Suppression of the coffee-ring effect by shape-depende

Nature 476, 308-311 DOI: 10.1038/nature10344

Citation Report

#	Article	IF	CITATIONS
3	Impact of film drying procedures on RDE characterization of Pt/VC electrocatalysts. Journal of Electroanalytical Chemistry, 2011, 662, 396-406.	1.9	192
4	Drop-Casted Self-Assembling Graphene Oxide Membranes for Scanning Electron Microscopy on Wet and Dense Gaseous Samples. ACS Nano, 2011, 5, 10047-10054.	7.3	115
5	When shape matters. Nature, 2011, 476, 286-287.	13.7	49
6	Orphan receptors find a home. Nature, 2011, 476, 287-288.	13.7	21
7	Monolith formation and ring-stain suppression in low-pressure evaporation of poly(ethylene oxide) droplets. Journal of Fluid Mechanics, 2012, 695, 321-329.	1.4	23
8	Structure and interactions in fluids of prolate colloidal ellipsoids: Comparison between experiment, theory, and simulation. Journal of Chemical Physics, 2012, 137, 184505.	1.2	8
9	Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites. Applied Physics Letters, 2012, 101, .	1.5	20
10	Ring stains in the presence of electrokinetic interactions. Physical Review E, 2012, 85, 046311.	0.8	24
11	Evaporation of Droplets on Superhydrophobic Surfaces: Surface Roughness and Small Droplet Size Effects. Physical Review Letters, 2012, 109, 116101.	2.9	176
12	Influence of Particle Shape on Bending Rigidity of Colloidal Monolayer Membranes and Particle Deposition during Droplet Evaporation in Confined Geometries. Physical Review Letters, 2012, 108, 228303.	2.9	31
13	Analysis of a metal filling and liner formation mechanism of the blind via with nano-Ag particles for TSV (through silicon via) interconnection. Journal of Micromechanics and Microengineering, 2012, 22, 075013.	1.5	2
14	Fractal Patterns in the Nanofluidic Sessile Droplet Drying. , 2012, , .		0
15	Fabrication of Binary and Ternary Hybrid Particles Based on Colloidal Lithography. Chemistry of Materials, 2012, 24, 4549-4555.	3.2	24
16	Dynamics of liquid droplets in an evaporating drop: liquid droplet "coffee stain―effect. RSC Advances, 2012, 2, 8390.	1.7	20
17	Formation of Coffee Stains on Porous Surfaces. Langmuir, 2012, 28, 5331-5338.	1.6	61
18	Unconventional Multiple Ring Structure Formation from Evaporation-Induced Self-Assembly of Polymers. Langmuir, 2012, 28, 11056-11063.	1.6	18
19	Self-assembly of colloidal sulfur particles influenced by sodium oxalate salt on glass surface from evaporating drops. Soft Matter, 2012, 8, 3771.	1.2	17
20	Surfactant-Induced Marangoni Eddies Alter the Coffee-Rings of Evaporating Colloidal Drops. Langmuir, 2012, 28, 4984-4988.	1.6	369

#	Article	IF	Citations
21	Drying Dip-Coated Colloidal Films. Langmuir, 2012, 28, 200-208.	1.6	63
22	Organic Nanocomposite Structure Tailored by Controlling Droplet Coalescence during Inkjet Printing. ACS Applied Materials & Interfaces, 2012, 4, 4691-4699.	4.0	40
23	Characteristic Size for Onset of Coffee-Ring Effect in Evaporating Lysozyme-Water Solution Droplets. Journal of Physical Chemistry B, 2012, 116, 12213-12220.	1.2	27
24	Building microscopic soccer balls with evaporating colloidal fakir drops. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16455-16458.	3.3	113
25	Magnetically Mediated Vortexlike Assembly of Gold Nanoshells. Langmuir, 2012, 28, 6520-6526.	1.6	6
26	Hierarchically Structured Multifunctional Porous Interfaces through Water Templated Self-Assembly of Ternary Systems. Langmuir, 2012, 28, 9778-9787.	1.6	44
27	Control of evaporating complex fluids through electrowetting. Soft Matter, 2012, 8, 10614.	1.2	59
28	Lysozyme Pattern Formation in Evaporating Drops. Langmuir, 2012, 28, 4039-4042.	1.6	32
29	High Density Diffusion-Free Nanowell Arrays. Journal of Proteome Research, 2012, 11, 4382-4391.	1.8	42
30	Drying Mechanism of Poly(<i>N-</i> isopropylacrylamide) Microgel Dispersions. Langmuir, 2012, 28, 12962-12970.	1.6	69
31	Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing. Nanotechnology, 2012, 23, 505301.	1.3	67
32	Fabrication of Polymer Ellipsoids by the Electrospinning of Swollen Nanoparticles. ACS Macro Letters, 2012, 1, 907-909.	2.3	41
33	Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. Journal of Materials Chemistry, 2012, 22, 24530.	6.7	65
34	Onset of Marangoni convection for evaporating sessile droplets. Journal of Colloid and Interface Science, 2012, 383, 198-207.	5.0	22
35	Controlled Charge Transport by Polymer Blend Dielectrics in Top-Gate Organic Field-Effect Transistors for Low-Voltage-Operating Complementary Circuits. ACS Applied Materials & Interfaces, 2012, 4, 6176-6184.	4.0	77
36	Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chemical Society Reviews, 2012, 41, 6178.	18.7	168
37	Capillary interactions between anisotropic particles. Soft Matter, 2012, 8, 9957.	1.2	240
38	Insulation of Coated Conductors for High Field Magnet Applications. IEEE Transactions on Applied Superconductivity, 2012, 22, 7700304-7700304.	1.1	15

ARTICLE IF CITATIONS # Synthesis, optical properties and self-assembly of gold nanorods. Journal of Experimental 39 1.3 11 Nanoscience, 2012, 7, 688-702. Stokes flow near the contact line of an evaporating drop. Journal of Fluid Mechanics, 2012, 709, 69-84. 1.4 58 Coalescence, evaporation and particle deposition of consecutively printed colloidal drops. Soft 41 1.2 26 Matter, 2012, 8, 9205. Transparent Coatings Made from Spray Deposited Colloidal Suspensions. Langmuir, 2012, 28, 7639-7645. Substrate elastic deformation due to vertical component of liquid-vapor interfacial tension. Applied 43 1.9 30 Mathematics and Mechanics (English Edition), 2012, 33, 1095-1114. Avoiding coffee ring structure based on hydrophobic silicon pillar arrays during single-drop 1.2 evaporation. Soft Matter, 2012, 8, 10448. From soft to hard: the generation of functional and complex colloidal monolayers for 45 1.2 177 nanolithography. Soft Matter, 2012, 8, 4044-4061. Ring stains in the presence of electromagnetohydrodynamic interactions. Physical Review E, 2012, 86, 056317. 0.8 46 Preparation of spheroidal and ellipsoidal particles from spherical polymer particles by extension of 47 1.0 16 polymer film. Colloid and Polymer Science, 2012, 290, 1309-1315. Biomarker-Mediated Disruption of Coffee-Ring Formation as a Low Resource Diagnostic Indicator. 1.6 Langmuir, 2012, 28, 2187-2193. Inkjet-Assisted Layer-by-Layer Printing of Encapsulated Arrays. ACS Applied Materials & amp; Interfaces, 49 4.035 2012, 4, 3102-3110. Suppression of the Coffee Ring Effect by Hydrosoluble Polymer Additives. ACS Applied Materials & amp; Interfaces, 2012, 4, 2775-2780. High-Resolution Epifluorescence and Time-of-Flight Secondary Ion Mass Spectrometry Chemical 51 3.2 20 Imaging Comparisons of Single DNA Microarray Spots. Analytical Chemistry, 2012, 84, 10628-10636. Inkjet Printing of Zinc(II) Bisâ€2,2â€2;6â€2,2â€3â€Terpyridine Metallopolymers: Printability and Filmâ€Forming Studies by a Combinatorial Thinâ€Film Library Approach. Macromolecular Rapid Communications, 2012, 33, 2.0 <u>503-5</u>09. Overcoming the "Coffee-Stain―Effect by Compositional Marangoni-Flow-Assisted Drop-Drying. Journal 1.2 226 54 of Physical Chemistry B, 2012, 116, 6536-6542. Reâ€Shaping the Coffee Ring. Angewandte Chemie - International Edition, 2012, 51, 2546-2548. Complex Fluid-Fluid Interfaces: Rheology and Structure. Annual Review of Chemical and Biomolecular 57 3.3 258 Engineering, 2012, 3, 519-543. Evaporative micro-particle self assembly influenced by capillary evacuation. Journal of Colloid and Interface Science, 2012, 377, 421-429.

#	Article	IF	CITATIONS
59	An accurate evaluation for the activity of nano-sized electrocatalysts by a thin-film rotating disk electrode: Oxygen reduction on Pt/C. Electrochimica Acta, 2012, 72, 120-128.	2.6	63
60	Responsive fluorescent Bi2O3@PVA hybrid nanogels for temperature-sensing, dual-modal imaging, and drug delivery. Biomaterials, 2012, 33, 3058-3069.	5.7	81
61	Induced wetting of polytetrafluoroethylene by atomic layer deposition for application of aqueous-based nanoparticle inks. Materials Letters, 2013, 101, 25-28.	1.3	8
62	Influence of substrate elasticity on particle deposition patterns from evaporating water–silica suspension droplets. Soft Matter, 2013, 9, 7942.	1.2	38
63	Effect of Surfactant on the Drying Patterns of Graphite Nanofluid Droplets. Journal of Physical Chemistry B, 2013, 117, 5932-5938.	1.2	50
64	Evaporation-Induced Branched Structures from Sessile Nanofluid Droplets. Journal of Physical Chemistry C, 2013, 117, 7835-7843.	1.5	33
65	Synthesis and properties of a low-bandgap liquid crystalline π-conjugated polymer. Journal of Materials Science, 2013, 48, 7523-7532.	1.7	1
66	Pattern transition and sluggish cracking of colloidal droplet deposition with polymer additives. Science China: Physics, Mechanics and Astronomy, 2013, 56, 1712-1718.	2.0	16
67	High-density, homogeneous endospore monolayer deposition on test surfaces. Journal of Microbiological Methods, 2013, 94, 245-248.	0.7	4
68	Salt-induced pattern formation in evaporating droplets of lysozyme solutions. Colloids and Surfaces B: Biointerfaces, 2013, 103, 59-66.	2.5	77
69	Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffeeâ€Ring Effect. Advanced Materials, 2013, 25, 6714-6718.	11.1	200
70	Coupling between crystallization and evaporation dynamics: Periodically nonlinear growth into concentric ringed spherulites. Polymer, 2013, 54, 6628-6635.	1.8	16
71	Instantly switchable adhesion of bridged fibrillar adhesive via gecko-inspired detachment mechanism and its application to a transportation system. Nanoscale, 2013, 5, 11876.	2.8	30
72	Formation of Diverse Supercrystals from Self-Assembly of a Variety of Polyhedral Gold Nanocrystals. Journal of the American Chemical Society, 2013, 135, 2684-2693.	6.6	101
73	Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania. Nanotechnology, 2013, 24, 075601.	1.3	32
74	A facile strategy to colloidal crystals by drying condensed suspension droplets. Journal of Colloid and Interface Science, 2013, 397, 80-87.	5.0	20
75	Experimental study of evaporation of sessile water droplet on PDMS surfaces. Acta Mechanica Sinica/Lixue Xuebao, 2013, 29, 799-805.	1.5	33
76	MRI evidence for a receding-front effect in drying porous media. Physical Review E, 2013, 87, 062303.	0.8	53

#	Article	IF	Citations
77	Patterned photonic crystals fabricated by inkjet printing. Journal of Materials Chemistry C, 2013, 1, 6048.	2.7	97
78	Elimination of the Coffee-Ring Effect by Promoting Particle Adsorption and Long-Range Interaction. Langmuir, 2013, 29, 12067-12074.	1.6	52
79	Templated evaporative lithography for high throughput fabrication of nanopatterned films. Nanoscale, 2013, 5, 624-633.	2.8	10
80	Unusual silver nanostructures prepared by aerosol spray pyrolysis. CrystEngComm, 2013, 15, 7863.	1.3	21
81	Stokes flow in a drop evaporating from a liquid subphase. Physics of Fluids, 2013, 25, 102102.	1.6	10
82	The role of the electrostatic double layer interactions in the formation of nanoparticle ring-like deposits at driven receding contact lines. Soft Matter, 2013, 9, 1664-1673.	1.2	23
83	Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions. Physical Review Letters, 2013, 110, 035501.	2.9	127
84	Fingering inside the coffee ring. Physical Review E, 2013, 87, 013003.	0.8	60
85	Bottom-Up Approach to Creating Three-Dimensional Nanoring Arrays Composed of Au Nanoparticles. Langmuir, 2013, 29, 1005-1009.	1.6	16
86	Spatial Ordering of Colloids in a Drying Aqueous Polymer Droplet. Langmuir, 2013, 29, 2588-2594.	1.6	26
87	Amplifying and attenuating the coffee-ring effect in drying sessile nanofluid droplets. Physical Review E, 2013, 87, 042303.	0.8	45
88	Fingering structures inside the coffee-ring pattern. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 119-126.	2.3	22
89	Relevance of the deposit structure for the uptake and bio-efficacy of diquat, as monitored by the spatially resolved chlorophyll fluorescence. Pesticide Biochemistry and Physiology, 2013, 107, 218-225.	1.6	9
90	Effects of surfactants and the kinetic energy of monodroplets on the deposit structure of glyphosate at the microâ€scale and their relevance to herbicide bioâ€efficacy on selected weed species. Weed Research, 2013, 53, 1-11.	0.8	14
91	Insight into morphology changes of nanoparticle laden droplets in acoustic field. Applied Physics Letters, 2013, 102, .	1.5	16
92	Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter, 2013, 9, 8096.	1.2	187
93	Profile Control of Inkjet Printed Silver Electrodes and Their Application to Organic Transistors. ACS Applied Materials & amp; Interfaces, 2013, 5, 3916-3920.	4.0	107
94	Aqueous Solution Process for the Synthesis and Assembly of Nanostructured One-Dimensional α-MoO ₃ Electrode Materials. Chemistry of Materials, 2013, 25, 2557-2563.	3.2	53

#	Article	IF	CITATIONS
95	Gold, Carbon, and Aluminum Low-Reflectivity Compact Discs as Microassaying Platforms. Analytical Chemistry, 2013, 85, 4178-4186.	3.2	6
96	Evaporation Stains: Suppressing the Coffee-Ring Effect by Contact Angle Hysteresis. Langmuir, 2013, 29, 7802-7811.	1.6	139
97	Shape anisotropic colloids: synthesis, packing behavior, evaporation driven assembly, and their application in emulsion stabilization. Soft Matter, 2013, 9, 6711.	1.2	159
98	Metal-vapor deposition modulation on polymer surfaces prepared by the coffee-ring effect. Soft Matter, 2013, 9, 5681.	1.2	11
99	Drying of thin colloidal films. Reports on Progress in Physics, 2013, 76, 046603.	8.1	352
100	Self-organizing capacity of nanocelluloses via droplet evaporation. Soft Matter, 2013, 9, 3396.	1.2	33
101	Trapping energy of a spherical particle on a curved liquid interface. Journal of Colloid and Interface Science, 2013, 405, 249-255.	5.0	24
102	Copper oxide quantum dot ink for inkjet-driven digitally controlled high mobility field effect transistors. Journal of Materials Chemistry C, 2013, 1, 2112.	2.7	40
103	Surfactant-Mediated Control of Colloid Pattern Assembly and Attachment Strength in Evaporating Droplets. Langmuir, 2013, 29, 1831-1840.	1.6	50
104	Size sorting of floating spheres based on Marangoni forces in evaporating droplets. Journal of Micromechanics and Microengineering, 2013, 23, 075016.	1.5	25
105	Microsphere Lithography on Hydrophobic Surfaces for Generating Gold Films that Exhibit Infrared Localized Surface Plasmon Resonances. Journal of Physical Chemistry B, 2013, 117, 15313-15318.	1.2	6
106	Cross-Sectional Tracking of Particle Motion in Evaporating Drops: Flow Fields and Interfacial Accumulation. Langmuir, 2013, 29, 6221-6231.	1.6	39
107	Self-Pinning by Colloids Confined at a Contact Line. Physical Review Letters, 2013, 110, 028303.	2.9	101
108	How to Prepare the Brightest Luminescent Coatings?. ACS Applied Materials & Interfaces, 2013, 5, 11315-11320.	4.0	16
109	Directing convection to pattern thin polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 535-545.	2.4	30
111	Bypassing the Limitations of Classical Chemical Purification with DNAâ€Programmable Nanoparticle Recrystallization. Angewandte Chemie - International Edition, 2013, 52, 2886-2891.	7.2	53
112	Protein patterning utilizing region-specific control of wettability by surface modification under atmospheric pressure. Applied Physics Letters, 2013, 103, 123701.	1.5	1
113	Ring formation from a drying sessile colloidal droplet. AIP Advances, 2013, 3, 102109.	0.6	25

#	Article	IF	CITATIONS
114	Switching On and Off the Coffee-Ring Effect in Drying Sessile Nanofluid Droplets. , 2013, , .		0
115	CONTROLLING THE MORPHOLOGY OF RING-LIKE DEPOSITS BY VARYING THE PINNING TIME OF DRIVEN RECEDING CONTACT LINES. Interfacial Phenomena and Heat Transfer, 2013, 1, 195-205.	0.3	8
116	HOW ROBUST IS THE RING STAIN FOR EVAPORATING SUSPENSION DROPLETS?. Interfacial Phenomena and Heat Transfer, 2013, 1, 207-214.	0.3	2
117	Modeling Evaporation of a Small Drop on a Horizontal Substrate. , 2014, , .		0
118	Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces. Physical Review E, 2014, 90, 062407.	0.8	57
119	Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials. MRS Bulletin, 2014, 39, 1089-1098.	1.7	39
120	Exploitation of the coffee-ring effect to realize mechanically enhanced inkjet-printed microelectromechanical relays with U-bar-shaped cantilevers. Applied Physics Letters, 2014, 105, .	1.5	17
121	CHAPTER 2. Interactions and Conformations of Particles at Fluid-Fluid Interfaces. RSC Soft Matter, 2014, , 8-44.	0.2	4
122	The equilibrium shape of fluid-fluid interfaces: Derivation and a new numerical method for Young's and Young-Laplace equations. Journal of Chemical Physics, 2014, 141, 244702.	1.2	32
123	Photoacoustic spectroscopy of surface adsorbed molecules using a nanostructured coupled resonator array. Nanotechnology, 2014, 25, 035501.	1.3	12
124	High-Aspect Ratio Bio-Metallic Nanocomposites for Cellular Interactions. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012014.	0.3	9
126	Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [Invited]. Applied Optics, 2014, 53, G33.	0.9	46
127	Surface wrinkling and cracking dynamics in the drying of colloidal droplets. European Physical Journal E, 2014, 37, 38.	0.7	37
128	Precision control of drying using rhythmic dancing of sessile nanoparticle laden droplets. Applied Physics Letters, 2014, 104, .	1.5	12
129	Convex Nanobending at a Moving Contact Line: The Missing Mesoscopic Link in Dynamic Wetting. ACS Nano, 2014, 8, 11493-11498.	7.3	50
130	An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Advanced Materials, 2014, 26, 943-950.	11.1	163
131	30.1: <i>Invited Paper</i> : 65â€Inch Inkjet Printed Organic Lightâ€Emitting Display Panel with High Degree of Pixel Uniformity. Digest of Technical Papers SID International Symposium, 2014, 45, 396-398.	0.1	38
132	Evaporation of Sessile Droplets Affected by Graphite Nanoparticles and Binary Base Fluids. Journal of Physical Chemistry B, 2014, 118, 13636-13645.	1.2	32

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
133	Evaporative deposition in receding drops. Soft Matter, 2014, 10, 9506-9510.	1.2	21
134	Migration of cesium chloride dissolved in the liquid water of sugi (<i>Cryptomeria japonica</i> D.) Tj ET	Qq1 1 0.784314 rgi 0.9	BT ₃ /Overlock
135	Characterizing microdroplet evaporation using diffraction phase microscopy. , 2014, , .		0
136	Particle Shape Anisotropy in Pickering Emulsions: Cubes and Peanuts. Langmuir, 2014, 30, 955-964.	1.6	119
137	"Coffee ring―formation dynamics on molecularly smooth substrates with varying receding contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 449, 42-50.	2,3	15
138	A filter-like AuNPs@MS SERS substrate for Staphylococcus aureus detection. Biosensors and Bioelectronics, 2014, 53, 519-527.	5.3	56
139	A Facile Synthesis of Dynamic, Shapeâ€Changing Polymer Particles. Angewandte Chemie - International Edition, 2014, 53, 7018-7022.	7.2	200
140	Direct visualization of the interfacial position of colloidal particles and their assemblies. Nanoscale, 2014, 6, 6879-6885.	2.8	54
141	Analytical Procedure for Accurate Comparison of Rotating Disk Electrode Results for the Oxygen Reduction Activity of Pt/C. Journal of the Electrochemical Society, 2014, 161, F628-F640.	1.3	131
142	Transparent and Superamphiphobic Surfaces from Oneâ€Step Spray Coating of Stringed Silica Nanoparticle/Sol Solutions. Particle and Particle Systems Characterization, 2014, 31, 763-770.	1.2	130
143	Transport and deposition patterns in drying sessile droplets. AICHE Journal, 2014, 60, 1538-1571.	1.8	288
144	Laser-induced fluorescent micro-structures in silver nanoparticle based films. Optical Materials, 2014, 36, 873-878.	1.7	1
145	Miniaturization of anisotropic composite particles incorporating a silica particle smaller than 100Ânm. Colloid and Polymer Science, 2014, 292, 449-454.	1.0	6
146	Controllable Printing Droplets for Highâ€Resolution Patterns. Advanced Materials, 2014, 26, 6950-6958	3. 11.1	371
147	Nanopressing: Toward Tailored Polymer Microstructures and Nanostructures. Macromolecular Rapid Communications, 2014, 35, 84-90.	2.0	6
148	Effects of dielectric barrier discharge in air on morphological and electrical properties of graphene nanoplatelets and multi-walled carbon nanotubes. Journal of Physics and Chemistry of Solids, 2014, 75, 858-868.	1.9	11
149	The Largeâ€Area, Solutionâ€Based Deposition of Singleâ€Crystal Organic Semiconductors. Israel Journa Chemistry, 2014, 54, 496-512.	l of 1.0	27
150	Terahertz shielding of carbon nanomaterials and their composites – A review and applications. Carbon, 2014, 69, 1-16.	5.4	98

