Influenza A viruses: new research developments

Nature Reviews Microbiology 9, 590-603 DOI: 10.1038/nrmicro2613

Citation Report

#	Article	IF	CITATIONS
1	Antibodies against conserved antigens provide opportunities for reform in influenza vaccine design. Frontiers in Immunology, 2011, 2, 76.	4.8	34
2	Innate Immunity to H5N1 Influenza Viruses in Humans. Viruses, 2012, 4, 3363-3388.	3.3	39
3	Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 2012, 8, e1003059.	4.7	273
4	Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion. Viruses, 2012, 4, 1144-1168.	3.3	147
5	Development of an Influenza Virologic Risk Assessment Tool. Avian Diseases, 2012, 56, 1058-1061.	1.0	35
6	Delivery of subunit influenza vaccine to skin with microneedles improves immunogenicity and long-lived protection. Scientific Reports, 2012, 2, 357.	3.3	91
7	The 2009 Pandemic H1N1 Influenza Virus is More Pathogenic in Pregnant Mice Than Seasonal H1N1 Influenza Virus. Viral Immunology, 2012, 25, 402-410.	1.3	44
8	Improving influenza virus detection. Expert Opinion on Medical Diagnostics, 2012, 6, 75-87.	1.6	4
9	Insights into Avian Influenza Virus Pathogenicity: the Hemagglutinin Precursor HAO of Subtype H16 Has an Alpha-Helix Structure in Its Cleavage Site with Inefficient HA1/HA2 Cleavage. Journal of Virology, 2012, 86, 12861-12870.	3.4	41
10	Apoptosis signaling in influenza virus propagation, innate host defense, and lung injury. Journal of Leukocyte Biology, 2012, 92, 75-82.	3.3	97
11	Avian influenza A H5N1 virus: a continuous threat to humans. Emerging Microbes and Infections, 2012, 1, 1-12.	6.5	76
12	Behaviour of influenza A viruses differentially expressing segment 2 gene products in vitro and in vivo. Journal of General Virology, 2012, 93, 840-849.	2.9	27
13	Uronosyl phosphonate-based sialidase inhibitor synthesis and conformational analysis. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7623-7626.	2.2	2
14	Avian Influenza and Animal Health Risk: Conservation of Endemic Threatened Wild Birds in Sardinia Island. Avian Diseases, 2012, 56, 1034-1039.	1.0	4
15	The changing nature of avian influenza A virus (H5N1). Trends in Microbiology, 2012, 20, 11-20.	7.7	117
16	Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15900-15905.	7.1	41
17	Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18897-18902.	7.1	101
18	Improved sensitivity of influenza A antigen detection using a combined NP, M, and NS1 sandwich ELISA. Journal of Virological Methods, 2012, 185, 24-31.	2.1	17

#	Article	IF	CITATIONS
19	Temporal- and Strain-Specific Host MicroRNA Molecular Signatures Associated with Swine-Origin H1N1 and Avian-Origin H7N7 Influenza A Virus Infection. Journal of Virology, 2012, 86, 6109-6122.	3.4	90
20	New treatments for influenza. BMC Medicine, 2012, 10, 104.	5.5	81
21	Lipidâ€Based Bioâ€Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 2012, 5186-5191.	2.0	30
22	The neuraminidase of bat influenza viruses is not a neuraminidase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18635-18636.	7.1	29
23	Influenza Polymerase Activity Correlates with the Strength of Interaction between Nucleoprotein and PB2 through the Host-Specific Residue K/E627. PLoS ONE, 2012, 7, e36415.	2.5	41
24	Viral DNA and cDNA Array in the Diagnosis of Respiratory Tract Infections. , 2012, , .		0
25	Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2012, 06, 293-300.	0.1	3
26	Intrinsic antiviral immunity. Nature Immunology, 2012, 13, 214-222.	14.5	439
27	Transformation of <scp>D</scp> ‣erine to Highly Functionalized Cyclohexenecarboxylates in Study of Oseltamivir Synthesis. Journal of the Chinese Chemical Society, 2012, 59, 426-435.	1.4	5
28	Infection Barriers to Successful Xenotransplantation Focusing on Porcine Endogenous Retroviruses. Clinical Microbiology Reviews, 2012, 25, 318-343.	13.6	175
29	Functional Balance of the Hemagglutinin and Neuraminidase Activities Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic. Journal of Virology, 2012, 86, 9221-9232.	3.4	155
30	Variability among the neuraminidase, non-structural 1 and PB1-F2 proteins in the influenza A virus genome. Virus Genes, 2012, 44, 363-373.	1.6	16
31	Viral genome RNA degradation by sequence-selective, nucleic-acid hydrolyzing antibody inhibits the replication of influenza H9N2 virus without significant cytotoxicity to host cells. Antiviral Research, 2012, 94, 157-167.	4.1	7
32	Integrated microdevice of reverse transcription-polymerase chain reaction with colorimetric immunochromatographic detection for rapid gene expression analysis of influenza A H1N1 virus. Biosensors and Bioelectronics, 2012, 33, 88-94.	10.1	58
33	<scp>H</scp> 1 <scp>N</scp> 1/09 Influenza <scp>A</scp> Virus Infection of Immortalized First Trimester Human Trophoblast Cell Lines. American Journal of Reproductive Immunology, 2012, 68, 226-232.	1.2	11
34	Transmission of Influenza A Virus in Pigs. Transboundary and Emerging Diseases, 2012, 59, 68-84.	3.0	68
35	Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and Biology, 2013, , .	1.6	5
36	Inhibition of MAO ―A and stimulation of behavioural activities in mice by the inactive prodrug form of the anti―nfluenza agent oseltamivir. British Journal of Pharmacology, 2013, 169, 115-129.	5.4	22

#	Article	IF	CITATIONS
37	MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. Nature Biotechnology, 2013, 31, 844-847.	17.5	77
38	Mutations of two transmembrane cysteines of hemagglutinin (HA) from influenza A H3N2 virus affect HA thermal stability and fusion activity. Virus Genes, 2013, 47, 20-26.	1.6	18
39	Bat-Derived Influenza Hemagglutinin H17 Does Not Bind Canonical Avian or Human Receptors and Most Likely Uses a Unique Entry Mechanism. Cell Reports, 2013, 3, 769-778.	6.4	92
40	Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12. Journal of Biological Chemistry, 2013, 288, 17399-17407.	3.4	44
41	Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit. Antiviral Research, 2013, 100, 615-635.	4.1	77
42	Assembly of Subtype 1 Influenza Neuraminidase Is Driven by Both the Transmembrane and Head Domains. Journal of Biological Chemistry, 2013, 288, 644-653.	3.4	45
43	Structure and Receptor Binding Specificity of Hemagglutinin H13 from Avian Influenza A Virus H13N6. Journal of Virology, 2013, 87, 9077-9085.	3.4	18
44	Clinical translation of RNAi-based treatments for respiratory diseases. Drug Delivery and Translational Research, 2013, 3, 84-99.	5.8	6
45	Evaluation of Maryland Backyard Flocks and Biosecurity Practices. Avian Diseases, 2013, 57, 233-237.	1.0	17
46	Amphotericin B Increases Influenza A Virus Infection by Preventing IFITM3-Mediated Restriction. Cell Reports, 2013, 5, 895-908.	6.4	108
47	Recent advances in pharmacophore modeling and its application to anti-influenza drug discovery. Expert Opinion on Drug Discovery, 2013, 8, 411-426.	5.0	14
48	Microbes and mucosal immune responses in asthma. Lancet, The, 2013, 381, 861-873.	13.7	134
49	A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens. Biomedical Microdevices, 2013, 15, 539-551.	2.8	37
50	Towards multiscale modeling of influenza infection. Journal of Theoretical Biology, 2013, 332, 267-290.	1.7	63
51	An overview of the highly pathogenic H5N1 influenza virus. Virologica Sinica, 2013, 28, 3-15.	3.0	15
52	Reassortment ability of the 2009 pandemic H1N1 influenza virus with circulating human and avian influenza viruses: Public health risk implications. Virus Research, 2013, 175, 151-154.	2.2	12
53	An Airborne Transmissible Avian Influenza H5 Hemagglutinin Seen at the Atomic Level. Science, 2013, 340, 1463-1467.	12.6	107
54	Glycosylations in the Globular Head of the Hemagglutinin Protein Modulate the Virulence and Antigenic Properties of the H1N1 Influenza Viruses. Science Translational Medicine, 2013, 5, 187ra70.	12.4	107

