CCL2 recruits inflammatory monocytes to facilitate bre

Nature

475, 222-225

DOI: 10.1038/nature10138

Citation Report

#	Article	IF	CITATIONS
1	Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011, 147, 275-292.	13.5	3,143
2	Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 2011, 29, 1005-1010.	9.4	697
3	Cross-Talk of Breast Cancer Cells with the Immune System. , 0, , .		4
4	Location, location, location. Nature Reviews Cancer, 2011, 11, 462-463.	12.8	1
5	Molecular mechanisms of cancer development in obesity. Nature Reviews Cancer, 2011, 11, 886-895.	12.8	733
6	Homeostatic chemokine receptors and organ-specific metastasis. Nature Reviews Immunology, 2011, 11, 597-606.	10.6	487
7	Protective and pathogenic functions of macrophage subsets. Nature Reviews Immunology, 2011, 11, 723-737.	10.6	4,050
8	Tumor Entrained Neutrophils Inhibit Seeding in the Premetastatic Lung. Cancer Cell, 2011, 20, 300-314.	7.7	639
9	Macrophage Binding to Receptor VCAM-1 Transmits Survival Signals in Breast Cancer Cells that Invade the Lungs. Cancer Cell, 2011, 20, 538-549.	7.7	493
10	The therapeutic role of endothelial progenitor cells in Type 1 diabetes mellitus. Regenerative Medicine, 2011, 6, 599-605.	0.8	6
11	Innate Immune Cells in Breast Cancer $\hat{a} \in \text{``From Villains to Heroes?.}$ Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 189-203.	1.0	26
12	The Colorectal Tumor Microenvironment: The Next Decade. Cancer Microenvironment, 2011, 4, 181-185.	3.1	20
13	CCL2: A potential prognostic marker and target of antiâ€inflammatory strategy in HIV/AIDS pathogenesis. European Journal of Immunology, 2011, 41, 3412-3418.	1.6	52
14	Monocytes link atherosclerosis and cancer. European Journal of Immunology, 2011, 41, 2519-2522.	1.6	31
15	Cancerâ€promoting tumorâ€associated macrophages: New vistas and open questions. European Journal of Immunology, 2011, 41, 2522-2525.	1.6	179
16	Novel approach to inhibiting chemokine function. EMBO Molecular Medicine, 2011, 3, 510-512.	3.3	7
17	Immune microenvironments in solid tumors: new targets for therapy. Genes and Development, 2011, 25, 2559-2572.	2.7	277
18	Microarray and Proteomic Analysis of Breast Cancer Cell and Osteoblast Co-cultures. Journal of Biological Chemistry, 2011, 286, 34271-34285.	1.6	56

#	ARTICLE	IF	Citations
19	Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	108
20	Bioengineering Embryonic Stem Cell Microenvironments for the Study of Breast Cancer. International Journal of Molecular Sciences, 2011, 12, 7662-7691.	1.8	9
21	Stromal Cell Contribution to Human Follicular Lymphoma Pathogenesis. Frontiers in Immunology, 2012, 3, 280.	2.2	46
22	Molecular Pathways: VCAM-1 as a Potential Therapeutic Target in Metastasis. Clinical Cancer Research, 2012, 18, 5520-5525.	3.2	121
23	Basal-like Breast Cancer Cells Induce Phenotypic and Genomic Changes in Macrophages. Molecular Cancer Research, 2012, 10, 727-738.	1.5	86
24	Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection. Infection and Immunity, 2012, 80, 4099-4105.	1.0	23
25	The Synthetic Triterpenoid CDDO-Methyl Ester Delays Estrogen Receptor–Negative Mammary Carcinogenesis in Polyoma Middle T Mice. Cancer Prevention Research, 2012, 5, 726-734.	0.7	41
26	Why the stroma matters in breast cancer. Cell Adhesion and Migration, 2012, 6, 249-260.	1.1	196
27	Src, p130Cas, and Mechanotransduction in Cancer Cells. Genes and Cancer, 2012, 3, 394-401.	0.6	28
28	RhoGDI2 suppresses bladder cancer metastasis via reduction of inflammation in the tumor microenvironment. Oncolmmunology, 2012, 1, 1175-1177.	2.1	35
29	Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adhesion and Migration, 2012, 6, 193-203.	1.1	52
30	Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2491-2496.	3.3	547
31	Dietary Cholecalciferol and Calcium Levels in a Western-Style Defined Rodent Diet Alter Energy Metabolism and Inflammatory Responses in Mice,. Journal of Nutrition, 2012, 142, 859-865.	1.3	32
32	CCL2/CCR2 Chemokine Signaling Coordinates Survival and Motility of Breast Cancer Cells through Smad3 Protein- and p42/44 Mitogen-activated Protein Kinase (MAPK)-dependent Mechanisms. Journal of Biological Chemistry, 2012, 287, 36593-36608.	1.6	165
33	Suppression of Vaccine Immunity by Inflammatory Monocytes. Journal of Immunology, 2012, 189, 5612-5621.	0.4	36
34	Opposing Roles for Complement Component C5a in Tumor Progression and the Tumor Microenvironment. Journal of Immunology, 2012, 189, 2985-2994.	0.4	77
35	Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncolmmunology, 2012, 1, 1135-1145.	2.1	66
36	Sphingosine-1-Phosphate Produced by Sphingosine Kinase 1 Promotes Breast Cancer Progression by Stimulating Angiogenesis and Lymphangiogenesis. Cancer Research, 2012, 72, 726-735.	0.4	274

#	Article	IF	Citations
37	CCL2 Mediates Cross-talk between Cancer Cells and Stromal Fibroblasts That Regulates Breast Cancer Stem Cells. Cancer Research, 2012, 72, 2768-2779.	0.4	342
38	"Dead Cells Talking― The Silent Form of Cell Death Is Not so Quiet. Biochemistry Research International, 2012, 2012, 1-8.	1.5	20
39	Stromal Adipocyte Enhancer-binding Protein (AEBP1) Promotes Mammary Epithelial Cell Hyperplasia via Proinflammatory and Hedgehog Signaling. Journal of Biological Chemistry, 2012, 287, 39171-39181.	1.6	30
40	Importance of chemokine (CC-motif) ligand 2 in breast cancer. International Journal of Biological Markers, 2012, 27, 179-185.	0.7	54
41	Monocytes in health and disease â€" Minireview. European Journal of Microbiology and Immunology, 2012, 2, 97-102.	1.5	68
43	Autophagy is required for CSF-1–induced macrophagic differentiation and acquisition of phagocytic functions. Blood, 2012, 119, 4527-4531.	0.6	123
44	CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood, 2012, 120, 613-625.	0.6	410
45	Seed, soil and secreted hormones: Potential interactions of breast cancer cells with their endocrine/paracrine microenvironment and implications for treatment with bisphosphonates. Cancer Treatment Reviews, 2012, 38, 877-889.	3.4	41
46	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	10.6	3,002
47	The Initial Hours of Metastasis: The Importance of Cooperative Host–Tumor Cell Interactions during Hematogenous Dissemination. Cancer Discovery, 2012, 2, 1091-1099.	7.7	394
48	The pros and cons of chemokines in tumor immunology. Trends in Immunology, 2012, 33, 496-504.	2.9	101
49	Tissue factor proangiogenic signaling in cancer progression. Thrombosis Research, 2012, 129, S127-S131.	0.8	27
50	New tricks for metastasis-associated macrophages. Breast Cancer Research, 2012, 14, 316.	2.2	23
51	Battle over CCL2 for control of the metastatic niche: neutrophils versus monocytes. Breast Cancer Research, 2012, 14, 315.	2.2	14
52	Rab27a Supports Exosome-Dependent and -Independent Mechanisms That Modify the Tumor Microenvironment and Can Promote Tumor Progression. Cancer Research, 2012, 72, 4920-4930.	0.4	527
53	Loss of Cutaneous TSLP-Dependent Immune Responses Skews the Balance of Inflammation from Tumor Protective to Tumor Promoting. Cancer Cell, 2012, 22, 479-493.	7.7	118
54	Immune Tolerance to Tumor Antigens Occurs in a Specialized Environment of the Spleen. Cell Reports, 2012, 2, 628-639.	2.9	196
55	Tissue factor and cancer. Thrombosis Research, 2012, 130, S84-S87.	0.8	60

#	ARTICLE	IF	CITATIONS
56	Potential anticancer therapiesvia CXCL5 and its receptors. Expert Review of Clinical Pharmacology, 2012, 5, 347-350.	1.3	4
57	S100A7 Enhances Mammary Tumorigenesis through Upregulation of Inflammatory Pathways. Cancer Research, 2012, 72, 604-615.	0.4	103
58	Turn Off the IDO: Will Clinical Trials Be Successful?. Cancer Discovery, 2012, 2, 673-675.	7.7	12
59	RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. Journal of Clinical Investigation, 2012, 122, 1503-1518.	3.9	133
60	Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 2012, 33, 119-126.	2.9	721
61	Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine, 2012, 59, 423-432.	1.4	58
62	Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge. BMC Bioinformatics, 2012, 13, 46.	1.2	8
63	Macrophages and angiogenesis: a role for Wnt signaling. Vascular Cell, 2012, 4, 13.	0.2	73
64	The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 434-442.	3.3	64
65	Hallmarks of cancer: of all cancer cells, all the time?. Trends in Molecular Medicine, 2012, 18, 509-515.	3.5	110
66	Chemokine Binding Protein vCCI Attenuates Vaccinia Virus Without Affecting the Cellular Response Elicited by Immunization with a Recombinant Vaccinia Vector Carrying the HPV16 E7 Gene. Viral Immunology, 2012, 25, 411-422.	0.6	3
67	CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncology Reports, 2012, 28, 689-694.	1.2	43
68	The Role of Bone Marrow-Derived Progenitor Cells in Tumor Growth and Angiogenesis. Stem Cells and Cancer Stem Cells, 2012, , 45-54.	0.1	1
69	Dynamic Education of Macrophages in Different Areas of Human Tumors. Cancer Microenvironment, 2012, 5, 195-201.	3.1	36
70	Xenotransplanted Human Prostate Carcinoma (DU145) Cells Develop into Carcinomas and Cribriform Carcinomas: Ultrastructural Aspects. Ultrastructural Pathology, 2012, 36, 294-311.	0.4	9
72	Angiotensin II Facilitates Breast Cancer Cell Migration and Metastasis. PLoS ONE, 2012, 7, e35667.	1.1	84
73	Activating Mutations in \hat{I}^2 -Catenin in Colon Cancer Cells Alter Their Interaction with Macrophages; the Role of Snail. PLoS ONE, 2012, 7, e45462.	1.1	45
74	Tumor Angiogenesis: Pericytes and Maturation Are Not to Be Ignored. Journal of Oncology, 2012, 2012, 1-10.	0.6	36

#	ARTICLE	lF	Citations
75	Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation, 2012, 122, 787-795.	3.9	4,755
76	Tumor-infiltrating macrophages, cancer stem cells and therapeutic responses. Oncotarget, 2012, 3, 1497-1498.	0.8	2
77	Regulation of Macrophage and Dendritic Cell Responses by Their Lineage Precursors. Journal of Innate Immunity, 2012, 4, 411-423.	1.8	15
78	Monocyte Subsets and Their Role in Tumor Progression. , 0, , .		4
79	The chemokine system and cancer. Journal of Pathology, 2012, 226, 148-157.	2.1	355
80	The proâ€metastatic role of bone marrowâ€derived cells: a focus on MSCs and regulatory T cells. EMBO Reports, 2012, 13, 412-422.	2.0	41
81	CCR2 Antagonists for the Treatment of Diseases Associated with Inflammation. RSC Drug Discovery Series, 2012, , 350-390.	0.2	6
82	A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells. Science, 2012, 336, 86-90.	6.0	2,084
83	Inflammation: What role in pediatric cancer?. Pediatric Blood and Cancer, 2012, 58, 659-664.	0.8	8
84	Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood, 2012, 119, 3164-3175.	0.6	298
85	Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood, 2012, 119, 2556-2567.	0.6	133
86	Targeting monocyte chemotactic protein-1 synthesis with bindarit induces tumor regression in prostate and breast cancer animal models. Clinical and Experimental Metastasis, 2012, 29, 585-601.	1.7	84
87	Macrophage polarization and plasticity in health and disease. Immunologic Research, 2012, 53, 11-24.	1.3	324
88	The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFî± and Chemokines. Cancer Microenvironment, 2012, 5, 151-164.	3.1	55
89	Experimental mouse tumour models: what can be learnt about human cancer immunology?. Nature Reviews Immunology, 2012, 12, 61-66.	10.6	105
90	Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway. Cancer Cell, 2012, 22, 91-105.	7.7	256
91	Acute phase glycoproteins: bystanders or participants in carcinogenesis?. Annals of the New York Academy of Sciences, 2012, 1253, 122-132.	1.8	31
92	Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology, 2012, 22, 33-40.	4.3	567

#	ARTICLE	IF	CITATIONS
93	Chemokines in tumor development and progression. Experimental Cell Research, 2012, 318, 95-102.	1.2	80
94	Development and homeostasis of "resident―myeloid cells: The case of the microglia. Glia, 2013, 61, 112-120.	2.5	151
95	Gâ€CSF rescues tumor growth and neoâ€angiogenesis during liver metastasis under host angiopoietinâ€2 deficiency. International Journal of Cancer, 2013, 132, 315-326.	2.3	24
96	Monocytes and Macrophages in Cancer: Development and Functions. Cancer Microenvironment, 2013, 6, 179-191.	3.1	154
97	Mesenchymal Contribution to Recruitment, Infiltration, and Positioning of Leukocytes in Human Melanoma Tissues. Journal of Investigative Dermatology, 2013, 133, 2255-2264.	0.3	26
98	Tumour-associated macrophages and cancer. Current Opinion in Pharmacology, 2013, 13, 595-601.	1.7	146
99	Recruitment of monocytes/macrophages in different tumor microenvironments. Biochimica Et Biophysica Acta: Reviews on Cancer, 2013, 1835, 170-179.	3.3	136
100	Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator. BMC Cancer, 2013, 13, 197.	1.1	72
101	Metastasis: New insights into organ-specific extravasation and metastatic niches. Experimental Cell Research, 2013, 319, 1604-1610.	1.2	37
102	Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells. Breast Cancer Research and Treatment, 2013, 140, 35-48.	1.1	19
104	CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 2013, 62, 949-954.	2.0	95
105	A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemotherapy and Pharmacology, 2013, 71, 1041-1050.	1.1	216
106	Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Seminars in Immunopathology, 2013, 35, 585-600.	2.8	447
107	Putting the brakes on anticancer therapies: suppression of innate immune pathways by tumor-associated myeloid cells. Trends in Molecular Medicine, 2013, 19, 536-545.	3.5	15
108	Selection of Bone Metastasis Seeds by Mesenchymal Signals in the Primary Tumor Stroma. Cell, 2013, 154, 1060-1073.	13.5	359
109	Silica-induced Chronic Inflammation Promotes Lung Carcinogenesis in the Context of an Immunosuppressive Microenvironment. Neoplasia, 2013, 15, 913-IN18.	2.3	33
110	TIM-4 Glycoprotein-Mediated Degradation of Dying Tumor Cells by Autophagy Leads to Reduced Antigen Presentation and Increased Immune Tolerance. Immunity, 2013, 39, 1070-1081.	6.6	100
111	Myeloid-Derived Suppressor Cells Enhance Stemness of Cancer Cells by Inducing MicroRNA101 and Suppressing the Corepressor CtBP2. Immunity, 2013, 39, 611-621.	6.6	366

#	ARTICLE	IF	CITATIONS
112	Tumor-associated Macrophages in Cancer Growth and Progression. , 2013, , 451-471.		1
113	Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer, 2013, 13, 759-771.	12.8	1,497
114	Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013, 19, 1423-1437.	15.2	5,730
115	Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1478-1483.	1.1	232
116	Macrophages in multiple myeloma: emerging concepts and therapeutic implications. Leukemia and Lymphoma, 2013, 54, 2112-2121.	0.6	47
117	Myeloid derived suppressor cells in physiological and pathological conditions: the good, the bad, and the ugly. Immunologic Research, 2013, 57, 172-184.	1.3	89
118	Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 2013, 13, 858-870.	12.8	708
119	Origins of Metastatic Traits. Cancer Cell, 2013, 24, 410-421.	7.7	457
120	MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Medical Genomics, 2013, 6, 36.	0.7	65
121	Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene, 2013, 32, 1580-1593.	2.6	77
122	Adipocytes: Impact on tumor growth and potential sites for therapeutic intervention. , 2013, 138, 197-210.		98
123	Revisiting Immune-Based Therapies for Aggressive Follicular Cell–Derived Thyroid Cancers. Thyroid, 2013, 23, 529-542.	2.4	15
124	Carcinoembryonic antigenâ€related cell adhesion molecule 1 negatively regulates granulocyte colonyâ€stimulating factor production by breast tumorâ€associated macrophages that mediate tumor angiogenesis. International Journal of Cancer, 2013, 133, 394-407.	2.3	15
125	Inhibition of Glutaminyl Cyclases alleviates <scp>CCL</scp> 2â€mediated inflammation of nonâ€alcoholic fatty liver disease in mice. International Journal of Experimental Pathology, 2013, 94, 217-225.	0.6	26
126	Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E1213-E1226.	1.8	68
127	Multifunctional targets of dietary polyphenols in disease: A case for the chemokine network and energy metabolism. Food and Chemical Toxicology, 2013, 51, 267-279.	1.8	55
128	RNAi screen in apoptotic cancer cell-stimulated human macrophages reveals co-regulation of IL-6/IL-10 expression. Immunobiology, 2013, 218, 40-51.	0.8	14
129	Neutralizing Tumor-Promoting Chronic Inflammation: A Magic Bullet?. Science, 2013, 339, 286-291.	6.0	943

#	Article	IF	Citations
130	Role of Macrophage Polarization in Tumor Angiogenesis and Vessel Normalization. International Review of Cell and Molecular Biology, 2013, 301, 1-35.	1.6	89
131	Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses. Cancer Research, 2013, 73, 1128-1141.	0.4	797
132	Cytokines, Obesity, and Cancer: New Insights on Mechanisms Linking Obesity to Cancer Risk and Progression. Annual Review of Medicine, 2013, 64, 45-57.	5.0	249
133	VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood, 2013, 121, 3289-3297.	0.6	76
134	From sentinel cells to inflammatory culprits: cancerâ€associated fibroblasts in tumourâ€related inflammation. Journal of Pathology, 2013, 229, 198-207.	2.1	128
135	Impeding Macrophage Entry into Hypoxic Tumor Areas by Sema3A/Nrp1 Signaling Blockade Inhibits Angiogenesis and Restores Antitumor Immunity. Cancer Cell, 2013, 24, 695-709.	7.7	505
136	Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells. Veterinary Parasitology, 2013, 196, 106-113.	0.7	26
137	Premetastatic soil and prevention of breast cancer brain metastasis. Neuro-Oncology, 2013, 15, 891-903.	0.6	76
138	Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy, 2013, 5, 1075-1087.	1.0	135
139	Monocyte chemotactic protein-1 and other inflammatory parameters in Bernese Mountain dogs with disseminated histiocytic sarcoma. Veterinary Journal, 2013, 198, 424-428.	0.6	19
140	Antiâ€tumour strategies aiming to target tumourâ€associated macrophages. Immunology, 2013, 138, 93-104.	2.0	222
141	Macrophage Regulation of Tumor Responses to Anticancer Therapies. Cancer Cell, 2013, 23, 277-286.	7.7	893
142	Role of Macrophage Targeting in the Antitumor Activity of Trabectedin. Cancer Cell, 2013, 23, 249-262.	7.7	721
143	Basophil-Macrophage Dialog in Allergic Inflammation. Immunity, 2013, 38, 408-410.	6.6	6
144	HIV-1 Vaccines: Let's Get Physical. Immunity, 2013, 38, 410-413.	6.6	1
145	Digital sorting of complex tissues for cell type-specific gene expression profiles. BMC Bioinformatics, 2013, 14, 89.	1.2	192
146	miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nature Cell Biology, 2013, 15, 284-294.	4.6	312
147	Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance?. Nature Reviews Cancer, 2013, 13, 365-376.	12.8	242

#	Article	IF	Citations
148	Tumor associated macrophages and neutrophils in tumor progression. Journal of Cellular Physiology, 2013, 228, 1404-1412.	2.0	346
149	Applying Pressure on Macrophages. Immunity, 2013, 38, 205-206.	6.6	2
150	Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity, 2013, 38, 792-804.	6.6	1,767
151	Integrins and metastasis. Cell Adhesion and Migration, 2013, 7, 251-261.	1.1	160
152	Redox Control of Inflammation in Macrophages. Antioxidants and Redox Signaling, 2013, 19, 595-637.	2.5	303
153	Macrophage biology in development, homeostasis and disease. Nature, 2013, 496, 445-455.	13.7	3,541
154	An inflammatory vicious cycle: Fibroblasts and immune cell recruitment in cancer. Experimental Cell Research, 2013, 319, 1596-1603.	1.2	42
155	Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB Journal, 2013, 27, 3017-3029.	0.2	86
156	Stromal cells in tumor microenvironment and breast cancer. Cancer and Metastasis Reviews, 2013, 32, 303-315.	2.7	536
157	The molecular composition of the metastatic niche. Experimental Cell Research, 2013, 319, 1679-1686.	1.2	37
158	Coagulation and metastasis: what does the experimental literature tell us?. British Journal of Haematology, 2013, 162, 433-441.	1.2	107
159	Optimized dosing of a CCR2 antagonist for amplification of vaccine immunity. International Immunopharmacology, 2013, 15, 357-363.	1.7	25
160	The Tumor Immunoenvironment. , 2013, , .		4
161	Origin of monocytes and macrophages in a committed progenitor. Nature Immunology, 2013, 14, 821-830.	7.0	523
162	Host-related carcinoembryonic antigen cell adhesion molecule 1 promotes metastasis of colorectal cancer. Oncogene, 2013, 32, 849-860.	2.6	40
163	CCL2 is critical for immunosuppression to promote cancer metastasis. Clinical and Experimental Metastasis, 2013, 30, 393-405.	1.7	120
164	Inflammatory Monocyte Mobilization Decreases Patient Survival in Pancreatic Cancer: A Role for Targeting the CCL2/CCR2 Axis. Clinical Cancer Research, 2013, 19, 3404-3415.	3.2	473
165	Caught in the act: revealing the metastatic process by live imaging. DMM Disease Models and Mechanisms, 2013, 6, 580-593.	1.2	55

#	Article	IF	CITATIONS
166	The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. Journal of Experimental Medicine, 2013, 210, 1711-1728.	4.2	167
167	c-Jun N-Terminal Kinases Mediate a Wide Range of Targets in the Metastatic Cascade. Genes and Cancer, 2013, 4, 378-387.	0.6	53
168	Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nature Communications, 2013, 4, 1853.	5. 8	109
169	IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunology, 2013, 6, 45-55.	2.7	84
170	Multifaceted Impact of Host C–C Chemokine CCL2 in the Immuno-Pathogenesis of HIV-1/M. tuberculosis Co-Infection. Frontiers in Immunology, 2013, 4, 312.	2.2	25
171	Myb-Independent Macrophages: A Family of Cells That Develops with Their Tissue of Residence and Is Involved in Its Homeostasis. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 91-100.	2.0	35
172	Progression of Luminal Breast Tumors Is Promoted by MÃ@nage à Trois between the Inflammatory Cytokine TNF $\langle i \rangle$ 1× $\langle i \rangle$ 2 and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment. Mediators of Inflammation, 2013, 2013, 1-19.	1.4	17
173	Exploring the role of CHI3L1 in "pre-metastatic―lungs of mammary tumor-bearing mice. Frontiers in Physiology, 2013, 4, 392.	1.3	22
174	Changes in Gene Expression of Pial Vessels of the Blood Brain Barrier during Murine Neurocysticercosis. PLoS Neglected Tropical Diseases, 2013, 7, e2099.	1.3	12
175	Inhibition of CCL2 Signaling in Combination with Docetaxel Treatment Has Profound Inhibitory Effects on Prostate Cancer Growth in Bone. International Journal of Molecular Sciences, 2013, 14, 10483-10496.	1.8	35
176	Twist1 Induces CCL2 and Recruits Macrophages to Promote Angiogenesis. Cancer Research, 2013, 73, 662-671.	0.4	157
177	A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. MAbs, 2013, 5, 736-747.	2.6	32
178	miR-155–Deficient Bone Marrow Promotes Tumor Metastasis. Molecular Cancer Research, 2013, 11, 923-936.	1.5	35
179	Hampering Immune Suppressors. Cancer Journal (Sudbury, Mass), 2013, 19, 490-501.	1.0	56
180	FGFR4 Promotes Stroma-Induced Epithelial-to-Mesenchymal Transition in Colorectal Cancer. Cancer Research, 2013, 73, 5926-5935.	0.4	88
181	C/EBP Homologous Protein-induced Macrophage Apoptosis Protects Mice from Steatohepatitis. Journal of Biological Chemistry, 2013, 288, 18624-18642.	1.6	78
182	Inflammatory monocytes are potent antitumor effectors controlled by regulatory CD4 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13085-13090.	3.3	58
183	Cell Surface Receptor FPR2 Promotes Antitumor Host Defense by Limiting M2 Polarization of Macrophages. Cancer Research, 2013, 73, 550-560.	0.4	76

#	Article	IF	Citations
184	Macrophages: Gatekeepers of Tissue Integrity. Cancer Immunology Research, 2013, 1, 201-209.	1.6	76
185	Is carcinoma a mesenchymal disease? The role of the stromal microenvironment in carcinogenesis. Pathology, 2013, 45, 371-381.	0.3	17
186	Role of glutaminyl cyclases in thyroid carcinomas. Endocrine-Related Cancer, 2013, 20, 79-90.	1.6	21
187	CCL2 at the crossroad of cancer metastasis. Jak-stat, 2013, 2, e23816.	2.2	10
188	CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 ⁺ T cells. Oncolmmunology, 2013, 2, e26968.	2.1	311
189	Immunosuppression in inflammatory melanoma: can it be resisted by adoptively transferred <scp>T</scp> cells?. Pigment Cell and Melanoma Research, 2013, 26, 167-175.	1.5	9
190	Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2â€induced STAT3 activation. EMBO Molecular Medicine, 2013, 5, 1383-1401.	3.3	199
191	Imaging interactions between macrophages and tumour cells that are involved in metastasis <i>in vivo</i> and <i>in vitro</i> . Journal of Microscopy, 2013, 251, 261-269.	0.8	42
192	Corosolic acid impairs tumor development and lung metastasis by inhibiting the immunosuppressive activity of myeloidâ€derived suppressor cells. Molecular Nutrition and Food Research, 2013, 57, 1046-1054.	1.5	55
193	Circulating Fibrocytes Prepare the Lung for Cancer Metastasis by Recruiting Ly-6C+ Monocytes Via CCL2. Journal of Immunology, 2013, 190, 4861-4867.	0.4	81
194	A role for CCL2 in both tumor progression and immunosurveillance. Oncolmmunology, 2013, 2, e25474.	2.1	108
195	Pathways of metastasizing intestinal cancer cells revealed: how will fighting metastases at the site of cancer cell arrest affect drug development?. Future Oncology, 2013, 9, 1-4.	1.1	7
196	Protective Role of the Inflammatory CCR2/CCL2 Chemokine Pathway through Recruitment of Type 1 Cytotoxic Î ³ δT Lymphocytes to Tumor Beds. Journal of Immunology, 2013, 190, 6673-6680.	0.4	140
197	KIT oncogene inhibition drives intratumoral macrophage M2 polarization. Journal of Experimental Medicine, 2013, 210, 2873-2886.	4.2	116
198	HOXB13 Mediates Tamoxifen Resistance and Invasiveness in Human Breast Cancer by Suppressing ERα and Inducing IL-6 Expression. Cancer Research, 2013, 73, 5449-5458.	0.4	80
199	Recruitment of Î ³ δT lymphocytes to tumors. Oncolmmunology, 2013, 2, e25461.	2.1	5
200	Recruitment of myeloid cells to the tumor microenvironment supports liver metastasis. Oncolmmunology, 2013, 2, e23187.	2.1	14
201	Recruitment of a myeloid cell subset (CD11b/Gr1 ^{mid}) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis*. Hepatology, 2013, 57, 829-839.	3.6	183

#	Article	IF	CITATIONS
202	The role of tumor-associated macrophages in tumor vascularization. Vascular Cell, 2013, 5, 20.	0.2	88
203	Macrophages as independent prognostic factors in small T1 breast cancers. Oncology Reports, 2013, 29, 141-148.	1.2	12
204	Endothelial hypoxic metabolism in carcinogenesis and dissemination: HIF-A isoforms are a NO metastatic phenomenon. Oncotarget, 2013, 4, 2567-2576.	0.8	12
205	Genetic and Pharmacological Targeting of CSF-1/CSF-1R Inhibits Tumor-Associated Macrophages and Impairs BRAF-Induced Thyroid Cancer Progression. PLoS ONE, 2013, 8, e54302.	1.1	119
206	The Anti-Cancer Property of Proteins Extracted from Gynura procumbens (Lour.) Merr. PLoS ONE, 2013, 8, e68524.	1.1	37
207	Cell-Specific Type I IFN Signatures in Autoimmunity and Viral Infection: What Makes the Difference?. PLoS ONE, 2013, 8, e83776.	1.1	82
208	Dendritic Cell-Targeted Approaches to Modulate Immune Dysfunction in the Tumor Microenvironment. Frontiers in Immunology, 2013, 4, 436.	2.2	21
209	TREM-1 Is Induced in Tumor Associated Macrophages by Cyclo-Oxygenase Pathway in Human Non-Small Cell Lung Cancer. PLoS ONE, 2014, 9, e94241.	1.1	46
210	Dexamethasone Palmitate Ameliorates Macrophages-Rich Graft-versus-Host Disease by Inhibiting Macrophage Functions. PLoS ONE, 2014, 9, e96252.	1.1	32
211	In Vivo Detection of Macrophage Recruitment in Hind-Limb Ischemia Using a Targeted Near-Infrared Fluorophore. PLoS ONE, 2014, 9, e103721.	1.1	14
212	Alterations to the Frequency and Function of Peripheral Blood Monocytes and Associations with Chronic Disease in the Advanced-Age, Frail Elderly. PLoS ONE, 2014, 9, e104522.	1.1	77
213	Macrophages, Neutrophils, and Cancer: A Double Edged Sword. New Journal of Science, 2014, 2014, 1-14.	1.0	36
214	Paraoxonases and Chemokine (C–C Motif) Ligand-2 in Noncommunicable Diseases. Advances in Clinical Chemistry, 2014, 63, 247-308.	1.8	32
215	Regulation of Chemokine Expression in the Tumor Microenvironment. Critical Reviews in Immunology, 2014, 34, 103-120.	1.0	31
216	PC3-Secreted Microprotein Is a Novel Chemoattractant Protein and Functions as a High-Affinity Ligand for CC Chemokine Receptor 2. Journal of Immunology, 2014, 192, 1878-1886.	0.4	29
217	Effective Innate and Adaptive Antimelanoma Immunity through Localized TLR7/8 Activation. Journal of Immunology, 2014, 193, 4722-4731.	0.4	136
218	Macrophage as cellular vehicles for delivery of nanoparticles. Journal of Innovative Optical Health Sciences, 2014, 07, 1450023.	0.5	4
219	Myeloid-derived cells are key targets of tumor immunotherapy. Oncolmmunology, 2014, 3, e28398.	2.1	47