#	Article	IF	CITATIONS
151	Dynamic Photocontrol of the Coffeeâ€Ring Effect with Optically Tunable Particle Stickiness. Angewandte Chemie - International Edition, 2014, 53, 14077-14081.	7.2	78
152	The superiority of silver nanoellipsoids synthesized via a new approach in suppressing the coffee-ring effect during drying and film formation processes. Nanotechnology, 2014, 25, 125602.	1.3	8
153	Contact Angles of Microellipsoids at Fluid Interfaces. Langmuir, 2014, 30, 4289-4300.	1.6	56
154	Dynamical Contact Line Pinning and Zipping during Carbon Nanotube Coffee Stain Formation. ACS Nano, 2014, 8, 6417-6424.	7.3	28
155	Effect of surface free energy to control the deposit morphology during evaporation of graphite/SDS dispersion drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461, 310-322.	2.3	8
156	Dynamic growth modes of ordered arrays and mesocrystals during drop-casting of iron oxide nanocubes. CrystEngComm, 2014, 16, 1443-1450.	1.3	27
157	Computational studies on interparticle forces between nanoellipsoids. RSC Advances, 2014, 4, 38505.	1.7	10
158	Biophysical properties of nucleic acids at surfaces relevant to microarray performance. Biomaterials Science, 2014, 2, 436-471.	2.6	85
159	From multi-ring to spider web and radial spoke: competition between the receding contact line and particle deposition in a drying colloidal drop. Soft Matter, 2014, 10, 4458-4463.	1.2	29
160	Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid–fluid interfaces. Soft Matter, 2014, 10, 6742-6748.	1.2	34
161	Synthesis of soft colloids with well-controlled softness. Chemical Communications, 2014, 50, 7535-7537.	2.2	2
162	Contact angle changes induced by immunocomplex formation. Analyst, The, 2014, 139, 1340-1344.	1.7	4
163	Curved polymer nanodiscs by wetting nanopores of anodic aluminum oxide templates with polymer nanospheres. Nanoscale, 2014, 6, 1340-1346.	2.8	23
164	Sinapinic acid-directed synthesis of gold nanoclusters and their application to quantitative matrix-assisted laser desorption/ionization mass spectrometry. Nanoscale, 2014, 6, 1347-1353.	2.8	13
165	Phase separation and the â€~coffee-ring' effect in polymer–nanocrystal mixtures. Soft Matter, 2014, 10, 1665.	1.2	20
166	Bioinspired Ultrahigh Water Pinning Nanostructures. Langmuir, 2014, 30, 325-331.	1.6	60
167	Tuning the Pore Composition by Two Simultaneous Interfacial Self-Assembly Processes: Breath Figures and Coffee Stain. Langmuir, 2014, 30, 6134-6141.	1.6	13
168	Tuning the oriented deposition of gold nanorods on patterned substrates. Nanotechnology, 2014, 25, 035301.	1.3	20

#	Article	IF	CITATIONS
169	Liquid Crystalline Phase Behavior of Silica Nanorods in Dimethyl Sulfoxide and Water. Langmuir, 2014, 30, 4806-4813.	1.6	24
170	Controlling drop-casting deposition of 2D Pt-octaethyl porphyrin layers on graphite. Synthetic Metals, 2014, 195, 201-207.	2.1	12
171	Aerosol jet printed top grids for organic optoelectronic devices. Organic Electronics, 2014, 15, 2135-2140.	1.4	43
172	Self-assembly in an evaporating nanofluid droplet: rapid transformation of nanorods into 3D fibre network structures. Soft Matter, 2014, 10, 5243-5248.	1.2	18
173	Instability Deposit Patterns in an Evaporating Droplet. Journal of Physical Chemistry B, 2014, 118, 2535-2543.	1.2	9
174	Beyond the "Coffee Ring†Re-entrant Ordering in an Evaporation-Driven Self-Assembly in a Colloidal Suspension on a Substrate. Journal of Physical Chemistry B, 2014, 118, 2559-2567.	1.2	9
175	Control over Coffee-Ring Formation in Evaporating Liquid Drops Containing Ellipsoids. Langmuir, 2014, 30, 8680-8686.	1.6	133
176	Rings, Igloos, and Pebbles of Salt Formed by Drying Saline Drops. Langmuir, 2014, 30, 12837-12842.	1.6	21
177	Digital Color in Cellulose Nanocrystal Films. ACS Applied Materials & Interfaces, 2014, 6, 12302-12306.	4.0	222
178	Tunable Self-Assembly of Cellulose Nanowhiskers and Polyvinyl Alcohol Chains Induced by Surface Tension Torque. Biomacromolecules, 2014, 15, 60-65.	2.6	35
179	Surface Charge Mapping with a Nanopipette. Journal of the American Chemical Society, 2014, 136, 13735-13744.	6.6	103
180	Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale, 2014, 6, 9588.	2.8	98
182	Pattern recognition for identification of lysozyme droplet solution chemistry. Colloids and Surfaces B: Biointerfaces, 2014, 115, 170-175.	2.5	12
183	Some physics inside drying droplets. Resonance, 2014, 19, 123-134.	0.2	18
184	Inkjet Printing of 2D Layered Materials. ChemPhysChem, 2014, 15, 3427-3434.	1.0	78
185	Three-Dimensional and Time-Ordered Surface-Enhanced Raman Scattering Hotspot Matrix. Journal of the American Chemical Society, 2014, 136, 5332-5341.	6.6	293
186	Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications. Lab on A Chip, 2014, 14, 2469-2479.	3.1	33
187	Assembling Ellipsoidal Particles at Fluid Interfaces Using Switchable Dipolar Capillary Interactions. Advanced Materials, 2014, 26, 6715-6719.	11.1	60

#	Article	IF	CITATIONS
188	Probing evaporation induced assembly across a drying colloidal droplet using in situ small-angle X-ray scattering at the synchrotron source. Soft Matter, 2014, 10, 1621.	1.2	37
189	Capillary Assembly of Microscale Ellipsoidal, Cuboidal, and Spherical Particles at Interfaces. Langmuir, 2014, 30, 11873-11882.	1.6	53
190	Colloidal monolayer titania quantum dots prepared by hydrothermal synthesis in supercritical water. Journal of Supercritical Fluids, 2014, 88, 126-133.	1.6	5
191	Wetting–dewetting films: The role of structural forces. Advances in Colloid and Interface Science, 2014, 206, 207-221.	7.0	46
192	A mussel-derived one component adhesive coacervate. Acta Biomaterialia, 2014, 10, 1663-1670.	4.1	182
193	Standoff reflection–absorption spectra of surface adsorbed explosives measured with pulsed quantum cascade lasers. Sensors and Actuators B: Chemical, 2014, 191, 450-456.	4.0	31
194	Towards the self-assembly of anisotropic colloids: Monodisperse oblate ellipsoids. Journal of Colloid and Interface Science, 2014, 416, 30-37.	5.0	16
195	Preparation of surface acoustic wave odor sensors by laser-induced forward transfer. Sensors and Actuators B: Chemical, 2014, 192, 369-377.	4.0	37
196	The effects of molecular weight, evaporation rate and polymer concentration on pillar formation in drying poly(ethylene oxide) droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 867-871.	2.3	19
197	Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect. Nanoscale Research Letters, 2014, 9, 87.	3.1	24
198	Morphology of synthetic DOPA-eumelanin deposited on glass and mica substrates: An atomic force microscopy investigation. Micron, 2014, 64, 28-33.	1.1	4
199	Evaporation-driven ring and film deposition from colloidal droplets. Journal of Fluid Mechanics, 2015, 781, .	1.4	45
200	Ring formation on an inclined surface. Journal of Fluid Mechanics, 2015, 775, .	1.4	33
201	Multiplexed TEM Specimen Preparation and Analysis of Plasmonic Nanoparticles. Microscopy and Microanalysis, 2015, 21, 1017-1025.	0.2	7
202	Nanoscopic morphology of equilibrium thin water film near the contact line. International Journal of Heat and Mass Transfer, 2015, 91, 1114-1118.	2.5	18
203	Evaporation of pinned droplets containing polymer – an examination of the important groups controlling final shape. AICHE Journal, 2015, 61, 1759-1767.	1.8	34
204	Enhancing the Liquid-Phase Exfoliation of Graphene in Organic Solvents upon Addition of n-Octylbenzene. Scientific Reports, 2015, 5, 16684.	1.6	79
205	Visual measurement of the evaporation process of a sessile droplet by dual-channel simultaneous phase-shifting interferometry. Scientific Reports, 2015, 5, 12053.	1.6	28

#	Article	IF	CITATIONS
206	Self-assembled large scale metal alloy grid patterns as flexible transparent conductive layers. Scientific Reports, 2015, 5, 13710.	1.6	38
207	The Role of Rhamnolipids in Coffee Ring Deposition and Influence of Metal Ions. Tenside, Surfactants, Detergents, 2015, 52, 319-322.	0.5	0
209	Small- and large-scale characterization and mixing properties in a thermally driven thin liquid film. Physical Review E, 2015, 92, 063002.	0.8	1
210	Crossover from the coffee-ring effect to the uniform deposit caused by irreversible cluster-cluster aggregation. Physical Review E, 2015, 92, 032302.	0.8	28
211	Three-dimensional patterns from the thin-film drying of amino acid solutions. Scientific Reports, 2015, 5, 10926.	1.6	6
212	Silver Nanowires Deposited on Grooved Surface as Bendable Resistance Sensor. Applied Mechanics and Materials, 2015, 748, 5-10.	0.2	0
213	Optical Methods for Studying the Drying Dynamics of Fe ₂ O ₃ Nanocolloid Droplets Depending on Variation of Substrate Temperature. Applied Mechanics and Materials, 0, 789-790, 33-37.	0.2	1
214	Self-organized target and spiral patterns through the "coffee ring―effect. Journal of Chemical Physics, 2015, 143, 084702.	1.2	8
215	Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium. Journal of Visualized Experiments, 2015, , e52901.	0.2	6
216	Electrowetting on Dielectric (EWOD) Assisted Droplet Desiccation. , 2015, , .		1
217	Step Into Micro-World: Dynamic Simulation of the Coffee-Ring Effect. , 2015, , .		0
218	P-56: High Resolution Organic Light-Emitting Diode Panel Fabricated by Ink Jet Printing Process. Digest of Technical Papers SID International Symposium, 2015, 46, 1352-1354.	0.1	15
219	Underlying Mechanism of Inkjet Printing of Uniform Organic Semiconductor Films Through Antisolvent Crystallization. Advanced Functional Materials, 2015, 25, 4022-4031.	7.8	28
220	Water Vapor Sensing by Carbon Nanoparticle "Skin― Advanced Materials Interfaces, 2015, 2, 1500244.	1.9	7
221	Highly Conductive, Bendable, Embedded Ag Nanoparticle Wire Arrays Via Convective Selfâ€Assembly: Hybridization into Ag Nanowire Transparent Conductors. Advanced Functional Materials, 2015, 25, 3888-3898.	7.8	33
222	Transient Interface Shape and Deposition Profile Left by Desiccation of Colloidal Droplets on Multiple Surfaces. , 2015, , .		0
223	The Fluid Joint: The Soft Spot of Micro―and Nanosystems. Advanced Materials, 2015, 27, 4254-4272.	11.1	38
224	Manipulating the Coffeeâ€Ring Effect: Interactions at Work. ChemPhysChem, 2015, 16, 2726-2734.	1.0	87

#	Article	IF	CITATIONS
225	A Facile, Multifunctional, Transparent, and Superhydrophobic Coating Based on a Nanoscale Porous Structure Spontaneously Assembled from Branched Silica Nanoparticles. Advanced Materials Interfaces, 2015, 2, 1500201.	1.9	40
226	Temperature‧ensitive Hydrogelâ€Particle Films from Evaporating Drops. Advanced Materials Interfaces, 2015, 2, 1500371.	1.9	20
227	A hanging plasmonic droplet: three-dimensional SERS hotspots for a highly sensitive multiplex detection of amino acids. Analyst, The, 2015, 140, 2973-2978.	1.7	24
228	Tunable dipolar capillary deformations for magnetic Janus particles at fluid–fluid interfaces. Soft Matter, 2015, 11, 3581-3588.	1.2	30
229	From coffee rings to coffee eyes. Soft Matter, 2015, 11, 4669-4673.	1.2	110
230	Effect of Poly(ethylene oxide) Molecular Weight on the Pinning and Pillar Formation of Evaporating Sessile Droplets: The Role of the Interface. Langmuir, 2015, 31, 5908-5918.	1.6	14
231	Controlled Co-Assembly of Nanoparticles and Polymer into Ultralong and Continuous One-Dimensional Nanochains. Journal of the American Chemical Society, 2015, 137, 8030-8033.	6.6	35
232	Marangoni Flow Induced Collective Motion of Catalytic Micromotors. Journal of Physical Chemistry C, 2015, 119, 28361-28367.	1.5	27
233	Shape-Anisotropic Polyimide Particles by Solid-State Polycondensation of Monomer Salt Single Crystals. Macromolecules, 2015, 48, 8773-8780.	2.2	25
234	Recent Advances in Controlling the Depositing Morphologies of Inkjet Droplets. ACS Applied Materials & Interfaces, 2015, 7, 28086-28099.	4.0	210
235	Exploring the effect of specific packed cell volume upon bloodstain pattern analysis: blood drying and dry volume estimation. Journal of the Canadian Society of Forensic Science, 2015, 48, 167-189.	0.7	8
236	Measuring the Nonuniform Evaporation Dynamics of Sprayed Sessile Microdroplets with Quantitative Phase Imaging. Langmuir, 2015, 31, 11020-11032.	1.6	20
237	Controlling droplet-based deposition uniformity of long silver nanowires by micrometer scale substrate patterning. Nanotechnology, 2015, 26, 485301.	1.3	5
238	Large Area Directed Self-Assembly of Sub-10 nm Particles with Single Particle Positioning Resolution. Nano Letters, 2015, 15, 6066-6070.	4.5	42
239	Characteristic improvement of inkjet printed Ag interconnects using tape on-off and mirror-reaction processes. , 2015, , .		1
240	Surface planarization effect of siloxane derivatives in organic semiconductor layers. Thin Solid Films, 2015, 597, 212-219.	0.8	4
241	Effects of spatial sensitivity on mass sensing with bulk acoustic mode resonators. Sensors and Actuators A: Physical, 2015, 236, 369-379.	2.0	13
242	Homogeneous deposition of particles by absorption on hydrogels. Europhysics Letters, 2015, 112, 48004.	0.7	15

#	Article	IF	CITATIONS
243	Initial contact angles of dispersion droplets and structure of ring-shaped deposits resulting from capillary self-assembling of particles. Colloid Journal, 2015, 77, 761-769.	0.5	10
244	Symmetric and Asymmetric Meniscus Collapse in Wetting Transition on Submerged Structured Surfaces. Langmuir, 2015, 31, 1248-1254.	1.6	55
245	A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosensors and Bioelectronics, 2015, 67, 516-523.	5.3	58
246	Silver nanoparticle colloids with γ-cyclodextrin: enhanced stability and Gibbs–Marangoni flow. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	3
247	Classifying dynamic contact line modes in drying drops. Soft Matter, 2015, 11, 1628-1633.	1.2	13
248	Printing Patterned Fine 3D Structures by Manipulating the Three Phase Contact Line. Advanced Functional Materials, 2015, 25, 2237-2242.	7.8	157
249	Evaporation of Sessile Drops Containing Colloidal Rods: Coffee-Ring and Order–Disorder Transition. Journal of Physical Chemistry B, 2015, 119, 3860-3867.	1.2	59
250	Visualization of an Evaporating Thin Layer during the Evaporation of a Nanofluid Droplet. Langmuir, 2015, 31, 1237-1241.	1.6	8
251	Effect of Surface Hydrophobicity on Critical Pinning Concentration of Nanoparticles To Trigger the Coffee Ring Formation during the Evaporation Process of Sessile Drops of Nanofluids. Journal of Physical Chemistry C, 2015, 119, 3050-3059.	1.5	19
252	Evaporation of a non-ideal solution and its application to writing ink aging. Forensic Science International, 2015, 247, 69-78.	1.3	8
253	Temperature-controlled morphology evolution of porphyrin nanostructures at an oil–aqueous interface. Journal of Materials Chemistry C, 2015, 3, 2445-2449.	2.7	13
254	Three-dimensional hotspots in evaporating nanoparticle sols for ultrahigh Raman scattering: solid–liquid interface effects. Nanoscale, 2015, 7, 6619-6626.	2.8	36
255	Inkjet Printed Conductive Tracks for Printed Electronics. ECS Journal of Solid State Science and Technology, 2015, 4, P3026-P3033.	0.9	95
256	Acoustic suppression of the coffee-ring effect. Soft Matter, 2015, 11, 7207-7213.	1.2	79
258	Investigating optimum sample preparation for infrared spectroscopic serum diagnostics. Analytical Methods, 2015, 7, 7140-7149.	1.3	40
259	Colloidal Drop Deposition on Porous Substrates: Competition among Particle Motion, Evaporation, and Infiltration. Langmuir, 2015, 31, 7953-7961.	1.6	70
260	Drying Patterns of Dispersions and Solutions. , 2015, , 282-423.		0
261	Deposition pattern of interacting droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 562-567.	2.3	45

#	ARTICLE	IF	CITATIONS
262	Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids. Macromolecular Research, 2015, 23, 552-558.	1.0	5
263	The impact of trough geometry on film shape. A theoretical study of droplets containing polymer, for P-OLED display applications. Journal of Colloid and Interface Science, 2015, 458, 53-61.	5.0	24
264	Intrinsic electrochemical performance and precise control of surface porosity of graphene-modified electrodes using the drop-casting technique. Electrochemistry Communications, 2015, 59, 86-90.	2.3	28
265	Efficient Direct Reduction of Graphene Oxide by Silicon Substrate. Scientific Reports, 2015, 5, 12306.	1.6	32
266	Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chemical Reviews, 2015, 115, 6265-6311.	23.0	630
267	Salt stains from evaporating droplets. Scientific Reports, 2015, 5, 10335.	1.6	151
268	<i>In Situ</i> Observation of Meniscus Shape Deformation with Colloidal Stripe Pattern Formation in Convective Self-Assembly. Langmuir, 2015, 31, 4121-4128.	1.6	20
269	Surfactant-Adsorption-Induced Initial Depinning Behavior in Evaporating Water and Nanofluid Sessile Droplets. Langmuir, 2015, 31, 5291-5298.	1.6	28
270	Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction. Journal of Physics and Chemistry of Solids, 2015, 83, 121-134.	1.9	5
271	Evaporative gold nanorod assembly on chemically stripe-patterned gradient surfaces. Journal of Colloid and Interface Science, 2015, 449, 261-269.	5.0	11
272	Formation of supercrystals through self-assembly of polyhedral nanocrystals. Nano Today, 2015, 10, 81-92.	6.2	53
273	On liquid evaporation from droplets of colloidal solutions of SiO2 and Fe2O3 nanoparticles. Colloid Journal, 2015, 77, 135-142.	0.5	12
274	Improvement of cross-machine directional thickness deviation for uniform pressure-sensitive adhesive layer in roll-to-roll slot-die coating process. International Journal of Precision Engineering and Manufacturing, 2015, 16, 937-943.	1.1	30
275	Modulation of the Coffee-Ring Effect in Particle/Surfactant Mixtures: the Importance of Particle–Interface Interactions. Langmuir, 2015, 31, 4113-4120.	1.6	177
276	Sessile nanofluid droplet drying. Advances in Colloid and Interface Science, 2015, 217, 13-30.	7.0	120
277	Coffee stains on paper. Chemical Engineering Science, 2015, 129, 34-41.	1.9	49
278	Small Angle X-ray Scattering of Iron Oxide Nanoparticle Monolayers Formed on a Liquid Surface. Journal of Physical Chemistry C, 2015, 119, 10727-10733.	1.5	12
279	Size and shape characterization of hydrated and desiccated exosomes. Analytical and Bioanalytical Chemistry, 2015, 407, 3285-3301.	1.9	135

#	Article	IF	CITATIONS
280	Effect of blending carbon nanoparticles and nanotubes on the formation of porous structure and the performance of proton exchange membrane fuel cell catalyst layers. Journal of Power Sources, 2015, 286, 109-117.	4.0	23
281	Dynamics of evaporative colloidal patterning. Physics of Fluids, 2015, 27, .	1.6	28
282	Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique. Journal of the Electrochemical Society, 2015, 162, F1384-F1396.	1.3	211
283	Fabricating a Long-Range Ordered 3D Bimetallic Nanoassembly with Edge-On Substrate for Highly Sensitive SERS Sensing of Escherichia coli Bacteria. Plasmonics, 2015, 10, 1889-1894.	1.8	7
284	Energy dissipation of nanoconfined hydration layer: Long-range hydration on the hydrophilic solid surface. Scientific Reports, 2014, 4, 6499.	1.6	16
285	Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2015, 2, 578-583.	6.4	167
286	Class formation in a mixture of hard disks and hard ellipses. Journal of Chemical Physics, 2015, 142, 224506.	1.2	7
287	Organic printed photonics: From microring lasers to integrated circuits. Science Advances, 2015, 1, e1500257.	4.7	172
288	Ellipsoid-shaped superparamagnetic nanoclusters through emulsion electrospinning. Chemical Communications, 2015, 51, 3758-3761.	2.2	11
289	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950.	2.2	7
289 290	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264.	2.2 1.6	7 39
289 290 291	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365.	2.2 1.6 1.9	7 39 17
289 290 291 292	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365. Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595.	2.2 1.6 1.9 4.5	7 39 17 81
289 290 291 292 292	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365. Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595. Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720.	 2.2 1.6 1.9 4.5 4.5 	7 39 17 81 32
289 290 291 292 293 293	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Oil–Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365. Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595. Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720. Water evaporation from porous media by Dynamic Vapor Sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 159-164.	 2.2 1.6 1.9 4.5 4.5 2.3 	 7 39 17 81 32 8
289 290 291 292 293 294	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Oil– Aqueous Interface Based on the Receding of Threeâ€Phase Contact Line of Droplet Template. Advanced Materials Interfaces, 2015, 2, 1400365. Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595. Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720. Water evaporation from porous media by Dynamic Vapor Sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 159-164. Agglomeration front dynamics: Drying in sessile nano-particle laden droplets. Chemical Engineering Science, 2015, 123, 164-169.	 2.2 1.6 1.9 4.5 4.5 2.3 1.9 	7 39 17 81 32 8 10
289 290 291 292 293 294 295	Crystal-Like Polymer Microdiscs. Macromolecules, 2015, 48, 5944-5950. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir, 2015, 31, 13257-13264. Tailored Porphyrin Assembly at the Olâ& Aqueous Interface Based on the Receding of Threeâ Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Letters, 2015, 15, 586-595. Self-Organization of Nanorods into Ultra-Long Range Two-Dimensional Monolayer End-to-End Network. Nano Letters, 2015, 15, 714-720. Water evaporation from porous media by Dynamic Vapor Sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 159-164. Agglomeration front dynamics: Drying in sessile nano-particle laden droplets. Chemical Engineering Science, 2015, 123, 164-169. Effect of particle geometry on triple line motion of nano-fluid drops and deposit nano-structuring. Advances in Colloid and Interface Science, 2015, 222, 44-57.	 2.2 1.6 1.9 4.5 4.5 2.3 1.9 7.0 	7 39 17 81 32 8 10 40