#	Article	IF	CITATIONS
55	Connecting the study of wild influenza with the potential for pandemic disease. Infection, Genetics and Evolution, 2013, 17, 162-187.	2.3	70
56	Review: Influenza virus in pigs. Molecular Immunology, 2013, 55, 200-211.	2.2	58
57	Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut). Protein and Cell, 2013, 4, 502-511.	11.0	34
58	Treating influenza with statins and other immunomodulatory agents. Antiviral Research, 2013, 99, 417-435.	4.1	145
59	Cellular RNA Binding Proteins NS1-BP and hnRNP K Regulate Influenza A Virus RNA Splicing. PLoS Pathogens, 2013, 9, e1003460.	4.7	78
60	Natural history of highly pathogenic avian influenza H5N1. Virus Research, 2013, 178, 63-77.	2.2	122
61	Molecular Basis of the Receptor Binding Specificity Switch of the Hemagglutinins from both the 1918 and 2009 Pandemic Influenza A Viruses by a D225G Substitution. Journal of Virology, 2013, 87, 5949-5958.	3.4	59
62	The experimental aerosol transmission of influenza virus. Future Virology, 2013, 8, 969-981.	1.8	3
63	Modeling the Association of Space, Time, and Host Species with Variation of the HA, NA, and NS Genes of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Birds in Romania in 2005–2007. Avian Diseases, 2013, 57, 612-621.	1.0	4
64	Viral and Host Factors Required for Avian H5N1 Influenza A Virus Replication in Mammalian Cells. Viruses, 2013, 5, 1431-1446.	3.3	26
65	Cellular Protein HAX1 Interacts with the Influenza A Virus PA Polymerase Subunit and Impedes Its Nuclear Translocation. Journal of Virology, 2013, 87, 110-123.	3.4	45
66	Nasal epithelial repair and remodeling in physical injury, infection, and inflammatory diseases. Current Opinion in Otolaryngology and Head and Neck Surgery, 2013, 21, 263-270.	1.8	57
67	Caspase-1 Deficient Mice Are More Susceptible to Influenza A Virus Infection With PA Variation. Journal of Infectious Diseases, 2013, 208, 1898-1905.	4.0	25
68	Vaccine-Induced Anti-HA2 Antibodies Promote Virus Fusion and Enhance Influenza Virus Respiratory Disease. Science Translational Medicine, 2013, 5, 200ra114.	12.4	201
69	Most Influenza A Virions Fail To Express at Least One Essential Viral Protein. Journal of Virology, 2013, 87, 3155-3162.	3.4	160
70	Contribution of the NS1 Gene of H7 Avian Influenza Virus Strains to Pathogenicity in Chickens. Viral Immunology, 2013, 26, 396-403.	1.3	3
71	Emergence of H3N2pMâ€like and novel reassortant H3N1 swine viruses possessing segments derived from the A (H1N1)pdm09 influenza virus, Korea. Influenza and Other Respiratory Viruses, 2013, 7, 1283-1291.	3.4	18
72	Reassortment Complements Spontaneous Mutation in Influenza A Virus NP and M1 Genes To Accelerate Adaptation to a New Host. Journal of Virology, 2013, 87, 4330-4338.	3.4	57

#	ARTICLE Evolution and control of H5N1. EMBO Reports, 2013, 14, 117-122.	IF 4.5	CITATIONS
74	Transition State Analogues of Enzymatic Reaction as Potential Drugs. , 2013, , .		7
75	Development of a high density hemagglutinin protein microarray to determine the breadth of influenza antibody responses. BioTechniques, 2013, 54, 345-348.	1.8	21
76	Fluad®-MF59®-Adjuvanted Influenza Vaccine in Older Adults. Infection and Chemotherapy, 2013, 45, 159.	2.3	85
77	Evidence of Cross-Reactive Immunity to 2009 Pandemic Influenza A Virus in Workers Seropositive to Swine H1N1 Influenza Viruses Circulating in Italy. PLoS ONE, 2013, 8, e57576.	2.5	15
78	Quantitative Characterization of Glycan-Receptor Binding of H9N2 Influenza A Virus Hemagglutinin. PLoS ONE, 2013, 8, e59550.	2.5	15
79	Influenza Nucleoprotein Delivered with Aluminium Salts Protects Mice from an Influenza A Virus That Expresses an Altered Nucleoprotein Sequence. PLoS ONE, 2013, 8, e61775.	2.5	16
80	The Influenza Virus Protein PB1-F2 Interacts with IKKβ and Modulates NF-κB Signalling. PLoS ONE, 2013, 8, e63852.	2.5	26
81	Reducing Uncertainty in Within-Host Parameter Estimates of Influenza Infection by Measuring Both Infectious and Total Viral Load. PLoS ONE, 2013, 8, e64098.	2.5	31
82	Continuous Influenza Virus Production in Cell Culture Shows a Periodic Accumulation of Defective Interfering Particles. PLoS ONE, 2013, 8, e72288.	2.5	76
83	Multiple amino acid mutations in viral RNA polymerase may synergistically enhance the transmissibility and/or virulence of the 2009 pandemic influenza (H1N1) virus. Acta Virologica, 2013, 57, 35-40.	0.8	2
84	Virological Evaluation of Avian Influenza Virus Persistence in Natural and Anthropic Ecosystems of Western Siberia (Novosibirsk Region, Summer 2012). PLoS ONE, 2014, 9, e100859.	2.5	18
85	A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus. PLoS ONE, 2014, 9, e110026.	2.5	88
86	Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clinical and Experimental Vaccine Research, 2014, 3, 140.	2.2	22
87	Viral Disease, Tissue Injury, Repair and Regeneration. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, 08, .	0.1	0
88	Does exposure to poultry and wild fowl confer immunity to H5N1?. Chinese Medical Journal, 2014, 127, 3335-3343.	2.3	12
89	T-cell-mediated cross-strain protective immunity elicited by prime–boost vaccination with a live attenuated influenza vaccine. International Journal of Infectious Diseases, 2014, 27, 37-43.	3.3	27
90	Evidence for a crucial role of a host non-coding RNA in influenza A virus replication. RNA Biology, 2014, 11, 66-75.	3.1	90

#	Article	IF	CITATIONS
91	Influenza Pathogenesis and Control - Volume I. Current Topics in Microbiology and Immunology, 2014, , ,	1.1	11
92	IL-28B is a Key Regulator of B- and T-Cell Vaccine Responses against Influenza. PLoS Pathogens, 2014, 10, e1004556.	4.7	108
93	Molecular characterization of influenza A viruses circulating in Cuba between April 2009 and August 2010. Journal of Infection in Developing Countries, 2014, 8, 929-932.	1.2	1
94	Universal Influenza Vaccines, a Dream to Be Realized Soon. Viruses, 2014, 6, 1974-1991.	3.3	60
95	Insight into the Predictive Binding Modes of the Influenza a Neuraminidase in Complexes with Avian and Human Receptor Analogues. Avian Biology Research, 2014, 7, 172-179.	0.9	0
96	Seasonal Influenza Vaccination Is the Strongest Correlate of Cross-Reactive Antibody Responses in Migratory Bird Handlers. MBio, 2014, 5, e02107.	4.1	10
97	Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerging Microbes and Infections, 2014, 3, 1-13.	6.5	106
98	The amino-terminal region of the neuraminidase protein from avian H5N1 influenza virus is important for its biosynthetic transport to the host cell surface. Veterinary Journal, 2014, 202, 612-617.	1.7	1
99	Vaccine adjuvants – understanding molecular mechanisms to improve vaccines. Swiss Medical Weekly, 2014, 144, w13940.	1.6	24
100	Influenza Viral Manipulation of Sphingolipid Metabolism and Signaling to Modulate Host Defense System. Scientifica, 2014, 2014, 1-9.	1.7	34
101	Prostaglandin E2: the Villain in the Host Response to Influenza Virus. Immunity, 2014, 40, 453-454.	14.3	11
102	Highly sensitive fluorescent immunosensor for detection of influenza virus based on Ag autocatalysis. Biosensors and Bioelectronics, 2014, 54, 358-364.	10.1	48
103	Evidences for the existence of intermolecular disulfide-bonded oligomers in the H3 hemagglutinins expressed in insect cells. Virus Genes, 2014, 48, 304-311.	1.6	13
104	Genomic analysis of pandemic and post-pandemic influenza A pH1N1 viruses isolated in Rio Grande do Sul, Brazil. Archives of Virology, 2014, 159, 621-630.	2.1	9
105	Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. Journal of General Virology, 2014, 95, 1178-1191.	2.9	56
106	Avian influenza A H10N8—a virus on the verge?. Lancet, The, 2014, 383, 676-677.	13.7	64
107	Inactivated influenza vaccine adjuvanted with Bacterium-like particles induce systemic and mucosal influenza A virus specific T-cell and B-cell responses after nasal administration in a TLR2 dependent fashion. Vaccine, 2014, 32, 2904-2910.	3.8	34
108	Molecular basis of host specificity in human pathogenic bacteria. Emerging Microbes and Infections, 2014, 3, 1-10.	6.5	61

		CITATION RE	PORT	
#	Article		IF	Citations
109	Infectious salmon anaemia $\hat{a} \in $ pathogenesis and tropism. Journal of Fish Diseases, 2014	4, 37, 291-307.	1.9	46
110	Studying the immune response to human viral infections using zebrafish. Developmenta Comparative Immunology, 2014, 46, 84-95.	al and	2.3	43
111	H1N1, but Not H3N2, Influenza A Virus Infection Protects Ferrets from H5N1 Encephalit Virology, 2014, 88, 3077-3091.	is. Journal of	3.4	8
112	Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity anti-influenza drug treatment. DMM Disease Models and Mechanisms, 2014, 7, 1227-3		2.4	65
113	Enabling the 'host jump': structural determinants of receptor-binding specificity in influe viruses. Nature Reviews Microbiology, 2014, 12, 822-831.	enza A	28.6	213
114	Influenza vaccines: from whole virus preparations to recombinant protein technology. E of Vaccines, 2014, 13, 31-42.	xpert Review	4.4	31
115	A cell-based high-throughput approach to identify inhibitors of influenza A virus. Acta Ph Sinica B, 2014, 4, 301-306.	armaceutica	12.0	34
116	Exploitation of stem-loop DNA as a dual-input gene sensing platform: extension to subtrinfluenza A viruses. Chemical Science, 2014, 5, 4082.	vping of	7.4	9
117	Influenza A virus-specific aptamers screened by using an integrated microfluidic system. 2014, 14, 2002-2013.	Lab on A Chip,	6.0	80
118	Globally Visualizing the Microtubule-Dependent Transport Behaviors of Influenza Virus i Analytical Chemistry, 2014, 86, 3902-3908.	n Live Cells.	6.5	51
119	Innate Immune Sensing and Response to Influenza. Current Topics in Microbiology and 2014, 386, 23-71.	Immunology,	1.1	99
120	Molecular Determinants of Influenza Virus Pathogenesis in Mice. Current Topics in Micro Immunology, 2014, 385, 243-274.	obiology and	1.1	48
121	Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies. B 2014, 42, 237-259.	iologicals,	1.4	296
122	An important amino acid in nucleoprotein contributes to influenza A virus replication by with polymerase PB2. Virology, 2014, 464-465, 11-20.	interacting	2.4	8
123	Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Pass Journal of Virology, 2014, 88, 11981-11994.	ages in Swine.	3.4	24
124	Common and unique features of viral RNA-dependent polymerases. Cellular and Molecu Sciences, 2014, 71, 4403-4420.	lar Life	5.4	207
125	A Single Amino Acid Substitution in the Novel H7N9 Influenza A Virus NS1 Protein Incre Binding and Virulence. Journal of Virology, 2014, 88, 12146-12151.	ases CPSF30	3.4	65
126	Mucosal Polyinosinic-Polycytidylic Acid Improves Protection Elicited by Replicating Influe via Enhanced Dendritic Cell Function and T Cell Immunity. Journal of Immunology, 2014	enza Vaccines , 193, 1324-1332.	0.8	42

