055-1069.	4.0	63
1061	Conserved Mechanism of Conformational Stability and Dynamics in G-Protein-Coupled Receptors. Journal of Chemical Theory and Computation, 2016, 12, 5575-5584.	2.3	23
1062	Structure and Function of G-Protein-Coupled Receptor Kinases 1 and 7. Methods in Pharmacology and Toxicology, 2016, , 25-43.	0.1	3
1063	Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A 2A Adenosine Receptor. Biophysical Journal, 2016, 111, 1180-1191.	0.2	33
1064	Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Current Opinion in Pharmacology, 2016, 30, 51-58.	1.7	52
1065	GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell, 2016, 166, 907-919.	13.5	443
1066	Single-Molecule Analysis of the Supramolecular Organization of the M ₂ Muscarinic Receptor and the Gα _{i1} Protein. Journal of the American Chemical Society, 2016, 138, 11583-11598.	6.6	26
1067	Allosteric communication pipelines in G-protein-coupled receptors. Current Opinion in Pharmacology, 2016, 30, 76-83.	1.7	33
1068	Regulation, Signaling, and Physiological Functions of G-Proteins. Journal of Molecular Biology, 2016, 428, 3850-3868.	2.0	306

# 1069	ARTICLE Identification of a G-Protein Subunit-α11 Gain-of-Function Mutation, Val340Met, in a Family With Autosomal Dominant Hypocalcemia Type 2 (ADH2). Journal of Bone and Mineral Research, 2016, 31, 1207-1214.	IF 3.1	Citations
1070	Regulation of Dopamine-Dependent Behaviors by G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology, 2016, , 237-269.	0.1	1
1071	GPCRdb: the G protein oupled receptor database – an introduction. British Journal of Pharmacology, 2016, 173, 2195-2207.	2.7	165
1072	The mass action equation in pharmacology. British Journal of Clinical Pharmacology, 2016, 81, 41-51.	1.1	35
1073	G Protein-Coupled Receptor Kinases. Methods in Pharmacology and Toxicology, 2016, , .	0.1	1
1074	Advanced Methods in Structural Biology. Springer Protocols, 2016, , .	0.1	1
1075	The Histamine H ₃ Receptor: Structure, Pharmacology, and Function. Molecular Pharmacology, 2016, 90, 649-673.	1.0	140
1076	Sensory Signal Processing; Visual Transduction and Olfaction. , 2016, , 329-379.		0
1077	Receptor Activity-modifying Protein-directed G Protein Signaling Specificity for the Calcitonin Gene-related Peptide Family of Receptors. Journal of Biological Chemistry, 2016, 291, 21925-21944.	1.6	72
1078	Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor. Biochemical Pharmacology, 2016, 118, 68-87.	2.0	41
1079	Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3- <i>a</i> (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). Journal of Medicinal Chemistry, 2016, 59, 8495-8507.	pyridine	35
1080	Signal transmission through the CXC chemokine receptor 4 (CXCR4) transmembrane helices. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9928-9933.	3.3	96
1081	The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer. Acta Pharmacologica Sinica, 2016, 37, 1259-1272.	2.8	51
1082	Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation. Cell, 2016, 166, 1084-1102.	13.5	246
1083	Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature, 2016, 536, 484-487.	13.7	245
1084	Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor. Journal of Biological Chemistry, 2016, 291, 16375-16389.	1.6	67
1085	Molecular Mechanism of Biased Ligand Conformational Changes in CC Chemokine Receptor 7. Journal of Chemical Information and Modeling, 2016, 56, 1808-1822.	2.5	13
1087	Identification of an orally active small-molecule PTHR1 agonist for the treatment of hypoparathyroidism. Nature Communications, 2016, 7, 13384.	5.8	48

#	Article	IF	CITATIONS
1088	Mechanistic insights into GPCR–G protein interactions. Current Opinion in Structural Biology, 2016, 41, 247-254.	2.6	112
1089	NMR Investigation of Structures of G-protein Coupled Receptor Folding Intermediates. Journal of Biological Chemistry, 2016, 291, 27170-27186.	1.6	6
1090	An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. Cell Discovery, 2016, 2, 16042.	3.1	28
1091	Targeting Liver Fibrosis with a Cell-penetrating Protease-activated Receptor-2 (PAR2) Pepducin. Journal of Biological Chemistry, 2016, 291, 23188-23198.	1.6	48
1092	G <i>βγ</i> Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Molecular Pharmacology, 2016, 90, 573-586.	1.0	33
1093	Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. Journal of Molecular Endocrinology, 2016, 57, R127-R142.	1.1	144
1094	Mechanism of Assembly and Cooperativity of Homomeric and Heteromeric Metabotropic Glutamate Receptors. Neuron, 2016, 92, 143-159.	3.8	133
1095	Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. Physical Chemistry Chemical Physics, 2016, 18, 29412-29422.	1.3	11
1096	Overview of Membrane Protein Purification and Crystallization. Springer Protocols, 2016, , 105-122.	0.1	0
1097	Structure of the adenosine A2A receptor bound to an engineered G protein. Nature, 2016, 536, 104-107.	13.7	385
1098	Targeting recognition surfaces on natural proteins with peptidic foldamers. Current Opinion in Structural Biology, 2016, 39, 96-105.	2.6	76
1099	G Protein-Coupled Receptor Kinases (GRKs) History: Evolution and Discovery. Methods in Pharmacology and Toxicology, 2016, , 3-22.	0.1	2
1100	Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. Journal of Medicinal Chemistry, 2016, 59, 7152-7166.	2.9	49
1101	Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature, 2016, 535, 448-452.	13.7	290
1102	Mesityleneâ€Cored Glucoside Amphiphiles (MGAs) for Membrane Protein Studies: Importance of Alkyl Chain Density in Detergent Efficacy. Chemistry - A European Journal, 2016, 22, 18833-18839.	1.7	17
1103	Structural insights and functional implications of inter-individual variability in \hat{I}^2 -adrenergic receptor. Scientific Reports, 2016, 6, 24379.	1.6	15
1104	Functional competence of a partially engaged GPCR–β-arrestin complex. Nature Communications, 2016, 7, 13416.	5.8	144
1105	7TM Domain Structure of Adhesion GPCRs. Handbook of Experimental Pharmacology, 2016, 234, 43-66.	0.9	13

#	Article	IF	CITATIONS
1106	Retromer Endosome Exit Domains Serve Multiple Trafficking Destinations and Regulate Local G Protein Activation by GPCRs. Current Biology, 2016, 26, 3129-3142.	1.8	44
1107	β 2 -Adrenergic Receptor Conformational Response to Fusion Protein in the Third Intracellular Loop. Structure, 2016, 24, 2190-2197.	1.6	43
1108	Reversible G Protein βγ9 Distribution-Based Assay Reveals Molecular Underpinnings in Subcellular, Single-Cell, and Multicellular GPCR and G Protein Activity. Analytical Chemistry, 2016, 88, 11450-11459.	3.2	24
1109	Application of GPCR Structures for Modelling of Free Fatty Acid Receptors. Handbook of Experimental Pharmacology, 2016, 236, 57-77.	0.9	25
1110	Chapter Two - Heterotrimeric G Protein Ubiquitination as a Regulator of G Protein Signaling. Progress in Molecular Biology and Translational Science, 2016, 141, 57-83.	0.9	5
1111	The Principles of Ligand Specificity on beta-2-adrenergic receptor. Scientific Reports, 2016, 6, 34736.	1.6	44
1112	Investigation of allosteric coupling in human β2-adrenergic receptor in the presence of intracellular loop 3. BMC Structural Biology, 2016, 16, 9.	2.3	18
1113	Allosteric binding: structures reveal new ways to tame G protein-coupled receptors. Future Medicinal Chemistry, 2016, 8, 2005-2007.	1.1	3
1114	Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation. Nature Communications, 2016, 7, 12683.	5.8	41
1115	X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 2016, 3, 160021.	2.4	51
1116	Structural studies of G proteinâ€coupled receptors. IUBMB Life, 2016, 68, 894-903.	1.5	66
1117	μ Opioid receptor: novel antagonists and structural modeling. Scientific Reports, 2016, 6, 21548.	1.6	63
1118	Crystal structure of a LacY–nanobody complex in a periplasmic-open conformation. Proceedings of the United States of America, 2016, 113, 12420-12425.	3.3	38
1119	Urolinin: The First Linear Peptidic Urotensin-II Receptor Agonist. Journal of Medicinal Chemistry, 2016, 59, 10100-10112.	2.9	10
1120	Conformational Heterogeneity of Intracellular Loop 3 of the μ-opioid G-protein Coupled Receptor. Journal of Physical Chemistry B, 2016, 120, 11897-11904.	1.2	8
1121	Preparation and Delivery of Protein Microcrystals in Lipidic Cubic Phase for Serial Femtosecond Crystallography. Journal of Visualized Experiments, 2016, , .	0.2	16
1122	High-density grids for efficient data collection from multiple crystals. Acta Crystallographica Section D: Structural Biology, 2016, 72, 2-11.	1.1	62
1123	G Protein-selective GPCR Conformations Measured Using FRET Sensors in a Live Cell Suspension Fluorometer Assay. Journal of Visualized Experiments, 2016, , .	0.2	4

#	Article	IF	CITATIONS
1124	From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins. Journal of Visualized Experiments, 2016, , .	0.2	5
1125	Pharmacophoreâ€Mapâ€Pick: A Method to Generate Pharmacophore Models for All Human GPCRs. Molecular Informatics, 2016, 35, 81-91.	1.4	9
1126	Computational analysis of the CB1 carboxyl-terminus in the receptor-G protein complex. Proteins: Structure, Function and Bioinformatics, 2016, 84, 532-543.	1.5	3
1128	Heterotrimeric G protein signaling via GIV/Girdin: Breaking the rules of engagement, space, and time. BioEssays, 2016, 38, 379-393.	1.2	49
1129	Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biology, 2016, 14, 26.	1.7	97
1130	Membrane Receptors. , 2016, , 401-425.		2
1131	Atomic-level analysis of membrane-protein structure. Nature Structural and Molecular Biology, 2016, 23, 464-467.	3.6	50
1132	Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Biophysical Journal, 2016, 110, 2618-2629.	0.2	18
1133	Molecular dynamics simulations and structure-based network analysis reveal structural and functional aspects of G-protein coupled receptor dimer interactions. Journal of Computer-Aided Molecular Design, 2016, 30, 489-512.	1.3	26
1134	Stabilizing effects of G protein on the active conformation of adenosine A 1 receptor differ depending on G protein type. European Journal of Pharmacology, 2016, 788, 122-131.	1.7	7
1135	The principle of conformational signaling. Chemical Society Reviews, 2016, 45, 4252-4284.	18.7	46
1136	Novel Targets for Drug Treatment in Psychiatry. , 2016, , 601-654.		0
1137	Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. International Journal of Biochemistry and Cell Biology, 2016, 77, 251-263.	1.2	9
1138	Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry. Biophysical Journal, 2016, 110, 396a.	0.2	0
1139	Protein Regulation in Signal Transduction. Cold Spring Harbor Perspectives in Biology, 2016, 8, a005918.	2.3	94
1140	New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochemical Pharmacology, 2016, 114, 53-68.	2.0	105
1141	Allosteric Modulators of the Class A G Protein Coupled Receptors. Advances in Experimental Medicine and Biology, 2016, 917, 185-207.	0.8	8
1142	Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3629-38.	3.3	77

#	Article	IF	CITATIONS
1143	Use of Cysteine Trapping to Map Spatial Approximations between Residues Contributing to the Helix N-capping Motif of Secretin and Distinct Residues within Each of the Extracellular Loops of Its Receptor. Journal of Biological Chemistry, 2016, 291, 5172-5184.	1.6	9
1144	Molecular Pharmacology of <i>δ</i> -Opioid Receptors. Pharmacological Reviews, 2016, 68, 631-700.	7.1	103
1145	Structural Elements in the Cαs and Cαq C Termini That Mediate Selective G Protein-coupled Receptor (GPCR) Signaling. Journal of Biological Chemistry, 2016, 291, 17929-17940.	1.6	38
1146	Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature, 2016, 535, 182-186.	13.7	235
1147	β-arrestin–biased signaling through the β ₂ -adrenergic receptor promotes cardiomyocyte contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4107-16.	3.3	94
1148	A Threeâ€6ite Mechanism for Agonist/Antagonist Selective Binding to Vasopressin Receptors. Angewandte Chemie, 2016, 128, 8140-8144.	1.6	11
1149	Superagonism at G proteinâ€coupled receptors and beyond. British Journal of Pharmacology, 2016, 173, 3018-3027.	2.7	25
1150	Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2. American Journal of Human Genetics, 2016, 98, 331-338.	2.6	43
1151	Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration. Immunity, 2016, 44, 59-72.	6.6	85
1152	Dynamic Coupling and Allosteric Networks in the α Subunit of Heterotrimeric G Proteins. Journal of Biological Chemistry, 2016, 291, 4742-4753.	1.6	66
1153	Coupled Motions in β ₂ AR:Gαs Conformational Ensembles. Journal of Chemical Theory and Computation, 2016, 12, 946-956.	2.3	12
1154	Potent and selective N-(4-sulfamoylphenyl)thiourea-based GPR55 agonists. European Journal of Medicinal Chemistry, 2016, 107, 119-132.	2.6	18
1155	Purification, characterization, and crystallization of membrane bound Escherichia coli tyrosine kinase. Protein Expression and Purification, 2016, 125, 34-42.	0.6	0
1156	Allosteric regulation of G protein–coupled receptor activity by phospholipids. Nature Chemical Biology, 2016, 12, 35-39.	3.9	251
1157	What is so special about smell? Olfaction as a model system in neurobiology. Postgraduate Medical Journal, 2016, 92, 27-33.	0.9	11
1158	The Fragment Molecular Orbital Method Reveals New Insight into the Chemical Nature of GPCR–Ligand Interactions. Journal of Chemical Information and Modeling, 2016, 56, 159-172.	2.5	97
1159	GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Research, 2016, 44, D356-D364.	6.5	472
1160	An Introduction to Signal Transduction. , 2016, , 53-183.		1

#	Article	IF	CITATIONS
1161	Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor. Journal of Chemical Information and Modeling, 2016, 56, 201-212.	2.5	4
1162	Binding Interactions of Dopamine and Apomorphine in D2High and D2Low States of Human Dopamine D2 Receptor Using Computational and Experimental Techniques. ACS Chemical Neuroscience, 2016, 7, 185-195.	1.7	45
1163	Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3539-3544.	3.3	38
1164	The β-Arrestins: Multifunctional Regulators of G Protein-coupled Receptors. Journal of Biological Chemistry, 2016, 291, 8969-8977.	1.6	246
1165	Bitter taste receptors: Novel insights into the biochemistry and pharmacology. International Journal of Biochemistry and Cell Biology, 2016, 77, 184-196.	1.2	83
1166	Prediction of Loops in G Protein-Coupled Receptor Homology Models: Effect of Imprecise Surroundings and Constraints. Journal of Chemical Information and Modeling, 2016, 56, 671-686.	2.5	7
1167	Long Receptor Residence Time of C26 Contributes to Super Agonist Activity at the Human <i>l²</i> ₂ Adrenoceptor. Molecular Pharmacology, 2016, 89, 467-475.	1.0	12
1168	Purine (N)-Methanocarba Nucleoside Derivatives Lacking an Exocyclic Amine as Selective A3 Adenosine Receptor Agonists. Journal of Medicinal Chemistry, 2016, 59, 3249-3263.	2.9	14
1169	Computational approaches to detect allosteric pathways in transmembrane molecular machines. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1652-1662.	1.4	58
1170	DREADDs for Neuroscientists. Neuron, 2016, 89, 683-694.	3.8	1,210
1170 1171	DREADDs for Neuroscientists. Neuron, 2016, 89, 683-694. Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191.	3.8 1.1	1,210 1
	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta		
1171	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during	1.1	1
1171 1172	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875. Backbone NMR reveals allosteric signal transduction networks in the Î ² 1-adrenergic receptor. Nature,	1.1 1.6	1 34
1171 1172 1173	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875. Backbone NMR reveals allosteric signal transduction networks in the Î ² 1-adrenergic receptor. Nature, 2016, 530, 237-241. Structural determinants of subtype selectivity and functional activity of angiotensin II receptors.	1.1 1.6 13.7	1 34 155
1171 1172 1173 1174	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875. Backbone NMR reveals allosteric signal transduction networks in the Î ² 1-adrenergic receptor. Nature, 2016, 530, 237-241. Structural determinants of subtype selectivity and functional activity of angiotensin II receptors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1355-1359. New Technologies for Elucidating Opioid Receptor Function. Trends in Pharmacological Sciences,	1.1 1.6 13.7 1.0	1 34 155 15
1171 1172 1173 1174 1175	Combining cross-crystal averaging and MRSAD to phase a 4354-amino-acid structure. Acta Crystallographica Section D: Structural Biology, 2016, 72, 182-191. An Antibody Biosensor Establishes the Activation of the M1 Muscarinic Acetylcholine Receptor during Learning and Memory. Journal of Biological Chemistry, 2016, 291, 8862-8875. Backbone NMR reveals allosteric signal transduction networks in the β1-adrenergic receptor. Nature, 2016, 530, 237-241. Structural determinants of subtype selectivity and functional activity of angiotensin II receptors. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1355-1359. New Technologies for Elucidating Opioid Receptor Function. Trends in Pharmacological Sciences, 2016, 37, 279-289. Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Archives of Pharmacal	1.1 1.6 13.7 1.0 4.0	1 34 155 15 61

#	Article	IF	CITATIONS
1179	The untapped potential of tyrosine-based G protein signaling. Pharmacological Research, 2016, 105, 99-107.	3.1	10
1180	Distinct antibody species: structural differences creating therapeutic opportunities. Current Opinion in Immunology, 2016, 40, 7-13.	2.4	47
1181	A class of rigid linker-bearing glucosides for membrane protein structural study. Chemical Science, 2016, 7, 1933-1939.	3.7	39
1182	Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies. Journal of the American Chemical Society, 2016, 138, 3789-3796.	6.6	56
1183	Biased agonism: An emerging paradigm in GPCR drug discovery. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 241-250.	1.0	214
1184	Structural signatures of DRD4 mutants revealed using molecular dynamics simulations: Implications for drug targeting. Journal of Molecular Modeling, 2016, 22, 14.	0.8	6
1185	Nanobodies as Probes for Protein Dynamics in Vitro and in Cells. Journal of Biological Chemistry, 2016, 291, 3767-3775.	1.6	84
1186	Design of Next-Generation G Protein–Coupled Receptor Drugs: Linking Novel Pharmacology and In Vivo Animal Models. Annual Review of Pharmacology and Toxicology, 2016, 56, 535-559.	4.2	26
1187	Understanding the molecular basis of agonist/antagonist mechanism of GPER1/GPR30 through structural and energetic analyses. Journal of Steroid Biochemistry and Molecular Biology, 2016, 158, 104-116.	1.2	23
1188	Allosteric signaling through an mGlu2 and 5-HT _{2A} heteromeric receptor complex and its potential contribution to schizophrenia. Science Signaling, 2016, 9, ra5.	1.6	91
1189	Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes. Journal of Leukocyte Biology, 2016, 99, 869-882.	1.5	140
1190	Characterization of the Domain Orientations of E.Âcoli 5′-Nucleotidase by Fitting an Ensemble of Conformers to DEER Distance Distributions. Structure, 2016, 24, 43-56.	1.6	19
1191	Neurobiological Insights from mGlu Receptor Allosteric Modulation. International Journal of Neuropsychopharmacology, 2016, 19, pyv133.	1.0	10
1192	A Hydrogen-Bonded Polar Network in the Core of the Glucagon-Like Peptide-1 Receptor Is a Fulcrum for Biased Agonism: Lessons from Class B Crystal Structures. Molecular Pharmacology, 2016, 89, 335-347.	1.0	56
1193	The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. Journal of Biological Chemistry, 2016, 291, 508-520.	1.6	63
1194	How Can Mutations Thermostabilize G-Protein-Coupled Receptors?. Trends in Pharmacological Sciences, 2016, 37, 37-46.	4.0	73
1195	Unravelling intrinsic efficacy and ligand bias at G protein coupled receptors: A practical guide to assessing functional data. Biochemical Pharmacology, 2016, 101, 1-12.	2.0	43
1196	Molecular modelling of human 5-hydroxytryptamine receptor (5-HT _{2A}) and virtual screening studies towards the identification of agonist and antagonist molecules. Journal of Biomolecular Structure and Dynamics, 2016, 34, 952-970.	2.0	33

#	Article	IF	CITATIONS
1197	Gonadotropin-Releasing Hormones. , 2016, , 2003-2022.e7.		1
1198	Atomistic molecular dynamics simulations of typical and atypical antipsychotic drugs at the dopamine D2 receptor (D2R) elucidates their inhibition mechanism. Journal of Biomolecular Structure and Dynamics, 2017, 35, 738-754.	2.0	14
1199	Theoretical Aspects of GPCR–Ligand Complex Pharmacology. Chemical Reviews, 2017, 117, 4-20.	23.0	67
1200	Structurally Enabled Discovery of Adenosine A _{2A} Receptor Antagonists. Chemical Reviews, 2017, 117, 21-37.	23.0	64
1201	Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chemical Reviews, 2017, 117, 186-245.	23.0	104
1202	Application of advanced X-ray methods in life sciences. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3671-3685.	1.1	14
1203	The signaling pathway of dopamine D2 receptor (D2R) activation using normal mode analysis (NMA) and the construction of pharmacophore models for D2R ligands. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2040-2048.	2.0	13
1204	Structural basis of ligand interaction with atypical chemokine receptor 3. Nature Communications, 2017, 8, 14135.	5.8	83
1205	Diversityâ€Oriented Peptide Stapling: A Third Generation Copper atalysed Azide–Alkyne Cycloaddition Stapling and Functionalisation Strategy. Chemistry - A European Journal, 2017, 23, 3490-3495.	1.7	21
1206	Structural Determinants of Constitutive Activation of $\hat{Gl_{\pm}}$ Proteins: Transducin as a Paradigm. Journal of Chemical Theory and Computation, 2017, 13, 886-899.	2.3	10
1207	Single-Molecule Imaging Demonstrates Ligand Regulation of the Oligomeric Status of CXCR4 in Living Cells. Journal of Physical Chemistry B, 2017, 121, 1466-1474.	1.2	28
1208	Ric-8A-mediated stabilization of the trimeric G protein subunit Gαi is inhibited by pertussis toxin-catalyzed ADP-ribosylation. Biochemical and Biophysical Research Communications, 2017, 483, 941-945.	1.0	0
1209	Introduction: G-Protein Coupled Receptors. Chemical Reviews, 2017, 117, 1-3.	23.0	19
1210	HTS-compatible FRET-based conformational sensors clarify membrane receptor activation. Nature Chemical Biology, 2017, 13, 372-380.	3.9	52
1211	Allosteric "beta-blocker―isolated from a DNA-encoded small molecule library. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1708-1713.	3.3	118
1212	An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacological Research, 2017, 117, 303-327.	3.1	90
1213	Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Methods, 2017, 116, 12-22.	1.9	6
1214	Elucidation of Single Hydrogen Bonds in GTPases via Experimental and Theoretical Infrared Spectroscopy. Biophysical Journal, 2017, 112, 66-77.	0.2	11

	Стато	CITATION REPORT		
# 1215	ARTICLE Crystal Structure of an LSD-Bound Human Serotonin Receptor. Cell, 2017, 168, 377-389.e12.	IF 13.5	Citations 340	
1216	Targeting a Proteinase-Activated Receptor 4 (PAR4) Carboxyl Terminal Motif to Regulate Platelet Function. Molecular Pharmacology, 2017, 91, 287-295.	1.0	23	
1217	A New Molecular Mechanism To Engineer Protean Agonism at a G Protein–Coupled Receptor. Molecular Pharmacology, 2017, 91, 348-356.	1.0	13	
1218	Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nature Communications, 2017, 8, 14523.	5.8	36	
1219	Coarse-Grained Prediction of Peptide Binding to G-Protein Coupled Receptors. Journal of Chemical Information and Modeling, 2017, 57, 562-571.	2.5	17	
1220	Core engagement with \hat{l}^2 -arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Molecular Biology of the Cell, 2017, 28, 1003-1010.	0.9	87	
1221	7 × 7 RMSD matrix: A new method for quantitative comparison of the transmembrane domain structures in the G-protein coupled receptors. Journal of Structural Biology, 2017, 199, 87-101.	1.3	4	
1222	Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool. Proteomics, 2017, 17, 1700002.	1.3	41	
1223	Analysis of the Clutamate Agonist LY404,039 Binding to Nonstatic Dopamine Receptor D2 Dimer Structures and Consensus Docking. ACS Chemical Neuroscience, 2017, 8, 1404-1415.	1.7	23	
1224	Signaling bias in drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 321-333.	2.5	56	
1225	Monobodies and other synthetic binding proteins for expanding protein science. Protein Science, 2017, 26, 910-924.	3.1	127	
1226	Quantification of Detergents Complexed with Membrane Proteins. Scientific Reports, 2017, 7, 41751.	1.6	66	
1227	A conformational study of protonated noradrenaline by UV–UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method. Physical Chemistry Chemical Physics, 2017, 19, 10777-10785.	1.3	27	
1228	Structural Analysis of Chemokine Receptor–Ligand Interactions. Journal of Medicinal Chemistry, 2017, 60, 4735-4779.	2.9	94	
1229	Propagation of the Allosteric Modulation Induced by Sodium in the Î′â€Opioid Receptor. Chemistry - A European Journal, 2017, 23, 4615-4624.	1.7	20	
1230	Common mechanisms of catalysis in small and heterotrimeric GTPases and their respective GAPs. Biological Chemistry, 2017, 398, 523-533.	1.2	19	
1231	G protein Signaling, Journeys Beyond the Plasma Membrane. Journal of the Indian Institute of Science, 2017, 97, 95-108.	0.9	7	
1232	β-arrestin signalling and bias in hormone-responsive GPCRs. Molecular and Cellular Endocrinology, 2017, 449, 28-41.	1.6	40	

ARTICLE IF CITATIONS Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational 1233 23 1.6 nanobody. Scientific Reports, 2017, 7, 46641. Structural and Functional Analysis of a \hat{l}^2 -Adrenergic Receptor Complex with GRK5. Cell, 2017, 169, 1234 13.5 407-421.e16. Effects of <scp>M</scp>1 and <scp>M</scp>4 activation on excitatory synaptic transmission in 1235 0.9 34 <scp>CA</scp>1. Hippocampus, 2017, 27, 794-810. Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123. 1236 424 Central Hypothyroidism Due to a TRHR Mutation Causing Impaired Ligand Affinity and Transactivation 1237 1.8 27 of Gq. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2433-2442. Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9, 735-741. 1238 2.6 Differences between Gâ€Proteinâ€Stabilized Agonist–GPCR Complexes and their Nanobodyâ€Stabilized 1239 7.2 19 Equivalents. Angewandte Chemie - International Edition, 2017, 56, 9008-9012. Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. Current Opinion in Structural Biology, 2017, 45, 1240 2.6 124-132. Differences between Gâ€Proteinâ€Stabilized Agonist–GPCR Complexes and their Nanobodyâ€Stabilized 1241 1.6 4 Equivalents. Angewandte Chemie, 2017, 129, 9136-9140. 1242 Selectivity determinants of GPCR–G-protein binding. Nature, 2017, 545, 317-322. 13.7 An Efficient Metadynamics-Based Protocol To Model the Binding Affinity and the Transition State Ensemble of G-Protein-Coupled Receptor Ligands. Journal of Chemical Information and Modeling, 2017, 1243 2.5 114 57, 1210-1217. Signalling under the microscope. Nature, 2017, 546, 36-37. 1244 13.7 The Roles of Water in the Protein Matrix: A Largely Untapped Resource for Drug Discovery. Journal of 1245 2.9 111 Medicinal Chemistry, 2017, 60, 6781-6827. $N\hat{a} \in glycosylation of the \hat{l}^2 < sub>2 < /sub> adrenergic receptor regulates receptor function by modulating dimerization. FEBS Journal, 2017, 284, 2004-2018.$ 1246 2.2 X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso 1247 1.2 7 membrane protein crystallization. Biomicrofluidics, 2017, 11, 024118. Exploring the Role of <i>N</i>⁶-Substituents in Potent Dual Acting 5′-<i>C</i>-Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and 1248 Antinociceptive Effects in Mice. Journal of Medicinal Chemistry, 2017, 60, 4327-4341. Impaired thromboxane receptor dimerization reduces signaling efficiency: A potential mechanism for 1249 2.0 12 reduced platelet function in vivo. Biochemical Pharmacology, 2017, 124, 43-56. Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chemical Reviews, 2017, 117, 156-185.