#	ARTICLE	IF	CITATIONS
220	Platelets guide the formation of early metastatic niches. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3053-61.	3.3	431
221	Emodin suppresses pulmonary metastasis of breast cancer accompanied with decreased macrophage recruitment and M2 polarization in the lungs. Breast Cancer Research and Treatment, 2014, 148, 291-302.	1.1	80
222	Acquisition of an immunosuppressive protumorigenic macrophage phenotype depending on c-Jun phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17582-17587.	3.3	45
223	Tracking of intertissue migration reveals the origins of tumor-infiltrating monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7771-7776.	3.3	153
224	Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Molecular Cancer, 2014, 13, 206.	7.9	93
225	Role of cancer stem cell-associated inflammation in creating pro-inflammatory tumorigenic microenvironments. Oncolmmunology, 2014, 3, e28862.	2.1	26
226	Brain metastasis in renal cancer patients: metastatic pattern, tumour-associated macrophages and chemokine/chemoreceptor expression. British Journal of Cancer, 2014, 110, 686-694.	2.9	66
227	Deficiency of Kruppel-like factor KLF4 in myeloid-derived suppressor cells inhibits tumor pulmonary metastasis in mice accompanied by decreased fibrocytes. Oncogenesis, 2014, 3, e129-e129.	2.1	32
228	PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene, 2014, 33, 2918-2927.	2.6	38
229	The inhibitor of kappa B kinase-epsilon regulates MMP-3 expression levels and can promote lung metastasis. Oncogenesis, 2014, 3, e116-e116.	2.1	5
230	Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization. Cell Death and Differentiation, 2014, 21, 1290-1302.	5.0	44
231	In Vitro Study of Genes and Molecular Pathways Differentially Regulated by Synchrotron Microbeam Radiotherapy. Radiation Research, 2014, 182, 626.	0.7	22
232	microRNAs in the tumor microenvironment: solving the riddle for a better diagnostics. Expert Review of Molecular Diagnostics, 2014, 14, 565-574.	1.5	47
233	Chemokines in Cancer Development and Progression and Their Potential as Targeting Molecules for Cancer Treatment. Mediators of Inflammation, 2014, 2014, 1-15.	1.4	100
234	Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages. Cancers, 2014, 6, 723-740.	1.7	29
235	HPV16-E7 Expression in Squamous Epithelium Creates a Local Immune Suppressive Environment via CCL2-and CCL5- Mediated Recruitment of Mast Cells. PLoS Pathogens, 2014, 10, e1004466.	2.1	55
236	The Role of Chemoattractant Receptors in Shaping the Tumor Microenvironment. BioMed Research International, 2014, 2014, 1-33.	0.9	35
237	Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers, 2014, 6, 1670-1690.	1.7	1,223

#	Article	IF	CITATIONS
238	Tumor Microenvironment: A New Treatment Target for Cancer. , 2014, 2014, 1-8.		98
239	Modulation of Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Function by Hypoxia-Upregulated Protein 1. Journal of Virology, 2014, 88, 9429-9441.	1.5	37
240	Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology, 2014, 59, 958-973.	3.6	134
241	Intravital imaging reveals distinct responses of depleting dynamic tumor-associated macrophage and dendritic cell subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5086-95.	3.3	94
242	Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models. Clinical Cancer Research, 2014, 20, 6083-6095.	3.2	89
243	Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism <i>via</i> recruitment of myeloid-derived suppressor cells. International Journal of Cancer, 2014, 134, 1810-1822.	2.3	40
244	Bisphosphonates Inhibit Osteosarcoma-Mediated Osteolysis Via Attenuation of Tumor Expression of MCP-1 and RANKL. Journal of Bone and Mineral Research, 2014, 29, 1431-1445.	3.1	61
245	Diminazene Aceturate Liposomes: Morphometric and Biochemical Liver, Kidney, and Spleen of Rats Infected with Trypanosoma evansi. Pathology Research and Practice, 2014, 210, 840-846.	1.0	4
246	Nimbolide inhibits invasion and migration, and downâ€regulates uPAR chemokine gene expression, in two breast cancer cell lines. Cell Proliferation, 2014, 47, 540-552.	2.4	24
247	Breast Cancer: Coordinated Regulation of CCL2 Secretion by Intracellular Glycosaminoglycans and Chemokine Motifs. Neoplasia, 2014, 16, 723-740.	2.3	10
248	Postsurgical Adjuvant Tumor Therapy by Combining Anti-Angiopoietin-2 and Metronomic Chemotherapy Limits Metastatic Growth. Cancer Cell, 2014, 26, 880-895.	7.7	114
249	High coexpression of <i>CCL2</i> and <i>CX3CL1</i> is genderâ€specifically associated with good prognosis in soft tissue sarcoma patients. International Journal of Cancer, 2014, 135, 2096-2106.	2.3	23
250	Serum CCL2 and CCL3 as potential biomarkers for the diagnosis of oral squamous cell carcinoma. Tumor Biology, 2014, 35, 10539-10546.	0.8	25
251	Immuno-pathomechanism of liver fibrosis: targeting chemokine CCL2-mediated HIV:HCV nexus. Journal of Translational Medicine, 2014, 12, 341.	1.8	12
252	Microbiome, Inflammation, and Cancer. Cancer Journal (Sudbury, Mass), 2014, 20, 181-189.	1.0	193
253	Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncolmmunology, 2014, 3, e27663.	2.1	35
254	CCL2/CCR2-Dependent Recruitment of Functional Antigen-Presenting Cells into Tumors upon Chemotherapy. Cancer Research, 2014, 74, 436-445.	0.4	118
255	CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Molecular Biology of the Cell, 2014, 25, 566-582.	0.9	81

#	Article	IF	CITATIONS
256	RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. Endocrine-Related Cancer, 2014, 21, 311-326.	1.6	74
257	Yolk-sac–derived macrophages regulate fetal testis vascularization and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2384-93.	3.3	155
258	Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127.	2.2	162
259	Mesenchymal cell interaction with ovarian cancer cells induces a background dependent pro-metastatic transcriptomic profile. Journal of Translational Medicine, 2014, 12, 59.	1.8	28
260	Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon- \hat{l}^3 . Journal of Experimental and Clinical Cancer Research, 2014, 33, 27.	3.5	76
261	ERK-Dependent Downregulation of the Atypical Chemokine Receptor D6 Drives Tumor Aggressiveness in Kaposi Sarcoma. Cancer Immunology Research, 2014, 2, 679-689.	1.6	33
262	Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma. Journal of Pediatric Surgery, 2014, 49, 1286-1291.	0.8	13
263	Inflammatory chemokines and metastasisâ€"tracing the accessory. Oncogene, 2014, 33, 3217-3224.	2.6	182
264	Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer and Metastasis Reviews, 2014, 33, 527-543.	2.7	87
265	Breast tumor cell TACE-shed MCSF promotes pro-angiogenic macrophages through NF-κB signaling. Angiogenesis, 2014, 17, 573-585.	3.7	47
266	Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. International Journal of Biochemistry and Cell Biology, 2014, 46, 138-147.	1.2	76
267	Inflammatory breast cancer: New factors contribute to disease etiology: A review. Journal of Advanced Research, 2014, 5, 525-536.	4.4	42
268	The journey from stem cell to macrophage. Annals of the New York Academy of Sciences, 2014, 1319, 1-18.	1.8	64
269	Evaluation of Two Inflammation-Based Prognostic Scores in Patients with Resectable Gallbladder Carcinoma. Annals of Surgical Oncology, 2014, 21, 449-457.	0.7	84
270	Inhibition of VEGFR-3 activation in tumor-draining lymph nodes suppresses the outgrowth of lymph node metastases in the MT-450 syngeneic rat breast cancer model. Clinical and Experimental Metastasis, 2014, 31, 351-365.	1.7	15
271	Monocyte chemoattractant protein-1 and the blood–brain barrier. Cellular and Molecular Life Sciences, 2014, 71, 683-697.	2.4	143
272	CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-Dependent Gene Expression Profile. Journal of Immunology, 2014, 192, 3858-3867.	0.4	364
273	Stress, Inflammation, and Defense of Homeostasis. Molecular Cell, 2014, 54, 281-288.	4.5	518

#	Article	IF	Citations
274	Identifying the infiltrators. Science, 2014, 344, 801-802.	6.0	15
275	Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2120-9.	3.3	170
276	A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell, 2014, 25, 605-620.	7.7	607
277	Myeloid WNT7b Mediates the Angiogenic Switch and Metastasis in Breast Cancer. Cancer Research, 2014, 74, 2962-2973.	0.4	162
278	Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Letters, 2014, 344, 28-39.	3.2	46
279	Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33, 4623-4631.	2.6	128
280	Microenvironmental regulation of cancer metastasis by miRNAs. Trends in Cell Biology, 2014, 24, 153-160.	3. 6	113
281	Imaging macrophages with nanoparticles. Nature Materials, 2014, 13, 125-138.	13.3	698
282	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	6.6	1,120
284	The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Letters, 2014, 352, 36-53.	3.2	124
285	Metastatic Growth Progression Caused by PSGL-1–Mediated Recruitment of Monocytes to Metastatic Sites. Cancer Research, 2014, 74, 695-704.	0.4	28
286	Molecular Profiling Reveals a Tumor-Promoting Phenotype of Monocytes and Macrophages in Human Cancer Progression. Immunity, 2014, 41, 815-829.	6.6	240
287	The Absence or Overexpression of IL-15 Drastically Alters Breast Cancer Metastasis via Effects on NK Cells, CD4 T Cells, and Macrophages. Journal of Immunology, 2014, 193, 6184-6191.	0.4	45
288	Metastasis risk after anti-macrophage therapy. Nature, 2014, 515, 46-47.	13.7	24
289	Dynamics of Chemokine, Cytokine, and Growth Factor Serum Levels in BRAF-Mutant Melanoma Patients during BRAF Inhibitor Treatment. Journal of Immunology, 2014, 192, 2505-2513.	0.4	69
290	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
291	Contributions of thrombin targets to tissue factorâ€dependent metastasis in hyperthrombotic mice. Journal of Thrombosis and Haemostasis, 2014, 12, 71-81.	1.9	30
292	Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature, 2014, 515, 130-133.	13.7	556

#	Article	IF	CITATIONS
293	Successful engineering cancer immunotherapy. European Journal of Immunology, 2014, 44, 318-320.	1.6	2
294	Inflammatory monocytes promote progression of Duchenne muscular dystrophy and can be therapeutically targeted via <scp>CCR</scp> 2. EMBO Molecular Medicine, 2014, 6, 1476-1492.	3.3	106
295	Acetylation of Snail Modulates the Cytokinome of Cancer Cells to Enhance the Recruitment of Macrophages. Cancer Cell, 2014, 26, 534-548.	7.7	158
296	Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16029-16034.	3.3	576
297	Immune Chaperone gp96 Drives the Contributions of Macrophages to Inflammatory Colon Tumorigenesis. Cancer Research, 2014, 74, 446-459.	0.4	56
298	International Union of Basic and Clinical Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors. Pharmacological Reviews, 2014, 66, 1-79.	7.1	735
299	Impact of myeloid cells on the efficacy of anticancer chemotherapy. Current Opinion in Immunology, 2014, 30, 24-31.	2.4	35
300	Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	16
301	Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Science, 2014, 105, 1-8.	1.7	425
302	Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity, 2014, 41, 49-61.	6.6	3,060
303	Innate immune regulation by <scp>STAT</scp> â€mediated transcriptional mechanisms. Immunological Reviews, 2014, 261, 84-101.	2.8	53
304	Molecular Promiscuity of Plant Polyphenols in the Management of Age-Related Diseases: Far Beyond Their Antioxidant Properties. Advances in Experimental Medicine and Biology, 2014, 824, 141-159.	0.8	77
305	STAT of the union: Dynamics of distinct tumorâ€associated macrophage subsets governed by STAT1. European Journal of Immunology, 2014, 44, 2238-2242.	1.6	15
306	Complex metastatic niches: already a target for therapy?. Current Opinion in Cell Biology, 2014, 31, 29-38.	2.6	23
307	Pharmacological modulation of monocytes and macrophages. Current Opinion in Pharmacology, 2014, 17, 38-44.	1.7	48
308	Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature Immunology, 2014, 15, 929-937.	7.0	921
309	Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunology, Immunotherapy, 2014, 63, 513-528.	2.0	185
310	Peripheral blood lymphocyte/monocyte ratio predicts outcome for patients with diffuse large B cell lymphoma after standard first-line regimens. Annals of Hematology, 2014, 93, 617-626.	0.8	46

#	ARTICLE	IF	Citations
311	Cytokine Networks That Mediate Epithelial Cell-Macrophage Crosstalk in the Mammary Gland: Implications for Development and Cancer. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 191-201.	1.0	27
312	Diverse matrix metalloproteinase functions regulate cancer amoeboid migration. Nature Communications, 2014, 5, 4255.	5.8	140
313	Breast Cancer Stem Cells and the Immune System: Promotion, Evasion and Therapy. Journal of Mammary Gland Biology and Neoplasia, 2014, 19, 203-211.	1.0	30
314	The Promotion of Breast Cancer Metastasis Caused by Inhibition of CSF-1R/CSF-1 Signaling Is Blocked by Targeting the G-CSF Receptor. Cancer Immunology Research, 2014, 2, 765-776.	1.6	97
315	Priming cancer cells for drug resistance: role of the fibroblast niche. Frontiers in Biology, 2014, 9, 114-126.	0.7	27
316	Prognostic impact of circulating monocytes and lymphocyte-to-monocyte ratio on previously untreated metastatic non-small cell lung cancer patients receiving platinum-based doublet. Medical Oncology, 2014, 31, 70.	1.2	59
317	Peripheral blood lymphocyte/monocyte ratio at the time of first relapse predicts outcome for patients with relapsed or primary refractory diffuse large B-cell lymphoma. BMC Cancer, 2014, 14, 341.	1.1	33
318	Immunosuppressive Myeloid Cells Induced by Chemotherapy Attenuate Antitumor CD4+ T-Cell Responses through the PD-1–PD-L1 Axis. Cancer Research, 2014, 74, 3441-3453.	0.4	115
319	Slug Promotes Survival during Metastasis through Suppression of Puma-Mediated Apoptosis. Cancer Research, 2014, 74, 3695-3706.	0.4	37
320	lîºB Kinase Activity Drives Fetal Lung Macrophage Maturation along a Non-M1/M2 Paradigm. Journal of Immunology, 2014, 193, 1184-1193.	0.4	18
321	Coordinated Post-Transcriptional Regulation of the Chemokine System: Messages from CCL2. Journal of Interferon and Cytokine Research, 2014, 34, 255-266.	0.5	25
322	Haematopoietic focal adhesion kinase deficiency alters haematopoietic homeostasis to drive tumour metastasis. Nature Communications, 2014, 5, 5054.	5.8	17
323	Cancer Stem-like Cells Derived from Chemoresistant Tumors Have a Unique Capacity to Prime Tumorigenic Myeloid Cells. Cancer Research, 2014, 74, 2698-2709.	0.4	56
324	Tumor-Induced Immune Suppression. , 2014, , .		3
325	Minimal changes in the systemic immune response after nephrectomy of localized renal masses11This work was supported by the University of Iowa Carver College of Medicine/Department of Urology Investigator Start-up Funds, NIH Grant CA181088-01 (to L.A.N.), and NIH Grant CA109446 (to T.S.G.) Urologic Oncology: Seminars and Original Investigations, 2014, 32, 589-600.	0.8	19
326	Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Experimental Hematology, 2014, 42, 547-561.e4.	0.2	82
327	IKK/Nuclear Factor-kappaB and Oncogenesis. Advances in Cancer Research, 2014, 121, 125-145.	1.9	52
328	Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene, 2014, 33, 2423-2431.	2.6	392

#	ARTICLE	IF	CITATIONS
329	Prognostic Significance of Preoperative Circulating Monocyte Count in Patients With Breast Cancer. Medicine (United States), 2015, 94, e2266.	0.4	35
330	Monocyte-mediated defense against bacteria, fungi, and parasites. Seminars in Immunology, 2015, 27, 397-409.	2.7	56
331	Targeting Breast Cancer Metastasis. Breast Cancer: Basic and Clinical Research, 2015, 9s1, BCBCR.S25460.	0.6	145
332	Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Research, 2015, 17, 45.	2.2	103
333	Anti-CCL2: building a reservoir or opening the floodgates to metastasis?. Breast Cancer Research, 2015, 17, 68.	2.2	12
335	<scp>IL</scp> â€Îα induces <scp>CD11b^{low}</scp> alveolar macrophage proliferation and maturation during granuloma formation. Journal of Pathology, 2015, 235, 698-709.	2.1	46
336	Prediagnostic serum glucose and lipids in relation to survival in breast cancer patients: a competing risk analysis. BMC Cancer, 2015, 15, 913.	1.1	22
337	Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-ΰB pathway. Stem Cell Research and Therapy, 2015, 6, 87.	2.4	108
338	Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a coâ€culture microenviroment. Diabetes/Metabolism Research and Reviews, 2015, 31, 781-789.	1.7	35
339	Myeloid Cells as Targets for Therapy in Solid Tumors. Cancer Journal (Sudbury, Mass), 2015, 21, 343-350.	1.0	32
340	Tumour-associated macrophage polarisation and re-education with immunotherapy. Frontiers in Bioscience - Elite, 2015, 7, 334-351.	0.9	0
341	Bladder cancer cells re-educate TAMs through lactate shuttling in the microfluidic cancer microenvironment. Oncotarget, 2015, 6, 39196-39210.	0.8	55
342	Drug Development for Metastasis Prevention. Critical Reviews in Oncogenesis, 2015, 20, 449-473.	0.2	48
343	Manipulation of Innate Immunity for Cancer Therapy in Dogs. Veterinary Sciences, 2015, 2, 423-439.	0.6	17
344	Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma. Frontiers in Immunology, 2015, 6, 332.	2.2	34
345	Exploiting the Immunomodulatory Properties of Chemotherapeutic Drugs to Improve the Success of Cancer Immunotherapy. Frontiers in Immunology, 2015, 6, 516.	2.2	79
346	Monocyte-Derived Dendritic Cells Are Essential for CD8+ T Cell Activation and Antitumor Responses After Local Immunotherapy. Frontiers in Immunology, 2015, 6, 584.	2.2	67
347	The Macrophage Inhibitor CNI-1493 Blocks Metastasis in a Mouse Model of Ewing Sarcoma through Inhibition of Extravasation. PLoS ONE, 2015, 10, e0145197.	1.1	15

#	Article	IF	Citations
348	Vaccine-induced tumor regression requires a dynamic cooperation between T cells and myeloid cells at the tumor site. Oncotarget, 2015, 6, 27832-27846.	0.8	46
349	Pancreatic cancer vaccine: a unique potential therapy. Gastrointestinal Cancer: Targets and Therapy, 2015, , 1.	5.5	0
350	RKIP regulates CCL5 expression to inhibit breast cancer invasion and metastasis by controlling macrophage infiltration. Oncotarget, 2015, 6, 39050-39061.	0.8	39
351	Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors. Veterinary Journal, 2015, 203, 326-331.	0.6	22
352	CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. Journal of Experimental Medicine, 2015, 212, 1043-1059.	4.2	520
353	Endothelial progenitors promote hepatocarcinoma intrahepatic metastasis through monocyte chemotactic protein-1 induction of microRNA-21. Gut, 2015, 64, 1132-1147.	6.1	45
354	Obesity as a risk factor in cancer: A national consensus of the Spanish Society for the Study of Obesity and the Spanish Society of Medical Oncology. Clinical and Translational Oncology, 2015, 17, 763-771.	1.2	25
355	Inflammatory Dysregulation and Cancer: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 375-395.		1
356	Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Letters, 2015, 365, 11-22.	3.2	32
357	Leptin activation of mTOR pathway in intestinal epithelial cell triggers lipid droplet formation, cytokine production and increased cell proliferation. Cell Cycle, 2015, 14, 2667-2676.	1.3	73
358	Inflammation and skeletal metastasis. BoneKEy Reports, 2015, 4, 706.	2.7	24
359	Interleukin-8 Induces Expression of FOXC1 to Promote Transactivation of CXCR1 and CCL2 in Hepatocellular Carcinoma Cell Lines and Formation of Metastases in Mice. Gastroenterology, 2015, 149, 1053-1067.e14.	0.6	114
360	Characterization of macrophage - cancer cell crosstalk in estrogen receptor positive and triple-negative breast cancer. Scientific Reports, 2015, 5, 9188.	1.6	119
361	<i>In vivo</i> subcellular resolution optical imaging in the lung reveals early metastatic proliferation and motility. Intravital, 2015, 4, 1-11.	2.0	54
362	Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature, 2015, 528, 413-417.	13.7	809
363	Microenvironment in metastasis: roadblocks and supportive niches. American Journal of Physiology - Cell Physiology, 2015, 309, C627-C638.	2.1	44
364	Monocyte chemotactic protein-1 promotes the proliferation and invasion of osteosarcoma cells and upregulates the expression of AKT. Molecular Medicine Reports, 2015, 12, 219-225.	1.1	21
365	Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Reports, 2015, 13, 2456-2469.	2.9	190

#	Article	IF	CITATIONS
366	The role of inflammation in progression of breast cancer: Friend or foe? (Review). International Journal of Oncology, 2015, 47, 797-805.	1.4	52
367	A Dual Delivery of Substance P and Bone Morphogenetic Protein-2 for Mesenchymal Stem Cell Recruitment and Bone Regeneration. Tissue Engineering - Part A, 2015, 21, 1275-1287.	1.6	37
368	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	6.6	190
369	Fas and TRAIL â€ [*] death receptors' as initiators of inflammation: Implications for cancer. Seminars in Cell and Developmental Biology, 2015, 39, 26-34.	2.3	67
370	Negative regulation of RelA phosphorylation: Emerging players and their roles in cancer. Cytokine and Growth Factor Reviews, 2015, 26, 7-13.	3.2	47
371	Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Research and Treatment, 2015, 149, 727-741.	1.1	62
372	Expression of Sox2 in breast cancer cells promotes the recruitment of M2 macrophages to tumor microenvironment. Cancer Letters, 2015, 358, 115-123.	3.2	48
373	Innate Immune Recognition of Cancer. Annual Review of Immunology, 2015, 33, 445-474.	9.5	431
374	Broad targeting of angiogenesis for cancer prevention and therapy. Seminars in Cancer Biology, 2015, 35, S224-S243.	4.3	375
375	Macrophage and Cancer Cell Cross-talk via CCR2 and CX3CR1 Is a Fundamental Mechanism Driving Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 437-447.	2.5	186
376	Role of sirtuins in chronic obstructive pulmonary disease. Archives of Pharmacal Research, 2015, 38, 1-10.	2.7	46
377	Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nature Cell Biology, 2015, 17, 170-182.	4.6	716
378	Immune cell promotion of metastasis. Nature Reviews Immunology, 2015, 15, 73-86.	10.6	967
379	Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 123-130.	3.3	77
380	TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy. Cancer Immunology Research, 2015, 3, 518-525.	1.6	197
381	Myeloid heme oxygenaseâ€1 promotes metastatic tumor colonization in mice. Cancer Science, 2015, 106, 299-306.	1.7	18
382	Blood cells and endothelial barrier function. Tissue Barriers, 2015, 3, e978720.	1.6	212
383	Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages. Cancer Research, 2015, 75, 4063-4073.	0.4	100

#	Article	IF	Citations
384	TGFÎ ² modulates inflammatory cytokines and growth factors to create premetastatic microenvironment and stimulate lung metastasis. Journal of Molecular Histology, 2015, 46, 365-375.	1.0	27
385	Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer. Advances in Cancer Research, 2015, 127, 253-281.	1.9	24
386	CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Reports, 2015, 12, 244-257.	2.9	287
387	Elucidation of monocyte/macrophage dynamics and function by intravital imaging. Journal of Leukocyte Biology, 2015, 98, 319-332.	1.5	34
388	Targeting roles of inflammatory microenvironment in lung cancer and metastasis. Cancer and Metastasis Reviews, 2015, 34, 319-331.	2.7	49
389	Development of individualized anti-metastasis strategies by engineering nanomedicines. Chemical Society Reviews, 2015, 44, 6258-6286.	18.7	115
390	Integrated Akt/PKB Signaling in Immunomodulation and Its Potential Role in Cancer Immunotherapy. Journal of the National Cancer Institute, 2015, 107, djv171-djv171.	3.0	78
391	Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nature Communications, 2015, 6, 7458.	5.8	383
392	CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clinical Cancer Research, 2015, 21, 3794-3805.	3.2	190
393	Distinct Functions of Epidermal and Myeloid-Derived VEGF-A in Skin Tumorigenesis Mediated by HPV8. Cancer Research, 2015, 75, 330-343.	0.4	11
394	Malignancy of bladder cancer cells is enhanced by tumor-associated fibroblasts through a multifaceted cytokine-chemokine loop. Experimental Cell Research, 2015, 335, 1-11.	1.2	29
395	Inflammation and cancer: Till death tears them apart. Veterinary Journal, 2015, 205, 161-174.	0.6	86
396	C-Myb+ Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages. Immunity, 2015, 42, 665-678.	6.6	847
397	Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer and Metastasis Reviews, 2015, 34, 575-591.	2.7	55
399	Periostin: a potent chemotactic factor for recruiting tumor-associated macrophage. Protein and Cell, 2015, 6, 235-237.	4.8	12
400	MicroRNA modulators of epigenetic regulation, the tumor microenvironment and the immune system in lung cancer. Molecular Cancer, 2015, 14, 34.	7.9	62
401	Macrophages and pathophysiology of bone cancers. , 2015, , 91-101.		0
402	n-3 Polyunsaturated fatty acids and mast cell activation. Journal of Leukocyte Biology, 2015, 97, 859-871.	1.5	14

#	Article	IF	Citations
403	Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology, 2015, 36, 229-239.	2.9	572
404	Strategies to Target Tumor Immunosuppression. , 2015, , 73-86.		0
405	Pulmonary Alveolar Macrophages Contribute to the Premetastatic Niche by Suppressing Antitumor T Cell Responses in the Lungs. Journal of Immunology, 2015, 194, 5529-5538.	0.4	131
406	Mesenchymal Stem/Stromal Cells Protect against Autoimmunity via CCL2-Dependent Recruitment of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2015, 194, 3634-3645.	0.4	54
407	Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Letters, 2015, 361, 155-163.	3.2	162
408	Immune-mediated mechanisms influencing the efficacy of anticancer therapies. Trends in Immunology, 2015, 36, 198-216.	2.9	121
409	The CCL2 chemokine is a negative regulator of autophagy and necrosis in luminal B breast cancer cells. Breast Cancer Research and Treatment, 2015, 150, 309-320.	1.1	30
410	Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncology, The, 2015, 16, e543-e554.	5.1	36
411	The human chemokine receptor CCRL2 suppresses chemotaxis and invasion by blocking CCL2-induced phosphorylation of p38 MAPK in human breast cancer cells. Medical Oncology, 2015, 32, 254.	1.2	18
412	Patrolling monocytes control tumor metastasis to the lung. Science, 2015, 350, 985-990.	6.0	370
413	STAT3-mediated IGF-2 secretion in the tumour microenvironment elicits innate resistance to anti-IGF-1R antibody. Nature Communications, 2015, 6, 8499.	5.8	34
414	Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015, 75, 3479-3491.	0.4	375
415	Control of Macrophage Dynamics as a Potential Therapeutic Approach for Clinical Disorders Involving Chronic Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 240-250.	1.3	33
416	FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. Journal of Experimental Medicine, 2015, 212, 1433-1448.	4.2	186
417	Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage–Derived VEGFA. Cancer Discovery, 2015, 5, 932-943.	7.7	474
418	Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527, 100-104.	13.7	966
419	CCL9 Induced by $TGF\hat{l}^2$ Signaling in Myeloid Cells Enhances Tumor Cell Survival in the Premetastatic Organ. Cancer Research, 2015, 75, 5283-5298.	0.4	61
420	Therapeutic potential of chemokine signal inhibition for metastatic breast cancer. Pharmacological Research, 2015, 100, 266-270.	3.1	49

#	Article	IF	CITATIONS
421	Dectin-1 Activation by a Natural Product \hat{l}^2 -Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. Journal of Immunology, 2015, 195, 5055-5065.	0.4	129
422	Risk factors for pegylated liposomal doxorubicin-induced palmar-plantar erythrodysesthesia over time: assessment of monocyte count and baseline clinical parameters. Cancer Chemotherapy and Pharmacology, 2015, 76, 1033-1039.	1.1	7
423	Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Research, 2015, 17, 101.	2.2	291
424	The combination of a novel immunomodulator with a regulatory T cell suppressing antibody (DTA-1) regress advanced stage B16F10 solid tumor by repolarizing tumor associated macrophages <i>in situ</i> i>. Oncolmmunology, 2015, 4, e995559.	2.1	27
425	Prodding the Beast: Assessing the Impact of Treatment-Induced Metastasis. Cancer Research, 2015, 75, 3427-3435.	0.4	49
426	Priming of Human Resting NK Cells by Autologous M1 Macrophages via the Engagement of IL-1Î ² , IFN-Î ² , and IL-15 Pathways. Journal of Immunology, 2015, 195, 2818-2828.	0.4	90
427	M1-like Macrophage Polarization Promotes Orthodontic Tooth Movement. Journal of Dental Research, 2015, 94, 1286-1294.	2.5	72
428	FGF1–FGFR1 axis promotes tongue squamous cell carcinoma (TSCC) metastasis through epithelial–mesenchymal transition (EMT). Biochemical and Biophysical Research Communications, 2015, 466, 327-332.	1.0	33
429	In vivo capture and label-free detection of early metastatic cells. Nature Communications, 2015, 6, 8094.	5.8	133
430	Targeted delivery of CCR2 antagonist to activated pulmonary endothelium prevents metastasis. Journal of Controlled Release, 2015, 220, 341-347.	4.8	27
431	Diallyl disulfide inhibits TNFÎ \pm induced CCL2 release through MAPK/ERK and NF-Kappa-B signaling. Cytokine, 2015, 75, 117-126.	1.4	30
432	Novel Glycosylated VEGF Decoy Receptor Fusion Protein, VEGF-Grab, Efficiently Suppresses Tumor Angiogenesis and Progression. Molecular Cancer Therapeutics, 2015, 14, 470-479.	1.9	24
433	Targeting breast cancer through its microenvironment: Current status of preclinical and clinical research in finding relevant targets., 2015, 147, 63-79.		25
434	CSF1-ETS2-induced microRNA in myeloid cells promote metastatic tumor growth. Oncogene, 2015, 34, 3651-3661.	2.6	60
435	Myeloid cells in cancer-related inflammation. Immunobiology, 2015, 220, 249-253.	0.8	62
436	Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature, 2015, 518, 547-551.	13.7	1,724
437	Balancing the innate immune system in tumor development. Trends in Cell Biology, 2015, 25, 214-220.	3.6	107
438	Tumour Microenvironment: Overview with an Emphasis on the Colorectal Liver Metastasis Pathway. Cancer Microenvironment, 2015, 8, 177-186.	3.1	11