#	Article	IF	CITATIONS
298	Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets. Scientific Reports, 2014, 4, 4310.	1.6	43
299	Control of stain geometry by drop evaporation of surfactant containing dispersions. Advances in Colloid and Interface Science, 2015, 222, 275-290.	7.0	60
300	Wetting and Drying of Colloidal Droplets: Physics and Pattern Formation. , 0, , .		6
301	Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles. Crystals, 2016, 6, 122.	1.0	14
302	Effect of Geometric and Chemical Anisotropy of Janus Ellipsoids on Janus Boundary Mismatch at the Fluid–Fluid Interface. Materials, 2016, 9, 664.	1.3	14
303	"Coffee Ring Effect―in Ophthalmology. Medicine (United States), 2016, 95, e3137.	0.4	2
304	Uric acid detection by means of SERS spectroscopy on dried Ag colloidal drops. Journal of Raman Spectroscopy, 2016, 47, 681-686.	1.2	36
305	Inkjet printing of polyvinyl alcohol multilayers for additive manufacturing applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	31
306	Disk to dual ring deposition transformation in evaporating nanofluid droplets from substrate cooling to heating. Physical Chemistry Chemical Physics, 2016, 18, 20664-20671.	1.3	29
307	Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification. Microscopy Research and Technique, 2016, 79, 349-358.	1.2	36
308	Astringent Mouthfeel as a Consequence of Lubrication Failure. Angewandte Chemie - International Edition, 2016, 55, 5793-5797.	7.2	76
309	A Versatile Anisometric Metallic Supercrystal with Controllable Orientation on a Chip as a Stable and Reliable Labelâ€Free Biosensor. Chemistry - an Asian Journal, 2016, 11, 256-264.	1.7	5
310	Controlled capillary assembly of magnetic Janus particles at fluid–fluid interfaces. Soft Matter, 2016, 12, 6566-6574.	1.2	19
311	Observation of Contact Line Dynamics in Evaporating Droplets Under the Influence of Electric Fields. , 2016, , .		1
312	Optical tracking of nanoscale particles in microscale environments. Applied Physics Reviews, 2016, 3, .	5.5	27
313	Fluorimetric Mercury Test Strips with Suppressed "Coffee Stains―by a Bio-inspired Fabrication Strategy. Scientific Reports, 2016, 6, 36494.	1.6	25
314	Impact of Particle Selection on Nanoparticle Self-Assembly in Evaporating Colloidal Droplets. , 2016, , .		0
315	Oriented Clay Nanotube Membrane Assembled on Microporous Polymeric Substrates. ACS Applied Materials & Interfaces, 2016, 8, 34914-34923.	4.0	62

#	Article	IF	CITATIONS
316	Alternative mechanism for coffee-ring deposition based on active role of free surface. Physical Review E, 2016, 94, 063104.	0.8	41
317	Rate-dependent interface capture beyond the coffee-ring effect. Scientific Reports, 2016, 6, 24628.	1.6	161
318	Setting Foot in Asymmetric Wetting Environments: Fabrication of Mushroom-Like Anisotropic Polymer Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 28867-28874.	1.5	3
319	Electrostatic force between ellipsoids with dissimilar surface potentials. AIP Advances, 2016, 6, 095124.	0.6	3
320	Nanoparticle suspensions enclosed in methylcellulose: a new approach for quantifying nanoparticles in transmission electron microscopy. Scientific Reports, 2016, 6, 25275.	1.6	18
321	Modulation of Staphylococcus aureus spreading by water. Scientific Reports, 2016, 6, 25233.	1.6	15
322	e-MALDI: An Electrowetting-Enhanced Drop Drying Method for MALDI Mass Spectrometry. Analytical Chemistry, 2016, 88, 4669-4675.	3.2	56
323	The strategy of two-scale interface enrichment for constructing ultrasensitive SERS substrates based on the coffee ring effect of AgNP@ $\hat{1}^2$ -CD. RSC Advances, 2016, 6, 29586-29591.	1.7	16
324	Dynamically controlled deposition of colloidal nanoparticle suspension in evaporating drops using laser radiation. Soft Matter, 2016, 12, 4530-4536.	1.2	32
325	A Microwell–Printing Fabrication Strategy for the On-Chip Templated Biosynthesis of Protein Microarrays for Surface Plasmon Resonance Imaging. Journal of Physical Chemistry C, 2016, 120, 20984-20990.	1.5	11
326	3D printed bionic nanodevices. Nano Today, 2016, 11, 330-350.	6.2	116
327	Nanoparticle-mediated evaporation at liquid–vapor interfaces. Extreme Mechanics Letters, 2016, 7, 90-103.	2.0	20
328	Thin, binary liquid droplets, containing polymer: an investigation of the parameters controllingÂfilm shape. Journal of Fluid Mechanics, 2016, 794, 200-232.	1.4	19
329	Hybrid Self-Assembly during Evaporation Enables Drop-on-Demand Thin Film Devices. ACS Applied Materials & Interfaces, 2016, 8, 34171-34178.	4.0	12
330	Fabrication of conductive paths on a fused deposition modeling substrate using inkjet deposition. Rapid Prototyping Journal, 2016, 22, 77-86.	1.6	13
331	Modulation of Buckling Dynamics in Nanoparticle Laden Droplets Using External Heating. Langmuir, 2016, 32, 2591-2600.	1.6	9
332	"Biodrop―Evaporation and Ring-Stain Deposits: The Significance of DNA Length. Langmuir, 2016, 32, 4361-4369.	1.6	20
333	Direct observation of nanoparticle multiple-ring pattern formation during droplet evaporation with dark-field microscopy. Physical Chemistry Chemical Physics, 2016, 18, 13018-13025.	1.3	18

	Ст	TATION REPORT	
#	Article	IF	CITATIONS
334	Biochemical sensing by nanofluidic crystal in a confined space. Lab on A Chip, 2016, 16, 2050-2058.	3.1	12
335	In situ growth of silver nanowires on reduced graphene oxide sheets for transparent electrically conductive films. RSC Advances, 2016, 6, 37124-37129.	1.7	17
336	Manipulating the Assembly of Spray-Deposited Nanocolloids: <i>In Situ</i> Study and Monolayer Film Preparation. Langmuir, 2016, 32, 4251-4258.	1.6	30
337	Nanoscale View of Dewetting and Coating on Partially Wetted Solids. Journal of Physical Chemistry Letters, 2016, 7, 1763-1768.	2.1	35
338	Controlling particle deposit morphologies in drying nano-particle laden sessile droplets using substrate oscillations. Physical Chemistry Chemical Physics, 2016, 18, 14549-14560.	1.3	10
339	Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate. Langmuir, 2016, 32, 4530-4537.	1.6	122
340	Inkjet printing of uniform dielectric oxide structures from sol–gel inks by adjusting the solvent composition. Journal of Materials Chemistry C, 2016, 4, 5634-5641.	2.7	48
341	Wave-Tunable Lattice Equivalents toward Micro- and Nanomanipulation. Nano Letters, 2016, 16, 6472-6479.	4.5	6
342	Self-Cleaning and Superhydrophobic Surfaces. , 2016, , 1-43.		0
343	Dipolar Rings of Microscopic Ellipsoids: Magnetic Manipulation and Cell Entrapment. Physical Review Applied, 2016, 6, .	1.5	42
344	Adaptive Chemical Networks under Nonâ€Equilibrium Conditions: The Evaporating Droplet. Angewand Chemie, 2016, 128, 13648-13652.	lte 1.6	3
345	Adaptive Chemical Networks under Nonâ€Equilibrium Conditions: The Evaporating Droplet. Angewand Chemie - International Edition, 2016, 55, 13450-13454.	lte 7.2	20
346	Self-assembly, structural order and mechanism of γ-Fe ₂ O ₃ @SiO _{2ellipsoids induced by magnetic fields. New Journal of Chemistry, 2016, 40, 9520-9525.}	ıb> 1.4	7
347	Dependence of the structure of ring-shaped deposits resulting from evaporation of dispersion droplets on initial contact angle. Colloid Journal, 2016, 78, 633-640.	0.5	8
348	Revisiting the quantitative features of surface-assisted laser desorption/ionization mass spectrometric analysis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150379.	1.6	5
349	Formation kinetics of particulate films in directional drying of a colloidal suspension. Soft Matter, 2016, 12, 6851-6857.	1.2	20
350	Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO ₂ Reduction. Nano Letters, 2016, 16, 5675-5680.	4.5	125
351	Translational viscous drags of an ellipsoid straddling an interface between two fluids. Physical Review E, 2016, 94, 012602.	0.8	9

ARTICLE IF CITATIONS # A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian 352 7.0 146 Fluids and Nanofluids. Advances in Colloid and Interface Science, 2016, 236, 43-62. Forming Nanoparticle Monolayers at Liquid–Air Interfaces by Using Miscible Liquids. Langmuir, 2016, 1.6 32, 8467-8472 Protein Adsorption and Reorganization on Nanoparticles Probed by the Coffee-Ring Effect: Application 355 6.6 92 to Single Point Mutation Detection. Journal of the American Chemical Society, 2016, 138, 11623-11632. Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using 356 339 Graphene/Silicon Rubber Composites. Advanced Functional Materials, 2016, 26, 7614-7625. Dynamically Regulated Ag Nanowire Arrays for Detecting Molecular Information of Substrateâ€Induced 357 11.1 38 Stretched Cell Growth. Advanced Materials, 2016, 28, 9589-9595. Modulating the zeta potential of cellulose nanocrystals using salts and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 11-18. 2.3 Emerging Progress of Inkjet Technology in Printing Optical Materials. Advanced Optical Materials, 359 3.6 84 2016, 4, 1915-1932. Capillary force and torque on spheroidal particles floating at a fluid interface beyond the 360 0.8 superposition approximation. Physical Review E, 2016, 93, 022604. Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions. 361 2.9 65 Physical Review Letters, 2016, 116, 258001. Stimuliâ€Responsive Shape Switching of Polymer Colloids by Temperatureâ€Sensitive Absorption of 1.6 Solvent. Angewandte Chemie, 2016, 128, 10106-10109. Stimuliâ€Responsive Shape Switching of Polymer Colloids by Temperatureâ€Sensitive Absorption of 363 7.2 13 Solvent. Angewandte Chemie - International Edition, 2016, 55, 9952-9955. Coffee-Ring Defined Short Channels for Inkjet-Printed Metal Oxide Thin-Film Transistors. ACS Applied 364 4.0 54 Materials & amp; Interfaces, 2016, 8, 19643-19648. Interfacial wave dynamics of a drop with an embedded bubble. Physical Review E, 2016, 93, 023119. 365 0.8 6 Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nature Energy, 19.8 480 2016, 1, . Morphology and deposit of picoliter droplet tracks generated by inkjet printing. Journal of 367 1.5 4 Micromechanics and Microengineering, 2016, 26, 115005. Effects of Substrate Heating and Wettability on Evaporation Dynamics and Deposition Patterns for a 114 Sessile Water Droplet Containing Colloidal Particles. Langmuir, 2016, 32, 11958-11972. Insights into Drying of Noncircular Sessile Nanofluid Droplets toward Multiscale Surface Patterning 369 1.6 6 Using a Wall-Less Confinement Architecture. Langmuir, 2016, 32, 10977-10986. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and 370 1.6 Hydrodynamic Forces. Langmuir, 2016, 32, 11899-11906.

#	Article	IF	CITATIONS
371	Contact Line Dynamics during the Evaporation of Extended Colloidal Thin Films: Influence of Liquid Polarity and Particle Size. Langmuir, 2016, 32, 12790-12798.	1.6	3
372	Effect of a Single Nanoparticle on the Contact Line Motion. Langmuir, 2016, 32, 12676-12685.	1.6	23
373	Controlled injection of a liquid into ultra-high vacuum: Submonolayers of adenosine triphosphate deposited on Cu(110). Journal of Applied Physics, 2016, 120, 145307.	1.1	3
374	Optimized setup for two-dimensional convection experiments in thin liquid films. Review of Scientific Instruments, 2016, 87, 065102.	0.6	0
375	Evaporative Selfâ€Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays. Advanced Materials, 2016, 28, 2511-2517.	11.1	160
376	Internal fluid motion and particle transport in externally heated sessile droplets. AICHE Journal, 2016, 62, 1308-1321.	1.8	18
377	Salt precipitation during CO 2 storage—A review. International Journal of Greenhouse Gas Control, 2016, 51, 136-147.	2.3	135
378	Synthesis and Post-Synthesis Optimization of Novel Copper Biocomposites and Exploration of Potential Applications. , 2016, , .		0
379	Self-assembly of PEGylated gold nanoparticles with satellite structures as seeds. Chemical Communications, 2016, 52, 9542-9545.	2.2	8
380	Steady-state droplet evaporation: Contact angle influence on the evaporation efficiency. International Journal of Heat and Mass Transfer, 2016, 101, 418-426.	2.5	39
381	Development of hydrophobic surface substrates enabling reproducible drop-and-dry spectroscopic measurements. Talanta, 2016, 153, 31-37.	2.9	4
382	Impact of membrane pore structure on protein detection sensitivity of affinity-based immunoassay. Polish Journal of Chemical Technology, 2016, 18, 97-103.	0.3	5
383	Novel Scalable Nano-and Micro-High-Aspect Ratio Structure (HARS) Biocomposites Generated under Physiological Conditions. , 2016, , .		0
384	Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids. Journal of Physics Condensed Matter, 2016, 28, 313002.	0.7	38
385	Mass transfer during drying of colloidal film beneath a patterned mask that contains a hexagonal array of holes. Journal of Physics: Conference Series, 2016, 681, 012033.	0.3	3
386	Largeâ€Area Ultrathin Graphene Films by Singleâ€Step Marangoni Selfâ€Assembly for Highly Sensitive Strain Sensing Application. Advanced Functional Materials, 2016, 26, 1322-1329.	7.8	326
387	Astringent Mouthfeel as a Consequence of Lubrication Failure. Angewandte Chemie, 2016, 128, 5887-5891.	1.6	16
388	Graphene production via supercritical fluids. RSC Advances, 2016, 6, 10132-10143.	1.7	38

#	Article	IF	CITATIONS
389	Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. ACS Applied Materials & Interfaces, 2016, 8, 4985-4993.	4.0	25
390	Nanofluid Dynamic Wetting with External Thermal Fields. Springer Theses, 2016, , 95-107.	0.0	0
391	Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis. Nano Research, 2016, 9, 1418-1425.	5.8	45
392	Controlled Uniform Coating from the Interplay of Marangoni Flows and Surface-Adsorbed Macromolecules. Physical Review Letters, 2016, 116, 124501.	2.9	231
393	Film squeezing process for generating oblate spheroidal particles with high yield and uniform sizes. Colloid and Polymer Science, 2016, 294, 859-867.	1.0	21
394	Line printing solution-processable small molecules with uniform surface profile via ink-jet printer. Journal of Colloid and Interface Science, 2016, 465, 106-111.	5.0	56
395	Improvement of Biological Indicators by Uniformly Distributing Bacillus subtilis Spores in Monolayers To Evaluate Enhanced Spore Decontamination Technologies. Applied and Environmental Microbiology, 2016, 82, 2031-2038.	1.4	37
396	Mesoscale Simulations of Anisotropic Particles at Fluid-Fluid Interfaces. , 2016, , 565-577.		1
397	Stable water layers on solid surfaces. Physical Chemistry Chemical Physics, 2016, 18, 5905-5909.	1.3	2
398	Blood drop patterns: Formation and applications. Advances in Colloid and Interface Science, 2016, 231, 1-14.	7.0	106
399	Fabricating high performance polymer photovoltaic modules by creating large-scale uniform films. Organic Electronics, 2016, 32, 126-133.	1.4	16
400	Controlling and characterising the deposits from polymer droplets containing microparticles and salt. European Physical Journal E, 2016, 39, 21.	0.7	9
401	An experimental study of frost formation on cryogenic surfaces under natural convection conditions. International Journal of Heat and Mass Transfer, 2016, 97, 569-577.	2.5	49
402	Mathematical modeling of pattern formation caused by drying of colloidal film under a mask. European Physical Journal E, 2016, 39, 26.	0.7	9
403	Suppressing the Coffee-Ring Effect in Semitransparent MnO ₂ Film for a High-Performance Solar-Powered Energy Storage Window. ACS Applied Materials & Interfaces, 2016, 8, 9088-9096.	4.0	26
404	Towards photochromic and thermochromic biosensing. TrAC - Trends in Analytical Chemistry, 2016, 79, 37-45.	5.8	39
405	Elimination of Coffee-Ring Formation by Humidity Cycling: A Numerical Study. Langmuir, 2016, 32, 505-511.	1.6	9
406	Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Applied Surface Science, 2016, 365, 153-159.	3.1	236

#	Article	IF	CITATIONS
407	Developing and understanding biofluid vibrational spectroscopy: a critical review. Chemical Society Reviews, 2016, 45, 1803-1818.	18.7	243
408	Dewetting transition induced by surfactants in sessile droplets at the early evaporation stage. Soft Matter, 2016, 12, 508-513.	1.2	11
409	Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine. Journal of Materials Science, 2016, 51, 513-553.	1.7	130
410	Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery―Surfaces: A Brief Study on the Functions and Applications. ACS Applied Materials & Interfaces, 2016, 8, 3615-3623.	4.0	212
411	Preparation and photocatalytic performance of transparent titania film from monolayer titania quantum dots. Applied Catalysis B: Environmental, 2016, 180, 416-423.	10.8	8
412	Printable Functional Chips Based on Nanoparticle Assembly. Small, 2017, 13, 1503339.	5.2	47
413	Slip flow past a gas–liquid interface with embedded solid particles. Journal of Fluid Mechanics, 2017, 813, 152-174.	1.4	12
414	Droplet evaporation with complexity of evaporation modes. Applied Physics Letters, 2017, 110, .	1.5	21
415	Synthesis of graphene oxide membranes and their behavior in water and isopropanol. Carbon, 2017, 116, 145-153.	5.4	53
41.6			
416	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710.	1.2	8
416	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228.	1.2	8
410 417 418	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228. Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361.	1.2 1.7 3.1	8 9 10
416 417 418 419	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710.A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228.Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361.All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & amp; Interfaces, 2017, 9, 8194-8200.	1.2 1.7 3.1 4.0	8 9 10 98
416417418419420	 Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228. Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361. All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & amp; Interfaces, 2017, 9, 8194-8200. Evaporative Lithography in Open Microfluidic Channel Networks. Langmuir, 2017, 33, 2861-2871. 	1.2 1.7 3.1 4.0 1.6	8 9 10 98 17
 416 417 418 419 420 422 	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228. Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361. All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & amp; Interfaces, 2017, 9, 8194-8200. Evaporative Lithography in Open Microfluidic Channel Networks. Langmuir, 2017, 33, 2861-2871. Hierarchical Selfâ€Assembly of Dopamine into Patterned Structures. Advanced Materials Interfaces, 2017, 4, 1601218.	1.2 1.7 3.1 4.0 1.6 1.9	8 9 10 98 17 13
 416 417 418 419 420 422 422 423 	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228. Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361. All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & amp; Interfaces, 2017, 9, 8194-8200. Evaporative Lithography in Open Microfluidic Channel Networks. Langmuir, 2017, 33, 2861-2871. Hierarchical Selfâ&Assembly of Dopamine into Patterned Structures. Advanced Materials Interfaces, 2017, 4, 1601218. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759.	1.2 1.7 3.1 4.0 1.6 1.9	8 9 10 98 17 13
 416 417 418 419 420 422 422 423 424 	Influencing colloidal formation with optical traps. Soft Matter, 2017, 13, 706-710. A benzoxazine surfactant exchange for atomic force microscopy characterization of two dimensional materials exfoliated in aqueous surfactant solutions. RSC Advances, 2017, 7, 3222-3228. Precise micropatterning of silver nanoparticles on plastic substrates. Applied Surface Science, 2017, 401, 353-361. All Inkjet-Printed Metal-Oxide Thin-Film Transistor Array with Good Stability and Uniformity Using Surface-Energy Patterns. ACS Applied Materials & amp; Interfaces, 2017, 9, 8194-8200. Evaporative Lithography in Open Microfluidic Channel Networks. Langmuir, 2017, 33, 2861-2871. Hierarchical Selfã&Assembly of Dopamine into Patterned Structures. Advanced Materials Interfaces, 2017, 4, 1601218. Self-wrapping of an ouzo drop induced by evaporation on a superamphiphobic surface. Soft Matter, 2017, 13, 2749-2759. Fabrication, structures and molecule detection of gold films coated on ³³ -Fe2O3@SiO2 ellipsoid ordered arrays. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 343-347.	1.2 1.7 3.1 4.0 1.6 1.9 1.2 2.3	 8 9 10 98 17 13 47 9

		CITATION REPO	RT	
#	Article	IF	-	Citations
426	Adsorption of Ellipsoidal Particles at Liquid–Liquid Interfaces. Langmuir, 2017, 33, 2689-2	.697. 1.	.6	31
427	Contactless Transport and Mixing of Liquids on Self-Sustained Sublimating Coatings. Langn 33, 1799-1809.	nuir, 2017, 1.	.6	7
428	Morphological Evolution of Block Copolymer Particles: Effect of Solvent Evaporation Rate o Particle Shape and Morphology. ACS Nano, 2017, 11, 2133-2142.	n 7.	3	123
429	Ellipsoidal Colloids with a Controlled Surface Roughness via Bioinspired Surface Engineering Building Blocks for Liquid Marbles and Superhydrophobic Surfaces. ACS Applied Materials & Interfaces, 2017, 9, 7648-7657.	;: amp; 4.	.0	20
430	Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces. Nanotech 2017, 28, 135302.	nology, 1.	.3	9
431	Variable structural colouration of composite interphases. Materials Horizons, 2017, 4, 389-	895. <u>6</u> .	.4	16
432	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971	2993. 2.	.7	415
433	Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces. ACS Appli Materials & Interfaces, 2017, 9, 11095-11105.	ed 4.	.0	48
435	In-situ orientation and crystal growth kinetics of P3HT in drop cast P3HT:PCBM films. Polym 113, 200-213.	er, 2017, 1.	.8	8
436	Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Advand Colloid and Interface Science, 2017, 246, 217-274.	tes in 7.	.0	153
437	Homogeneous Surface Profiles of Inkjet-Printed Silver Nanoparticle Films by Regulating Thei Microenvironment. Journal of Physical Chemistry C, 2017, 121, 8992-8998.	r Drying 1.	.5	14
438	Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures. Langmuir, 2017, 4682-4687.	33, 1.	.6	87
439	Eâ€MALDI: optimized conditions during electrowettingâ€enhanced drop drying for MALDIâ Mass Spectrometry, 2017, 52, 405-410.	€MS. Journal of o	.7	4
440	Scalable gas sensors fabrication to integrate metal oxide nanoparticles with well-defined sh size. Sensors and Actuators B: Chemical, 2017, 249, 639-646.	ape and 4.	.0	26
441	Mechanisms of pinning accompanying evaporation of colloidal dispersion droplets. Colloid J 2017, 79, 234-243.	ournal, O	.5	5
442	Assessment of Reproducibility of Laser Electrospray Mass Spectrometry using Electrospray of Analyte. Journal of the American Society for Mass Spectrometry, 2017, 28, 880-886.	Deposition 1.	.2	5
443	The calorimetric properties of liposomes determine the morphology of dried droplets. Collo Surfaces B: Biointerfaces, 2017, 155, 215-222.	ds and 2.	.5	9
444	Large-scale fabrication of polymer ellipsoids with controllable patches via the viscosity-induced deformation of spherical particles. Polymer Chemistry, 2017, 8, 3774-3777.	ted 1.	9	5