#	Article	IF	CITATIONS
127	19F NMR Reveals Multiple Conformations at the Dimer Interface of the Nonstructural Protein 1 Effector Domain from Influenza A Virus. Structure, 2014, 22, 515-525.	3.3	41
128	Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2. Biochemical and Biophysical Research Communications, 2014, 450, 1070-1075.	2.1	19
129	Inhibition of Akt kinase activity suppresses entry and replication of influenza virus. Biochemical and Biophysical Research Communications, 2014, 450, 891-898.	2.1	65
130	Computational Prediction of Vaccine Strains for Human Influenza A (H3N2) Viruses. Journal of Virology, 2014, 88, 12123-12132.	3.4	42
131	Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects. Virology, 2014, 454-455, 254-262.	2.4	6
132	Membrane Environment Can Enhance the Interaction of Glycan Binding Protein to Cell Surface Glycan Receptors. ACS Chemical Biology, 2014, 9, 1877-1884.	3.4	7
133	Sumoylation of Influenza A Virus Nucleoprotein Is Essential for Intracellular Trafficking and Virus Growth. Journal of Virology, 2014, 88, 9379-9390.	3.4	53
134	Structure of Influenza Virus N7: the Last Piece of the Neuraminidase "Jigsaw―Puzzle. Journal of Virology, 2014, 88, 9197-9207.	3.4	38
135	A packaged paper fluidic-based microdevice for detecting gene expression of influenza A virus. Biosensors and Bioelectronics, 2014, 61, 485-490.	10.1	27
137	Synthesis and Anti-influenza Activities of Novel Baicalein Analogs. Chemical and Pharmaceutical Bulletin, 2014, 62, 415-421.	1.3	17
138	Predicting host tropism of influenza A virus proteins using random forest. BMC Medical Genomics, 2014, 7, S1.	1.5	58
140	Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design. Scientific Reports, 2015, 5, 13194.	3.3	44
141	Characterization of a Novel Reassortant Influenza A Virus (H2N2) from a Domestic Duck in Eastern China. Scientific Reports, 2015, 4, 7588.	3.3	13
142	Matrix-Mâ,"¢ adjuvation broadens protection induced by seasonal trivalent virosomal influenza vaccine. Virology Journal, 2015, 12, 210.	3.4	7
143	Modulating the Innate Immune Response to Influenza A Virus: Potential Therapeutic Use of Anti-Inflammatory Drugs. Frontiers in Immunology, 2015, 6, 361.	4.8	95
144	Phenotypic and Genetic Characterization of Avian Influenza H5N2 Viruses with Intra- and Inter-Duck Variations in Taiwan. PLoS ONE, 2015, 10, e0133910.	2.5	2
145	Matrix-M Adjuvated Seasonal Virosomal Influenza Vaccine Induces Partial Protection in Mice and Ferrets against Avian H5 and H7 Challenge. PLoS ONE, 2015, 10, e0135723.	2.5	8
146	Interplay between influenza A virus and host factors: targets for antiviral intervention. Archives of Virology, 2015, 160, 1877-1891.	2.1	21

#	Article	IF	CITATIONS
148	Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7128-37.	7.1	194
149	Adaptation of Pandemic H2N2 Influenza A Viruses in Humans. Journal of Virology, 2015, 89, 2442-2447.	3.4	29
150	Limited effect of recombinant human mannose-binding lectin on the infection of novel influenza A (H7N9) virus inÂvitro. Biochemical and Biophysical Research Communications, 2015, 458, 77-81.	2.1	6
151	Expression of H3N2 nucleoprotein in maize seeds and immunogenicity in mice. Plant Cell Reports, 2015, 34, 969-980.	5.6	36
152	Integration of reverse transcriptase loop-mediated isothermal amplification with an immunochromatographic strip on a centrifugal microdevice for influenza A virus identification. Lab on A Chip, 2015, 15, 718-725.	6.0	58
153	Phylogenetic visualization of the spread of H7 influenza A viruses. Cladistics, 2015, 31, 679-691.	3.3	8
154	RNase L Targets Distinct Sites in Influenza A Virus RNAs. Journal of Virology, 2015, 89, 2764-2776.	3.4	49
155	Upper Airway Stem Cells: Understanding the Nose and Role for Future Cell Therapy. Current Allergy and Asthma Reports, 2015, 15, 490.	5.3	41
156	Environmental Role in Influenza Virus Outbreaks. Annual Review of Animal Biosciences, 2015, 3, 347-373.	7.4	96
157	Induction of innate immunity and its perturbation by influenza viruses. Protein and Cell, 2015, 6, 712-721.	11.0	36
158	Host genes and influenza pathogenesis in humans: an emerging paradigm. Current Opinion in Virology, 2015, 14, 7-15.	5.4	25
159	Sex and Gender Differences in Infection and Treatments for Infectious Diseases. , 2015, , .		11
160	Human Dendritic Cell Response Signatures Distinguish 1918, Pandemic, and Seasonal H1N1 Influenza Viruses. Journal of Virology, 2015, 89, 10190-10205.	3.4	27
161	Reorganization of the host cell Crk(L)–PI3 kinase signaling complex by the influenza A virus NS1 protein. Virology, 2015, 484, 146-152.	2.4	10
162	An ultrasensitive impedimetric glycan biosensor with controlled glycan density for detection of lectins and influenza hemagglutinins. Chemical Communications, 2015, 51, 7474-7477.	4.1	55
164	Challenges in Antigenic Characterization of Circulating Influenza A(H3N2) Viruses during the 2011-2012 Influenza Season: an Ongoing Problem?. Journal of Clinical Microbiology, 2015, 53, 1493-1499.	3.9	10
165	RIG-I Works Double Duty. Cell Host and Microbe, 2015, 17, 285-287.	11.0	5
166	Cross-Reactive Neuraminidase-Inhibiting Antibodies Elicited by Immunization with Recombinant Neuraminidase Proteins of H5N1 and Pandemic H1N1 Influenza A Viruses. Journal of Virology, 2015, 89, 7224-7234.	3.4	68

#	Article	IF	CITATIONS
167	Activation of the Interleukin-34 Inflammatory Pathway in Response to Influenza A Virus Infection. American Journal of the Medical Sciences, 2015, 349, 145-150.	1.1	22
168	Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses. Journal of Chemical Theory and Computation, 2015, 11, 2307-2314.	5.3	3
169	Phylogenetic analyses of influenza A (H1N1)pdm09 hemagglutinin gene during and after the pandemic event in Brazil. Infection, Genetics and Evolution, 2015, 36, 147-155.	2.3	2
170	Review of Non-bacterial Infections in Respiratory Medicine: Viral Pneumonia. Archivos De Bronconeumologia, 2015, 51, 590-597.	0.8	31
171	MicroRNAs in the immune organs of chickens and ducks indicate divergence of immunity against H5N1 avian influenza. FEBS Letters, 2015, 589, 419-425.	2.8	26
172	Integrated centrifugal reverse transcriptase loop-mediated isothermal amplification microdevice for influenza A virus detection. Biosensors and Bioelectronics, 2015, 68, 218-224.	10.1	56
173	One-health approach as counter-measure against "autoimmune―responses in biosecurity. Social Science and Medicine, 2015, 129, 123-130.	3.8	14
174	Combination of multiplex reverse-transcription loop-mediated isothermal amplification with an immunochromatographic strip for subtyping influenza A virus. Analytica Chimica Acta, 2015, 853, 541-547.	5.4	54
176	Dual-layered and double-targeted nanogold based lateral flow immunoassay for influenza virus. Mikrochimica Acta, 2015, 182, 85-93.	5.0	35
177	Prediction of Peaks of Seasonal Influenza in Military Health-Care Data. Biomedical Engineering and Computational Biology, 2016, 7s2, BECB.S36277.	2.0	2
178	Delivery of RNAi Therapeutics to the Airways—From Bench to Bedside. Molecules, 2016, 21, 1249.	3.8	54
179	Replication-Competent Influenza A Viruses Expressing Reporter Genes. Viruses, 2016, 8, 179.	3.3	57
180	New Insights into the Generation of CD4 Memory May Shape Future Vaccine Strategies for Influenza. Frontiers in Immunology, 2016, 7, 136.	4.8	42
181	A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus. Frontiers in Microbiology, 2016, 7, 858.	3.5	2
182	The Strange Lifestyle of Multipartite Viruses. PLoS Pathogens, 2016, 12, e1005819.	4.7	85
183	Human antibody 3E1 targets the HA stem region of H1N1 and H5N6 influenza A viruses. Nature Communications, 2016, 7, 13577.	12.8	31
184	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.6	8
185	Early Diagnosis of Influenza Virus A Using Surfaceâ€enhanced Raman Scatteringâ€based Lateral Flow Assay. Bulletin of the Korean Chemical Society, 2016, 37, 2019-2024.	1.9	24