#	Article	IF	Citations
1251	Understanding the common themes and diverse roles of the second extracellular loop (ECL2) of the GPCR super-family. Molecular and Cellular Endocrinology, 2017, 449, 3-11.	1.6	70
1252	Signalling assemblies: the odds of symmetry. Biochemical Society Transactions, 2017, 45, 599-611.	1.6	9
1253	The G protein–coupled receptor GPR31 promotes membrane association of KRAS. Journal of Cell Biology, 2017, 216, 2329-2338.	2.3	24
1254	The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling. Pharmacological Reviews, 2017, 69, 256-297.	7.1	332
1255	Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature, 2017, 546, 312-315.	13.7	192
1256	Molecular mechanism of Cαi activation by non-GPCR proteins with a Cα-Binding and Activating motif. Nature Communications, 2017, 8, 15163.	5.8	39
1257	Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Research, 2017, 27, 728-747.	5.7	40
1258	The nucleotideâ€free state of heterotrimeric G proteins αâ€subunit adopts a highly stable conformation. FEBS Journal, 2017, 284, 2464-2481.	2.2	4
1259	Frustration-guided motion planning reveals conformational transitions in proteins. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1795-1807.	1.5	7
1260	Novel Structural Insights into GPCR–β-Arrestin Interaction and Signaling. Trends in Cell Biology, 2017, 27, 851-862.	3.6	90
1261	Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. Trends in Pharmacological Sciences, 2017, 38, 837-847.	4.0	106
1262	Structure-Based Discovery of GPCR Ligands from Crystal Structures and Homology Models. Topics in Medicinal Chemistry, 2017, , 65-99.	0.4	3
1263	Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature, 2017, 547, 68-73.	13.7	265
1264	Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2. Science Signaling, 2017, 10, .	1.6	33
1266	Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature, 2017, 546, 248-253.	13.7	465
1267	New approaches towards the understanding of integral membrane proteins: A structural perspective on G proteinâ€coupled receptors. Protein Science, 2017, 26, 1493-1504.	3.1	41
1268	Optogenetics for Vision Recovery: From Traditional to Designer Optogenetic Tools. , 0, , 337-355.		0
1269	Understanding the GPCR biased signaling through G protein and arrestin complex structures. Current Opinion in Structural Biology, 2017, 45, 150-159.	2.6	57

#	Article	IF	CITATIONS
1270	Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature, 2017, 546, 254-258.	13.7	155
1271	Preparation of functional human lysophosphatidic acid receptor 2 using a P9 â^— expression system and an amphipathic polymer and investigation of its inÂvitro binding preference to G α proteins. Biochemical and Biophysical Research Communications, 2017, 487, 103-108.	1.0	13
1272	Crystallization of Membrane Proteins: An Overview. Methods in Molecular Biology, 2017, 1607, 117-141.	0.4	16
1273	What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?. Annual Review of Biophysics, 2017, 46, 175-198.	4.5	81
1274	Structural mechanism of arrestin activation. Current Opinion in Structural Biology, 2017, 45, 160-169.	2.6	55
1275	<scp>A</scp> ctivation mechanisms of the first sphingosineâ€1â€phosphate receptor. Protein Science, 2017, 26, 1150-1160.	3.1	13
1276	Molecular Modelling Approaches for the Analysis of Histamine Receptors and Their Interaction with Ligands. Handbook of Experimental Pharmacology, 2017, 241, 31-61.	0.9	3
1277	Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling. Cell, 2017, 169, 338-349.e11.	13.5	221
1278	Investigating allosteric effects on the functional dynamics of β2-adrenergic ternary complexes with enhanced-sampling simulations. Chemical Science, 2017, 8, 4019-4026.	3.7	42
1279	Structural basis for selectivity and diversity in angiotensin II receptors. Nature, 2017, 544, 327-332.	13.7	174
1280	Structural heterogeneity of the μ-opioid receptor's conformational ensemble in the apo state. Scientific Reports, 2017, 7, 45761.	1.6	23
1281	Cannabinoid CB ₁ and CB ₂ Receptor Signaling and Bias. Cannabis and Cannabinoid Research, 2017, 2, 48-60.	1.5	165
1282	The DRY motif and the four corners of the cubic ternary complex model. Cellular Signalling, 2017, 35, 16-23.	1.7	14
1283	Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors. Scientific Reports, 2017, 7, 41154.	1.6	8
1284	Discovery of Novel Indazole Derivatives as Orally Available β ₃ -Adrenergic Receptor Agonists Lacking Off-Target-Based Cardiovascular Side Effects. Journal of Medicinal Chemistry, 2017, 60, 3252-3265.	2.9	11
1285	Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. Journal of Biological Chemistry, 2017, 292, 9865-9881.	1.6	24
1286	The GAPs, GEFs, GDIs and…now, GEMs: New kids on the heterotrimeric G protein signaling block. Cell Cycle, 2017, 16, 607-612.	1.3	40
1287	Histamine H2 Receptor Biased Signaling Methods. Methods in Pharmacology and Toxicology, 2017, , 67-114.	0.1	0

#	Article	IF	CITATIONS
1288	Resorcinareneâ€Based Facial Glycosides: Implication of Detergent Flexibility on Membraneâ€Protein Stability. Chemistry - A European Journal, 2017, 23, 6724-6729.	1.7	23
1289	Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handbook of Experimental Pharmacology, 2017, 241, 63-118.	0.9	4
1290	Integration on Ligand and Structure Based Approaches in GPCRs. Topics in Medicinal Chemistry, 2017, , 101-161.	0.4	1
1291	Structural basis for chemokine recognition by a G protein–coupled receptor and implications for receptor activation. Science Signaling, 2017, 10, .	1.6	74
1292	An aromatic amino acid within intracellular loop 2 of the prostaglandin EP2 receptor is a prerequisite for selective association and activation of Gαs. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 615-622.	1.2	5
1293	Mutation-Induced Functional Alterations of CCR6. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 106-116.	1.3	14
1294	Structure and activation of the TSH receptor transmembrane domain. Autoimmunity Highlights, 2017, 8, 2.	3.9	20
1295	Biological Insights of the Dopaminergic Stabilizer ACR16 at the Binding Pocket of Dopamine D2 Receptor. ACS Chemical Neuroscience, 2017, 8, 826-836.	1.7	15
1296	Identification of Crucial Amino Acid Residues Involved in Agonist Signaling at the GPR55 Receptor. Biochemistry, 2017, 56, 473-486.	1.2	21
1297	Quaternary structure of the yeast pheromone receptor Ste2 in living cells. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1456-1464.	1.4	28
1298	Mechanisms of immunomodulation by mammalian and viral decoy receptors: insights from structures. Nature Reviews Immunology, 2017, 17, 112-129.	10.6	55
1299	Beta2-adrenergic receptor homodimers: Role of transmembrane domain 1 and helix 8 in dimerization and cell surface expression. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1445-1455.	1.4	27
1300	Analyzing biased responses of GPCR ligands. Current Opinion in Pharmacology, 2017, 32, 71-76.	1.7	14
1301	The nanoscience behind the art of in-meso crystallization of membrane proteins. Nanoscale, 2017, 9, 754-763.	2.8	30
1302	Overexpression and Functional Stabilization of Recombinant Human Lysophosphatidic Acid Receptor 1 Using an Amphiphatic Polymer. Bulletin of the Korean Chemical Society, 2017, 38, 63-69.	1.0	8
1303	Toward Understanding the Structural Basis of Partial Agonism at the Dopamine D ₃ Receptor. Journal of Medicinal Chemistry, 2017, 60, 580-593.	2.9	49
1304	Nanobodies to Study G Protein–Coupled Receptor Structure and Function. Annual Review of Pharmacology and Toxicology, 2017, 57, 19-37.	4.2	201
1305	Potential of GPCR-Targeting Insecticides for Control of Arthropod Vectors. ACS Symposium Series, 2017, , 55-84.	0.5	3

#	Article	IF	Citations
1306	Dendronic trimaltoside amphiphiles (DTMs) for membrane protein study. Chemical Science, 2017, 8, 8315-8324.	3.7	21
1307	Typâ€Bâ€GPCR‧trukturen verdeutlichen Aktivierungsmechanismus. Angewandte Chemie, 2017, 129, 12584-12586.	1.6	0
1308	Structural Basis for G Protein-Coupled Receptor Activation. Biochemistry, 2017, 56, 5628-5634.	1.2	136
1309	Click-Chemistry-Mediated Synthesis of Selective Melanocortin Receptor 4 Agonists. Journal of Medicinal Chemistry, 2017, 60, 8716-8730.	2.9	17
1310	Activation-Induced Conformational Changes of Dopamine D3 Receptor Promote the Formation of the Internal Water Channel. Scientific Reports, 2017, 7, 12792.	1.6	9
1311	Genetic variants affecting equivalent protein family positions reflect human diversity. Scientific Reports, 2017, 7, 12771.	1.6	8
1312	Peroxiredoxin 6 mediates GÎ \pm i protein-coupled receptor inactivation by cJun kinase. Nature Communications, 2017, 8, 743.	5.8	41
1313	Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT _{1A} receptor in the treatment of major depressive disorder. Physical Chemistry Chemical Physics, 2017, 19, 28885-28896.	1.3	41
1314	Strategy for the Thermostabilization of an Agonist-Bound GPCR Coupled to a G Protein. Methods in Enzymology, 2017, 594, 243-264.	0.4	11
1315	Single-molecule imaging reveals receptor–G protein interactions at cell surface hot spots. Nature, 2017, 550, 543-547.	13.7	258
1316	Development of novel biosensors to study receptor-mediated activation of the G-protein α subunits Gs and Golf. Journal of Biological Chemistry, 2017, 292, 19989-19998.	1.6	14
1317	D ₄ dopamine receptor high-resolution structures enable the discovery of selective agonists. Science, 2017, 358, 381-386.	6.0	176
1318	Structure, Dynamics, and Modulation of Metabotropic Glutamate Receptors. Receptors, 2017, , 129-147.	0.2	1
1319	Shining a light on GPCR complexes. Journal of Biological Chemistry, 2017, 292, 14290-14291.	1.6	0
1320	Lipidic Cubic Phase-Induced Membrane Protein Crystallization: Interplay Between Lipid Molecular Structure, Mesophase Structure and Properties, and Crystallogenesis. Crystal Growth and Design, 2017, 17, 5667-5674.	1.4	16
1321	A kinetic view of GPCR allostery and biased agonism. Nature Chemical Biology, 2017, 13, 929-937.	3.9	126
1322	Structure-Guided Screening for Functionally Selective D ₂ Dopamine Receptor Ligands from a Virtual Chemical Library. ACS Chemical Biology, 2017, 12, 2652-2661.	1.6	32
1323	Characterizing clinically relevant natural variants of GPCRs using computational approaches. Methods in Cell Biology, 2017, 142, 187-204.	0.5	7

ARTICLE IF CITATIONS # Designing Safer Analgesics via Î¹/4-Opioid Receptor Pathways. Trends in Pharmacological Sciences, 2017, 1324 4.0 53 38, 1016-1037. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes, Obesity and Metabolism, 2017, 19, 4-21. 2.2 Limiting Assumptions in the Design of Peptidomimetics. Drug Development Research, 2017, 78, 245-267. 17 1326 1.4 ER/K linked GPCR-G protein fusions systematically modulate second messenger response in cells. 1327 Scientific Reports, 2017, 7, 7749. Receptor Quaternary Organization Explains GÂProtein-Coupled Receptor Family Structure. Cell 1328 2.9 40 Reports, 2017, 20, 2654-2665. The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by using a Two-faced Binding Pocket. Scientific Reports, 2017, 7, 7753. 1329 1.6 Alamandine reverses hyperhomocysteinemiaâ€induced vascular dysfunction via 1330 1.1 32 <scp>PKA</scp>â€dependent mechanisms. Cardiovascular Therapeutics, 2017, 35, e12306. Class A GPCR: Serotonin Receptors., 2017, , 129-172. 1331 Class A GPCR: Light Sensing G Protein-Coupled Receptor – Focus on Rhodopsin Dimer. , 2017, , 79-97. 1332 14 Class B GPCR: Receptors and RAMPs., 2017, , 289-305. Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular 1334 1 Dynamics Modeling and Experimental Approaches., 2017, , 385-414. Allosterism Within GPCR Oligomers: Back to Symmetry., 2017, , 433-450. 1335 Agonist-induced dimer dissociation as a macromolecular step in G protein-coupled receptor signaling. 1336 5.8 57 Nature Communications, 2017, 8, 226. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene 5.8 140 transcription. Nature Communications, 2017, 8, 443. <i>Stachel</i> -independent modulation of GPR56/ADGRG1 signaling by synthetic ligands directed to its 1338 extracellular region. Proceedings of the National Academy of Sciences of the United States of 3.3 61 America, 2017, 114, 10095-10100. Methylating mushrooms. Nature Chemical Biology, 2017, 13, 821-822. 3.9 Full monty of family B GPCRs. Nature Chemical Biology, 2017, 13, 819-821. 1340 3.9 14 Rapid and accurate assessment of GPCR–ligand interactions Using the fragment molecular 1341 orbitalâ€based densityâ€functional tightâ€binding method. Journal of Computational Chemistry, 2017, 38, 1.5 44 1987-1990.

#	Article	IF	Citations
1342	How Ligands Illuminate GPCR Molecular Pharmacology. Cell, 2017, 170, 414-427.	13.5	419
1343	Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs. Biochemical Pharmacology, 2017, 142, 96-110.	2.0	30
1344	Ligand chain length drives activation of lipid G protein-coupled receptors. Scientific Reports, 2017, 7, 2020.	1.6	40
1345	Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand. Scientific Reports, 2017, 7, 4944.	1.6	14
1346	Structural insights into the extracellular recognition of the human serotonin 2B receptor by an antibody. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8223-8228.	3.3	54
1347	Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocrine Connections, 2017, 6, R99-R120.	0.8	56
1348	Identification of α-helix 4 (α4) of Rab11a as a novel Rab11-binding domain (RBD): Interaction of Rab11a with the Prostacyclin Receptor. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1819-1832.	1.9	4
1349	The cubicon method for concentrating membrane proteins in the cubic mesophase. Nature Protocols, 2017, 12, 1745-1762.	5.5	31
1350	Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Translational Psychiatry, 2017, 7, e1184-e1184.	2.4	54
1351	Structural dynamics of Gi $\hat{l}\pm$ protein revealed by single molecule FRET. Biochemical and Biophysical Research Communications, 2017, 491, 603-608.	1.0	7
1352	Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548, 480-484.	13.7	148
1353	Cryoâ€EM Structures of Class B GPCR Reveal the Activation Mechanism. Angewandte Chemie - International Edition, 2017, 56, 12412-12414.	7.2	3
1354	Identification of Histamine H3 Receptor Ligands Using a New Crystal Structure Fragment-based Method. Scientific Reports, 2017, 7, 4829.	1.6	10
1355	Gαs protein binds ubiquitin to regulate epidermal growth factor receptor endosomal sorting. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13477-13482.	3.3	10
1356	Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Nature Communications, 2017, 8, 1967.	5.8	66
1357	Gαi is required for carvedilol-induced β1 adrenergic receptor β-arrestin biased signaling. Nature Communications, 2017, 8, 1706.	5.8	83
1358	Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods. Methods in Cell Biology, 2017, 142, 173-186.	0.5	3
1359	Insight into partial agonism by observing multiple equilibria for ligand-bound and Gs-mimetic nanobody-bound β1-adrenergic receptor. Nature Communications, 2017, 8, 1795.	5.8	92

#	ARTICLE Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein.	IF	CITATIONS
1360	Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10319-E10328.	3.3	21
1361	Extending the Structural View of Class B GPCRs. Trends in Biochemical Sciences, 2017, 42, 946-960.	3.7	109
1362	Molecular recognition in olfaction. Advances in Physics: X, 2017, 2, 937-977.	1.5	11
1363	Structural basis of arrestin-3 activation and signaling. Nature Communications, 2017, 8, 1427.	5.8	92
1364	Isopeptide and ester bond ubiquitination both regulate degradation of the human dopamine receptor 4. Journal of Biological Chemistry, 2017, 292, 21623-21630.	1.6	17
1365	Design of MC1R Selective Î ³ -MSH Analogues with Canonical Amino Acids Leads to Potency and Pigmentation. Journal of Medicinal Chemistry, 2017, 60, 9320-9329.	2.9	17
1366	Isolation and structure–function characterization of a signaling-active rhodopsin–G protein complex. Journal of Biological Chemistry, 2017, 292, 14280-14289.	1.6	22
1367	Coding GPCR-G protein specificity. Cell Research, 2017, 27, 1193-1194.	5.7	8
1368	Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature, 2017, 547, 468-471.	13.7	379
1369	Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR. Journal of Cell Biology, 2017, 216, 2945-2958.	2.3	28
1370	Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity. Scientific Reports, 2017, 7, 4394.	1.6	50
1371	Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nature Structural and Molecular Biology, 2017, 24, 570-577.	3.6	157
1372	Frozen in action: cryo-EM structure of a GPCR–G-protein complex. Nature Structural and Molecular Biology, 2017, 24, 500-502.	3.6	10
1373	Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling. Molecular Pharmacology, 2017, 91, 65-73.	1.0	9
1374	Contribution of heteromerization to G protein-coupled receptor function. Current Opinion in Pharmacology, 2017, 32, 23-31.	1.7	51
1375	Clinically Approved Ion Channel Inhibitors Close Gates for Hepatitis C Virus and Open Doors for Drug Repurposing in Infectious Viral Diseases. Journal of Virology, 2017, 91, .	1.5	19
1376	GPCRs through the keyhole: the role of protein flexibility in ligand binding to β-adrenoceptors. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2604-2619.	2.0	5
1377	Structureâ€based discovery of novel US28 small molecule ligands with different modes of action. Chemical Biology and Drug Design, 2017, 89, 289-296.	1.5	10

#	Article	IF	Citations
1378	Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT _{2C} Receptor Underlying the Pharmacology of Distinct Ligands. ACS Chemical Neuroscience, 2017, 8, 28-39.	1.7	9
1379	Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expression and Purification, 2017, 129, 31-43.	0.6	20
1380	Estimation of the receptor-state affinity constants of ligands in functional studies using wild type and constitutively active mutant receptors: Implications for estimation of agonist bias. Journal of Pharmacological and Toxicological Methods, 2017, 83, 94-106.	0.3	3
1381	Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nature Methods, 2017, 14, 49-52.	9.0	221
1382	GPCR Dynamics: Structures in Motion. Chemical Reviews, 2017, 117, 139-155.	23.0	561
1383	Biochemical features of the adhesion G protein-coupled receptor CD97 related to its auto-proteolysis and HeLa cell attachment activities. Acta Pharmacologica Sinica, 2017, 38, 56-68.	2.8	6
1384	Molecular Dynamics Methodologies for Probing Cannabinoid Ligand/Receptor Interaction. Methods in Enzymology, 2017, 593, 449-490.	0.4	11
1385	Methods for the Development of In Silico GPCR Models. Methods in Enzymology, 2017, 593, 405-448.	0.4	17
1386	Mass Spectrometry Analysis of Human CB2 Cannabinoid Receptor and Its Associated Proteins. Methods in Enzymology, 2017, 593, 371-386.	0.4	2
1387	Evolutionary action and structural basis of the allosteric switch controlling \hat{I}^2 2AR functional selectivity. Nature Communications, 2017, 8, 2169.	5.8	61
1388	Structural Features and Ligand Selectivity for 10 Intermediates in the Activation Process of β ₂ -Adrenergic Receptor. ACS Omega, 2017, 2, 8557-8567.	1.6	7
1389	Title is missing!. Kagaku To Seibutsu, 2017, 55, 74-77.	0.0	0
1390	Photoactivation Mechanism of Rhodopsin as Structural Changes of Retinal and Protein Parts. Seibutsu Butsuri, 2017, 57, 254-256.	0.0	0
1391	Structures of Non-rhodopsin GPCRs Elucidated Through X-Ray Crystallography. Topics in Medicinal Chemistry, 2017, , 1-26.	0.4	0
1392	Deutsche Gesellschaft für Kristallographie. , 2017, , 1-141.		0
1393	Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Frontiers in Pharmacology, 2017, 8, 898.	1.6	69
1394	Protein Hardware for Signaling. , 2017, , 425-442.		0
1395	The potential of cryo-electron microscopy for structure-based drug design. Essays in Biochemistry, 2017, 61, 543-560.	2.1	34

#	Article	IF	Citations
1396	Recent Advances and Applications of Molecular Docking to G Protein-Coupled Receptors. Molecules, 2017, 22, 340.	1.7	51
1397	G-Protein coupled receptors: answers from simulations. Beilstein Journal of Organic Chemistry, 2017, 13, 1071-1078.	1.3	17
1398	Sphingosine 1-Phosphate Receptor 1 Signaling in Mammalian Cells. Molecules, 2017, 22, 344.	1.7	64
1399	Novel Structural Approaches to Study GPCR Regulation. International Journal of Molecular Sciences, 2017, 18, 27.	1.8	21
1400	ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms?. Frontiers in Endocrinology, 2017, 8, 13.	1.5	56
1401	Distinct Conformational Dynamics of Three G Protein-Coupled Receptors Measured Using FlAsH-BRET Biosensors. Frontiers in Endocrinology, 2017, 8, 61.	1.5	24
1402	Structural–Functional Features of the Thyrotropin Receptor: A Class A G-Protein-Coupled Receptor at Work. Frontiers in Endocrinology, 2017, 8, 86.	1.5	73
1403	Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding. Frontiers in Endocrinology, 2017, 8, 274.	1.5	56
1404	Under the Microscope: Single-Domain Antibodies for Live-Cell Imaging and Super-Resolution Microscopy. Frontiers in Immunology, 2017, 8, 1030.	2.2	84
1405	Ligand modulation of sidechain dynamics in a wild-type human GPCR. ELife, 2017, 6, .	2.8	75
1406	Signaling within Allosteric Machines: Signal Transmission Pathways Inside G Protein-Coupled Receptors. Molecules, 2017, 22, 1188.	1.7	11
1407	Modeling and Design for Membrane Protein Targets. , 2017, , 145-188.		3
1408	Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS ONE, 2017, 12, e0173889.	1.1	19
1409	Structural features embedded in G protein-coupled receptor co-crystal structures are key to their success in virtual screening. PLoS ONE, 2017, 12, e0174719.	1.1	11
1410	Mini-G proteins: Novel tools for studying GPCRs in their active conformation. PLoS ONE, 2017, 12, e0175642.	1.1	206
1411	CP5 system, for simple and highly efficient protein purification with a C-terminal designed mini tag. PLoS ONE, 2017, 12, e0178246.	1.1	9
1412	Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods in Enzymology, 2017, 584, 59-97.	0.4	9
1413	Improving virtual screening of G protein-coupled receptors via ligand-directed modeling. PLoS Computational Biology, 2017, 13, e1005819.	1.5	8

#	Article	IF	CITATIONS
1414	Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case. Scientific Reports, 2017, 7, 8223.	1.6	27
1415	Drug Discovery Technologies: Current and Future Trends. , 2017, , 1-32.		4
1416	Conformational biosensors reveal allosteric interactions between heterodimeric AT1 angiotensin and prostaglandin F2α receptors. Journal of Biological Chemistry, 2017, 292, 12139-12152.	1.6	29
1418	Crosstalk Between 5-HT2A and mGlu2 Receptors: Implications in Schizophrenia and Its Treatment. , 2018, , 147-189.		1
1419	G _i - and G _s -coupled GPCRs show different modes of G-protein binding. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2383-2388.	3.3	64
1420	Mechanism of the C-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3036-3041.	3.3	111
1421	Deuteration and selective labeling of alanine methyl groups of β2-adrenergic receptor expressed in a baculovirus-insect cell expression system. Journal of Biomolecular NMR, 2018, 71, 185-192.	1.6	29
1422	Small molecules targeting heterotrimeric G proteins. European Journal of Pharmacology, 2018, 826, 169-178.	1.7	21
1423	Nanodelivery of a functional membrane receptor to manipulate cellular phenotype. Scientific Reports, 2018, 8, 3556.	1.6	15
1424	Structural Basis for G Protein–Coupled Receptor Signaling. Annual Review of Biophysics, 2018, 47, 1-18.	4.5	106
1425	Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. Journal of Immunology, 2018, 200, 3825-3839.	0.4	62
1426	Ligand-Triggered Structural Changes in the M ₂ Muscarinic Acetylcholine Receptor. Journal of Chemical Information and Modeling, 2018, 58, 1074-1082.	2.5	7
1427	Exploring GPCR–Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward. Journal of Physical Chemistry B, 2018, 122, 5727-5737.	1.2	68
1428	G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Reviews in the Neurosciences, 2018, 29, 703-726.	1.4	33
1429	Current understanding of the structure and function of family B GPCRs to design novel drugs. Hormones, 2018, 17, 45-59.	0.9	27
1430	Structural basis for GPR40 allosteric agonism and incretin stimulation. Nature Communications, 2018, 9, 1645.	5.8	62
1431	Structural basis of ligand binding modes at the neuropeptide YY1 receptor. Nature, 2018, 556, 520-524.	13.7	100
1432	A critical role for Arabidopsis <scp>MILDEW RESISTANCE LOCUS</scp> O2 in systemic acquired resistance. Plant Journal, 2018, 94, 1064-1082.	2.8	28