#	Article	IF	CITATIONS
445	Changes in mineral reactivity driven by pore fluid mobility in partially wetted porous media. Chemical Geology, 2017, 463, 1-11.	1.4	32
446	Bioinspired electrocatalysts for oxygen reduction using recombinant silk films. Journal of Materials Chemistry A, 2017, 5, 10236-10243.	5.2	13
447	Drying-mediated patterns in colloid-polymer suspensions. Scientific Reports, 2017, 7, 1079.	1.6	33
448	Fabrication of SERS substrates containing dense "hot spots―by assembling star-shaped nanoparticles on superhydrophobic surfaces. New Journal of Chemistry, 2017, 41, 5028-5033.	1.4	9
449	Evaporation of Drops Containing Silica Nanoparticles of Varying Hydrophobicities: Exploiting Particle–Particle Interactions for Additive-Free Tunable Deposit Morphology. Langmuir, 2017, 33, 5025-5036.	1.6	44
450	Suppression of the coffee-ring effect in a hectorite aqueous dispersion. Powder Technology, 2017, 317, 83-88.	2.1	4
451	Highly transparent supercapacitors based on ZnO/MnO ₂ nanostructures. Nanoscale, 2017, 9, 7577-7587.	2.8	41
452	Imaging and Analysis of Encapsulated Objects through Selfâ€Assembled Electron and Optically Transparent Graphene Oxide Membranes. Advanced Materials Interfaces, 2017, 4, 1600734.	1.9	8
453	Effects of Interface Velocity, Diffusion Rate, and Radial Velocity on Colloidal Deposition Patterns Left by Evaporating Droplets. Journal of Heat Transfer, 2017, 139, .	1.2	8
454	Preparation of nâ€type Bi ₂ Te ₃ thermoelectric materials by nonâ€contact dispenser printing combined with selective laser melting. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700067.	1.2	34
455	Deposition Patterns of Two Neighboring Droplets: Onsager Variational Principle Studies. Langmuir, 2017, 33, 5965-5972.	1.6	16
456	Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres. Journal of Molecular Structure, 2017, 1146, 530-535.	1.8	16
457	Roughening up polymer microspheres and their diffusion in a liquid. Soft Matter, 2017, 13, 4285-4293.	1.2	12
458	Suppressing the coffee-ring effect of colloidal droplets by dispersed cellulose nanofibers. Science and Technology of Advanced Materials, 2017, 18, 316-324.	2.8	48
459	Red-Emissive Carbon Dots for Fingerprints Detection by Spray Method: Coffee Ring Effect and Unquenched Fluorescence in Drying Process. ACS Applied Materials & Interfaces, 2017, 9, 18429-18433.	4.0	268
460	Modeling Evaporation and Particle Assembly in Colloidal Droplets. Langmuir, 2017, 33, 5734-5744.	1.6	28
461	Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Scientific Reports, 2017, 7, 500.	1.6	100
462	Duality in interaction potentials for curved surface bodies and inside particles. Applied Mathematics and Mechanics (English Edition), 2017, 38, 1071-1090.	1.9	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
463	Deposition and drying dynamics of liquid crystal droplets. Nature Communications, 201	7, 8, 15642.	5.8	66
464	Reconfigurable opto-thermoelectric printing of colloidal particles. Chemical Communica 53, 7357-7360.	tions, 2017,	2.2	39
465	Characterizing self-assembly and deposition behavior of nanoparticles in inkjet-printed e droplets. Sensors and Actuators B: Chemical, 2017, 252, 1063-1070.	evaporating	4.0	37
466	Manipulating colloidal residue deposit from drying droplets: Air/liquid interface capture with coffee-ring effect. Chemical Engineering Science, 2017, 167, 78-87.	competes	1.9	18
467	Largeâ€Scale Robust Quantum Dot Microdisk Lasers with Controlled High Quality Cavit Advanced Optical Materials, 2017, 5, 1700011.	y Modes.	3.6	21
468	Photoluminescent Honeycomb Structures from Polyoxometalates and an Imidazoliumât Liquid Bearing a $\bar{I}\in a\in C$ onjugated Moiety and a Branched Aliphatic Chain. Chemistry - A E 2017, 23, 7278-7286.	EBased Ionic European Journal,	1.7	10
469	Uniform Drug Loading into Prefabricated Microparticles by Freeze-Drying. Particle and P Systems Characterization, 2017, 34, 1600427.	article	1.2	12
470	Stratification Dynamics in Drying Colloidal Mixtures. Langmuir, 2017, 33, 3685-3693.		1.6	70
471	Paradoxical coffee-stain effect driven by the Marangoni flow observed on oil-infused sur Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 355-360	faces. I.	2.3	10
472	Self-Assembly of Silver Nanowire Ring Structures Driven by the Compressive Force of a L Droplet. Langmuir, 2017, 33, 3367-3372.	-iquid	1.6	6
473	Influence of co-solvent hydroxyl group number on properties of water-based conductive pastes. Particuology, 2017, 33, 35-41.	carbon	2.0	12
474	Fabrication of Gold Microwires by Drying Gold Nanorods Suspensions. Advanced Materi 2017, 4, 1601125.	als Interfaces,	1.9	3
475	Shape-Tunable Synthesis of Sub-Micrometer Lens-Shaped Particles via Seeded Emulsion Chemistry of Materials, 2017, 29, 2685-2688.	Polymerization.	3.2	38
476	Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility a evaporation rate. Journal of Chemical Physics, 2017, 146, 114503.	nd solvent	1.2	11
477	Kinetic Activity in Electrochemical Cells. , 2017, , 423-445.			1
478	An experimental investigation on wettability effects of nanoparticles in pool boiling of a International Journal of Heat and Mass Transfer, 2017, 108, 32-40.	nanofluid.	2.5	60
479	Effect of Salt Concentration on the Motion of Particles near the Substrate in Drying Ses Colloidal Droplets. Langmuir, 2017, 33, 685-695.	sile	1.6	11
480	Twenty years of drying droplets. Nature, 2017, 550, 466-467.		13.7	68

#	Article	IF	CITATIONS
482	Optical Properties of Selfâ€Assembled Cellulose Nanocrystals Films Suspended at Planar–Symmetrical Interfaces. Small, 2017, 13, 1702084.	5.2	39
483	Influence of magnetic field on evaporation of a ferrofluid droplet. Journal of Applied Physics, 2017, 122, .	1.1	16
484	Simple active-layer patterning of solution-processed a-IGZO thin-film transistors using selective wetting method. Current Applied Physics, 2017, 17, 1727-1732.	1.1	5
485	Colloidal inks from bumpy colloidal nanoparticles for the assembly of ultrasmooth and uniform structural colors. Nanoscale, 2017, 9, 17357-17363.	2.8	32
486	Trapping and proliferation of target cells on C 60 fullerene nano fibres. Heliyon, 2017, 3, e00386.	1.4	1
487	Thermal-Annealing-Induced Self-Stretching: Fabrication of Anisotropic Polymer Particles on Polymer Films. Langmuir, 2017, 33, 12300-12305.	1.6	11
488	Two-Stage Silver Sintering Process Improves Sheet Resistance, Film Uniformity, and Layering Properties via Electrohydrodynamic Jet Printing. 3D Printing and Additive Manufacturing, 2017, 4, 165-171.	1.4	1
489	Controlling Coffee Ring Formation during Drying of Inkjet Printed 2D Inks. Advanced Materials Interfaces, 2017, 4, 1700944.	1.9	78
490	Facile fabrication of paper-based analytical devices for rapid and highly selective colorimetric detection of cesium in environmental samples. RSC Advances, 2017, 7, 48374-48385.	1.7	16
491	Detailed finer features in spectra of interfacial waves for characterization of a bubble-laden drop. Journal of Fluid Mechanics, 2017, 831, 698-718.	1.4	4
492	Mechanisms of depinning accompanying evaporation of colloidal dispersion droplets. Colloid Journal, 2017, 79, 515-525.	0.5	3
493	Largeâ€Scale, Longâ€Rangeâ€Ordered Patterning of Nanocrystals via Capillaryâ€Bridge Manipulation. Advanced Materials, 2017, 29, 1703143.	11.1	59
494	Surfactant effects on droplet dynamics and deposition patterns: a lattice gas model. Soft Matter, 2017, 13, 6529-6541.	1.2	20
495	3D coffee stains. Materials Chemistry Frontiers, 2017, 1, 2360-2367.	3.2	9
496	Transparent arrays of silver nanowire rings driven by evaporation of sessile droplets. Journal Physics D: Applied Physics, 2017, 50, 455302.	1.3	7
497	Suppression of the Coffee-Ring Effect and Evaporation-Driven Disorder to Order Transition in Colloidal Droplets. Journal of Physical Chemistry Letters, 2017, 8, 4704-4709.	2.1	47
498	Effects of Contact-Line Pinning on the Adsorption of Nonspherical Colloids at Liquid Interfaces. Physical Review Letters, 2017, 119, 108004.	2.9	27
499	Dewetting-mediated pattern formation inside the coffee ring. Physical Review E, 2017, 95, 042607.	0.8	22

лг.		IF	CITATIONS
#	CREIM: Coffee Ring Effect Imaging Model for Monitoring Protein Self-Assembly <i>in Situ</i> . Journal	IF	CHATIONS
500	of Physical Chemistry Letters, 2017, 8, 4846-4851.	2.1	14
501	Polypeptide Composite Particle-Assisted Organization of π-Conjugated Polymers into Highly Crystalline "Coffee Stains― ACS Applied Materials & Interfaces, 2017, 9, 34337-34348.	4.0	10
502	Quasi-static motion of microparticles at the depinning contact line of an evaporating droplet on PDMS surface. Science China: Physics, Mechanics and Astronomy, 2017, 60, 1.	2.0	18
503	Protein Mixture Segregation at Coffee-Ring: Real-Time Imaging of Protein Ring Precipitation by FTIR Spectromicroscopy. Journal of Physical Chemistry B, 2017, 121, 7359-7365.	1.2	8
505	Inkjet fabrication of highly efficient luminescent Eu-doped ZrO ₂ nanostructures. Nanoscale, 2017, 9, 13069-13078.	2.8	16
506	Hydrodynamics of Moving Contact Lines: Macroscopic versus Microscopic. Langmuir, 2017, 33, 8582-8590.	1.6	14
507	Superior Water Sheeting Effect on Photocatalytic Titania Nanowire Coated Glass. Langmuir, 2017, 33, 9043-9049.	1.6	3
508	Inkjet-printed Polyvinyl Alcohol Multilayers. Journal of Visualized Experiments, 2017, , .	0.2	3
509	Shape Measurement of Ellipsoidal Particles in a Cross-Slot Microchannel Utilizing Viscoelastic Particle Focusing. Analytical Chemistry, 2017, 89, 8662-8666.	3.2	7
510	Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Frontiers of Optoelectronics, 2017, 10, 329-352.	1.9	32
511	Dynamical Density Functional Theory for the Evaporation of Droplets of Nanoparticle Suspension. Langmuir, 2017, 33, 14490-14501.	1.6	10
512	Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects. AlP Advances, 2017, 7, .	0.6	7
513	Loosely packed monolayer coffee stains in dried drops of soft colloids. Nanoscale, 2017, 9, 18798-18803.	2.8	27
514	Modulation of Spatiotemporal Particle Patterning in Evaporating Droplets: Applications to Diagnostics and Materials Science. ACS Applied Materials & Interfaces, 2017, 9, 43352-43362.	4.0	21
515	Evaporation Dynamics of Mixed-Nanocolloidal Sessile Droplets. Langmuir, 2017, 33, 14123-14129.	1.6	21
516	Effect of Substrate Temperature on Pattern Formation of Bidispersed Particles from Volatile Drops. Journal of Physical Chemistry B, 2017, 121, 11002-11017.	1.2	14
517	Dynamics of lipid layers with/without bounded antimicrobial peptide halictine-1. Vibrational Spectroscopy, 2017, 93, 42-51.	1.2	2
518	Evaporative deposition of polystyrene microparticles on PDMS surface. Scientific Reports, 2017, 7, 14118.	1.6	32

#	Article	IF	CITATIONS
519	Rapid Large-Scale Assembly and Pattern Transfer of One-Dimensional Gold Nanorod Superstructures. ACS Applied Materials & Interfaces, 2017, 9, 25513-25521.	4.0	27
520	A technique based on droplet evaporation to recognize alcoholic drinks. Review of Scientific Instruments, 2017, 88, 074101.	0.6	20
521	Self-Organized Micro-Spiral of Single-Walled Carbon Nanotubes. Scientific Reports, 2017, 7, 5267.	1.6	12
522	Self-Assembly of Nanoparticles. World Scientific Series in Nanoscience and Nanotechnology, 2017, , 1-56.	0.1	1
523	Graphene dispersions in alkanes: toward fast drying conducting inks. Nanoscale, 2017, 9, 9893-9901.	2.8	18
524	Nano- and microparticles at fluid and biological interfaces. Journal of Physics Condensed Matter, 2017, 29, 373003.	0.7	64
525	Trace Analysis and Chemical Identification on Cellulose Nanofibers-Textured SERS Substrates Using the "Coffee Ring―Effect. ACS Sensors, 2017, 2, 1060-1067.	4.0	62
526	Colloidal molecules assembled from binary spheres under an AC electric field. Soft Matter, 2017, 13, 436-444.	1.2	17
527	Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. LWT - Food Science and Technology, 2017, 76, 1-8.	2.5	93
528	Controlling coffee ring structure on hydrophobic polymer surface by manipulating wettability with O 2 plasma. Chinese Chemical Letters, 2017, 28, 1-5.	4.8	5
529	Deposition patterns from evaporating sessile droplets with suspended mixtures of multi-sized and multi-species hydrophilic and non-adsorbing nanoparticles. Applied Thermal Engineering, 2017, 111, 1565-1572.	3.0	20
530	A simple dropâ€andâ€detect method using porous alumina ceramics as platforms for rapid surfaceâ€enhanced Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 89-96.	1.2	5
531	A General Introduction to Particle Deposition. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , 1-36.	0.3	1
532	Synergistic enhancement via plasmonic nanoplate-bacteria-nanorod supercrystals for highly efficient SERS sensing of food-borne bacteria. Sensors and Actuators B: Chemical, 2017, 239, 515-525.	4.0	36
533	Nanofabrication by Self-Assembly. , 2017, , 365-399.		0
534	Convection Inside a Pinned Water Droplet During Drying Process. Lecture Notes in Mechanical Engineering, 2017, , 1323-1330.	0.3	0
535	Study of residue patterns of aqueous nanofluid droplets with different particle sizes and concentrations on different substrates. International Journal of Heat and Mass Transfer, 2017, 105, 230-236.	2.5	41
536	Recent Progress in the Development of Printed Thinâ€Film Transistors and Circuits with Highâ€Resolution Printing Technology. Advanced Materials, 2017, 29, 1602736.	11.1	243

#	Article	IF	Citations
537	A High-Speed Inkjet-Printed Microelectromechanical Relay With a Mechanically Enhanced Double-Clamped Channel-Beam. Journal of Microelectromechanical Systems, 2017, 26, 95-101.	1.7	7
538	Study on gas sensing of reduced graphene oxide/ZnO thin film at room temperature. Sensors and Actuators B: Chemical, 2017, 240, 870-880.	4.0	48
539	Direct investigation of microparticle self-assembly to improve the robustness of neck formation in thermal underfills. , 2017, , .		2
540	Selfâ€peelingâ€off in the drying of particulate films mixed with cellulose nanofibres. Micro and Nano Letters, 2017, 12, 511-515.	0.6	9
541	Improving the macroscopic uniformity of nanopaper by multiâ€step coating of cellulose nanofibre dispersion. Micro and Nano Letters, 2017, 12, 516-519.	0.6	7
544	Polymeric Materials for Printed-Based Electroanalytical (Bio)Applications. Chemosensors, 2017, 5, 31.	1.8	15
545	Optical second-harmonic images of sacran megamolecule aggregates. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 146.	0.8	8
546	Tunable coffee-ring effect on a superhydrophobic surface. Optics Letters, 2017, 42, 3936.	1.7	21
547	Honeycomb Films with Ordered Patterns and Structures. , 2017, , 207-229.		2
548	Antipsychotic drug poisoning monitoring of clozapine in urine by using coffee ring effect based surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2018, 1014, 64-70.	2.6	30
549	Engineering Interfacial Processes at Mini-Micro-Nano Scales Using Sessile Droplet Architecture. Langmuir, 2018, 34, 8423-8442.	1.6	14
550	Novel Patterning Method for Nanomaterials and Its Application to Flexible Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9704-9717.	4.0	22
551	Pristine graphene modulation of vertical colloidal deposition for gold nanoparticle wires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 544, 159-164.	2.3	4
552	Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Materials Chemistry Frontiers, 2018, 2, 835-860.	3.2	42
553	The Factors Determining Formation Dynamics and Structure of Ring-Shaped Deposits Resulting from Capillary Self-Assembly of Particles. Colloid Journal, 2018, 80, 59-72.	0.5	4
554	Analysis of the drying behavior of suspension drops with spherical and ellipsoidal particles. Drying Technology, 2018, 36, 2022-2029.	1.7	4
555	Current status and future developments in preparation and application of nonspherical polymer particles. Advances in Colloid and Interface Science, 2018, 256, 126-151.	7.0	50
556	An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A: Statistical Mechanics and Its Applications, 2018, 504, 77-105.	1.2	100

#	Article	IF	CITATIONS
557	Controlling Self-Assembly and Topology at Micro–Nano Length Scales Using a Contact-Free Mixed Nanocolloid Droplet Architecture. Langmuir, 2018, 34, 5323-5333.	1.6	12
558	The effect of sand grain roughness on the grain-scale spatial distribution of grain-surface precipitates formed by evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 548, 134-141.	2.3	1
559	Effect of particle shape on drying dynamics in suspension drops using multi-speckle diffusing wave spectroscopy. Colloid and Polymer Science, 2018, 296, 971-979.	1.0	8
560	Inkjet Printing of Multicolor Daylight Visible Opal Holography. Advanced Functional Materials, 2018, 28, 1706903.	7.8	47
561	Interaction anisotropy and the KPZ to KPZQ transition in particle deposition at the edges of drying drops. Soft Matter, 2018, 14, 1903-1907.	1.2	10
562	Preparation of sub-square-meter-sized organic semiconductor films for photovoltaics applications. Nano Energy, 2018, 46, 11-19.	8.2	5
563	Improvement of photovoltaic performance of polymer and fullerene based bulk heterojunction solar cells prepared by the combination of directional solidification and convective deposition techniques. Organic Electronics, 2018, 56, 16-26.	1.4	6
564	Central spot formed in dried coffee-water-mixture droplets: Inverse coffee-ring effect. Current Applied Physics, 2018, 18, 477-483.	1.1	9
565	Additive Mixing and Conformal Coating of Noniridescent Structural Colors with Robust Mechanical Properties Fabricated by Atomization Deposition. ACS Nano, 2018, 12, 3095-3102.	7.3	139
566	Miniaturizing EM Sample Preparation: Opportunities, Challenges, and "Visual Proteomicsâ€: Proteomics, 2018, 18, e1700176.	1.3	14
567	Inkjet-Printed Multiwavelength Thermoplasmonic Images for Anticounterfeiting Applications. ACS Applied Materials & Interfaces, 2018, 10, 6764-6771.	4.0	58
568	Biofluid spectroscopic disease diagnostics: A review on the processes and spectral impact of drying. Journal of Biophotonics, 2018, 11, e201700299.	1.1	69
569	The meniscus-guided deposition of semiconducting polymers. Nature Communications, 2018, 9, 534.	5.8	324
570	Laser-induced forward transfer for printed electronics applications. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	39
571	High-resolution patterning of solution-processable materials via externally engineered pinning of capillary bridges. Nature Communications, 2018, 9, 393.	5.8	19
572	Inkjet-printed p-type nickel oxide thin-film transistor. Applied Surface Science, 2018, 441, 295-302.	3.1	56
573	Dynamic Control of Particle Deposition in Evaporating Droplets by an External Point Source of Vapor. Journal of Physical Chemistry Letters, 2018, 9, 659-664.	2.1	58
574	Dynamics of Droplet Break-Up. Energy, Environment, and Sustainability, 2018, , 369-401.	0.6	0

#	Article	IF	CITATIONS
575	Heterogeneous Capillary Interactions of Interface-Trapped Ellipsoid Particles Using the Trap-Release Method. Langmuir, 2018, 34, 384-394.	1.6	17
576	Drops, Jets and High-Resolution 3D Printing: Fundamentals and Applications. Energy, Environment, and Sustainability, 2018, , 123-162.	0.6	3
577	A review on suppression and utilization of the coffee-ring effect. Advances in Colloid and Interface Science, 2018, 252, 38-54.	7.0	431
578	Toward Quantitative Chemical Analysis Using a Ruler on Paper: An Approach to Transduce Color to Length Based on Coffee-Ring Effect. Analytical Chemistry, 2018, 90, 1482-1486.	3.2	44
579	High performance inkjet-printed metal oxide thin film transistors via addition of insulating polymer with proper molecular weight. Applied Physics Letters, 2018, 112, .	1.5	26
580	Evaporation of Nanosuspensions on Substrates with Different Hydrophobicity. ACS Applied Materials & Interfaces, 2018, 10, 3082-3093.	4.0	25
581	Formulation and optimization of a zinc oxide nanoparticle ink for printed electronics applications. Flexible and Printed Electronics, 2018, 3, 015001.	1.5	23
582	Hierarchical Surface Patterns upon Evaporation of a ZnO Nanofluid Droplet: Effect of Particle Morphology. Langmuir, 2018, 34, 1645-1654.	1.6	23
583	Nanocapillarity and Liquid Bridge-Mediated Force between Colloidal Nanoparticles. ACS Omega, 2018, 3, 112-123.	1.6	10
584	Patterned Arrays of Supramolecular Microcapsules. Advanced Functional Materials, 2018, 28, 1800550.	7.8	31
585	Evaporative Crystallization in Drops on Superhydrophobic and Liquid-Impregnated Surfaces. Langmuir, 2018, 34, 12350-12358.	1.6	43
586	A novel unit-dose approach for the pharmaceutical compounding of an orodispersible film. International Journal of Pharmaceutics, 2018, 539, 165-174.	2.6	22
587	Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12, 452-460.	2.7	2
588	Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter, 2018, 14, 2978-2995.	1.2	77
589	Inkjet printing bendable circuits based on an oil-water interface reaction. Applied Surface Science, 2018, 445, 391-397.	3.1	43
590	Drying drops. European Physical Journal E, 2018, 41, 32.	0.7	74
591	Self-Organization of Soft Hydrogel Microspheres during the Evaporation of Aqueous Droplets. Langmuir, 2018, 34, 4515-4525.	1.6	33
592	Mechanisms of pattern formation from dried sessile drops. Advances in Colloid and Interface Science, 2018, 254, 22-47.	7.0	124

#	Article	IF	CITATIONS
593	Effects of coffee ring via inkjet printing seed layers on field emission properties of patterned ZnO nanorods. Ceramics International, 2018, 44, 10735-10743.	2.3	15
594	Temperature-controlled morphology evolution of porphyrin nanostructures on a hydrophobic substrate. Journal of Materials Chemistry C, 2018, 6, 3849-3855.	2.7	12
595	Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation. Scientific Reports, 2018, 8, 3157.	1.6	41
596	Genetically tunable M13 phage films utilizing evaporating droplets. Colloids and Surfaces B: Biointerfaces, 2018, 161, 210-218.	2.5	7
597	Sessile nanofluid droplet can act like a crane. Journal of Colloid and Interface Science, 2018, 512, 497-510.	5.0	3
598	Self-assembly of Au@Ag core–shell nanocuboids into staircase superstructures by droplet evaporation. Nanoscale, 2018, 10, 142-149.	2.8	44
599	Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids and Surfaces B: Biointerfaces, 2018, 161, 103-110.	2.5	31
600	Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sensors and Actuators B: Chemical, 2018, 255, 2002-2010.	4.0	78
601	Superwettable microchips with improved spot homogeneity toward sensitive biosensing. Biosensors and Bioelectronics, 2018, 102, 418-424.	5.3	47
602	High and Fast Response of a Graphene–Silicon Photodetector Coupled with 2D Fractal Platinum Nanoparticles. Advanced Optical Materials, 2018, 6, 1700793.	3.6	42
603	Fabrication of Ellipsoidal Mesostructures in Block Copolymers via a Step-Shear Deformation. Macromolecules, 2018, 51, 275-281.	2.2	7
604	Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology, 2018, 29, 044004.	1.3	63
605	Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout. Lab on A Chip, 2018, 18, 271-275.	3.1	38
606	Self-assembly of cubic colloidal particles at fluid–fluid interfaces by hexapolar capillary interactions. Soft Matter, 2018, 14, 42-60.	1.2	26
607	From coffee ring to spherulites ring of poly(ethylene oxide) film from drying droplet. Applied Surface Science, 2018, 434, 626-632.	3.1	15
608	Compositional Analysis of Adsorbed Organic Aerosol on a Microresonator Mass Sensor. Aerosol Science and Engineering, 2018, 2, 118-129.	1.1	3
609	Inkjet printing for localized coating and functionalization of medical devices. Current Directions in Biomedical Engineering, 2018, 4, 233-236.	0.2	0
610	EFFECT OF SALT CONCENTRATION (NaCl) ON DRYING PATTERN OF FERROFLUID DROPLETS. Journal of Flow Visualization and Image Processing, 2018, 25, 245-258.	0.3	3