#	Article	IF	CITATIONS
186	Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses. Virus Evolution, 2016, 2, vev025.	4.9	21
187	Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science, 2016, 352, 463-466.	12.6	210
188	Opportunities for the development of novel therapies based on host-microbial interactions. Pharmacological Research, 2016, 112, 68-83.	7.1	7
189	Future Challenges for Vaccinologists. Methods in Molecular Biology, 2016, 1403, 41-55.	0.9	10
190	Human–Animal Interface: The Case for Influenza Interspecies Transmission. Advances in Experimental Medicine and Biology, 2016, 972, 17-33.	1.6	26
191	Mono- and quadri-subtype virus-like particles (VLPs) containing H10 subtype elicit protective immunity to H10 influenza in a ferret challenge model. Vaccine, 2016, 34, 5235-5242.	3.8	8
192	Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection. Nanotechnology, 2016, 27, 435102.	2.6	30
193	Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clinical Microbiology and Infection, 2016, 22, 975-983.	6.0	111
194	Avian Influenza A Viruses: Evolution and Zoonotic Infection. Seminars in Respiratory and Critical Care Medicine, 2016, 37, 501-511.	2.1	23
195	Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins. Journal of Virology, 2016, 90, 9457-9470.	3.4	31
196	A Mathematical Model of Cytokine Dynamics During a Cytokine Storm. , 2016, , 331-339.		13
197	Long noncoding RNAs (IncRNAs) dynamics evidence immunomodulation during ISAV-Infected Atlantic salmon (Salmo salar). Scientific Reports, 2016, 6, 22698.	3.3	55
198	PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses. Scientific Reports, 2016, 6, 19474.	3.3	123
199	Lung epithelial GM-CSF improves host defense function and epithelial repair in influenza virus pneumonia—a new therapeutic strategy?. Molecular and Cellular Pediatrics, 2016, 3, 29.	1.8	59
200	Approved Antiviral Drugs over the Past 50 Years. Clinical Microbiology Reviews, 2016, 29, 695-747.	13.6	1,049
201	Molecular analyses of H3N2 canine influenza viruses isolated from Korea during 2013–2014. Virus Genes, 2016, 52, 204-217.	1.6	10
202	Heads, stalks and everything else: how can antibodies eradicate influenza as a human disease?. Current Opinion in Immunology, 2016, 42, 48-55.	5.5	78
203	Antiviral innate immunity through the lens of systems biology. Virus Research, 2016, 218, 10-17.	2.2	10

		CITATION REPO	ORT	
# 204	ARTICLE Design and testing of multiplex RT-PCR primers for the rapid detection of influenza A virus genomi	c ,	F 2.1	CITATIONS
205	segments: Application to equine influenza virus. Journal of Virological Methods, 2016, 228, 114-12 Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosenso and Bioelectronics, 2016, 79, 644-649.	rs	10.1	76
206	DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiology, 2016, 11, 153-164.	2	2.0	9
207	Knowns and unknowns of influenza B viruses. Future Microbiology, 2016, 11, 119-135.	2	2.0	88
208	Sensitive detection and glycoprofiling of a prostate specific antigen using impedimetric assays. Analyst, The, 2016, 141, 1044-1051.	:	3.5	41
209	The preventive and therapeutic potential of natural polyphenols on influenza. Expert Review of Anti-Infective Therapy, 2016, 14, 57-80.		1.4	38
210	Retrieving short-term memories of flu. Science Immunology, 2017, 2, .	I	11.9	1
211	Interferon-λ Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infect without Compromising Host Fitness. Immunity, 2017, 46, 875-890.e6.	on 1	14.3	381
212	Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells. Nature Microbiology, 2017, 2, 16250.	1	13.3	120
213	Universal labelâ€free inâ€process quantification of influenza virusâ€like particles. Biotechnology Jo 2017, 12, 1700031.	burnal, a	3.5	26
214	CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication MBio, 2017, 8, .	۱. ۷	4.1	35
215	Community-Level Differences in the Microbiome of Healthy Wild Mallards and Those Infected by Influenza A Viruses. MSystems, 2017, 2, .	5	3.8	41
216	Multiplex Reverse-Transcription Loop-Mediated Isothermal Amplification Coupled with Cascade Invasive Reaction and Nanoparticle Hybridization for Subtyping of Influenza A Virus. Scientific Reports, 2017, 7, 44924.	٤	3.3	16
217	Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Applied Materials & Interfaces, 2017, 9, 14162-14170.	8	8.0	75
218	Real-Time Dissection of Distinct Dynamin-Dependent Endocytic Routes of Influenza A Virus by Qua Dot-Based Single-Virus Tracking. ACS Nano, 2017, 11, 4395-4406.	ntum J	14.6	61
219	Molecular characterization and phylogenetic analysis of human influenza A viruses isolated in Iran during the 2014-2015 season. Archives of Virology, 2017, 162, 1975-1984.	2	2.1	10
220	Influenza A surface glycosylation and vaccine design. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 280-285.	7	7.1	76
221	Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens. Virology, 2017, 501, 176-182.	2	2.4	47

#	Article	IF	CITATIONS
222	High accumulation in tobacco seeds of hemagglutinin antigen from avian (H5N1) influenza. Transgenic Research, 2017, 26, 775-789.	2.4	12
223	Chemical Synthesis of the Highly Hydrophobic Antiviral Membraneâ€Associated Protein IFITM3 and Modified Variants. Angewandte Chemie, 2017, 129, 12813-12817.	2.0	11
224	Chemical Synthesis of the Highly Hydrophobic Antiviral Membraneâ€Associated Protein IFITM3 and Modified Variants. Angewandte Chemie - International Edition, 2017, 56, 12639-12643.	13.8	35
225	Transgenic Chickens Expressing the 3D8 Single Chain Variable Fragment Protein Suppress Avian Influenza Transmission. Scientific Reports, 2017, 7, 5938.	3.3	27
226	An integrated passive microfluidic device for rapid detection of influenza a (H1N1) virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP). , 2017, , .		6
227	Glycoprotein Nanotube Traps Influenza Virus. Chemistry Letters, 2017, 46, 95-97.	1.3	13
228	New insights into influenza A specificity: an evolution of paradigms. Current Opinion in Structural Biology, 2017, 44, 219-231.	5.7	34
229	Systems-based approach to examine the cytokine responses in primary mouse lung macrophages infected with low pathogenic avian Influenza virus circulating in South East Asia. BMC Genomics, 2017, 18, 420.	2.8	3
230	Monocyteâ€derived dendritic cells enhance protection against secondary influenza challenge by controlling the switch in CD8 ⁺ Tâ€cell immunodominance. European Journal of Immunology, 2017, 47, 345-352.	2.9	13
231	The Short Form of the Zinc Finger Antiviral Protein Inhibits Influenza A Virus Protein Expression and Is Antagonized by the Virus-Encoded NS1. Journal of Virology, 2017, 91, .	3.4	78
232	The ecology and adaptive evolution of influenza A interspecies transmission. Influenza and Other Respiratory Viruses, 2017, 11, 74-84.	3.4	83
233	PB2 substitutions V598T/I increase the virulence of H7N9 influenza A virus in mammals. Virology, 2017, 501, 92-101.	2.4	34
234	Influenza Viruses. , 2017, , 195-211.		5
235	Pneumonia of Viral Etiologies. , 2017, , .		2
236	Recent outbreaks of highly pathogenic avian influenza viruses in South Korea. Clinical and Experimental Vaccine Research, 2017, 6, 95.	2.2	13
237	Evolution of Influenza A Virus by Mutation and Re-Assortment. International Journal of Molecular Sciences, 2017, 18, 1650.	4.1	225
238	A Role for Neutrophils in Viral Respiratory Disease. Frontiers in Immunology, 2017, 8, 550.	4.8	192
239	Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza. Frontiers in Microbiology, 2017, 8, 575.	3.5	8