#	Article	IF	CITATIONS
1433	Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell, 2018, 173, 1254-1264.e11.	13.5	42
1434	Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Current Opinion in Neurobiology, 2018, 50, 171-178.	2.0	79
1435	Assessing the real-time activation of the cannabinoid CB1 receptor and the associated structural changes using a FRET biosensor. International Journal of Biochemistry and Cell Biology, 2018, 99, 114-124.	1.2	11
1436	GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4501-4506.	3.3	55
1437	Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends in Pharmacological Sciences, 2018, 39, 547-559.	4.0	43
1438	Structural Basis of Arrestin-Dependent Signal Transduction. Trends in Biochemical Sciences, 2018, 43, 412-423.	3.7	60
1439	Design of ultra-swollen lipidic mesophases for the crystallization of membrane proteins with large extracellular domains. Nature Communications, 2018, 9, 544.	5.8	69
1440	Arrestins: structural disorder creates rich functionality. Protein and Cell, 2018, 9, 986-1003.	4.8	23
1441	5-HT2C Receptor Structures Reveal the Structural Basis of GPCR Polypharmacology. Cell, 2018, 172, 719-730.e14.	13.5	185
1442	Subcellular Organization of GPCR Signaling. Trends in Pharmacological Sciences, 2018, 39, 200-208.	4.0	187
1443	Membrane lipid environment: Potential modulation of chemokine receptor function. Cytokine, 2018, 109, 72-75.	1.4	8
1444	Identifying Functional Hotspot Residues for Biased Ligand Design in G-Protein-Coupled Receptors. Molecular Pharmacology, 2018, 93, 288-296.	1.0	42
1445	Unraveling Allosteric Mechanisms of Enzymatic Catalysis with an Evolutionary Analysis of Residue–Residue Contact Dynamical Changes. ACS Catalysis, 2018, 8, 2375-2384.	5.5	18
1446	The molecular basis of subtype selectivity of human kinin G-protein-coupled receptors. Nature Chemical Biology, 2018, 14, 284-290.	3.9	74
1447	Phosphorylation-induced conformation of \hat{I}^22 -adrenoceptor related to arrestin recruitment revealed by NMR. Nature Communications, 2018, 9, 194.	5.8	66
1448	Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nature Structural and Molecular Biology, 2018, 25, 289-296.	3.6	360
1449	A mechanism for agonist activation of the glucagon-like peptide-1 (GLP-1) receptor through modelling & molecular dynamics. Biochemical and Biophysical Research Communications, 2018, 498, 359-365.	1.0	10
1450	Binding-Site Compatible Fragment Growing Applied to the Design of β ₂ -Adrenergic Receptor Ligands. Journal of Medicinal Chemistry, 2018, 61, 1118-1129.	2.9	39

#	Article	IF	CITATIONS
1451	Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature, 2018, 555, 269-273.	13.7	341
1452	The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin. Journal of Biological Chemistry, 2018, 293, 4403-4410.	1.6	9
1453	Fluorescence Approaches Unravel Spatial and Temporal Aspects of GPCR Organisation, Location, and Intracellular Signalling. Trends in Pharmacological Sciences, 2018, 39, 91-92.	4.0	4
1454	Allosteric Coupling of Drug Binding and Intracellular Signaling in the A2A Adenosine Receptor. Cell, 2018, 172, 68-80.e12.	13.5	173
1455	Intracellular Transfer of Na+ in an Active-State G-Protein-Coupled Receptor. Structure, 2018, 26, 171-180.e2.	1.6	77
1456	Insights into the binding of agonist and antagonist to TAS2R16 receptor: a molecular simulation study. Molecular Simulation, 2018, 44, 322-329.	0.9	10
1457	Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. Nature Chemical Biology, 2018, 14, 262-269.	3.9	80
1458	Structure and dynamics of GPCR signaling complexes. Nature Structural and Molecular Biology, 2018, 25, 4-12.	3.6	638
1459	Gs protein peptidomimetics as allosteric modulators of the β2-adrenergic receptor. RSC Advances, 2018, 8, 2219-2228.	1.7	9
1460	A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry, 2018, 57, 839-851.	1.2	21
1461	Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature, 2018, 553, 111-114.	13.7	110
1462	Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell, 2018, 172, 55-67.e15.	13.5	299
1463	Biased signalling: from simple switches to allosteric microprocessors. Nature Reviews Drug Discovery, 2018, 17, 243-260.	21.5	524
1464	Tracing the evolution of the heterotrimeric G protein α subunit in Metazoa. BMC Evolutionary Biology, 2018, 18, 51.	3.2	17
1465	GPCRs and Signal Transducers: Interaction Stoichiometry. Trends in Pharmacological Sciences, 2018, 39, 672-684.	4.0	54
1466	Structural Properties of the Human Protease-Activated Receptor 1 Changing by a Strong Antagonist. Structure, 2018, 26, 829-838.e4.	1.6	13
1467	Emerging Paradigm of Intracellular Targeting of G Protein-Coupled Receptors. Trends in Biochemical Sciences, 2018, 43, 533-546.	3.7	34
1468	Dynamic tuneable G protein-coupled receptor monomer-dimer populations. Nature Communications, 2018, 9, 1710.	5.8	92

#	Article	IF	CITATIONS
1469	Sequence, Structure, and Expression of Opsins in the Monochromatic Stomatopod Squilla empusa. Integrative and Comparative Biology, 2018, 58, 386-397.	0.9	6
1470	Structural Investigation of the Dopamine-2 Receptor Agonist Bromocriptine Binding to Dimeric D2HighR and D2LowR States. Journal of Chemical Information and Modeling, 2018, 58, 826-836.	2.5	3
1471	Enhanced Fluorescence Resonance Energy Transfer in G-Protein-Coupled Receptor Probes on Nanocoated Microscopy Coverslips. ACS Photonics, 2018, 5, 2225-2233.	3.2	7
1472	Peptide recognition, signaling and modulation of class B G protein-coupled receptors. Current Opinion in Structural Biology, 2018, 51, 53-60.	2.6	11
1473	Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Analytical Chemistry, 2018, 90, 5306-5313.	3.2	15
1474	An orphan G-protein-coupled receptor causes human gigantism and/or acromegaly: Molecular biology and clinical correlations. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 125-140.	2.2	26
1475	Characterization of a \hat{I}^22 adrenergic receptor protein precursor in the European eel (Anguilla anguilla) Tj ETQq0 () 0 rgBT /C 1.P	Verlock 107
1476	New opportunities for GPCR allosteric modulators. Future Medicinal Chemistry, 2018, 10, 707-710.	1.1	2
1477	GPR40-Mediated G <i>α</i> 12 Activation by Allosteric Full Agonists Highly Efficacious at Potentiating Glucose-Stimulated Insulin Secretion in Human Islets. Molecular Pharmacology, 2018, 93, 581-591.	1.0	21
1478	Serial Femtosecond Crystallography of G Protein–Coupled Receptors. Annual Review of Biophysics, 2018, 47, 377-397.	4.5	44
1479	Recent advances in the determination of G protein-coupled receptor structures. Current Opinion in Structural Biology, 2018, 51, 28-34.	2.6	51
1480	In Meso Crystallization of the Integral Membrane Glycerol 3-Phosphate Acyltransferase with Substrates. Crystal Growth and Design, 2018, 18, 2243-2258.	1.4	4
1481	Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist. Cell Discovery, 2018, 4, 12.	3.1	63
1482	Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein-lipid interactions. Scientific Reports, 2018, 8, 4456.	1.6	35
1483	The experiences of a biochemist in the evolving world of G protein-dependent signaling. Cellular Signalling, 2018, 41, 2-8.	1.7	2
1484	Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1. Auris Nasus Larynx, 2018, 45, 222-226.	0.5	17
1485	Recent Advances in Structure-Based Drug Design Targeting Class A G Protein-Coupled Receptors Utilizing Crystal Structures and Computational Simulations. Journal of Medicinal Chemistry, 2018, 61, 1-46.	2.9	92

1486Synthesis of novel and functionally selective nonâ€competitive muscarinic antagonists as chemical
probes. Chemical Biology and Drug Design, 2018, 91, 93-104.1.58

	CITATION RE	PORT	
#	Article	IF	Citations
			CHATORE
1487	G protein-coupled receptor kinases: Past, present and future. Cellular Signalling, 2018, 41, 17-24.	1.7	129
1488	Biased signaling of G protein-coupled receptors – From a chemokine receptor CCR7 perspective. General and Comparative Endocrinology, 2018, 258, 4-14.	0.8	25
1489	Changes in the plasma membrane in metabolic disease: impact of the membrane environment on G proteinâ€coupled receptor structure and function. British Journal of Pharmacology, 2018, 175, 4009-4025.	2.7	43
1490	G proteinâ€dependent signaling triggers a βâ€arrestinâ€scaffolded p70S6K/ rpS6 module that controls 5'TOP mRNA translation. FASEB Journal, 2018, 32, 1154-1169.	0.2	24
1491	Related GPCRs couple differently to G _s : preassociation between G protein and 5â€HT ₇ serotonin receptor reveals movement of Gα _s upon receptor activation. FASEB Journal, 2018, 32, 1059-1069.	0.2	27
1492	Elucidating structural and molecular mechanisms of β-arrestin-biased agonism at GPCRs via MS-based proteomics. Cellular Signalling, 2018, 41, 56-64.	1.7	17
1493	When Heterotrimeric G Proteins Are Not Activated by G Protein-Coupled Receptors: Structural Insights and Evolutionary Conservation. Biochemistry, 2018, 57, 255-257.	1.2	31
1494	Computer-Aided Drug Design Approaches to Study Key Therapeutic Targets in Alzheimer's Disease. Neuromethods, 2018, , 61-106.	0.2	2
1495	Engineering and purification of a thermostable, high-yield, variant of PfCRT, the Plasmodium falciparum chloroquine resistance transporter. Protein Expression and Purification, 2018, 141, 7-18.	0.6	5
1496	High-Resolution Crystallographic Analysis of AcrB Using Designed Ankyrin Repeat Proteins (DARPins). Methods in Molecular Biology, 2018, 1700, 3-24.	0.4	3
1497	Ligand-specific conformational transitions and intracellular transport are required for atypical chemokine receptor 3–mediated chemokine scavenging. Journal of Biological Chemistry, 2018, 293, 893-905.	1.6	35
1498	Ligand-induced action of the W2866.48 rotamer toggle switch in the β2-adrenergic receptor. Physical Chemistry Chemical Physics, 2018, 20, 581-594.	1.3	6
1499	Selective Cannabinoid 2 Receptor Stimulation Reduces Tubular Epithelial Cell Damage after Renal Ischemia-Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2018, 364, 287-299.	1.3	27
1500	Current and Future Challenges in GPCR Drug Discovery. Methods in Molecular Biology, 2018, 1705, 1-21.	0.4	18
1501	Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nature Chemical Biology, 2018, 14, 126-134.	3.9	141
1502	Pharmacogenomics of GPCR Drug Targets. Cell, 2018, 172, 41-54.e19.	13.5	464
1503	A Structural Framework for GPCR Chemogenomics: What's In a Residue Number?. Methods in Molecular Biology, 2018, 1705, 73-113.	0.4	6
1504	GPCRs: What Can We Learn from Molecular Dynamics Simulations?. Methods in Molecular Biology, 2018, 1705, 133-158.	0.4	13

#	Article	IF	CITATIONS
1505	Intramolecular and Intermolecular FRET Sensors for GPCRs – Monitoring Conformational Changes and Beyond. Trends in Pharmacological Sciences, 2018, 39, 123-135.	4.0	53
1506	Single-Molecule Imaging of GPCR Interactions. Trends in Pharmacological Sciences, 2018, 39, 109-122.	4.0	59
1507	Membrane Biophysics. , 2018, , .		0
1508	Role of protein dynamics in transmembrane receptor signalling. Current Opinion in Structural Biology, 2018, 48, 74-82.	2.6	26
1509	Muscarinic receptor oligomerization. Neuropharmacology, 2018, 136, 401-410.	2.0	15
1510	A QM protein–ligand investigation of antipsychotic drugs with the dopamine D2 Receptor (D2R). Journal of Biomolecular Structure and Dynamics, 2018, 36, 2668-2677.	2.0	6
1511	Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WormBook, 2018, 2018, 1-52.	5.3	34
1512	Comparative structural dynamic analysis of GTPases. PLoS Computational Biology, 2018, 14, e1006364.	1.5	18
1513	Using accelerated molecular dynamics simulation to shed light on the mechanism of activation/deactivation upon mutations for CCR5. RSC Advances, 2018, 8, 37855-37865.	1.7	9
1515	Probing the cooperative mechanism of the μ–δopioid receptor heterodimer by multiscale simulation. Physical Chemistry Chemical Physics, 2018, 20, 29969-29982.	1.3	24
1516	Aminopropyltrimethoxysilane-functionalized boron nitride nanotube based epoxy nanocomposites with simultaneous high thermal conductivity and excellent electrical insulation. Journal of Materials Chemistry A, 2018, 6, 20663-20668.	5.2	56
1517	Novel Insights in β-Adrenergic Receptor Signaling. , 2018, , 432-439.		Ο
1518	A split luciferase-based probe for quantitative proximal determination of Gαq signalling in live cells. Scientific Reports, 2018, 8, 17179.	1.6	16
1520	GPCR structure and function relationship: identification of a biased apelin receptor mutant. Biochemical Journal, 2018, 475, 3813-3826.	1.7	15
1521	Structural organization of a major neuronal G protein regulator, the RGS7-GÎ ² 5-R7BP complex. ELife, 2018, 7, .	2.8	18
1522	Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Frontiers in Endocrinology, 2018, 9, 707.	1.5	52
1524	GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis. Nature Communications, 2018, 9, 5224.	5.8	116
1525	Direct visualization of single-molecule membrane protein interactions in living cells. PLoS Biology, 2018, 16, e2006660.	2.6	25

		CITATION REPORT		
#	Article		IF	CITATIONS
1527	CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathogens, 2018,	14, e1007432.	2.1	27
1528	Structure and activity of lipid bilayer within a membrane-protein transporter. Proceedin National Academy of Sciences of the United States of America, 2018, 115, 12985-129	ngs of the 90.	3.3	119
1529	FZD ₅ is a $G\hat{I}$ + _q -coupled receptor that exhibits the function prototypical GPCRs. Science Signaling, 2018, 11, .	al hallmarks of	1.6	46
1530	Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and Î ² -Arrestins Affo Signaling. Frontiers in Pharmacology, 2018, 9, 1336.	ecting βAR	1.6	23
1531	Targeting G protein-coupled receptor signalling by blocking G proteins. Nature Review Discovery, 2018, 17, 789-803.	s Drug	21.5	121
1532	GPCRã, ʿã, ʿãfŠãƒ «ä¼é''ã®è‡é›ʿã³è©±. Nature Digest, 2018, 15, 33-35.		0.0	0
1533	Gain-of-function screen of α-transducin identifies an essential phenylalanine residue n effector activation. Journal of Biological Chemistry, 2018, 293, 17941-17952.	ecessary for full	1.6	5
1534	Exploring the free-energy landscape of GPCR activation. Proceedings of the National A Sciences of the United States of America, 2018, 115, 10327-10332.	cademy of	3.3	43
1535	Preassembled GPCR signaling complexes mediate distinct cellular responses to ultraloc concentrations. Science Signaling, 2018, 11, .	w ligand	1.6	36
1536	Structural biology of G proteinâ€coupled receptor signaling complexes. Protein Scienc 487-501.	e, 2019, 28,	3.1	41
1537	Computational Studies for Structure-Based Drug Designing Against Transmembrane R and Class A GPCRs. Frontiers in Physics, 2018, 6, .	eceptors: pLGICs	1.0	5
1538	Intervention Strategies into Glycoprotein Hormone Receptors for Modulating (Mal– Special Emphasis on the TSH Receptor. Hormone and Metabolic Research, 2018, 50, 8		0.7	10
1539	Analysis of Biased Agonism. Progress in Molecular Biology and Translational Science, 2	018, 160, 63-104.	0.9	17
1540	Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Biology, 2018, 14, 1059-1066.	Nature Chemical	3.9	155
1541	G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs. Sc 2018, 11, .	ence Signaling,	1.6	31
1542	Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signalin CXCR4-mediated HIV-entry and induce antibody effector functions. Biochemical Pharn 158, 413-424.		2.0	44
1543	Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Natu Communications, 2018, 9, 3712.	re	5.8	157
1544	Titer estimation for quality control (TEQC) method: A practical approach for optimal p protein complexes using the baculovirus expression vector system. PLoS ONE, 2018, 1	roduction of 3, e0195356.	1.1	14

#	Article	IF	CITATIONS
1545	A molecular dynamics study of adenylyl cyclase: The impact of ATP and G-protein binding. PLoS ONE, 2018, 13, e0196207.	1.1	19
1546	Rules of Engagement: GPCRs and G Proteins. ACS Pharmacology and Translational Science, 2018, 1, 73-83.	2.5	93
1547	G-Protein–Coupled Receptors in Heart Disease. Circulation Research, 2018, 123, 716-735.	2.0	184
1548	Crystal structure of rhodopsin in complex with a mini-G _o sheds light on the principles of G protein selectivity. Science Advances, 2018, 4, eaat7052.	4.7	65
1549	Toward an understanding of the structural basis of allostery in muscarinic acetylcholine receptors. Journal of General Physiology, 2018, 150, 1360-1372.	0.9	38
1550	Role of mGlu2 in the 5-HT2A receptor-dependent antipsychotic activity of clozapine in mice. Psychopharmacology, 2018, 235, 3149-3165.	1.5	15
1551	Trans and Cis Conformations of the Antihypertensive Drug Valsartan Respectively Lock the Inactive and Active-like States of Angiotensin II Type 1 Receptor: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2018, 58, 2123-2130.	2.5	8
1552	Mapping the Interface of a GPCR Dimer: A Structural Model of the A2A Adenosine and D2 Dopamine Receptor Heteromer. Frontiers in Pharmacology, 2018, 9, 829.	1.6	62
1553	Display Technologies for Generation of Ig Single Variable Domains. Methods in Molecular Biology, 2018, 1827, 129-144.	0.4	6
1554	The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nature Structural and Molecular Biology, 2018, 25, 823-832.	3.6	63
1555	A Series of Indole-Thiazole Derivatives Act as GPER Agonists and Inhibit Breast Cancer Cell Growth. ACS Medicinal Chemistry Letters, 2018, 9, 901-906.	1.3	15
1556	Bioluminescence resonance energy transfer-based biosensors allow monitoring of ligand- and transducer-mediated GPCR conformational changes. Communications Biology, 2018, 1, 106.	2.0	26
1557	Born This Way: Using Intrinsic Disorder to Map the Connections between SLITRKs, TSHR, and Male Sexual Orientation. Proteomics, 2018, 18, e1800307.	1.3	3
1558	Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert?. Biophysics Reports, 2018, 4, 115-122.	0.2	8
1559	Structural basis for signal recognition and transduction by platelet-activating-factor receptor. Nature Structural and Molecular Biology, 2018, 25, 488-495.	3.6	58
1560	The fine art of integral membrane protein crystallisation. Methods, 2018, 147, 150-162.	1.9	45
1561	Structural Basis of Smoothened Activation in Hedgehog Signaling. Cell, 2018, 174, 312-324.e16.	13.5	137
1562	Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nature Communications, 2018, 9, 1996.	5.8	65

#	Article	IF	CITATIONS
1563	New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. Journal of Medicinal Chemistry, 2018, 61, 9004-9029.	2.9	39
1564	Revealing the architecture of protein complexes by an orthogonal approach combining HDXMS, CXMS, and disulfide trapping. Nature Protocols, 2018, 13, 1403-1428.	5.5	21
1565	Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science, 2018, 360, .	6.0	773
1566	A Comprehensive Mutagenesis Screen of the Adhesion GPCR Latrophilin-1/ADGRL1. IScience, 2018, 3, 264-278.	1.9	46
1567	A Small Chaperone Improves Folding and Routing of Rhodopsin Mutants Linked to Inherited Blindness. IScience, 2018, 4, 1-19.	1.9	50
1568	Activation Dynamics of the Neurotensin G Protein-Coupled Receptor 1. Journal of Chemical Theory and Computation, 2018, 14, 4467-4473.	2.3	13
1569	Interplay between negative and positive design elements in Gα helical domains of G proteins determines interaction specificity toward RGS2. Biochemical Journal, 2018, 475, 2293-2304.	1.7	9
1570	Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. ELife, 2018, 7, .	2.8	219
1571	Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018, 90, .	16.4	93
1572	Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. International Review of Cell and Molecular Biology, 2018, 338, 1-58.	1.6	23
1573	Membrane Phospholipid Biosynthesis in Bacteria. , 2018, , 77-119.		2
1574	Gq activity- and β-arrestin-1 scaffolding-mediated ADGRG2/CFTR coupling are required for male fertility. ELife, 2018, 7, .	2.8	66
1575	Structural insights into G-protein-coupled receptor allostery. Nature, 2018, 559, 45-53.	13.7	255
1576	Identifying G protein-coupled receptor dimers from crystal packings. Acta Crystallographica Section D: Structural Biology, 2018, 74, 655-670.	1.1	18
1577	Illuminating GPCR Signaling by Cryo-EM. Trends in Cell Biology, 2018, 28, 591-594.	3.6	49
1578	Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor. ELife, 2018, 7, .	2.8	40
1579	The Rationale Behind This Workbook. Learning Materials in Biosciences, 2018, , 1-6.	0.2	0
1580	Human Bitter Taste Receptors Are Activated by Different Classes of Polyphenols. Journal of Agricultural and Food Chemistry, 2018, 66, 8814-8823.	2.4	65

#	Article	IF	Citations
1581	Exploring G Protein-Coupled Receptors (GPCRs) Ligand Space via Cheminformatics Approaches: Impact on Rational Drug Design. Frontiers in Pharmacology, 2018, 9, 128.	1.6	105
1582	Discovery of β-Arrestin Biased Ligands of 5-HT ₇ R. Journal of Medicinal Chemistry, 2018, 61, 7218-7233.	2.9	18
1583	GPCR-SAS: A web application for statistical analyses on G protein-coupled receptors sequences. PLoS ONE, 2018, 13, e0199843.	1.1	7
1584	Advances in Membrane Proteins. , 2018, , .		0
1585	Emerging strategies targeting CB2 cannabinoid receptor: Biased agonism and allosterism. Biochemical Pharmacology, 2018, 157, 8-17.	2.0	40
1586	Dominant Negative G Proteins Enhance Formation and Purification of Agonist-GPCR-G Protein Complexes for Structure Determination. ACS Pharmacology and Translational Science, 2018, 1, 12-20.	2.5	96
1587	Frizzleds as GPCRs – More Conventional Than We Thought!. Trends in Pharmacological Sciences, 2018, 39, 828-842.	4.0	54
1588	Calcium-sensing receptor residues with loss- and gain-of-function mutations are located in regions of conformational change and cause signalling bias. Human Molecular Genetics, 2018, 27, 3720-3733.	1.4	23
1589	Allosteric sodium binding cavity in GPR3: a novel player in modulation of AÎ ² production. Scientific Reports, 2018, 8, 11102.	1.6	13
1590	Exploring Protein Structure: Principles and Practice. Learning Materials in Biosciences, 2018, , .	0.2	3
1591	Independent Evolution of Strychnine Recognition by Bitter Taste Receptor Subtypes. Frontiers in Molecular Biosciences, 2018, 5, 9.	1.6	12
1592	Moving from Former to Future Frontiers. Learning Materials in Biosciences, 2018, , 227-247.	0.2	0
1593	Synthetic single domain antibodies for the conformational trapping of membrane proteins. ELife, 2018, 7, .	2.8	176
1594	How the ubiquitous GPCR receptor family selectively activates signalling pathways. Nature, 2018, 558, 529-530.	13.7	30
1595	Endocytosis of G Protein-Coupled Receptors and Their Ligands: Is There a Role in Metal Trafficking?. Cell Biochemistry and Biophysics, 2018, 76, 329-337.	0.9	6
1596	The curious case of Gαs gain-of-function in neoplasia. BMC Cancer, 2018, 18, 293.	1.1	17
1597	Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nature Communications, 2018, 9, 1242.	5.8	103
1598	MC4R agonism promotes durable weight loss in patients with leptin receptor deficiency. Nature Medicine, 2018, 24, 551-555.	15.2	219

#	Article	IF	CITATIONS
1599	CCR5 adopts three homodimeric conformations that control cell surface delivery. Science Signaling, 2018, 11, .	1.6	39
1600	Structural determinants of 5-HT2B receptor activation and biased agonism. Nature Structural and Molecular Biology, 2018, 25, 787-796.	3.6	116
1601	Biophysical and functional characterization of Norrin signaling through Frizzled4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8787-8792.	3.3	30
1602	A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics. Communications Biology, 2018, 1, 105.	2.0	36
1603	G protein–coupled receptor kinases (GRKs) orchestrate biased agonism at the β ₂ -adrenergic receptor. Science Signaling, 2018, 11, .	1.6	47
1604	Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature, 2018, 560, 666-670.	13.7	77
1605	Intracellular Binding Site for a Positive Allosteric Modulator of the Dopamine D1 Receptor. Molecular Pharmacology, 2018, 94, 1232-1245.	1.0	33
1606	Orthosteric and allosteric action of the C5a receptor antagonists. Nature Structural and Molecular Biology, 2018, 25, 472-481.	3.6	106
1607	Extrinsic Tryptophans as NMR Probes of Allosteric Coupling in Membrane Proteins: Application to the A _{2A} Adenosine Receptor. Journal of the American Chemical Society, 2018, 140, 8228-8235.	6.6	41
1608	Cardiovascular Receptors and Signaling in Heart Failure. , 2018, , 21-31.		1
1609	Cryo-EM in drug discovery: achievements, limitations and prospects. Nature Reviews Drug Discovery, 2018, 17, 471-492.	21.5	304
1610	"Disruptor―residues in the regulator of G protein signaling (RGS) R12 subfamily attenuate the inactivation of Gα subunits. Science Signaling, 2018, 11, .	1.6	13
1611	Cryo-EM structure of human rhodopsin bound to an inhibitory G protein. Nature, 2018, 558, 553-558.	13.7	230
1612	Structure of the µ-opioid receptor–Gi protein complex. Nature, 2018, 558, 547-552.	13.7	527
1613	The Molecular Basis of G Protein–Coupled Receptor Activation. Annual Review of Biochemistry, 2018, 87, 897-919.	5.0	734
1614	Unique pharmacological properties of serotoninergic C-protein coupled receptors from cestodes. PLoS Neglected Tropical Diseases, 2018, 12, e0006267.	1.3	24
1615	Computational design of orthogonal membrane receptor-effector switches for rewiring signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7051-7056.	3.3	14
1616	Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.	13.7	274

ARTICLE IF CITATIONS # Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature, 2018, 558, 13.7 183 1617 620-623. Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs, 2018, 10, 2.6 815-826. Cocaine Blocks Effects of Hunger Hormone, Ghrelin, Via Interaction with Neuronal Sigma-1 Receptors. 1619 1.9 13 Molecular Neurobiology, 2019, 56, 1196-1210. Insights into the Allosteric Mechanism of Setmelanotide (RM-493) as a Potent and First-in-Class Melanocortin-4 Receptor (MC4R) Agonist To Treat Rare Genetic Disorders of Obesity through an in Silico Approach. ACS Chemical Neuroscience, 2019, 10, 1055-1065. Gonadotropin Hormones and Their Receptors., 2019, , 25-57.e15. 1621 5 Prediction of Conformation Specific Thermostabilizing Mutations for Class A G Protein-Coupled 2.5 Receptors. Journal of Chemical Information and Modeling, 2019, 59, 3744-3754. Signal Transduction and Pathogenic Modifications at the Melanocortin-4 Receptor: A Structural 1623 1.5 24 Perspective. Frontiers in Endocrinology, 2019, 10, 515. Structural basis for GPCR-independent activation of heterotrimeric Gi proteins. Proceedings of the 1624 3.3 National Academy of Sciences of the United States of America, 2019, 116, 16394-16403. G-protein l²l³ subunits as multi-functional scaffolds and transducers in G-protein-coupled receptor 1625 2.4 50 signaling. Cellular and Molecular Life Sciences, 2019, 76, 4447-4459. Structural underpinnings of Ric8A function as a G-protein α-subunit chaperone and guanine-nucleotide 5.8 exchange factor. Nature Communications, 2019, 10, 3084. Chemical tools for membrane protein structural biology. Current Opinion in Structural Biology, 1627 2.6 13 2019, 58, 278-285. Structures of the Rhodopsin-Transducin Complex: Insights into G-Protein Activation. Molecular Cell, 4.5 74 Mechanistic Insights into Specific G Protein Interactions with Adenosine Receptors. Journal of 1629 1.2 80 Physical Chemistry B, 2019, 123, 6462-6473. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nature 5.8 Communications, 2019, 10, 3289. Conformational Transitions and the Activation of Heterotrimeric G Proteins by G Protein-Coupled 1631 2.513 Receptors. ACS Pharmacology and Translational Science, 2019, 2, 285-290. Mechanism of $\hat{l}^2 < sub> 2 < /sub> AR$ regulation by an intracellular positive allosteric modulator. Science, 2019, 364, 1283-1287. Structure and dynamics of dynorphin peptide and its receptor. Vitamins and Hormones, 2019, 111, 17-47. 1634 0.7 18 Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nature Structural and Molecular Biology, 2019, 26, 535-544.