		CITATION REPC	DRT	
#	Article	I	F	CITATIONS
611	Wall slip mechanisms in direct and inverse emulsions. Journal of Rheology, 2018, 62, 1495-15	13. 1	.3	18
612	Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids. Langmuir, 2018 15416-15424.	8, 34,	L.6	15
613	Ultrapure Films of Polythiophene Derivatives are Born on a Substrate by Liquid Flow. ACS App Energy Materials, 2018, 1, 6881-6889.	lied	2.5	9
614	Hollow Rims from Water Drop Evaporation on Salt Substrates. Physical Review Letters, 2018, 214501.	121,	2.9	18
615	Invisible-ink-assisted pattern and written surface-enhanced Raman scattering substrates for v chem/biosensing platforms. Green Chemistry, 2018, 20, 5318-5326.	ersatile	1.6	27
616	Transitional bulk-solutal Marangoni instability in sessile drops. Physical Review E, 2018, 98, .	().8	5
617	Chirality provides a direct fitness advantage and facilitates intermixing in cellular aggregates. Computational Biology, 2018, 14, e1006645.	PLoS 1	.5	11
618	Remote-controlled deposit of superparamagnetic colloidal droplets. Physical Review E, 2018,	98,. 0).8	4
619	Nanocombing Effect Leads to Nanowire-Based, in-Plane, Uniaxial Thin Films. ACS Nano, 2018, 12701-12712.	12, 7	7.3	12
620	Suppression of the coffee-ring effect by sugar-assisted depinning of contact line. Scientific Re 2018, 8, 17769.	ports, 1	L.6	38
621	Interaction of two drops at different temperatures: The role of thermocapillary convection an surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 27	1 5-283. 2	2.3	52
622	Stripeâ€shaped Electrochemical Biosensor for Organophosphate Pesticide. Electroanalysis, 20 2731-2737.)18, 30, 1	L.5	6
623	Combined host-guest complex with coffee-ring effect for constructing ultrasensitive SERS sul for phenformin hydrochloride detection in healthcare products. Analytical and Bioanalytical Chemistry, 2018, 410, 7599-7609.)strate 1	L . 9	14
624	Arrested Coalescence of Viscoelastic Droplets: Ellipsoid Shape Effects and Reorientation. Lang 2018, 34, 12379-12386.	gmuir, 1	L.6	10
625	Ellipsoidal particles for liquid chromatography: Fluid mechanics, efficiency and wall effects. Jo of Chromatography A, 2018, 1580, 30-48.	ırnal 1	L . 8	12
626	Beyond the coffee-ring effect: Pattern formation by wetting and spreading of drops. Physical 2018, 98, .	Review E,).8	7
627	Viscoelastic Particle–Laden Interface Inhibits Coffee-Ring Formation. Langmuir, 2018, 34, 1	4294-14301. 1	6	21
628	Evaporation of strong coffee drops. Applied Physics Letters, 2018, 113, .		L.5	13

#	Article	IF	CITATIONS
629	Nanoscale Topographical Fluctuations: A Key Factor for Evaporative Colloidal Self-Assembly. Langmuir, 2018, 34, 12751-12758.	1.6	14
630	Recognition of Latent Fingerprints and Ink-Free Printing Derived from Interfacial Segregation of Carbon Dots. ACS Applied Materials & amp; Interfaces, 2018, 10, 39205-39213.	4.0	51
631	Anisotropic particles at fluid-fluid interfaces (experiment). , 2018, , 201-231.		2
632	Dynamic capillary assembly of colloids at interfaces with 10,000g accelerations. Nature Communications, 2018, 9, 3620.	5.8	24
633	Aptamer–field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018, 362, 319-324.	6.0	570
634	Bottom-Up Synthesis of Polymeric Micro- and Nanoparticles with Regular Anisotropic Shapes. Macromolecules, 2018, 51, 7456-7462.	2.2	34
635	Morphology modulation in evaporative drying mediated crystallization of sodium chloride solution droplet with surfactant. Soft Matter, 2018, 14, 7883-7893.	1.2	16
636	A phenomenological approach to the deposition pattern of evaporating droplets with contact line pinning. Journal of Physics Condensed Matter, 2018, 30, 435001.	0.7	2
637	"Printâ€ŧoâ€patternâ€ŧ Silkâ€Based Water Lithography. Small, 2018, 14, e1802953.	5.2	11
638	MWCNT-coated cellulose nanopapers: Droplet-coating, process factors, and electrical conductivity performance. Carbohydrate Polymers, 2018, 202, 504-512.	5.1	13
639	Patterns in Drying Drops Dictated by Curvature-Driven Particle Transport. Langmuir, 2018, 34, 11473-11483.	1.6	33
640	Meniscus Shape around Nanoparticles Embedded in Molecularly Thin Liquid Films. Langmuir, 2018, 34, 11364-11373.	1.6	5
641	Suppression of coffee ring: (Particle) size matters. Applied Physics Letters, 2018, 112, .	1.5	34
642	Ultraselective Pebax Membranes Enabled by Templated Microphase Separation. ACS Applied Materials & Interfaces, 2018, 10, 20006-20013.	4.0	48
643	Pattern formation of stains from dried drops to identify spermatozoa motility. Colloids and Surfaces B: Biointerfaces, 2018, 169, 486-493.	2.5	5
644	Role of surfactant on thermoelectric behaviors of organic-inorganic composites. Journal of Applied Physics, 2018, 123, .	1.1	23
645	Redefining Molecular Amphipathicity in Reversing the "Coffee-Ring Effect― Implications for Single Base Mutation Detection. Langmuir, 2018, 34, 6777-6783.	1.6	16
646	Largeâ€Area Lasing and Multicolor Perovskite Quantum Dot Patterns. Advanced Optical Materials, 2018, 6, 1800474.	3.6	95

		CITATION REPORT		
#	Article		IF	CITATIONS
647	Interfacial Targeting of Sessile Droplets Using Electrospray. Langmuir, 2018, 34, 7445-	7454.	1.6	9
648	Inkjet printing Ag nanoparticles for SERS hot spots. Analytical Methods, 2018, 10, 321	5-3223.	1.3	33
649	Droplet Drying Patterns on Solid Substrates: From Hydrophilic to Superhydrophobic Co Levitating Drops. Advances in Condensed Matter Physics, 2018, 2018, 1-24.	ontact to	0.4	43
650	Enhanced Coffee-Ring Effect via Substrate Roughness in Evaporation of Colloidal Drop in Condensed Matter Physics, 2018, 2018, 1-9.	lets. Advances	0.4	12
651	Texture analysis of protein deposits produced by droplet evaporation. Scientific Report	:s, 2018, 8, 9580.	1.6	43
652	Leveraging coffeeâ€ring effect on plasmonic paper substrate for sensitive analyte dete spectroscopy. Journal of Raman Spectroscopy, 2018, 49, 1552-1558.	ction using Raman	1.2	15
653	Solvent-Induced Shape Recovery of Anisotropic Polymer Particles Prepared by a Modific Stretching Method. Langmuir, 2018, 34, 8326-8332.	ed Thermal	1.6	10
654	Reducing the Universal "Coffee-Ring Effect―by a Vapor-Assisted Spraying Method CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. ACS Applie Interfaces, 2018, 10, 23466-23475.	for High-Efficiency d Materials &	4.0	17
655	Conformational sensitivity of surface selection rules for quantitative Raman identificat molecules in biofluids. Nanoscale, 2018, 10, 14342-14351.	ion of small	2.8	13
656	Inkjet Printed Electrodes in Thin Film Transistors. IEEE Journal of the Electron Devices S 774-790.	ociety, 2018, 6,	1.2	22
657	Theoretical approaches to investigate anisotropic particles at fluid interfaces. , 2018, ,	233-260.		3
658	Aspect Ratio-Controlled Synthesis of Uniform Colloidal Block Copolymer Ellipsoids fror Emulsions. Chemistry of Materials, 2018, 30, 6277-6288.	n Evaporative	3.2	47
659	From Chaos to Order: Evaporative Assembly and Collective Behavior in Drying Liquid C Journal of Physical Chemistry Letters, 2018, 9, 4795-4801.	rystal Droplets.	2.1	9
660	Anion-exchange polymer filament coating for ultra-trace isotopic analysis of plutonium ionization mass spectrometry. Talanta, 2018, 189, 502-508.	by thermal	2.9	6
661	Multi-ring Deposition Pattern of Drying Droplets. Langmuir, 2018, 34, 9572-9578.		1.6	25
662	Robust, flexible, sticky and high sensitive SERS membrane for rapid detection application Actuators B: Chemical, 2018, 274, 676-681.	ons. Sensors and	4.0	28
663	Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent and Biomedical Control. International Journal of Environmental Research and Public He 844.	Degradation alth, 2018, 15,	1.2	8
664	Fully-biobased UV-absorbing nanoparticles from ethyl cellulose and zein for environme photoprotection. RSC Advances, 2018, 8, 25104-25111.	ntally friendly	1.7	10

#	Article	IF	CITATIONS
665	A Deformable and Highly Robust Ethyl Cellulose Transparent Conductor with a Scalable Silver Nanowires Bundle Micromesh. Advanced Materials, 2018, 30, e1802803.	11.1	95
666	Experimental study and mechanism analysis on the effect of substrate wettability on graphene sheets distribution morphology within uniform printing droplets. Journal of Physics Condensed Matter, 2018, 30, 335001.	0.7	12
667	Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides. Nanomaterials, 2018, 8, 520.	1.9	22
668	Surface tension driven aggregation of organic nanowires <i>via</i> lab in a droplet. Nanoscale, 2018, 10, 11006-11012.	2.8	35
669	Preventing the coffee-ring effect and aggregate sedimentation by <i>in situ</i> gelation of monodisperse materials. Chemical Science, 2018, 9, 7596-7605.	3.7	53
670	Multidimensional Design of Anisotropic Polymer Particles from Solventâ€Evaporative Emulsion. Advanced Functional Materials, 2018, 28, 1802961.	7.8	140
671	Fabrication of Transparent Conductive Film with Flexible Silver Nanowires Using Rollâ€ŧoâ€Roll Slotâ€Die Coating and Calendering and Its Application to Resistive Touch Panel. Advanced Electronic Materials, 2018, 4, 1800243.	2.6	50
672	Ag nanoparticles embedded in Nd:YAG crystals irradiated with tilted beam of 200 MeV Xe ions: optical dichroism correlated to particle reshaping. Nanotechnology, 2018, 29, 424001.	1.3	5
673	Adhesive force measurement of steady-state water nano-meniscus: Effective surface tension at nanoscale. Scientific Reports, 2018, 8, 8462.	1.6	19
674	Factors influencing agricultural spray deposit structures on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 288-294.	2.3	12
675	Control of the Surface Morphology of Ceramic/Polymer Composite Inks for Inkjet Printing. Advanced Engineering Materials, 2018, 20, 1800318.	1.6	7
676	pH-modulated self-assembly of colloidal nanoparticles in a dual-droplet inkjet printing process. Journal of Colloid and Interface Science, 2018, 529, 234-242.	5.0	23
677	Interface Colloidal Deposition of Nanoparticle Wire Structures. Particle and Particle Systems Characterization, 2018, 35, 1800098.	1.2	0
678	Regulated Dewetting for Patterning Organic Single Crystals with Pure Crystallographic Orientation toward High Performance Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1800470.	7.8	47
679	Highâ€Resolution and Controllable Nanodeposition Pattern of Ag Nanoparticles by Electrohydrodynamic Jet Printing Combined with Coffee Ring Effect. Advanced Materials Interfaces, 2019, 6, 1900912.	1.9	29
680	Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry. Analytical Chemistry, 2019, 91, 11544-11552.	3.2	14
681	Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System. Analytical Chemistry, 2019, 91, 10988-10995.	3.2	56
682	Influence of the drying configuration on the patterning of ellipsoids – concentric rings and concentric cracks. Physical Chemistry Chemical Physics, 2019, 21, 20045-20054.	1.3	12

#	Article	IF	CITATIONS
683	Micro-coffee-ring-patterned fiber SERS probes and their in situ detection application in complex liquid environments. Sensors and Actuators B: Chemical, 2019, 299, 126990.	4.0	27
684	Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion. Lab on A Chip, 2019, 19, 3190-3199.	3.1	13
685	Hexagonal deposits of colloidal particles. Physical Review E, 2019, 100, 022602.	0.8	8
686	Light-Responsive, Shape-Switchable Block Copolymer Particles. Journal of the American Chemical Society, 2019, 141, 15348-15355.	6.6	90
687	Drops That Change Their Mind: Spontaneous Reversal from Spreading to Retraction. Langmuir, 2019, 35, 15734-15738.	1.6	23
688	Suppression of coffee-ring effect <i>via</i> periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering. Nanoscale, 2019, 11, 20534-20545.	2.8	21
689	Asymmetric Wettability Interfaces Induced a Large-Area Quantum Dot Microstructure toward High-Resolution Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 28520-28526.	4.0	12
690	Drying pattern and evaporation dynamics of sessile ferrofluid droplet on a PDMS substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123672.	2.3	22
691	Controlled Shape and Porosity of Polymeric Colloids by Photo-Induced Phase Separation. Polymers, 2019, 11, 1225.	2.0	0
692	Negatively-charged nanofiltration membrane and its hexavalent chromium removal performance. Journal of Colloid and Interface Science, 2019, 553, 475-483.	5.0	43
693	Evaporative Crystallization of Spirals. Langmuir, 2019, 35, 10484-10490.	1.6	14
694	Substrate stiffness affects particle distribution pattern in a drying suspension droplet. Applied Physics Letters, 2019, 114, .	1.5	14
695	Droplet evaporation: Colloidal interactions vs. evaporation kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123555.	2.3	2
696	Dynamic Crystallization and Phase Transition in Evaporating Colloidal Droplets. Nano Letters, 2019, 19, 8225-8233.	4.5	19
697	Bioinspired functions. , 2019, , 147-246.		1
699	Combined effects of Marangoni, sedimentation and coffee-ring flows on evaporative deposits of superparamagnetic colloids. Colloids and Interface Science Communications, 2019, 32, 100198.	2.0	3
700	Fully printed organic solar cells – a review of techniques, challenges and their solutions. Opto-electronics Review, 2019, 27, 298-320.	2.4	28
701	Continuous and Controllable Liquid Transfer Guided by a Fibrous Liquid Bridge: Toward Highâ€Performance QLEDs. Advanced Materials, 2019, 31, e1904610.	11.1	24

#	Article	IF	CITATIONS
702	Metallization of Silver Through Coffeeâ€Ring Assisted Ribonucleic Acid Scaffolding Technique. ChemistrySelect, 2019, 4, 10320-10328.	0.7	0
703	Probing the Colloidal Particle Dynamics in Drying Sessile Droplets. Langmuir, 2019, 35, 2209-2220.	1.6	12
704	Self-Assembled Metal–Organic Biohybrids (MOBs) Using Copper and Silver for Cell Studies. Nanomaterials, 2019, 9, 1282.	1.9	14
705	Spatial distribution quantification and control of ink flakes in reduced graphene oxide FET inkjet printing. Procedia Manufacturing, 2019, 34, 19-25.	1.9	1
706	The Features of Ring-Shaped Deposit Formation upon Evaporation of Magnetic Colloid Droplets in a Magnetic Field. Colloid Journal, 2019, 81, 501-506.	0.5	1
707	Skeleton pseudomorphs of nanostructured silver for the surface-enhanced Raman spectroscopy. Mendeleev Communications, 2019, 29, 395-397.	0.6	2
708	Low-voltage-operating complementary-like circuits using ambipolar organic-inorganic hybrid thin-film transistors with solid-state-electrolyte gate insulator. Organic Electronics, 2019, 75, 105358.	1.4	12
709	Self-Assembly of Ordered Microparticle Monolayers from Drying a Droplet on a Liquid Substrate. Journal of Physical Chemistry Letters, 2019, 10, 6184-6188.	2.1	12
710	Designing of low-cost, eco-friendly, and versatile photosensitive composites / inks based on carboxyl-terminated quantum dots and reactive prepolymers in a mixed solvent: Suppression of the coffee-ring strain and aggregation. Polymer, 2019, 182, 121839.	1.8	4
711	Control of Droplet Evaporation on Oil-Coated Surfaces for the Synthesis of Asymmetric Supraparticles. Langmuir, 2019, 35, 14042-14048.	1.6	29
712	Fabrication and Characterization of Fully Inkjet Printed Capacitors Based on Ceramic/Polymer Composite Dielectrics on Flexible Substrates. Scientific Reports, 2019, 9, 13324.	1.6	27
713	Large-scale colloidal films with robust structural colors. Materials Horizons, 2019, 6, 90-96.	6.4	106
714	Active matter alters the growth dynamics of coffee rings. Soft Matter, 2019, 15, 1488-1496.	1.2	33
715	Strategic Design of Clayâ€Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Advanced Functional Materials, 2019, 29, 1807611.	7.8	65
716	Underpinning transport phenomena for the patterning of biomolecules. Chemical Society Reviews, 2019, 48, 1236-1254.	18.7	29
717	Analysis of profile and morphology of colloidal deposits obtained from evaporating sessile droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 150-160.	2.3	29
718	Transparent and conductive silver nanowires networks printed by laser-induced forward transfer. Applied Surface Science, 2019, 476, 828-833.	3.1	27
719	Photocontrolled self-assembly of silica nanoparticles. Ceramics International, 2019, 45, 9320-9324.	2.3	4

#	Article	IF	Citations
720	Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storage. Materials Today Energy, 2019, 12, 155-160.	2.5	35
721	Aggregated-fluorescent detection of PFAS with a simple chip. Analytical Methods, 2019, 11, 163-170.	1.3	27
722	Damped interfacial oscillation of a particle-embedded viscous drop. Physics of Fluids, 2019, 31, 053303.	1.6	3
723	A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 2019, 7, 8771-8795.	2.7	303
724	Droplet Retention and Shedding on Slippery Substrates. Langmuir, 2019, 35, 9146-9151.	1.6	15
725	A New Mechanism of Coffee-Ring Formation Deduced from Numerical Simulations with Considering Deformation and Wettability. Journal of Chemical Engineering of Japan, 2019, 52, 484-492.	0.3	2
726	A Widely Applicable Strategy for Coffeeâ€Ring Effect Suppression and Controllable Deposition of Nanoparticles Utilizing Ice Drying. Advanced Materials Interfaces, 2019, 6, 1900446.	1.9	15
727	Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Physical Review E, 2019, 99, 053306.	0.8	16
728	Detection of sildenafil adulterated in herbal products using thin layer chromatography combined with surface enhanced Raman spectroscopy: "Double coffee-ring effect―based enhancement. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 340-347.	1.4	28
729	Confinement induced formation of silver nanoparticles in self-assembled micro-granules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 185-193.	2.3	6
730	Dynamical Clustering and Band Formation of Particles in a Marangoni Vortexing Droplet. Langmuir, 2019, 35, 8977-8983.	1.6	4
731	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360
732	Evaporative deposition of mono- and bi-dispersed colloids on a polydimethylsiloxane (PDMS) surface. Chemical Engineering Science, 2019, 205, 212-219.	1.9	13
733	Measurement of the number concentration of gold nanoparticle suspension by scanning electron microscopy. Metrologia, 2019, 56, 044001.	0.6	9
734	The Coffeeâ€Ring Effect on 3D Patterns: A Simple Approach to Creating Complex Hierarchical Materials. Advanced Materials Interfaces, 2019, 6, 1900003.	1.9	3
735	Desiccation Patterns of Plasma Sessile Drops. ACS Sensors, 2019, 4, 1701-1709.	4.0	8
736	Physical investigations and DFT model calculation on Zn2SnO4-ZnO (ZTO-ZO) alloy thin films for wettability and photocatalysis purposes. Optik, 2019, 187, 49-64.	1.4	10
737	One-Step Generation of a Drug-Releasing Microarray for High-Throughput Small-Volume Bioassays. Springer Theses, 2019, , .	0.0	1

#	Article	IF	CITATIONS
738	Inverse cascade of the vortical structures near the contact line of evaporating sessile droplets. Scientific Reports, 2019, 9, 6784.	1.6	2
739	New approach to investigate Common Variable Immunodeficiency patients using spectrochemical analysis of blood. Scientific Reports, 2019, 9, 7239.	1.6	15
740	On the origin and evolution of the depletion zone in coffee stains. Soft Matter, 2019, 15, 4170-4177.	1.2	15
741	New Perspective of Mitigating the Coffee-Ring Effect: Interfacial Assembly. Journal of Physical Chemistry C, 2019, 123, 12029-12041.	1.5	51
742	Flexible strain sensors based on epoxy/graphene composite film with long molecular weight curing agents. Journal of Applied Polymer Science, 2019, 136, 47906.	1.3	30
743	Oxidation controlled lift-off of 3D chiral plasmonic Au nano-hooks. Nano Research, 2019, 12, 1635-1642.	5.8	19
744	Monte Carlo simulation of colloidal particles dynamics in a drying drop. Journal of Physics: Conference Series, 2019, 1163, 012043.	0.3	3
745	Evaporation of ethanol/water mixture droplets on a pillar-like PDMS surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 215-220.	2.3	19
746	Drying of electrically conductive hybrid polymer–gold nanorods studied with in situ microbeam GISAXS. Nanoscale, 2019, 11, 6538-6543.	2.8	11
747	Segregation in Drying Binary Colloidal Droplets. ACS Nano, 2019, 13, 4972-4979.	7.3	81
748	Optical imaging and spectroscopy of SnO2-rhodamine 6G composite's desiccation patterns. Journal of Applied Physics, 2019, 125, .	1.1	3
749	Drying of Ethanol/Water Droplets Containing Silica Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 14275-14285.	4.0	24
750	Material patterning on substrates by manipulation of fluidic behavior. National Science Review, 2019, 6, 758-766.	4.6	11
751	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosensors and Bioelectronics, 2019, 134, 97-102.	5.3	21
752	Dynamic heterogeneity in complex interfaces of soft interface-dominated materials. Scientific Reports, 2019, 9, 2938.	1.6	50
753	Influence of anisotropic nanoparticles on the deposition pattern of an evaporating droplet. European Physical Journal E, 2019, 42, 17.	0.7	3
754	Templating Interfacial Nanoparticle Assemblies via in Situ Techniques. Langmuir, 2019, 35, 8584-8602.	1.6	27
755	Effect of Drying Condition of Emitting Layer Formed by Ink-Jet Coating on Optical Property and Film Morphology of Polymer-Based Organic Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2019, 8, R36-R41.	0.9	5