#	Article	IF	CITATIONS
240	Progress of small molecular inhibitors in the development of anti-influenza virus agents. Theranostics, 2017, 7, 826-845.	10.0	61
241	Immune Human Antibody Libraries for Infectious Diseases. Advances in Experimental Medicine and Biology, 2017, 1053, 61-78.	1.6	4
242	Engineered Cationic Antimicrobial Peptides Containing Cholesterol Interacting Motifs to Target Viral Envelopes. Journal of Antivirals & Antiretrovirals, 2017, 09, .	0.1	1
243	Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor. International Journal of Nanomedicine, 2017, Volume 12, 2645-2656.	6.7	28
244	Three amino acid substitutions in the NS1 protein change the virus replication of H5N1 influenza virus in human cells. Virology, 2018, 519, 64-73.	2.4	16
245	Simultaneous detection of eight avian influenza A virus subtypes by multiplex reverse transcription-PCR using a GeXP analyser. Scientific Reports, 2018, 8, 6183.	3.3	8
246	Sweep Dynamics (SD) plots: Computational identification of selective sweeps to monitor the adaptation of influenza A viruses. Scientific Reports, 2018, 8, 373.	3.3	16
247	Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015. Archives of Virology, 2018, 163, 1219-1230.	2.1	7
248	Human influenza virus detection using sialyllactose-functionalized organic electrochemical transistors. Sensors and Actuators B: Chemical, 2018, 260, 635-641.	7.8	70
249	1918 influenza virus: 100 years on, are we prepared against the next influenza pandemic?. Nature Reviews Microbiology, 2018, 16, 61-62.	28.6	25
250	A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles. Vaccine, 2018, 36, 873-880.	3.8	31
251	Large-scale sequence analysis reveals novel human-adaptive markers in PB2 segment of seasonal influenza A viruses. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	13
252	Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	32
253	Nucleosides for the treatment of respiratory RNA virus infections. Antiviral Chemistry and Chemotherapy, 2018, 26, 204020661876448.	0.6	113
254	Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation. Journal of Proteome Research, 2018, 17, 1474-1484.	3.7	17
255	Uncompromised NK cell activation is essential for virus-specific CTL activity during acute influenza virus infection. Cellular and Molecular Immunology, 2018, 15, 827-837.	10.5	29
256	Determinant of receptor-preference switch in influenza hemagglutinin. Virology, 2018, 513, 98-107.	2.4	11
257	Characterization of the neuraminidase genes from human influenza A viruses circulating in Iran from 2010 to 2015. Archives of Virology, 2018, 163, 391-400.	2.1	3

ARTICLE IF CITATIONS # Purification of influenza virusâ€like particles using sulfated cellulose membrane adsorbers. Journal of 258 3.2 30 Chemical Technology and Biotechnology, 2018, 93, 1988-1996. Stabilization of sialyl cation in axial conformation assisted by remote acyl groups. Russian Chemical 259 1.5 Bulletin, 2018, 67, 1573-1579. Antiviral resistance markers in influenza virus sequences in Mexico, 2000–2017. Infection 260 2.7 13 and Drug Resistance, 2018, Volume 11, 1751-1756. Modulation of Innate Immune Responses by the Influenza A NS1 and PA-X Proteins. Viruses, 2018, 10, 708. Antiviral Activities of Mulberry (<i>Morus alba</i>) Juice and Seed against Influenza Viruses. 262 1.2 28 Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-10. Influenza Virusâ€"Host Co-evolution. A Predator-Prey Relationship?. Frontiers in Immunology, 2018, 9, 4.8 2017. Canine Influenza Virus is Mildly Restricted by Canine Tetherin Protein. Viruses, 2018, 10, 565. 264 3.3 3 Dusting for flu's fingerprints. Nature Microbiology, 2018, 3, 1196-1197. 13.3 265 266 Influenza Virus. Methods in Molecular Biology, 2018, , . 0.9 10 Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses, 2018, 10, 497. 3.3 Impact of Mutations in the Hemagglutinin of H10N7 Viruses Isolated from Seals on Virus Replication in 268 3.3 9 Avian and Human Cells. Viruses, 2018, 10, 83. Software for Characterizing the Antigenic and Genetic Evolution of Human Influenza Viruses. 0.9 Methods in Molecular Biology, 2018, 1836, 551-565. 270 Influenza. Nature Reviews Disease Primers, 2018, 4, 3. 30.5 880 A longitudinal ecological study of seasonal influenza deaths in relation to climate conditions in the 0.8 United States from 1999 through 2011. Infection Ecology and Epidemiology, 2018, 8, 1474708. Structurally Diverse Polyketides From the Mangrove-Derived Fungus Diaporthe sp. SCSIO 41011 With 273 43 3.6 Their Anti-influenza A Virus Activities. Frontiers in Chemistry, 2018, 6, 282. Influenza Virus Infection Model With Density Dependence Supports Biphasic Viral Decay. Frontiers in 274 Microbiology, 2018, 9, 1554. Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have 275 4.4 11 Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines, 2018, 6, 35. Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines. 276 Frontiers in Cellular and Infection Microbiology, 2018, 8, 91.

	CHAILON N		
#	Article	IF	Citations
277	Host Immune Response to Influenza A Virus Infection. Frontiers in Immunology, 2018, 9, 320.	4.8	321
278	Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Frontiers in Immunology, 2018, 9, 323.	4.8	59
279	Novel Platforms for the Development of a Universal Influenza Vaccine. Frontiers in Immunology, 2018, 9, 600.	4.8	85
280	Passive immunization with influenza haemagglutinin specific monoclonal antibodies. Human Vaccines and Immunotherapeutics, 2018, 14, 1-9.	3.3	7
281	Atomistic simulations indicate the functional loop-to-coiled-coil transition in influenza hemagglutinin is not downhill. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7905-E7913.	7.1	16
282	Mutations Conferring Increased Sensitivity to Tripartite Motif 22 Restriction Accumulated Progressively in the Nucleoprotein of Seasonal Influenza A (H1N1) Viruses between 1918 and 2009. MSphere, 2018, 3, .	2.9	14
283	Emergence and Evolution of Novel Reassortant Influenza A Viruses in Canines in Southern China. MBio, 2018, 9, .	4.1	41
284	Kallikrein-related peptidase 5 and seasonal influenza viruses, limitations of the experimental models for activating proteases. Biological Chemistry, 2018, 399, 1053-1064.	2.5	9
285	Protective Antibodies Against Influenza Proteins. Frontiers in Immunology, 2019, 10, 1677.	4.8	74
286	Continuous evolution of influenza A viruses of swine from 2013 to 2015 in Guangdong, China. PLoS ONE, 2019, 14, e0217607.	2.5	19
287	Effective mosaic-based nanovaccines against avian influenza in poultry. Vaccine, 2019, 37, 5051-5058.	3.8	17
288	Metabolites of Seaweeds as Potential Agents for the Prevention and Therapy of Influenza Infection. Marine Drugs, 2019, 17, 373.	4.6	24
289	Highly Sensitive Detection of Influenza A (H1N1) Virus With Silicon Nanonet BioFETs. IEEE Sensors Journal, 2019, 19, 10985-10990.	4.7	13
290	Serological evidence of influenza virus infection in captive wild felids, Thailand. Journal of Veterinary Medical Science, 2019, 81, 1341-1347.	0.9	5
291	An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification. Sensors and Actuators B: Chemical, 2019, 296, 126647.	7.8	60
292	Analysis of influenza data generated by four epidemiological surveillance laboratories in Mexico, 2010–2016. Epidemiology and Infection, 2019, 147, e183.	2.1	20
293	Protective role for the N-terminal domain of α-dystroglycan in Influenza A virus proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11396-11401.	7.1	13
294	Structures and functions linked to genome-wide adaptation of human influenza A viruses. Scientific Reports, 2019, 9, 6267.	3.3	4

#	Article	IF	CITATIONS
295	Endoplasmic reticulum-associated degradation potentiates the infectivity of influenza A virus by regulating the host redox state. Free Radical Biology and Medicine, 2019, 135, 293-305.	2.9	16
296	RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathogens, 2019, 15, e1007601.	4.7	26
297	Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Frontiers in Immunology, 2019, 10, 531.	4.8	95
298	Weak Multivalent Binding of Influenza Hemagglutinin Nanoparticles at a Sialoglycan-Functionalized Supported Lipid Bilayer. ACS Nano, 2019, 13, 3413-3423.	14.6	45
299	Cellular Innate Immunity against PRRSV and Swine Influenza Viruses. Veterinary Sciences, 2019, 6, 26.	1.7	29
300	Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding. Emerging Microbes and Infections, 2019, 8, 327-338.	6.5	34
301	Inhibition of Influenza A Virus Replication by TRIM14 via Its Multifaceted Protein–Protein Interaction With NP. Frontiers in Microbiology, 2019, 10, 344.	3.5	39
302	One-step multiplex RT-qPCR for the detection and subtyping of influenza A virus in swine in Brazil. Journal of Virological Methods, 2019, 269, 43-48.	2.1	3
303	Molecular influenza surveillance at a tertiary university hospital during four consecutive seasons (2012–2016) in Catalonia, Spain. Vaccine, 2019, 37, 2470-2476.	3.8	4
304	Ifenprodil and Flavopiridol Identified by Genomewide RNA Interference Screening as Effective Drugs To Ameliorate Murine Acute Lung Injury after Influenza A H5N1 Virus Infection. MSystems, 2019, 4, .	3.8	12
305	Avian-to-Human Receptor-Binding Adaptation of Avian H7N9 Influenza Virus Hemagglutinin. Cell Reports, 2019, 29, 2217-2228.e5.	6.4	27
306	Comparative Pathogenicity and Transmissibility of Pandemic H1N1, Avian H5N1, and Human H7N9 Influenza Viruses in Tree Shrews. Frontiers in Microbiology, 2019, 10, 2955.	3.5	13
307	Viral Fitness Landscapes in Diverse Host Species Reveal Multiple Evolutionary Lines for the NS1 Gene of Influenza A Viruses. Cell Reports, 2019, 29, 3997-4009.e5.	6.4	13
308	Avian influenza viruses in humans: lessons from past outbreaks. British Medical Bulletin, 2019, 132, 81-95.	6.9	85
309	Smartphone-Based Point-of-Care Microfluidic Platform Fabricated with a ZnO Nanorod Template for Colorimetric Virus Detection. ACS Sensors, 2019, 4, 3298-3307.	7.8	73
310	Rule-based meta-analysis reveals the major role of PB2 in influencing influenza A virus virulence in mice. BMC Genomics, 2019, 20, 973.	2.8	6
311	Real-time dissection of dynamic uncoating of individual influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2577-2582.	7.1	67
312	Quantum Dot Based Biotracking and Biodetection. Analytical Chemistry, 2019, 91, 532-547.	6.5	58