#	ARTICLE	IF	Citations
439	Creâ€ativity in the liver: Transgenic approaches to targeting hepatic nonparenchymal cells. Hepatology, 2015, 61, 2091-2099.	3.6	27
440	Aberrant Glycosylation Promotes Lung Cancer Metastasis through Adhesion to Galectins in the Metastatic Niche. Cancer Discovery, 2015, 5, 168-181.	7.7	91
441	Vascular cell adhesion moleculeâ€1 (VCAMâ€1)—An increasing insight into its role in tumorigenicity and metastasis. International Journal of Cancer, 2015, 136, 2504-2514.	2.3	195
442	The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenvironment, 2015, 8, 125-158.	3.1	315
443	Stress Response Pathways in Cancer. , 2015, , .		3
444	Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Advanced Drug Delivery Reviews, 2015, 91, 38-51.	6.6	55
445	Genetic targeting of microglia. Glia, 2015, 63, 1-22.	2.5	116
446	Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget, 2016, 7, 49349-49367.	0.8	95
447	Tumour progression and metastasis. Ecancermedicalscience, 2016, 10, 617.	0.6	57
448	The Therapeutic Aspects of the Endocannabinoid System (ECS) for Cancer and their Development: From Nature to Laboratory. Current Pharmaceutical Design, 2016, 22, 1756-1766.	0.9	43
449	Role of pericytes in angiogenesis: focus on cancer angiogenesis and anti-angiogenic therapy. Neoplasma, 2016, 63, 173-82.	0.7	27
450	Overcoming Therapeutic Resistance by Targeting Cancer Inflammation. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, e168-e173.	1.8	7
451	Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget, 2016, 7, 28697-28710.	0.8	378
452	A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs. BioMed Research International, 2016, 2016, 1-12.	0.9	39
453	Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment. Mediators of Inflammation, 2016, 2016, 1-11.	1.4	549
454	Immune Cells in Cancer Therapy and Drug Delivery. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	26
455	Parallel Aspects of the Microenvironment in Cancer and Autoimmune Disease. Mediators of Inflammation, 2016, 2016, 1-17.	1.4	28
456	New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	105

#	Article	IF	CITATIONS
457	Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer. Mediators of Inflammation, 2016, 2016, 1-13.	1.4	61
458	Nanomedicine engulfed by macrophages for targeted tumor therapy. International Journal of Nanomedicine, 2016, Volume 11, 4107-4124.	3.3	44
459	Inflammation and Cancer., 2016,, 406-415.		10
460	Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells. Frontiers in Immunology, 2016, 7, 2.	2.2	30
461	How Mouse Macrophages Sense What Is Going On. Frontiers in Immunology, 2016, 7, 204.	2.2	99
462	The Role of Chemokines in Promoting Colorectal Cancer Invasion/Metastasis. International Journal of Molecular Sciences, 2016, 17, 643.	1.8	97
463	Preferentially Expressed Antigen of Melanoma Prevents Lung Cancer Metastasis. PLoS ONE, 2016, 11, e0149640.	1.1	12
464	Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development. Oncotarget, 2016, 7, 44790-44802.	0.8	51
465	Fibroblasts, an inconspicuous but essential player in colon cancer development and progression. World Journal of Gastroenterology, 2016, 22, 5301.	1.4	39
466	Macrophage targeting contributes to the inhibitory effects of embelin on colitis-associated cancer. Oncotarget, 2016, 7, 19548-19558.	0.8	25
467	The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 2016, 30, 18-25.	7.7	194
468	Targeting microRNAs as key modulators of tumor immune response. Journal of Experimental and Clinical Cancer Research, 2016, 35, 103.	3.5	160
469	Tumorâ€Associated Macrophages Associate with Cerebrospinal Fluid Interleukinâ€10 and Survival in Primary Central Nervous System Lymphoma (<scp>PCNSL</scp>). Brain Pathology, 2016, 26, 479-487.	2.1	31
470	Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Molecular Carcinogenesis, 2016, 55, 1002-1011.	1.3	32
471	Chimeric antigen receptor-modified T cells for the treatment of solid tumors: Defining the challenges and next steps. , 2016 , 166 , $30-39$.		102
472	Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease. Clinical Anatomy, 2016, 29, 305-315.	1.5	28
473	Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy. Biochemistry (Moscow), 2016, 81, 1274-1283.	0.7	24
474	CSF1 is involved in breast cancer progression through inducing monocyte differentiation and homing. International Journal of Oncology, 2016, 49, 2064-2074.	1.4	26

#	Article	IF	Citations
475	Low CD38 Identifies Progenitor-like Inflammation-Associated Luminal Cells that Can Initiate Human Prostate Cancer and Predict Poor Outcome. Cell Reports, 2016, 17, 2596-2606.	2.9	94
476	Tumor-Induced Myeloid-Derived Suppressor Cells. Microbiology Spectrum, 2016, 4, .	1.2	28
477	The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway. Oncology Reports, 2016, 35, 189-196.	1.2	46
478	The Ontogeny and Microenvironmental Regulation of Tumor-Associated Macrophages. Antioxidants and Redox Signaling, 2016, 25, 775-791.	2.5	45
479	Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncology, The, 2016, 17, 651-662.	5.1	557
480	CSF-1 receptor signalling is governed by pre-requisite EHD1 mediated receptor display on the macrophage cell surface. Cellular Signalling, 2016, 28, 1325-1335.	1.7	10
481	Tumor-associated macrophages in skin: How to treat their heterogeneity and plasticity. Journal of Dermatological Science, 2016, 83, 167-173.	1.0	48
482	FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3–CCL2 Signaling. Cancer Research, 2016, 76, 4124-4135.	0.4	470
483	New development in studies of formyl-peptide receptors: critical roles in host defense. Journal of Leukocyte Biology, 2016, 99, 425-435.	1.5	56
484	Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncology Reports, 2016, 35, 2499-2515.	1.2	254
485	Myeloid-Derived Suppressor Cells Endow Stem-like Qualities to Breast Cancer Cells through IL6/STAT3 and NO/NOTCH Cross-talk Signaling. Cancer Research, 2016, 76, 3156-3165.	0.4	224
486	Genetic manipulation of microglia during brain development and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 299-309.	1.8	49
487	Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery, 2016, 6, 630-649.	7.7	369
488	Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nature Cell Biology, 2016, 18, 549-560.	4.6	329
489	Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Potent Target for Breast Cancer Therapy. Cancer Biotherapy and Radiopharmaceuticals, 2016, 31, 85-90.	0.7	12
490	Elevated expression of chemokine C-C ligand 2 in stroma is associated with recurrent basal-like breast cancers. Modern Pathology, 2016, 29, 810-823.	2.9	26
491	Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnology Advances, 2016, 34, 803-812.	6.0	152
492	Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model. Advances in Experimental Medicine and Biology, 2016, 916, 239-263.	0.8	31

#	Article	IF	Citations
493	Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood, 2016, 127, 3350-3359.	0.6	33
494	The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nature Immunology, 2016, 17, 1273-1281.	7.0	277
495	Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment., 2016, 168, 98-112.		95
496	Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor. Molecular Cell, 2016, 63, 976-989.	4.5	80
497	MicroRNA-33 suppresses CCL2 expression in chondrocytes. Bioscience Reports, 2016, 36, .	1.1	14
498	CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity. Cancer Research, 2016, 76, 6483-6494.	0.4	64
499	The Relationship Between Dormant Cancer Cells and Their Microenvironment. Advances in Cancer Research, 2016, 132, 45-71.	1.9	125
500	Tumor macrophages are pivotal constructors of tumor collagenous matrix. Journal of Experimental Medicine, 2016, 213, 2315-2331.	4.2	253
501	Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells. International Journal of Biochemistry and Cell Biology, 2016, 79, 199-208.	1.2	19
502	Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell, 2016, 30, 533-547.	7.7	397
503	The role of ADAM17 in tumorigenesis and progression of breast cancer. Tumor Biology, 2016, 37, 15359-15370.	0.8	27
504	Antibody Therapy Targeting CD47 and CD271 Effectively Suppresses Melanoma Metastasis in Patient-Derived Xenografts. Cell Reports, 2016, 16, 1701-1716.	2.9	56
505	Specification of tissue-resident macrophages during organogenesis. Science, 2016, 353, .	6.0	609
506	Monocyte Induction of E-Selectin–Mediated Endothelial Activation Releases VE-Cadherin Junctions to Promote Tumor Cell Extravasation in the Metastasis Cascade. Cancer Research, 2016, 76, 5302-5312.	0.4	61
507	Inflammation and Metastasis., 2016,,.		4
508	The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 2016, 16, 582-598.	12.8	2,886
510	Apoptotic Caspases in Promoting Cancer: Implications from Their Roles in Development and Tissue Homeostasis. Advances in Experimental Medicine and Biology, 2016, 930, 89-112.	0.8	27
511	Immune Regulation of the Metastatic Process. Advances in Cancer Research, 2016, 132, 139-163.	1.9	14

#	Article	IF	Citations
512	Cytokine Regulation of Metastasis and Tumorigenicity. Advances in Cancer Research, 2016, 132, 265-367.	1.9	86
513	Translational Research in Pleural Infection and Beyond. Chest, 2016, 150, 1361-1370.	0.4	19
514	Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors. Cancer Research, 2016, 76, 6851-6863.	0.4	209
515	Tumorâ€secreted products repress Bâ€cell lymphopoiesis in a murine model of breast cancer. European Journal of Immunology, 2016, 46, 2835-2841.	1.6	9
516	Cancer Stem Cells and Tumor-Associated Macrophages. , 2016, , 367-394.		1
517	Enhanced Survival with Implantable Scaffolds That Capture Metastatic Breast Cancer Cells <i>In Vivo</i> . Cancer Research, 2016, 76, 5209-5218.	0.4	86
518	G <i>$\hat{I}^2\hat{I}^3$</i> Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Molecular Pharmacology, 2016, 90, 573-586.	1.0	33
519	Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano, 2016, 10, 7738-7748.	7.3	462
520	Defining Metastatic Cell Latency. New England Journal of Medicine, 2016, 375, 280-282.	13.9	15
521	One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer and Metastasis Reviews, 2016, 35, 601-629.	2.7	58
522	Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. Npj Breast Cancer, 2016, 2, .	2.3	356
523	Characteristics and Significance of the Pre-metastatic Niche. Cancer Cell, 2016, 30, 668-681.	7.7	767
524	Targeting Inflammation in Cancer Prevention and Therapy. Cancer Prevention Research, 2016, 9, 895-905.	0.7	286
525	UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. Cancer Cell, 2016, 30, 694-707.	7.7	131
526	Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Scientific Reports, 2016, 6, 36107.	1.6	216
527	Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nature Communications, 2016, 7, 13050.	5.8	135
528	The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nature Communications, 2016, 7, 11385.	5.8	117
529	Macrophage Metabolism Controls Tumor Blood Vessel Morphogenesis and Metastasis. Cell Metabolism, 2016, 24, 701-715.	7.2	352

#	Article	IF	CITATIONS
530	Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. Journal of Visualized Experiments, 2016 , , .	0.2	22
531	Isolation of Mouse and Human Tumor-Associated Macrophages. Advances in Experimental Medicine and Biology, 2016, 899, 211-229.	0.8	52
532	Identification of Caspase-6 as a New Regulator of Alternatively Activated Macrophages. Journal of Biological Chemistry, 2016, 291, 17450-17466.	1.6	17
533	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2016, , .	0.8	3
534	Mouse Models of Tumor Immunotherapy. Advances in Immunology, 2016, 130, 1-24.	1.1	30
535	The role of myeloid cells in cancer therapies. Nature Reviews Cancer, 2016, 16, 447-462.	12.8	570
536	Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Developmental Biology, 2016, 413, 153-159.	0.9	51
537	Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 409-430.	2.7	211
538	Gene expression profile of normal and cancerâ€associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Molecular Carcinogenesis, 2016, 55, 1489-1502.	1.3	23
539	Prognostic relevance of genetic variants involved in immune checkpoints in patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1775-1780.	1.2	14
540	CCR2-V64I genetic polymorphism: a possible involvement in HER2+ breast cancer. Clinical and Experimental Medicine, 2016, 16, 139-145.	1.9	10
541	High expression of chemokine CCL2 is associated with recurrence after surgery in clear-cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 238.e19-238.e26.	0.8	12
542	Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cellular and Molecular Life Sciences, 2016, 73, 1569-1589.	2.4	100
543	Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac. Cell Cycle, 2016, 15, 381-393.	1.3	24
544	Metastatic colonization by circulating tumour cells. Nature, 2016, 529, 298-306.	13.7	1,498
545	Post-Sepsis State Induces Tumor-Associated Macrophage Accumulation through CXCR4/CXCL12 and Favors Tumor Progression in Mice. Cancer Immunology Research, 2016, 4, 312-322.	1.6	45
546	Interactions between Adipocytes and Breast Cancer Cells Stimulate Cytokine Production and Drive Src/Sox2/miR-302b–Mediated Malignant Progression. Cancer Research, 2016, 76, 491-504.	0.4	142
547	New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology, 2016, 17, 34-40.	7.0	630

#	Article	IF	CITATIONS
548	The development and maintenance of resident macrophages. Nature Immunology, 2016, 17, 2-8.	7.0	474
549	The influence of the pre-metastatic niche on breast cancer metastasis. Cancer Letters, 2016, 380, 281-288.	3.2	45
550	Cancer immunosurveillance: role of patrolling monocytes. Cell Research, 2016, 26, 3-4.	5.7	34
551	Monocyte and interferon based therapy for the treatment of ovarian cancer. Cytokine and Growth Factor Reviews, 2016, 29, 109-115.	3.2	27
552	Ranitidine modifies myeloid cell populations and inhibits breast tumor development and spread in mice. Oncolmmunology, 2016, 5, e1151591.	2.1	29
553	Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature, 2016, 531, 513-517.	13.7	348
554	Primitive Embryonic Macrophages are Required for Coronary Development and Maturation. Circulation Research, 2016, 118, 1498-1511.	2.0	225
555	CCL2 expression is mediated by type I IFN receptor and recruits NK and T cells to the lung during MVA infection. Journal of Leukocyte Biology, 2016, 99, 1057-1064.	1.5	61
556	GPCR Signaling Mediates Tumor Metastasis via PI3Kβ. Cancer Research, 2016, 76, 2944-2953.	0.4	47
557	IFNÎ ³ and CCL2 Cooperate to Redirect Tumor-Infiltrating Monocytes to Degrade Fibrosis and Enhance Chemotherapy Efficacy in Pancreatic Carcinoma. Cancer Discovery, 2016, 6, 400-413.	7.7	193
558	The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology, 2016, 37, 208-220.	2.9	1,507
559	Targeting of CCL2-CCR2-Glycosaminoglycan Axis Using a CCL2 Decoy Protein Attenuates Metastasis through Inhibition of Tumor Cell Seeding. Neoplasia, 2016, 18, 49-59.	2.3	27
560	C-C Chemokine Receptor Type 2 Expression on Monocytes Before Sepsis Onset Is Higher Than That of Postsepsis in Septic Burned Patients. Annals of Surgery, 2016, 264, 392-398.	2.1	6
561	GRP94/gp96 in Cancer. Advances in Cancer Research, 2016, 129, 165-190.	1.9	59
562	Tumor-Associated Neutrophils Recruit Macrophages and T-Regulatory Cells to Promote Progression of Hepatocellular Carcinoma and Resistance to Sorafenib. Gastroenterology, 2016, 150, 1646-1658.e17.	0.6	586
563	The Basis of Oncoimmunology. Cell, 2016, 164, 1233-1247.	13.5	671
564	Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resistance Updates, 2016, 25, 26-37.	6.5	88
565	Trial Watchâ€"Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncolmmunology, 2016, 5, e1149674.	2.1	46

#	Article	IF	CITATIONS
566	Resident microglia rather than peripheral macrophages promote vascularization in brain tumors and are source of alternative pro-angiogenic factors. Acta Neuropathologica, 2016, 131, 365-378.	3.9	144
567	The Microenvironment of Lung Cancer and Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 890, 75-110.	0.8	96
568	H3K27 Demethylase JMJD3 Employs the NF-κB and BMP Signaling Pathways to Modulate the Tumor Microenvironment and Promote Melanoma Progression and Metastasis. Cancer Research, 2016, 76, 161-170.	0.4	80
569	Cancer therapy targeting the fibrinolytic system. Advanced Drug Delivery Reviews, 2016, 99, 172-179.	6.6	20
571	Immunosuppressive cells in tumor immune escape and metastasis. Journal of Molecular Medicine, 2016, 94, 509-522.	1.7	270
572	Role of chitinase-like proteins in cancer. Biological Chemistry, 2016, 397, 231-247.	1.2	94
573	Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype. Tumor Biology, 2016, 37, 5857-5867.	0.8	48
574	Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158.	12.5	753
575	Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nature Reviews Drug Discovery, 2016, 15, 125-142.	21.5	115
576	Inflammation-induced epigenetic switches in cancer. Cellular and Molecular Life Sciences, 2016, 73, 23-39.	2.4	43
577	Sialic acids in cancer biology and immunity. Glycobiology, 2016, 26, 111-128.	1.3	364
578	Increased expression of C-C motif ligand 2 associates with poor prognosis in patients with gastric cancer after gastrectomy. Tumor Biology, 2016, 37, 3285-3293.	0.8	8
579	Tumor-associated macrophages in cancers. Clinical and Translational Oncology, 2016, 18, 251-258.	1.2	95
580	Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy. Gut, 2016, 65, 1710-1720.	6.1	193
581	The anticancer and antiobesity effects of Mediterranean diet. Critical Reviews in Food Science and Nutrition, 2017, 57, 82-94.	5.4	42
582	Tricking the balance: NK cells in anti-cancer immunity. Immunobiology, 2017, 222, 11-20.	0.8	163
583	Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66, 157-167.	6.1	495
584	Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 137-148.	3.2	234

#	Article	IF	CITATIONS
585	TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene, 2017, 36, 482-490.	2.6	176
586	Exploring new biomarkers in the tumour microenvironment of canine inflammatory mammary tumours. Veterinary and Comparative Oncology, 2017, 15, 655-666.	0.8	20
587	IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis. Molecular Carcinogenesis, 2017, 56, 272-287.	1.3	113
588	Mononuclear phagocytes as a target, not a barrier, for drug delivery. Journal of Controlled Release, 2017, 259, 53-61.	4.8	34
589	Tumour-associated macrophages as treatment targets in oncology. Nature Reviews Clinical Oncology, 2017, 14, 399-416.	12.5	2,667
590	Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Science Immunology, 2017, 2, .	5.6	71
591	RIPK1/RIPK3 promotes vascular permeability to allow tumor cell extravasation independent of its necroptotic function. Cell Death and Disease, 2017, 8, e2588-e2588.	2.7	63
592	Identification of Motile Sperm Domain–Containing Protein 2 as Regulator of Human Monocyte Migration. Journal of Immunology, 2017, 198, 2125-2132.	0.4	12
593	CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Research, 2017, 19, 4.	2.2	61
594	Loss of monocyte chemoattractant protein-1 expression delays mammary tumorigenesis and reduces localized inflammation in the $C3(1)/SV40Tag$ triple negative breast cancer model. Cancer Biology and Therapy, 2017, 18, 85-93.	1.5	15
595	Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy, 2017, 9, 289-302.	1.0	259
596	The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocrine-Related Cancer, 2017, 24, R123-R144.	1.6	64
597	Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026781.	2.9	278
598	The Yin/Yan of CCL2: a minor role in neutrophil anti-tumor activity in vitro but a major role on the outgrowth of metastatic breast cancer lesions in the lung in vivo. BMC Cancer, 2017, 17, 88.	1.1	29
599	The Dr. Jekyll and Mr. Hyde complexity of the macrophage response in disease. Journal of Leukocyte Biology, 2017, 102, 307-315.	1.5	13
600	The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Molecular Cell, 2017, 65, 730-742.e5.	4.5	189
601	Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature, 2017, 543, 428-432.	13.7	423
602	Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell, 2017, 168, 1101-1113.e13.	13.5	219

#	Article	IF	Citations
603	The Interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-mediated mammary tumorigenesis and pulmonary metastasis. Oncolmmunology, 2017, 6, e1287247.	2.1	51
604	Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation. Nucleus (India), 2017, 60, 93-109.	0.9	4
605	Micheliolide provides protection of mice against Staphylococcus aureus and MRSA infection by down-regulating inflammatory response. Scientific Reports, 2017, 7, 41964.	1.6	39
606	Emerging Biological Principles of Metastasis. Cell, 2017, 168, 670-691.	13.5	2,208
607	The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine, 2017, 98, 71-78.	1.4	94
608	Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Scientific Reports, 2017, 7, 42171.	1.6	8
609	IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer. Radiation Research, 2017, 187, 50-59.	0.7	53
611	Regulation of PD-L1 expression on murine tumor-associated monocytes and macrophages by locally produced TNF-α. Cancer Immunology, Immunotherapy, 2017, 66, 523-535.	2.0	76
612	MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nature Medicine, 2017, 23, 723-732.	15.2	159
613	Insights into the Link Between Obesity and Cancer. Current Obesity Reports, 2017, 6, 195-203.	3.5	86
614	Tuning cancer fate: the unremitting role of host immunity. Open Biology, 2017, 7, 170006.	1.5	43
615	Ly6C ^{hi} Monocytes Delivering pHâ€6ensitive Micelle Loading Paclitaxel Improve Targeting Therapy of Metastatic Breast Cancer. Advanced Functional Materials, 2017, 27, 1701093.	7.8	46
616	Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell, 2017, 169, 750-765.e17.	13. 5	937
617	Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Advanced Drug Delivery Reviews, 2017, 114, 206-221.	6.6	528
618	Mutant KRAS promotes malignant pleural effusion formation. Nature Communications, 2017, 8, 15205.	5.8	77
619	Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4416-E4424.	3.3	24
620	Therapeutic IgE Antibodies: Harnessing a Macrophage-Mediated Immune Surveillance Mechanism against Cancer. Cancer Research, 2017, 77, 2779-2783.	0.4	42
621	How Schwann cells facilitate cancer progression in nerves. Cellular and Molecular Life Sciences, 2017, 74, 4405-4420.	2.4	71

#	Article	IF	Citations
622	Mammary tumor-derived CCL2 enhances pro-metastatic systemic inflammation through upregulation of $IL1\hat{1}^2$ in tumor-associated macrophages. Oncolmmunology, 2017, 6, e1334744.	2.1	81
623	Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis. Journal of Pathology, 2017, 242, 488-499.	2.1	23
624	Success in bone marrow failure? Novel therapeutic directions based on the immune environment of myelodysplastic syndromes. Journal of Leukocyte Biology, 2017, 102, 209-219.	1.5	12
625	Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 2017, 17, 559-572.	10.6	1,448
626	Engineering the pre-metastatic niche. Nature Biomedical Engineering, 2017, $1,$	11.6	100
627	An Immunosuppressive Dendritic Cell Subset Accumulates at Secondary Sites and Promotes Metastasis in Pancreatic Cancer. Cancer Research, 2017, 77, 4158-4170.	0.4	85
628	Targeting tumor associated macrophages (TAMs) via nanocarriers. Journal of Controlled Release, 2017, 254, 92-106.	4.8	98
629	Cells of the Immune System. Molecular and Integrative Toxicology, 2017, , 95-201.	0.5	1
630	<i> <scp>NRAS</scp> </i> destines tumor cells to the lungs. EMBO Molecular Medicine, 2017, 9, 672-686.	3.3	31
631	Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene, 2017, 36, 4457-4468.	2.6	204
632	Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1467-1488.	0.9	110
633	Immunopathology in Toxicology and Drug Development. Molecular and Integrative Toxicology, 2017, , .	0.5	1
634	Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chinese Journal of Cancer, 2017, 36, 36.	4.9	50
635	Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer, 2017, 17, 302-317.	12.8	1,272
636	Tumor cells interact with red blood cells via galectin-4 - a short report. Cellular Oncology (Dordrecht), 2017, 40, 401-409.	2.1	11
637	Tissue Myeloid Progenitors Differentiate into Pericytes through TGF-Î ² Signaling in Developing Skin Vasculature. Cell Reports, 2017, 18, 2991-3004.	2.9	97
638	Molecular insights into tumour metastasis: tracing the dominant events. Journal of Pathology, 2017, 241, 567-577.	2.1	62
639	Breast tumor stroma: A driving force in the development of resistance to therapies. Chemical Biology and Drug Design, 2017, 89, 309-318.	1.5	58

#	Article	IF	CITATIONS
640	Induction of the MCP chemokine cluster cascade in the periphery by cancer cell-derived Ccl3. Cancer Letters, 2017, 389, 49-58.	3.2	19
641	Blocking the CCL2–CCR2 Axis Using CCL2-Neutralizing Antibody Is an Effective Therapy for Hepatocellular Cancer in a Mouse Model. Molecular Cancer Therapeutics, 2017, 16, 312-322.	1.9	101
642	Cancer-derived exosomic microRNAs shape the immune system within the tumor microenvironment: State of the art. Seminars in Cell and Developmental Biology, 2017, 67, 23-28.	2.3	55
643	TAMeless traitors: macrophages in cancer progression and metastasis. British Journal of Cancer, 2017, 117, 1583-1591.	2.9	471
644	Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. Progress in Molecular Biology and Translational Science, 2017, 151, 113-136.	0.9	43
645	Targeting tumor associated macrophages: The new challenge for nanomedicine. Seminars in Immunology, 2017, 34, 103-113.	2.7	110
646	Myofibrils put the squeeze on nuclei. Nature Cell Biology, 2017, 19, 1148-1150.	4.6	1
647	What DKKtates where to metastasize. Nature Cell Biology, 2017, 19, 1146-1148.	4.6	1
648	Yolk sac erythromyeloid progenitors expressing gain of function PTPN11 have functional features of JMML but are not sufficient to cause disease in mice. Developmental Dynamics, 2017, 246, 1001-1014.	0.8	7
649	Inflammatory Monocytes Promote Perineural Invasion via CCL2-Mediated Recruitment and Cathepsin B Expression. Cancer Research, 2017, 77, 6400-6414.	0.4	73
650	The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nature Communications, 2017, 8, 864.	5.8	261
651	Tumorâ€associated macrophages (TAMs) depend on ZEB1 for their cancerâ€promoting roles. EMBO Journal, 2017, 36, 3336-3355.	3.5	112
652	Low-risk population among patients with tumor-node-metastasis stage III/IV oral squamous cell carcinoma. Oncology Letters, 2017, 14, 3711-3716.	0.8	5
653	Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Molecular Medicine, 2017, 9, 1629-1645.	3.3	54
654	MicroRNAs in the Diagnosis and Treatment of Cancer. Immunological Investigations, 2017, 46, 880-897.	1.0	52
655	CCR2 3′UTR functions as a competing endogenous RNA to inhibit breast cancer metastasis. Journal of Cell Science, 2017, 130, 3399-3413.	1.2	43
656	A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature, 2017, 549, 389-393.	13.7	144
657	Energy imbalance and cancer: Cause or consequence?. IUBMB Life, 2017, 69, 776-784.	1.5	6

#	Article	IF	CITATIONS
658	Origin and production of inflammatory perivascular macrophages in pulmonary hypertension. Cytokine, 2017, 100, 11-15.	1.4	28
659	Role of Tissue Factor-FVIIa Blood Coagulation Initiation Complex in Cancer. , 2017, , 101-119.		1
660	Nanomaterials for cancer immunotherapy. Biomaterials, 2017, 148, 16-30.	5.7	226
661	GK-1 peptide reduces tumor growth, decreases metastatic burden, and increases survival in a murine breast cancer model. Vaccine, 2017, 35, 5653-5661.	1.7	18
662	Intravascular Survival and Extravasation of Tumor Cells. Cancer Cell, 2017, 32, 282-293.	7.7	285
663	Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nature Cell Biology, 2017, 19, 1274-1285.	4.6	218
664	Extracting Intercellular Signaling Network of Cancer Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and Single-cell Transcriptomes. Scientific Reports, 2017, 7, 8815.	1.6	74
665	Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior. Scientific Reports, 2017, 7, 7529.	1.6	39
666	Mouse models of metastasis: progress and prospects. DMM Disease Models and Mechanisms, 2017, 10, 1061-1074.	1.2	216
667	Myeloid suppressor cells in cancer and autoimmunity. Journal of Autoimmunity, 2017, 85, 117-125.	3.0	154
668	Continuous Delivery of Neutralizing Antibodies Elevate CCL2 Levels in Mice Bearing MCF10CA1d Breast Tumor Xenografts. Translational Oncology, 2017, 10, 734-743.	1.7	15
669	Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 andÂGM-CSF. Nature Cell Biology, 2017, 19, 974-987.	4.6	205
670	Identification Of Erythromyeloid Progenitors And Their Progeny In The Mouse Embryo By Flow Cytometry. Journal of Visualized Experiments, 2017, , .	0.2	5
671	Inflammatory Monocytes Loading Protease-Sensitive Nanoparticles Enable Lung Metastasis Targeting and Intelligent Drug Release for Anti-Metastasis Therapy. Nano Letters, 2017, 17, 5546-5554.	4.5	107
672	Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. Ca-A Cancer Journal for Clinicians, 2017, 67, 378-397.	157.7	551
673	Regulation of Tumor Progression and Metastasis by Bone Marrow-Derived Microenvironments. , 2017, , 303-328.		0
674	Notch Shapes the Innate Immunophenotype in Breast Cancer. Cancer Discovery, 2017, 7, 1320-1335.	7.7	98
675	Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 2017, 47, 323-338.e6.	6.6	499