#	Article	IF	CITATIONS
1636	Chemokine Receptor Crystal Structures: What Can Be Learned from Them?. Molecular Pharmacology, 2019, 96, 765-777.	1.0	25
1637	Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science, 2019, 365, 61-65.	6.0	117
1638	Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling. Nature Communications, 2019, 10, 4836.	5.8	18
1639	Synthesis, Purification, and Selective β2-AR Agonist and Bronchodilatory Effects of Catecholic Tetrahydroisoquinolines from Portulaca oleracea. Journal of Natural Products, 2019, 82, 2986-2993.	1.5	6
1640	Large-scale conformational rearrangement of the α5-helix of Cα subunits in complex with the guanine nucleotide exchange factor Ric8A. Journal of Biological Chemistry, 2019, 294, 17875-17882.	1.6	8
1641	Basal Histamine H ₄ Receptor Activation: Agonist Mimicry by the Diphenylalanine Motif. Chemistry - A European Journal, 2019, 25, 14613-14624.	1.7	11
1642	Understanding G Protein Selectivity of Muscarinic Acetylcholine Receptors Using Computational Methods. International Journal of Molecular Sciences, 2019, 20, 5290.	1.8	13
1643	Imaging neuromodulators with high spatiotemporal resolution using genetically encoded indicators. Nature Protocols, 2019, 14, 3471-3505.	5.5	33
1644	Identification of Gain and Loss of Function Missense Variants in MRGPRX2's Transmembrane and Intracellular Domains for Mast Cell Activation by Substance P. International Journal of Molecular Sciences, 2019, 20, 5247.	1.8	51
1645	Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Frontiers in Endocrinology, 2019, 10, 709.	1.5	41
1647	Role of GPCR signaling and calcium dysregulation in Alzheimer's disease. Molecular and Cellular Neurosciences, 2019, 101, 103414.	1.0	31
1648	Development of "Plug and Play―Fiducial Marks for Structural Studies of GPCR Signaling Complexes by Single-Particle Cryo-EM. Structure, 2019, 27, 1862-1874.e7.	1.6	19
1649	A guide to sample delivery systems for serial crystallography. FEBS Journal, 2019, 286, 4402-4417.	2.2	34
1650	Comparative Docking to Distinct G Protein–Coupled Receptor Conformations Exclusively Yields Ligands with Agonist Efficacy. Molecular Pharmacology, 2019, 96, 851-861.	1.0	16
1651	Universal Activation Index for Class A GPCRs. Journal of Chemical Information and Modeling, 2019, 59, 3938-3945.	2.5	17
1652	Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. International Journal of Molecular Sciences, 2019, 20, 4200.	1.8	83
1653	Structures of influenza A virus RNA polymerase offer insight into viral genome replication. Nature, 2019, 573, 287-290.	13.7	151
1654	Structural and Dynamical Basis of G Protein Inhibition by YM-254890 and FR900359: An Inhibitor in Action. Journal of Chemical Information and Modeling, 2019, 59, 4361-4373.	2.5	22

	Сітатіо	n Report	
#	Article	IF	CITATIONS
1655	Biased Signaling of CCL21 and CCL19 Does Not Rely on N-Terminal Differences, but Markedly on the Chemokine Core Domains and Extracellular Loop 2 of CCR7. Frontiers in Immunology, 2019, 10, 2156.	2.2	18
1657	Harnessing Ion-Binding Sites for GPCR Pharmacology. Pharmacological Reviews, 2019, 71, 571-595.	7.1	87
1658	Modeling and Structural Characterization of the Sweet Taste Receptor Heterodimer. ACS Chemical Neuroscience, 2019, 10, 4579-4592.	1.7	18
1659	The nature of efficacy at G protein-coupled receptors. Biochemical Pharmacology, 2019, 170, 113647.	2.0	23
1660	Molecular Mechanism of S1P Binding and Activation of the S1P1 Receptor. Journal of Chemical Information and Modeling, 2019, 59, 4402-4412.	2.5	20
1661	An online resource for GPCR structure determination and analysis. Nature Methods, 2019, 16, 151-162.	9.0	108
1662	Molecular Basis of Action of a Small-Molecule Positive Allosteric Modulator Agonist at the Type 1 Cholecystokinin Holoreceptor. Molecular Pharmacology, 2019, 95, 245-259.	1.0	5
1663	The structural basis of the arrestin binding to GPCRs. Molecular and Cellular Endocrinology, 2019, 484, 34-41.	1.6	34
1664	Identification of Key Structural Motifs Involved in 7 Transmembrane Signaling of Adhesion GPCRs. ACS Pharmacology and Translational Science, 2019, 2, 101-113.	2.5	10
1665	Dynamic Role of the G Protein in Stabilizing the Active State of the Adenosine A2A Receptor. Structure, 2019, 27, 703-712.e3.	1.6	31
1666	Function of cAMP scaffolds in obstructive lung disease: Focus on epithelialâ€ŧoâ€mesenchymal transition and oxidative stress. British Journal of Pharmacology, 2019, 176, 2402-2415.	2.7	18
1667	Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nature Communications, 2019, 10, 2765.	5.8	40
1668	Conformational transitions of a neurotensin receptorÂ1–Gi1Âcomplex. Nature, 2019, 572, 80-85.	13.7	199
1669	Illuminating the Onco-GPCRome: Novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. Journal of Biological Chemistry, 2019, 294, 11062-11086.	1.6	129
1670	Detailed insight on β-adrenoceptors as therapeutic targets. Biomedicine and Pharmacotherapy, 2019, 117, 109039.	2.5	28
1671	Structure and Activation Mechanism of GPCRs. Topics in Medicinal Chemistry, 2019, , 53-64.	0.4	4
1672	Protein Lipidation. Methods in Molecular Biology, 2019, , .	0.4	1
1673	Purification of the Rhodopsin–Transducin Complex for Structural Studies. Methods in Molecular Biology, 2019, 2009, 307-315.	0.4	2

		CITATION REPORT		
#	Article		IF	Citations
1674	Structure, Function, and Dynamics of the Cα Binding Domain of Ric-8A. Structure, 202	19, 27, 1137-1147.e5.	1.6	18
1675	Conserved 2nd Residue of Helix 8 of GPCR May Confer the Subclass-Characteristic and through a Rapid Initial Interaction with Specific G Proteins. International Journal of Mol Sciences, 2019, 20, 1752.	Distinct Roles ecular	1.8	6
1676	Conformational plasticity of the intracellular cavity of GPCRâ [~] 'G-protein complexes lead promiscuity and selectivity. Proceedings of the National Academy of Sciences of the Un America, 2019, 116, 11956-11965.		3.3	66
1677	Illuminating G-Protein-Coupling Selectivity of GPCRs. Cell, 2019, 177, 1933-1947.e25.		13.5	387
1678	Variable G protein determinants of GPCR coupling selectivity. Proceedings of the Natio Sciences of the United States of America, 2019, 116, 12054-12059.	nal Academy of	3.3	111
1679	PRECOG: PREdicting COupling probabilities of G-protein coupled receptors. Nucleic Ac 2019, 47, W395-W401.	ids Research,	6.5	20
1680	Studying GPCR conformational dynamics by single molecule fluorescence. Molecular a Endocrinology, 2019, 493, 110469.	nd Cellular	1.6	25
1681	Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric 2019, 571, 279-283.	Gi. Nature,	13.7	131
1682	A benchmark study of loop modeling methods applied to G protein-coupled receptors. Computer-Aided Molecular Design, 2019, 33, 573-595.	Journal of	1.3	17
1683	Identification of conformation-selective nanobodies against the membrane protein ins an integrated structural biology approach. Journal of Biomolecular NMR, 2019, 73, 375	ertase BamA by 5-384.	1.6	20
1684	Structural Insights into the Process of GPCR-G Protein Complex Formation. Cell, 2019, 1243-1251.e12.	177,	13.5	121
1685	Assembly of a GPCR-G Protein Complex. Cell, 2019, 177, 1232-1242.e11.		13.5	163
1686	Molecular basis for high-affinity agonist binding in GPCRs. Science, 2019, 364, 775-77	8.	6.0	90
1687	Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. S 364, 552-557.	Science, 2019,	6.0	244
1688	Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of G selectivity and therapeutic potential. , 2019, 200, 148-178.	PCR/transducer		100
1689	The role of NMR spectroscopy in mapping the conformational landscape of GPCRs. Cu Structural Biology, 2019, 57, 145-156.	rrent Opinion in	2.6	43
1690	cAMP guided his way: a life for G protein-mediated signal transduction and molecular pharmacology—tribute to Karl H. Jakobs. Naunyn-Schmiedeberg's Archives of Pharma 887-911.	icology, 2019, 392,	1.4	5
1691	Function-related conformational dynamics of G protein–coupled receptors revealed Biophysical Reviews, 2019, 11, 409-418.	by NMR.	1.5	27

#	Article	IF	CITATIONS
1692	Local membrane charge regulates β2 adrenergic receptor coupling to Gi3. Nature Communications, 2019, 10, 2234.	5.8	57
1693	Conformational Complexity and Dynamics in a Muscarinic Receptor Revealed by NMR Spectroscopy. Molecular Cell, 2019, 75, 53-65.e7.	4.5	59
1694	Revealing the Mechanism of Agonist-Mediated Cannabinoid Receptor 1 (CB1) Activation and Phospholipid-Mediated Allosteric Modulation. Journal of Medicinal Chemistry, 2019, 62, 5638-5654.	2.9	16
1695	Symmetry, Rigidity, and Allosteric Signaling: From Monomeric Proteins to Molecular Machines. Chemical Reviews, 2019, 119, 6788-6821.	23.0	82
1696	Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature, 2019, 569, 284-288.	13.7	140
1697	GNAS: A New Nephrogenic Cause of Inappropriate Antidiuresis. Journal of the American Society of Nephrology: JASN, 2019, 30, 722-725.	3.0	5
1698	Hybridization of β-Adrenergic Agonists and Antagonists Confers G Protein Bias. Journal of Medicinal Chemistry, 2019, 62, 5111-5131.	2.9	12
1699	Structural Insights into CB1 Receptor Biased Signaling. International Journal of Molecular Sciences, 2019, 20, 1837.	1.8	62
1700	The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science, 2019, 364, 389-394.	6.0	89
1701	Transcription with a laser: Radiation-damage-free diffraction of RNA Polymerase II crystals. Methods, 2019, 159-160, 23-28.	1.9	4
1702	Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Annual Review of Biomedical Engineering, 2019, 21, 395-415.	5.7	44
1703	Peeking at G-protein-coupled receptors through the molecular dynamics keyhole. Future Medicinal Chemistry, 2019, 11, 599-615.	1.1	11
1704	A Genetically Encoded Fluorescent Sensor for Rapid and Specific InÂVivo Detection of Norepinephrine. Neuron, 2019, 102, 745-761.e8.	3.8	374
1705	Pharmacogenetics of FSH Action in the Male. Frontiers in Endocrinology, 2019, 10, 47.	1.5	33
1706	Split luciferase-based assay for simultaneous analyses of the ligand concentration- and time-dependent recruitment of \hat{l}^2 -arrestin2. Analytical Biochemistry, 2019, 573, 8-16.	1.1	10
1707	Nanobodies detecting and modulating GPCRs outside in and inside out. Current Opinion in Cell Biology, 2019, 57, 115-122.	2.6	41
1708	GPCR interaction as a possible way for allosteric control between receptors. Molecular and Cellular Endocrinology, 2019, 486, 89-95.	1.6	31
1709	Strategies for the discovery of biased GPCR ligands. Drug Discovery Today, 2019, 24, 1031-1037.	3.2	33

		CITATION RE	PORT	
#	Article		IF	Citations
1710	GPCR Signaling Regulation: The Role of GRKs and Arrestins. Frontiers in Pharmacology,	2019, 10, 125.	1.6	358
1711	Cutting-Edge Search for Safer Opioid Pain Relief: Retrospective Review of Salvinorin A a Frontiers in Psychiatry, 2019, 10, 157.	and Its Analogs.	1.3	17
1712	From Quantum Chemistry to Networks in Biology: A Graph Spectral Approach to Prote Analyses. Journal of Chemical Information and Modeling, 2019, 59, 1715-1727.	in Structure	2.5	19
1713	Design of an Ultrafast G Protein Switch Based on a Mouse Melanopsin Variant. ChemB 1766-1771.	ioChem, 2019, 20,	1.3	6
1714	Mutations in the NPxxY motif stabilize pharmacologically distinct conformational state <code>_{1B}</code> - and \hat{l}^2 <code>₂</code> -adrenoceptors. Science Signaling, 2019, 12, .	s of the α	1.6	14
1715	Mutagenesis of GPR139 reveals ways to create gain or loss of function receptors. Phar Research and Perspectives, 2019, 7, e00466.	macology	1.1	1
1716	Molecular dynamics-guided discovery of an ago-allosteric modulator for GPR40/FFAR1. the National Academy of Sciences of the United States of America, 2019, 116, 7123-7	Proceedings of 128.	3.3	35
1717	Trimethylsilyl reporter groups for NMR studies of conformational changes in G proteina receptors. FEBS Letters, 2019, 593, 1113-1121.	à€coupled	1.3	9
1718	Molecular Dynamics Simulations of the Allosteric Modulation of the Adenosine A2a Re Mini-G Protein. Scientific Reports, 2019, 9, 5495.	ceptor by a	1.6	13
1719	Germline-Derived Gain-of-Function Variants of Gsα-Coding GNAS Gene Identified in Ne Syndrome of Inappropriate Antidiuresis. Journal of the American Society of Nephrology 877-889.	phrogenic : JASN, 2019, 30,	3.0	21
1720	Structure and dynamics of the active human parathyroid hormone receptor-1. Science, 148-153.	, 2019, 364,	6.0	185
1721	Optical approaches for single-cell and subcellular analysis of GPCR–G protein signalir and Bioanalytical Chemistry, 2019, 411, 4481-4508.	ng. Analytical	1.9	9
1722	Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Molecular and Cellular Endocrim 488, 1-13.	nology, 2019,	1.6	114
1723	A Brief History of the \hat{l}^2 -Arrestins. Methods in Molecular Biology, 2019, 1957, 3-8.		0.4	20
1724	Asymmetric Recruitment of β-Arrestin1/2 by the Angiotensin II Type I and Prostaglandi Dimer. Frontiers in Endocrinology, 2019, 10, 162.	n F2α Receptor	1.5	12
1725	G-Protein–Coupled Receptors Are Dynamic Regulators of Digestion and Targets for I Gastroenterology, 2019, 156, 1600-1616.	Digestive Diseases.	0.6	22
1726	Structural Insight into G Protein-Coupled Receptor Signaling Efficacy and Bias betweer β-Arrestin. ACS Pharmacology and Translational Science, 2019, 2, 148-154.	າ Gs and	2.5	16
1727	Structural architecture of a dimeric class C GPCR based on co-trafficking of sweet taste subunits. Journal of Biological Chemistry, 2019, 294, 4759-4774.	e receptor	1.6	48

#	ARTICLE Diverse GPCRs exhibit conserved water networks for stabilization and activation. Proceedings of the	IF	CITATIONS
1728 1729	National Academy of Sciences of the United States of America, 2019, 116, 3288-3293. Recent advances in computational studies of GPCR-G protein interactions. Advances in Protein	3.3	116
1729	Chemistry and Structural Biology, 2019, 116, 397-419. Characterization, Dynamics, and Mechanism of CXCR4 Antagonists on a Constitutively Active Mutant.	2.5	20
1731	Cell Chemical Biology, 2019, 26, 662-673.e7. Mechanisms Underlying Allosteric Molecular Switches of Metabotropic Glutamate Receptor 5. Journal of Chemical Information and Modeling, 2019, 59, 2456-2466.	2.5	21
1732	Parametrization of MARTINI for Modeling Hinging Motions in Membrane Proteins. Journal of Physical Chemistry B, 2019, 123, 2254-2269.	1.2	6
1733	A New Multisystem Disorder Caused by the Gαs Mutation p.F376V. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1079-1089.	1.8	14
1734	Emerging Diversity in Lipid–Protein Interactions. Chemical Reviews, 2019, 119, 5775-5848.	23.0	299
1735	VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1. Journal of Cell Science, 2019, 132, .	1.2	13
1736	Structure of an endosomal signaling GPCR–G protein–β-arrestin megacomplex. Nature Structural and Molecular Biology, 2019, 26, 1123-1131.	3.6	139
1737	Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR). Scientific Reports, 2019, 9, 16555.	1.6	11
1738	Agonist-independent GPCR activity and receptor-instructed axonal projection in the mouse olfactory system. Future Medicinal Chemistry, 2019, 11, 3091-3096.	1.1	1
1739	Phosphorylation of the Cα protein Gpa2 promotes protein kinase A signaling in yeast. Journal of Biological Chemistry, 2019, 294, 18836-18845.	1.6	4
1740	A3 adenosine receptor activation mechanisms: molecular dynamics analysis of inactive, active, and fully active states. Journal of Computer-Aided Molecular Design, 2019, 33, 983-996.	1.3	10
1741	Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α2C Adrenergic Receptor. Cell Reports, 2019, 29, 2936-2943.e4.	2.9	17
1742	Identification of Novel Adenylyl Cyclase 5 (AC5) Signaling Networks in D1 and D2 Medium Spiny Neurons using Bimolecular Fluorescence Complementation Screening. Cells, 2019, 8, 1468.	1.8	15
1743	Detecting Functional Dynamics in Proteins with Comparative Perturbed-Ensembles Analysis. Accounts of Chemical Research, 2019, 52, 3455-3464.	7.6	17
1744	A Graphic Encoding Method for Quantitative Classification of Protein Structure and Representation of Conformational Changes. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1336-1349.	1.9	4
1745	Conformational pathway provides unique sensitivity to a synaptic mGluR. Nature Communications, 2019, 10, 5572.	5.8	43

#	Article	IF	CITATIONS
1746	Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574, 581-585.	13.7	50
1747	Structural Basis of the Diversity of Adrenergic Receptors. Cell Reports, 2019, 29, 2929-2935.e4.	2.9	30
1748	Computationally Guided Identification of Allosteric Agonists of the Metabotropic Glutamate 7 Receptor. ACS Chemical Neuroscience, 2019, 10, 1043-1054.	1.7	5
1749	State-dependent Lipid Interactions with the A2a Receptor Revealed by MD Simulations Using InÂVivo-Mimetic Membranes. Structure, 2019, 27, 392-403.e3.	1.6	80
1750	NMR backbone and methyl resonance assignments of an inhibitory G-alpha subunit in complex with GDP. Biomolecular NMR Assignments, 2019, 13, 131-137.	0.4	7
1751	Structural biology and structure–function relationships of membrane proteins. Biochemical Society Transactions, 2019, 47, 47-61.	1.6	24
1752	Crystal structures of the human neurokinin 1 receptor in complex with clinically used antagonists. Nature Communications, 2019, 10, 17.	5.8	68
1753	Receptor selectivity between the G proteins Gα ₁₂ and Gα ₁₃ is defined by a single leucineâ€ŧoâ€isoleucine variation. FASEB Journal, 2019, 33, 5005-5017.	0.2	23
1754	Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT ₁ R Initiated by van der Waals Attraction. Journal of Chemical Information and Modeling, 2019, 59, 373-385.	2.5	23
1755	Isotopic Labeling of Eukaryotic Membrane Proteins for NMR Studies of Interactions and Dynamics. Methods in Enzymology, 2019, 614, 37-65.	0.4	8
1756	To sense or not to sense—new insights from GPCR-based and arrestin-based biosensors. Current Opinion in Cell Biology, 2019, 57, 16-24.	2.6	19
1757	GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nature Reviews Drug Discovery, 2019, 18, 59-82.	21.5	179
1758	Seeing and sensing single G protein-coupled receptors by atomic force microscopy. Current Opinion in Cell Biology, 2019, 57, 25-32.	2.6	18
1759	Gβγ signaling to the chemotactic effector P-REX1 and mammalian cell migration is directly regulated by Gαq and Gα13 proteins. Journal of Biological Chemistry, 2019, 294, 531-546.	1.6	27
1760	Hunting for the highâ€affinity state of Gâ€proteinâ€coupled receptors with agonist tracers: Theoretical and practical considerations for positron emission tomography imaging. Medicinal Research Reviews, 2019, 39, 1014-1052.	5.0	22
1761	In vivo assembly and large-scale purification of a GPCR - Gα fusion with Gβγ, and characterization of the active complex. PLoS ONE, 2019, 14, e0210131.	1.1	8
1762	Ligandâ€binding affinity of alternative conformers of human β 2 â€adrenergic receptor in the presence of intracellular loop 3 (ICL 3) and their potential use in virtual screening studies. Chemical Biology and Drug Design, 2019, 93, 883-899.	1.5	9
1763	The subcellular dynamics of GPCR signaling. Molecular and Cellular Endocrinology, 2019, 483, 24-30.	1.6	47

ARTICLE IF CITATIONS Autonomic Nervous System Pharmacology., 2019, , 282-299. 2 1764 Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody. Cell, 1765 13.5 143 2019, 17<u>6, 479-490.e12.</u> Discovery of Î²-arrestin-biased Î²2-adrenoceptor agonists from 2-amino-2-phenylethanol derivatives. Acta 1766 2.8 9 Pharmacologica Sinica, 2019, 40, 1095-1105. Endoâ€lysosomal sorting of Gâ€proteinâ€coupled receptors by ubiquitin: Diverse pathways for 1767 39 Gâ€protéinâ€coupled receptor destruction and beyond. Traffić, 2019, 20, 101-109. Arginine 313 of the putative 8th helix mediates $Gl \pm q/14$ coupling of human CC chemokine receptors CCR2a 1768 1.7 6 and CCR2b. Cellular Signalling, 2019, 53, 170-183. Aminergic GPCR–Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. Journal of Medicinal Chemistry, 2019, 62, 3784-3839. Regulation of G proteinâ€coupled receptor signaling by plasma membrane organization and endocytosis. 1770 1.3 60 Traffic, 2019, 20, 121-129. Preassociation between the 5â€HT ₇ serotonin receptor and G protein G _s : molecular determinants and association with low potency activation of adenylyl cyclase. FASEB 1771 0.2 Journal, 2019, 33, 3870-3886. Hot spots for GPCR signaling: lessons from single-molecule microscopy. Current Opinion in Cell 1772 2.6 16 Biology, 2019, 57, 57-63. 1773 Emerging structural biology of lipid G proteinâ€coupled receptors. Protein Science, 2019, 28, 292-304. 3.1 Molecular mechanisms of allosteric probe dependence in \hat{I}_{4} opioid receptor. Journal of Biomolecular 1774 2.0 12 Structure and Dynamics, 2019, 37, 36-47. Regulation of NADPH Oxidases by G Protein-Coupled Receptors. Antioxidants and Redox Signaling, 2019, 1775 30, 74-94. Covalent Allosteric Probe for the Metabotropic Glutamate ReceptorÂ2: Design, Synthesis, and 1776 2.9 17 Pharmacological Characterization. Journal of Medicinal Chemistry, 2019, 62, 223-233. The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. Arabian Journal of Chemistry, 2019, 12, 5062-5078. 2.3 Effect of thermostable mutations on the neurotensin receptor 1 (NTSR₁) activation state. 1778 2.0 5 Journal of Biomolecular Structure and Dynamics, 2020, 38, 340-353. Recent achievements in developing selective G_g inhibitors. Medicinal Research Reviews, 1779 2020, 40, 135-157. Structural insight into Class F receptors – What have we learnt regarding agonistâ€induced 1780 1.2 16 activation?. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 17-24. 1781 Intracellular Signaling., 2020, , 24-46.e12.