#	Article	IF	CITATIONS
313	Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annual Review of Animal Biosciences, 2020, 8, 247-267.	7.4	7
314	Microbial source tracking (MST) in Chattahoochee River National Recreation Area: Seasonal and precipitation trends in MST marker concentrations, and associations with E.Âcoli levels, pathogenic marker presence, and land use. Water Research, 2020, 171, 115435.	11.3	30
315	Influenza A virus infection induces indoleamine 2,3-dioxygenase (IDO) expression and modulates subsequent inflammatory mediators in nasal epithelial cells. Acta Oto-Laryngologica, 2020, 140, 149-156.	0.9	9
316	Modulation of Immune Responses to Influenza A Virus Vaccines by Natural Killer T Cells. Frontiers in Immunology, 2020, 11, 2172.	4.8	13
317	Age-Dependent Glycomic Response to the 2009 Pandemic H1N1 Influenza Virus and Its Association with Disease Severity. Journal of Proteome Research, 2020, 19, 4486-4495.	3.7	12
318	Design and synthesis of pinane oxime derivatives as novel anti-influenza agents. Bioorganic Chemistry, 2020, 102, 104106.	4.1	5
319	Comparative Analyses of the Antiviral Activities of IgG and IgA Antibodies to Influenza A Virus M2 Protein. Viruses, 2020, 12, 780.	3.3	5
320	Cell-penetrating peptide-mediated cell entry of H5N1 highly pathogenic avian influenza virus. Scientific Reports, 2020, 10, 18008.	3.3	6
321	Truncation or Deglycosylation of the Neuraminidase Stalk Enhances the Pathogenicity of the H5N1 Subtype Avian Influenza Virus in Mallard Ducks. Frontiers in Microbiology, 2020, 11, 583588.	3.5	5
322	Neuroimaging in Zoonotic Outbreaks Affecting the Central Nervous System: Are We Fighting the Last War?. American Journal of Neuroradiology, 2020, 41, 1760-1767.	2.4	7
323	Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. Biosafety and Health, 2020, 2, 64-70.	2.7	7
324	Molecular Epidemiology and Vaccine Compatibility Analysis of Seasonal Influenza Viruses in Wuhan, 2016–2019. Virologica Sinica, 2020, 35, 556-565.	3.0	1
325	Dynamic interactions of influenza viruses in Hong Kong during 1998-2018. PLoS Computational Biology, 2020, 16, e1007989.	3.2	26
326	Pathological and Molecular Characterization of H5 Avian Influenza Virus in Poultry Flocks from Egypt over a Ten-Year Period (2009–2019). Animals, 2020, 10, 1010.	2.3	5
327	The humanized DRAGA mouse (HLA-A2. HLA-DR4. RAG1 KO. IL-2R g c KO. NOD) establishes inducible and transmissible models for influenza type A infections. Human Vaccines and Immunotherapeutics, 2020, 16, 2222-2237.	3.3	9
328	Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Advances, 2020, 4, 2967-2978.	5.2	45
329	Live Visualization of Hemagglutinin Dynamics during Infection by Using a Novel Reporter Influenza A Virus. Viruses, 2020, 12, 687.	3.3	2
330	Oral Supplementation of the Vitamin D Metabolite 25(OH)D3 Against Influenza Virus Infection in Mice. Nutrients, 2020, 12, 2000.	4.1	24

#	Article	IF	Citations
331	Protein-based Smart Microtubes and Nanotubes as Ultrasmall Biomaterials. Chemistry Letters, 2020, 49, 1245-1255.	1.3	14
332	Effectiveness of favipiravir (T-705) against wild-type and oseltamivir-resistant influenza B virus in mice. Virology, 2020, 545, 1-9.	2.4	16
333	Potential Role of Nonneutralizing IgA Antibodies in Cross-Protective Immunity against Influenza A Viruses of Multiple Hemagglutinin Subtypes. Journal of Virology, 2020, 94, .	3.4	25
334	Glycosylation as a tool for rational vaccine design. Biotechnology and Bioengineering, 2020, 117, 2556-2570.	3.3	15
335	Upregulation of miR-101 during Influenza A Virus Infection Abrogates Viral Life Cycle by Targeting mTOR Pathway. Viruses, 2020, 12, 444.	3.3	11
336	Hide and seek: interplay between influenza viruses and B cells. International Immunology, 2020, 32, 605-611.	4.0	4
337	Selective and ATP ompetitive kinesin KIF18A inhibitor suppresses the replication of influenza A virus. Journal of Cellular and Molecular Medicine, 2020, 24, 5463-5475.	3.6	7
338	Complement-Independent Modulation of Influenza A Virus Infection by Factor H. Frontiers in Immunology, 2020, 11, 355.	4.8	12
339	Molecular evolution and characterization of hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 viruses isolated in Beijing, China, during the 2017–2018 and 2018–2019 influenza seasons. Archives of Virology, 2021, 166, 179-189.	2.1	8
340	Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunology, 2021, 14, 14-25.	6.0	34
341	DDX3X coordinates host defense against influenza virus by activating the NLRP3 inflammasome and type I interferon response. Journal of Biological Chemistry, 2021, 296, 100579.	3.4	35
342	The first decade of research advances in influenza D virus. Journal of General Virology, 2021, 102, .	2.9	22
343	Identifying novel amino acid substitutions of hemagglutinin involved in virulence enhancement in H7N9 virus strains. Virology Journal, 2021, 18, 14.	3.4	2
344	Feral swine as sources of fecal contamination in recreational waters. Scientific Reports, 2021, 11, 4212.	3.3	6
345	Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. International Journal of Biological Macromolecules, 2021, 172, 524-541.	7.5	123
346	Developmental Landscape of Potential Vaccine Candidates Based on Viral Vector for Prophylaxis of COVID-19. Frontiers in Molecular Biosciences, 2021, 8, 635337.	3.5	22
347	Downregulation of microRNA‑221 facilitates H1N1 influenzaÂA virus replication through suppression of type‑IFN response by targeting the SOCS1/NF‑κB pathway. Molecular Medicine Reports, 2021, 24, .	2.4	6
348	Phenotypic and Functional Characteristics of a Novel Influenza Virus Hemagglutinin-Specific Memory NK Cell. Journal of Virology, 2021, 95, .	3.4	8

#	Article	IF	CITATIONS
349	Multichannel Immunosensor Platform for the Rapid Detection of SARS-CoV-2 and Influenza A(H1N1) Virus. ACS Applied Materials & Interfaces, 2021, 13, 22262-22270.	8.0	41
350	A Semiquantitative Scoring System for Histopathological and Immunohistochemical Assessment of Lesions and Tissue Tropism in Avian Influenza. Viruses, 2021, 13, 868.	3.3	19
351	Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses, 2021, 13, 828.	3.3	74
352	Microbial and Viral Indicators of Pathogens and Human Health Risks from Recreational Exposure to Waters Impaired by Fecal Contamination. Journal of Sustainable Water in the Built Environment, 2021, 7, .	1.6	17
353	CMAS and ST3GAL4 Play an Important Role in the Adsorption of Influenza Virus by Affecting the Synthesis of Sialic Acid Receptors. International Journal of Molecular Sciences, 2021, 22, 6081.	4.1	8
354	Genetic characterisation of the influenza viruses circulating in Bulgaria during the 2019–2020 winter season. Virus Genes, 2021, 57, 401-412.	1.6	6
356	Long Noncoding RNA IFITM4P Regulates Host Antiviral Responses by Acting as a Competing Endogenous RNA. Journal of Virology, 2021, 95, e0027721.	3.4	23
357	Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity. ELife, 2021, 10, .	6.0	34
358	Co-circulation of multiple influenza A reassortants in swine harboring genes from seasonal human and swine influenza viruses. ELife, 2021, 10, .	6.0	16
359	Predicting virologically confirmed influenza using school absences in Allegheny County, Pennsylvania, USA during the 2007â€2015 influenza seasons. Influenza and Other Respiratory Viruses, 2021, 15, 757-766.	3.4	2
360	Development of 6E3 antibody-mediated SERS immunoassay for drug-resistant influenza virus. Biosensors and Bioelectronics, 2021, 187, 113324.	10.1	16
361	In situ growth of photocatalytic Ag-decorated β-Bi2O3/Bi2O2.7 heterostructure film on PVC polymer matrices with self-cleaning and antibacterial properties. Chemical Engineering Journal, 2022, 429, 131058.	12.7	13
362	Dynamic Dissection of Dynein and Kinesin-1 Cooperatively Mediated Intercellular Transport of Porcine Epidemic Diarrhea Coronavirus along Microtubule Using Single Virus Tracking. Virulence, 2021, 12, 615-629.	4.4	13
364	Targeting the Skin for Microneedle Delivery of Influenza Vaccine. Advances in Experimental Medicine and Biology, 2013, 785, 121-132.	1.6	33
365	Sex Differences in Influenza Virus Infection, Vaccination, and Therapies. , 2015, , 183-210.		8
366	Efficacy of Probiotics in Prevention of Influenza. Microbiology Monographs, 2015, , 131-147.	0.6	2
367	MicroRNA-21-3p modulates FGF2 to facilitate influenza A virus H5N1 replication by refraining type I interferon response. Bioscience Reports, 2020, 40, .	2.4	9
368	A molecular modelling approach to understand the effect of co-evolutionary mutations (V344M,) Tj ETQq1 1 0.74	84314 rgB 2.9	T /Overlock