#	Article	IF	CITATIONS
676	The Yolk Sac Feeds Pancreatic Tumors. Immunity, 2017, 47, 217-218.	6.6	5
677	Primary Tumors Limit Metastasis Formation through Induction of IL15-Mediated Cross-Talk between Patrolling Monocytes and NK Cells. Cancer Immunology Research, 2017, 5, 812-820.	1.6	57
678	Selective depletion of cultured macrophages by magnetite nanoparticles modified with gelatin. Experimental and Therapeutic Medicine, 2017, 14, 1640-1646.	0.8	3
679	CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis. Oncology Reports, 2017, 38, 1393-1401.	1.2	55
680	Stress-inducible gene <i>Atf3</i> in the noncancer host cells contributes to chemotherapy-exacerbated breast cancer metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7159-E7168.	3.3	126
681	Noncanonical Pathway for Regulation of CCL2 Expression by an mTORC1-FOXK1 Axis Promotes Recruitment of Tumor-Associated Macrophages. Cell Reports, 2017, 21, 2471-2486.	2.9	84
682	CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in \hat{A} - \hat{A}_i : \hat{A}_i /2vitro through activation of the Hedgehog pathway. Oncology Reports, 2017, 39, 21-30.	1.2	47
683	Loss of Caveolin-1 in Metastasis-Associated Macrophages Drives Lung Metastatic Growth through Increased Angiogenesis. Cell Reports, 2017, 21, 2842-2854.	2.9	46
684	CCR5 Directs the Mobilization of CD11b+Gr1+Ly6Clow Polymorphonuclear Myeloid Cells from the Bone Marrow to the Blood to Support Tumor Development. Cell Reports, 2017, 21, 2212-2222.	2.9	83
685	A CD103+ Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity, 2017, 47, 974-989.e8.	6.6	50
686	Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nature Communications, 2017, 8, 1736.	5.8	304
687	Prognostic role of pretreatment neutrophil to lymphocyte ratio in breast cancer patients. Medicine (United States), 2017, 96, e8101.	0.4	39
688	The influence of the commensal microbiota on distal tumor-promoting inflammation. Seminars in Immunology, 2017, 32, 62-73.	2.7	24
689	Lanosterol Modulates TLR4-Mediated Innate Immune Responses in Macrophages. Cell Reports, 2017, 19, 2743-2755.	2.9	79
690	Role of monocyte recruitment in hemangiosarcoma metastasis in dogs. Veterinary and Comparative Oncology, 2017, 15, 1309-1322.	0.8	15
691	Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nature Reviews Drug Discovery, 2017, 16, 35-52.	21.5	344
692	Mutual epitheliumâ€macrophage dependency in liver carcinogenesis mediated by ST18. Hepatology, 2017, 65, 1708-1719.	3.6	19
693	Tumor-derived osteopontin isoforms cooperate with TRP53 and CCL2 to promote lung metastasis. Oncolmmunology, 2017, 6, e1256528.	2.1	29

#	Article	IF	CITATIONS
694	Macrophage Polarization. Annual Review of Physiology, 2017, 79, 541-566.	5.6	1,934
695	The Growth Inhibitory Potential and Antimetastatic Effect of Camel Urine on Breast Cancer Cells In Vitro and In Vivo. Integrative Cancer Therapies, 2017, 16, 540-555.	0.8	15
696	The CCL2-CCR2 Axis in Lymph Node Metastasis From Oral Squamous Cell Carcinoma: An Immunohistochemical Study. Journal of Oral and Maxillofacial Surgery, 2017, 75, 742-749.	0.5	16
697	CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene, 2017, 36, 2095-2104.	2.6	216
698	Early local immune defences in the respiratory tract. Nature Reviews Immunology, 2017, 17, 7-20.	10.6	244
699	Molecular Pathways: Deciphering Mechanisms of Resistance to Macrophage-Targeted Therapies. Clinical Cancer Research, 2017, 23, 876-884.	3.2	95
700	Association of mast cell infiltration with gastric cancer progression. Oncology Letters, 2017, 15, 755-764.	0.8	11
701	Monocytes and Macrophages. , 2017, , 217-252.		0
702	Tumor Associated Macrophages as Therapeutic Targets for Breast Cancer. Advances in Experimental Medicine and Biology, 2017, 1026, 331-370.	0.8	16
703	Contribution of Adipose Tissue to Development of Cancer. , 2017, 8, 237-282.		139
704	The Dawning of Translational Breast Cancer: From Bench to Bedside. Advances in Experimental Medicine and Biology, 2017, 1026, 1-25.	0.8	0
705	CITED2 attenuates macrophage recruitment concordant with the downregulation of CCL20 in breast cancer cells. Oncology Letters, 2017, 15, 871-878.	0.8	9
706	EACR-MRS conference on Seed and Soil: In Vivo Models of Metastasis. Clinical and Experimental Metastasis, 2017, 34, 449-456.	1.7	1
707	Neutrophils in cancer: prognostic role and therapeutic strategies. Molecular Cancer, 2017, 16, 137.	7.9	295
708	The immune system in cancer metastasis: friend or foe?., 2017, 5, 79.		193
709	Targeting CCR2 with its antagonist suppresses viability, motility and invasion by downregulating MMP-9 expression in non-small cell lung cancer cells. Oncotarget, 2017, 8, 39230-39240.	0.8	38
710	Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget, 2017, 8, 99693-99706.	0.8	29
711	Visualization of Tumor-Immune Interaction - Target-Specific Imaging of S100A8/A9 Reveals Pre-Metastatic Niche Establishment. Theranostics, 2017, 7, 2392-2401.	4.6	91

#	Article	IF	CITATIONS
712	Preoperative lymphocyte-to-monocyte ratio represents a superior predictor compared with neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios for colorectal liver-only metastases survival. OncoTargets and Therapy, 2017, Volume 10, 3789-3799.	1.0	34
713	Drug Resistance Driven by Cancer Stem Cells and Their Niche. International Journal of Molecular Sciences, 2017, 18, 2574.	1.8	376
714	Arachidonic Acid Metabolite as a Novel Therapeutic Target in Breast Cancer Metastasis. International Journal of Molecular Sciences, 2017, 18, 2661.	1.8	61
715	Human Tumor-Infiltrating Myeloid Cells: Phenotypic and Functional Diversity. Frontiers in Immunology, 2017, 8, 86.	2.2	167
716	Barriers to Radiation-Induced In Situ Tumor Vaccination. Frontiers in Immunology, 2017, 8, 229.	2.2	149
717	In Vivo Imaging Sheds Light on Immune Cell Migration and Function in Cancer. Frontiers in Immunology, 2017, 8, 309.	2.2	21
718	Translational Significance for Tumor Metastasis of Tumor-Associated Macrophages and Epithelial–Mesenchymal Transition. Frontiers in Immunology, 2017, 8, 1106.	2.2	69
719	Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression. Frontiers in Immunology, 2017, 8, 1129.	2.2	62
720	Macrophages as Key Drivers of Cancer Progression and Metastasis. Mediators of Inflammation, 2017, 2017, 1-11.	1.4	231
721	Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNF \hat{l}_{\pm} secretion and lowering CSF-1R expression. PLoS ONE, 2017, 12, e0171347.	1.1	10
722	Changes of plasma cytokines and chemokines expression level in nasopharyngeal carcinoma patients after treatment with definitive intensity-modulated radiotherapy (IMRT). PLoS ONE, 2017, 12, e0172264.	1.1	20
723	Factors involved in cancer metastasis: a better understanding to "seed and soil―hypothesis. Molecular Cancer, 2017, 16, 176.	7.9	211
724	Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy., 2017, 5, 53.		688
725	Immune Cells As Targets and Tools For Cancer Therapy. Immunotherapy (Los Angeles, Calif), 2017, 03, .	0.1	0
726	Diverse roles of macrophages in intraocular neovascular diseases: a review. International Journal of Ophthalmology, 2017, 10, 1902-1908.	0.5	23
727	Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget, 2017, 8, 48436-48452.	0.8	216
728	Assessment of phagocytic activity in live macrophages-tumor cells co-cultures by Confocal and Nomarski Microscopy. Biology Methods and Protocols, 2017, 2, bpx002.	1.0	11
729	Role of tumor microenvironment in triple-negative breast cancer and its prognostic significance. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2017, 29, 237-252.	0.7	109

#	Article	IF	Citations
730	Shifting paradigm of developing biologics for the treatment of pancreatic adenocarcinoma. Journal of Gastrointestinal Oncology, 2017, 8, 441-448.	0.6	4
731	Promising therapeutics of gastrointestinal cancers in clinical trials. Journal of Gastrointestinal Oncology, 2017, 8, 524-533.	0.6	1
732	CCR2â€dependent Gr1 high monocytes promote kidney injury in shiga toxinâ€induced hemolytic uremic syndrome in mice. European Journal of Immunology, 2018, 48, 990-1000.	1.6	3
733	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	13.5	85
734	Biomaterial Scaffolds as Preâ€metastatic Niche Mimics Systemically Alter the Primary Tumor and Tumor Microenvironment. Advanced Healthcare Materials, 2018, 7, e1700903.	3.9	25
735	Tumor-derived thymic stromal lymphopoietin enhances lung metastasis through an alveolar macrophage-dependent mechanism. Oncolmmunology, 2018, 7, e1419115.	2.1	17
736	Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents. Blood, 2018, 131, 1777-1789.	0.6	231
737	Chemotherapy Induces Breast Cancer Stemness in Association with Dysregulated Monocytosis. Clinical Cancer Research, 2018, 24, 2370-2382.	3.2	39
738	Role of chemokines in metastatic niche: new insights along with a diagnostic and prognostic approach. Apmis, 2018, 126, 359-370.	0.9	19
739	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	15.2	3,421
740	TAM Infiltration Differences in "Tumor-First―and " <i>ZHENG</i> -First―Models and the Underlying Inflammatory Molecular Mechanism in Pancreatic Cancer. Integrative Cancer Therapies, 2018, 17, 707-716.	0.8	6
741	Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension. Cell Reports, 2018, 23, 1152-1165.	2.9	68
742	Enhancer variants reveal a conserved transcription factor network governed by PU.1 during osteoclast differentiation. Bone Research, 2018, 6, 8.	5.4	30
743	Macrophages: The Road Less Traveled, Changing Anticancer Therapy. Trends in Molecular Medicine, 2018, 24, 472-489.	3.5	219
744	Harnessing Biology to Deliver Therapeutic and Imaging Entities via Cellâ€Based Methods. Chemistry - A European Journal, 2018, 24, 8717-8726.	1.7	9
745	Involvement of Prokineticin 2–expressing Neutrophil Infiltration in 5-Fluorouracil–induced Aggravation of Breast Cancer Metastasis to Lung. Molecular Cancer Therapeutics, 2018, 17, 1515-1525.	1.9	28
746	TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nature Communications, 2018, 9, 1423.	5.8	65
747	Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine, 2018, 109, 24-28.	1.4	153

#	Article	IF	CITATIONS
748	Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. Journal of Bone Oncology, 2018, 11, 27-32.	1.0	63
749	ACKR2 in hematopoietic precursors as a checkpoint of neutrophil release and anti-metastatic activity. Nature Communications, 2018, 9, 676.	5.8	68
750	<i>Csf1r</i> -mApple Transgene Expression and Ligand Binding In Vivo Reveal Dynamics of CSF1R Expression within the Mononuclear Phagocyte System. Journal of Immunology, 2018, 200, 2209-2223.	0.4	75
751	Tumor associated macrophages in gynecologic cancers. Gynecologic Oncology, 2018, 149, 205-213.	0.6	73
752	Alveolar Macrophages Drive Hepatocellular Carcinoma Lung Metastasis by Generating Leukotriene B4. Journal of Immunology, 2018, 200, 1839-1852.	0.4	45
753	The chemokine MCP-1 (CCL2) in the host interaction with cancer: a foe or ally?. Cellular and Molecular Immunology, 2018, 15, 335-345.	4.8	174
754	Leukocyte-derived biomimetic nanoparticulate drug delivery systems for cancer therapy. Acta Pharmaceutica Sinica B, 2018, 8, 4-13.	5.7	65
755	Cationic Polymeric Nanoparticle Delivering CCR2 siRNA to Inflammatory Monocytes for Tumor Microenvironment Modification and Cancer Therapy. Molecular Pharmaceutics, 2018, 15, 3642-3653.	2.3	57
756	Tumor-associated macrophages in human breast cancer produce new monocyte attracting and pro-angiogenic factor YKL-39 indicative for increased metastasis after neoadjuvant chemotherapy. Oncolmmunology, 2018, 7, e1436922.	2.1	49
757	Tumor Hypoxia As an Enhancer of Inflammation-Mediated Metastasis: Emerging Therapeutic Strategies. Targeted Oncology, 2018, 13, 157-173.	1.7	22
758	Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers, 2018, 6, e1431038.	1.6	43
7 59	Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumor Biology, 2018, 40, 101042831875620.	0.8	21
760	Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Letters, 2018, 420, 26-37.	3.2	37
761	Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nature Communications, 2018, 9, 355.	5.8	67
762	Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharmaceutica Sinica B, 2018, 8, 14-22.	5.7	286
763	Immune regulation by monocytes. Seminars in Immunology, 2018, 35, 12-18.	2.7	85
764	Kindlin-1 Promotes Pulmonary Breast Cancer Metastasis. Cancer Research, 2018, 78, 1484-1496.	0.4	17
765	lmaging macrophage distribution and density in mammary tumors and lung metastases using fluorineâ€19 MRI cell tracking. Magnetic Resonance in Medicine, 2018, 80, 1138-1147.	1.9	32

#	Article	IF	CITATIONS
766	Phagocyteâ€"extracellular matrix crosstalk empowers tumor development and dissemination. FEBS Journal, 2018, 285, 734-751.	2.2	32
767	B cell lymphoma progression promotes the accumulation of circulating Ly6Clo monocytes with immunosuppressive activity. Oncolmmunology, 2018, 7, e1393599.	2.1	17
768	Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nature Communications, 2018, 9, 75.	5.8	194
769	Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 2018, 9, 21.	5.8	331
770	A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation. Cell Reports, 2018, 23, 1239-1248.	2.9	188
771	A history of exploring cancer in context. Nature Reviews Cancer, 2018, 18, 359-376.	12.8	361
772	PA28Î ³ acts as a dual regulator of IL-6 and CCL2 and contributes to tumor angiogenesis in oral squamous cell carcinoma. Cancer Letters, 2018, 428, 192-200.	3.2	22
773	MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Research and Treatment, 2018, 170, 477-486.	1.1	77
774	Plasticity of myeloid-derived suppressor cells in cancer. Current Opinion in Immunology, 2018, 51, 76-82.	2.4	281
775	The pro-inflammatory role of platelets in cancer. Platelets, 2018, 29, 569-573.	1.1	93
776	Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biology and Therapy, 2018, 19, 858-868.	1.5	178
777	Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cellular Oncology (Dordrecht), 2018, 41, 123-140.	2.1	97
778	Androgen deprivation therapy-induced epithelial-mesenchymal transition of prostate cancer through downregulating SPDEF and activating CCL2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1717-1727.	1.8	62
779	GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). Journal of Steroid Biochemistry and Molecular Biology, 2018, 176, 49-56.	1.2	39
780	Transcriptional profiling reveals gene expression changes associated with inflammation and cell proliferation following shortâ€ŧerm inhalation exposure to copper oxide nanoparticles. Journal of Applied Toxicology, 2018, 38, 385-397.	1.4	44
781	Nonresolving macrophageâ€mediated inflammation in malignancy. FEBS Journal, 2018, 285, 641-653.	2.2	29
782	Beyond the Mâ€≺scp>CSF receptor – novel therapeutic targets in tumorâ€associated macrophages. FEBS Journal, 2018, 285, 777-787.	2.2	26
783	Foe or friend? Janus-faces of the neurovascular unit in the formation of brain metastases. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 563-587.	2.4	29

#	Article	IF	CITATIONS
784	Inflammatory cytokine IL-8/CXCL8 promotes tumour escape from hepatocyte-induced dormancy. British Journal of Cancer, 2018, 118, 566-576.	2.9	59
785	PTEN Loss Promotes Intratumoral Androgen Synthesis and Tumor Microenvironment Remodeling via Aberrant Activation of RUNX2 in Castration-Resistant Prostate Cancer. Clinical Cancer Research, 2018, 24, 834-846.	3.2	48
786	The role of macrophage phenotype in regulating the response to radiation therapy. Translational Research, 2018, 191, 64-80.	2.2	63
787	Innate and acquired immune surveillance in the postdissemination phase of metastasis. FEBS Journal, 2018, 285, 654-664.	2.2	47
788	Targeting both tumour-associated CXCR2 ⁺ neutrophils and CCR2 ⁺ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut, 2018, 67, 1112-1123.	6.1	334
789	A Review of Physical Activity and Circulating miRNA Expression: Implications in Cancer Risk and Progression. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 11-24.	1.1	51
790	Immunomodulatory effects of a bioactive fraction of Strobilanthes crispus in NMU-induced rat mammary tumor model. Journal of Ethnopharmacology, 2018, 213, 31-37.	2.0	16
791	Harnessing the immune system in the battle against breast cancer. Drugs in Context, 2018, 7, 1-21.	1.0	19
792	JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. Journal of Clinical Investigation, 2018, 128, 3041-3052.	3.9	387
793	Rational Design of Nanoparticles with Deep Tumor Penetration for Effective Treatment of Tumor Metastasis. Advanced Functional Materials, 2018, 28, 1801840.	7.8	112
794	A negative regulator of metastasis promoting macrophages. Journal of Emergency and Critical Care Medicine, 2018, 2, 56-56.	0.7	2
795	FOXC1, the new player in the cancer sandbox. Oncotarget, 2018, 9, 8165-8178.	0.8	53
796	Anti-angiogenic Therapy-Mediated Endothelial Damage: A Driver of Breast Cancer Recurrence?. Advances in Experimental Medicine and Biology, 2018, 1100, 19-45.	0.8	3
797	Insulin-like growth factor receptor signaling in breast tumor epithelium protects cells from endoplasmic reticulum stress and regulates the tumor microenvironment. Breast Cancer Research, 2018, 20, 138.	2.2	32
798	Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer and Metastasis Reviews, 2018, 37, 577-597.	2.7	150
799	Aging, inflammation and cancer. Seminars in Immunology, 2018, 40, 74-82.	2.7	103
800	Downregulation of ASPP2 promotes gallbladder cancer metastasis and macrophage recruitment via aPKC- \hat{l}^1 /GLI1 pathway. Cell Death and Disease, 2018, 9, 1115.	2.7	23
801	Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Frontiers in Endocrinology, 2018, 9, 758.	1.5	31

#	Article	IF	CITATIONS
802	Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Frontiers in Immunology, 2018, 9, 2629.	2.2	136
803	A circulating cell population showing both M1 and M2 monocyte/macrophage surface markers characterizes systemic sclerosis patients with lung involvement. Respiratory Research, 2018, 19, 186.	1.4	149
804	PDGFR \hat{l}^2 Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2. Neuron, 2018, 100, 183-200.e8.	3.8	134
805	Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Frontiers in Immunology, 2018, 9, 1977.	2.2	123
806	The role of CCR5 in directing the mobilization and biological function of CD11b+Gr1+Ly6Clow polymorphonuclear myeloid cells in cancer. Cancer Immunology, Immunotherapy, 2018, 67, 1949-1953.	2.0	18
807	Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes and Development, 2018, 32, 1267-1284.	2.7	1,326
808	Origin of cancer-associated fibroblasts and tumor-associated macrophages in humans after sex-mismatched bone marrow transplantation. Communications Biology, 2018, 1, 131.	2.0	32
809	Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Frontiers in Immunology, 2018, 9, 1930.	2.2	266
810	Erythro-myeloid progenitors contribute endothelial cells to blood vessels. Nature, 2018, 562, 223-228.	13.7	116
811	Role of platelets and platelet receptors in cancer metastasis. Journal of Hematology and Oncology, 2018, 11, 125.	6.9	370
812	The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Frontiers in Oncology, 2018, 8, 431.	1.3	267
813	Signature miRNAs in peripheral blood monocytes of patients with gastric or breast cancers. Open Biology, 2018, 8, 180051.	1.5	9
814	Targeting macrophages: therapeutic approaches in cancer. Nature Reviews Drug Discovery, 2018, 17, 887-904.	21.5	1,246
815	Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity, 2018, 49, 640-653.e5.	6.6	139
816	Developmental and Functional Heterogeneity of Monocytes. Immunity, 2018, 49, 595-613.	6.6	609
817	Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	102
818	Chemotherapy-Exacerbated Breast Cancer Metastasis: A Paradox Explainable by Dysregulated Adaptive-Response. International Journal of Molecular Sciences, 2018, 19, 3333.	1.8	51
819	Tumor-associated macrophages in breast cancer: Innocent bystander or important player?. Cancer Treatment Reviews, 2018, 70, 178-189.	3.4	305

#	Article	IF	CITATIONS
820	Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell International, 2018, 18, 120.	1.8	42
821	Biomaterials to model and measure epithelial cancers. Nature Reviews Materials, 2018, 3, 418-430.	23.3	51
822	Recruitment of CCR2 ⁺ tumor associated macrophage to sites of liver metastasis confers a poor prognosis in human colorectal cancer. Oncolmmunology, 2018, 7, e1470729.	2.1	88
823	Pro-inflammatory cytokines IL-6 and CCL2 suppress expression of circadian gene Period2 in mammary epithelial cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 1007-1017.	0.9	10
824	Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Research, 2018, 78, 5492-5503.	0.4	313
825	The Interplay between Circulating Tumor Cells and the Immune System: From Immune Escape to Cancer Immunotherapy. Diagnostics, 2018, 8, 59.	1.3	57
826	Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nature Communications, 2018, 9, 3763.	5.8	101
827	Macrophages of distinct origins contribute to tumor development in the lung. Journal of Experimental Medicine, 2018, 215, 2536-2553.	4.2	203
828	Phenotypic and Functional Changes of Circulating Monocytes in Elderly. , 2018, , 1-28.		0
829	The Atypical Chemokine Receptor Ackr2 Constrains NK Cell Migratory Activity and Promotes Metastasis. Journal of Immunology, 2018, 201, 2510-2519.	0.4	32
830	mPGES-1 and ALOX5/-15 in tumor-associated macrophages. Cancer and Metastasis Reviews, 2018, 37, 317-334.	2.7	31
831	Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nature Communications, 2018, 9, 2073.	5.8	135
832	Modulating Macrophage Polarization through CCR2 Inhibition and Multivalent Engagement. Molecular Pharmaceutics, 2018, 15, 2721-2731.	2.3	37
833	Factor XIIIAâ€"expressing inflammatory monocytes promote lung squamous cancer through fibrin cross-linking. Nature Communications, 2018, 9, 1988.	5.8	69
834	Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncology, The, 2018, 19, e295-e304.	5.1	126
835	Surface-Modified Macrophages Facilitate Tracking of Breast Cancer-Immune Interactions. ACS Chemical Biology, 2018, 13, 2339-2346.	1.6	11
836	Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Research, 2018, 78, 4929-4942.	0.4	115
837	Impact of chemotactic factors and receptors on the cancer immune infiltrate: a bioinformatics study revealing homogeneity and heterogeneity among patient cohorts. Oncolmmunology, 2018, 7, e1484980.	2.1	24

#	Article	IF	Citations
838	Mouse Cre Models for the Study of Bone Diseases. Current Osteoporosis Reports, 2018, 16, 466-477.	1.5	73
839	Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Scientific Reports, 2018, 8, 9575.	1.6	67
840	Effects of digitoxin on cell migration in ovarian cancer inflammatory microenvironment. Biochemical Pharmacology, 2018, 154, 414-423.	2.0	13
841	Macrophage targeting: opening new possibilities for cancer immunotherapy. Immunology, 2018, 155, 285-293.	2.0	123
842	Drug Targeting and Biomarkers in Head and Neck Cancers: Insights from Systems Biology Analyses. OMICS A Journal of Integrative Biology, 2018, 22, 422-436.	1.0	49
843	The inhibitory effects of plumbagin on the NF-Ò>B pathway and CCL2 release in racially different triple-negative breast cancer cells. PLoS ONE, 2018, 13, e0201116.	1.1	22
844	Immunology, Immunotherapy, and Translating Basic Science into the Clinic for Bladder Cancer. Bladder Cancer, 2018, 4, 429-440.	0.2	5
845	Complementing Cancer Metastasis. Frontiers in Immunology, 2018, 9, 1629.	2.2	29
846	CCL2 influences the sensitivity of lung cancer A549 cells to docetaxel. Oncology Letters, 2018, 16, 1267-1274.	0.8	17
847	Tumorâ€associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. Journal of Cellular Physiology, 2018, 233, 9223-9236.	2.0	33
848	Plasma Chemokine CCL2 and Its Receptor CCR2 Concentrations as Diagnostic Biomarkers for Breast Cancer Patients. BioMed Research International, 2018, 2018, 1-9.	0.9	27
849	Targeting Accessories to the Crime: Nanoparticle Nucleic Acid Delivery to the Tumor Microenvironment. Frontiers in Pharmacology, 2018, 9, 307.	1.6	25
850	Epigenetic regulation of brain region-specific microglia clearance activity. Nature Neuroscience, 2018, 21, 1049-1060.	7.1	318
851	Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nature Communications, 2018, 9, 2951.	5.8	81
852	Coagulation Factor X Regulated by CASC2c Recruited Macrophages and Induced M2 Polarization in Glioblastoma Multiforme. Frontiers in Immunology, 2018, 9, 1557.	2.2	45
853	Accumulation of myeloid lineage cells is mapping out liver fibrosis post injury: a targetable lesion using Ketanserin. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	7
854	Metastatic niche functions and therapeutic opportunities. Nature Cell Biology, 2018, 20, 868-877.	4.6	129
855	Zinc regulates vascular endothelial cell activity through zinc-sensing receptor ZnR/GPR39. American Journal of Physiology - Cell Physiology, 2018, 314, C404-C414.	2.1	64

#	Article	IF	CITATIONS
856	Dual role of macrophage in tumor immunity. Immunotherapy, 2018, 10, 899-909.	1.0	97
857	Multifaceted Roles for Macrophages in Prostate Cancer Skeletal Metastasis. Frontiers in Endocrinology, 2018, 9, 247.	1.5	43
858	Equal Pro-inflammatory Profiles of CCLs, CXCLs, and Matrix Metalloproteinases in the Extracellular Microenvironment In Vivo in Human Dense Breast Tissue and Breast Cancer. Frontiers in Immunology, 2017, 8, 1994.	2,2	24
859	Monocytes Differentiate to Immune Suppressive Precursors of Metastasis-Associated Macrophages in Mouse Models of Metastatic Breast Cancer. Frontiers in Immunology, 2017, 8, 2004.	2.2	122
860	Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Frontiers in Immunology, 2018, 9, 502.	2.2	22
861	Nitric Oxide Generated by Tumor-Associated Macrophages Is Responsible for Cancer Resistance to Cisplatin and Correlated With Syntaxin 4 and Acid Sphingomyelinase Inhibition. Frontiers in Immunology, 2018, 9, 1186.	2.2	76
862	Targeting Macrophages in Cancer: From Bench to Bedside. Frontiers in Oncology, 2018, 8, 49.	1.3	385
863	MiRNAs at the Crossroads between Innate Immunity and Cancer: Focus on Macrophages. Cells, 2018, 7, 12.	1.8	38
864	Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. International Immunology, 2018, 30, 493-501.	1.8	46
865	Lung Innate Immunity and Inflammation. Methods in Molecular Biology, 2018, , .	0.4	2
866	Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression. International Journal of Molecular Sciences, 2018, 19, 98.	1.8	11
867	Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods in Molecular Biology, 2018, 1809, 145-168.	0.4	0
868	CCL2 single nucleotide polymorphism of rs1024611 implicates prominence of inflammatory cascade by univariate modeling in Indian AMD. PLoS ONE, 2018, 13, e0193423.	1.1	13
869	Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 56.	1.8	54
870	Imatinib prevents lung cancer metastasis by inhibiting M2-like polarization of macrophages. Pharmacological Research, 2018, 133, 121-131.	3.1	73
871	Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway. Stem Cell Research and Therapy, 2018, 9, 62.	2.4	33
872	Distant Relations: Macrophage Functions in the Metastatic Niche. Trends in Cancer, 2018, 4, 445-459.	3.8	81
873	Circulating monocytes from prostate cancer patients promote invasion and motility of epithelial cells. Cancer Medicine, 2018, 7, 4639-4649.	1.3	12

#	Article	IF	CITATIONS
874	C–C Chemokine Ligand 2 (CCL2) Recruits Macrophage-Membrane-Camouflaged Hollow Bismuth Selenide Nanoparticles To Facilitate Photothermal Sensitivity and Inhibit Lung Metastasis of Breast Cancer. ACS Applied Materials & Diterfaces, 2018, 10, 31124-31135.	4.0	90
875	Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer and Metastasis Reviews, 2018, 37, 491-507.	2.7	14
876	Perivascular macrophages in health and disease. Nature Reviews Immunology, 2018, 18, 689-702.	10.6	146
877	Early breast cancer: why does obesity affect prognosis?. Proceedings of the Nutrition Society, 2018, 77, 369-381.	0.4	16
878	CXCL4 and CXCL4L1 in cancer. Cytokine, 2018, 109, 65-71.	1.4	25
879	Tumorâ€'associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncology Letters, 2018, 15, 8681-8686.	0.8	20
880	Diesel exhaust particle promotes tumor lung metastasis via the induction of BLT1-mediated neutrophilic lung inflammation. Cytokine, 2018, 111, 530-540.	1.4	13
881	Inhibition of RON kinase potentiates anti-CTLA-4 immunotherapy to shrink breast tumors and prevent metastatic outgrowth. Oncolmmunology, 2018, 7, e1480286.	2.1	23
882	Synergy between peroxisome proliferatorâ€activated receptor γ agonist and radiotherapy in cancer. Cancer Science, 2018, 109, 2243-2255.	1.7	14
883	Ciliaâ€localized <scp>LKB</scp> 1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. EMBO Journal, 2018, 37, .	3.5	78
884	Myeloidâ€derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy. International Journal of Cancer, 2019, 144, 933-946.	2.3	67
885	Association between circulating tumor cells and peripheral blood monocytes in metastatic breast cancer. Therapeutic Advances in Medical Oncology, 2019, 11, 175883591986606.	1.4	35
886	Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Scientific Reports, 2019, 9, 11634.	1.6	10
887	Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Frontiers in Immunology, 2019, 10, 1611.	2.2	96
888	Ontogeny of Tumor-Associated Macrophages. Frontiers in Immunology, 2019, 10, 1799.	2.2	174
889	Patrolling the vascular borders: platelets in immunity to infection and cancer. Nature Reviews Immunology, 2019, 19, 747-760.	10.6	113
890	Chemotherapy-Induced Metastasis: Molecular Mechanisms, Clinical Manifestations, Therapeutic Interventions. Cancer Research, 2019, 79, 4567-4576.	0.4	79
891	Immunological Regulation of Vascular Inflammation During Cancer Metastasis. Frontiers in Immunology, 2019, 10, 1984.	2.2	21