CITATION REPORT

#	Article	IF	CITATIONS
1782	Progress in GPCR structure determination. , 2020, , 3-22.		4
1783	G Protein–Coupled Receptor Pharmacology at the Single-Molecule Level. Annual Review of Pharmacology and Toxicology, 2020, 60, 73-87.	4.2	19
1784	Molecular Basis of Opioid Action: From Structures to New Leads. Biological Psychiatry, 2020, 87, 6-14.	0.7	46
1785	Molecular Pharmacology of Class F Receptor Activation. Molecular Pharmacology, 2020, 97, 62-71.	1.0	28
1786	A freeâ€energy landscape for the glucagonâ€like peptide 1 receptor GLP1R. Proteins: Structure, Function and Bioinformatics, 2020, 88, 127-134.	1.5	11
1787	Cryo-Electron Microscopy: Moving Beyond X-Ray Crystal Structures for Drug Receptors and Drug Development. Annual Review of Pharmacology and Toxicology, 2020, 60, 51-71.	4.2	87
1788	Adrenal Medulla Hormones. , 2020, , 635-653.		2
1789	Computer-aided GPCR drug discovery. , 2020, , 283-293.		3
1790	Angiotensin II receptors. , 2020, , 415-427.		12
1791	Structural basis of chemokine and receptor interactions: Key regulators of leukocyte recruitment in inflammatory responses. Protein Science, 2020, 29, 420-432.	3.1	40
1792	Continuing challenges in targeting oligomeric GPCR-based drugs. Progress in Molecular Biology and Translational Science, 2020, 169, 213-245.	0.9	8
1793	Identification and characterization of fragment binding sites for allosteric ligand design using the site identification by ligand competitive saturation hotspots approach (SILCS-Hotspots). Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129519.	1.1	34
1794	The Crystal Structure of Angiotensin II Type 2 Receptor with Endogenous Peptide Hormone. Structure, 2020, 28, 418-425.e4.	1.6	40
1795	Adreno–melatonin receptor complexes control ion homeostasis and intraocular pressure ―their disruption contributes to hypertensive glaucoma. British Journal of Pharmacology, 2020, 177, 2090-2105.	2.7	8
1796	Activation of the GLP-1 receptor by a non-peptidic agonist. Nature, 2020, 577, 432-436.	13.7	119
1797	Dimerization energetics of the Gâ€protein coupled bile acid receptor TGR5 from allâ€atom simulations. Journal of Computational Chemistry, 2020, 41, 874-884.	1.5	6
1798	Targeting G protein-coupled receptors in cancer therapy. Advances in Cancer Research, 2020, 145, 49-97.	1.9	12
1799	Targeting arrestin interactions with its partners for therapeutic purposes. Advances in Protein Chemistry and Structural Biology, 2020, 121, 169-197.	1.0	2

		ATION REPORT	
#	Article	IF	CITATIONS
1800	GIP receptor: Expression in neuroendocrine tumours, internalization, signalling from endosomes and structure-function relationship studies. Peptides, 2020, 125, 170229.	1.2	2
1801	Do All Roads Lead to Rome in G-Protein Activation?. Trends in Biochemical Sciences, 2020, 45, 182-184.	. 3.7	17
1802	Supramolecular structure of opsins. , 2020, , 81-95.		1
1803	Structure of G-protein-coupled receptor heteromers. , 2020, , 109-119.		1
1804	Quantifying GPCR allostery and biased signaling. , 2020, , 143-169.		0
1805	Molecular Insights from Conformational Ensembles via Machine Learning. Biophysical Journal, 2020, 118, 765-780.	0.2	67
1806	Dose-related effects of inhaled essential oils on behavioural measures of anxiety and depression and biomarkers of oxidative stress. Journal of Ethnopharmacology, 2020, 250, 112469.	2.0	20
1807	Computational design of G Protein-Coupled Receptor allosteric signal transductions. Nature Chemical Biology, 2020, 16, 77-86.	3.9	57
1808	Screening and analysis of agouti signaling protein interaction partners in Pelodiscus sinensis suggests a role in lipid metabolism. International Journal of Biological Macromolecules, 2020, 157, 695-705.	3.6	0
1809	Polystyrene adsorbents: rapid and efficient surrogate for dialysis in membrane protein purification. Scientific Reports, 2020, 10, 16334.	1.6	3
1810	Transmitting the Signal: Structure of the β1-Adrenergic Receptor-Gs Protein Complex. Molecular Cell, 2020, 80, 3-5.	4.5	4
1811	Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics. Journal of Structural Biology, 2020, 212, 107634.	1.3	34
1812	The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction. Biophysical Journal, 2020, 119, 389-401.	0.2	6
1813	Network analysis reveals how lipids and other cofactors influence membrane protein allostery. Journal of Chemical Physics, 2020, 153, 141103.	1.2	21
1814	Vanadium compounds promote biocatalysis in cells through actions on cell membranes. Catalysis Today, 2022, 388-389, 216-223.	2.2	3
1815	Structural basis for activation of the growth hormone-releasing hormone receptor. Nature Communications, 2020, 11, 5205.	5.8	57
1816	Differential GLP-1R Binding and Activation by Peptide and Non-peptide Agonists. Molecular Cell, 2020, 80, 485-500.e7.	4.5	111
1817	Structure of the human secretin receptor coupled to an engineered heterotrimeric G protein. Biochemical and Biophysical Research Communications, 2020, 533, 861-866.	1.0	15

#	Article	IF	CITATIONS
1818	Exploring the activation pathway and G _i -coupling specificity of the μ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26218-26225.	3.3	15
1819	Proposed model of the Dictyostelium cAMP receptors bound to cAMP. Journal of Molecular Graphics and Modelling, 2020, 100, 107662.	1.3	4
1820	Understanding the Binding Specificity of G-Protein Coupled Receptors toward G-Proteins and Arrestins: Application to the Dopamine Receptor Family. Journal of Chemical Information and Modeling, 2020, 60, 3969-3984.	2.5	8
1821	A simple open source bioinformatic methodology for initial exploration of GPCR ligands' agonistic/antagonistic properties. Pharmacology Research and Perspectives, 2020, 8, e00600.	1.1	7
1822	Energy Landscapes Reveal Agonist Control of G Protein-Coupled Receptor Activation via Microswitches. Biochemistry, 2020, 59, 880-891.	1.2	45
1823	Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Science Signaling, 2020, 13, .	1.6	24
1824	Single-particle cryo-EM structural studies of the β2AR–Gs complex bound with a full agonist formoterol. Cell Discovery, 2020, 6, 45.	3.1	25
1825	The importance of the membrane for biophysical measurements. Nature Chemical Biology, 2020, 16, 1285-1292.	3.9	25
1826	Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30476-30487.	3.3	29
1827	A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Research, 2020, 30, 1098-1108.	5.7	52
1828	Viewing rare conformations of the β ₂ adrenergic receptor with pressure-resolved DEER spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31824-31831.	3.3	31
1829	Different conformational responses of the β2-adrenergic receptor-Gs complex upon binding of the partial agonist salbutamol or the full agonist isoprenaline. National Science Review, 2021, 8, .	4.6	20
1830	Development of cardiotoxicity model using ligand-centric and receptor-centric descriptors. Toxicology Research and Application, 2020, 4, 239784732097125.	0.7	0
1831	Structural insights into differences in G protein activation by family A and family B GPCRs. Science, 2020, 369, .	6.0	103
1832	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie - International Edition, 2020, 59, 19121-19128.	7.2	21
1833	GDP Release from the Open Conformation of Gα Requires Allosteric Signaling from the Agonist-Bound Human β ₂ Adrenergic Receptor. Journal of Chemical Information and Modeling, 2020, 60, 4064-4075.	2.5	8
1834	Cryo-EM structure of activated bile acids receptor TGR5 in complex with stimulatory G protein. Signal Transduction and Targeted Therapy, 2020, 5, 142.	7.1	12
1835	Computational Approaches for the Discovery of GPER Targeting Compounds. Frontiers in Endocrinology, 2020, 11, 517.	1.5	16

#	Article	IF	CITATIONS
1836	The computational modeling of allosteric modulation of metabotropic glutamate receptors. Advances in Pharmacology, 2020, 88, 1-33.	1.2	1
1837	Receptor tyrosine kinases activate heterotrimeric G proteins via phosphorylation within the interdomain cleft of Gαi. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28763-28774.	3.3	19
1838	Identification and in vivo characterization of a brain-penetrating nanobody. Fluids and Barriers of the CNS, 2020, 17, 62.	2.4	35
1839	Structure of the human gonadotropin-releasing hormone receptor GnRH1R reveals an unusual ligand binding mode. Nature Communications, 2020, 11, 5287.	5.8	24
1840	In-Cell Detection of Conformational Substates of a G Protein-Coupled Receptor Quaternary Structure: Modulation of Substate Probability by Cognate Ligand Binding. Journal of Physical Chemistry B, 2020, 124, 10062-10076.	1.2	10
1841	Deciphering collaborative sidechain motions in proteins during molecular dynamics simulations. Scientific Reports, 2020, 10, 15901.	1.6	7
1842	Internal water channel formation in CXCR4 is crucial for Gi-protein coupling upon activation by CXCL12. Communications Chemistry, 2020, 3, .	2.0	11
1843	Allosteric Inhibition of Adenylyl Cyclase Type 5 by G-Protein: A Molecular Dynamics Study. Biomolecules, 2020, 10, 1330.	1.8	6
1844	Structural Basis of the Activation of Heterotrimeric Gs-Protein by Isoproterenol-Bound β1-Adrenergic Receptor. Molecular Cell, 2020, 80, 59-71.e4.	4.5	60
1845	Biased Opioid Ligands. Molecules, 2020, 25, 4257.	1.7	79
1846	Illuminating the Path to Target GPCR Structures and Functions. Biochemistry, 2020, 59, 3783-3795.	1.2	3
1847	Structural basis of CXC chemokine receptor 2 activation and signalling. Nature, 2020, 585, 135-140.	13.7	128
1848	Membrane Chemistry Tunes the Structure of a Peptide Transporter. Angewandte Chemie, 2020, 132, 19283-19290.	1.6	3
1849	Analysis of β ₂ AR-G _s and β ₂ AR-G _i complex formation by NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23096-23105.	3.3	54
1850	Structure of a Hallucinogen-Activated Gq-Coupled 5-HT2A Serotonin Receptor. Cell, 2020, 182, 1574-1588.e19.	13.5	270
1851	Agonist Binding and G Protein Coupling in Histamine H2 Receptor: A Molecular Dynamics Study. International Journal of Molecular Sciences, 2020, 21, 6693.	1.8	10
1852	Supramolecular Double Helices from Small C ₃ -Symmetrical Molecules Aggregated in Water. Journal of the American Chemical Society, 2020, 142, 17644-17652.	6.6	30
1853	The intramolecular agonist is obligate for activation of glycoprotein hormone receptors. FASEB Journal, 2020, 34, 11243-11256.	0.2	15

	CITATION REF	PORT	
#	Article	IF	CITATIONS
1854	G protein-coupled receptors function as cell membrane receptors for the steroid hormone 20-hydroxyecdysone. Cell Communication and Signaling, 2020, 18, 146.	2.7	23
1855	Morpholino Analogues of Fingolimod as Novel and Selective S1P1 Ligands with In Vivo Efficacy in a Mouse Model of Experimental Antigen-Induced Encephalomyelitis. International Journal of Molecular Sciences, 2020, 21, 6463.	1.8	12
1856	Somatostatin, an <i>In Vivo</i> Binder to Aβ Oligomers, Binds to βPFO _{Aβ(1–42)} Tetramers. ACS Chemical Neuroscience, 2020, 11, 3358-3365.	1.7	7
1857	Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nature Communications, 2020, 11, 4121.	5.8	136
1858	Structural Basis of GABAB Receptor Regulation and Signaling. Current Topics in Behavioral Neurosciences, 2020, , 19-37.	0.8	8
1859	Structure and dynamics of the active Gs-coupled human secretin receptor. Nature Communications, 2020, 11, 4137.	5.8	46
1860	Agonist-induced formation of unproductive receptor-G ₁₂ complexes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21723-21730.	3.3	35
1861	How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs. International Journal of Molecular Sciences, 2020, 21, 5933.	1.8	35
1862	A guide to membrane protein Xâ€ray crystallography. FEBS Journal, 2021, 288, 5788-5804.	2.2	50
1863	The Dynamics of the Neuropeptide Y Receptor Type 1 Investigated by Solid-State NMR and Molecular Dynamics Simulation. Molecules, 2020, 25, 5489.	1.7	9
1864	Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations. Journal of Biological Chemistry, 2020, 295, 17486-17496.	1.6	3
1865	Unique Pharmacological Properties of the Kappa Opioid Receptor Signaling Through Cαz as Shown with Bioluminescence Resonance Energy Tranfer. Molecular Pharmacology, 2020, 98, 462-474.	1.0	6
1866	In silico characterization of adipokinetic hormone receptor and screening for pesticide candidates against stick insect, Carausius morosus. Journal of Molecular Graphics and Modelling, 2020, 101, 107720.	1.3	8
1867	A high-resolution description of β1-adrenergic receptor functional dynamics and allosteric coupling from backbone NMR. Nature Communications, 2020, 11, 2216.	5.8	44
1868	A genetically encoded small-size fluorescent pair reveals allosteric conformational changes of G proteins upon its interaction with GPCRs by fluorescence lifetime based FRET. Chemical Communications, 2020, 56, 6941-6944.	2.2	7
1869	Signal pathway analysis of selected obesity-associated melanocortin-4 receptor class V mutants. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165835.	1.8	5
1870	Cryo-electron microscopy structure of the glucagon receptor with a dual-agonist peptide. Journal of Biological Chemistry, 2020, 295, 9313-9325.	1.6	31
1871	G Protein–Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action. Pharmacological Reviews, 2020, 72, 1-49.	7.1	69

#	Article	IF	CITATIONS
1872	Structural features of activated GPCR signaling complexes. Current Opinion in Structural Biology, 2020, 63, 82-89.	2.6	50
1873	Design, synthesis, biological evaluation, molecular docking, DFT calculations and in silico ADME analysis of (benz)imidazole-hydrazone derivatives as promising antioxidant, antifungal, and anti-acetylcholinesterase agents. Journal of Molecular Structure, 2020, 1218, 128527.	1.8	38
1874	β-Adrenergic receptor structure and function: molecular insights guiding the development of novel therapeutic strategies to treat malignancy. Journal of Receptor and Signal Transduction Research, 2020, 40, 395-409.	1.3	1
1875	Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature, 2020, 584, 125-129.	13.7	128
1876	Structural basis for chemokine receptor CCR6 activation by the endogenous protein ligand CCL20. Nature Communications, 2020, 11, 3031.	5.8	69
1877	Structural mechanism underlying primary and secondary coupling between GPCRs and the Gi/o family. Nature Communications, 2020, 11, 3160.	5.8	36
1878	Structural insights into emergent signaling modes of G protein–coupled receptors. Journal of Biological Chemistry, 2020, 295, 11626-11642.	1.6	53
1879	The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Molecular and Cellular Endocrinology, 2020, 515, 110886.	1.6	8
1880	Structure of human GABAB receptor in an inactive state. Nature, 2020, 584, 304-309.	13.7	59
1881	Unveiling functional motions based on point mutations in biased signaling systems: A normal mode study on nerve growth factor bound to TrkA. PLoS ONE, 2020, 15, e0231542.	1.1	5
1882	Vasopressin receptor 2 mutations in the nephrogenic syndrome of inappropriate antidiuresis show different mechanisms of constitutive activation for G protein coupled receptors. Scientific Reports, 2020, 10, 9111.	1.6	5
1883	Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Nature, 2020, 583, 862-866.	13.7	177
1884	The atomistic level structure for the activated human κ-opioid receptor bound to the full Gi protein and the MP1104 agonist. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5836-5843.	3.3	38
1885	Structural basis of G _s and G _i recognition by the human glucagon receptor. Science, 2020, 367, 1346-1352.	6.0	117
1886	Lipid-Protein Interactions Are a Unique Property and Defining Feature of G Protein-Coupled Receptors. Biophysical Journal, 2020, 118, 1887-1900.	0.2	61
1887	Activation of the α2B adrenoceptor by the sedative sympatholytic dexmedetomidine. Nature Chemical Biology, 2020, 16, 507-512.	3.9	51
1888	Exploring the Activation Mechanism of the mGlu5 Transmembrane Domain. Frontiers in Molecular Biosciences, 2020, 7, 38.	1.6	4
1889	Augmenting Peptide Flexibility by Inserting Gamma-Aminobutyric Acid (GABA) in Their Sequence. International Journal of Peptide Research and Therapeutics, 2020, 26, 2633-2640.	0.9	4

#	Article	IF	Citations
1890	Selectivity in agonist and antagonist binding to Serotonin1A receptors via G-protein coupling. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183265.	1.4	3
1891	Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding. Communications Biology, 2020, 3, 109.	2.0	29
1892	Biased GPCR signaling: Possible mechanisms and inherent limitations. , 2020, 211, 107540.		72
1893	Structure and Dynamics of Adrenomedullin Receptors AM ₁ and AM ₂ Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacology and Translational Science, 2020, 3, 263-284.	2.5	71
1894	Activation of adenosine A _{2A} receptor by lipids from docosahexaenoic acid revealed by NMR. Science Advances, 2020, 6, eaay8544.	4.7	43
1895	Comprehensive Characterization of Lipid-Guided G Protein-Coupled Receptor Dimerization. Journal of Physical Chemistry B, 2020, 124, 2823-2834.	1.2	24
1896	Developmental regulation of olfactory circuit formation in mice. Development Growth and Differentiation, 2020, 62, 199-213.	0.6	37
1897	Structure and function of serotonin GPCR heteromers. Handbook of Behavioral Neuroscience, 2020, 31, 217-238.	0.7	1
1898	Nanobody-enabled monitoring of kappa opioid receptor states. Nature Communications, 2020, 11, 1145.	5.8	93
1899	Cryo-electron microscopy analysis of small membrane proteins. Current Opinion in Structural Biology, 2020, 64, 26-33.	2.6	57
1900	A Gq Biased Small Molecule Active at the TSH Receptor. Frontiers in Endocrinology, 2020, 11, 372.	1.5	13
1901	Effects of 2-monoacylglycerol on <i>in meso</i> crystallization and the crystal structures of integral membrane proteins. Crystal Growth and Design, 2020, 20, 5444-5454.	1.4	3
1902	IDPs and their complexes in GPCR and nuclear receptor signaling. Progress in Molecular Biology and Translational Science, 2020, 174, 105-155.	0.9	6
1903	Deciphering Imidazoline Offâ€ŧargets by Fishing in the Class A of GPCR field. Molecular Informatics, 2020, 39, 1900165.	1.4	1
1904	Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to Gαi1. Nature Communications, 2020, 11, 1077.	5.8	18
1905	Expression, Purification, and Structural Biology of Membrane Proteins. Methods in Molecular Biology, 2020, , .	0.4	3
1906	Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor. Science, 2020, 367, 881-887.	6.0	168
1907	Structure of the M2 muscarinic receptor–β-arrestin complex in a lipid nanodisc. Nature, 2020, 579, 297-302.	13.7	238

#	Article	IF	CITATIONS
1908	A simple and rapid pipeline for identification of receptor-binding sites on the surface proteins of pathogens. Scientific Reports, 2020, 10, 1163.	1.6	5
1909	Ligand-induced conformational changes in a SMALP-encapsulated GPCR Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183235.	1.4	24
1910	Structures of Gα Proteins in Complex with Their Chaperone Reveal Quality Control Mechanisms. Cell Reports, 2020, 30, 3699-3709.e6.	2.9	18
1911	Structure and Functional Characterization of Membrane Integral Proteins in the Lipid Cubic Phase. Journal of Molecular Biology, 2020, 432, 5104-5123.	2.0	20
1912	Nanobodies to study protein conformational states. Current Opinion in Structural Biology, 2020, 60, 117-123.	2.6	59
1913	Cryo-EM structures of PAC1 receptor reveal ligand binding mechanism. Cell Research, 2020, 30, 436-445.	5.7	35
1914	Combinatorial allosteric modulation of agonist response in a self-interacting G-protein coupled receptor. Communications Biology, 2020, 3, 27.	2.0	5
1915	Classification and signaling characteristics of 5-HT receptors: toward the concept of 5-HT receptosomes. Handbook of Behavioral Neuroscience, 2020, , 91-120.	0.7	12
1916	Production of membrane proteins in industry: The example of GPCRs. Protein Expression and Purification, 2020, 169, 105569.	0.6	18
1917	Biased Signaling of the G-Protein-Coupled Receptor β2AR Is Governed by Conformational Exchange Kinetics. Structure, 2020, 28, 371-377.e3.	1.6	36
1918	Preferential Coupling of Dopamine D2S and D2L Receptor Isoforms with Gi1 and Gi2 Proteins—In Silico Study. International Journal of Molecular Sciences, 2020, 21, 436.	1.8	14
1919	Cryo-EM Structure of the Human Cannabinoid Receptor CB2-Gi Signaling Complex. Cell, 2020, 180, 645-654.e13.	13.5	167
1920	Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Molecular Cell, 2020, 77, 669-680.e4.	4.5	70
1925	Structural equilibrium underlying ligand-dependent activation of β2-adrenoreceptor. Nature Chemical Biology, 2020, 16, 430-439.	3.9	50
1926	Ricâ€8A, a GEF, and a Chaperone for G Protein αâ€Subunits: Evidence for the Twoâ€Faced Interface. BioEssays, 2020, 42, e1900208.	1.2	6
1927	Conformational plasticity of ligand-bound and ternary GPCR complexes studied by 19F NMR of the β1-adrenergic receptor. Nature Communications, 2020, 11, 669.	5.8	67
1928	Probing the correlation between ligand efficacy and conformational diversity at the α1A-adrenoreceptor reveals allosteric coupling of its microswitches. Journal of Biological Chemistry, 2020, 295, 7404-7417.	1.6	25
1929	Exploring Biased Agonism at FPR1 as a Means to Encode Danger Sensing. Cells, 2020, 9, 1054.	1.8	8

# 1930	ARTICLE Impact of GPCR Structures on Drug Discovery. Cell, 2020, 181, 81-91.	IF 13.5	CITATIONS 229
1931	The quest for high-resolution G protein-coupled receptor–G protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6971-6973.	3.3	16
1932	Strategic Screening and Characterization of the Visual GPCR-mini-G Protein Signaling Complex for Successful Crystallization. Journal of Visualized Experiments, 2020, , .	0.2	1
1933	Î ² adrenergic receptor modulated signaling in gliomaÂmodels: promoting Î ² adrenergic receptor-Î ² arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinalÂmalignancy and extra-neuraxial carcinoma. Molecular Biology Reports, 2020, 47, 4631-4650.	1.0	0
1934	Insights into adenosine A2AÂreceptor activation through cooperative modulation of agonist and allosteric lipid interactions. PLoS Computational Biology, 2020, 16, e1007818.	1.5	20
1935	Activation of the Gâ€Protein oupled Receptor Rhodopsin by Water. Angewandte Chemie - International Edition, 2021, 60, 2288-2295.	7.2	16
1936	Activation of the Gâ€Protein oupled Receptor Rhodopsin by Water. Angewandte Chemie, 2021, 133, 2318-2325.	1.6	3
1937	The finger loop as an activation sensor in arrestin. Journal of Neurochemistry, 2021, 157, 1138-1152.	2.1	15
1938	The <scp>Bio3D</scp> packages for structural bioinformatics. Protein Science, 2021, 30, 20-30.	3.1	200
1939	Binding pathway determines norepinephrine selectivity for the human β1AR over β2AR. Cell Research, 2021, 31, 569-579.	5.7	65
1940	Advances in the Treatment of Chronic Pain by Targeting GPCRs. Biochemistry, 2021, 60, 1401-1412.	1.2	12
1941	Biased agonism at the cannabinoid receptors – Evidence from synthetic cannabinoid receptor agonists. Cellular Signalling, 2021, 78, 109865.	1.7	25
1942	Detection of neuropeptides in vivo and open questions for current and upcoming fluorescent sensors for neuropeptides. Peptides, 2021, 136, 170456.	1.2	7
1943	Applications of Nanobodies. Annual Review of Animal Biosciences, 2021, 9, 401-421.	3.6	144
1944	A2A Adenosine Receptor Partial Agonism Related to Structural Rearrangements in an Activation Microswitch. Structure, 2021, 29, 170-176.e3.	1.6	30
1945	From cell surface to signalling and back: the life of the mammalian FSH receptor. FEBS Journal, 2021, 288, 2673-2696.	2.2	12
1946	Toward understanding the role of G-protein signaling. Current Opinion in Endocrine and Metabolic Research, 2021, 16, 51-55.	0.6	2
1947	The Potential of 19F NMR Application in GPCR Biased Drug Discovery. Trends in Pharmacological Sciences, 2021, 42, 19-30.	4.0	16

		CITATION REPORT		
#	Article		IF	CITATIONS
1948	Olfactory Circuitry and Behavioral Decisions. Annual Review of Physiology, 2021, 83, 23	1-256.	5.6	49
1949	ER/K-link—Leveraging a native protein linker to probe dynamic cellular interactions. Me Enzymology, 2021, 647, 173-208.	ethods in	0.4	6
1950	Structure, dynamics and lipid interactions of serotonin receptors: excitements and chal Biophysical Reviews, 2021, 13, 101-122.	enges.	1.5	36
1951	G protein-coupled receptor-G protein interactions: a single-molecule perspective. Physic Reviews, 2021, 101, 857-906.	logical	13.1	46
1952	Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activati Substrate Targeting. Molecular Cell, 2021, 81, 323-339.e11.	on and	4.5	13
1953	Cryo-EM Structure of the Prostaglandin E Receptor EP4 Coupled to G Protein. Structure 252-260.e6.	, 2021, 29,	1.6	32
1954	Probing the Conformation States of Neurotensin Receptor 1 Variants by NMR Siteâ€Dir Labeling. ChemBioChem, 2021, 22, 139-146.	ected Methyl	1.3	18
1955	Amphetamines signal through intracellular TAAR1 receptors coupled to Gα13 and GαS subcellular domains. Molecular Psychiatry, 2021, 26, 1208-1223.	in discrete	4.1	60
1956	Structures of the glucocorticoid-bound adhesion receptor GPR97–Go complex. Natur 620-626.	e, 2021, 589,	13.7	90
1958	What Animal Cancers teach us about Human Biology. Theranostics, 2021, 11, 6682-670	02.	4.6	5
1959	Structural Variation and Odorant Binding for Olfactory Receptors Selected from the Six Subclasses of the OR Phylogenetic Tree. Springer Series in Materials Science, 2021, , 85	Major 5-925.	0.4	0
1960	Biosensors Monitor Ligand-Selective Effects at Kappa Opioid Receptors. Handbook of E Pharmacology, 2021, 271, 65-82.	xperimental	0.9	1
1962	Personalized Medicine Through GPCR Pharmacogenomics. , 2021, , .			2
1963	\hat{I}^2 2 â€Adrenoceptor agonist activity of higenamine. Drug Testing and Analysis, 2021, 1	3, 261-267.	1.6	12
1964	Optogenetic Modulation of Ion Channels by Photoreceptive Proteins. Advances in Expe Medicine and Biology, 2021, 1293, 73-88.	rimental	0.8	6
1965	Bioluminescence in G Protein-Coupled Receptors Drug Screening Using Nanoluciferase Technology. Methods in Molecular Biology, 2021, 2268, 137-147.	and Halo-Tag	0.4	6
1966	Highlighting membrane protein structure and function: AÂcelebration of the Protein Da Journal of Biological Chemistry, 2021, 296, 100557.	ta Bank.	1.6	42
1970	Membrane Protein Stabilization Strategies for Structural and Functional Studies. Memb 155.	ranes, 2021, 11,	1.4	17