#	Article	IF	CITATIONS
369	A single cycle influenza virus coated in H7 haemagglutinin generates neutralizing antibody responses to haemagglutinin and neuraminidase glycoproteins and protection from heterotypic challenge. Journal of General Virology, 2019, 100, 431-445.	2.9	8
371	Hemagglutinin head-specific responses dominate over stem-specific responses following prime boost with mismatched vaccines. JCI Insight, 2019, 4, .	5.0	15
372	Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. Journal of Clinical Investigation, 2015, 125, 1255-1268.	8.2	115
373	Quantitative Description of Glycan-Receptor Binding of Influenza A Virus H7 Hemagglutinin. PLoS ONE, 2013, 8, e49597.	2.5	52
374	Phenotypic Differences in Virulence and Immune Response in Closely Related Clinical Isolates of Influenza A 2009 H1N1 Pandemic Viruses in Mice. PLoS ONE, 2013, 8, e56602.	2.5	16
375	Sphingosine Kinase 1 Serves as a Pro-Viral Factor by Regulating Viral RNA Synthesis and Nuclear Export of Viral Ribonucleoprotein Complex upon Influenza Virus Infection. PLoS ONE, 2013, 8, e75005.	2.5	64
376	Immune Escape Mutants of Highly Pathogenic Avian Influenza H5N1 Selected Using Polyclonal Sera: Identification of Key Amino Acids in the HA Protein. PLoS ONE, 2014, 9, e84628.	2.5	25
377	A Recommended Numbering Scheme for Influenza A HA Subtypes. PLoS ONE, 2014, 9, e112302.	2.5	137
378	An Anti-Influenza Virus Antibody Inhibits Viral Infection by Reducing Nucleus Entry of Influenza Nucleoprotein. PLoS ONE, 2015, 10, e0141312.	2.5	6
379	Protection against H5N1 Influenza Virus Induced by Matrix-M Adjuvanted Seasonal Virosomal Vaccine in Mice Requires Both Antibodies and T Cells. PLoS ONE, 2015, 10, e0145243.	2.5	13
380	NADPH Oxidase 1 Is Associated with Altered Host Survival and T Cell Phenotypes after Influenza A Virus Infection in Mice. PLoS ONE, 2016, 11, e0149864.	2.5	17
381	Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. PLoS ONE, 2016, 11, e0153649.	2.5	25
382	The Human Antimicrobial Protein Bactericidal/Permeability-Increasing Protein (BPI) Inhibits the Infectivity of Influenza A Virus. PLoS ONE, 2016, 11, e0156929.	2.5	16
383	Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS ONE, 2017, 12, e0186244.	2.5	15
384	Cellular hnRNP A2/B1 interacts with the NP of influenza A virus and impacts viral replication. PLoS ONE, 2017, 12, e0188214.	2.5	43
385	Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion. PLoS Pathogens, 2016, 12, e1005446.	4.7	23
386	Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathogens, 2017, 13, e1006650.	4.7	107
387	Introduction to molecular biology of influenza a viruses Acta Biochimica Polonica, 2014, 61, .	0.5	36

#	Article	IF	CITATIONS
388	A universal flu vaccine Acta Biochimica Polonica, 2014, 61, .	0.5	9
389	Indirubin, a bisindole alkaloid from <i>Isatis indigotica</i> , reduces H1N1 susceptibility in stressed mice by regulating MAVS signaling. Oncotarget, 2017, 8, 105615-105629.	1.8	31
390	Targeting vascular leakage in lung inflammation. Oncotarget, 2015, 6, 19338-19339.	1.8	5
391	Protective effects of lactic acid bacteria on influenza A virus infection. AIMS Allergy and Immunology, 2017, 1, 138-142.	0.5	4
392	Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9. Genomics and Informatics, 2020, 18, e40.	0.8	8
393	Interaction of Influenza A/H1N1pdm Virus with Human Neuronal and Ocular Cells. , 0, s2, .		0
394	Introduction to Virology. , 2015, , 963-986.		0
395	Pathogenicity of Duck-Originated H9N2 Influenza Viruses on Chickens. Journal of Vaccines and Immunology, 2016, 2, 023-025.	0.3	0
396	Swine and Avian Influenza Outbreaks in Recent Times. , 2017, , 39-61.		0
398	Krankheitserreger und Infektion. , 0, , 1435-1473.		0
400	Plant-Produced Avian Influenza Antigens. , 2018, , 189-208.		0
405	Influenza y los virus aviar: la amenaza latente de un nuevo virus pandémico. Acta Pediatrica De Mexico, 2019, 40, 154.	0.2	1
406	Genetic and Phylogenetic Characterization of the M Gene of Influenza A Virus Isolated from Iranian Patients. Iranian Journal of Public Health, 0, , .	0.5	0
408	Evaluation of Immune Responses Induced by Co-administration of Recombinant NP-based Influenza H1N1 Vaccine and Hemokinin-1 Adjuvant in BALB/c Mice. Majallah-i DÄnishgÄh-i 'UlÅ«m-i PizishkÄ«-i ĪlÄm, 2019, 27	7, ⁰ 44-53.	0
410	Composition and Dynamics of H1N1 and H7N9 Influenza A Virus Quasispecies in a Co-infected Patient Analyzed by Single Molecule Sequencing Technology. Frontiers in Genetics, 2021, 12, 754445.	2.3	0
411	Determining influenza virus shedding at different time points in madin-darby canine kidney cell line. Cell Journal, 2013, 15, 130-5.	0.2	15
412	Does exposure to poultry and wild fowl confer immunity to H5N1?. Chinese Medical Journal, 2014, 127, 3335-43.	2.3	1
413	Genetic and Phylogenetic Characterization of the M Gene of Influenza A Virus Isolated from Iranian Patients, Iranian Journal of Public Health, 2019, 48, 525-530	0.5	0

#	Article	IF	CITATIONS
414	Comparison of autogenous and commercial H9N2 avian influenza vaccines in a challenge with recent dominant virus. Iranian Journal of Veterinary Research, 2020, 21, 109-114.	0.4	0
415	Characterization of Canine Influenza Virus A (H3N2) Circulating in Dogs in China from 2016 to 2018. Viruses, 2021, 13, 2279.	3.3	1
417	Exhaustive Conformational Search for Sialyl Cation Reveals Possibility of Remote Participation of Acyl Groups. ChemPhysChem, 2022, 23, .	2.1	4
418	New anti-influenza A viral norsesquiterpenoids isolated from feces-residing Streptomyces sp. Fìtoterapìâ, 2022, 157, 105107.	2.2	2
419	RIGI, TLR7, and TLR3 Genes Were Predicted to Have Immune Response Against Avian Influenza in Indigenous Ducks. Frontiers in Molecular Biosciences, 2021, 8, 633283.	3.5	8
420	Broad Spectrum Algae Compounds Against Viruses. Frontiers in Microbiology, 2021, 12, 809296.	3.5	3
421	Broad neutralizing antibody-based strategies to tackle influenza. Current Opinion in Virology, 2022, 53, 101207.	5.4	9
423	MicroRNA-200c-targeted contactin 1 facilitates the replication of influenza A virus by accelerating the degradation of MAVS. PLoS Pathogens, 2022, 18, e1010299.	4.7	12
424	Sequence Matching between Hemagglutinin and Neuraminidase through Sequence Analysis Using Machine Learning. Viruses, 2022, 14, 469.	3.3	1
426	Global Epidemiology of Human Infections With Variant Influenza Viruses, 1959–2021: A Descriptive Study. Clinical Infectious Diseases, 2022, 75, 1315-1323.	5.8	6
427	Avian influenza viruses suppress innate immunity by inducing trans-transcriptional readthrough via SSU72. , 2022, 19, 702-714.		5
428	Uncovering the F-Actin-Based Nuclear Egress Mechanism of Newly Synthesized Influenza A Virus Ribonucleoprotein Complexes by Single-Particle Tracking. Analytical Chemistry, 2022, 94, 5624-5633.	6.5	4
429	Evidence of Influenza A Virus Infection in Cynomolgus Macaques, Thailand. Veterinary Sciences, 2022, 9, 132.	1.7	3
430	Syk Facilitates Influenza A Virus Replication by Restraining Innate Immunity at the Late Stage of Viral Infection. Journal of Virology, 2022, 96, e0020022.	3.4	5
431	RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virology Journal, 2022, 19, 39.	3.4	14
432	A homogeneous high-throughput array for the detection and discrimination of influenza A viruses. CheM, 2022, 8, 1750-1761.	11.7	24
433	Targeted inhibition of the endonuclease activity of influenza polymerase acidic proteins. Future Medicinal Chemistry, 2022, 14, 571-586.	2.3	1
434	Antigenic escape selects for the evolution of higher pathogen transmission and virulence. Nature Ecology and Evolution, 2022, 6, 51-62.	7.8	22