#	Article	IF	CITATIONS
892	Human Tumor-Infiltrating Dendritic Cells: From in Situ Visualization to High-Dimensional Analyses. Cancers, 2019, 11, 1082.	1.7	36
893	Targeted Killing of Monocytes/Macrophages and Myeloid Leukemia Cells with Pro-Apoptotic Peptides. Cancers, 2019, 11, 1088.	1.7	11
894	Acute and chronic hypoxia differentially predispose lungs for metastases. Scientific Reports, 2019, 9, 10246.	1.6	29
895	C5a receptors C5aR1 and C5aR2 mediate opposing pathologies in a mouse model of melanoma. FASEB Journal, 2019, 33, 11060-11071.	0.2	23
896	Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. Journal of Hematology and Oncology, 2019, 12, 76.	6.9	866
897	Suppressed immune microenvironment and repertoire in brain metastases from patients with resected non-small-cell lung cancer. Annals of Oncology, 2019, 30, 1521-1530.	0.6	94
898	POU1F1 transcription factor promotes breast cancer metastasis via recruitment and polarization of macrophages. Journal of Pathology, 2019, 249, 381-394.	2.1	26
899	Macrophage-Mediated Subversion of Anti-Tumour Immunity. Cells, 2019, 8, 747.	1.8	68
900	NOTCH Signaling via WNT Regulates the Proliferation of Alternative, CCR2-Independent Tumor-Associated Macrophages in Hepatocellular Carcinoma. Cancer Research, 2019, 79, 4160-4172.	0.4	73
901	CCL2-Mediated Reversal of Impaired SkinÂWound Healing in Diabetic Mice byÂNormalization of Neovascularization andÂCollagen Accumulation. Journal of Investigative Dermatology, 2019, 139, 2517-2527.e5.	0.3	47
902	Agonism of CD11b reprograms innate immunity to sensitize pancreatic cancer to immunotherapies. Science Translational Medicine, 2019, 11 , .	5.8	148
903	Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors., 2019, 7, 265.		68
904	Emerging Approaches of Cellâ€Based Nanosystems to Target Cancer Metastasis. Advanced Functional Materials, 2019, 29, 1903441.	7.8	41
905	SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma. Blood Cancer Journal, 2019, 9, 84.	2.8	35
906	Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Frontiers in Immunology, 2019, 10, 2215.	2.2	58
907	Immune effector monocyte–neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21704-21714.	3.3	66
908	Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1959-1969.	2.0	36
909	The inhibitory effects of butein on cell proliferation and TNF-α-induced CCL2 release in racially different triple negative breast cancer cells. PLoS ONE, 2019, 14, e0215269.	1.1	12

#	Article	IF	CITATIONS
910	The Development of Small Molecule Inhibitors of Glutaminyl Cyclase and Isoglutaminyl Cyclase for Alzheimer's Disease. ChemistrySelect, 2019, 4, 10591-10600.	0.7	5
911	<p>Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis</p> . OncoTargets and Therapy, 2019, Volume 12, 8687-8699.	1.0	64
912	Balancing STAT Activity as a Therapeutic Strategy. Cancers, 2019, 11, 1716.	1.7	18
913	Reduced RhoA expression enhances breast cancer metastasis with a concomitant increase in CCR5 and CXCR4 chemokines signaling. Scientific Reports, 2019, 9, 16351.	1.6	32
914	Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Drives Activation of Bone Remodelling and Skeletal Metastasis. Current Osteoporosis Reports, 2019, 17, 538-547.	1.5	66
915	Targeting Macrophages: Friends or Foes in Disease?. Frontiers in Pharmacology, 2019, 10, 1255.	1.6	74
916	Mammary Tumor Cells with High Metastatic Potential Are Hypersensitive to Macrophage-Derived HGF. Cancer Immunology Research, 2019, 7, 2052-2064.	1.6	15
917	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie, 2019, 131, 17050-17054.	1.6	13
918	A Fluorescent Activatable ANDâ€Gate Chemokine CCL2 Enables In Vivo Detection of Metastasisâ€Associated Macrophages. Angewandte Chemie - International Edition, 2019, 58, 16894-16898.	7.2	41
919	The Endless Saga of Monocyte Diversity. Frontiers in Immunology, 2019, 10, 1786.	2.2	67
920	Metastatic-niche labelling reveals parenchymal cells with stem features. Nature, 2019, 572, 603-608.	13.7	139
921	Metastatic Latency, a Veiled Threat. Frontiers in Immunology, 2019, 10, 1836.	2.2	19
922	Reversing the Tumor Target: Establishment of a Tumor Trap. Frontiers in Pharmacology, 2019, 10, 887.	1.6	15
923	Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 1817.	2.2	38
924	Immune Microenvironment of Brain Metastasesâ€"Are Microglia and Other Brain Macrophages Little Helpers?. Frontiers in Immunology, 2019, 10, 1941.	2.2	41
925	Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation. Frontiers in Immunology, 2019, 10, 1998.	2.2	153
926	A positive feedback loop of \hat{l}^2 -catenin/CCR2 axis promotes regorafenib resistance in colorectal cancer. Cell Death and Disease, 2019, 10, 643.	2.7	28
927	Function of CSF1 and IL34 in Macrophage Homeostasis, Inflammation, and Cancer. Frontiers in Immunology, 2019, 10, 2019.	2.2	130

#	Article	IF	CITATIONS
928	Emerging Roles for G-protein Coupled Receptors in Development and Activation of Macrophages. Frontiers in Immunology, 2019, 10, 2031.	2.2	23
929	Immunotherapy for Lymphangioleiomyomatosis and Tuberous Sclerosis. Chest, 2019, 156, 1062-1067.	0.4	15
930	MicroRNA-10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Molecular Metabolism, 2019, 29, 86-98.	3.0	40
931	Cysteine Cathepsins in Tumor-Associated Immune Cells. Frontiers in Immunology, 2019, 10, 2037.	2.2	90
932	Identification of novel, immune-mediating extracellular vesicles in human lymphatic effluent draining primary cutaneous melanoma. Oncolmmunology, 2019, 8, e1667742.	2.1	31
933	Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. International Journal of Molecular Sciences, 2019, 20, 4719.	1.8	48
934	Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenvironment, 2019, 12, 119-132.	3.1	46
935	Propagermanium Induces NK Cell Maturation and Tends to Prolong Overall Survival of Patients With Refractory Cancer. Anticancer Research, 2019, 39, 4687-4698.	0.5	7
936	CCR2-Dependent Recruitment of Tregs and Monocytes Following Radiotherapy Is Associated with TNFî±-Mediated Resistance. Cancer Immunology Research, 2019, 7, 376-387.	1.6	79
937	Understanding the Anti-Tumor Properties Mediated by the Synthetic Peptide GK-1., 2019,,.		0
938	CXCL13/CXCR5 Axis Predicts Poor Prognosis and Promotes Progression Through PI3K/AKT/mTOR Pathway in Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 2018, 8, 682.	1.3	70
939	Anti–PD-L1 Treatment Results in Functional Remodeling of the Macrophage Compartment. Cancer Research, 2019, 79, 1493-1506.	0.4	118
940	Current progress in the inflammatory background of angiogenesis in gynecological cancers. Inflammation Research, 2019, 68, 247-260.	1.6	14
941	Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood, 2019, 133, 1222-1232.	0.6	44
942	Fetal-derived macrophages dominate in adult mammary glands. Nature Communications, 2019, 10, 281.	5.8	74
943	Stress hormone-mediated acceleration of breast cancer metastasis is halted by inhibition of nitric oxide synthase. Cancer Letters, 2019, 459, 59-71.	3.2	32
944	Macrophage chemoattractants secreted by cancer cells: Sculptors of the tumor microenvironment and another crucial piece of the cancer secretome as a therapeutic target. Cytokine and Growth Factor Reviews, 2019, 50, 13-18.	3.2	19
945	Hypoxia and the Metastatic Niche. Advances in Experimental Medicine and Biology, 2019, 1136, 97-112.	0.8	18

#	Article	IF	CITATIONS
946	Metastasis as a systemic disease: molecular insights and clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 89-102.	3.3	44
947	Role of ALDH1A1 and HTRA2 expression to CCL2/CCR2 mediated breast cancer cell growth and invasion. Biology Open, 2019, 8, .	0.6	15
948	<p> \hat{l}^2 -elemene inhibits radiation and hypoxia-induced macrophages infiltration via Prx-1/NF- \hat{l}^2 B/HIF-1 \hat{l}^2 signaling pathway</p>. OncoTargets and Therapy, 2019, Volume 12, 4203-4211.	1.0	17
949	Tumorâ€ʻinfiltrating M2�macrophages driven by specific genomic alterations are associated with prognosis in bladder cancer. Oncology Reports, 2019, 42, 581-594.	1.2	86
950	Mutual editing of alternative splicing between breast cancer cells and macrophages. Oncology Reports, 2019, 42, 629-656.	1.2	1
951	Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene, 2019, 38, 5792-5804.	2.6	55
952	SARI attenuates colon inflammation by promoting STAT1 degradation in intestinal epithelial cells. Mucosal Immunology, 2019, 12, 1130-1140.	2.7	13
953	Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiological Reviews, 2019, 99, 1467-1525.	13.1	181
954	Tumor-associated macrophages: role in cancer development and therapeutic implications. Cellular Oncology (Dordrecht), 2019, 42, 591-608.	2.1	161
955	Cellular determinants and therapeutic implications of inflammation in pancreatic cancer., 2019, 201, 202-213.		50
956	Potentials of Câ€C motif chemokine 2–Câ€C chemokine receptor type 2 blockers including propagermanium as anticancer agents. Cancer Science, 2019, 110, 2090-2099.	1.7	35
957	Retinoblastoma Inactivation Induces a Protumoral Microenvironment via Enhanced CCL2 Secretion. Cancer Research, 2019, 79, 3903-3915.	0.4	68
958	Hypoxia and Cancer Metastasis. Advances in Experimental Medicine and Biology, 2019, , .	0.8	5
959	CTHRC1 promotes M2-like macrophage recruitment and myometrial invasion in endometrial carcinoma by integrin-Akt signaling pathway. Clinical and Experimental Metastasis, 2019, 36, 351-363.	1.7	32
960	Preexisting Commensal Dysbiosis Is a Host-Intrinsic Regulator of Tissue Inflammation and Tumor Cell Dissemination in Hormone Receptor–Positive Breast Cancer. Cancer Research, 2019, 79, 3662-3675.	0.4	118
961	Tracking Monocytes and Macrophages in Tumors With Live Imaging. Frontiers in Immunology, 2019, 10, 1201.	2.2	23
962	Analysis of Tumor Angiogenesis and Immune Microenvironment in Non-Functional Pituitary Endocrine Tumors. Journal of Clinical Medicine, 2019, 8, 695.	1.0	48
963	Interactions in the (Pre)metastatic Niche Support Metastasis Formation. Frontiers in Oncology, 2019, 9, 219.	1.3	104

#	Article	IF	Citations
964	Molecular Mechanisms of Breast Cancer Metastasis to the Lung: Clinical and Experimental Perspectives. International Journal of Molecular Sciences, 2019, 20, 2272.	1.8	143
965	Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers, 2019, 11, 628.	1.7	51
966	Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy, 2019, 11, 677-689.	1.0	124
967	Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. International Journal of Molecular Sciences, 2019, 20, 2392.	1.8	21
968	Human Biofield Therapy and the Growth of Mouse Lung Carcinoma. Integrative Cancer Therapies, 2019, 18, 153473541984079.	0.8	6
969	The Interplay of Autophagy and Tumor Microenvironment in Colorectal Cancer—Ways of Enhancing Immunotherapy Action. Cancers, 2019, 11, 533.	1.7	37
970	Deciphering Macrophage and Monocyte Code to Stratify Human Breast Cancer Patients. Cancer Cell, 2019, 35, 538-539.	7.7	17
971	Flavonoids: New Frontier for Immuno-Regulation and Breast Cancer Control. Antioxidants, 2019, 8, 103.	2.2	64
972	Metastasis Organotropism: Redefining the Congenial Soil. Developmental Cell, 2019, 49, 375-391.	3.1	202
973	Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche. Journal of Ethnopharmacology, 2019, 238, 111878.	2.0	38
974	CCL2/CCR2 Axis Promotes the Progression of Salivary Adenoid Cystic Carcinoma via Recruiting and Reprogramming the Tumor-Associated Macrophages. Frontiers in Oncology, 2019, 9, 231.	1.3	54
975	Long-Term Exposure to Oroxylin A Inhibits Metastasis by Suppressing CCL2 in Oral Squamous Cell Carcinoma Cells. Cancers, 2019, 11, 353.	1.7	23
976	Collagen. Methods in Molecular Biology, 2019, , .	0.4	5
977	Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers, 2019, 11, 298.	1.7	10
978	CD26/DPP4 - a potential biomarker and target for cancer therapy. , 2019, 198, 135-159.		96
979	The Contribution of the Immune System in Bone Metastasis Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 999.	1.8	67
980	Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell, 2019, 35, 588-602.e10.	7.7	636
981	From Desert to Medicine: A Review of Camel Genomics and Therapeutic Products. Frontiers in Genetics, 2019, 10, 17.	1.1	64

#	Article	IF	CITATIONS
982	CXCL12/CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Experimental Cell Research, 2019, 378, 131-138.	1.2	119
983	Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene, 2019, 38, 5158-5173.	2.6	212
984	Tumorigenic Interplay Between Macrophages and Collagenous Matrix in the Tumor Microenvironment. Methods in Molecular Biology, 2019, 1944, 203-220.	0.4	14
985	RNA-seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells. Microbial Pathogenesis, 2019, 130, 169-177.	1.3	26
986	Innate immunity, inflammation and tumour progression: doubleâ€edged swords. Journal of Internal Medicine, 2019, 285, 524-532.	2.7	59
987	Tailoring Nanomaterials for Targeting Tumorâ€Associated Macrophages. Advanced Materials, 2019, 31, e1808303.	11.1	223
988	Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nature Neuroscience, 2019, 22, 729-740.	7.1	327
989	Human telomerase reverse transcriptase recruits the \hat{l}^2 -catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomedicine and Pharmacotherapy, 2019, 112, 108700.	2.5	10
990	Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature, 2019, 568, 541-545.	13.7	313
991	Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers, 2019, 11, 521.	1.7	100
992	The Angiotensin Receptor Blocker Losartan Suppresses Growth of Pulmonary Metastases via AT1R-Independent Inhibition of CCR2 Signaling and Monocyte Recruitment. Journal of Immunology, 2019, 202, 3087-3102.	0.4	48
993	Macrophagesâ€Triggered Sequential Remodeling of Endotheliumâ€Interstitial Matrix to Form Preâ€Metastatic Niche in Microfluidic Tumor Microenvironment. Advanced Science, 2019, 6, 1900195.	5.6	74
994	A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGFα-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8.	6.6	50
995	Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular Cancer, 2019, 18, 64.	7.9	483
996	Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate bone elongation. Nature Cell Biology, 2019, 21, 430-441.	4.6	124
997	RS 504393 inhibits M-MDSCs recruiting in immune microenvironment of bladder cancer after gemcitabine treatment. Molecular Immunology, 2019, 109, 140-148.	1.0	36
998	Single-domain antibody fusion proteins can target and shuttle functional proteins into macrophage mannose receptor expressing macrophages. Journal of Controlled Release, 2019, 299, 107-120.	4.8	17
999	The emerging roles of macrophages in cancer metastasis and response to chemotherapy. Journal of Leukocyte Biology, 2019, 106, 259-274.	1.5	80

#	Article	IF	CITATIONS
1000	Bone Marrow Mesenchymal Stromal Cell-Derived Periostin Promotes B-ALL Progression by Modulating CCL2 in Leukemia Cells. Cell Reports, 2019, 26, 1533-1543.e4.	2.9	57
1001	PKCζ facilitates lymphatic metastatic spread of prostate cancer cells in a mice xenograft model. Oncogene, 2019, 38, 4215-4231.	2.6	12
1002	CD110 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1147-1164.	1.2	8
1003	ATR Inhibition Potentiates the Radiation-induced Inflammatory Tumor Microenvironment. Clinical Cancer Research, 2019, 25, 3392-3403.	3.2	144
1004	Immune targets in the tumor microenvironment treated by radiotherapy. Theranostics, 2019, 9, 1215-1231.	4.6	96
1005	Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy. Advanced Materials, 2019, 31, e1803322.	11.1	205
1006	Tumor-associated macrophages: a short compendium. Cellular and Molecular Life Sciences, 2019, 76, 1447-1458.	2.4	71
1007	Murine Model of Pulmonary Artery Overflow Vasculopathy Revealed Macrophage Accumulation in the Lung. International Heart Journal, 2019, 60, 451-456.	0.5	2
1008	Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Scientific Reports, 2019, 9, 3172.	1.6	178
1009	Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 2019, 106, 309-322.	1.5	330
1010	Effect of Chemokine (C-C Motif) Ligand 7 (CCL7) and Its Receptor (CCR2) Expression on Colorectal Cancer Behaviors. International Journal of Molecular Sciences, 2019, 20, 686.	1.8	17
1011	Differential Oxygenation in Tumor Microenvironment Modulates Macrophage and Cancer Cell Crosstalk: Novel Experimental Setting and Proof of Concept. Frontiers in Oncology, 2019, 9, 43.	1.3	56
1012	Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Science Translational Medicine, 2019, 11 , .	5.8	169
1013	Regulation of Blood and Lymphatic Vessels by Immune Cells in Tumors and Metastasis. Annual Review of Physiology, 2019, 81, 535-560.	5.6	44
1014	SYNTHESIS, CHARACTERIZATION, AND IN VIVO IMMUNOMODULATION OF CCR2 AND VASCULAR ENDOTHELIAL GROWTH FACTOR ANTAGONISTS-LOADED PEGYLATED NANOPARTICLES. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12, 275.	0.3	1
1015	Heparanase Accelerates Obesity-Associated Breast Cancer Progression. Cancer Research, 2019, 79, 5342-5354.	0.4	26
1016	Novel lymphocyte to red blood cell ratio (LRR), neutrophil to red blood cell ratio (NRR), monocyte to red blood cell ratio (MRR) as predictive and prognostic biomarkers for locally advanced breast cancer. Gland Surgery, 2019, 8, 627-635.	0.5	6
1017	Cancer Cell-Derived Granulocyte-Macrophage Colony-Stimulating Factor Is Dispensable for the Progression of 4T1 Murine Breast Cancer. International Journal of Molecular Sciences, 2019, 20, 6342.	1.8	10

#	Article	IF	CITATIONS
1018	Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Research, 2019, 79, 6067-6073.	0.4	48
1019	Tumor-Associated Macrophages in Hematologic Malignancies: New Insights and Targeted Therapies. Cells, 2019, 8, 1526.	1.8	48
1020	Harnessing tumor-associated macrophages as aids for cancer immunotherapy. Molecular Cancer, 2019, 18, 177.	7.9	235
1021	The Emerging Role of GC-MSCs in the Gastric Cancer Microenvironment: From Tumor to Tumor Immunity. Stem Cells International, 2019, 2019, 1-9.	1.2	4
1022	CCR2-Mediated Uptake of Constitutively Produced CCL2: A Mechanism for Regulating Chemokine Levels in the Blood. Journal of Immunology, 2019, 203, 3157-3165.	0.4	19
1023	Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER + breast cancer. FASEB Journal, 2019, 33, 1644-1657.	0.2	13
1024	Molecular Repolarisation of Tumour-Associated Macrophages. Molecules, 2019, 24, 9.	1.7	191
1025	Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and metastasis. Journal of Pathology, 2019, 247, 629-640.	2.1	127
1026	Co-delivery of RNAi and chemokine by polyarginine nanocapsules enables the modulation of myeloid-derived suppressor cells. Journal of Controlled Release, 2019, 295, 60-73.	4.8	36
1027	CCL2 Is a Vascular Permeability Factor Inducing CCR2-Dependent Endothelial Retraction during Lung Metastasis. Molecular Cancer Research, 2019, 17, 783-793.	1.5	37
1028	Stromal Gas6 promotes the progression of premalignant mammary cells. Oncogene, 2019, 38, 2437-2450.	2.6	50
1029	Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 2019, 21, 190-202.	4.6	384
1030	Krýppel like factor 6 splice variant 1 (KLF6-SV1) overexpression recruits macrophages to participate in lung cancer metastasis by up-regulating TWIST1. Cancer Biology and Therapy, 2019, 20, 680-691.	1.5	13
1031	Chemokines and Chemokine Receptors: Orchestrating Tumor Metastasization. International Journal of Molecular Sciences, 2019, 20, 96.	1.8	110
1032	Lung Macrophages: Multifunctional Regulator Cells for Metastatic Cells. International Journal of Molecular Sciences, 2019, 20, 116.	1.8	22
1033	Metabolic pathways of L-arginine and therapeutic consequences in tumors. Advances in Medical Sciences, 2019, 64, 104-110.	0.9	100
1034	Evaluation of urinary and serum level of chemokine (C motif) ligand 2 as a potential biomarker in canine urothelial tumours. Veterinary and Comparative Oncology, 2019, 17, 11-20.	0.8	7
1035	Circulation patterns and seed-soil compatibility factors cooperate to cause cancer organ-specific metastasis. Experimental Cell Research, 2019, 375, 62-72.	1.2	14

#	ARTICLE	IF	CITATIONS
1036	The clinical role of the TME in solid cancer. British Journal of Cancer, 2019, 120, 45-53.	2.9	380
1037	Progress in Tumorâ€Associated Macrophages: From Bench to Bedside. Advanced Biology, 2019, 3, e1800232.	3.0	12
1038	CCR2 Chemokine Receptors Enhance Growth and Cell-Cycle Progression of Breast Cancer Cells through SRC and PKC Activation. Molecular Cancer Research, 2019, 17, 604-617.	1.5	48
1039	Prognostic significance of monocyte chemoattractant protein-1 and CC chemokine receptor 2 in diffuse large B cell lymphoma. Annals of Hematology, 2019, 98, 413-422.	0.8	13
1040	CCR5 blockage by maraviroc: a potential therapeutic option for metastatic breast cancer. Cellular Oncology (Dordrecht), 2019, 42, 93-106.	2.1	44
1041	Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. Journal of Molecular Medicine, 2019, 97, 49-61.	1.7	40
1042	Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncology, 2019, 88, 29-38.	0.8	70
1043	Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotherapy, 2019, 11, 201-213.	1.0	108
1044	Prognostic significance and population dynamics of peripheral monocytes in patients with oropharyngeal squamous cell carcinoma. Head and Neck, 2019, 41, 1880-1888.	0.9	18
1045	Eomes partners with PU.1 and MITF to Regulate Transcription Factors Critical for osteoclast differentiation. IScience, 2019, 11, 238-245.	1.9	18
1046	Tumor-associated macrophages promote lung metastasis and induce epithelial-mesenchymal transition in osteosarcoma by activating the COX-2/STAT3 axis. Cancer Letters, 2019, 440-441, 116-125.	3.2	117
1047	Molecular mechanisms of long noncoding RNAsâ€mediated cancer metastasis. Genes Chromosomes and Cancer, 2019, 58, 200-207.	1.5	77
1048	EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Research, 2019, 47, D736-D744.	6.5	70
1049	Ductal Carcinoma in Situ Biomarkers in a Precision Medicine Era. American Journal of Pathology, 2019, 189, 956-965.	1.9	15
1050	High expression of CCL2 in tumor cells and abundant infiltration with CD14 positive macrophages predict early relapse in breast cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 3-12.	1.4	34
1051	Combination of the Preoperative Systemic Immune-Inflammation Index and Monocyte-Lymphocyte Ratio as a Novel Prognostic Factor in Patients with Upper-Tract Urothelial Carcinoma. Annals of Surgical Oncology, 2019, 26, 669-684.	0.7	59
1052	Innate immune cell infiltration in melanoma metastases affects survival and is associated with BRAFV600E mutation status. Melanoma Research, 2019, 29, 30-37.	0.6	19
1053	The lung microenvironment: an important regulator of tumour growth and metastasis. Nature Reviews Cancer, 2019, 19, 9-31.	12.8	692

#	Article	IF	CITATIONS
1054	STAT3 inhibition reduces macrophage number and tumor growth in neurofibroma. Oncogene, 2019, 38, 2876-2884.	2.6	44
1055	Getting TANned: How the tumor microenvironment drives neutrophil recruitment. Journal of Leukocyte Biology, 2019, 105, 449-462.	1.5	30
1056	Macrophage polarization as a novel weapon in conditioning tumor microenvironment for bladder cancer: can we turn demons into gods?. Clinical and Translational Oncology, 2019, 21, 391-403.	1.2	26
1057	Cellular content plays a crucial role in Nonâ€typeable <i>Haemophilus influenzae</i> i>infection of preinflamed <i>Junbo</i> mouse middle ear. Cellular Microbiology, 2019, 21, e12960.	1.1	13
1058	FoxO1 is a critical regulator of M2â€like macrophage activation in allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 535-548.	2.7	29
1059	Human in vivo-differentiated monocyte-derived dendritic cells. Seminars in Cell and Developmental Biology, 2019, 86, 44-49.	2.3	49
1060	The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials, 2019, 198, 180-193.	5.7	110
1061	Macrophages: Key orchestrators of a tumor microenvironment defined by therapeutic resistance. Molecular Immunology, 2019, 110, 3-12.	1.0	45
1062	Live imaging of the pulmonary immune environment. Cellular Immunology, 2020, 350, 103862.	1.4	8
1063	The Immune Microenvironment and Cancer Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037424.	2.9	57
1064	Cell membrane-coated nanosized active targeted drug delivery systems homing to tumor cells: A review. Materials Science and Engineering C, 2020, 106, 110298.	3.8	119
1065	Progress on Modulating Tumorâ€Associated Macrophages with Biomaterials. Advanced Materials, 2020, 32, e1902007.	11.1	116
1066	Endosomal tollâ€ike receptors play a key role in activation of primary human monocytes by cowpea mosaic virus. Immunology, 2020, 159, 183-192.	2.0	26
1067	Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Seminars in Cancer Biology, 2020, 60, 14-27.	4.3	460
1068	Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Seminars in Cancer Biology, 2020, 60, 202-213.	4.3	83
1069	Immunity, Hypoxia, and Metabolism–the Ménage à Trois of Cancer: Implications for Immunotherapy. Physiological Reviews, 2020, 100, 1-102.	13.1	190
1070	Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Seminars in Cancer Biology, 2020, 60, 351-361.	4.3	122
1071	Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b+Gr1+MDSCs from bone marrow. Biomedicine and Pharmacotherapy, 2020, 121, 109581.	2.5	21

#	Article	IF	CITATIONS
1072	Liver Tropism in Cancer: The Hepatic Metastatic Niche. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037259.	2.9	35
1073	Premetastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036897.	2.9	8
1074	Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo. Biotechnology and Bioengineering, 2020, 117, 210-222.	1.7	10
1075	Myeloid Cells in Metastasis. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a038026.	2.9	29
1076	Fluorogenic Trp(redBODIPY) cyclopeptide targeting keratin 1 for imaging of aggressive carcinomas. Chemical Science, 2020, 11 , $1368-1374$.	3.7	42
1077	Myeloid-driven mechanisms as barriers to antitumor CD8+ T cell activity. Molecular Immunology, 2020, 118, 165-173.	1.0	22
1078	Breast cancer cells promote CD169+ macrophage-associated immunosuppression through JAK2-mediated PD-L1 upregulation on macrophages. International Immunopharmacology, 2020, 78, 106012.	1.7	40
1079	Microglia and sexual differentiation of the developing brain: A focus on ontogeny and intrinsic factors. Glia, 2020, 68, 1085-1099.	2.5	69
1080	Exposing Hidden Targets: Combining epigenetic and immunotherapy to overcome cancer resistance. Seminars in Cancer Biology, 2020, 65, 114-122.	4.3	45
1081	Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian Journal of Pharmaceutical Sciences, 2020, 15, 397-415.	4.3	52
1082	Research Note: Correlation analysis of interleukin-6, interleukin-8, and C-C motif chemokine ligand 2 gene expression in chicken spleen and cecal tissues after Eimeria tenella infection inÂvivo. Poultry Science, 2020, 99, 1326-1331.	1.5	13
1083	Polarized light therapy: Shining a light on the mechanism underlying its immunomodulatory effects. Journal of Biophotonics, 2020, 13, e201960177.	1.1	12
1084	Mechanisms of immune evasion in bladder cancer. Cancer Immunology, Immunotherapy, 2020, 69, 3-14.	2.0	127
1085	Mechanism of lung adenocarcinoma spine metastasis induced by CXCL17. Cellular Oncology (Dordrecht), 2020, 43, 311-320.	2.1	16
1086	Brain metastasis. Nature Reviews Cancer, 2020, 20, 4-11.	12.8	221
1087	Interplay between inflammation and cancer. Advances in Protein Chemistry and Structural Biology, 2020, 119, 199-245.	1.0	122
1088	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	2
1089	Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses. Cells, 2020, 9, 46.	1.8	196

#	Article	IF	Citations
1090	Long-lived tumor-associated macrophages in glioma. Neuro-Oncology Advances, 2020, 2, vdaa127.	0.4	4
1091	Cytokine-Targeted Therapeutics for KSHV-Associated Disease. Viruses, 2020, 12, 1097.	1.5	23
1092	Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Communications Biology, 2020, 3, 524.	2.0	51
1093	Ovarian cancer cells direct monocyte differentiation through a non-canonical pathway. BMC Cancer, 2020, 20, 1008.	1.1	6
1094	Cancer stem cell secretome in the tumor microenvironment: a key point for an effective personalized cancer treatment. Journal of Hematology and Oncology, 2020, 13, 136.	6.9	128
1095	Macrophages in pancreatitis: Mechanisms and therapeutic potential. Biomedicine and Pharmacotherapy, 2020, 131, 110693.	2.5	67
1096	E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Letters, 2020, 491, 132-145.	3.2	23
1097	Sunitinib facilitates metastatic breast cancer spreading by inducing endothelial cell senescence. Breast Cancer Research, 2020, 22, 103.	2.2	26
1098	A Perspective on Therapeutic Pan-Resistance in Metastatic Cancer. International Journal of Molecular Sciences, 2020, 21, 7304.	1.8	11
1099	Inhibition of CDC42 reduces macrophage recruitment and suppresses lung tumorigenesis inÂvivo. Journal of Receptor and Signal Transduction Research, 2021, 41, 504-510.	1.3	13
1100	Platelets and Metastasis: New Implications of an Old Interplay. Frontiers in Oncology, 2020, 10, 1350.	1.3	53
1101	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	1.3	68
1103	Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy. Pharmacological Research, 2020, 161, 105111.	3.1	68
1104	Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomaterialia, 2021, 133, 231-243.	4.1	72
1105	Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduction and Targeted Therapy, 2020, 5, 228.	7.1	120
1106	"Re-educating―Tumor Associated Macrophages as a Novel Immunotherapy Strategy for Neuroblastoma. Frontiers in Immunology, 2020, 11, 1947.	2.2	33
1107	Disabled Homolog 2 Controls Prometastatic Activity of Tumor-Associated Macrophages. Cancer Discovery, 2020, 10, 1758-1773.	7.7	44
1108	Cuban Brown Propolis Interferes in the Crosstalk between Colorectal Cancer Cells and M2 Macrophages. Nutrients, 2020, 12, 2040.	1.7	9