#	Article	IF	CITATIONS
756	Mapping Anisotropic and Heterogeneous Colloidal Interactions via Optical Laser Tweezers. Journal of Physical Chemistry Letters, 2019, 10, 1691-1697.	2.1	15
757	Production and Patterning of Liquid Phase–Exfoliated 2D Sheets for Applications in Optoelectronics. Advanced Functional Materials, 2019, 29, 1901126.	7.8	71
758	Shape and Color Switchable Block Copolymer Particles by Temperature and pH Dual Responses. ACS Nano, 2019, 13, 4230-4237.	7.3	76
759	Patterning and passivation effects of zinc-tin-oxide thin-film transistors using an electrohydrodynamic jet printer. Materials Research Bulletin, 2019, 114, 170-176.	2.7	7
760	Janus Graphene: Scalable Selfâ€Assembly and Solutionâ€Phase Orthogonal Functionalization. Advanced Materials, 2019, 31, e1900438.	11.1	42
761	Plasma jet based <i>in situ</i> reduction of copper oxide in direct write printing. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, .	0.6	14
762	Shape control of nanostructured cone-shaped particles by tuning the blend morphology of A- <i>b</i> -B diblock copolymers and C-type copolymers within emulsion droplets. Polymer Chemistry, 2019, 10, 2415-2423.	1.9	24
764	Ellipsoidal Artificial Melanin Particles as Building Blocks for Biomimetic Structural Coloration. Langmuir, 2019, 35, 5574-5580.	1.6	30
765	Stains from Freeze-Dried Drops. Langmuir, 2019, 35, 5541-5548.	1.6	6
766	Highly Aligned Molybdenum Trioxide Nanobelts for Flexible Thin-Film Transistors and Supercapacitors: Macroscopic Assembly and Anisotropic Electrical Properties. ACS Applied Nano Materials, 2019, 2, 1466-1471.	2.4	14
767	Rechargeable Aqueous Electrochromic Batteries Utilizing Tiâ€6ubstituted Tungsten Molybdenum Oxide Based Zn ²⁺ Ion Intercalation Cathodes. Advanced Materials, 2019, 31, e1807065.	11.1	192
768	Evaporation induced hollow cracks and the adhesion of silver nanoparticle film. Journal of Materials Science, 2019, 54, 7987-7996.	1.7	4
769	Evaporation induced self-assembly of different shapes and sizes of nanoparticles: A molecular dynamics study. Journal of Chemical Physics, 2019, 150, 044708.	1.2	25
770	Hydrophobic Slippery Surface-Based Surface-Enhanced Raman Spectroscopy Platform for Ultrasensitive Detection in Food Safety Applications. Analytical Chemistry, 2019, 91, 4687-4695.	3.2	80
771	Recent Developments on Colloidal Deposits Obtained by Evaporation of Sessile Droplets on a Solid Surface. Journal of the Indian Institute of Science, 2019, 99, 143-156.	0.9	16
772	Hydrogel Film Assembly Process at Droplet Interface with Evaporation Temperature. Advanced Materials Interfaces, 2019, 6, 1801885.	1.9	5
773	Evaporation of a Droplet: From physics to applications. Physics Reports, 2019, 804, 1-56.	10.3	255
774	INSTABILITY OF A MOVING CONTACT LINE FOR AN ULTRATHIN FILM OF EVAPORATING LIQUID IN THE PRESENCE OF SURFACTANT. Interfacial Phenomena and Heat Transfer, 2019, 7, 377-389.	0.3	0

#	Article	IF	CITATIONS
775	Molecularly Designed Interfacial Viscoelasticity by Dendronized Polymers: From Flexible Macromolecules to Colloidal Objects. ACS Nano, 2019, 13, 14217-14229.	7.3	8
776	A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy, 2019, 66, 104129.	8.2	17
777	Deposition of Colloidal Particles during the Evaporation of Sessile Drops: Dilute Colloidal Dispersions. International Journal of Chemical Engineering, 2019, 2019, 1-12.	1.4	6
778	Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. Nanoscale, 2019, 11, 23402-23415.	2.8	16
779	Inkjet Printing of Magnetic Particles Toward Anisotropic Magnetic Properties. Scientific Reports, 2019, 9, 16261.	1.6	15
780	Multicompartment Microparticles with Patchy Topography through Solvent-Adsorption Annealing. ACS Macro Letters, 2019, 8, 1654-1659.	2.3	37
781	The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews, 2019, 48, 5564-5595.	18.7	110
782	Drop evaporation of hydrocarbon fluids with deposit formation. International Journal of Heat and Mass Transfer, 2019, 128, 115-124.	2.5	11
783	Protein microarray spots are modulated by patterning method, surface chemistry and processing conditions. Biosensors and Bioelectronics, 2019, 130, 397-407.	5.3	13
784	Electrochemical oxygen reduction on layered mixed metal oxides: Effect of B-site substitution. Journal of Electroanalytical Chemistry, 2019, 833, 490-497.	1.9	17
785	Thermal Denaturation and Î ³ -Irradiation effects on the Crack Patterns of Bovine Serum Albumin (BSA) Dry Droplets. Colloids and Interface Science Communications, 2019, 28, 15-19.	2.0	2
786	Tunable Emissions of Upconversion Fluorescence for Security Applications. Advanced Optical Materials, 2019, 7, 1801171.	3.6	151
787	Formation of bifunctional conglomerates composed of magnetic γ-Fe2O3 nanoparticles and various noble metal nanostructures. Applied Surface Science, 2019, 470, 970-978.	3.1	13
788	Ordered porous films of single-walled carbon nanotubes using an ionic exchange reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 207-217.	2.3	9
789	Gelâ€&witchable Droplet Front for Largeâ€Scale Uniformity of Inkjet Printed Silver Patterns. Advanced Materials Technologies, 2019, 4, 1800243.	3.0	7
790	Pattern Formation in Drying Sessile and Pendant Droplet: Interactions of Gravity Settling, Interface Shrinkage, and Capillary Flow. Langmuir, 2019, 35, 113-119.	1.6	37
791	LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media. Transport in Porous Media, 2019, 128, 929-943.	1.2	17
792	Highly conductive and fine lines of silver nanowires fabricated by evaporative self-assembly. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 569-574.	2.7	5

#	Article	IF	CITATIONS
793	Advances in Inkâ€Jet Printing of MnO ₂ â€Nanosheet Based Pseudocapacitors. Small Methods, 2019, 3, 1800318.	4.6	23
794	To inhibit coffee ring effect in inkjet printing of light-emitting polymer films by decreasing capillary force. Chinese Chemical Letters, 2019, 30, 135-138.	4.8	42
795	A membrane separation technique for optimizing sample preparation of MALDI-TOF MS detection. Chinese Chemical Letters, 2019, 30, 95-98.	4.8	16
796	Advanced AAO Templating of Nanostructured Stimuliâ€Responsive Polymers: Hype or Hope?. Advanced Functional Materials, 2020, 30, 1902959.	7.8	29
797	Smart Materials by Nanoscale Magnetic Assembly. Advanced Functional Materials, 2020, 30, 1903467.	7.8	88
798	Creation of Nonspherical Microparticles through Osmosisâ€Driven Arrested Coalescence of Microfluidic Emulsions. Small, 2020, 16, e1903884.	5.2	18
799	Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects. Cancers, 2020, 12, 115.	1.7	103
800	Coupled effect of concentration, particle size and substrate morphology on the formation of coffee rings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124387.	2.3	17
801	The effect of impurity particles on the forced convection velocity in a drop. Powder Technology, 2020, 362, 341-349.	2.1	17
802	Self-assembled structures of halloysite nanotubes: towards the development of high-performance biomedical materials. Journal of Materials Chemistry B, 2020, 8, 838-851.	2.9	50
803	Polymerizable Ceramic Ink System for Thin Inkjet-Printed Dielectric Layers. ACS Applied Materials & Interfaces, 2020, 12, 2974-2982.	4.0	17
804	Polarimetry with Disordered Photonic Structures. ACS Photonics, 2020, 7, 203-211.	3.2	3
805	Droplet evaporation on a structured surface: The role of near wall vortexes in heat and mass transfer. International Journal of Heat and Mass Transfer, 2020, 148, 119126.	2.5	23
806	Evaporation of saline colloidal droplet and deposition pattern*. Chinese Physics B, 2020, 29, 014701.	0.7	4
807	Pinning boundary conditions for phase-field models. Communications in Nonlinear Science and Numerical Simulation, 2020, 82, 105060.	1.7	5
808	MOF-Based Photonic Crystal Film toward Separation of Organic Dyes. ACS Applied Materials & Interfaces, 2020, 12, 2816-2825.	4.0	38
809	Selective shape-change response by anisotropic endoskeletal droplets. Extreme Mechanics Letters, 2020, 35, 100618.	2.0	1
810	Understanding the coffee-ring effect of red blood cells for engineering paper-based blood analysis devices. Chemical Engineering Journal, 2020, 391, 123522.	6.6	15

#	Article	IF	CITATIONS
811	Fourier transform infrared applications to investigate induced biochemical changes in liver. Applied Spectroscopy Reviews, 2020, 55, 840-872.	3.4	6
812	Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Advances in Colloid and Interface Science, 2020, 275, 102049.	7.0	38
813	Adsorption of bacteriophage MS2 to colloids: Kinetics and particle interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124099.	2.3	21
814	Simple visualized readout of suppressed coffee ring patterns for rapid and isothermal genetic testing of antibacterial resistance. Biosensors and Bioelectronics, 2020, 168, 112566.	5.3	20
815	High-Q, directional and self-assembled random laser emission using spatially localized feedback via cracks. APL Photonics, 2020, 5, 106105.	3.0	6
816	SERS-Active Pattern in Silver-Ion-Exchanged Glass Drawn by Infrared Nanosecond Laser. Nanomaterials, 2020, 10, 1849.	1.9	7
817	Brush Printing Creates Polarized Green Fluorescence: 3D Orientation Mapping and Stochastic Analysis of Conductive Polymer Films. ACS Applied Materials & amp; Interfaces, 2020, 12, 46598-46608.	4.0	15
818	Drying behavior of magnetic nanofluid in ambient conditions. AIP Advances, 2020, 10, .	0.6	1
819	Characterization of Orodispersible Films: An Overview of Methods and Introduction to a New Disintegration Test Apparatus Using LDR - LED Sensors. Journal of Pharmaceutical Sciences, 2020, 109, 2925-2942.	1.6	19
820	Phase-field modeling and computer simulation of the coffee-ring effect. Theoretical and Computational Fluid Dynamics, 2020, 34, 679-692.	0.9	6
821	Fabrication of monodisperse asymmetric polystyrene particles by crosslinking regulation in seeded emulsion polymerization. Polymer, 2020, 203, 122799.	1.8	10
822	Functional Metal Oxide Ink Systems for Drop-on-Demand Printed Thin-Film Transistors. Langmuir, 2020, 36, 8655-8667.	1.6	14
823	Interpretation of interfacial interactions between lenticular particles. Journal of Colloid and Interface Science, 2020, 580, 592-600.	5.0	3
824	A mini-review: How reliable is the drop casting technique?. Electrochemistry Communications, 2020, 121, 106867.	2.3	151
825	Disk-Ring Deposition in Drying a Sessile Nanofluid Droplet with Enhanced Marangoni Effect and Particle Surface Adsorption. Langmuir, 2020, 36, 15064-15074.	1.6	15
826	Magnetic suppression of the coffee ring effect. Journal of Magnetism and Magnetic Materials, 2020, 513, 167199.	1.0	10
827	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	3.0	51
828	Highâ€Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffeeâ€Ringâ€Free Quantum Dot Film. Advanced Materials Technologies, 2020, 5, 2000401.	3.0	44

#	Article	IF	CITATIONS
829	Taming the Coffee Ring Effect: Enhanced Thermal Control as a Method for Thin-Film Nanopatterning. Langmuir, 2020, 36, 9562-9570.	1.6	28
830	Uniform, Anticorrosive, and Antiabrasive Coatings on Metallic Surfaces for Cation–Metal and Cationâ^ï€ Interactions. ACS Applied Materials & Interfaces, 2020, 12, 38638-38646.	4.0	13
831	Complex Pattern Formation in Solutions of Protein and Mixed Salts Using Dehydrating Sessile Droplets. Langmuir, 2020, 36, 9728-9737.	1.6	22
832	Exploration of Direct-Ink-Write 3D Printing in Space: Droplet Dynamics and Patterns Formation in Microgravity. Microgravity Science and Technology, 2020, 32, 935-940.	0.7	17
833	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba5029.	4.7	89
834	Geometrical Deposits on Microstructured Surfaces. Journal of Bionic Engineering, 2020, 17, 851-865.	2.7	10
835	Nanoparticle―and Nanotubeâ€Modified Electrodes: Response of Dropâ€Cast Surfaces. ChemElectroChem, 2020, 7, 4614-4624.	1.7	6
836	Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces. Langmuir, 2020, 36, 13396-13407.	1.6	24
837	Single Droplet Assembly for Two-Dimensional Nanosheet Tiling. ACS Nano, 2020, 14, 15216-15226.	7.3	29
838	Deposit patterns of silver nanowire solution with the solvent consisting of ethylene glycol and glycerol: Formation of triple conductive lines. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 266-271.	2.7	4
839	Capillary interactions between soft capsules protruding through thin fluid films. Soft Matter, 2020, 16, 10910-10920.	1.2	5
840	Ion Transport of Biohybrid Asymmetric Membranes by pH and Lightâ€Cooperative Modulation. Advanced Materials Interfaces, 2020, 7, 2001134.	1.9	2
841	Oligo(3-methoxythiophene)s as Water-Soluble Dyes for Highly Lustrous Gold- and Bronze-like Metal-Effect Coatings and Printings. ACS Omega, 2020, 5, 24379-24388.	1.6	9
842	Increasing aspect ratio of particles suppresses buckling in shells formed by drying suspensions. Soft Matter, 2020, 16, 9643-9647.	1.2	7
843	Making Advanced Electrogravimetry as an Affordable Analytical Tool for Battery Interface Characterization. Analytical Chemistry, 2020, 92, 13803-13812.	3.2	17
844	Differences between Colloidal and Crystalline Evaporative Deposits. Langmuir, 2020, 36, 11732-11741.	1.6	15
845	High-Performance Electron Transport Layer via Ultrasonic Spray Deposition for Commercialized Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 11570-11580.	2.5	14
846	Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Analytical Chemistry, 2020, 92, 12934-12942.	3.2	48

#	Article	IF	CITATIONS
847	Phenomenological mechanisms of hybrid organic–inorganic perovskite thin film deposition by RIR-MAPLE. Journal of Applied Physics, 2020, 128, 105303.	1.1	3
848	Dynamics of bacterial deposition in evaporating drops. Physics of Fluids, 2020, 32, .	1.6	17
849	Effect of substrate elasticity on evaporation kinetics and evaporative deposition of aqueous polystyrene nanoparticles droplets. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	5
850	Effect of Immiscible Secondary Fluid on Particle Dynamics and Coffee Ring Characteristics during Suspension Drying. Materials, 2020, 13, 3438.	1.3	4
851	Toward Controlling Evaporative Deposition: Effects of Substrate, Solvent, and Solute. Journal of Physical Chemistry B, 2020, 124, 11530-11539.	1.2	7
852	Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. Membranes, 2020, 10, 297.	1.4	17
853	Mimicking the Martian Hydrological Cycle: A Set-Up to Introduce Liquid Water in Vacuum. Sensors, 2020, 20, 6150.	2.1	4
854	A convenient protocol for the evaluation of commercial Pt/C electrocatalysts toward oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 870, 114172.	1.9	16
855	Design and tailoring of inks for inkjet patterning of metal oxides. Royal Society Open Science, 2020, 7, 200242.	1.1	9
856	Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform. AICHE Journal, 2020, 66, e16280.	1.8	6
857	Hydrophobicity of abiotic surfaces governs droplets deposition and evaporation patterns. Food Microbiology, 2020, 91, 103538.	2.1	5
858	Electric-potential-induced uniformity in graphene oxide deposition on porous alumina substrates. Ceramics International, 2020, 46, 14828-14839.	2.3	14
859	Printing and <i>In Situ</i> Assembly of CdSe/CdS Nanoplatelets as Uniform Films with Unity In-Plane Transition Dipole Moment. Journal of Physical Chemistry Letters, 2020, 11, 4524-4529.	2.1	15
860	Suppressing the Ring Stain Effect with Superhydrophilic/Superhydrophobic Patterned Surfaces. ACS Omega, 2020, 5, 11235-11240.	1.6	9
861	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14667-14675.	3.3	48
862	Marangoni flows drive the alignment of fibrillar cell-laden hydrogels. Science Advances, 2020, 6, eaaz7748.	4.7	44
863	Field driven evaporation kinetics of a sessile ferrofluid droplet on a soft substrate. Soft Matter, 2020, 16, 6619-6632.	1.2	32
864	Self-assembled vertically aligned silver nanorod arrays prepared by evaporation-induced method as high-performance SERS substrates. Journal of Materials Science, 2020, 55, 14019-14030.	1.7	11

#	Article	IF	CITATIONS
865	Immobilization of Cubic Silver Plasmonic Nanoparticles on TiO ₂ Nanotubes, Reducing the Coffee Ring Effect in Surface-Enhanced Raman Spectroscopy Applications. ACS Omega, 2020, 5, 13963-13972.	1.6	14
866	Interfacial Configurations of Lens-Shaped Particles. Macromolecular Research, 2020, 28, 953-959.	1.0	1
867	Absorption induced ordered ring and inner network structures on a nanoporous substrate. RSC Advances, 2020, 10, 22595-22599.	1.7	3
868	Vapor‣ensitive Materials from Polysaccharide Fibers with Selfâ€Assembling Twisted Microstructures. Small, 2020, 16, e2001993.	5.2	11
869	Sampling and Mass Detection of a Countable Number of Microparticles Using on-Cantilever Imprinting. Sensors, 2020, 20, 2508.	2.1	4
870	Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity. Physical Review E, 2020, 101, 033304.	0.8	9
871	Formation of Regular Wormlike Patterns by Dewetting Aqueous Dispersions of Halloysite Nanotubes. Journal of Physical Chemistry C, 2020, 124, 8034-8040.	1.5	3
872	Multiscale Self-Assembly of Distinctive Weblike Structures from Evaporated Drops of Dilute American Whiskeys. ACS Nano, 2020, 14, 5417-5425.	7.3	22
873	Patterning of colloids into spirals via confined drying. Soft Matter, 2020, 16, 3753-3761.	1.2	9
874	Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method. Optics Express, 2020, 28, 6648.	1.7	21
875	Regulation of autophagy by inhibitory CSPG interactions with receptor PTP I_f and its impact on plasticity and regeneration after spinal cord injury. Experimental Neurology, 2020, 328, 113276.	2.0	32
876	Facile Fabrication of Biomimetic Water Pinning Microstructures on Polyethylene Surfaces with Robust Superhydrophobic Wetting State. Journal of Bionic Engineering, 2020, 17, 644-651.	2.7	4
877	Air bubble-triggered suppression of the coffee-ring effect. Colloids and Interface Science Communications, 2020, 37, 100284.	2.0	7
878	A fully coupled numerical model for deposit formation from evaporating urea-water drops. International Journal of Heat and Mass Transfer, 2020, 159, 120069.	2.5	8
879	Formation of Deposition Patterns Induced by the Evaporation of the Restricted Liquid. Langmuir, 2020, 36, 8520-8526.	1.6	14
880	Monolayer Assembly of MultiSpiked Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy-Based Trace Detection of Dyes and Explosives. ACS Applied Nano Materials, 2020, 3, 6766-6773.	2.4	20
881	Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16756-16763.	3.3	57
882	Evaporation and particle deposition of bi-component colloidal droplets on a superhydrophobic surface. International Journal of Heat and Mass Transfer, 2020, 159, 120063.	2.5	18

#	Article	IF	CITATIONS
883	A SERS stamp: Multiscale coupling effect of silver nanoparticles and highly ordered nano-micro hierarchical substrates for ultrasensitive explosive detection. Sensors and Actuators B: Chemical, 2020, 321, 128543.	4.0	31
884	The Influence of Surfactants, Dynamic and Thermal Factors on Liquid Convection after a Droplet Fall on Another Drop. Applied Sciences (Switzerland), 2020, 10, 4414.	1.3	4
885	Evaporation of Inclined Drops: Formation of Asymmetric Ring Patterns. Langmuir, 2020, 36, 8137-8143.	1.6	15
886	Silica based biocompatible random lasers implantable in the skin. Optics Communications, 2020, 475, 126207.	1.0	12
887	Migration Crystallization Device Based on Biomass Photothermal Materials for Efficient Salt-Rejection Solar Steam Generation. ACS Applied Energy Materials, 2020, 3, 3024-3032.	2.5	81
888	Macroscopic two-dimensional monolayer films of gold nanoparticles: fabrication strategies, surface engineering and functional applications. Nanoscale, 2020, 12, 7433-7460.	2.8	47
889	Dynamic self-assembly of silver nanoclusters into luminescent nanotubes with controlled surface roughness: Scaffold of superhydrophobic materials. Applied Surface Science, 2020, 514, 145913.	3.1	8
890	Controlling the Coffee Ring Effect on Graphene and Polymer by Cations*. Chinese Physics Letters, 2020, 37, 028103.	1.3	13
891	Oscillation dynamics of colloidal particles caused by surfactant in an evaporating droplet. Journal of Mechanical Science and Technology, 2020, 34, 801-808.	0.7	5
892	Interpretation of Electrostatic Self-Potential Measurements Using Interface-Trapped Microspheres with Surface Heterogeneity. ACS Applied Polymer Materials, 2020, 2, 1304-1311.	2.0	6
893	Extreme Antiscaling Performance of Slippery Omniphobic Covalently Attached Liquids. ACS Applied Materials & Interfaces, 2020, 12, 12054-12067.	4.0	52
894	Tuning Contact Line Dynamics and Deposition Patterns in Volatile Liquid Mixtures. Physical Review Letters, 2020, 124, 064502.	2.9	26
895	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	23.0	152
896	Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 7477-7485.	4.0	60
897	Templated growth of oriented layered hybrid perovskites on 3D-like perovskites. Nature Communications, 2020, 11, 582.	5.8	167
898	Speciation of thioarsenicals through application of coffee ring effect on gold nanofilm and surface-enhanced Raman spectroscopy. Analytica Chimica Acta, 2020, 1106, 88-95.	2.6	13
899	Evaporative Drying of Sodium Chloride Solution Droplet on a Thermally Controlled Substrate. Journal of Physical Chemistry B, 2020, 124, 1266-1274.	1.2	20
900	Liquid-liquid coffee-ring effect. Journal of Colloid and Interface Science, 2020, 573, 370-375.	5.0	14