#	Article	IF	CITATIONS
1971	Structures of active-state orexin receptor 2 rationalize peptide and small-molecule agonist recognition and receptor activation. Nature Communications, 2021, 12, 815.	5.8	71
1972	Structural Insights into Ligand—Receptor Interactions Involved in Biased Agonism of G-Protein Coupled Receptors. Molecules, 2021, 26, 851.	1.7	7
1973	Noncanonical interactions of G proteins and βâ€arrestins: from competitors to companions. FEBS Journal, 2021, 288, 2550-2561.	2.2	9
1974	Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell, 2021, 184, 943-956.e18.	13.5	94
1975	Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules, 2021, 11, 218.	1.8	45
1976	Structure and function of adenosine receptor heteromers. Cellular and Molecular Life Sciences, 2021, 78, 3957-3968.	2.4	30
1977	Discovery of a macromolecular complex mediating the hunger suppressive actions of cocaine: Structural and functional properties. Addiction Biology, 2021, 26, e13017.	1.4	6
1978	Update on GPCR-based targets for the development of novel antidepressants. Molecular Psychiatry, 2021, , .	4.1	21
1981	Cryo-EM structure of an activated GPCR–G protein complex in lipid nanodiscs. Nature Structural and Molecular Biology, 2021, 28, 258-267.	3.6	71
1982	Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell, 2021, 184, 931-942.e18.	13.5	140
1983	The use of fluorescence correlation spectroscopy to monitor cell surface β2â€adrenoceptors at low expression levels in human embryonic stem cellâ€derived cardiomyocytes and fibroblasts. FASEB Journal, 2021, 35, e21398.	0.2	6
1984	Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G s Proteinâ€Coupled Receptors for Application in Drug Discovery. Angewandte Chemie, 2021, 133, 10335-10342.	1.6	0
1985	Ligand modulation of the conformational dynamics of the A2A adenosine receptor revealed by single-molecule fluorescence. Scientific Reports, 2021, 11, 5910.	1.6	17
1986	Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents. Biochemistry, 2021, 60, 1108-1119.	1.2	2
1987	Allosteric coupling and biased agonism in G protein oupled receptors. FEBS Journal, 2021, 288, 2513-2528.	2.2	35
1988	Complementary biosensors reveal different G-protein signaling modes triggered by GPCRs and non-receptor activators. ELife, 2021, 10, .	2.8	12
1989	Cryo-EM structure of the AVP–vasopressin receptor 2–Gs signaling complex. Cell Research, 2021, 31, 932-934.	5.7	25
1990	Signaling at the endosome: cryoâ€EM structure of a GPCR–G protein–betaâ€arrestin megacomplex. FEBS Journal, 2021, 288, 2562-2569.	2.2	22

#	Article	IF	CITATIONS
1992	Structural aspects of rod opsin and their implication in genetic diseases. Pflugers Archiv European Journal of Physiology, 2021, 473, 1339-1359.	1.3	9
1993	Conformational switch that induces GDP release from Gi. Journal of Structural Biology, 2021, 213, 107694.	1.3	9
1994	Molecular basis of ligand recognition and activation of human V2 vasopressin receptor. Cell Research, 2021, 31, 929-931.	5.7	38
1995	Valine-279 Deletion–Mutation on Arginine Vasopressin Receptor 2 Causes Obstruction in G-Protein Binding Site: A Clinical Nephrogenic Diabetes Insipidus Case and Its Sub-Molecular Pathogenic Analysis. Biomedicines, 2021, 9, 301.	1.4	2
1996	Development of Generic G Protein Peptidomimetics Able to Stabilize Active State G _s Proteinâ€Coupled Receptors for Application in Drug Discovery. Angewandte Chemie - International Edition, 2021, 60, 10247-10254.	7.2	11
1997	Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors. Current Topics in Medicinal Chemistry, 2021, 21, 269-294.	1.0	7
1998	β2-adrenoceptor ligand efficacy is tuned by a two-stage interaction with the Gαs C terminus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1999	Mechanistic diversity involved in the desensitization of G protein-coupled receptors. Archives of Pharmacal Research, 2021, 44, 342-353.	2.7	16
2001	Ketamine Metabolite (2 <i>R</i> ,6 <i>R</i>)-Hydroxynorketamine Interacts with μ and κ Opioid Receptors. ACS Chemical Neuroscience, 2021, 12, 1487-1497.	1.7	13
2003	Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. Applied Spectroscopy, 2021, 75, 491-505.	1.2	8
2004	Monosubstituted Coumarins Inhibit Epinephrine-Induced Platelet Aggregation Antiplatelet Effect of Monosubstituted Coumarins. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2021, 19, .	0.4	0
2005	Analysis of Missense Variants in the Human Histamine Receptor Family Reveals Increased Constitutive Activity of E4106.30×30K Variant in the Histamine H1 Receptor. International Journal of Molecular Sciences, 2021, 22, 3702.	1.8	4
2006	A universal allosteric mechanism for G protein activation. Molecular Cell, 2021, 81, 1384-1396.e6.	4.5	33
2007	Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor. Journal of Physical Chemistry B, 2021, 125, 4286-4298.	1.2	4
2009	Ligand recognition, unconventional activation, and G protein coupling of the prostaglandin E ₂ receptor EP2 subtype. Science Advances, 2021, 7, .	4.7	28
2010	Coevolution underlies GPCR-G protein selectivity and functionality. Scientific Reports, 2021, 11, 7858.	1.6	7
2011	The role of structural dynamics in GPCRâ€mediated signaling. FEBS Journal, 2021, 288, 2461-2489.	2.2	58
2012	Structural basis of GABAB receptor–Gi protein coupling. Nature, 2021, 594, 594-598.	13.7	50

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2015	DEER Analysis of GPCR Conformational Heterogeneity. Biomolecules, 2021, 11, 778.		1.8	24
2016	Cryo–electron microscopy structure of the antidiuretic hormone arginine-vasopressi signaling complex. Science Advances, 2021, 7, .	n V2 receptor	4.7	25
2017	Structures in G proteins important for subtype selective receptor binding and subsequ Communications Biology, 2021, 4, 635.	ent activation.	2.0	10
2018	Characterization of binding kinetics of A2AR to Gαs protein by surface plasmon reson Journal, 2021, 120, 1641-1649.	ance. Biophysical	0.2	8
2021	Arrestin-dependent internalization of rhodopsin-like G protein-coupled receptors. Biolo Chemistry, 2021, .	igical	1.2	4
2022	Structural determinants of cholesterol recognition in helical integral membrane protein Biophysical Journal, 2021, 120, 1592-1604.	ns.	0.2	12
2023	Activation-Induced Reorganization of Energy Transport Networks in the β _{2Receptor. Journal of Physical Chemistry B, 2021, 125, 6522-6531.}	>> Adrenergic	1.2	6
2025	Abolishing Dopamine D _{2long} /D ₃ Receptor Affinity of Subtyp Carbamoylguanidine-Type Histamine H ₂ Receptor Agonists. Journal of Me 2021, 64, 8684-8709.		2.9	8
2026	Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mime provide insight into mechanisms of G protein selectivity. PLoS Biology, 2021, 19, e300		2.6	41
2027	A set of common movements within GPCR-C-protein complexes from variability analysi datasets. Journal of Structural Biology, 2021, 213, 107699.	is of cryo-EM	1.3	11
2029	G-Protein Peptidomimetics Stabilize GPCR Active State Conformations. Trends in Phar Sciences, 2021, 42, 429-430.	nacological	4.0	4
2032	G-protein activation by a metabotropic glutamate receptor. Nature, 2021, 595, 450-45	54.	13.7	73
2033	Residue 6.43 defines receptor function in class F GPCRs. Nature Communications, 202	21, 12, 3919.	5.8	14
2034	Molecular insights into ago-allosteric modulation of the human glucagon-like peptide- Nature Communications, 2021, 12, 3763.	l receptor.	5.8	41
2035	Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature, 2	2021, 594, 583-588.	13.7	73
2036	Functional differences between TSHR alleles associate with variation in spawning seascherring. Communications Biology, 2021, 4, 795.	on in Atlantic	2.0	5
2038	Endogenous agonist–bound S1PR3 structure reveals determinants of G protein–s Advances, 2021, 7, .	ubtype bias. Science	4.7	31
2039	Critical APJ receptor residues in extracellular domains that influence effector selectivity Journal, 2021, 288, 6543-6562.	/. FEBS	2.2	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2042	Ligands of Adrenergic Receptors: A Structural Point of View. Biomolecules, 2021, 11, 9	36.	1.8	40
2043	Crystal structure of dopamine D1 receptor in complex with G protein and a non-catech Nature Communications, 2021, 12, 3305.	ol agonist.	5.8	34
2044	miRNA regulation of G protein-coupled receptor mediated angiogenic pathways in can (India), 0, , 1.	cer. Nucleus	0.9	4
2045	Selective targeting of ligand-dependent and -independent signaling by GPCR conforma anti-US28 intrabodies. Nature Communications, 2021, 12, 4357.	ition-specific	5.8	18
2046	In Silico Identification of Cholesterol Binding Motifs in the Chemokine Receptor CCR3. 2021, 11, 570.	Membranes,	1.4	14
2047	Structure and dynamics of semaglutide- and taspoglutide-bound GLP-1R-Gs complexes 2021, 36, 109374.	. Cell Reports,	2.9	27
2048	Exploring the Activation Process of the β2AR-G _s Complex. Journal of the A Society, 2021, 143, 11044-11051.	merican Chemical	6.6	14
2049	Delineating the Ligandâ \in "Receptor Interactions That Lead to Biased Signaling at the \hat{l}_{j} Journal of Chemical Information and Modeling, 2021, 61, 3696-3707.	4-Opioid Receptor.	2.5	14
2050	Emerging roles of adhesion G protein-coupled receptors. Biochemical Society Transact 1695-1709.	ions, 2021, 49,	1.6	17
2051	Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign a urologic disease. Cell Communication and Signaling, 2021, 19, 78.	nd malignant	2.7	10
2053	Allosteric conformational changes of G proteins upon its interaction with membrane a Chinese Chemical Letters, 2022, 33, 747-750.	nd GPCR.	4.8	3
2054	Cryo-EM structure of constitutively active human Frizzled 7 in complex with heterotrin Research, 2021, 31, 1311-1314.	neric Gs. Cell	5.7	23
2055	Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Nature, 2 600-605.	2021, 595,	13.7	87
2056	Cryo-EM structure of the \hat{l}^23 -adrenergic receptor reveals the molecular basis of subtyp Molecular Cell, 2021, 81, 3205-3215.e5.	e selectivity.	4.5	21
2059	Mechanical and chemical activation of GPR68 probed with a genetically encoded fluore reporter. Journal of Cell Science, 2021, 134, .	escent	1.2	17
2061	Structural dynamics bridge the gap between the genetic and functional levels of GPCR Opinion in Structural Biology, 2021, 69, 150-159.	s. Current	2.6	6
2062	HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and s studies of class IB phosphoinositide 3-kinases. Structure, 2021, 29, 1371-1381.e6.	structural	1.6	10
2063	An Intracellular Tripeptide Arg-His-Trp of Serum Origin Detected in MCF-7 Cells is a Pos β2 Adrenoceptor. Protein and Peptide Letters, 2021, 28, 1191-1202.	sible Agonist to	0.4	0

#	Article	IF	CITATIONS
2064	Structural mechanism of calcium-mediated hormone recognition and $G\hat{l}^2$ interaction by the human melanocortin-1 receptor. Cell Research, 2021, 31, 1061-1071.	5.7	36
2065	Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. Journal of Allergy and Clinical Immunology, 2021, 148, 293-308.	1.5	66
2066	Molecular basis for ligand modulation of the cannabinoid CB ₁ receptor. British Journal of Pharmacology, 2022, 179, 3487-3495.	2.7	5
2067	The conformational transition during G protein–coupled receptor (GPCR) and G protein interaction. Current Opinion in Structural Biology, 2021, 69, 117-123.	2.6	15
2068	The role of the odorant receptors in the formation of the sensory map. BMC Biology, 2021, 19, 174.	1.7	11
2069	Structural insights into ligand recognition and activation of the melanocortin-4 receptor. Cell Research, 2021, 31, 1163-1175.	5.7	26
2070	Cryo-EM structure of the human MT1–Gi signaling complex. Nature Structural and Molecular Biology, 2021, 28, 694-701.	3.6	31
2071	Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nature Communications, 2021, 12, 4721.	5.8	124
2073	Molecular recognition of an acyl-peptide hormone and activation of ghrelin receptor. Nature Communications, 2021, 12, 5064.	5.8	40
2074	Naturally Occurring Genetic Variants in the Oxytocin Receptor Alter Receptor Signaling Profiles. ACS Pharmacology and Translational Science, 2021, 4, 1543-1555.	2.5	6
2075	Evolving cryo-EM structural approaches for GPCR drug discovery. Structure, 2021, 29, 963-974.e6.	1.6	29
2076	The G protein database, GproteinDb. Nucleic Acids Research, 2022, 50, D518-D525.	6.5	49
2077	Nanobody-aided crystallization of the transcription regulator PaaR2 from <i>Escherichia coli</i> O157:H7. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 374-384.	0.4	2
2078	Fusion with Promiscuous Cα16 Subunit Reveals Signaling Bias at Muscarinic Receptors. International Journal of Molecular Sciences, 2021, 22, 10089.	1.8	2
2079	G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). , 2022, 231, 107977.		28
2081	Decoding Partner Specificity of Opioid Receptor Family. Frontiers in Molecular Biosciences, 2021, 8, 715215.	1.6	3
2082	Allosteric modulation of LRRC8 channels by targeting their cytoplasmic domains. Nature Communications, 2021, 12, 5435.	5.8	15
2083	Universal Properties and Specificities of the β2-Adrenergic Receptor-Gs Protein Complex Activation Mechanism Revealed by All-Atom Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2021, 22, 10423.	1.8	3

#	Article	IF	CITATIONS
2084	Unique Positive Cooperativity Between the <i>β</i> -Arrestin–Biased <i>β</i> -Blocker Carvedilol and a Small Molecule Positive Allosteric Modulator of the <i>β</i> 2-Adrenergic Receptor. Molecular Pharmacology, 2021, 100, 513-525.	1.0	18
2085	Lipids: An Atomic Toolkit for the Endless Frontier. ACS Nano, 2021, 15, 15429-15445.	7.3	11
2089	Molecular basis for kinin selectivity and activation of the human bradykinin receptors. Nature Structural and Molecular Biology, 2021, 28, 755-761.	3.6	36
2090	Influence of Lipid Bilayer on the GPCR Structure: Comparison of All-Atom Lipid Force Fields. Bulletin of the Chemical Society of Japan, 2021, 94, 2569-2574.	2.0	9
2091	Structure determination of GPCRs: cryo-EM compared with X-ray crystallography. Biochemical Society Transactions, 2021, 49, 2345-2355.	1.6	50
2092	Structures of full-length glycoprotein hormone receptor signalling complexes. Nature, 2021, 598, 688-692.	13.7	52
2093	Specific Engineered G Protein Coupling to Histamine Receptors Revealed from Cellular Assay Experiments and Accelerated Molecular Dynamics Simulations. International Journal of Molecular Sciences, 2021, 22, 10047.	1.8	4
2094	Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor. Nature Chemical Biology, 2021, 17, 1238-1244.	3.9	54
2095	Constitutive signal bias mediated by the human GHRHR splice variant 1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
2097	Unraveling binding mechanism and kinetics of macrocyclic Gαq protein inhibitors. Pharmacological Research, 2021, 173, 105880.	3.1	10
2098	The Role of G Protein-Coupled Receptor Signaling in Gynecologic Malignancy. Current Human Cell Research and Applications, 2021, , 57-70.	0.1	0
2100	Homology Modeling of Class A G-Protein-Coupled Receptors in the Age of the Structure Boom. Methods in Molecular Biology, 2021, 2315, 73-97.	0.4	3
2101	Identification of ligand-specific G protein-coupled receptor states and prediction of downstream efficacy via data-driven modeling. ELife, 2021, 10, .	2.8	40
2102	Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. Pharmaceuticals, 2021, 14, 76.	1.7	7
2103	Understanding the Mechanism of Activation/Deactivation of GLP-1R via Accelerated Molecular Dynamics Simulation. Australian Journal of Chemistry, 2021, 74, 211.	0.5	2
2104	G protein-coupled receptors: structure- and function-based drug discovery. Signal Transduction and Targeted Therapy, 2021, 6, 7.	7.1	241
2105	Preparation of 1â€Monoacylglycerols via the Suzukiâ€Miyaura Reaction: 2,3â€Dihydroxypropyl (<scp>) Tj ETQq(</scp>) 0 0 rgBT	/Qverlock 10

2106	In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods in Molecular Biology, 2020, 2127, 293-319.	0.4	3
------	--	-----	---

#	Article	IF	CITATIONS
2107	Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, 2020, 2173, 21-51.	0.4	7
2108	Network Re-Wiring During Allostery and Protein-Protein Interactions: A Graph Spectral Approach. Methods in Molecular Biology, 2021, 2253, 89-112.	0.4	6
2109	Computational Structural Biology of Opioid Receptors. Methods in Molecular Biology, 2015, 1230, 13-38.	0.4	3
2110	G protein-Coupled Receptors: An Overview of Signaling Mechanisms and Screening Assays. Methods in Molecular Biology, 2015, 1272, 3-19.	0.4	10
2111	Pepducins and Other Lipidated Peptides as Mechanistic Probes and Therapeutics. Methods in Molecular Biology, 2015, 1324, 191-203.	0.4	28
2112	2D Projection Analysis of GPCR Complexes by Negative Stain Electron Microscopy. Methods in Molecular Biology, 2015, 1335, 29-38.	0.4	38
2113	Nuts and Bolts of CF3 and CH3 NMR Toward the Understanding of Conformational Exchange of GPCRs. Methods in Molecular Biology, 2015, 1335, 39-51.	0.4	8
2114	Design and Analysis of an Arrestin-Biased DREADD. Neuromethods, 2015, , 29-48.	0.2	2
2115	Molecular Basis for Targeting, Inhibition, and Receptor Phosphorylation in the G Protein-Coupled Receptor Kinase 4 Subfamily. Methods in Pharmacology and Toxicology, 2016, , 59-74.	0.1	1
2116	Advances in Structure Determination of G Protein-Coupled Receptors by SFX. , 2018, , 301-329.		2
2117	Crystallizing Membrane Proteins for Structure-Function Studies Using Lipidic Mesophases. NATO Science for Peace and Security Series A: Chemistry and Biology, 2013, , 33-46.	0.5	2
2118	The GPCR Crystallography Boom: Providing an Invaluable Source of Structural Information and Expanding the Scope of Homology Modeling. Advances in Experimental Medicine and Biology, 2014, 796, 3-13.	0.8	23
2119	Bioinformatics Tools for Predicting GPCR Gene Functions. Advances in Experimental Medicine and Biology, 2014, 796, 205-224.	0.8	5
2120	Modeling of G Protein-Coupled Receptors Using Crystal Structures: From Monomers to Signaling Complexes. Advances in Experimental Medicine and Biology, 2014, 796, 15-33.	0.8	11
2121	Mathematical Modeling of G Protein-Coupled Receptor Function: What Can We Learn from Empirical and Mechanistic Models?. Advances in Experimental Medicine and Biology, 2014, 796, 159-181.	0.8	7
2122	Lipid Cubic Phase for Membrane Protein X-ray Crystallography. , 2018, , 175-220.		1
2123	Structures, Limitations, and Pitfalls. , 2016, , 3-14.		2
2124	Circuit Formation and Synaptic Plasticity in the Mouse Olfactory System. , 2020, , 624-639.		1

#	Article	IF	CITATIONS
2125	Membrane transporter research in times of countless structures. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 804-808.	1.4	19
2126	Structural basis of ligand recognition and self-activation of orphan GPR52. Nature, 2020, 579, 152-157.	13.7	97
2127	Membrane protein crystallography in the era of modern structural biology. Biochemical Society Transactions, 2020, 48, 2505-2524.	1.6	9
2146	Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ, 2019, 6, 1106-1119.	1.0	53
2147	Strategies for sample delivery for femtosecond crystallography. Acta Crystallographica Section D: Structural Biology, 2019, 75, 160-177.	1.1	87
2148	A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Science Signaling, 2020, 13, .	1.6	31
2149	GPCRs: Lipid-Dependent Membrane Receptors That Act as Drug Targets. Advances in Biology, 2014, 2014, 1-12.	1.2	82
2150	Gα13 ablation reprograms myofibers to oxidative phenotype and enhances whole-body metabolism. Journal of Clinical Investigation, 2017, 127, 3845-3860.	3.9	22
2152	Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors. PLoS Biology, 2015, 13, e1002194.	2.6	157
2153	Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs. PLoS Computational Biology, 2015, 11, e1004361.	1.5	10
2154	Unifying view of mechanical and functional hotspots across class A GPCRs. PLoS Computational Biology, 2017, 13, e1005381.	1.5	7
2155	Membrane-Sensitive Conformational States of Helix 8 in the Metabotropic Glu2 Receptor, a Class C GPCR. PLoS ONE, 2012, 7, e42023.	1.1	31
2156	Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes. PLoS ONE, 2012, 7, e50186.	1.1	21
2157	Constitutively Active CCR5 Chemokine Receptors Differ in Mediating HIV Envelope-dependent Fusion. PLoS ONE, 2013, 8, e54532.	1.1	12
2158	The Second Intracellular Loop of the Human Cannabinoid CB2 Receptor Governs G Protein Coupling in Coordination with the Carboxyl Terminal Domain. PLoS ONE, 2013, 8, e63262.	1.1	24
2159	Active-State Models of Ternary GPCR Complexes: Determinants of Selective Receptor-G-Protein Coupling. PLoS ONE, 2013, 8, e67244.	1.1	37
2160	Arginine 199 and Leucine 208 Have Key Roles in the Control of Adenosine A2A Receptor Signalling Function. PLoS ONE, 2014, 9, e89613.	1.1	5
2161	Crystallization Scale Preparation of a Stable GPCR Signaling Complex between Constitutively Active Rhodopsin and G-Protein. PLoS ONE, 2014, 9, e98714.	1.1	24

#	Article	IF	CITATIONS
2162	A Dynamic View of Molecular Switch Behavior at Serotonin Receptors: Implications for Functional Selectivity. PLoS ONE, 2014, 9, e109312.	1.1	27
2163	Retinal Cone Photoreceptors Require Phosducin-Like Protein 1 for G Protein Complex Assembly and Signaling. PLoS ONE, 2015, 10, e0117129.	1.1	10
2164	Relationship between Human Evolution and Neurally Mediated Syncope Disclosed by the Polymorphic Sites of the Adrenergic Receptor Gene α2B-AR. PLoS ONE, 2015, 10, e0120788.	1.1	12
2165	Functional Characterization of the Vitamin K2 Biosynthetic Enzyme UBIAD1. PLoS ONE, 2015, 10, e0125737.	1.1	47
2166	mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats. PLoS ONE, 2015, 10, e0144017.	1.1	16
2167	Comparative MD Simulations Indicate a Dual Role for Arg1323.50 in Dopamine-Dependent D2R Activation. PLoS ONE, 2016, 11, e0146612.	1.1	8
2168	Functional and Biochemical Characterization of Alvinella pompejana Cys-Loop Receptor Homologues. PLoS ONE, 2016, 11, e0151183.	1.1	4
2169	G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation. PLoS ONE, 2016, 11, e0155816.	1.1	9
2170	Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor. PLoS ONE, 2017, 12, e0179568.	1.1	23
2171	Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis. Open Chemistry, 2020, 18, 628-647.	1.0	9
2172	The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget, 2018, 9, 29453-29467.	0.8	27
2173	A century of X-ray crystallography and 2014 international year of X-ray crystallography. Macedonian Journal of Chemistry and Chemical Engineering, 2015, 34, 19.	0.2	3
2174	Serial femtosecond crystallography opens new avenues for Structural Biology. Protein and Peptide Letters, 2016, 23, 255-272.	0.4	12
2175	Nucleotide Binding Affects Intrinsic Dynamics and Structural Communication in Ras GTPases. Current Pharmaceutical Design, 2013, 19, 4214-4225.	0.9	12
2176	Molecular Dynamics Simulations of Adenosine Receptors: Advances, Applications and Trends. Current Pharmaceutical Design, 2019, 25, 783-816.	0.9	24
2177	Bivalent Ligands Targeting Chemokine Receptor Dimerization: Molecular Design and Functional Studies. Current Topics in Medicinal Chemistry, 2014, 14, 1606-1618.	1.0	16
2178	In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Current Neuropharmacology, 2018, 16, 786-848.	1.4	18
2179	Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Medicinal Chemistry, 2019, 15, 443-458.	0.7	16

		CITATION REPORT	
#	Article	IF	Citations
2180	\hat{I}^2 -arrestins and biased signaling in gonadotropin receptors. Minerva Ginecologica, 2018, 70, 525-5	38. 0.8	14
2181	Be Cautious with Crystal Structures of Membrane Proteins or Complexes Prepared in Detergents. Crystals, 2020, 10, 86.	1.0	30
2182	Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors. International Journa of Molecular Sciences, 2021, 22, 187.	1.8	6
2183	Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor. International Journal of Molecular Sciences, 2021, 22, 209.	1.8	5
2184	Current applications of mini G proteins to study the structure and function of G protein-coupled receptors. AIMS Bioengineering, 2018, 5, 209-225.	0.6	6
2185	A survey of conformational and energetic changes in G protein signaling. AIMS Biophysics, 2015, 2 630-648.	, 0.3	1
2186	G protein-coupled receptors: the evolution of structural insight. AIMS Biophysics, 2017, 4, 491-527	7. 0.3	56
2187	Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regeneration Research, 2013, 8, 2290-302.	1.6	7
2188	Recent Progress in Understanding the Conformational Mechanism of Heterotrimeric G Protein Activation. Biomolecules and Therapeutics, 2017, 25, 4-11.	1.1	16
2189	Role of Helix 8 in Dopamine Receptor Signaling. Biomolecules and Therapeutics, 2019, 27, 514-521	l. 1.1	6
2190	The Science Behind G Protein-Coupled Receptors (GPCRs) and Their Accurate Visual Representation Scientific Research. The Journal of Biocommunication, 2017, 41, .	n in 0.1	2
2191	Mechanism of allosteric regulation of \hat{I}^22 -adrenergic receptor by cholesterol. ELife, 2016, 5, .	2.8	115
2192	Ric-8A, a G protein chaperone with nucleotide exchange activity induces long-range secondary structure changes in Gl±. ELife, 2016, 5, .	2.8	23
2193	Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer. ELife 2017, 6, .	2, 2.8	48
2194	Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones i live human cells. ELife, 2017, 6, .	n 2.8	42
2195	Viral GPCR US28 can signal in response to chemokine agonists of nearly unlimited structural degeneracy. ELife, 2018, 7, .	2.8	41
2196	Simulation of spontaneous G protein activation reveals a new intermediate driving GDP unbinding. ELife, 2018, 7, .	2.8	39
2197	Molecular basis of signaling specificity between GIRK channels and GPCRs. ELife, 2018, 7, .	2.8	43