#	Article	IF	Citations
1109	Dynamic Malignant Wave of Ribosome-Insulted Gut Niche via the Wnt-CTGF/CCN2 Circuit. IScience, 2020, 23, 101076.	1.9	7
1110	Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein and Cell, 2020, 11, 680-687.	4.8	75
1111	The root bark of Morus alba L. regulates tumorâ€associated macrophages by blocking recruitment and M2 polarization of macrophages. Phytotherapy Research, 2020, 34, 3333-3344.	2.8	12
1112	CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. Journal of Experimental and Clinical Cancer Research, 2020, 39, 132.	3.5	61
1113	The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative. Frontiers in Immunology, 2020, 11, 557586.	2.2	32
1114	Metastatic Colonization: Escaping Immune Surveillance. Cancers, 2020, 12, 3385.	1.7	28
1115	Targeting Tumor-Associated Macrophages to Increase the Efficacy of Immune Checkpoint Inhibitors: A Glimpse into Novel Therapeutic Approaches for Metastatic Melanoma. Cancers, 2020, 12, 3401.	1.7	39
1116	Tumor-macrophage crosstalk: how to listen. Integrative Biology (United Kingdom), 2020, 12, 291-302.	0.6	5
1117	A Window of Opportunity: Targeting Cancer Endothelium to Enhance Immunotherapy. Frontiers in Immunology, 2020, 11, 584723.	2,2	22
1118	Monocyte Chemoattractant Protein-1 promotes cancer cell migration via c-Raf/MAPK/AP-1 pathway and MMP-9 production in osteosarcoma. Journal of Experimental and Clinical Cancer Research, 2020, 39, 254.	3.5	27
1119	Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells. Biomedicines, 2020, 8, 516.	1.4	10
1120	Nanoparticles Coated with Cell Membranes for Biomedical Applications. Biology, 2020, 9, 406.	1.3	42
1121	Transcriptome Reprogramming of CD11b+ Bone Marrow Cells by Pancreatic Cancer Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 2020, 8, 592518.	1.8	10
1122	Forkhead Box Q1 Is Critical to Angiogenesis and Macrophage Recruitment of Colorectal Cancer. Frontiers in Oncology, 2020, 10, 564298.	1.3	12
1123	Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharmaceutica Sinica B, 2020, 10, 2054-2074.	5.7	65
1124	Heparanase and the hallmarks of cancer. Journal of Translational Medicine, 2020, 18, 453.	1.8	78
1125	CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of the Ligands of Receptors CCR1, CCR2, CCR3, and CCR4. International Journal of Molecular Sciences, 2020, 21, 8412.	1.8	197
1126	Inhibition of the CCL2 receptor, CCR2, enhances tumor response to immune checkpoint therapy. Communications Biology, 2020, 3, 720.	2.0	82

#	Article	IF	CITATIONS
1127	Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biology, 2020, 21, 294.	3.8	118
1128	Tuning Cancer Fate: Tumor Microenvironment's Role in Cancer Stem Cell Quiescence and Reawakening. Frontiers in Immunology, 2020, 11, 2166.	2.2	60
1129	Exploring the tumor promoting role of anti-tumor macrophage: a developmental perspective. Annals of Blood, 0, 5, 8-8.	0.4	0
1130	Critical steps to tumor metastasis: alterations of tumor microenvironment and extracellular matrix in the formation of pre-metastatic and metastatic niche. Cell and Bioscience, 2020, 10, 89.	2.1	36
1131	Myeloid-Derived Suppressor Cells in Colorectal Cancer. Frontiers in Immunology, 2020, 11, 1526.	2.2	48
1132	Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. Journal of Biological Chemistry, 2020, 295, 13965-13980.	1.6	8
1133	Role of Tumor-Associated Myeloid Cells in Breast Cancer. Cells, 2020, 9, 1785.	1.8	56
1134	PDX regulates inflammatory cell infiltration via resident macrophage in LPSâ€induced lung injury. Journal of Cellular and Molecular Medicine, 2020, 24, 10604-10614.	1.6	14
1135	Anti-angiogenesis: Opening a new window for immunotherapy. Life Sciences, 2020, 258, 118163.	2.0	33
1136	Tumor-Associated Macrophage Status in Cancer Treatment. Cancers, 2020, 12, 1987.	1.7	101
1137	No Evidence for Erythro-Myeloid Progenitor-Derived Vascular Endothelial Cells in Multiple Organs. Circulation Research, 2020, 127, 1221-1232.	2.0	22
1138	The tumor microenvironment of colorectal cancer metastases: opportunities in cancer immunotherapy. Immunotherapy, 2020, 12, 1083-1100.	1.0	27
1139	Lipoprotein-based drug delivery. Advanced Drug Delivery Reviews, 2020, 159, 377-390.	6.6	54
1140	Bone metastasis is associated with acquisition of mesenchymal phenotype and immune suppression in a model of spontaneous breast cancer metastasis. Scientific Reports, 2020, 10, 13838.	1.6	23
1141	Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Frontiers in Immunology, 2020, 11, 594609.	2.2	66
1142	Tumor-Associated Neutrophils and Macrophagesâ€"Heterogenous but Not Chaotic. Frontiers in Immunology, 2020, 11, 553967.	2.2	53
1143	Monocyte-derived macrophages promote breast cancer bone metastasis outgrowth. Journal of Experimental Medicine, 2020, 217, .	4.2	84
1144	High Abundance of Intratumoral γδT Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis. Frontiers in Immunology, 2020, 11, 573920.	2.2	22

#	Article	IF	CITATIONS
1145	Diverse Macrophage Populations Contribute to the Inflammatory Microenvironment in Premalignant Lesions During Localized Invasion. Frontiers in Oncology, 2020, 10, 569985.	1.3	18
1146	Neuronal/astrocytic expression of chemokine (C-C motif) ligand 2 is associated with monocyte/macrophage recruitment in male chronic pelvic pain. Pain, 2020, 161, 2581-2591.	2.0	7
1147	CCL18 in the Progression of Cancer. International Journal of Molecular Sciences, 2020, 21, 7955.	1.8	48
1148	Cancer cell CCR2 orchestrates suppression of the adaptive immune response. Journal of Experimental Medicine, 2020, 217, .	4.2	32
1149	Generation, localization and functions of macrophages during theÂdevelopment of testis. Nature Communications, 2020, 11, 4375.	5.8	47
1150	Exploiting Manipulated Small Extracellular Vesicles to Subvert Immunosuppression at the Tumor Microenvironment through Mannose Receptor/CD206 Targeting. International Journal of Molecular Sciences, 2020, 21, 6318.	1.8	17
1151	Mirage or long-awaited oasis: reinvigorating T-cell responses in pancreatic cancer. , 2020, 8, e001100.		18
1152	Metabolic programming of tumor associated macrophages in the context of cancer treatment. Annals of Translational Medicine, 2020, 8, 1028-1028.	0.7	16
1153	Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Frontiers in Immunology, 2020, 11, 1842.	2.2	28
1154	Hybrid Fcâ€fused interleukinâ€7 induces an inflamed tumor microenvironment and improves the efficacy of cancer immunotherapy. Clinical and Translational Immunology, 2020, 9, e1168.	1.7	17
1155	LncRNA SNHG16 promotes colorectal cancer cell proliferation, migration, and epithelial–mesenchymal transition through miR-124-3p/MCP-1. Gene Therapy, 2022, 29, 193-205.	2.3	27
1156	Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications, 2020, 11, 4549.	5.8	54
1157	Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury. Nature Communications, 2020, 11, 4167.	5.8	34
1158	PD-L1 in Systemic Immunity: Unraveling Its Contribution to PD-1/PD-L1 Blockade Immunotherapy. International Journal of Molecular Sciences, 2020, 21, 5918.	1.8	15
1159	Pro-Inflammatory Cytokines in the Formation of the Pre-Metastatic Niche. Cancers, 2020, 12, 3752.	1.7	43
1160	Non-genetic Heterogeneity of Macrophages in Diseasesâ€"A Medical Perspective. Frontiers in Cell and Developmental Biology, 2020, 8, 613116.	1.8	10
1161	The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases. Frontiers in Immunology, 2020, 11, 598532.	2.2	25
1162	The Tumor Microenvironment as a Driving Force of Breast Cancer Stem Cell Plasticity. Cancers, 2020, 12, 3863.	1.7	12

#	ARTICLE	IF	CITATIONS
1163	The CCR2/MCP-1 Chemokine Pathway and Lung Adenocarcinoma. Cancers, 2020, 12, 3723.	1.7	17
1164	Macrophages in Osteosarcoma Immune Microenvironment: Implications for Immunotherapy. Frontiers in Oncology, 2020, 10, 586580.	1.3	42
1165	Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiation Oncology, 2020, 15, 254.	1.2	62
1166	ADAMTS8 Inhibits Progression of Esophageal Squamous Cell Carcinoma. DNA and Cell Biology, 2020, 39, 2300-2307.	0.9	6
1167	Brain metastases-derived extracellular vesicles induce binding and aggregation of low-density lipoprotein. Journal of Nanobiotechnology, 2020, 18, 162.	4.2	45
1168	The concept revolution of gut barrier: from epithelium to endothelium. International Reviews of Immunology, 2021, 40, 401-408.	1.5	6
1169	Analysis of the Gene Expression Profile of Stromal Pro-Tumor Factors in Cancer-Associated Fibroblasts from Luminal Breast Carcinomas. Diagnostics, 2020, 10, 865.	1.3	7
1170	A S100A14-CCL2/CXCL5 signaling axis drives breast cancer metastasis. Theranostics, 2020, 10, 5687-5703.	4.6	36
1171	CCL2 Expression in Tumor Cells and Tumor-Infiltrating Immune Cells Shows Divergent Prognostic Potential for Bladder Cancer Patients Depending on Lymph Node Stage. Cancers, 2020, 12, 1253.	1.7	21
1172	The emerging role of Wnt5a in the promotion of a pro-inflammatory and immunosuppressive tumor microenvironment. Cancer and Metastasis Reviews, 2020, 39, 933-952.	2.7	57
1173	Radiation therapy and the innate immune response: Clinical implications for immunotherapy approaches. British Journal of Clinical Pharmacology, 2020, 86, 1726-1735.	1.1	18
1174	CCL2/CCR2 signaling in cancer pathogenesis. Cell Communication and Signaling, 2020, 18, 82.	2.7	166
1175	Tumor-infiltrating Leukocytes Suppress Local Inflammation Via Interleukin-1 Receptor Antagonist in a Syngeneic Prostate Cancer Model. Biology, 2020, 9, 67.	1.3	2
1176	Frontline Science: Kindlin-3 is essential for patrolling and phagocytosis functions of nonclassical monocytes during metastatic cancer surveillance. Journal of Leukocyte Biology, 2020, 107, 883-892.	1.5	15
1177	Lupeol suppresses plasminogen activator inhibitor-1-mediated macrophage recruitment and attenuates M2 macrophage polarization. Biochemical and Biophysical Research Communications, 2020, 527, 889-895.	1.0	11
1178	The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Letters, 2020, 487, 34-44.	3.2	32
1179	Modulation of the tumor microenvironment by natural agents: implications for cancer prevention and therapy. Seminars in Cancer Biology, 2022, 80, 237-255.	4.3	27
1180	Primary breast tumours but not lung metastases induce protective anti-tumour immune responses after Treg-depletion. Cancer Immunology, Immunotherapy, 2020, 69, 2063-2073.	2.0	9

#	Article	IF	CITATIONS
1181	Tumor Cell Associated Hyaluronan-CD44 Signaling Promotes Pro-Tumor Inflammation in Breast Cancer. Cancers, 2020, 12, 1325.	1.7	21
1182	IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2. Toxicology and Applied Pharmacology, 2020, 401, 115092.	1.3	14
1183	Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. Journal of Nanobiotechnology, 2020, 18, 92.	4.2	110
1184	Extracellular-Regulated Protein Kinase 5-Mediated Control of p21 Expression Promotes Macrophage Proliferation Associated with Tumor Growth and Metastasis. Cancer Research, 2020, 80, 3319-3330.	0.4	23
1185	Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunology, Immunotherapy, 2020, 69, 1673-1697.	2.0	38
1186	15-hydroxy-6 <i>\hat{l}±</i> ,12-epoxy-7 <i>\hat{l}2</i> ,10 <i>\hat{l}±</i> H,11 <i>\hat{l}2</i> H-spiroax-4-ene-12-one sensitizes rectal tumor cells to anti-PD1 treatment through agonism of CD11b. Immunopharmacology and Immunotoxicology, 2020, 42, 358-365.	r 1.1	3
1187	Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. International Journal of Molecular Sciences, 2020, 21, 3930.	1.8	36
1188	Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Frontiers in Cell and Developmental Biology, 2020, 8, 402.	1.8	67
1189	CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of Effector T Cells, and Beyond. Frontiers in Immunology, 2020, 11, 976.	2.2	133
1190	Generation of Myeloid Cells in Cancer: The Spleen Matters. Frontiers in Immunology, 2020, 11, 1126.	2.2	41
1191	Positive Allosteric Modulation of CD11b as a Novel Therapeutic Strategy Against Lung Cancer. Frontiers in Oncology, 2020, 10, 748.	1.3	20
1192	Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. Journal of Leukocyte Biology, 2020, 108, 297-308.	1.5	17
1193	Tracing bone marrow-derived microglia in brain metastatic tumors. Methods in Enzymology, 2020, 635, 95-110.	0.4	4
1194	Deregulated hypoxic response in myeloid cells: A model for highâ€altitude pulmonary oedema (HAPE). Acta Physiologica, 2020, 229, e13461.	1.8	12
1195	Tumor associated macrophages and â€~NO'. Biochemical Pharmacology, 2020, 176, 113899.	2.0	28
1196	Pharmacological targets of metabolism in disease: Opportunities from macrophages. , 2020, 210, 107521.		45
1197	Prognostic value of systemic inflammatory marker in patients with head and neck squamous cell carcinoma undergoing surgical resection. Future Oncology, 2020, 16, 559-571.	1.1	15
1198	Pivotal Involvement of the CX3CL1-CX3CR1 Axis for the Recruitment of M2 Tumor-Associated Macrophages in Skin Carcinogenesis. Journal of Investigative Dermatology, 2020, 140, 1951-1961.e6.	0.3	27

#	Article	IF	CITATIONS
1199	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	1.8	281
1200	The Engagement Between MDSCs and Metastases: Partners in Crime. Frontiers in Oncology, 2020, 10, 165.	1.3	50
1201	Macrophage Modification Strategies for Efficient Cell Therapy. Cells, 2020, 9, 1535.	1.8	81
1202	Induction of systemic immune responses and reversion of immunosuppression in the tumor microenvironment by a therapeutic vaccine for cervical cancer. Cancer Immunology, Immunotherapy, 2020, 69, 2651-2664.	2.0	30
1203	CTHRC1 in Ovarian Cancer Promotes M2-Like Polarization of Tumor-Associated Macrophages via Regulation of the STAT6 Signaling Pathway. OncoTargets and Therapy, 2020, Volume 13, 5743-5753.	1.0	19
1204	The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Frontiers in Immunology, 2020, 11, 1308.	2.2	21
1205	Using Cytometry for Investigation of Purinergic Signaling in Tumorâ€Associated Macrophages. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1109-1126.	1.1	5
1206	Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms and Applications. , 2020, , .		0
1207	Identification of a DNA Aptamer That Binds to Human Monocytes and Macrophages. Bioconjugate Chemistry, 2020, 31, 1899-1907.	1.8	13
1208	Tumor-associated myeloid cells provide critical support for T-ALL. Blood, 2020, 136, 1837-1850.	0.6	16
1209	Prognosis and targeting of pre-metastatic niche. Journal of Controlled Release, 2020, 325, 223-234.	4.8	29
1210	The role of the tumor microenvironment in tumor cell intravasation and dissemination. European Journal of Cell Biology, 2020, 99, 151098.	1.6	30
1211	Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo. International Immunopharmacology, 2020, 86, 106718.	1.7	18
1212	Preoperative C-Reactive Protein/Albumin Ratio as a Predictive Factor for Gallbladder Carcinoma. In Vivo, 2020, 34, 1901-1908.	0.6	8
1213	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, , .	0.8	3
1214	Reprogramming Tumor Associated Macrophages toward M1 Phenotypes with Nanomedicine for Anticancer Immunotherapy. Advanced Therapeutics, 2020, 3, 1900181.	1.6	31
1215	Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature, 2020, 579, 284-290.	13.7	213
1216	CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Molecular Cancer, 2020, 19, 41.	7.9	200

#	Article	IF	CITATIONS
1217	Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro. Integrative Biology (United Kingdom), 2020, 12, 21-33.	0.6	9
1218	Inflammatory networks cultivate cancer cell metastasis to the liver. Cell Cycle, 2020, 19, 642-651.	1.3	8
1219	Biology and therapeutic targeting of tumourâ€associated macrophages. Journal of Pathology, 2020, 250, 573-592.	2.1	56
1220	Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nature Communications, 2020, 11, 1137.	5.8	43
1221	Quantum dot-pulsed dendritic cell vaccines plus macrophage polarization for amplified cancer immunotherapy. Biomaterials, 2020, 242, 119928.	5.7	43
1222	Paracrine and cell autonomous signalling in pancreatic cancer progression and metastasis. EBioMedicine, 2020, 53, 102662.	2.7	33
1223	Clinical Relevance of Immune Checkpoints on Circulating Tumor Cells in Breast Cancer. Cancers, 2020, 12, 376.	1.7	52
1224	Cell Membrane Nanotherapeutics: From Synthesis to Applications Emerging Tools for Personalized Cancer Therapy. Advanced Therapeutics, 2020, 3, 1900201.	1.6	44
1225	Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Frontiers in Endocrinology, 2020, 11, 7.	1.5	99
1226	Phase I doseâ€escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancer. Cancer Science, 2020, 111, 924-931.	1.7	44
1227	Thioredoxin-2 impacts the inflammatory response via suppression of NF-κB and MAPK signaling in sepsis shock. Biochemical and Biophysical Research Communications, 2020, 524, 876-882.	1.0	6
1228	Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Seminars in Cancer Biology, 2020, 65, 38-50.	4.3	34
1229	The Kidney Contains Ontogenetically Distinct Dendritic Cell and Macrophage Subtypes throughout Development That Differ in Their Inflammatory Properties. Journal of the American Society of Nephrology: JASN, 2020, 31, 257-278.	3.0	62
1230	Cancer Cell-derived Secretory Factors in Breast Cancer-associated Lung Metastasis: Their Mechanism and Future Prospects. Current Cancer Drug Targets, 2020, 20, 168-186.	0.8	25
1231	Immunosurveillance and Immunoediting of Lung Cancer: Current Perspectives and Challenges. International Journal of Molecular Sciences, 2020, 21, 597.	1.8	58
1232	Breast cancer induces systemic immune changes on cytokine signaling in peripheral blood monocytes and lymphocytes. EBioMedicine, 2020, 52, 102631.	2.7	56
1233	Statins Disrupt Macrophage Rac1 Regulation Leading to Increased Atherosclerotic Plaque Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 714-732.	1.1	45
1234	Loss of <i>BAP1</i> expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. Journal of Pathology, 2020, 250, 420-439.	2.1	97

#	Article	IF	CITATIONS
1235	Myosin II Reactivation and Cytoskeletal Remodeling as a Hallmark and a Vulnerability in Melanoma Therapy Resistance. Cancer Cell, 2020, 37, 85-103.e9.	7.7	91
1236	Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity, 2020, 52, 55-81.	6.6	357
1237	A self-assembled peptide hydrogel for cytokine sequestration. Journal of Materials Chemistry B, 2020, 8, 945-950.	2.9	19
1238	Generation of mouse bone marrow-derived macrophages using tumor coculture assays to mimic the tumor microenvironment. Methods in Enzymology, 2020, 632, 91-111.	0.4	4
1239	Immunomodulation by anticancer cell cycle inhibitors. Nature Reviews Immunology, 2020, 20, 669-679.	10.6	86
1240	Tumor Milieu Controlled by RB Tumor Suppressor. International Journal of Molecular Sciences, 2020, 21, 2450.	1.8	17
1241	Anti-tumor effects and mechanisms of Astragalus membranaceus (AM) and its specific immunopotentiation: Status and prospect. Journal of Ethnopharmacology, 2020, 258, 112797.	2.0	64
1242	Myeloidâ€derived suppressor cells promote epithelial ovarian cancer cell stemness by inducing the CSF2/pâ€6TAT3 signalling pathway. FEBS Journal, 2020, 287, 5218-5235.	2.2	31
1243	Pattern of human monocyte subpopulations in health and disease. Scandinavian Journal of Immunology, 2020, 92, e12883.	1.3	108
1244	Lactoferrin-containing immunocomplex mediates antitumor effects by resetting tumor-associated macrophages to M1 phenotype., 2020, 8, e000339.		30
1245	Melanoma-specific bcl-2 promotes a protumoral M2-like phenotype by tumor-associated macrophages. , 2020, 8, e000489.		30
1246	Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.	1.7	19
1247	The origin, fate and function of macrophages in the peripheral nervous systemâ€"an update. International Immunology, 2020, 32, 709-717.	1.8	13
1248	T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. ELife, 2020, 9, .	2.8	34
1249	The force awakens: metastatic dormant cancer cells. Experimental and Molecular Medicine, 2020, 52, 569-581.	3.2	115
1250	Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Frontiers in Oncology, 2020, 10, 324.	1.3	76
1251	Crossâ€ŧalk between tumors at anatomically distinct sites. FEBS Journal, 2021, 288, 81-90.	2.2	9
1252	Sphingomyelin synthase 2 facilitates M2-like macrophage polarization and tumor progression in a mouse model of triple-negative breast cancer. Acta Pharmacologica Sinica, 2021, 42, 149-159.	2.8	27

#	Article	IF	CITATIONS
1253	3D confined self-assembling of QD within super-engineering block copolymers as biocompatible superparticles enabling stimulus responsive solid state fluorescence. Nano Research, 2021, 14, 285-294.	5.8	23
1254	Inflammatory cell-associated tumors. Not only macrophages (TAMs), fibroblasts (TAFs) and neutrophils (TANs) can infiltrate the tumor microenvironment. The unique role of tumor associated platelets (TAPs). Cancer Immunology, Immunotherapy, 2021, 70, 1497-1510.	2.0	26
1255	A wave of bipotent T/ILC-restricted progenitors shapes the embryonic thymus microenvironment in a time-dependent manner. Blood, 2021, 137, 1024-1036.	0.6	32
1257	Notch in Head and Neck Cancer. Advances in Experimental Medicine and Biology, 2021, 1287, 81-103.	0.8	15
1258	A method for separation and purification of mouse splenocytes by density gradient centrifugation. Preparative Biochemistry and Biotechnology, 2021, 51, 415-421.	1.0	3
1259	The fibrotic and immune microenvironments as targetable drivers of metastasis. British Journal of Cancer, 2021, 124, 27-36.	2.9	47
1260	Tumour-associated macrophages drive stromal cell-dependent collagen crosslinking and stiffening to promote breast cancer aggression. Nature Materials, 2021, 20, 548-559.	13.3	125
1261	The immuno-oncological implications of insulin. Life Sciences, 2021, 264, 118716.	2.0	5
1262	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.	2.9	32
1263	Neuregulin Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1270, 1-29.	0.8	1
1265	Isolation, identification, and characterization of novel nanovesicles. Oncotarget, 0, 7, 41346-41362.	0.8	23
1266	Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oncolmmunology, 2021, 10, 1898753.	2.1	28
1267	CCL2 in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2021, 1302, 1-14.	0.8	24
1268	Enriching CCL3 in the Tumor Microenvironment Facilitates T cell Responses and Improves the Efficacy of Anti-PD-1 Therapy. Immune Network, 2021, 21, e23.	1.6	7
1269	CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduction and Targeted Therapy, 2021, 6, 10.	7.1	93
1270	Tumor-associated macrophages: potential therapeutic strategies and future prospects in cancer., 2021, 9, e001341.		102
1271	Cancer Immunology. , 2021, , .		0
1272	Characteristics of pre-metastatic niche: the landscape of molecular and cellular pathways. Molecular Biomedicine, 2021, 2, 3.	1.7	42

#	Article	IF	CITATIONS
1273	MMP9 and IGFBP1 Regulate Tumor Immune and Drive Tumor Progression in Clear Cell Renal Cell Carcinoma. Journal of Cancer, 2021, 12, 2243-2257.	1.2	15
1274	The role of CCR2 in prognosis of patients with endometrial cancer and tumor microenvironment remodeling. Bioengineered, 2021, 12, 3467-3484.	1.4	2
1275	Tumor-associated myeloid cells: diversity and therapeutic targeting. Cellular and Molecular Immunology, 2021, 18, 566-578.	4.8	100
1276	Targeting MDSC for Immune-Checkpoint Blockade in Cancer Immunotherapy: Current Progress and New Prospects. Clinical Medicine Insights: Oncology, 2021, 15, 117955492110355.	0.6	45
1277	Monocytes in the Tumor Microenvironment. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 93-122.	9.6	126
1278	Breast Cancer Metastasis. Advances in Experimental Medicine and Biology, 2021, 1187, 183-204.	0.8	30
1279	Copper Sulfide Nanoparticleâ€Redirected Macrophages for Adoptive Transfer Therapy of Melanoma. Advanced Functional Materials, 2021, 31, 2008022.	7.8	21
1280	Transcriptional Profiling of Macrophages <i>in situ</i> in Metastatic Melanoma Reveals Localization-Dependent Phenotypes and Function. SSRN Electronic Journal, 0, , .	0.4	0
1281	Salting the Soil: Targeting the Microenvironment of Brain Metastases. Molecular Cancer Therapeutics, 2021, 20, 455-466.	1.9	13
1282	Epithelial and Immune Cell Responses to Helicobacter pylori That Shape the Gastric Tumor Microenvironment. Physiology in Health and Disease, 2021, , 155-197.	0.2	0
1283	The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Reports, 2021, 54, 31-43.	1.1	33
1284	CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS Nano, 2021, 15, 1186-1198.	7.3	32
1285	Tumor-associated macrophages: role in tumorigenesis and immunotherapy implications. Journal of Cancer, 2021, 12, 54-64.	1.2	46
1286	Loss of cIAP1 in Endothelial Cells Limits Metastatic Extravasation through Tumor-Derived Lymphotoxin Alpha. Cancers, 2021, 13, 599.	1.7	3
1287	Monocyte Regulation in Homeostasis and Malignancy. Trends in Immunology, 2021, 42, 104-119.	2.9	64
1288	Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Therapy, 2022, 29, 10-21.	2.2	186
1289	Inflammatory cell-derived CXCL3 promotes pancreatic cancer metastasis through a novel myofibroblast-hijacked cancer escape mechanism. Gut, 2022, 71, 129-147.	6.1	88
1291	Extracellular Vesicles: An Emerging Nanoplatform for Cancer Therapy. Frontiers in Oncology, 2020, 10, 606906.	1.3	36

#	Article	IF	CITATIONS
1292	Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Frontiers in Cell and Developmental Biology, 2021, 9, 631699.	1.8	14
1293	Early Events Triggering the Initiation of a Type 2 Immune Response. Trends in Immunology, 2021, 42, 151-164.	2.9	25
1294	Glycyrrhetinic acid remodels the tumor microenvironment and synergizes with doxorubicin for breast cancer treatment in a murine model. Nanotechnology, 2021, 32, 185702.	1.3	3
1295	Absence of <scp>CCR2</scp> reduces spontaneous intestinal tumorigenesis in the <scp>Apc^{Min}</scp> ^{/+} mouse model. International Journal of Cancer, 2021, 148, 2594-2607.	2.3	7
1296	Design and Characterization of an Intracellular Covalent Ligand for CC Chemokine Receptor 2. Journal of Medicinal Chemistry, 2021, 64, 2608-2621.	2.9	13
1297	The Potential Regulatory Roles of Circular RNAs in Tumor Immunology and Immunotherapy. Frontiers in Immunology, 2020, 11, 617583.	2.2	20
1298	Exosomal proteins: Key players mediating pre‑metastatic niche formation and clinical implications (Review). International Journal of Oncology, 2021, 58, .	1.4	12
1300	Role of Macrophages in Solid Tumor Metabolism. , 0, , .		0
1301	Determinants, mechanisms, and functional outcomes of myeloid cell diversity in cancer. Immunological Reviews, 2021, 300, 220-236.	2.8	5
1302	Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Frontiers in Immunology, 2020, 11, 621757.	2.2	24
1303	Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials, 2021, 269, 120666.	5.7	23
1304	E-Cigarettes Promote Macrophage-Tumor Cells Crosstalk: Focus on Breast Carcinoma Progression and Lung Metastasis. Exploratory Research and Hypothesis in Medicine, 2021, 000, 000-000.	0.1	1
1305	Suppressive Myeloid Cells Shape the Tumor Immune Microenvironment. Advanced Biology, 2021, 5, e1900311.	1.4	8
1306	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	1.2	55
1307	Tumorâ€associated macrophages in immunotherapy. FEBS Journal, 2021, 288, 6174-6186.	2.2	48
1308	Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer, 2021, 28, 539-555.	1.3	60
1309	Anti-metastatic effect of methylprednisolone targeting vascular endothelial cells under surgical stress. Scientific Reports, 2021, 11, 6268.	1.6	4
1310	Enhancing CAR-T cell efficacy in solid tumors by targeting the tumor microenvironment. Cellular and Molecular Immunology, 2021, 18, 1085-1095.	4.8	74