#	Article	IF	Citations
901	Macro-aligned carbon Nanotube–Polymer matrix by dielectrophoresis and transferring process. Journal of Materials Research and Technology, 2020, 9, 4550-4557.	2.6	8
902	Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Research, 2020, 13, 1519-1526.	5.8	60
903	Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios. International Journal of Heat and Mass Transfer, 2020, 153, 119618.	2.5	31
904	Detachment work of prolate spheroidal particles from fluid droplets: role of viscous dissipation. Soft Matter, 2020, 16, 4049-4056.	1.2	1
905	Springtailâ€Inspired Superamphiphobic Ordered Nanohoodoo Arrays with Quasiâ€Doubly Reentrant Structures. Small, 2020, 16, e2000779.	5.2	41
906	Marangoni circulation in evaporating droplets in the presence of soluble surfactants. Journal of Colloid and Interface Science, 2021, 584, 622-633.	5.0	32
907	Marangoni flow alters wetting: Coffee ring and superspreading. Current Opinion in Colloid and Interface Science, 2021, 51, 101387.	3.4	15
908	Electrostatic interactions of poly (methyl methacrylate) colloids: deposition patterns of evaporating non-aqueous colloidal droplets. Colloid and Polymer Science, 2021, 299, 49-61.	1.0	0
909	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie, 2021, 133, 690-694.	1.6	3
910	Hierarchically ordered microcrater array with plasmonic nanoparticle clusters for highly sensitive surface-enhanced Raman scattering. Optics and Laser Technology, 2021, 135, 106719.	2.2	13
911	Suppression of coffee ring effect in high molecular weight polyacrylamide droplets evaporating on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126002.	2.3	9
912	Rapid visualized hydrophobic-force-driving self-assembly towards brilliant photonic crystals. Chemical Engineering Journal, 2021, 420, 127582.	6.6	9
913	Enabling bottom-up nanoelectronics fabrication by selective sol–gel dielectric-on-dielectric deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114808.	1.7	1
914	Forming the Convective Flows and a Cluster of Particles under Spot Heating. Nanoscale and Microscale Thermophysical Engineering, 2021, 25, 46-63.	1.4	4
915	Infrared Spectroscopy of Blood. Applied Spectroscopy, 2021, 75, 611-646.	1.2	32
916	Self-organization of TiO2 microparticles on the surface of a thin liquid layer due to local heating and the formation of convective cells. Journal of Molecular Liquids, 2021, 324, 114685.	2.3	6
917	Emergence and breakup of a cluster of ordered microparticles during the interaction of thermocapillary and thermogravitational convection. Powder Technology, 2021, 379, 165-173.	2.1	6
918	Hydrophobic polymer-incorporated hybrid 1D photonic crystals with brilliant structural colors via aqueous-based layer-by-layer dip-coating. Dyes and Pigments, 2021, 186, 108961.	2.0	5

#	Article	IF	CITATIONS
919	Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chinese Chemical Letters, 2021, 32, 1497-1501.	4.8	22
920	Direct Writing Largeâ€Area Multi‣ayer Ultrasmooth Films by an Allâ€Solution Process: Toward Highâ€Performance QLEDs. Angewandte Chemie - International Edition, 2021, 60, 680-684.	7.2	13
921	Scalable fluid-spinning nanowire-based inorganic semiconductor yarns for electrochromic actuators. Materials Horizons, 2021, 8, 1711-1721.	6.4	14
922	Responsive Nanostructured Polymer Particles. Polymers, 2021, 13, 273.	2.0	7
923	Continuous and Patterned Conducting Polymer Coatings on Diverse Substrates: Rapid Fabrication by Oxidant-Intermediated Surface Polymerization and Application in Flexible Devices. ACS Applied Materials & Interfaces, 2021, 13, 5583-5591.	4.0	10
924	Controlling uniform patterns by evaporation of multi-component liquid droplets in a confined geometry. Soft Matter, 2021, 17, 3578-3585.	1.2	17
925	Fourier Transform Infrared Spectroscopy in Oral Cancer Diagnosis. International Journal of Molecular Sciences, 2021, 22, 1206.	1.8	43
927	Quantitative detection of dithiocarbamate pesticides by surface-enhanced Raman spectroscopy combined with an exhaustive peak-seeking method. Analytical Methods, 2021, 13, 1479-1488.	1.3	8
928	Influence of membrane character on suppression of coffee-ring effect. Materials Today: Proceedings, 2021, 46, 1870-1874.	0.9	6
929	How to Control Powder Alignment to Maximize Functionality and Performance of Color Cosmetics and Sunscreen. Journal of Oleo Science, 2021, 70, 1081-1091.	0.6	1
930	Deposition pattern of drying droplets. Communications in Theoretical Physics, 2021, 73, 047601.	1.1	22
931	Development of Water-Based Paints with Gold and Bronze Tones Using High Molecular Weight Thiophene Oligomers. Journal of the Japan Society of Colour Material, 2021, 94, 40-46.	0.0	0
932	Effect of Particle Concentration on Surfactant-Induced Alteration of the Contact Line Deposition in Evaporating Sessile Droplets. Langmuir, 2021, 37, 2658-2666.	1.6	17
933	Molecular Weight Dependent Morphological Transitions of Bottlebrush Block Copolymer Particles: Experiments and Simulations. ACS Nano, 2021, 15, 5513-5522.	7.3	24
934	Recent Progress on Patterning Strategies for Perovskite Lightâ€Emitting Diodes toward a Fullâ€Color Display Prototype. Small Science, 2021, 1, 2000050.	5.8	39
935	Combinatorial Screening of Cuprate Superconductors by Drop-On-Demand Inkjet Printing. ACS Applied Materials & Amp; Interfaces, 2021, 13, 9101-9112.	4.0	13
936	Factors influencing the nucleation and crystal growth of solution-processed organic lead halide perovskites: a review. Journal Physics D: Applied Physics, 2021, 54, 163001.	1.3	35
937	Investigation of the in situ thermal conductivity and absorption behavior of nanocomposite powder materials in laser powder bed fusion processes. Materials and Design, 2021, 201, 109530.	3.3	8

#	Article	IF	Citations
938	A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Drying Technology, 2021, 39, 1447-1491.	1.7	20
939	Thickness/morphology of functional material patterned by topographical discontinuous dewetting. Nano Select, 2021, 2, 1723-1740.	1.9	4
940	Wetting transition and phase separation on flat substrates and in porous structures. Journal of Chemical Physics, 2021, 154, 094704.	1.2	13
941	Drying process of an ink-dot analyzed using both digital holographic microscopy and tackiness measurement. Microelectronic Engineering, 2021, 241, 111543.	1.1	4
942	Silver-coated silicon nanowire platform discriminates genomic DNA from normal and malignant human epithelial cells using label-free Raman spectroscopy. Materials Science and Engineering C, 2021, 122, 111951.	3.8	10
943	Stability of the structure and redox state of ferricytochrome c in the desolvation process. Vibrational Spectroscopy, 2021, 113, 103220.	1.2	Ο
944	Suppression of the coffee-ring effect by tailoring the viscosity of pharmaceutical sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614, 126144.	2.3	17
945	Fabrication of crescent-shaped ceramic microparticles based on single emulsion microfluidics. Ceramics International, 2021, 47, 10866-10872.	2.3	7
946	Freezing of a nanofluid droplet: From a pointy tip to flat plateau. Applied Physics Letters, 2021, 118, .	1.5	14
947	Scalable Singleâ€Crystalline Organic 1D Arrays for Image Sensor. Small, 2021, 17, e2100332.	5.2	16
948	Mesoporous Coatings with Simultaneous Lightâ€Triggered Transition of Water Imbibition and Droplet Coalescence. Advanced Materials Interfaces, 2021, 8, 2100252.	1.9	4
949	Numerical Simulation of Evaporation of Ethanol–Water Mixture Droplets on Isothermal and Heated Substrates. ACS Omega, 2021, 6, 12577-12590.	1.6	20
950	Unveiling specific nanoparticle-protein interactions via evaporated drops: From molecular recognition to allergen identification. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111634.	2.5	3
951	Tunable thickness and uniform drop deposition of graphene oxide on porous anodic aluminum oxide and a reliable thickness measurement technique. Surface Topography: Metrology and Properties, 2021, 9, 025026.	0.9	4
952	Interfacial self-assembly of polysaccharide rods and platelets bridging over capillary lengths. Journal of Colloid and Interface Science, 2021, 591, 483-489.	5.0	3
953	Tunable self-trapped excitons in 2D layered rubrene. Applied Physics Letters, 2021, 118, .	1.5	7
954	Light-Fueled Beating Coffee-Ring Deposition for Droplet Evaporative Crystallization. Analytical Chemistry, 2021, 93, 8817-8825.	3.2	11
955	Inkjet Printing of a Benzocyclobutene-Based Polymer as a Low-k Material for Electronic Applications. ACS Omega, 2021, 6, 15892-15902.	1.6	5

#	Article	IF	CITATIONS
956	Fabrication of flexible, cost-effective, and scalable silver substrates for efficient surface enhanced Raman spectroscopy based trace detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126542.	2.3	17
957	High-resolution neutron imaging reveals kinetics of water vapor uptake into a sessile water droplet. Matter, 2021, 4, 2083-2096.	5.0	10
958	Predicting coffee ring formation upon drying in droplets of particle suspensions. Journal of Colloid and Interface Science, 2021, 591, 52-57.	5.0	15
959	Structure-adjustable colloidal silver nanoparticles on polymers grafted cellulose paper-based highly sensitive and selective SERS sensing platform with analyte enrichment function. Journal of Alloys and Compounds, 2021, 867, 159158.	2.8	25
960	Contact-line deposits from multiple evaporating droplets. Physical Review Fluids, 2021, 6, .	1.0	17
961	Preparation of magnetic metal organic framework: A magnetically induced improvement effect for detection of parathion-methyl. Sensors and Actuators B: Chemical, 2021, 339, 129909.	4.0	16
962	Evaporation of Binary-Mixture Liquid Droplets: The Formation of Picoliter Pancakelike Shapes. Physical Review Letters, 2021, 127, 024501.	2.9	27
963	Mechanomaterials: A Rational Deployment of Forces and Geometries in Programming Functional Materials. Advanced Materials, 2021, 33, e2007977.	11.1	34
964	Review article: Microscale evaporative cooling technologies for high heat flux microelectronics devices: Background and recent advances. Applied Thermal Engineering, 2021, 194, 117109.	3.0	42
965	Direct Observation of Liquid-to-Solid Phase Transformations during the Electrochemical Deposition of Poly(3,4-ethylenedioxythiophene) (PEDOT) by Liquid-Phase Transmission Electron Microscopy (LPTEM). Macromolecules, 2021, 54, 6956-6967.	2.2	14
966	High photoresponse of gold nanorods/zinc oxide photodetector using localised surface plasmon resonance. Sensors and Actuators A: Physical, 2021, 326, 112714.	2.0	2
967	TiO ₂ Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Applied Materials & Interfaces, 2021, 13, 37734-37745.	4.0	50
968	High Performance of Superconducting YBa ₂ Cu ₃ O ₇ Thick Films Prepared by Single-Deposition Inkjet Printing. ACS Applied Electronic Materials, 2021, 3, 3948-3961.	2.0	8
969	Fully Printed High-Performance n-Type Metal Oxide Thin-Film Transistors Utilizing Coffee-Ring Effect. Nano-Micro Letters, 2021, 13, 164.	14.4	30
970	Evaporation-Induced Diffusion Acceleration in Liquid-Filled Porous Materials. ACS Omega, 2021, 6, 21646-21654.	1.6	8
971	An opinion on the multiscale nature of Covid-19 type disease spread. Current Opinion in Colloid and Interface Science, 2021, 54, 101462.	3.4	7
972	Non-Iridescent Structural Color Control <i>via</i> Inkjet Printing of Self-Assembled Synthetic Melanin Nanoparticles. Chemistry of Materials, 2021, 33, 6433-6442.	3.2	15
973	Piezoelectric Dropâ€Onâ€Demand Inkjet Printing of Highâ€Viscosity Inks. Advanced Engineering Materials, 2022, 24, 2100733.	1.6	22

#	Article	IF	CITATIONS
974	Emergence of Ringâ€Shaped Microstructures in Restricted Geometries Containing Selfâ€Propelled, Catalytic Janus Spheres. ChemNanoMat, 2021, 7, 1125.	1.5	0
975	Microstructured Surfaces for Reducing Chances of Fomite Transmission via Virus-Containing Respiratory Droplets. ACS Nano, 2021, 15, 14049-14060.	7.3	8
977	Vibrational spectroscopy and multivariate analysis techniques in the clinical immunology laboratory: a review of current applications and requirements for diagnostic use. Applied Spectroscopy Reviews, 2022, 57, 411-440.	3.4	5
978	Photoswitchable Surfactant-Driven Reversible Shape- and Color-Changing Block Copolymer Particles. Journal of the American Chemical Society, 2021, 143, 13333-13341.	6.6	55
979	Direct writing of colloidal suspensions onto inclined surfaces: Optimizing dispense volume for homogeneous structures. Journal of Colloid and Interface Science, 2021, 597, 137-148.	5.0	10
980	Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices. Journal of Science: Advanced Materials and Devices, 2022, 7, 100394.	1.5	15
981	Major Factors Influencing the Size Distribution Analysis of Cellulose Nanocrystals Imaged in Transmission Electron Microscopy. Polymers, 2021, 13, 3318.	2.0	4
982	Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chemical Reviews, 2021, 121, 13342-13453.	23.0	237
983	Understanding multiscale assembly mechanism in evaporative droplet of gold nanorods. Colloids and Interface Science Communications, 2021, 44, 100492.	2.0	12
984	Implications of the Coffee-Ring Effect on Virus Infectivity. Langmuir, 2021, 37, 11260-11268.	1.6	18
985	Inâ€depth investigation of incremental layer buildâ€up from dried deposited droplets. AICHE Journal, 2022, 68, e17445.	1.8	2
986	Programmable nanoparticle patterning by droplet electrophoretic deposition. Journal of Materials Research and Technology, 2021, 14, 3150-3160.	2.6	3
987	Vacuum-Free Fabrication of Transparent Electrodes for Soft Electronics. , 0, , .		0
988	Precipitation dynamics of surrogate respiratory sessile droplets leading to possible fomites. Journal of Colloid and Interface Science, 2021, 600, 1-13.	5.0	24
989	Influence of Surface Structure on Performance of Inkjet Printed Cathode Catalyst Layers for Polymer Electrolyte Fuel Cells. Journal of Electrochemical Energy Conversion and Storage, 0, , 1-26.	1.1	4
990	An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles. International Journal of Heat and Mass Transfer, 2021, 181, 121905.	2.5	10
991	SERS liquid biopsy: An emerging tool for medical diagnosis. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112064.	2.5	41
002	A visual cardiovascular biomarker detection strategy based on distance as readout by the coffee-ring	1.8	6

#	Article	IF	CITATIONS
993	Controllable dried patterns of colloidal drops. Journal of Colloid and Interface Science, 2022, 606, 758-767.	5.0	6
994	Facile synthesis, high fluorescence and flame retardancy of carbon dots. Journal of Materials Science and Technology, 2022, 104, 163-171.	5.6	18
995	Patterning in colloidal droplets by forced airflow. Journal of Applied Physics, 2021, 129, .	1.1	3
996	The different composites of cellulose nanocrystals with <scp>d</scp> - or <scp>l</scp> -histidine. Nanoscale, 2021, 13, 8174-8180.	2.8	12
997	Controllable patterning of nanoparticles <i>via</i> solution transfer processes. Materials Chemistry Frontiers, 2021, 5, 5247-5256.	3.2	11
998	Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. Journal of Materials Chemistry A, 2021, 9, 16233-16254.	5.2	107
999	Salt-Rejecting Solar Interfacial Evaporation. Cell Reports Physical Science, 2021, 2, 100310.	2.8	76
1000	Tunable coffee-ring formation of halloysite nanotubes by evaporating sessile drops. Soft Matter, 2021, 17, 9514-9527.	1.2	6
1001	Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles. Advanced Materials, 2017, 29, 1700608.	11.1	71
1002	Directing Convection to Pattern Thin Polymer Films: Coffee Rings. , 2015, , 43-71.		1
1003	Flexible and Printed Electronics. , 2017, , 813-854.		2
1004	System Development. Springer Theses, 2019, , 13-40.	0.0	1
1005	Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redistribution process towards the non-enzymatic glucose sensors. Sensors and Actuators B: Chemical, 2020, 319, 128279.	4.0	29
1006	Self-Organization of Convective Flows and a Cluster of TiO ₂ Particles in a Water Film under Local Heating: Interaction of Structures at Micro- and Macrolevels. Journal of Physical Chemistry C, 2020, 124, 25054-25061.	1.5	6
1007	Fluid-Assisted Sorted Assembly of Graphene on Polymer. Langmuir, 2020, 36, 5608-5617.	1.6	3
1008	Observation of Unusual Thermoresponsive Volume Phase Transition Behavior of Cubic Poly(<i>N</i> -isopropylacrylamide) Microgels. ACS Macro Letters, 2020, 9, 266-271.	2.3	9
1009	Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets. , 0, .		1
1010	Mechanism and control of "coffee-ring erosion―phenomena in structurally colored ionomer films. Soft Matter, 2020, 16, 2683-2694.	1.2	6

#	Article	IF	CITATIONS
1011	TiO ₂ –SiO ₂ nanocomposite thin films deposited by direct liquid injection of colloidal solution in an O ₂ /HMDSO low-pressure plasma. Journal Physics D: Applied Physics, 2021, 54, 085206.	1.3	12
1012	Particle size and substrate wettability dependent patterns in dried pendant drops. Journal of Physics Condensed Matter, 2021, 33, 024003.	0.7	6
1013	NV center pumped and enhanced by nanowire ring resonator laser to integrate a 10 μm-scale spin-based sensor structure. Nanotechnology, 2021, 32, 055502.	1.3	5
1014	Interfacial viscoelasticity and jamming of colloidal particles at fluid–fluid interfaces: a review. Reports on Progress in Physics, 2020, 83, 126601.	8.1	31
1015	Review of digital printing technologies for electronic materials. Flexible and Printed Electronics, 0, , .	1.5	46
1016	Joint effect of advection, diffusion, and capillary attraction on the spatial structure of particle depositions from evaporating droplets. Physical Review E, 2019, 100, 033304.	0.8	12
1017	Nanoparticle motion on the surface of drying droplets. Physical Review Fluids, 2018, 3, .	1.0	17
1018	Morphogenesis of polycrystalline dendritic patterns from evaporation of a reactive nanofluid sessile drop. Physical Review Materials, 2018, 2, .	0.9	7
1019	Droplet Evaporation of Cu–Al2O3 Hybrid Nanofluid Over Its Residue and Copper Surfaces: Toward Developing a New Analytical Model. Journal of Heat Transfer, 2021, 143, .	1.2	3
1020	Middle Stone Age Ochre Processing and Behavioural Complexity in the Horn of Africa: Evidence from Porc-Epic Cave, Dire Dawa, Ethiopia. PLoS ONE, 2016, 11, e0164793.	1.1	40
1021	Preparation of Nonspherical Monodisperse Polydimethylsiloxane Microparticles for Self-assembly Fabrication of Periodic Structures. IEEJ Transactions on Sensors and Micromachines, 2019, 139, 132-136.	0.0	1
1022	Printing High-resolution Micro-patterns by Solution Processes. Chemical Research in Chinese Universities, 2021, 37, 1008-1018.	1.3	4
1023	From coffee stains to uniform deposits: Significance of the contact-line mobility. Journal of Colloid and Interface Science, 2022, 608, 1718-1727.	5.0	7
1024	Characterisation and Classification of Foodborne Bacteria Using Reflectance FTIR Microscopic Imaging. Molecules, 2021, 26, 6318.	1.7	5
1025	Colloidal Deposits via Capillary Bridge Evaporation and Particle Sorting Thereof. Langmuir, 2021, 37, 12071-12088.	1.6	12
1026	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal–Organic Framework-Based Composite Films. Journal of the American Chemical Society, 2021, 143, 17526-17534.	6.6	17
1027	Manipulating Nano-suspension Droplet Evaporation by Particle Surface Modification. Langmuir, 2021, 37, 12234-12241.	1.6	3
1028	Inkjet Printing Technology Still in Progress. Journal of the Korean Ceramic Society, 2011, 48, 543-548.	1.1	3

#	Article	IF	CITATIONS
1029	Coffee Stains Test Universal Equation. Physics Magazine, 0, 6, .	0.1	0
1030	Ring deposition of drying suspension droplets. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 196102.	0.2	6
1031	Influence of Droplet Diameter on the Surface Morphology of Poly(3-hexylthiophene) Film. , 2013, , .		0
1032	Investigation of Colloidal Stripe Formation Mechanism by In-situ Analysis of Meniscus Shape in Convective Self-assembly Process. Journal of the Society of Powder Technology, Japan, 2013, 50, 332-341.	0.0	1
1033	Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines. Journal of the Korean Society of Visualization, 2016, 14, 31-39.	0.1	1
1034	Development of an in-situ Sensing Technique of a Porous Electrode Formation Process. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2017, 25, 71-74.	0.0	0
1035	Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 066101.	0.2	2
1036	Drying of droplets of aqueous suspensions of multiwalled carbon nanotubes in the presence of cationic surfactant CTAB. Himia, Fizika Ta Tehnologia Poverhni, 2017, 8, 333-345.	0.2	0
1038	Detection method for ring-shape agglomerations formed by drying nanoparticle-dispersed droplet. Journal of Surface Analysis (Online), 2019, 26, 210-211.	0.1	0
1039	Droplet Manipulation and Colloidal Particle Self-assembling in Space. Research for Development, 2019, , 129-149.	0.2	0
1040	Particle monolayer assembly in evaporating salty colloidal droplets. Physical Review Fluids, 2020, 5, .	1.0	8
1041	Large-Area Fabrication of Structurally Colored and Humidity Sensitive Composite Nanofilm via Ultrasonic Spray-Coating. Polymers, 2021, 13, 3768.	2.0	5
1042	Image cytometry of irregular microplastic particles in a cross-slot microchannel utilizing viscoelastic focusing. Korean Journal of Chemical Engineering, 2020, 37, 2136-2142.	1.2	0
1043	Star-shaped patterns caused by colloidal aggregation during the spreading process of a droplet. Europhysics Letters, 2020, 132, 18002.	0.7	0
1044	Raman imaging and MALDI-MS towards identification of microplastics generated when using stationery markers. Journal of Hazardous Materials, 2022, 424, 127478.	6.5	12
1045	Plasmonic Structures Based on Hydroxyapatite/Silver Nanocomposite for Surface-Enhanced Raman Spectroscopy. Journal of Applied Spectroscopy, 2021, 88, 980.	0.3	1
1046	Structure of deposits formed by drying of droplets contaminated with Bacillus spores determines their resistance to rinsing and cleaning. Journal of Food Engineering, 2022, 318, 110873.	2.7	4
1047	Rapid Detection of Dimethoate in Soybean Samples by Microfluidic Paper Chips Based on Oil-Soluble CdSe Quantum Dots, Foods, 2021, 10, 2810.	1.9	2

#	Article	IF	CITATIONS
1048	Organic Photovoltaics Printed via Sheet Electrospray Enabled by Quadrupole Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 56375-56384.	4.0	9
1049	Crystalline Intermarriage of Hybrid Organic–Inorganic Halide Perovskite and Epoxide: Enhanced Stability and Modified Optical Properties. ACS Applied Energy Materials, 2021, 4, 13550-13555.	2.5	4
1051	Patterned macro-/microstructures based on colloidal droplets evaporation. , 2021, , .		0
1052	New <i>in vitro</i> SPF Evaluation Method for Hydrophilic Sunscreen Samples. Journal of Oleo Science, 2022, 71, 321-331.	0.6	1
1053	Seedless, size and shape controlled synthesis of gold mesoscopic particles and their excellent SERS applications. Materials Chemistry and Physics, 2022, 278, 125589.	2.0	3
1054	Cationic surfactant-directed structural control of NaCl crystals from evaporating sessile droplets. Soft Matter, 2021, 18, 62-79.	1.2	12
1055	Longâ€Rangeâ€Ordered Assembly of Micro″Nanostructures at Superwetting Interfaces. Advanced Materials, 2022, 34, e2106857.	11.1	21
1056	Facile fabrication of flexible metal grid transparent electrode using inkjet-printed dot array as sacrificial layer. Scientific Reports, 2022, 12, 1572.	1.6	4
1057	Engineered Latex Particles Using Core–Shell Emulsion Polymerization: From a Strawberry-like Surface Pattern to a Shape-Memory Film. ACS Applied Polymer Materials, 2022, 4, 1276-1285.	2.0	5
1059	Fabrication of sharp-edged 3D microparticles <i>via</i> folded PDMS microfluidic channels. Lab on A Chip, 2021, 22, 148-155.	3.1	10
1060	Two-Dimensional Self-Assembly of Au@Ag Core–Shell Nanocubes with Different Permutations for Ultrasensitive SERS Measurements. ACS Omega, 2022, 7, 3312-3323.	1.6	14
1061	Supercritical CO2-assisted atomization for deposition of cellulose nanocrystals: an experimental and computational study. Cellulose, 2022, 29, 1-22.	2.4	0
1062	Microbowls with Controlled Concavity for Accurate Microscale Mass Spectrometry. Advanced Materials, 2022, 34, e2108194.	11.1	3
1063	Molecular origin of fast evaporation at the solid–water–vapor line in a sessile droplet. Nanoscale, 2022, 14, 2729-2734.	2.8	7
1064	Evaporation-induced convective transport in confined saline droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128256.	2.3	2
1065	Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water. Journal of Colloid and Interface Science, 2022, 613, 709-719.	5.0	6
1066	Patterning of Metallic Nanoparticles over Solid Surfaces from Sessile Droplets by Thermoplasmonically Controlled Liquid Flow. Langmuir, 2022, , .	1.6	5
1067	STATIONARY AND ULTRASONIC NANOPARTICLE ASSEMBLY ON NOTABLE SURFACES. Surface Review and Letters, 2022, 29, .	0.5	1