#	Article	IF	CITATIONS
2198	Conformational dynamics between transmembrane domains and allosteric modulation of a metabotropic glutamate receptor. ELife, 2019, 8, .	2.8	38
2199	Cryo-EM structure of the rhodopsin-Gαi-βγ complex reveals binding of the rhodopsin C-terminal tail to the gβ subunit. ELife, 2019, 8, .	2.8	52
2200	Common activation mechanism of class A GPCRs. ELife, 2019, 8, .	2.8	339
2201	Structural and functional characterization of G protein–coupled receptors with deep mutational scanning. ELife, 2020, 9, .	2.8	91
2202	Structures of active melanocortin-4 receptor–Gs-protein complexes with NDP-α-MSH and setmelanotide. Cell Research, 2021, 31, 1176-1189.	5.7	40
2203	Tyrosine phosphorylation of S1PR1 leads to chaperone BiP-mediated import to the endoplasmic reticulum. Journal of Cell Biology, 2021, 220, .	2.3	3
2204	An automated platform for structural analysis of membrane proteins through serial crystallography. Cell Reports Methods, 2021, 1, 100102.	1.4	4
2205	Integrative RNA-omics Discovers <i>GNAS</i> Alternative Splicing as a Phenotypic Driver of Splicing Factor–Mutant Neoplasms. Cancer Discovery, 2022, 12, 836-855.	7.7	19
2206	Unique features of different classes of <scp>Gâ€protein oupled</scp> receptors revealed from sequence coevolutionary and structural analysis. Proteins: Structure, Function and Bioinformatics, 2022, 90, 601-614.	1.5	4
2207	Identification and Functional Analysis of G Protein-Coupled Receptors in 20-Hydroxyecdysone Signaling From the Helicoverpa armigera Genome. Frontiers in Cell and Developmental Biology, 2021, 9, 753787.	1.8	5
2209	Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Frontiers in Chemistry, 2021, 9, 671483.	1.8	7
2210	C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins. Journal of Chemical Information and Modeling, 2021, 61, 5692-5707.	2.5	11
2211	Chemical Synthesis of a Full-Length G-Protein-Coupled Receptor β ₂ -Adrenergic Receptor with Defined Modification Patterns at the C-Terminus. Journal of the American Chemical Society, 2021, 143, 17566-17576.	6.6	23
2212	Detergents for Membrane Proteins. Materials and Methods, 0, 1, .	0.0	0
2213	<code>Dé</code> tergents pour des protéines membranair. Materials and Methods, 0, fr1, .	0.0	0
2214	Detergentes para proteÃnas de membrana. Materials and Methods, 0, pt1, .	0.0	0
2215	æ•´å•̀膜蛋癹⁄₂çš,,æ´—æ¶₿‰,. å®žéªŒææ–™å'Œæ–¹æ³•, 0, cn1, .	0.0	0
2216	Detergentes para proteÃnas de membranas. Materials and Methods, 0, es1, .	0.0	Ο

2219Bodogsin Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134QM257Y. Journal0.202219Ischaber Chromophore Formation and Thermal Stabilities in the Opsin Mutant E134QM257Y. Journal0.012219Shores Challenee National Che Melecine, 2012. 169.17557.0.012219Shores Challenee National Che Melecine, 2012. 169.17557.0.012210Counsel Action Receptors: Abacist Add Signaling Transduction Pathways in Plants. Chinese Bulletton of0.012211Counsel Action Receptors: Abacist Add Signaling Transduction Plathways in Plants. Chinese Bulletton of0.012212Counsel and the Pharmateologie des Nervensystems. 2013, 195-125.112213Counsel and Pharmateologie des Nervensystems. 2013, 195-125.0002214Chronephele Receptor Activation Based on Xray Structural Studies. 2013, 877-881.0.0002215Porteinat@Coupled Receptor Activation Based on Xray Structural Studies. 2013, 137-03.0.0002216Coupled Receptors Coupled Receptors. Schools Static The Troubles of Crystallizing Proteinal@Protein0.0102219Receptor Porteins on Cell Membrane Schools Static The Troubles of Crystallizing Proteinal@Protein0.0102219Receptor Porteins on Cell Membrane Schools and The Awaguard of Science Jeans. Ultrainian0.0012219Receptor Porteins on Cell Membrane Schools and The Awaguard of Science Jeans. Ultrainian0.0112219Receptor Porteins on Cell Membrane Schools an	#	Article	IF	CITATIONS
2118 Bulletin Dic L'Academie Nationalé De Medecine, 2012, 196, 1765-1775. 0.00 1 2119 Abscisie Acid Receptors: Abscisie Acid Signaling Transduction Pathways in Plants. Chinese Bulletin of 0.0 1 2120 Crystal Structure Analysis of Adlenosine A2A Receptor in Complex with Functional Antibody Fragment. 0.0 0 2221 Crundlagen der Pharmakologie des Nervensystems., 2013., 95-125. 1 2222 Effect of Olgomers on Structural and Functional State of Biomembranes. Science Journal of 0.1 0 2223 G Proteinä®"Coupled Receptor Activation Based on X-ray Structural Studies., 2013., 877-881. 0 2224 Active Structure of G Protein Coupled Receptors. Seibutsu Butsuri, 2013. 53, 034-036. 0.0 0 2225 Conteinä®"Coupled Receptor Activation Based on X-ray Structural Studies., 2013., 187-881. 0 0 2226 Proteinä®"Coupled Receptor Science Journal of Science again. Ukrainian 0.1 1 2227 Receptor Protein Interactions in the Solid State: The Troubles of Crystallizing Proteinä©"Protein 1 2228 Stam cells and receptors connected with C-proteins &6" in the vanguad of science again. Ukrainian 0.1 1 2229 Proteinä® Coupled Receptor Proteins for Gene T Interpy of Deceases Associated with Excessive Signaling	2217		0.2	0
2219 Botany, 2013, 47, 515-524. 0.0 1 2220 Crystal Structure Analysis of Adenosine A2A Receptor in Complex with Functional Antibody Fragment. 0.0 0 2221 Grundlagen der Pharmakologie des Nervensystems., 2013., 95-125. 1 2222 Effect of Oligomers on Structural and Functional State of Biomembranes. Science Journal of 0.1 0 2223 C Proteinä 6 ^(C) Coupled Receptor Activation Based on X-ray Structural Studies., 2013., 877-881. 0 0 2224 Active Structure of G Protein Coupled Receptors. Scibutsu Butsuri, 2013, 53, 034-036. 0.0 0 2225 Proteinä 6 ^(C) Protein Interactions in the Solid State: The Troubles of Crystallizing Proteinä 6 ^(C) Protein 1 2226 Stein cells and receptors connected with C-proteins â ^(C) in the vanguard of science again. Librainian 0.1 1 2227 Peceina 6 ^(C) Protein Coupled Receptors. Scibutsu Butsuri, 2013, 3.2.3.8. 0.0 0 2228 Stein cells and receptors connected with C-proteins â ^(C) in the vanguard of science again. Librainian 0.1 1 2229 Peceinc Coupled Receptors. Methods in Pharmacology and locatelogy. 2014., 257-283. 0.0 0 2220 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nhon Kessho Gakbalshi, 2014, 56, 230-235.<	2218	Les récepteurs couplés aux protéines G : caractéristiques générales et mécanismes d'activation. Bulletin De L'Academie Nationale De Medecine, 2012, 196, 1765-1775.	0.0	1
2220 Nihon Kessho Gabkaishi, 2013, 55, 103-109. 00 0 2221 Crundlagen der Pharmakologie des Nervensystems., 2013,, 95-125. 1 2222 Effect of Oligomers on Structural and Functional State of Blomembranes. Science Journal of 0.1 0 2223 G Protein&Coupled Receptor Activation Based on X-ray Structural Studies., 2013,, 877-881. 0 0 2224 Active Structure of G Protein Coupled Receptors. Selbutsu Butsuri, 2013, 53, 034-036. 0.0 0 2225 Protein&C [®] Protein Interactions in the Solid State: The Troubles of Crystallizing Protein&C [®] Protein 1 2226 Stem cells and receptors connected with C-proteins &C [®] in the vanguard of science again. Ubrainian 0.1 1 2227 Receptor Proteins on Cell Membrane &C [®] What are They for, or How Different Cells of the Organism 0.0 0 2228 Design of Super-arrestins for Cene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2229 Inducing Conformational Changes in G Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2220 Crystallization of Membrane Proteins in Liptic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Consti	2219		0.0	1
2222 Effect of Oligomers on Structural and Functional State of Biomembranes. Science Journal of 0.1 0 2223 C Proteiná€"Coupled Receptor Activation Based on X-ray Structural Studies, 2013, 877-881. 0 2224 Active Structure of C Protein Coupled Receptors. Selbutsu Butsuri, 2013, 53, 034-036. 0.0 0 2225 Proteiná€"Protein Interactions in the Solid State: The Troubles of Crystallizing Proteiná€"Protein 1 2226 Stem cells and receptors connected with G-proteins &€" in the vanguard of science again. Ukrainian 0.1 1 2227 Receptor Proteins on Cell Membrane &C" What are They for, or How Different Cells of the Organism 0.0 0 2228 Proteinfe@Coupled Receptors. Connected with G-proteins &C" in the vanguard of science again. Ukrainian 0.1 1 2229 Receptor Proteins on Cell Membrane &C" What are They for, or How Different Cells of the Organism 0.0 0 2229 pesign of Superarrestins for Gene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2220 crystallization of Membrane Proteins in Upidic Cuble Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2221 conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 222	2220	Crystal Structure Analysis of Adenosine A2A Receptor in Complex with Functional Antibody Fragment. Nihon Kessho Gakkaishi, 2013, 55, 103-109.	0.0	Ο
2222 Chemistry, 2013, 1, 26. 01 0 2223 G Proteinä6"Coupled Receptor Activation Based on X-ray Structural Studies., 2013, ,877-881. 0 2224 Active Structure of C Protein Coupled Receptors. Selbutsu Butsuri, 2013, 53, 034-036. 0.0 0 2225 Proteinä6"Protein Interactions in the Solid State: The Troubles of Crystallizing Proteinä6"Protein 1 2226 Stem cells and receptors connected with C-proteins 4C" In the vanguard of science again. Ukrainian 0.1 1 2227 Receptor Proteins on Cell Membrane 4C" What are They for, or How Different Cells of the Organism 0.0 0 2228 Design of Super-arrestins for Gene Therapy of Diseases Associated with Excessive Signaling of C 0.1 1 2229 Inducing Conformational Changes in C Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2229 Inducing Conformational Changes in C Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2221 Crystallization of Membrane Proteins in Upidic Cubic Phase. Nihon Kessho Gakkatshi, 2014, 56, 230-235. 0.0 0 2223 Offactory Receptor Proteins., 2014, 47-68. 0 0 0 2233 Structures of the Prokaryotic Galactose Transporter vSCLT and Their Implications on Alterm	2221	Grundlagen der Pharmakologie des Nervensystems. , 2013, , 95-125.		1
2224 Active Structure of G Protein Coupled Receptors. Selbutsu Butsuri, 2013, 53, 034-036. 0.0 0 2225 Proteinå@"Protein Interactions in the Solid State: The Troubles of Crystallizing Proteinå@"Protein 1 2226 Stem cells and receptors connected with G-proteins &@" in the vanguard of science again. Ukrainian 0.1 1 2227 Perceptor Proteins on Cell Membrane &@" What are They for, or How Different Cells of the Organism 0.0 0 2228 Pesign of Super-arrestins for Gene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2229 Inducing Conformational Changes in C Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2220 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkalshi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a C Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins., 2014,, 47-68. 0 0 0 2233 Structures of the Probanyotic Galactose Transporter vSGLT and Their Implications on Alternating 0.4 0	2222		0.1	0
2225 Proteinå G ^{en} Protein Interactions in the Solid State: The Troubles of Crystallizing Proteinå G ^{en} Protein 1 2226 Stem cells and receptors connected with G-proteins å G ^{en} in the vanguard of science again. Ukrainian 0.1 1 2227 Receptor Proteins on Cell Membrane à G ^{en} What are They for, or How Different Cells of the Organism 0.0 0 2228 Design of Super-arrestins for Cene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2229 Inducing Conformational Changes in G Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2220 Inducing Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2231 Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins	2223	G Protein–Coupled Receptor Activation Based on X-ray Structural Studies. , 2013, , 877-881.		0
2228 Complexes., 2013, , 113-134. I 2220 Stem cells and receptors connected with G-proteins àC [®] in the vanguard of science again. Ukrainian 0.1 1 2227 Receptor Proteins on Cell Membrane àC [®] What are They for, or How Different Cells of the Organism 0.0 0 2228 Design of Super-arrestins for Cene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2229 Inducing Conformational Changes in C Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2230 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a C Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins., 2014, , 47-68. 0 0 2233 Structures of the Prokaryotic Calactose Transporter vSCLT and Their Implications on Alternating Access Mechanism in Human SCLT1. Springer Series in Biophysics, 2014, , 59-78. 0.4 0	2224	Active Structure of G Protein Coupled Receptors. Seibutsu Butsuri, 2013, 53, 034-036.	0.0	0
2228 Biochemical Journal, 2013, 85, 96-106. 0.1 1 2227 Receptor Proteins on Cell Membrane â€" What are They for, or How Different Cells of the Organism Perceive the Environment?. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2013, 32-38. 0.0 0 2228 Design of Super-arrestins for Gene Therapy of Diseases Associated with Excessive Signaling of G Protein-Coupled Receptors. Methods in Pharmacology and Toxicology, 2014, , 257-285. 0.1 1 2229 Inducing Conformational Changes in G Protein-Coupled Receptors by Domain Coupling. Methods in Pharmacology and Toxicology, 2014, , 219-237. 0.0 0 2230 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. Seibutsu Butsuri, 2014, 54, 111-112. 0.0 0 2232 Olfactory Receptor Proteins. , 2014, , 47-68. 0 0 2233 Structures of the Prokaryotic Calactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, , 59-78. 0.4 0	2225			1
2227 Perceive the Environment?. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2013, , 32-38. 0.0 0 2228 Design of Super-arrestins for Gene Therapy of Diseases Associated with Excessive Signaling of G 0.1 1 2229 Inducing Conformational Changes in G Protein-Coupled Receptors by Domain Coupling. Methods in 0.1 1 2230 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a C Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins., 2014, , 47-68. 0 0 2233 Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, , 59-78. 0.4 0	2226		0.1	1
2228 Protein-Coupled Receptors. Methods in Pharmacology and Toxicology, 2014, , 257-285. 0.1 1 2229 Inducing Conformational Changes in G Protein-Coupled Receptors by Domain Coupling. Methods in Pharmacology and Toxicology, 2014, , 219-237. 0.1 1 2230 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins. , 2014, , 47-68. 0 0 2233 Structures of the Prokaryotic Galactose Transporter vSCLT and Their Implications on Alternating Access Mechanism in Human SCLT1. Springer Series in Biophysics, 2014, , 59-78. 0.4 0	2227		0.0	0
2229 Pharmacology and Toxicology, 2014, 219-237. 0.1 1 2230 Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235. 0.0 0 2231 Conformational Dynamics of a C Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant. 0.0 0 2232 Olfactory Receptor Proteins., 2014, 47-68. 0 0 2233 Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, 59-78. 0.4 0	2228		0.1	1
2231Conformational Dynamics of a G Protein-Coupled Receptor Opsin and Its Constitutively Active Mutant.0.002232Olfactory Receptor Proteins., 2014,, 47-68.02233Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014,, 59-78.0.4	2229		0.1	1
2231 Seibutsu Butsuri, 2014, 54, 111-112. 0.0 0 2232 Olfactory Receptor Proteins., 2014, , 47-68. 0 2233 Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, , 59-78. 0.4 0	2230	Crystallization of Membrane Proteins in Lipidic Cubic Phase. Nihon Kessho Gakkaishi, 2014, 56, 230-235.	0.0	0
 Structures of the Prokaryotic Galactose Transporter vSGLT and Their Implications on Alternating Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, , 59-78. 	2231		0.0	0
Access Mechanism in Human SGLT1. Springer Series in Biophysics, 2014, , 59-78.	2232	Olfactory Receptor Proteins. , 2014, , 47-68.		0
2234 Intracellular Signaling. , 2014, , 22-39.e8. 1	2233		0.4	0
	2234	Intracellular Signaling. , 2014, , 22-39.e8.		1

#	Article	IF	CITATIONS
2235	Structural Basis for the Specific Inhibition of Heterotrimeric G Protein by a Cyclic Peptide. Seibutsu Butsuri, 2014, 54, 265-266.	0.0	0
2236	Constitutive Activity of the Ghrelin Receptor. Receptors, 2014, , 3-19.	0.2	0
2237	Signaling by Rod and Cone Photoreceptors: Opsin Properties, G-protein Assembly, and Mechanisms of Activation. , 2014, , 23-48.		1
2238	Line Narrowing in Oriented-Sample NMR of Membrane Proteins. Biological Magnetic Resonance, 2015, , 159-185.	0.4	0
2240	Current Progress of Structural Studies on β ₂ Adrenergic Receptor. Hans Journal of Medicinal Chemistry, 2015, 03, 1-10.	0.0	0
2242	Supersensitive odor discrimination is controlled in part by initial transient interactions between the most sensitive dorsal olfactory receptors and G-proteins. Receptors & Clinical Investigation, 0, , .	0.9	1
2243	G Protein-Coupled Receptors. Endocrinology, 2016, , 1-37.	0.1	0
2244	Chapter 8. Computational Studies of Receptors. RSC Theoretical and Computational Chemistry Series, 2016, , 237-258.	0.7	0
2245	Introduction to the Structural Biology of Membrane Proteins. RSC Theoretical and Computational Chemistry Series, 2016, , 1-18.	0.7	0
2247	High-Throughput Crystallography and Its Applications in Drug Discovery. , 2017, , 153-179.		0
2248	Active Conformations of Arrestins: Expected and Unexpected Changes. , 2017, , 159-173.		0
2249	Monofunctional Elements of Multi-functional Proteins. , 2017, , 255-271.		0
2250	Applications of X-Ray Micro-Beam for Data Collection. Methods in Molecular Biology, 2017, 1607, 219-238.	0.4	5
2252	Zellsignalübertragung. , 0, , 919-1004.		0
2254	Creating a valid in silico Dopamine D2-receptor model for small molecular docking studies .,0,,.		0
2255	G Protein-Coupled Receptors. Endocrinology, 2018, , 85-120.	0.1	3
2256	The Lipid Cubic Phase as a Medium for the Growth of Membrane Protein Microcrystals. , 2018, , 87-107.		0
2265	The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects. , 2019, , 219-233.		0

#	Article	IF	CITATIONS
2266	A Historical Perspective of G Protein-Coupled Receptor Structural Biology. , 2019, , 31-47.		0
2267	NMR Studies of Function-related Conformational Equilibria of GPCRs. Seibutsu Butsuri, 2019, 59, 181-187.	0.0	0
2280	Unmasking features of the autoâ€epitope essential for β ₁ â€adrenoceptor activation by autoantibodies in chronic heart failure. ESC Heart Failure, 2020, 7, 1830-1841.	1.4	8
2285	The constitutive activity of the viral-encoded G protein-coupled receptor US28 supports a complex signalling network contributing to cancer development. Biochemical Society Transactions, 2020, 48, 1493-1504.	1.6	5
2287	Functional solubilization of the β2-adrenoceptor using diisobutylene maleic acid. IScience, 2021, 24, 103362.	1.9	8
2288	Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nature Chemical Biology, 2022, 18, 109-115.	3.9	40
2289	Towards the Idea of Molecular Brains. International Journal of Molecular Sciences, 2021, 22, 11868.	1.8	19
2290	Magic angle spinning NMR of G protein-coupled receptors. Progress in Nuclear Magnetic Resonance Spectroscopy, 2022, 128, 25-43.	3.9	3
2291	Free energy calculations of the functional selectivity of 5-HT2B G protein-coupled receptor. PLoS ONE, 2020, 15, e0243313.	1.1	2
2293	Detection of Microcrystals for CryoEM. Methods in Molecular Biology, 2021, 2215, 299-307.	0.4	1
2294	Trifluorinated Keto–Enol Tautomeric Switch in Probing Domain Rotation of a G Protein-Coupled Receptor. Bioconjugate Chemistry, 2021, 32, 99-105.	1.8	7
2295	G-Protein-Coupled Receptors. , 2020, , 1-9.		0
2296	Cryo-EM Structure of the β3 Adrenergic Receptor Reveals the Molecular Basis of Subtype Selectivity. SSRN Electronic Journal, 0, , .	0.4	0
2300	Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations. Biophysical Reviews, 2022, 14, 221-231.	1.5	2
2301	Current pivotal strategies leading a difficult target protein to a sample suitable for crystallographic analysis. Biochemical Society Transactions, 2020, 48, 1661-1673.	1.6	1
2308	G protein-coupled receptorsrecent advances. Acta Biochimica Polonica, 2012, 59, 515-29.	0.3	36
2311	GPCR activation mechanisms across classes and macro/microscales. Nature Structural and Molecular Biology, 2021, 28, 879-888.	3.6	98
2312	Nanobodies as probes and modulators of cardiovascular GPCRs. Journal of Cardiovascular Pharmacology, 2021, Publish Ahead of Print, .	0.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
2313	Analysis of L-DOPA and droxidopa binding to human \hat{I}^22 -adrenergic receptor. Biophysica	ıl Journal, 2021, , .	0.2	1
2314	Applications of Cryo-EM in small molecule and biologics drug design. Biochemical Socie Transactions, 2021, 49, 2627-2638.	ty	1.6	14
2315	Structure, function and pharmacology of human itch GPCRs. Nature, 2021, 600, 170-17	<i>'</i> 5.	13.7	101
2316	Molecular Mechanisms of Diverse Activation Stimulated by Different Biased Agonists fo β2-Adrenergic Receptor. Journal of Chemical Information and Modeling, 2022, 62, 5175	r the 5-5192.	2.5	16
2317	Genetic variants of gonadotrophins and their receptors: Impact on the diagnosis and ma the infertile patient. Best Practice and Research in Clinical Endocrinology and Metabolis 101596.	anagement of m, 2022, 36,	2.2	7
2318	Probing Allosteric Regulation Mechanism of W7.35 on Agonist-Induced Activity for μC Simulation. Journal of Chemical Information and Modeling, 2022, 62, 5120-5135.	R by Mutation	2.5	6
2319	Structural basis and mechanism of activation of two different families of G proteins by t GPCR. Nature Structural and Molecular Biology, 2021, 28, 936-944.	he same	3.6	25
2320	Lipopeptide Pepducins as Therapeutic Agents. Methods in Molecular Biology, 2022, 238	33, 307-333.	0.4	4
2321	A comprehensive comparison between camelid nanobodies and single chain variable fra Biomarker Research, 2021, 9, 87.	gments.	2.8	63
2322	Identification and characterization of an atypical G $\hat{1}$ ±s-biased $\hat{1}$ 2 ₂ AR agoni evoke airway smooth muscle cell tachyphylaxis. Proceedings of the National Academy o the United States of America, 2021, 118, .	st that fails to f Sciences of	3.3	12
2323	G-Protein-Coupled Receptors. , 2021, , 735-742.			0
2326	9.8 MAC: A New Host Lipid for <i>In Meso</i> (Lipid Cubic Phase) Crystallization of Inte Proteins. Crystal Growth and Design, 2021, 21, 490-500.	gral Membrane	1.4	4
2327	Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Frontiers Pharmacology, 2021, 12, 826112.	s in	1.6	2
2328	Crystal structure of the $\hat{l}\pm 1B$ -adrenergic receptor reveals molecular determinants of sele recognition. Nature Communications, 2022, 13, 382.	ctive ligand	5.8	21
2329	Molecular determinants of GPCR pharmacogenetics: Deconstructing the population var β2-adrenergic receptor. Advances in Protein Chemistry and Structural Biology, 2022, 12	iants in 28, 361-396.	1.0	1
2331	Current trends in membrane protein crystallography. , 2022, , 277-290.			1
2333	Development of enhanced conformational sampling methods to probe the activation la GPCRs. Advances in Protein Chemistry and Structural Biology, 2022, 128, 325-359.	ndscape of	1.0	2
2334	Computational Medicinal Chemistry to Target GPCRs. , 2022, , 84-114.			3

#	Article	IF	Citations
π 2335	Simulating Time-Resolved Dynamics of Biomolecular Systems. , 2022, , 115-134.	11	2
			-
2336	Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. ACS Pharmacology and Translational Science, 2022, 5, 89-101.	2.5	2
2337	Pharmacophoreâ€guided Virtual Screening to Identify New β ₃ â€adrenergic Receptor Agonists. Molecular Informatics, 2022, 41, .	1.4	6
2338	Computational characterization of transducer recognition of β2 adrenergic receptor. Biochemical and Biophysical Research Communications, 2022, 592, 67-73.	1.0	6
2339	Exploring the use of intracellular and extracellular allosteric modulators to understand GPCR signaling. , 2022, , 135-160.		2
2340	Ions as GPCR allosteric modulators. , 2022, , 47-69.		0
2341	Allosteric ligands to study medium and long chain free fatty acid GPCRs. , 2022, , 97-116.		0
2342	Cryo-EM structures of human bradykinin receptor-Gq proteins complexes. Nature Communications, 2022, 13, 714.	5.8	9
2343	Classification Model for the Second Extracellular Loop of Class A GPCRs. Journal of Chemical Information and Modeling, 2022, 62, 511-522.	2.5	25
2344	Phospholipid Scrambling by G Protein–Coupled Receptors. Annual Review of Biophysics, 2022, 51, 39-61.	4.5	24
2348	Molecular Insights into Phosphorylation-Induced Allosteric Conformational Changes in a β ₂ -Adrenergic Receptor. Journal of Physical Chemistry B, 2022, 126, 1917-1932.	1.2	11
2349	A Dynamic Mass Redistribution Assay for the Human Sweet Taste Receptor Uncovers G-Protein Dependent Biased Ligands. Frontiers in Pharmacology, 2022, 13, 832529.	1.6	6
2350	Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nature Communications, 2022, 13, 1057.	5.8	46
2351	Binding and Activation of Serotonergic G-Protein Coupled Receptors by the Multimodal Antidepressant Vortioxetine. ACS Chemical Neuroscience, 2022, 13, 1129-1142.	1.7	1
2353	MD Simulations Revealing Special Activation Mechanism of Cannabinoid Receptor 1. Frontiers in Molecular Biosciences, 2022, 9, 860035.	1.6	4
2354	A model for how $G\hat{l}^{2}\hat{l}^{3}$ couples $G\hat{l}^{\pm}$ to GPCR. Journal of General Physiology, 2022, 154, .	0.9	4
2355	Ligand-Dependent Modulation of the Dynamics of Intracellular Loops Dictates Functional Selectivity of 5-HT _{2A} R. Journal of Chemical Information and Modeling, 2022, 62, 2522-2537.	2.5	5
2356	Activation mechanism of the class D fungal GPCR dimer Ste2. Nature, 2022, 603, 743-748.	13.7	13