#	Article	IF	CITATIONS
1311	Engineered models of tumor metastasis with immune cell contributions. IScience, 2021, 24, 102179.	1.9	13
1312	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	0.9	5
1313	A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer and Metastasis Reviews, 2021, 40, 477-500.	2.7	17
1314	Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer., 2021, 9, e002022.		40
1315	Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell, 2021, 39, 423-437.e7.	7.7	253
1316	Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Frontiers in Oncology, 2021, 11, 628138.	1.3	9
1317	Targeting macrophages in cancer immunotherapy. Signal Transduction and Targeted Therapy, 2021, 6, 127.	7.1	300
1318	The role of myeloidâ€derived suppressor cells in gastrointestinal cancer. Cancer Communications, 2021, 41, 442-471.	3.7	15
1319	Pyroptosis: mechanisms and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 128.	7.1	821
1320	Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight, 2021, 6, .	2.3	35
1321	Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?. Journal of Controlled Release, 2021, 331, 246-259.	4.8	18
1322	Monitoring radiofrequency therapyâ€induced tumor cell dissemination by in vivo flow cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 593-600.	1.1	2
1323	Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. Nature Communications, 2021, 12, 1628.	5.8	103
1324	Chemokine Receptor CCR2b Enhanced Anti-tumor Function of Chimeric Antigen Receptor T Cells Targeting Mesothelin in a Non-small-cell Lung Carcinoma Model. Frontiers in Immunology, 2021, 12, 628906.	2.2	31
1325	A Nano "lmmuneâ€Guide―Recruiting Lymphocytes and Modulating the Ratio of Macrophages from Different Origins to Enhance Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2009116.	7.8	24
1326	TAp73 represses NF-κB–mediated recruitment of tumor-associated macrophages in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
1327	Reduced IQGAP2 expression promotes EMT and inhibits apoptosis by modulating the MEK-ERK and p38 signaling in breast cancer irrespective of ER status. Cell Death and Disease, 2021, 12, 389.	2.7	28
1328	Tissue-Resident and Recruited Macrophages in Primary Tumor and Metastatic Microenvironments: Potential Targets in Cancer Therapy. Cells, 2021, 10, 960.	1.8	33

#	ARTICLE	IF	CITATIONS
1329	Tumor-Associated Macrophagesâ€"Implications for Molecular Oncology and Imaging. Biomedicines, 2021, 9, 374.	1.4	10
1330	Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 633685.	2.2	4
1331	KIF11 Serves as an Independent Prognostic Factor and Therapeutic Target for Patients With Lung Adenocarcinoma. Frontiers in Oncology, 2021, 11, 670218.	1.3	15
1332	Postoperative elevation in the plasma CCL2 level is a predictive biomarker of colorectal cancer recurrence. Surgery Today, 2021, 51, 1671-1681.	0.7	1
1333	Myeloid cell–derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10. Journal of Clinical Investigation, 2021, 131, .	3.9	41
1334	Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses, 2021, 13, 654.	1.5	7
1335	Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell, 2021, 184, 2454-2470.e26.	13.5	165
1336	Recruitment and Expansion of Tregs Cells in the Tumor Environment—How to Target Them?. Cancers, 2021, 13, 1850.	1.7	38
1337	CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis. Cell Reports, 2021, 35, 108993.	2.9	26
1339	CircRNA hsa_circ_0110102 inhibited macrophage activation and hepatocellular carcinoma progression via miR-580-5p/PPAR \hat{i}_{\pm} /CCL2 pathway. Aging, 2021, 13, 11969-11987.	1.4	36
1340	A validated nomogram integrating hematological indicators to predict response to neoadjuvant therapy in esophageal squamous cell carcinoma patients. Annals of Translational Medicine, 2021, 9, 703-703.	0.7	7
1341	The Role of Tumor Microenvironment in Cancer Metastasis: Molecular Mechanisms and Therapeutic Opportunities. Cancers, 2021, 13, 2053.	1.7	143
1342	Long non-coding RNAs and cancer metastasis: Molecular basis and therapeutic implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1875, 188519.	3.3	52
1345	Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers, 2021, 13, 1743.	1.7	7
1346	Keeping abreast about ashwagandha in breast cancer. Journal of Ethnopharmacology, 2021, 269, 113759.	2.0	8
1347	Monocytic myeloid-derived suppressor cells home to tumor-draining lymph nodes via CCR2 and locally modulate the immune response. Cellular Immunology, 2021, 362, 104296.	1.4	7
1348	Synergistic ferroptosis and macrophage re-polarization using engineering exosome-mimic M1 nanovesicles for cancer metastasis suppression. Chemical Engineering Journal, 2021, 409, 128217.	6.6	24
1349	Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. OncoTargets and Therapy, 2021, Volume 14, 2599-2610.	1.0	6

#	Article	IF	CITATIONS
1350	Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Scientific Reports, 2021, 11, 8708.	1.6	16
1351	Therapeutic Targeting of the Tumor Microenvironment. Cancer Discovery, 2021, 11, 933-959.	7.7	646
1352	Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. International Journal of Molecular Sciences, 2021, 22, 3805.	1.8	85
1353	Role of the nervous system in cancers: a review. Cell Death Discovery, 2021, 7, 76.	2.0	59
1354	Myelopoiesis during Solid Cancers and Strategies for Immunotherapy. Cells, 2021, 10, 968.	1.8	7
1355	Macrophage Biology and Mechanisms of Immune Suppression in Breast Cancer. Frontiers in Immunology, 2021, 12, 643771.	2.2	80
1356	The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review. Mini-Reviews in Medicinal Chemistry, 2021, 21, 803-815.	1.1	1
1357	Embryonic Origin and Subclonal Evolution of Tumor-Associated Macrophages Imply Preventive Care for Cancer. Cells, 2021, 10, 903.	1.8	12
1358	The Predictive Value of Monocytes in Immune Microenvironment and Prognosis of Glioma Patients Based on Machine Learning. Frontiers in Immunology, 2021, 12, 656541.	2.2	34
1359	Liver Immune Microenvironment and Metastasis from Colorectal Cancer-Pathogenesis and Therapeutic Perspectives. Cancers, 2021, 13, 2418.	1.7	36
1360	Chemokines orchestrate tumor cells and the microenvironment to achieve metastatic heterogeneity. Cancer and Metastasis Reviews, 2021, 40, 447-476.	2.7	24
1361	Targeting HDL in tumor microenvironment: New hope for cancer therapy. Journal of Cellular Physiology, 2021, 236, 7853-7873.	2.0	15
1362	Inflammation-Induced Tumorigenesis and Metastasis. International Journal of Molecular Sciences, 2021, 22, 5421.	1.8	88
1363	Knockdown of hsa_circ_0134111 alleviates the symptom of osteoarthritis via sponging microRNA-224-5p. Cell Cycle, 2021, 20, 1052-1066.	1.3	17
1364	Control of Tumor Progression by Angiocrine Factors. Cancers, 2021, 13, 2610.	1.7	19
1365	MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nature Communications, 2021, 12, 2522.	5.8	27
1366	Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Frontiers in Immunology, 2021, 12, 642285.	2.2	70
1367	Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. Science Advances, 2021, 7, .	4.7	25

#	Article	IF	CITATIONS
1368	MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer. Npj Breast Cancer, 2021, 7, 64.	2.3	19
1369	Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell, 2021, 39, 708-724.e11.	7.7	175
1370	Natural Killer Cell Interactions With Myeloid Derived Suppressor Cells in the Tumor Microenvironment and Implications for Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 633205.	2.2	42
1371	Postâ€translational regulation of PGCâ€1α modulates fibrotic repair. FASEB Journal, 2021, 35, e21675.	0.2	6
1372	Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity, 2021, 54, 885-902.	6.6	68
1373	The multifaceted roles of the chemokines CCL2 and CXCL12 in osteophilic metastatic cancers. Cancer and Metastasis Reviews, 2021, 40, 427-445.	2.7	15
1375	A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer. Molecular Therapy, 2021, 29, 2963-2978.	3.7	9
1376	Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Frontiers in Immunology, 2021, 12, 695865.	2.2	24
1377	The Role of Inflammation in Breast and Prostate Cancer Metastasis to Bone. International Journal of Molecular Sciences, 2021, 22, 5078.	1.8	20
1378	Immunoregulatory Monocyte Subset Promotes Metastasis Associated With Therapeutic Intervention for Primary Tumor. Frontiers in Immunology, 2021, 12, 663115.	2.2	18
1379	Regulatory Effects of Histone Deacetylase Inhibitors on Myeloid-Derived Suppressor Cells. Frontiers in Immunology, 2021, 12, 690207.	2.2	13
1380	Identification and validation of a robust autophagy-related molecular model for predicting the prognosis of breast cancer patients. Aging, 2021, 13, 16684-16695.	1.4	4
1381	An emerging role for BAG3 in gynaecological malignancies. British Journal of Cancer, 2021, 125, 789-797.	2.9	10
1382	MicroRNAs Regulating Tumor Immune Response in the Prediction of the Outcome in Patients With Breast Cancer. Frontiers in Molecular Biosciences, 2021, 8, 668534.	1.6	14
1384	Platelet-Derived Growth Factor-D Activates Complement System to Propagate Macrophage Polarization and Neovascularization. Frontiers in Cell and Developmental Biology, 2021, 9, 686886.	1.8	6
1385	Evolving Models and Tools for Microglial Studies in the Central Nervous System. Neuroscience Bulletin, 2021, 37, 1218-1233.	1.5	12
1386	Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Research, 2021, 6, 52.	0.9	6
1387	Chronic Inflammation and Cancer: The Role of Endothelial Dysfunction and Vascular Inflammation. Current Pharmaceutical Design, 2021, 27, 2156-2169.	0.9	13

#	Article	IF	Citations
1388	Patient-derived scaffolds influence secretion profiles in cancer cells mirroring clinical features and breast cancer subtypes. Cell Communication and Signaling, 2021, 19, 66.	2.7	8
1389	Neddylation Regulates Macrophages and Implications for Cancer Therapy. Frontiers in Cell and Developmental Biology, 2021, 9, 681186.	1.8	9
1390	Lactate Dehydrogenase-A (LDH-A) Preserves Cancer Stemness and Recruitment of Tumor-Associated Macrophages to Promote Breast Cancer Progression. Frontiers in Oncology, 2021, 11, 654452.	1.3	12
1391	Cancer stem cell–immune cell crosstalk in tumour progression. Nature Reviews Cancer, 2021, 21, 526-536.	12.8	229
1392	Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduction and Targeted Therapy, 2021, 6, 225.	7.1	115
1393	Evolution of fibroblasts in the lung metastatic microenvironment is driven by stage-specific transcriptional plasticity. ELife, 2021, 10, .	2.8	23
1394	Turning enemies into alliesâ€"reprogramming tumor-associated macrophages for cancer therapy. Med, 2021, 2, 666-681.	2.2	17
1395	Spi-B Promotes the Recruitment of Tumor-Associated Macrophages via Enhancing CCL4 Expression in Lung Cancer. Frontiers in Oncology, 2021, 11, 659131.	1.3	8
1396	Bio-Nanocarriers for Lung Cancer Management: Befriending the Barriers. Nano-Micro Letters, 2021, 13, 142.	14.4	16
1397	Macrophages in Acute Myeloid Leukaemia: Significant Players in Therapy Resistance and Patient Outcomes. Frontiers in Cell and Developmental Biology, 2021, 9, 692800.	1.8	27
1398	Inhibition of Orthotopic Genital Cancer Induced by Subcutaneous Administration of Human Papillomavirus Peptide Vaccine with CpG Oligodeoxynucleotides as an Adjuvant in Mice. Cancer Management and Research, 2021, Volume 13, 5559-5572.	0.9	2
1399	CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion. Frontiers in Oncology, 2021, 11, 668349.	1.3	79
1400	A chemokine regulatory loop induces cholesterol synthesis in lung-colonizing triple-negative breast cancer cells to fuel metastatic growth. Molecular Therapy, 2022, 30, 672-687.	3.7	11
1401	Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells. Cancer Research, 2021, 81, 5047-5059.	0.4	28
1402	A Permanent Window for Investigating Cancer Metastasis to the Lung. Journal of Visualized Experiments, 2021, , .	0.2	9
1403	Association between post-treatment circulating biomarkers of inflammation and survival among stage ll–III colorectal cancer patients. British Journal of Cancer, 2021, 125, 806-815.	2.9	12
1404	Tumor Extracellular Vesicles Regulate Macrophage-Driven Metastasis through CCL5. Cancers, 2021, 13, 3459.	1.7	22
1406	Crosstalk Between Tumor-Associated Microglia/Macrophages and CD8-Positive T Cells Plays a Key Role in Glioblastoma. Frontiers in Immunology, 2021, 12, 650105.	2.2	15

#	Article	IF	CITATIONS
1407	Use of Nanoformulation to Target Macrophages for Disease Treatment. Advanced Functional Materials, 2021, 31, 2104487.	7.8	17
1408	Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. International Journal of Molecular Sciences, 2021, 22, 7239.	1.8	21
1409	Megakaryocyte production is sustained by direct differentiation from erythromyeloid progenitors in the yolk sac until midgestation. Immunity, 2021, 54, 1433-1446.e5.	6.6	25
1410	Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 682217.	1.3	13
1411	Heterogeneous Myeloid Cells in Tumors. Cancers, 2021, 13, 3772.	1.7	30
1412	Identification of the JNK-Active Triple-Negative Breast Cancer Cluster Associated With an Immunosuppressive Tumor Microenvironment. Journal of the National Cancer Institute, 2022, 114, 97-108.	3.0	15
1413	Dual regulation of osteoclastogenesis and osteogenesis for osteoporosis therapy by iron oxide hydroxyapatite core/shell nanocomposites. International Journal of Energy Production and Management, 2021, 8, rbab027.	1.9	20
1414	Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages. Advanced Drug Delivery Reviews, 2021, 178, 113909.	6.6	39
1415	Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. Journal of Bone and Mineral Research, 2020, 36, 1661-1679.	3.1	24
1416	Carbon Nanodots Inhibit Oxidized Low Density Lipoprotein-Induced Injury and Monocyte Adhesion to Endothelial Cells Through Scavenging Reactive Oxygen Species. Journal of Biomedical Nanotechnology, 2021, 17, 1654-1667.	0.5	2
1417	Role of the CCL2â€CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Proliferation, 2021, 54, e13115.	2.4	115
1419	Characterizing Macrophage Diversity in Metastasis-Bearing Lungs Reveals a Lipid-Associated Macrophage Subset. Cancer Research, 2021, 81, 5284-5295.	0.4	37
1420	Inflammatory repercussions in female steroid responsive glands after perinatal exposure to bisphenol A and $17\hat{a}\in \hat{l}^2$ estradiol. Cell Biology International, 2021, 45, 2264-2274.	1.4	9
1421	Comprehensive Analyses of the Infiltrating Immune Cell Landscape and Its Clinical Significance in Hepatocellular Carcinoma. International Journal of General Medicine, 2021, Volume 14, 4695-4704.	0.8	7
1422	Spatially Distinct Reprogramming of the Tumor Microenvironment Based On Tumor Invasion in Diffuse-Type Gastric Cancers. Clinical Cancer Research, 2021, 27, 6529-6542.	3.2	50
1423	Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells. Critical Reviews in Oncology/Hematology, 2021, 164, 103416.	2.0	19
1424	<i>A. Muciniphila</i> Suppresses Colorectal Tumorigenesis by Inducing TLR2/NLRP3-Mediated M1-Like TAMs. Cancer Immunology Research, 2021, 9, 1111-1124.	1.6	63
1425	Ginseng-derived nanoparticles potentiate immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Molecular Therapy, 2022, 30, 327-340.	3.7	52

#	Article	IF	CITATIONS
1426	Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB BioAdvances, 2021, 3, 930-943.	1.3	19
1427	Tumor Microenvironment in Breast Cancer—Updates on Therapeutic Implications and Pathologic Assessment. Cancers, 2021, 13, 4233.	1.7	72
1428	Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer. Breast Cancer Research, 2021, 23, 83.	2.2	13
1429	Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clinical Breast Cancer, 2021, 21, 486-491.	1.1	21
1430	Mds1, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Reports, 2021, 36, 109562.	2.9	7
1431	Roles of CCL2-CCR2 Axis in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 8530.	1.8	50
1432	SLIT2/ROBO signaling in tumor-associated microglia and macrophages drives glioblastoma immunosuppression and vascular dysmorphia. Journal of Clinical Investigation, 2021, 131, .	3.9	46
1433	Nanomedicines modulating myeloid-derived suppressor cells for improving cancer immunotherapy. Nano Today, 2021, 39, 101163.	6.2	18
1434	Hidden Treasures: Macrophage Long Non-Coding RNAs in Lung Cancer Progression. Cancers, 2021, 13, 4127.	1.7	7
1435	MCP-1-Functionalized, Core–Shell Gold Nanorod@Iron-Based Metal–Organic Framework (MCP-1/GNR@MIL-100(Fe)) for Photothermal Therapy. ACS Applied Materials & Diterfaces, 2021, 13, 52092-52105.	4.0	15
1436	î ² -Catenin-CCL2 feedback loop mediates crosstalk between cancer cells and macrophages that regulates breast cancer stem cells. Oncogene, 2021, 40, 5854-5865.	2.6	22
1437	Bringing Macrophages to the Frontline against Cancer: Current Immunotherapies Targeting Macrophages. Cells, 2021, 10, 2364.	1.8	13
1438	Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy. Nano Research, 2022, 15, 2177-2195.	5.8	6
1439	Tumor-Associated Macrophages and Their Functional Transformation in the Hypoxic Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 741305.	2.2	76
1440	Therapeutic inhibition of USP9x-mediated Notch signaling in triple-negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
1441	Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach., 2022, 231, 107986.		30
1442	Engineering Cellâ€Based Systems for Smart Cancer Therapy. Advanced Intelligent Systems, 2022, 4, 2100134.	3.3	14
1443	Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers, 2021, 13, 4712.	1.7	29

#	Article	IF	Citations
1444	TCF4 enhances hepatic metastasis of colorectal cancer by regulating tumor-associated macrophage via CCL2/CCR2 signaling. Cell Death and Disease, 2021, 12, 882.	2.7	34
1445	A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Frontiers in Oncology, 2021, 11, 641187.	1.3	6
1446	Activin A Sustains the Metastatic Phenotype of Tumor-Associated Macrophages and Is a Prognostic Marker in Human Cutaneous Melanoma. Journal of Investigative Dermatology, 2022, 142, 653-661.e2.	0.3	5
1447	Inflammation- and Gut-Homing Macrophages, Engineered to De Novo Overexpress Active Vitamin D, Promoted the Regenerative Function of Intestinal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9516.	1.8	10
1448	<i>MYC</i> Levels Regulate Metastatic Heterogeneity in Pancreatic Adenocarcinoma. Cancer Discovery, 2022, 12, 542-561.	7.7	35
1449	Biomimetic Nanoparticles Carrying a Repolarization Agent of Tumor-Associated Macrophages for Remodeling of the Inflammatory Microenvironment Following Photothermal Therapy. ACS Nano, 2021, 15, 15166-15179.	7.3	61
1450	InÂvivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell, 2021, 184, 5357-5374.e22.	13.5	79
1451	Losartan Blocks Osteosarcoma-Elicited Monocyte Recruitment, and Combined With the Kinase Inhibitor Toceranib, Exerts Significant Clinical Benefit in Canine Metastatic Osteosarcoma. Clinical Cancer Research, 2022, 28, 662-676.	3.2	38
1452	Tumor cell-derived SPON2 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by activating PYK2 in CRC. Journal of Experimental and Clinical Cancer Research, 2021, 40, 304.	3.5	42
1454	Combination strategies to maximize the benefits of cancer immunotherapy. Journal of Hematology and Oncology, 2021, 14, 156.	6.9	202
1455	Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 9804.	1.8	73
1456	Rho GTPase signalling networks in cancer cell transendothelial migration. Vascular Biology (Bristol,) Tj ETQq1 10	.784314 r _.	gBT_/Overlo
1457	Identification of an Immune-Related Long Noncoding RNA Pairs Model to Predict Survival and Immune Features in Gastric Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 726716.	1.8	6
1458	Loss of mTORC2-induced metabolic reprogramming in monocytes uncouples migration and maturation from production of proinflammatory mediators. Journal of Leukocyte Biology, 2022, 111, 967-980.	1.5	7
1459	The tumor microenvironment as driver of stemness and therapeutic resistance in breast cancer: New challenges and therapeutic opportunities. Cellular Oncology (Dordrecht), 2021, 44, 1209-1229.	2.1	71
1460	Development and Validation of a Prognostic Autophagy-Related Gene Pair Index Related to Tumor-Infiltrating Lymphocytes in Early-Stage Lung Adenocarcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 719011.	1.8	3
1461	Comprehensive Analysis of Pyroptosis-Related Genes and Tumor Microenvironment Infiltration Characterization in Breast Cancer. Frontiers in Immunology, 2021, 12, 748221.	2.2	40
1462	Fas-threshold signalling in MSCs promotes pancreatic cancer progression and metastasis. Cancer Letters, 2021, 519, 63-77.	3.2	5

#	Article	IF	CITATIONS
1463	Kefir Is a Viable Exercise Recovery Beverage for Cancer Survivors Enrolled in a Structured Exercise Program. Medicine and Science in Sports and Exercise, 2021, 53, 2045-2053.	0.2	4
1464	Advance of nano anticancer therapies targeted on tumor-associated macrophages. Coordination Chemistry Reviews, 2021, 446, 214126.	9.5	6
1465	M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials, 2021, 278, 121137.	5.7	166
1466	Novel prognostic model established for patients with head and neck squamous cell carcinoma based on pyroptosis-related genes. Translational Oncology, 2021, 14, 101233.	1.7	21
1467	Macrophages and pathophysiology of bone cancers. , 2022, , 205-218.		0
1468	Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. , 2022, , 409-435.		1
1469	Immunoediting and cancer priming. , 2022, , 111-136.		1
1470	Environmental signals rather than layered ontogeny imprint the function of type 2 conventional dendritic cells in young and adult mice. Nature Communications, 2021, 12, 464.	5.8	25
1471	Analyzing the Role of Proteases in Breast Cancer Progression and Metastasis Using Primary Cells from Transgenic Oncomice. Methods in Molecular Biology, 2021, 2294, 275-293.	0.4	2
1472	Cellular Indoctrination: How the Tumor Microenvironment Reeducates Macrophages Towards Nefarious Ends. , 2021, , .		O
1473	Adenosine Metabolized From Extracellular ATP Promotes Type 2 Immunity Through Triggering A _{2B} AR Signaling in Intestinal Epithelial Cells. SSRN Electronic Journal, 0, , .	0.4	0
1474	Myeloidâ€derived suppressor cells: Bridging the gap between inflammation and pancreatic adenocarcinoma. Scandinavian Journal of Immunology, 2021, 93, e13021.	1.3	6
1476	Evolutionary model of brain tumor circulating cells: Cellular galaxy. World Journal of Clinical Oncology, 2021, 12, 13-30.	0.9	5
1477	NEDD9 promotes cancer stemness by recruiting myeloidderived suppressor cells <i>via</i> CXCL8 in esophageal squamous cell carcinoma. Cancer Biology and Medicine, 2021, 18, 705-720.	1.4	12
1478	Blockade of p38 kinase impedes the mobilization of protumorigenic myeloid populations to impact breast cancer metastasis. International Journal of Cancer, 2020, 147, 2279-2292.	2.3	10
1479	Effects of checkpoint kinase 1 inhibition by prexasertib on the tumor immune microenvironment of head and neck squamous cell carcinoma. Molecular Carcinogenesis, 2021, 60, 138-150.	1.3	11
1480	An Overview of Advances in Cell-Based Cancer Immunotherapies Based on the Multiple Immune-Cancer Cell Interactions. Methods in Molecular Biology, 2020, 2097, 139-171.	0.4	2
1481	Cancer Immunotherapy: Targeting Tumor-Associated Macrophages by Gene Silencing. Methods in Molecular Biology, 2020, 2115, 289-325.	0.4	15

#	Article	IF	CITATIONS
1482	Antibodies as Cancer Immunotherapy. , 2013, , 335-376.		2
1483	The Fine Balance of Chemokines During Disease: Trafficking, Inflammation, and Homeostasis. Methods in Molecular Biology, 2013, 1013, 1-16.	0.4	29
1484	Role of Chemokines and Chemokine Receptors in Cancer. , 2020, , 235-262.		3
1485	Tumor-Associated Myeloid Cells in Cancer Progression. , 2020, , 29-46.		1
1486	Monocytes and Macrophages in Cancer: Unsuspected Roles. Advances in Experimental Medicine and Biology, 2020, 1219, 161-185.	0.8	17
1487	Phenotypic and Functional Changes of Circulating Monocytes in Elderly. , 2019, , 623-650.		1
1488	Role of Innate Immunity in Cancers and Antitumor Response. , 2015, , 29-46.		1
1489	Migration, Metastasis, and More: The Role of Chemokines in the Proliferation, Spreading, and Metastasis of Tumors., 2013,, 339-358.		5
1490	The Versatile World of Inflammatory Chemokines in Cancer., 2013,, 135-175.		1
1491	Adapting the Foreign Soil: Factors Promoting Tumor Metastasis. , 2020, , 171-196.		2
1492	Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Reports, 2020, 33, 108571.	2.9	99
1493	Tumor cells induce LAMP2a expression in tumor-associated macrophage for cancer progression. EBioMedicine, 2019, 40, 118-134.	2.7	50
1494	Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nature Communications, 2020, 11, 609.	5.8	57
1495	Peripheral nerve resident macrophages share tissue-specific programming and features of activated microglia. Nature Communications, 2020, 11, 2552.	5.8	84
1496	Macrophages as regulators of tumour immunity and immunotherapy. Nature Reviews Immunology, 2019, 19, 369-382.	10.6	1,365
1497	Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nature Reviews Immunology, 2020, 20, 483-497.	10.6	241
1498	Two populations of self-maintaining monocyte-independent macrophages exist in adult epididymis and testis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
1513	Macrophage targeting in cancer. Annals of the New York Academy of Sciences, 2021, 1499, 18-41.	1.8	134

#	Article	IF	CITATIONS
1514	Tumor-Induced Myeloid-Derived Suppressor Cells. , 0, , 833-856.		1
1515	HSF1 Attenuates LPS-Induced Acute Lung Injury in Mice by Suppressing Macrophage Infiltration. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	1.9	15
1516	Connecting (T)issues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer Research, 2016, 76, 6159-6162.	0.4	34
1517	Autophagic adaptation to oxidative stress alters peritoneal residential macrophage survival and ovarian cancer metastasis. JCI Insight, 2020, 5, .	2.3	59
1518	CSF1R-dependent myeloid cells are required for NK‑mediated control of metastasis. JCI Insight, 2018, 3, .	2.3	38
1519	Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. Journal of Clinical Investigation, 2019, 129, 1845-1862.	3.9	136
1520	Adipocyte and lipid metabolism in cancer drug resistance. Journal of Clinical Investigation, 2019, 129, 3006-3017.	3.9	262
1521	Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. Journal of Clinical Investigation, 2020, 130, 2081-2096.	3.9	108
1522	Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. Journal of Clinical Investigation, 2012, 122, 3127-3144.	3.9	311
1523	Plasmacytoid dendritic cells lead the charge against tumors. Journal of Clinical Investigation, 2012, 122, 481-484.	3.9	2
1524	Transcription factor ATF3 links host adaptive response to breast cancer metastasis. Journal of Clinical Investigation, 2013, 123, 2893-2906.	3.9	109
1525	Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. Journal of Clinical Investigation, 2013, 123, 1371-1381.	3.9	256
1526	Lung tumor NF-κB signaling promotes T cell–mediated immune surveillance. Journal of Clinical Investigation, 2013, 123, 2509-2522.	3.9	102
1527	F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. Journal of Clinical Investigation, 2015, 125, 621-635.	3.9	99
1528	Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. Journal of Clinical Investigation, 2015, 125, 3365-3376.	3.9	443
1529	LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. Journal of Clinical Investigation, 2015, 125, 4063-4076.	3.9	79
1530	A proangiogenic signaling axis in myeloid cells promotes malignant progression of glioma. Journal of Clinical Investigation, 2017, 127, 1826-1838.	3.9	34
1531	Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. Journal of Clinical Investigation, 2016, 126, 4157-4173.	3.9	277

#	Article	IF	Citations
1532	Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. Journal of Clinical Investigation, 2017, 127, 3039-3051.	3.9	124
1533	Recent advances in understanding the complexities of metastasis. F1000Research, 2018, 7, 1169.	0.8	45
1534	Recent advances in understanding the complexities of metastasis. F1000Research, 2018, 7, 1169.	0.8	75
1535	Dissecting the Autocrine and Paracrine Roles of the CCR2-CCL2 Axis in Tumor Survival and Angiogenesis. PLoS ONE, 2012, 7, e28305.	1.1	44
1536	An Intracameral Injection of Antigen Induces In Situ Chemokines and Cytokines Required for the Generation of Circulating Immunoregulatory Monocytes. PLoS ONE, 2012, 7, e43182.	1.1	4
1537	Activation of Thromboxane A2 Receptor (TP) Increases the Expression of Monocyte Chemoattractant Protein -1 (MCP-1)/Chemokine (C-C motif) Ligand 2 (CCL2) and Recruits Macrophages to Promote Invasion of Lung Cancer Cells. PLoS ONE, 2013, 8, e54073.	1.1	41
1538	Monocyte Chemoattractant Protein-1/CCL2 Produced by Stromal Cells Promotes Lung Metastasis of 4T1 Murine Breast Cancer Cells. PLoS ONE, 2013, 8, e58791.	1.1	86
1539	MIDClass: Microarray Data Classification by Association Rules and Gene Expression Intervals. PLoS ONE, 2013, 8, e69873.	1.1	17
1540	Beneficial Impact of CCL2 and CCL12 Neutralization on Experimental Malignant Pleural Effusion. PLoS ONE, 2013, 8, e71207.	1,1	33
1541	TWEAK Promotes Peritoneal Inflammation. PLoS ONE, 2014, 9, e90399.	1.1	21
1542	MCP/CCR2 Signaling Is Essential for Recruitment of Mesenchymal Progenitor Cells during the Early Phase of Fracture Healing. PLoS ONE, 2014, 9, e104954.	1,1	66
1543	IKK2 Inhibition Using TPCA-1-Loaded PLGA Microparticles Attenuates Laser-Induced Choroidal Neovascularization and Macrophage Recruitment. PLoS ONE, 2015, 10, e0121185.	1.1	17
1544	Differential Contribution of Acute and Chronic Inflammation to the Development of Murine Mammary 4T1 Tumors. PLoS ONE, 2015, 10, e0130809.	1.1	8
1545	4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses. PLoS ONE, 2015, 10, e0133385.	1.1	38
1546	Tumor-Infiltrating Macrophages in Post-Transplant, Relapsed Classical Hodgkin Lymphoma Are Donor-Derived. PLoS ONE, 2016, 11, e0163559.	1.1	9
1547	CCL2/CCR2 Regulates the Tumor Microenvironment in HER-2/neu-Driven Mammary Carcinomas in Mice. PLoS ONE, 2016, 11, e0165595.	1.1	41
1548	Apigenin inhibits TNFα/IL-1α-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells. PLoS ONE, 2017, 12, e0175558.	1.1	70
1549	The mechanisms how heparin affects the tumor cell induced VEGF and chemokine release from platelets to attenuate the early metastatic niche formation. PLoS ONE, 2018, 13, e0191303.	1.1	15