#	Article	IF	CITATIONS
1068	Paper-based electrochemical immunosensor for label-free detection of multiple avian influenza virus antigens using flexible screen-printed carbon nanotube-polydimethylsiloxane electrodes. Scientific Reports, 2022, 12, 2311.	1.6	20
1069	Inkjet-printed flexible sensors: From function materials, manufacture process, and applications perspective. Materials Today Communications, 2022, 31, 103263.	0.9	49
1070	A Novel Pre-Deposition Assisted Strategy for Inkjet Printing Graphene-Based Flexible Pressure Sensor with Enhanced Performance. SSRN Electronic Journal, 0, , .	0.4	0
1071	Revisit the Hydrated Cationâ^'Ï€ Interaction at the Interface: A New View of Dynamics and Statistics. Langmuir, 2022, 38, 2401-2408.	1.6	5
1072	Micro-to-Nanometer Scale Patterning of Perovskite Inks via Controlled Self-Assemblies. Materials, 2022, 15, 1521.	1.3	2
1073	Fabrication and characterization of chitosan nanoparticles using the coffeeâ€ring effect for photodynamic therapy. Lasers in Surgery and Medicine, 2022, 54, 758-766.	1.1	8
1074	Circadian humidity fluctuation induced capillary flow for sustainable mobile energy. Nature Communications, 2022, 13, 1291.	5.8	12
1075	Stress-deconcentrated ultrasensitive strain sensor with hydrogen-bonding-tuned fracture resilience for robust biomechanical monitoring. Science China Materials, 2022, 65, 2289-2297.	3.5	10
1076	Inkjetâ€Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture.	5.2	9
	Sman, 2022, 10, 62107 592.		
1077	The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211.	11.9	0
1077 1078	The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620.	11.9 7.0	0 31
1077 1078 1079	The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856.	11.9 7.0 2.3	0 31 7
1077 1078 1079 1080	The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840.	11.97.02.32.5	0 31 7 3
1077 1078 1079 1080	The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 2021, 14, 7525.	 11.9 7.0 2.3 2.5 1.3 	0 31 7 3
1077 1078 1079 1080 1081	International and Engineering Aspects, 2022, 19, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 2021, 14, 7525. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. Langmuir, 2021, 37, 14950-14967.	 11.9 7.0 2.3 2.5 1.3 1.6 	0 31 7 3 4
1077 1078 1079 1080 1081 1082	 The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 2021, 14, 7525. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. Langmuir, 2021, 37, 14950-14967. In Situ Threeå&Dimensional Observation of Perovskite Crystallization Revealed by Twoâ&Photon Fluorescence Imaging. Advanced Optical Materials, 0, , 2200089. 	 11.9 7.0 2.3 2.5 1.3 1.6 3.6 	0 31 7 3 4 4
1077 1078 1079 1080 1081 1082 1084	 The physics of breakfast. Nature Reviews Physics, 2022, 4, 211-211. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Advances in Colloid and Interface Science, 2022, 302, 102620. Evaporation-induced crystal self-assembly (EICSA) of salt drops regulated by trace of polyacrylamide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 644, 128856. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. International Journal of Heat and Mass Transfer, 2022, 191, 122840. Inkjet-Printed Electron Transport Layers for Perovskite Solar Cells. Materials, 2021, 14, 7525. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. Langmuir, 2021, 37, 14950-14967. In Situ ThreeateDimensional Observation of Perovskite Crystallization Revealed by TwoatePhoton Fluorescence Imaging. Advanced Optical Materials, 0, , 2200089. A novel pre-deposition assisted strategy for inkjet printing graphene-based flexible pressure sensor with enhanced performance. Carbon, 2022, 196, 85-91. 	 11.9 7.0 2.3 2.5 1.3 1.6 3.6 5.4 	0 31 7 3 4 4 3 21

#	Article	IF	CITATIONS
1088	Engineering bottom-up fabrication of functional multi-material nanostructures created through evaporation-induced self-assembly of nanocolloidal droplets. MRS Communications, 2022, 12, 322-328.	0.8	1
1089	Malleable Patterns from the Evaporation of a Colloidal Liquid Bridge: Coffee Ring to the Scallop Shell. Langmuir, 2022, 38, 5590-5602.	1.6	4
1090	Pickering emulsions and dispersions—an early perspective. Colloid and Polymer Science, 2022, 300, 587-592.	1.0	9
1091	Effective Enrichment of Plasmonic Hotspots for SERS by Spinning Droplets on a Slippery Concave Dome Array. Biosensors, 2022, 12, 270.	2.3	4
1092	High-resolution flexible electronic devices by electrohydrodynamic jet printing: From materials toward applications. Science China Materials, 2022, 65, 2089-2109.	3.5	19
1093	An Experimental Validation Study on Ferrofluid Evaporation. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	1
1094	Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation(China), 2022, 3, 100253.	5.2	8
1095	Silk-fibroin film as enzyme stabilizing material and optical signal transducer for developing alcohol oxidase-based μPAD methanol biosensor. Biosensors and Bioelectronics: X, 2022, 11, 100147.	0.9	1
1096	United under stress: high-speed transport network emerging at bacterial living edge. Fundamental Research, 2022, , .	1.6	0
1097	A Bionic Interface to Suppress the Coffeeâ€Ring Effect for Reliable and Flexible Perovskite Modules with a Nearâ€90% Yield Rate. Advanced Materials, 2022, 34, e2201840.	11.1	54
1098	A fluorimetric test strip with suppressed "Coffee Ring Effect―for selective mercury ion analysis. Analyst, The, 2022, 147, 2633-2639.	1.7	9
1099	Line Patterns and Fractured Coatings in Deposited Colloidal Hydrochar on Glass Substrates after Evaporation of Water. Colloids and Interfaces, 2022, 6, 36.	0.9	1
1100	Printed Kirigami Organic Photovoltaics for Efficient Solar Tracking. Advanced Functional Materials, 2022, 32, .	7.8	5
1101	Versatile strategy for homogeneous drying patterns of dispersed particles. Nature Communications, 2022, 13, .	5.8	16
1102	Chemically exfoliated inorganic nanosheets for nanoelectronics. Applied Physics Reviews, 2022, 9, .	5.5	15
1103	Self-assembly of highly ordered micro- and nanoparticle deposits. Nature Communications, 2022, 13, .	5.8	22
1104	Evaporation driven smart patterning of microparticles on a rigid-soft composite substrate. Journal of Colloid and Interface Science, 2022, 623, 927-937.	5.0	5
1107	The Influence of Substrate Microstructures on the Fluorescent Intensity Profile, Size, Roundness, and Coffee Ring Ratio of Protein Microarray Spots. , 2022, , .		1

#	Article	IF	CITATIONS
1108	Microbial Protocols for Spacecraft: 1. Effects of Surface Texture, Low Pressure, and UV Irradiation on Recovery of Microorganisms from Surfaces. Astrobiology, 2022, 22, 1061-1071.	1.5	5
1109	Paper-Based Colorimetric Glucose Sensor Using Prussian Blue Nanoparticles as Mimic Peroxidase. SSRN Electronic Journal, 0, , .	0.4	0
1110	Directional migration propensity of calf thymus DNA in a gradient of metal ions. Chemical Communications, 2022, 58, 9353-9356.	2.2	5
1111	Temperature-Driven Reversible Shape Transformation of Polymeric Nanoparticles from Emulsion Confined Coassembly of Block Copolymers and Poly(<i>N</i> -isopropylacrylamide). Macromolecules, 2022, 55, 6211-6219.	2.2	10
1112	A Versatile 3D onfined Selfâ€Assembly Strategy for Anisotropic and Ordered Mesoporous Carbon Microparticles. Advanced Science, 2022, 9, .	5.6	15
1113	Copper-alumina hybrid nanofluid droplet phase change dynamics over heated plain copper and porous residue surfaces. International Journal of Thermal Sciences, 2022, 182, 107795.	2.6	0
1114	Self-Assembled Porous Polymer Films for Improved Oxygen Sensing. SSRN Electronic Journal, 0, , .	0.4	0
1115	Virus Dynamics and Decay in Evaporating Human Saliva Droplets on Fomites. Environmental Science & Technology, 2023, 57, 17737-17750.	4.6	5
1116	Control of the Drying Patterns for Complex Colloidal Solutions and Their Applications. Nanomaterials, 2022, 12, 2600.	1.9	11
1117	Cyanobacterial supraâ€polysaccharide: Selfâ€similar hierarchy, diverse morphology, and application prospects of sacran fibers. Biopolymers, 2022, 113, .	1.2	2
1118	Programmable Birefringent Patterns from Modulating the Localized Orientation of Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 36277-36286.	4.0	8
1119	Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS Applied Nano Materials, 2022, 5, 12276-12299.	2.4	19
1120	Adsorption Races of Binary Colloids with Different Softness at the Air/Water Interface of Sessile Droplets. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1121	Deposition of Gold Nanoparticles on a Self‣upporting Carbon Foil. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4
1122	Fluid-coupled Lamb waves for self-assembling three-dimensional photonic crystals. Journal of Applied Physics, 2022, 132, .	1.1	1
1123	Fluorescence changes of dyes/NSAIDs adsorbed on fluorocarbon polymers. Materials Chemistry and Physics, 2022, 290, 126552.	2.0	0
1124	Super-hydrophilic SERS sensor with both ultrahigh activity and exceptional 3D spatial uniformity for sensitive detection of toxic pollutants. Applied Surface Science, 2022, 603, 154445.	3.1	11
1125	The application of coffee-ring effect in analytical chemistry. TrAC - Trends in Analytical Chemistry, 2022, 157, 116752.	5.8	24

#	Article	IF	CITATIONS
1126	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
1127	Numerical simulation of a drying colloidal suspension on a wettable substrate using the lattice Boltzmann method. Chemical Engineering Science, 2022, 263, 118050.	1.9	5
1128	Formation and development of distinct deposit patterns by drying Polyelectrolyte-stabilized colloidal droplets at different surfactant concentrations. Journal of Molecular Liquids, 2022, 367, 120355.	2.3	3
1129	Uniform stain pattern of robust MOF-mediated probe for flexible paper-based colorimetric sensing toward environmental pesticide exposure. Chemical Engineering Journal, 2023, 451, 138928.	6.6	22
1130	Shaping droplet by semiflexible micro crystallizer for high quality crystal harvest. Journal of Colloid and Interface Science, 2023, 629, 334-345.	5.0	0
1131	Inkjet-printed Electronics Technology. , 2022, , 69-102.		0
1132	Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks. Nanoscale, 0, , .	2.8	2
1133	A Coffee-Ring Effect-Based Paper Sensor Chip for the Determination of Î'-Lactoglobulin in Foods Via a Smartphone. SSRN Electronic Journal, 0, , .	0.4	0
1134	Inkjet printing for scalable and patterned fabrication of halide perovskite-based optoelectronic devices. Journal of Materials Chemistry C, 2022, 10, 14379-14398.	2.7	7
1135	Extremely Sensitive SERS Sensors Based on a Femtosecond Laser-Fabricated Superhydrophobic/-philic Microporous Platform. ACS Applied Materials & Interfaces, 2022, 14, 43877-43885.	4.0	18
1136	Interface Capture Effect Printing Atomicâ€Thick 2D Semiconductor Thin Films. Advanced Materials, 2022, 34, .	11.1	9
1137	Factors to control the alignment of surface treated titanium dioxide powders to maximize performance of sunscreens. International Journal of Cosmetic Science, 0, , .	1.2	0
1138	Toward Excellence in Photocathode Engineering for Photoelectrochemical CO ₂ Reduction: Design Rationales and Current Progress. Advanced Energy Materials, 2022, 12, .	10.2	30
1139	Effect of Molecular Structure of Photoswitchable Surfactant on Light-Responsive Shape Transition of Block Copolymer Particles. Macromolecules, 2022, 55, 8355-8364.	2.2	8
1140	Engineering the Morphologies of Block Copolymer Particles from the Confined Selfâ€assembly within Emulsion Droplets ^{â€} . Chinese Journal of Chemistry, 2023, 41, 237-245.	2.6	5
1141	Capillary-Assisted Molecular Pendulum Bioanalysis. Journal of the American Chemical Society, 2022, 144, 18338-18349.	6.6	11
1143	Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosensors and Bioelectronics, 2023, 219, 114787.	5.3	10
1144	Velocity distributions in a gas-gun microparticle accelerator. Review of Scientific Instruments, 2022, 93, 105101.	0.6	Ο

		CITATION REPORT		
#	Article		IF	CITATIONS
1145	Large-scale kinetic roughening behavior of coffee-ring fronts. Physical Review E, 2022,	106,.	0.8	1
1146	Self-assembled porous polymer films for improved oxygen sensing. Sensors and Actuat 2023, 374, 132794.	tors B: Chemical,	4.0	1
1147	Evaporation-driven liquid flow in sessile droplets. Soft Matter, 2022, 18, 8535-8553.		1.2	40
1148	Retardation of Capillary Force between Janus Particles at the Oil–Water Interface. Jo Chemistry Letters, 2022, 13, 10018-10024.	urnal of Physical	2.1	4
1149	Acid–Base Reaction-Assisted Quantum Dot Patterning via Ligand Engineering and Ph ACS Applied Materials & Interfaces, 2022, 14, 47831-47840.	notolithography.	4.0	4
1150	Printable Coffeeâ€Ring Structures for Highly Uniform Allâ€Oxide Optoelectronic Synaµ Advanced Optical Materials, 2022, 10, .	ptic Transistors.	3.6	10
1151	Ink-lithographic fabrication of silver-nanocrystal-based multiaxial strain gauge sensors coffee-ring effect for voice recognition applications. Nano Convergence, 2022, 9, .	through the	6.3	3
1152	Drying Process of Ink Dot Analyzed by Using Digital Holographic Microscope. Journal o Society of Colour Material, 2022, 95, 297-301.	f the Japan	0.0	0
1153	Recent Developments of Inkjetâ€Printed Flexible Energy Storage Devices. Advanced M 2022, 9, .	aterials Interfaces,	1.9	7
1155	Evaporation of Sessile Droplets. Annual Review of Fluid Mechanics, 2023, 55, 481-509		10.8	53
1156	Phase field modeling and computation of multi-component droplet evaporation. Comp Applied Mechanics and Engineering, 2022, 401, 115675.	outer Methods in	3.4	5
1157	Investigating Structural Effects of Quaternizing Additives on Shape Transitions of Bloc Particles. Macromolecules, 2022, 55, 9972-9979.	k Copolymer	2.2	10
1158	Evaporation investigation of nanofluid droplet affected by electrical field with periodica direction. Sensors and Actuators A: Physical, 2022, 347, 113958.	ally changed	2.0	3
1159	A coffee-ring effect-based paper sensor chip for the determination of beta-lactoglobuli smartphone. Sensors and Actuators B: Chemical, 2023, 374, 132807.	n in foods via a	4.0	16
1160	Suppressing "Coffee ring effect―to deposit high-quality CsPbI3 perovskite films b Chemical Engineering Journal, 2023, 454, 140147.	y drop casting.	6.6	7
1161	Interfacial confined droplet on sessile platform for crystal screening and harvest. AICHI	E Journal, O, , .	1.8	0
1162	All-in-One Preparation Strategy Integrated in a Miniaturized Device for Fast Analyses of Biofluids by Surface Enhanced Raman Scattering. Analytical Chemistry, 2022, 94, 1627	f Biomarkers in 75-16281.	3.2	5
1163	New Class of Polymer Materials—Quasi-Nematic Colloidal Particle Self-Assemblies: Th Assemblies of Prolate Spheroidal Poly(Styrene/Polyglycidol) Particles. Polymers, 2022,	e Case of 14, 4859.	2.0	0

#	Article	IF	Citations
1164	Laser Induced Coffeeâ€Ring Structure through Solid‣iquid Transition for Color Printing. Small, 2023, 19, .	5.2	6
1165	Facile fabrication of multifunctional transparent electrodes via spray deposition of indium-tin-oxide nanoparticles. Applied Surface Science, 2023, 611, 155756.	3.1	8
1166	Raman imaging towards in-situ visualisation of perchlorate adsorption. Water Research, 2023, 229, 119510.	5.3	6
1167	Coffee-ring formation through the use of the multi-ring mechanism guided by the self-assembly of magnetic nanoparticles. Scientific Reports, 2022, 12, .	1.6	1
1168	Ink-Drop Dynamics on Chemically Modified Surfaces. Langmuir, 2022, 38, 15453-15462.	1.6	6
1169	Counter-Intuitive Evaporation in Nanofluids Droplets due to Stick-Slip Nature. Langmuir, 2022, 38, 15361-15371.	1.6	7
1170	Surfactant Control of Coffee Ring Formation in Carbon Nanotube Suspensions. Langmuir, 2023, 39, 929-941.	1.6	5
1171	Simple and Tailorable Synthesis of Silver Nanoplates in Gram Quantities. ACS Omega, 2023, 8, 2760-2772.	1.6	3
1172	Two-Level Optical Birefringence Created by Evaporation-Induced Polymer Crystallization in Sessile Droplets. Macromolecules, 2023, 56, 707-718.	2.2	4
1173	Towards micro-PeLED displays. Nature Reviews Materials, 2023, 8, 341-353.	23.3	15
1174	A Rapid Therapeutic Drug Monitoring Strategy of Carbamazepine in Serum by Using Coffee-Ring Effect Assisted Surface-Enhanced Raman Spectroscopy. Molecules, 2023, 28, 128.	1.7	0
1175	The Coffee Stain: Using a Water Droplet for Self-assembly. , 2013, , 1-22.		0
1176	Development of nanomaterial enabling highly sensitive surfaceâ€assisted laser desorption/ionization mass spectrometry peptide analysis. Rapid Communications in Mass Spectrometry, 2023, 37, .	0.7	2
1177	Evaporation-Driven Liquid–Liquid Crystalline Phase Separation in Droplets of Anisotropic Colloids. ACS Nano, 2023, 17, 3098-3106.	7.3	8
1178	Engineering Multimaterial Nanostructured Deposits by the Amphiphilicity Degree and Intermolecular Forces. Advanced Materials Technologies, 0, , 2201569.	3.0	1
1179	Impact of a suspension drop onto a hot substrate: diminution of splash and prevention of film boiling. Soft Matter, 2023, 19, 1440-1453.	1.2	6
1180	Inexpensive High-Throughput Multiplexed Biomarker Detection Using Enzymatic Metallization with Cellphone-Based Computer Vision. ACS Sensors, 2023, 8, 534-542.	4.0	3
1181	Evaporation-induced fractal patterns: A bridge between uniform pattern and coffee ring. Journal of Colloid and Interface Science, 2023, 637, 522-532.	5.0	2

#		IF	CITATIONS
" 1182	Evaporation dynamics of a sessile milk droplet placed on a hydrophobic surface. Colloids and	2.3	0
1183	Detection of microplastics and nanoplastics released from a kitchen blender using Raman imaging.	6.5	8
1104	Printable Epsilonâ€Type Structure Transistor Arrays with Highly Reliable Physical Unclonable	11.1	10
1184	Functions. Advanced Materials, 2023, 35, .	11.1	12
1185	Pinning and Depinning Dynamics of an Evaporating Sessile Droplet Containing Mono- and Bidispersed Colloidal Particles on a Nonheated/Heated Hydrophobic Substrate. Langmuir, 2023, 39, 3102-3117.	1.6	3
1186	Universal assembly of ordered Ag nanowire micromesh conductors on arbitrary substrates by manipulating the contact angle. Journal of Materials Chemistry A, 2023, 11, 6440-6451.	5.2	2
1187	Solution-Processed Flexible Transparent Electrodes for Printable Electronics. ACS Nano, 2023, 17, 4180-4192.	7.3	11
1188	Threeâ€Dimensional Coffeeâ€Ring Effect Induced Deposition on Foam Surface for Enhanced Photothermal Conversion. Small, 2023, 19, .	5.2	3
1189	Matrix Producing Cells Induce the Morphological Difference in the Bacillus subtilis Biofilm. Indian Journal of Microbiology, 2023, 63, 197-207.	1.5	1
1190	Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop. Energies, 2023, 16, 2623.	1.6	0
1191	Drying Drops of Colloidal Dispersions. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 53-83.	3.3	7
1192	Microbial Protocols for Spacecraft: 3. Spore Monolayer Preparation Methods for Ultraviolet Irradiation Exposures. Astrobiology, 2023, 23, 908-920.	1.5	9
1193	Light-Controlled Particle Enrichment Patterns in Droplets. Analytical Chemistry, 2023, 95, 5828-5837.	3.2	1
1194	Automated One-Drop Assembly for Facile 2D Film Deposition. ACS Applied Materials & amp; Interfaces, 2023, 15, 22737-22743.	4.0	3
1195	<i>In situ</i> post-synthesis of luminescent Lewis acid–base adducts. Chemical Communications, 0, , .	2.2	1
1196	Aerosolâ€Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Advanced Materials Technologies, 2023, 8, .	3.0	8
1197	Anisotropic Nanocluster Arrays to Diminished Zone: Different regimes of surface deposition in gold nanocolloids. Soft Matter, 0, , .	1.2	2
1198	The Processâ€Directed Selfâ€Assembly of Block Copolymer Particles. Macromolecular Rapid Communications, 0, , .	2.0	0
1199	Optically Controlled Development of a Waveguide from a Reservoir of Microparticles. Small Methods, 0, , .	4.6	0

#	Article	IF	CITATIONS
1207	Innovations in exploiting photo-controlled Marangoni flows for soft matter actuations. Soft Matter, 2023, 19, 5223-5243.	1.2	1
1261	Unveiling practical considerations for reliable and standardized SERS measurements: lessons from a comprehensive review of oblique angle deposition-fabricated silver nanorod array substrates. Chemical Society Reviews, 2024, 53, 1004-1057.	18.7	1
1266	Modeling Airborne Disease Dynamics: Progress and Questions. Fields Institute Communications, 2023, , 129-159.	0.6	0
1268	Inkjet printing for flexible and stretchable electronics. , 2024, , 33-95.		0
1280	Evaporation Dynamics of Bidispersed Colloidal Suspension Droplets on Hydrophilic Substrates Under Different Relative Humidity and Ambient Temperature. Lecture Notes in Mechanical Engineering, 2024, , 85-95.	0.3	0