#	Article	IF	CITATIONS
2357	Acoustic levitation and rotation of thin films and their application for room temperature protein crystallography. Scientific Reports, 2022, 12, 5349.	1.6	9
2358	Crystal structure of a constitutive active mutant of adenosine A _{2A} receptor. IUCrJ, 2022, 9, 333-341.	1.0	9
2359	Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nature Communications, 2022, 13, 1220.	5.8	74
2360	An Interpretable Convolutional Neural Network Framework for Analyzing Molecular Dynamics Trajectories: a Case Study on Functional States for G-Protein-Coupled Receptors. Journal of Chemical Information and Modeling, 2022, 62, 1399-1410.	2.5	11
2361	Class A and C GPCR dimers in neurodegenerative diseases. Current Neuropharmacology, 2022, 20, .	1.4	2
2362	Structural basis of leukotriene B4 receptor 1 activation. Nature Communications, 2022, 13, 1156.	5.8	19
2363	Structural insights into ligand recognition, activation, and signaling of the α _{2A} adrenergic receptor. Science Advances, 2022, 8, eabj5347.	4.7	12
2364	An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120913119.	3.3	20
2365	Heterotrimeric G Protein α-Subunits - Structures, Peptide-Derived Inhibitors, and Mechanisms. Current Medicinal Chemistry, 2022, 29, 6359-6378.	1.2	7
2366	Kinetic model of GPCR-G protein interactions reveals allokairic modulation of signaling. Nature Communications, 2022, 13, 1202.	5.8	8
2367	Mechanistic origin of partial agonism of tetrahydrocannabinol for cannabinoid receptors. Journal of Biological Chemistry, 2022, 298, 101764.	1.6	21
2368	Opioid Receptor Expression in Colorectal Cancer: A Nested Matched Case-Control Study. Frontiers in Oncology, 2022, 12, 801714.	1.3	4
2369	"Selective―serotonin 5-HT2A receptor antagonists. Biochemical Pharmacology, 2022, 200, 115028.	2.0	28
2370	Structure of S1PR2–heterotrimeric G ₁₃ signaling complex. Science Advances, 2022, 8, eabn0067.	4.7	24
2371	Structural basis of GPCR coupling to distinct signal transducers: implications for biased signaling. Trends in Biochemical Sciences, 2022, 47, 570-581.	3.7	27
2372	Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. International Journal of Biological Macromolecules, 2022, 206, 175-187.	3.6	64
2373	Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	8
2374	Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B. Nature Communications, 2021, 12, 7103.	5.8	14

#	ARTICLE Lipids and Phosphorylation Conjointly Modulate Complex Formation of β2-Adrenergic Receptor and	IF	CITATIONS
2375	Î ² -arrestin2. Frontiers in Cell and Developmental Biology, 2021, 9, 807913.	1.8	13
2377	Integration and Spatial Organization of Signaling by G Protein-Coupled Receptor Homo- and Heterodimers. Biomolecules, 2021, 11, 1828.	1.8	5
2378	Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. International Journal of Molecular Sciences, 2021, 22, 13353.	1.8	8
2379	Crystal structure of CmABCB1 multi-drug exporter in lipidic mesophase revealed by LCP-SFX. IUCrJ, 2022, 9, 134-145.	1.0	2
2380	Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. Journal of Experimental Medicine, 2021, 218, .	4.2	19
2381	The structural basis of arrestin–GPCR interactions. , 2022, , 25-45.		0
2382	The Many Faces of G Protein-Coupled Receptor 143, an Atypical Intracellular Receptor. Frontiers in Molecular Biosciences, 2022, 9, 873777.	1.6	3
2383	Activation mechanism of the μ-opioid receptor by an allosteric modulator. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121918119.	3.3	11
2384	CHAPTER 6. A Unifying Approach to the Duality of "Energetic―Versus "Conformational―Formulations of Allosteric Coupling: Mechanistic Implications for GPCR Allostery. , 0, , 131-155.		0
2397	The mechanism for ligand activation of the GPCR–G protein complex. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110085119.	3.3	25
2398	Computation of the Protein Conformational Transition Pathway on Ligand Binding by Linear Response-Driven Molecular Dynamics. Journal of Chemical Theory and Computation, 2022, 18, 3268-3283.	2.3	5
2399	The Val34Met, Thr164Ile and Ser220Cys Polymorphisms of the β2-Adrenergic Receptor and Their Consequences on the Receptor Conformational Features: A Molecular Dynamics Simulation Study. International Journal of Molecular Sciences, 2022, 23, 5449.	1.8	1
2400	GPCR-mediated Î ² -arrestin activation deconvoluted with single-molecule precision. Cell, 2022, 185, 1661-1675.e16.	13.5	43
2401	Activation and allosteric regulation of the orphan GPR88-Gi1 signaling complex. Nature Communications, 2022, 13, 2375.	5.8	14
2402	Structural basis of peptidomimetic agonism revealed by small-molecule GLP-1R agonists Boc5 and WB4-24. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200155119.	3.3	9
2403	Structure-guided optimization of light-activated chimeric G-protein-coupled receptors. Structure, 2022, 30, 1075-1087.e4.	1.6	9
2404	Transactivation of Epidermal Growth Factor Receptors Mediates β-Arrestin Deubiquitination to Induce the Acute Tolerance of G Protein-Coupled Receptors. SSRN Electronic Journal, 0, , .	0.4	0
2406	Evolutionary association of receptor-wide amino acids with G protein–coupling selectivity in aminergic GPCRs. Life Science Alliance, 2022, 5, e202201439.	1.3	4

#	Article	IF	Citations
2407	Molecular mechanism of the wake-promoting agent TAK-925. Nature Communications, 2022, 13, .	5.8	12
2408	Accelerating GPCR Drug Discovery With Conformation-Stabilizing VHHs. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	17
2410	Foldable Detergents for Membrane Protein Stability. ChemBioChem, 2022, 23, .	1.3	8
2411	Structural insights into G protein activation by D1 dopamine receptor. Science Advances, 2022, 8, .	4.7	14
2412	GPCRs steer Gi and Gs selectivity via TM5-TM6 switches as revealed by structures of serotonin receptors. Molecular Cell, 2022, 82, 2681-2695.e6.	4.5	43
2414	Ligand recognition and biased agonism of the D1 dopamine receptor. Nature Communications, 2022, 13, .	5.8	19
2415	A cholesterol analog stabilizes the human \hat{l}^2 ₂ -adrenergic receptor nonlinearly with temperature. Science Signaling, 2022, 15, .	1.6	8
2416	Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and muâ€opioid receptor. MedComm, 2022, 3, .	3.1	5
2417	Self-activating G protein α subunits engage seven-transmembrane regulator of G protein signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri. Journal of Biological Chemistry, 2022, 298, 102167.	1.6	1
2419	Gi-protein-coupled β1-adrenergic receptor: Re-understanding the selectivity of β1-adrenergic receptor to G protein. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	1
2420	Membranes under the Magnetic Lens: A Dive into the Diverse World of Membrane Protein Structures Using Cryo-EM. Chemical Reviews, 2022, 122, 13989-14017.	23.0	17
2421	G protein-coupled receptor signaling: transducers and effectors. American Journal of Physiology - Cell Physiology, 2022, 323, C731-C748.	2.1	22
2422	Conformational dynamics in GPCR signaling by NMR. Magnetic Resonance Letters, 2022, 2, 139-146.	0.7	2
2423	Structural insight into the activation mechanism of MrgD with heterotrimeric Gi-protein revealed by cryo-EM. Communications Biology, 2022, 5, .	2.0	8
2424	Agonists in the Extended Conformation Stabilize the Active State of Î ² -Adrenoceptors. Biochemistry (Moscow), 2022, 87, 628-639.	0.7	0
2425	Structures of $\hat{1}^21$ -adrenergic receptor in complex with Gs and ligands of different efficacies. Nature Communications, 2022, 13, .	5.8	13
2426	A Statistical Journey through the Topological Determinants of the β2 Adrenergic Receptor Dynamics. Entropy, 2022, 24, 998.	1.1	5
2427	Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. International Journal of Molecular Sciences, 2022, 23, 8069.	1.8	12

#	Article	IF	CITATIONS
2428	Mechanistic Studies on the Stereoselectivity of FFAR1 Modulators. Journal of Chemical Information and Modeling, 2022, 62, 3664-3675.	2.5	4
2429	Agonist concentration–dependent changes in FPR1 conformation lead to biased signaling for selective activation of phagocyte functions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
2430	Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	7
2431	Protein Fusion Strategies for Membrane Protein Stabilization and Crystal Structure Determination. Crystals, 2022, 12, 1041.	1.0	2
2432	Opioid signaling and design of analgesics. Progress in Molecular Biology and Translational Science, 2023, , 153-176.	0.9	5
2433	Protease-activated receptors in health and disease. Physiological Reviews, 2023, 103, 717-785.	13.1	21
2434	Structural insights into signal transduction of the purinergic receptors P2Y1R and P2Y12R. Protein and Cell, 0, , .	4.8	2
2435	Filling of a water-free void explains the allosteric regulation of the \hat{l}^21 -adrenergic receptor by cholesterol. Nature Chemistry, 2022, 14, 1133-1141.	6.6	17
2436	Effect of α-helical domain of Gi/o α subunit on GDP/GTP turnover. Biochemical Journal, 2022, 479, 1843-1855.	1.7	3
2438	Endogenous ligand recognition and structural transition of a human PTH receptor. Molecular Cell, 2022, 82, 3468-3483.e5.	4.5	28
2439	Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature, 0, , .	13.7	10
2441	Structural identification of lysophosphatidylcholines as activating ligands for orphan receptor GPR119. Nature Structural and Molecular Biology, 2022, 29, 863-870.	3.6	20
2443	Structures of the ADGRG2–Gs complex in apo and ligand-bound forms. Nature Chemical Biology, 2022, 18, 1196-1203.	3.9	14
2444	COGRIMEN: Coarse-Grained Method for Modeling of Membrane Proteins in Implicit Environments. Journal of Chemical Theory and Computation, 0, , .	2.3	0
2445	Structural insights from G-protein-coupled receptor complexes enable the rational engineering of improved light-activated designer receptors. Structure, 2022, 30, 1043-1045.	1.6	0
2446	Targeting protein conformations with small molecules to control protein complexes. Trends in Biochemical Sciences, 2022, 47, 1023-1037.	3.7	3
2447	Combined docking and machine learning identify key molecular determinants of ligand pharmacological activity on β2 adrenoceptor. Pharmacology Research and Perspectives, 2022, 10, .	1.1	5
2448	Translational neuronal ensembles: Neuronal microcircuits in psychology, physiology, pharmacology and pathology. Frontiers in Systems Neuroscience, 0, 16, .	1.2	3

#	Article	IF	CITATIONS
2449	Finding the Perfect Fit: Conformational Biosensors to Determine the Efficacy of GPCR Ligands. ACS Pharmacology and Translational Science, 0, , .	2.5	3
2450	Hormone- and antibody-mediated activation of the thyrotropin receptor. Nature, 2022, 609, 854-859.	13.7	31
2452	L-DOPA and Droxidopa: From Force Field Development to Molecular Docking into Human β2-Adrenergic Receptor. Life, 2022, 12, 1393.	1.1	1
2453	Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nature Communications, 2022, 13, .	5.8	12
2454	Computational and experimental approaches to probe GPCR activation and signaling. Progress in Molecular Biology and Translational Science, 2022, , 1-36.	0.9	0
2455	Structural communication between the GTPase Sec4p and its activator Sec2p: Determinants of GEF activity and early deformations to nucleotide release. Computational and Structural Biotechnology Journal, 2022, 20, 5162-5180.	1.9	1
2456	The Conformational Dynamics of Heterotrimeric G Proteins During GPCR-Mediated Activation. Sub-Cellular Biochemistry, 2022, , 271-284.	1.0	3
2457	Asymmetric activation of class C GPCRs. Progress in Molecular Biology and Translational Science, 2022, , .	0.9	1
2458	Exploring the deactivation mechanism of human \hat{I}^22 adrenergic receptor by accelerated molecular dynamic simulations. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9
2460	Molecular basis for the selective G protein signaling of somatostatin receptors. Nature Chemical Biology, 2023, 19, 133-140.	3.9	9
2463	Dimerization of β2-adrenergic receptor is responsible for the constitutive activity subjected to inverse agonism. Cell Chemical Biology, 2022, 29, 1532-1540.e5.	2.5	2
2466	State-selective modulation of heterotrimeric \hat{G} ±s signaling with macrocyclic peptides. Cell, 2022, 185, 3950-3965.e25.	13.5	25
2467	Fluorescence-Detection Size-Exclusion Chromatography-Based Thermostability Assay for Membrane Proteins. Methods in Molecular Biology, 2023, , 299-315.	0.4	0
2469	Structural basis of adhesion GPCR GPR110 activation by stalk peptide and G-proteins coupling. Nature Communications, 2022, 13, .	5.8	12
2472	Structural basis for strychnine activation of human bitter taste receptor TAS2R46. Science, 2022, 377, 1298-1304.	6.0	23
2473	Genetically encoded fluorescent biosensors for GPCR research. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	6
2475	Discovery and Development of First-in-Class ACKR3/CXCR7 Superagonists for Platelet Degranulation Modulation. Journal of Medicinal Chemistry, 2022, 65, 13365-13384.	2.9	5
2476	Development of fluorescent peptide G <scp>proteinâ€coupled</scp> receptor activation biosensors for <scp>NanoBRET</scp> characterization of intracellular allosteric modulators. FASEB Journal, 2022, 36, .	0.2	1

#	Article	IF	CITATIONS
2477	19F NMR: A promising tool for dynamic conformational studies of G protein-coupled receptors. Structure, 2022, 30, 1372-1384.	1.6	5
2478	Thyroid-Stimulating Hormone Receptor: the Role in the Development of Thyroid Pathology and Its Correction. Journal of Evolutionary Biochemistry and Physiology, 2022, 58, 1439-1454.	0.2	3
2479	Molecular insights into the distinct signaling duration for the peptide-induced PTH1R activation. Nature Communications, 2022, 13, .	5.8	10
2481	A lightweight, user-configurable detector ASIC digital architecture with on-chip data compression for MHz X-ray coherent diffraction imaging. Journal of Instrumentation, 2022, 17, P10042.	0.5	6
2482	The N-Linked Glycosylation Site N191 Is Necessary for PKA Signal Transduction in Eel Follicle-Stimulating Hormone Receptor. International Journal of Molecular Sciences, 2022, 23, 12792.	1.8	2
2483	Biophysical investigations of class A GPCRs. Biochimie, 2022, , .	1.3	1
2485	The Neurokinin-1 Receptor: Structure Dynamics and Signaling. , 2022, 1, 54-71.		4
2488	Structural insights into adhesion GPCR ADGRL3 activation and Gq, Gs, Gi, and G12 coupling. Molecular Cell, 2022, 82, 4340-4352.e6.	4.5	18
2489	A Single Point Mutation Blocks the Entrance of Ligands to the Cannabinoid CB ₂ Receptor via the Lipid Bilayer. Journal of Chemical Information and Modeling, 2022, 62, 5771-5779.	2.5	3
2490	One class classification for the detection of \hat{l}^22 adrenergic receptor agonists using single-ligand dynamic interaction data. Journal of Cheminformatics, 2022, 14, .	2.8	1
2491	Rhodopsin, light-sensor of vision. Progress in Retinal and Eye Research, 2023, 93, 101116.	7.3	17
2493	Biased agonists differentially modulate the receptor conformation ensembles in Angiotensin II type 1 receptor. Journal of Molecular Graphics and Modelling, 2023, 118, 108365.	1.3	3
2494	Advances in X-ray crystallography methods to study structural dynamics of macromolecules. , 2023, , 309-355.		5
2495	Discovery of Trace Amine-Associated Receptor 1 (TAAR1) Agonist 2-(5-(4′-Chloro-[1,1′-biphenyl]-4-yl)-4H-1,2,4-triazol-3-yl)ethan-1-amine (LK00764) for the Treatment of Psychotic Disorders. Biomolecules, 2022, 12, 1650.	1.8	2
2496	Intracellular VHHs to monitor and modulate GPCR signaling. Frontiers in Endocrinology, 0, 13, .	1.5	4
2497	Molecular recognition of morphine and fentanyl by the human μ-opioid receptor. Cell, 2022, 185, 4361-4375.e19.	13.5	71
2498	Understanding VPAC receptor family peptide binding and selectivity. Nature Communications, 2022, 13, .	5.8	2
2499	Nanobody GPS by PCS: An Efficient New NMR Analysis Method for G Protein Coupled Receptors and Other Large Proteins. Journal of the American Chemical Society, 2022, 144, 21728-21740.	6.6	7

#	Article	IF	CITATIONS
2500	Activation and signaling mechanism revealed by GPR119-Gs complex structures. Nature Communications, 2022, 13, .	5.8	6
2501	Ice crystallization under cryogenic cooling in lipid membrane nanoconfined geometry: Time-resolved structural dynamics. Journal of Colloid and Interface Science, 2023, 634, 757-768.	5.0	2
2502	Time- and cost-efficient bacterial expression and purification of potato apyrase. Protein Expression and Purification, 2023, 203, 106215.	0.6	1
2503	Allosteric Modulators of Adenosine Receptors. Topics in Medicinal Chemistry, 2022, , .	0.4	0
2504	In silico identification of a β ₂ -adrenoceptor allosteric site that selectively augments canonical β ₂ AR-Gs signaling and function. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
2505	New Insights into the Structure and Function of Class B1 GPCRs. Endocrine Reviews, 2023, 44, 492-517.	8.9	11
2506	Molecular Mechanisms of PTH/PTHrP Class B GPCR Signaling and Pharmacological Implications. Endocrine Reviews, 2023, 44, 474-491.	8.9	8
2507	Kinetic analysis of endogenous β ₂ â€adrenoceptorâ€mediated cAMP GloSensor TM responses in HEK293 cells. British Journal of Pharmacology, 0, , .	2.7	2
2509	Locating dynamic contributions to allostery via determining rates of vibrational energy transfer. Journal of Chemical Physics, 2023, 158, .	1.2	3
2510	MUG: A mutation overview of GPCR subfamily A17 receptors. Computational and Structural Biotechnology Journal, 2023, 21, 586-600.	1.9	0
2513	Dynamic spatiotemporal determinants modulate GPCR:G protein coupling selectivity and promiscuity. Nature Communications, 2022, 13, .	5.8	25
2514	Structural insight into the constitutive activity of human orphan receptor GPR12. Science Bulletin, 2023, 68, 95-104.	4.3	8
2515	The role of G protein conformation in receptor–G protein selectivity. Nature Chemical Biology, 2023, 19, 687-694.	3.9	17
2516	MDexciteR: Enhanced Sampling Molecular Dynamics by Excited Normal Modes or Principal Components Obtained from Experiments. Journal of Chemical Theory and Computation, 2023, 19, 412-425.	2.3	2
2517	Mandibulofacial dysostosis with alopecia results from ETAR gain-of-function mutations via allosteric effects on ligand binding. Journal of Clinical Investigation, 2023, 133, .	3.9	2
2518	Cryo-EM structures of orphan GPR21 signaling complexes. Nature Communications, 2023, 14, .	5.8	9
2519	The β2-adrenergic receptor in the apical membrane of intestinal enterocytes senses sugars to stimulate glucose uptake from the gut. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
2521	Synthesis, Self-Assembly Properties, and Degradation Characterization of a Nonionic Photocleavable Azo-Sulfide Surfactant Family. Langmuir, 2023, 39, 1465-1473.	1.6	1

#	Article	IF	Citations
2524	Molecular Modeling Study of a Receptor–Orthosteric Ligand–Allosteric Modulator Signaling Complex. ACS Chemical Neuroscience, 2023, 14, 418-434.	1.7	0
2525	Sequestration of Gβγ by deubiquitinated arrestins into the nucleus as a novel desensitization mechanism of G protein–coupled receptors. Cell Communication and Signaling, 2023, 21, .	2.7	2
2526	Fluorescent proteins and genetically encoded biosensors. Chemical Society Reviews, 2023, 52, 1189-1214.	18.7	29
2527	Mechanism of hormone and allosteric agonist mediated activation of follicle stimulating hormone receptor. Nature Communications, 2023, 14, .	5.8	12
2529	Nanobody Loop Mimetics Enhance Son of Sevenless 1 atalyzed Nucleotide Exchange on RAS**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	1
2530	Structural Basis for Agonistic Activity and Selectivity toward Melatonin Receptors hMT1 and hMT2. International Journal of Molecular Sciences, 2023, 24, 2863.	1.8	3
2531	A comprehensive pharmacological analysis of fenoterol and its derivatives to unravel the role of β2-adrenergic receptor in zebrafish. Biomedicine and Pharmacotherapy, 2023, 160, 114355.	2.5	2
2533	Alleviation of Cocaine Withdrawal and Pertinent Interactions between Salvinorin-Based Antagonists and Kappa Opioid Receptor. ACS Chemical Neuroscience, 2023, 14, 958-976.	1.7	0
2534	Allosteric modulation of G protein-coupled receptor signaling. Frontiers in Endocrinology, 0, 14, .	1.5	11
2535	Protein Design Strategies for the Structural–Functional Studies of G Protein-Coupled Receptors. Biochemistry (Moscow), 2023, 88, S192-S226.	0.7	0
2536	All-Atom Molecular Dynamics Simulations Indicated the Involvement of a Conserved Polar Signaling Channel in the Activation Mechanism of the Type I Cannabinoid Receptor. International Journal of Molecular Sciences, 2023, 24, 4232.	1.8	0
2537	Allosteric modulation of conserved motifs and helices in 5HT _{2B} R: Advances drug discovery and therapeutic approach towards drug resistant epilepsy. Journal of Biomolecular Structure and Dynamics, 2023, 41, 13113-13126.	2.0	3
2538	Structural basis of lysophosphatidylserine receptor GPR174 ligand recognition and activation. Nature Communications, 2023, 14, .	5.8	10
2539	Gαi-derived peptide binds the µ-opioid receptor. Pharmacological Reports, 2023, 75, 465-473.	1.5	0
2540	Elucidation of a dynamic interplay between a beta-2 adrenergic receptor, its agonist, and stimulatory G protein. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	6
2541	The activation mechanism and antibody binding mode for orphan GPR20. Cell Discovery, 2023, 9, .	3.1	5
2542	Functional optimization of light-activatable Opto-GPCRs: Illuminating the importance of the proximal C-terminus in G-protein specificity. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	4
2543	Purification of G Protein-Coupled Receptors. Springer Briefs in Molecular Science, 2023, , 29-40.	0.1	ο

#	Article	IF	CITATIONS
2545	Two-step structural changes in M3 muscarinic receptor activation rely on the coupled Gq protein cycle. Nature Communications, 2023, 14, .	5.8	2
2546	Autoregulation of GPCR signalling through the third intracellular loop. Nature, 2023, 615, 734-741.	13.7	19
2547	Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery. Nature Communications, 2023, 14, .	5.8	3
2548	Structural basis of odorant recognition by a human odorant receptor. Nature, 2023, 615, 742-749.	13.7	31
2549	Structures of Ric-8B in complex with $G\hat{I}\pm$ protein folding clients reveal isoform specificity mechanisms. Structure, 2023, , .	1.6	6
2551	Anti-cell Proliferative Mechanism of Doxazosin on Human Oral Cancer Cells Through the Modulation of Antioxidant and Apoptotic Pathway. Applied Biochemistry and Biotechnology, 0, , .	1.4	2
2552	Structural Biology of Prostaglandin Receptors. Seibutsu Butsuri, 2023, 63, 16-20.	0.0	0
2553	Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. International Journal of Molecular Sciences, 2023, 24, 6136.	1.8	4
2554	Structural insights into constitutive activity of 5-HT ₆ receptor. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	0
2555	A Vaccinia-based system for directed evolution of GPCRs in mammalian cells. Nature Communications, 2023, 14, .	5.8	1
2556	Negative allosteric modulation of the glucagon receptor by RAMP2. Cell, 2023, 186, 1465-1477.e18.	13.5	9
2557	Mapping the conformational landscape of the stimulatory heterotrimeric G protein. Nature Structural and Molecular Biology, 2023, 30, 502-511.	3.6	4
2558	Unveiling the Differences in Signaling and Regulatory Mechanisms between Dopamine D2 and D3 Receptors and Their Impact on Behavioral Sensitization. International Journal of Molecular Sciences, 2023, 24, 6742.	1.8	5
2559	Gαs slow conformational transition upon GTP binding and a novel Gαs regulator. IScience, 2023, 26, 106603.	1.9	3
2560	Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. Nature Communications, 2023, 14, .	5.8	8
2561	Activity Map and Transition Pathways of G Protein-Coupled Receptor Revealed by Machine Learning. Journal of Chemical Information and Modeling, 2023, 63, 2296-2304.	2.5	4
2562	Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. EMBO Journal, 2023, 42, .	3.5	6
2563	Nanobody Loop Mimetics Enhance Son of Sevenless 1 atalyzed Nucleotide Exchange on RAS**. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
2564	Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology. Mikrochimica Acta, 2023, 190, .	2.5	0
2565	The relaxin receptor RXFP1 signals through a mechanism of autoinhibition. Nature Chemical Biology, 2023, 19, 1013-1021.	3.9	4
2566	Investigating the mechanism of photoisomerization in jellyfish rhodopsin with the counterion at an atypical position. Journal of Biological Chemistry, 2023, 299, 104726.	1.6	1
2599	Accessible and Generalizable in Vitro Luminescence Assay for Detecting GPCR Activation. ACS Measurement Science Au, 0, , .	1.9	0
2603	Structures of Adrenoceptors. Handbook of Experimental Pharmacology, 2023, , .	0.9	0
2624	ADRA2B and HTR1A: An Updated Study of the Biogenic Amine Receptors Reveals Novel Conserved Motifs Which Play Key Role in Mental Disorders. Advances in Experimental Medicine and Biology, 2023, , 79-99.	0.8	0
2631	Capturing receptor states with glue. Nature Chemical Biology, 2024, 20, 6-7.	3.9	1
2634	Dynamic Nature of Proteins is Critically Important for Their Function: GPCRs and Signal Transducers. Applied Magnetic Resonance, 2024, 55, 11-25.	0.6	1
2652	Structure, function and drug discovery of GPCR signaling. Molecular Biomedicine, 2023, 4, .	1.7	4
2681	Signalling of Adrenoceptors: Canonical Pathways and New Paradigms. Handbook of Experimental Pharmacology, 2024, , .	0.9	0
2685	Structural and functional characterization of the endogenous agonist for orphan receptor GPR3. Cell Research, 2024, 34, 262-265.	5.7	1
2689	Agonisten und Antagonisten von membranstÄ ¤ digen Rezeptoren. , 2023, , 603-628.		0
2698	CMV-encoded GPCRs in infection, disease, and pathogenesis. Advances in Virus Research, 2024, , 1-75.	0.9	0