#	Article	IF	CITATIONS
435	Could Interleukin-33 (IL-33) Govern the Outcome of an Equine Influenza Virus Infection? Learning from Other Species. Viruses, 2021, 13, 2519.	3.3	1
437	ТÐ~ПÐ~ЗÐЦÐ~Ð~ÐYУСЕГÐÐ~ППЕПТÐ~Ц МЕТОДОМ ОТ-ПЦÐ. ÃŒzdenìster	, Nadktiž	ieler, 2021,
445	Unique binding pattern for a lineage of human antibodies with broad reactivity against influenza A virus. Nature Communications, 2022, 13, 2378.	12.8	12
446	Toll-like receptor-agonist-based therapies for respiratory viral diseases: thinking outside the cell. European Respiratory Review, 2022, 31, 210274.	7.1	9
447	Genetic and Pathogenic Characterization of Avian Influenza Virus in Migratory Birds between 2015 and 2019 in Central China. Microbiology Spectrum, 2022, 10, .	3.0	7
448	Ursolic acid represses influenza A virus-triggered inflammation and oxidative stress in A549 cells by modulating the miR-34c-5p/TLR5 axis. Cytokine, 2022, 157, 155947.	3.2	9
449	Inhibitory effects of cedar pine needle extract on H9N2 avian influenza virus in vitro and in vivo. Virology, 2022, 574, 25-36.	2.4	0
450	From Clinical Specimen to Whole Genome Sequencing of A(H3N2) Influenza Viruses: A Fast and Reliable High-Throughput Protocol. Vaccines, 2022, 10, 1359.	4.4	3
451	Autoantibodies against type I IFNs in patients with critical influenza pneumonia. Journal of Experimental Medicine, 2022, 219, .	8.5	36
452	Swimming protein microtube motors capture virus-shaped fluorescent nanoparticles. Materials Advances, 2022, 3, 6988-6992.	5.4	0
453	Viral cross-class transmission results in disease of a phytopathogenic fungus. ISME Journal, 2022, 16, 2763-2774.	9.8	8
455	On the evolution of SARS-CoV-2 and the emergence of variants of concern. Trends in Microbiology, 2023, 31, 5-8.	7.7	12
456	A cell free biomembrane platform for multimodal study of influenza virus hemagglutinin and for evaluation of entry-inhibitors against hemagglutinin. Frontiers in Molecular Biosciences, 0, 9, .	3.5	2
457	CRISPR/Cas13a combined with hybridization chain reaction for visual detection of influenza A (H1N1) virus. Analytical and Bioanalytical Chemistry, 2022, 414, 8437-8445.	3.7	14
459	H1N1 Influenza A Virus Protein NS2 Inhibits Innate Immune Response by Targeting IRF7. Viruses, 2022, 14, 2411.	3.3	8
460	Axin1: A novel scaffold protein joins the antiviral network of interferon. Molecular Microbiology, 2022, 118, 731-743.	2.5	5
461	Antiviral Potential of Natural Resources against Influenza Virus Infections. Viruses, 2022, 14, 2452.	3.3	13
463	Discrimination of influenza A virus subtypes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. International Journal of Mass Spectrometry, 2023, 484, 116979.	1.5	0

~		~	
(11		REPO	דסר
\sim	IAL	IL PU	ואכ

#	ARTICLE	IF	CITATIONS
464	Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nature Communications, 2022, 13, .	12.8	4
465	Antiviral Activities of Ethyl Pheophorbides a and b Isolated from Aster pseudoglehnii against Influenza Viruses. Molecules, 2023, 28, 41.	3.8	2
466	Pathogen Exposure in White Whales (Delphinapterus leucas) in Svalbard, Norway. Pathogens, 2023, 12, 58.	2.8	3
467	Alloferon and Zanamivir Show Effective Antiviral Activity against Influenza A Virus (H1N1) Infection In Vitro and In Vivo. International Journal of Molecular Sciences, 2023, 24, 678.	4.1	5
468	Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2. Genomics and Informatics, 2022, 20, e46.	0.8	2
469	Detection of Harmful Microbes. , 2023, , 453-491.		0
470	Polymers for Biosensing Applications in Viral Detection and Diagnosis. , 2023, , 193-217.		0
471	One Health—Key to Adequate Intervention Measures against Zoonotic Risks. Pathogens, 2023, 12, 415.	2.8	1
472	When influenza viruses donâ \in $^{\mathrm{M}}$ t play well with others. Nature, 0, , .	27.8	0
473	Nanopore single-molecule analysis of biomarkers: Providing possible clues to disease diagnosis. TrAC - Trends in Analytical Chemistry, 2023, 162, 117060.	11.4	5
474	Detection of reassortant influenza B strains from 2004 to 2015 seasons in Barcelona (Catalonia,) Tj ETQq0 0 0 r	gBT <i> </i> Overl	ock 10 Tf 50
475	Microbiota composition in the lower respiratory tract is associated with severity in patients with acute respiratory distress by influenza. Virology Journal, 2023, 20, .	3.4	5
476	Differential Loss of OAS Genes Indicates Diversification of Antiviral Immunity in Mammals. Vaccines, 2023, 11, 419.	4.4	1
477	Characterizing a century of genetic diversity and contemporary antigenic diversity of N1 neuraminidase in influenza A virus from North American swine. Virus Evolution, 2023, 9, .	4.9	3
478	Preclinical Study of ZSP1273, a Potent Antiviral Inhibitor of Cap Binding to the PB2 Subunit of Influenza A Polymerase. Pharmaceuticals, 2023, 16, 365.	3.8	3
479	Influenza A virus reassortment is strain dependent. PLoS Pathogens, 2023, 19, e1011155.	4.7	3
480	Surveillance and Phylogenetic Characterisation of Avian Influenza Viruses Isolated from Wild Waterfowl in Zambia in 2015, 2020, and 2021. Transboundary and Emerging Diseases, 2023, 2023, 1-16.	3.0	1
481	Therapeutic potential of salicylamide derivatives for combating viral infections. Medicinal Research Reviews, 2023, 43, 897-931.	10.5	2

#	Article	IF	CITATIONS
482	MutaGAN: A sequence-to-sequence GAN framework to predict mutations of evolving protein populations. Virus Evolution, 2023, 9, .	4.9	0
484	Smartphone-based diagnostics for biosensing infectious human pathogens. Progress in Biophysics and Molecular Biology, 2023, 180-181, 120-130.	2.9	2
485	Transcriptome-wide 5-methylcytosine modification profiling of long non-coding RNAs in A549 cells infected with H1N1 influenza A virus. BMC Genomics, 2023, 24, .	2.8	1
486	Evolution of Avian Influenza Virus (H3) with Spillover into Humans, China. Emerging Infectious Diseases, 2023, 29, .	4.3	6
487	Electrochemical Microarray as a Rapid Tool for Identification of Mutations in Influenza Virus Genes. International Journal of Electrochemical Science, 2015, 10, 9952-9967.	1.3	1
489	Evaluation of a novel real-time polymerase chain reaction assay for identifying H3 equine influenza virus in Kazakhstan. Veterinary World, 2023, , 1682-1689.	1.7	0
490	Integration of refining and in situ growth of silver nanoparticles for improving the antibacterial and antiviral performance of plant fibers. Cellulose, 0, , .	4.9	0
491	Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets. Nature Communications, 2023, 14, .	12.8	3
492	An immune-enhanced multivalent DNA nanovaccine to prevent H7 and H9 avian influenza virus in mice. International Journal of Biological Macromolecules, 2023, 251, 126286.	7.5	0
493	Multipotent Antiviral Effects of Deacetylated Chitosan Supplemented with Grapefruit Seed Extract against Influenza and Parainfluenza Viruses. Applied Sciences (Switzerland), 2023, 13, 9938.	2.5	1
495	A nomogram based on the expression level of angiopoietin-like 4 to predict the severity of community-acquired pneumonia. BMC Infectious Diseases, 2023, 23, .	2.9	0
496	ZBP1 Drives IAV-Induced NLRP3 Inflammasome Activation and Lytic Cell Death, PANoptosis, Independent of the Necroptosis Executioner MLKL. Viruses, 2023, 15, 2141.	3.3	0
497	Global Prevalence and Hemagglutinin Evolution of H7N9 Avian Influenza Viruses from 2013 to 2022. Viruses, 2023, 15, 2214.	3.3	1
498	Influenza virus cell entry and targeted antiviral development. Journal of Medical Virology, 2023, 95, .	5.0	0
499	Evolution of Influenza A(H3N2) Viruses in 2 Consecutive Seasons of Genomic Surveillance, 2021–2023. Open Forum Infectious Diseases, 2023, 10, .	0.9	0
500	Roles and functions of IAV proteins in host immune evasion. Frontiers in Immunology, 0, 14, .	4.8	0
501	Avian influenza and gut microbiome in poultry and humans: A "One Health'' perspective. Fundamental Research, 2023, , .	3.3	0
502	Synthesis of sialyl halides with various acyl protective groups. Carbohydrate Research, 2024, 536, 109033.	2.3	0

#	ARTICLE	IF	CITATIONS
503	The glycobiology of microbial infectious disease. , 2024, , 285-322.		0
504	Circulation of abnormal isolates of H13 subtype influenza virus among wild water birds. Veterynarna Medytsyna, 2023, , 5-10.	0.1	0
506	Application of the zebrafish model in human viral research. Virus Research, 2024, 341, 199327.	2.2	0
507	Real-Time Dissection of the Exosome Pathway for Influenza Virus Infection. ACS Nano, 2024, 18, 4507-4519.	14.6	0
508	Outlining recent updates on influenza therapeutics and vaccines: A comprehensive review. Vaccine: X, 2024, 17, 100452.	2.1	0
509	Discovery of cyperenoic acid as a potent and novel entry inhibitor of influenza A virus. Antiviral Research, 2024, 223, 105822.	4.1	0
510	Highly pathogenic avian influenza virus H5N1 clade 2.3.4.4b from Peru forms a monophyletic group with Chilean isolates in South America. Scientific Reports, 2024, 14, .	3.3	0
511	Transmission restriction and genomic evolution co-shape the genetic diversity patterns of influenza A virus. Virologica Sinica, 2024, , .	3.0	О