#	Article	IF	CITATIONS
1550	M2a macrophages induce contact-dependent dispersion of carcinoma cell aggregates. Macrophage, 0, ,	1.0	6
1551	Glufosinate constrains synchronous and metachronous metastasis by promoting antiâ€tumor macrophages. EMBO Molecular Medicine, 2020, 12, e11210.	3.3	29
1552	Myelopoiesis, metabolism and therapy: a crucial crossroads in cancer progression. Cell Stress, 2019, 3, 284-294.	1.4	40
1553	CHANGES MONOCYTE CHEMOATTRACTANTS PROTEIN-1 IN HELICOBACTER PYLORIASSOCIATED GASTRODUODENAL DISEASES. Russian Journal of Infection and Immunity, 2018, 8, 150-156.	0.2	4
1554	Tumor-associated macrophages, multi-tasking cells in the cancer landscape. Cancer Research Frontiers, 2015, 1, 149-161.	0.2	7
1555	Patrolling monocytes inhibit osteosarcoma metastasis to the lung. Aging, 2020, 12, 23004-23016.	1.4	8
1556	CCL2/CCR2 axis is associated with postoperative survival and recurrence of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget, 2016, 7, 51525-51534.	0.8	32
1557	Lysosomal acid lipase in mesenchymal stem cell stimulation of tumor growth and metastasis. Oncotarget, 2016, 7, 61121-61135.	0.8	6
1558	Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells. Oncotarget, 2016, 7, 75366-75378.	0.8	45
1559	Serpin E2 promotes breast cancer metastasis by remodeling the tumor matrix and polarizing tumor associated macrophages. Oncotarget, 2016, 7, 82289-82304.	0.8	23
1560	OTX015 (MK-8628), a novel BET inhibitor, exhibits antitumor activity in non-small cell and small cell lung cancer models harboring different oncogenic mutations. Oncotarget, 2016, 7, 84675-84687.	0.8	42
1561	Increasing the efficacy of radiotherapy by modulating the CCR2/CCR5 chemokine axes. Oncotarget, 2016, 7, 86522-86535.	0.8	50
1562	Nurse-like cells promote CLL survival through LFA-3/CD2 interactions. Oncotarget, 2017, 8, 52225-52236.	0.8	28
1563	Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget, 2017, 8, 50731-50746.	0.8	75
1564	Establishment of oral squamous cell carcinoma cell line and magnetic bead-based isolation and characterization of its CD90/CD44 subpopulations. Oncotarget, 2017, 8, 66254-66269.	0.8	11
1565	MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget, 2018, 9, 3446-3458.	0.8	6
1566	Canonical NF- $\hat{\mathbb{P}}$ B signaling in myeloid cells promotes lung metastasis in a mouse breast cancer model. Oncotarget, 2018, 9, 16775-16791.	0.8	3
1567	Host genotype and tumor phenotype of chemokine decoy receptors integrally affect breast cancer relapse. Oncotarget, 2015, 6, 26519-26527.	0.8	18

#	Article	IF	CITATIONS
1568	Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and \hat{I}^2 2 integrin interactions. Oncotarget, 2015, 6, 25295-25307.	0.8	97
1569	CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget, 2015, 6, 29725-29739.	0.8	27
1570	Heme oxygenase-1 in macrophages controls prostate cancer progression. Oncotarget, 2015, 6, 33675-33688.	0.8	44
1571	Prostaglandin E receptor 4 (EP4) promotes colonic tumorigenesis. Oncotarget, 2015, 6, 33500-33511.	0.8	33
1572	Serum chemokine (CC motif) ligand 2 level as a diagnostic, predictive, and prognostic biomarker for prostate cancer. Oncotarget, 2016, 7, 8389-8398.	0.8	34
1573	CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget, 2016, 7, 15632-15647.	0.8	46
1574	Endothelial chemokine receptors as facilitators of tumor cell extravasation?. Oncotarget, 2012, 3, 919-920.	0.8	3
1575	The impact of ranitidine on monocyte responses in the context of solid tumors. Oncotarget, 2016, 7, 10891-10904.	0.8	10
1576	Changes in plasma chemokine C-C motif ligand 2 levels during treatment with eicosapentaenoic acid predict outcome in patients undergoing surgery for colorectal cancer liver metastasis. Oncotarget, 2016, 7, 28139-28150.	0.8	12
1577	Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget, 2016, 7, 31097-31110.	0.8	50
1578	Targeting tumor-associated macrophages to combat pancreatic cancer. Oncotarget, 2016, 7, 50735-50754.	0.8	73
1579	Metastatic site-specific polarization of macrophages in intracranial breast cancer metastases. Oncotarget, 0, 7, 41473-41487.	0.8	34
1580	Predictive value of exosomes and their cargo in drug response/resistance of breast cancer patients., 2020, 3, 63-82.		4
1581	Monocytes and cancer: promising role as a diagnostic marker and application in therapy. Bulletin of Siberian Medicine, 2019, 18, 60-75.	0.1	5
1582	Current state and future of co-inhibitory immune checkpoints for the treatment of glioblastoma. Cancer Biology and Medicine, 2020, 17, 555-568.	1.4	14
1583	Inflammation Fuels Tumor Progress and Metastasis. Current Pharmaceutical Design, 2015, 21, 3032-3040.	0.9	69
1584	Macrophage Flipping from Foe to Friend: A Matter of Interest in Breast Carcinoma Heterogeneity Driving Drug Resistance. Current Cancer Drug Targets, 2019, 19, 189-198.	0.8	7
1585	Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Current Topics in Medicinal Chemistry, 2016, 16, 2765-2778.	1.0	87

#	Article	IF	CITATIONS
1586	Recent Advances of Small Molecular Regulators Targeting G Protein- Coupled Receptors Family for Oncology Immunotherapy. Current Topics in Medicinal Chemistry, 2019, 19, 1464-1483.	1.0	3
1587	Double-crosser of the Immune System: Macrophages in Tumor Progression and Metastasis. Current Immunology Reviews, 2019, 15, 172-184.	1.2	51
1588	The Role of micro RNAs in Breast Cancer Metastasis: Preclinical Validation and Potential Therapeutic Targets. Cancer Genomics and Proteomics, 2018, 15, 17-39.	1.0	35
1589	Tumour-associated macrophage polarisation and re-education with immunotherapy. Frontiers in Bioscience - Elite, 2015, 7, 334-351.	0.9	41
1590	Bevacizumab and CCR2 Inhibitor Nanoparticles Induce Cytotoxicity-Mediated Apoptosis in Doxorubicin-Treated Hepatic and Non-Small Lung Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2019, 20, 2225-2238.	0.5	19
1591	Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. Journal of Neurosurgery: Pediatrics, 2019, 23, 613-621.	0.8	29
1592	Breast Tumor-Derived Exosomal MicroRNA-200b-3p Promotes Specific Organ Metastasis Through Regulating CCL2 Expression in Lung Epithelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 657158.	1.8	32
1593	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 581107.	1.3	14
1594	The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. International Journal of Molecular Sciences, 2020, 21, 3704.	1.8	61
1595	Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro. Processes, 2021, 9, 45.	1.3	8
1596	Tumor-Associated Macrophages: Protumoral Macrophages in Inflammatory Tumor Microenvironment. Advanced Pharmaceutical Bulletin, 2020, 10, 556-565.	0.6	42
1597	Autocrine-Derived Epidermal Growth Factor Receptor Ligands Contribute to Recruitment of Tumor-Associated Macrophage and Growth of Basal Breast Cancer Cells In Vivo. Oncology Research, 2013, 20, 303-317.	0.6	19
1598	Expression of monocyte chemotactic protein-1/CCL2 in gastric cancer and its relationship with tumor hypoxia. World Journal of Gastroenterology, 2014, 20, 4421.	1.4	37
1599	Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World Journal of Gastroenterology, 2019, 25, 4383-4404.	1.4	160
1600	Monocyte-to-lymphocyte ratio as a prognostic factor in peripheral whole blood samples of colorectal cancer patients. World Journal of Gastroenterology, 2020, 26, 4639-4655.	1.4	33
1602	Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncology Letters, 2020, 21, 108.	0.8	6
1603	Impact of the immune system and immunotherapy in colorectal cancer. Journal of Gastrointestinal Oncology, 2015, 6, 208-23.	0.6	142
1604	Platelets and their role in cancer evolution and immune system. Translational Lung Cancer Research, 2015, 4, 713-20.	1.3	15

#	ARTICLE	IF	CITATIONS
1605	Withania somnifera extract reduces the invasiveness of MDA-MB-231 breast cancer and inhibits cytokines associated with metastasis. Journal of Cancer Metastasis and Treatment, 2015, 1, 94.	0.5	16
1606	Chronic Inflammation in Cancer: The Role of Human Viruses. Advances in Tumor Virology, 0, 5, 1-11.	0.0	5
1607	Targeting inflammation in pancreatic cancer: Clinical translation. World Journal of Gastrointestinal Oncology, 2016, 8, 380.	0.8	19
1608	An association of the MCP-1 and CCR2 single nucleotide polymorphisms with colorectal cancer prevalence. Polski Przeglad Chirurgiczny, 2017, 89, 1-5.	0.2	9
1609	Cancer systems immunology. ELife, 2020, 9, .	2.8	14
1610	Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. ELife, 2020, 9, .	2.8	34
1611	Representing Tumor-Associated Macrophages as the Angiogenesis and Tumor Microenvironment Regulator. Modern Medical Laboratory Journal, 2021, 4, 52-67.	0.2	0
1612	Explanation of Metastasis by Homeostatic Inflammation. , 2021, , 425-463.		0
1613	Premetastatic Microenvironment. , 2021, , 365-400.		0
1614	Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review. Translational Lung Cancer Research, 2021, 10, 4012-4026.	1.3	8
1615	The Tumour Microenvironment and Circulating Tumour Cells: A Partnership Driving Metastasis and Glycan-Based Opportunities for Cancer Control. Advances in Experimental Medicine and Biology, 2021, 1329, 1-33.	0.8	2
1616	Tumormicroenvironment. Springer Reference Medizin, 2021, , 1-7.	0.0	0
1617	Microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment. Cell, 2021, 184, 5338-5356.e21.	13.5	229
1618	Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics, 2021, 13, 1670.	2.0	28
1619	Targeting Tumor-Associated Macrophages in Cancer Immunotherapy. Cancers, 2021, 13, 5318.	1.7	26
1620	Crosstalk between Cancer Cells and Fibroblasts for the Production of Monocyte Chemoattractant Protein-1 in the Murine 4T1 Breast Cancer. Current Issues in Molecular Biology, 2021, 43, 1726-1740.	1.0	2
1621	Identification and validation of candidate genes dysregulated in alveolar macrophages of acute respiratory distress syndrome. Peerl, 2021, 9, e12312.	0.9	3
1622	RNAi-Based Approaches for Pancreatic Cancer Therapy. Pharmaceutics, 2021, 13, 1638.	2.0	10

#	Article	IF	CITATIONS
1623	A Survival Prediction Nomogram for Esophageal Squamous Cell Carcinoma Treated with Neoadjuvant Chemoradiotherapy Followed by Surgery. Cancer Management and Research, 2021, Volume 13, 7771-7782.	0.9	9
1624	Triple-negative breast cancer cells rely on kinase-independent functions of CDK8 to evade NK-cell-mediated tumor surveillance. Cell Death and Disease, 2021, 12, 991.	2.7	7
1625	T Cells Promote Metastasis by Regulating Extracellular Matrix Remodeling following Chemotherapy. Cancer Research, 2022, 82, 278-291.	0.4	34
1626	Hypoxia Reduction Sensitizes Refractory Cancers to Immunotherapy. Annual Review of Medicine, 2022, 73, 251-265.	5.0	30
1628	Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nature Cancer, 2021, 2, 1086-1101.	5.7	39
1629	Eicosanoid regulation of debris-stimulated metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	12
1630	Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation(China), 2021, 2, 100174.	5.2	29
1631	Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduction and Targeted Therapy, 2021, 6, 362.	7.1	212
1632	Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Molecular Cancer, 2021, 20, 131.	7.9	702
1633	Prognostic Value of C-Reactive Protein, Glasgow Prognostic Score, and C-Reactive Protein-to-Albumin Ratio in Colorectal Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 637650.	1.8	18
1634	Tumor Inflammatory Microenvironment in EMT and Metastasis. , 0, , .		1
1635	Cell Lineage Commitment and Tumor Microenvironment as Determinants for Tumor-Associated Myelomonocytic Cells Plasticity. , 0, , .		0
1636	Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and Miscellaneous Small Molecules., 2013,, 399-424.		0
1637	Macrophage Differentiation and Activation States in the Tumor Microenvironment., 2013,, 405-430.		1
1638	Tumor Immunotherapy by Utilizing a Double-Edged Sword, Chemokines. , 2013, , 97-118.		0
1639	Vascular Modulatory Functions of Macrophages. , 2014, , 131-168.		0
1640	Macrophage in Enthesis: A Likely Contributing Factor to Enthesitis through IL-23 in Ankylosing Spondylitis. Rheumatology (Sunnyvale, Calif), 2014, S4, .	0.3	0
1641	Myelomonocytic Subsets in Tumor Microenvironment. , 2014, , 405-423.		0

#	Article	IF	CITATIONS
1642	Cancer in the Spotlight: Using Intravital Imaging in Cancer Research. , 2014, , 105-123.		0
1643	Macrophages and Tumor Development. , 2014, , 185-212.		0
1644	Tumor-Associated Macrophages. , 2014, , 425-443.		1
1645	Tumor-Associated Macrophages in Tumor Progression: From Bench to Bedside. , 2015, , 99-111.		O
1646	Inflammatory Mechanisms of Infection-Associated Cancer., 2015,, 151-167.		0
1647	Cellular Plasticity, Cancer Stem Cells and Metastasis. , 2015, , 13-66.		0
1648	Explanation of Metastasis by Homeostatic Inflammation. , 2016, , 403-436.		0
1649	Evaluation of Taline-1, MCP-1 and IGF-1 in Prediction the Risk of Developing Hepatocellular Carcinoma in Patients With Liver Cirrhosis. IOSR Journal of Biotechnology and Biochemistry, 2017, 03, 58-65.	0.1	1
1650	The Role of Macrophages Within Microenvironment in a Lung Cancer Development and Progression. , 2017, , 271-285.		0
1652	Tumor-Promoting/Associated Inflammation and the Microenvironment: A State of the Science and New Horizons., 0,, 473-510.		0
1653	Research Progress of Myeloid Derived Suppressor Cells in Recurrence and Metastasis of Colorectal Cancer. Advances in Clinical Medicine, 2018, 08, 902-909.	0.0	0
1654	Tumor-Induced Cholesterol Efflux from Macrophages Drives IL-4 Mediated Reprogramming and Tumor Progression. SSRN Electronic Journal, 0, , .	0.4	1
1656	Tumor associated macrophages: current research and perspectives of clinical use. Uspehi Molekularnoj Onkologii, 2019, 5, 20-28.	0.1	1
1657	SYNTHESIS, CHARACTERIZATION, AND IN VIVO IMMUNOMODULATION OF CCR2 AND VASCULAR ENDOTHELIAL GROWTH FACTOR ANTAGONISTS-LOADED PEGYLATED NANOPARTICLES. Asian Journal of Pharmaceutical and Clinical Research, 2019, 12, 275.	0.3	0
1658	Preoperative lymphocyte-to-monocyte ratio versus platelet-to-lymphocyte ratio as a prognostic predictor for non-small cell lung cancer patients. Journal of Medical Biochemistry, 2019, 39, 160-164.	0.7	2
1660	Chemokines – role in inflammatory and cancer diseases. Postepy Higieny I Medycyny Doswiadczalnej, 2019, 73, 372-386.	0.1	5
1662	Tumor-Associated Macrophages: Are Macrophages Enemy or Friendly?. Journal of Biotechnology and Bioindustry, 2019, 7, 1-4.	0.1	0
1664	Molecular mechanism of gossypol mediating CCL2 and IL‑8 attenuation in triple‑negative breast cancer cells. Molecular Medicine Reports, 2020, 22, 1213-1226.	1.1	5

#	Article	IF	Citations
1665	A high monocyte-to-lymphocyte ratio predicts poor prognosis in patients with radical cystectomy for bladder cancer. Translational Cancer Research, 2020, 9, 5255-5267.	0.4	4
1666	Dynamic Immunotherapy Study in Brain Tumor-Bearing Mice. Neuromethods, 2021, , 221-237.	0.2	1
1667	Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Delivery and Translational Research, 2021, 11, 2344-2370.	3.0	8
1668	LYVE1+ macrophages of murine peritoneal mesothelium promote omentum-independent ovarian tumor growth. Journal of Experimental Medicine, 2021, 218, .	4.2	31
1669	Myeloid cell subsets that express latency-associated peptide promote cancer growth by modulating TÁcells. IScience, 2021, 24, 103347.	1.9	4
1670	Cellular transformers for targeted therapy. Advanced Drug Delivery Reviews, 2021, 179, 114032.	6.6	8
1673	Microarray Analysis for Differentially Expressed Genes Between Stromal and Epithelial Cells in Development and Metastasis of Invasive Breast Cancer. Journal of Computational Biology, 2020, 27, 1631-1643.	0.8	8
1674	Cancer Immunology and Immuno-Oncology (Innate vs. Adaptive Cell Immunity). Digestive Disease Interventions, 2021, 05, 032-049.	0.3	0
1675	Models for Monocytic Cells in the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1224, 87-115.	0.8	8
1676	<i>In vivo</i> CRISPR Screens Identify E3 Ligase <i>Cop1</i> as a Modulator of Macrophage Infiltration and Cancer Immunotherapy Target. SSRN Electronic Journal, 0, , .	0.4	0
1677	Progress of Nanomaterials Regulating Tumor-Associated Macrophages for Tumor Immunotherapy. Material Sciences, 2020, 10, 75-83.	0.0	0
1678	Role of Innate Immunity in Cancers and Antitumor Response. , 2020, , 11-28.		0
1679	Metastasis: A Major Driver of Cancer Pathogenesis. , 2020, , 185-211.		0
1680	Immune Targets in Colorectal Cancer. Diagnostics and Therapeutic Advances in Gl Malignancies, 2020, , 205-230.	0.2	0
1681	Immune Modulation of Metastatic Niche Formation in the Bone. Frontiers in Immunology, 2021, 12, 765994.	2.2	9
1682	Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Frontiers in Endocrinology, 2021, 12, 763846.	1.5	11
1683	CCL2/ACKR2 interaction participate in breast cancer metastasis especially in patients with altered lipid metabolism. Medical Hypotheses, 2022, 158, 110734.	0.8	6
1684	Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Science Advances, 2021, 7, eabg9518.	4.7	32

#	Article	IF	CITATIONS
1685	Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds?. Frontiers in Immunology, 2021, 12, 771210.	2.2	75
1686	Macrophages in tumor: An inflammatory perspective. Clinical Immunology, 2021, 232, 108875.	1.4	32
1688	Implications of telomerase reverse transcriptase in tumor metastasis. BMB Reports, 2020, 53, 458-465.	1.1	7
1691	Regulation of cancer stem cell activities by tumor-associated macrophages. American Journal of Cancer Research, 2012, 2, 529-39.	1.4	24
1692	Extralymphocytic flexible immune recognition: a new angle on inflammation and aging., 2012, 3, 404-13.		9
1693	Obesity-driven inflammation and cancer risk: role of myeloid derived suppressor cells and alternately activated macrophages. American Journal of Cancer Research, 2013, 3, 21-33.	1.4	33
1695	Diallyl disulfide inhibits TNFα-induced CCL2 release by MDA-MB-231 cells. Anticancer Research, 2014, 34, 2763-70.	0.5	16
1696	Metastasis as a therapeutic target in prostate cancer: a conceptual framework. American Journal of Clinical and Experimental Urology, 2014, 2, 45-56.	0.4	4
1697	Effect of Withania somnifera root extract on spontaneous estrogen receptor-negative mammary cancer in MMTV/Neu mice. Anticancer Research, 2014, 34, 6327-32.	0.5	19
1698	Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer. American Journal of Translational Research (discontinued), 2015, 7, 1699-711.	0.0	29
1700	Microarray expression profiling identifies genes, including cytokines, and biofunctions, as diapedesis, associated with a brain metastasis from a papillary thyroid carcinoma. American Journal of Cancer Research, 2016, 6, 2140-2161.	1.4	10
1702	Fluid shear stress and tumor metastasis. American Journal of Cancer Research, 2018, 8, 763-777.	1.4	58
1703	Biomaterials to model and measure epithelial cancers. Nature Reviews Materials, 2018, 3, 418-430.	23.3	12
1704	NUP58 facilitates metastasis and epithelial-mesenchymal transition of lung adenocarcinoma via the GSK-3Î ² /Snail signaling pathway. American Journal of Translational Research (discontinued), 2019, 11, 393-405.	0.0	4
1705	Tumor cells induced-M2 macrophage favors accumulation of Treg in nasopharyngeal carcinoma. International Journal of Clinical and Experimental Pathology, 2017, 10, 8389-8401.	0.5	10
1706	Serine/threonine-protein kinase 24 is an inhibitor of gastric cancer metastasis through suppressing gene and enhancing stemness. American Journal of Cancer Research, 2021, 11, 4277-4293.	1.4	3
1707	Nanomaterials targeting tumor associated macrophages for cancer immunotherapy. Journal of Controlled Release, 2022, 341, 272-284.	4.8	41
1708	Systemically administered silica nanoparticles result in diminished T cell response in lung. Nano Today, 2022, 42, 101332.	6.2	6

#	Article	IF	CITATIONS
1709	Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors. Frontiers in Immunology, 2021, 12, 783305.	2.2	73
1710	The microenvironment of brain metastases from solid tumors. Neuro-Oncology Advances, 2021, 3, v121-v132.	0.4	14
1711	Role of Tumor-Associated Neutrophils in the Molecular Carcinogenesis of the Lung. Cancers, 2021, 13, 5972.	1.7	11
1712	Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. Journal of Bone and Mineral Research, 2020, 37, 531-546.	3.1	16
1713	Evaluation of Hedgehog Pathway Inhibition on Nevoid Basal Cell Carcinoma Syndrome Fibroblasts and Basal Cell Carcinoma-Associated Fibroblasts: Are Vismodegib and Sonidegib Useful to Target Cancer-Prone Fibroblasts?. Cancers, 2021, 13, 5858.	1.7	3
1714	The Role of the Innate Immune System in Cancer Dormancy and Relapse. Cancers, 2021, 13, 5621.	1.7	15
1715	The role of the immunoescape in colorectal cancer liver metastasis. PLoS ONE, 2021, 16, e0259940.	1.1	5
1716	Modulation of the immune response by heterogeneous monocytes and dendritic cells in lung cancer. World Journal of Clinical Oncology, 2021, 12, 966-982.	0.9	12
1717	High endogenous CCL2 expression promotes the aggressive phenotype of human inflammatory breast cancer. Nature Communications, 2021, 12, 6889.	5.8	25
1718	Molecular Characterization of Peritoneal Involvement in Primary Colon and Ovary Neoplasm: The Possible Clinical Meaning of the P2X7 Receptor-Inflammasome Complex. European Surgical Research, 2022, 63, 114-122.	0.6	5
1719	Autophagy: A promising target for triple negative breast cancers. Pharmacological Research, 2022, 175, 106006.	3.1	20
1720	TGF \hat{I}^2 Signaling in Myeloid Cells Promotes Lung and Liver Metastasis Through Different Mechanisms. Frontiers in Oncology, 2021, 11, 765151.	1.3	2
1721	MCP‴1 targeting: Shutting off an engine for tumor development (Review). Oncology Letters, 2021, 23, 26.	0.8	14
1722	Matrix metalloproteinase 11 (MMP11) in macrophages promotes the migration of HER2-positive breast cancer cells and monocyte recruitment through CCL2–CCR2 signaling. Laboratory Investigation, 2022, 102, 376-390.	1.7	24
1723	Novel Pathways for Targeting Tumor Angiogenesis in Metastatic Breast Cancer. Frontiers in Oncology, 2021, 11, 772305.	1.3	18
1724	Transcriptional Networks Identify BRPF1 as a Potential Drug Target Based on Inflammatory Signature in Primary Lower-Grade Gliomas. Frontiers in Oncology, 2021, 11, 766656.	1.3	7
1725	Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. IScience, 2022, 25, 103555.	1.9	13
1726	External stimuli-responsive nanomedicine for cancer immunotherapy., 2021, , .		0

#	Article	IF	CITATIONS
1727	Targeting circulating monocytes with CCL2-loaded liposomes armed with an oncolytic adenovirus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102506.	1.7	11
1728	The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomedicine and Pharmacotherapy, 2022, 146, 112588.	2.5	14
1729	A nomogram combining inflammatory markers and clinical factors predicts survival in patients with diffuse glioma. Medicine (United States), 2021, 100, e27972.	0.4	3
1730	Polypharmacologic Reprogramming of Tumor-Associated Macrophages toward an Inflammatory Phenotype. Cancer Research, 2022, 82, 433-446.	0.4	6
1731	BGN May be a Potential Prognostic Biomarker and Associated With Immune Cell Enrichment of Gastric Cancer. Frontiers in Genetics, 2022, 13, 765569.	1.1	9
1732	Targeting CCR2+ macrophages with BET inhibitor overcomes adaptive resistance to anti-VEGF therapy in ovarian cancer. Journal of Cancer Research and Clinical Oncology, 2022, 148, 803.	1.2	5
1733	Mouse Modeling Dissecting Macrophage–Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. Advanced Science, 2022, 9, e2105696.	5.6	14
1734	Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers, 2022, 14, 510.	1.7	7
1735	Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment. Frontiers in Immunology, 2021, 12, 832942.	2.2	18
1738	CXCR2 Mediates Distinct Neutrophil Behavior in Brain Metastatic Breast Tumor. Cancers, 2022, 14, 515.	1.7	12
1739	IL- $1\hat{l}^2$ Impacts Vascular Integrity and Lymphatic Function in the Embryonic Omentum. Circulation Research, 2022, 130, 366-383.	2.0	3
1740	Repolarization of Unbalanced Macrophages: Unmet Medical Need in Chronic Inflammation and Cancer. International Journal of Molecular Sciences, 2022, 23, 1496.	1.8	16
1741	Advances in Antitumor Strategies Targeting Tumor-Associated Macrophages. World Journal of Cancer Research, 2022, 12, 23-32.	0.1	1
1742	Macrophage IL- $1\hat{l}^2$ promotes arteriogenesis by autocrine STAT3- and NF- \hat{l}^2 B-mediated transcription of pro-angiogenic VEGF-A. Cell Reports, 2022, 38, 110309.	2.9	33
1743	Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nature Communications, 2022, 13, 626.	5.8	58
1744	Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. , 2022, 235, 108114.		13
1745	CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Science Translational Medicine, 2022, 14, eabf5473.	5.8	51
1746	Nano-trapping CXCL13 reduces regulatory B cells in tumor microenvironment and inhibits tumor growth. Journal of Controlled Release, 2022, 343, 303-313.	4.8	11

#	Article	IF	CITATIONS
1747	Immune modulating nanoparticles depleting tumor-associated macrophages to enhance immune checkpoint blockade therapy. Chemical Engineering Journal, 2022, 435, 134779.	6.6	9
1748	Immunotherapy resistance of lung cancer. Cancer Drug Resistance (Alhambra, Calif), 2022, 5, 114-128.	0.9	0
1749	Leveraging macrophages for cancer theranostics. Advanced Drug Delivery Reviews, 2022, 183, 114136.	6.6	21
1750	Recovery of Dysregulated Genes in Cancer-Related Lower Limb Lymphedema After Supermicrosurgical Lymphaticovenous Anastomosis – A Prospective Longitudinal Cohort Study. Journal of Inflammation Research, 2022, Volume 15, 761-773.	1.6	1
1752	Targeting macrophages for enhancing CD47 blockade–elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood, 2022, 139, 3290-3302.	0.6	20
1753	The induction of peripheral trained immunity in the pancreas incites anti-tumor activity to control pancreatic cancer progression. Nature Communications, 2022, 13, 759.	5 . 8	30
1754	Chemokines network in bone metastasis: Vital regulators of seeding and soiling. Seminars in Cancer Biology, 2022, 86, 457-472.	4.3	10
1755	Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell International, 2022, 22, 71.	1.8	29
1756	The Chemokine System in Oncogenic Pathways Driven by Viruses: Perspectives for Cancer Immunotherapy. Cancers, 2022, 14, 848.	1.7	4
1757	Systemic Influences of Mammary Cancer on Monocytes in Mice. Cancers, 2022, 14, 833.	1.7	5
1758	Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Experimental Hematology and Oncology, 2021, 10, 60.	2.0	53
1759	Challenges for assessing replicability in preclinical cancer biology. ELife, 2021, 10, .	2.8	136
1760	Implications of telomerase reverse transcriptase in tumor metastasis. BMB Reports, 2020, 53, 458-465.	1.1	4
1761	Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells. BMB Reports, 2021, , .	1.1	0
1762	Circulating Tumor Cells: Does Ion Transport Contribute to Intravascular Survival, Adhesion, Extravasation, and Metastatic Organotropism?. Reviews of Physiology, Biochemistry and Pharmacology, 2021, , 1.	0.9	2
1764	Heterogeneity and function of macrophages in the breast during homeostasis and cancer. International Review of Cell and Molecular Biology, 2022, 367, 149-182.	1.6	2
1765	Macrophage-Associated Disorders: Pathophysiology, Treatment Challenges, and Possible Solutions., 2022, , 65-99.		2
1766	Effects of 8-week noncontinuous aerobic exercise on the levels of CCL2, CCL5, and their respective receptors in female BALB/C mice suffering from breast cancer. International Journal of Preventive Medicine, 2022, 13, 55.	0.2	1

#	Article	IF	CITATIONS
1768	Role of macrophages in tumor development. , 2022, , 113-164.		0
1770	Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers, 2022, 14, 978.	1.7	12
1771	TAMpepK Suppresses Metastasis through the Elimination of M2-Like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 2157.	1.8	5
1772	Holistic Characterization of Tumor Monocyte-to-Macrophage Differentiation Integrates Distinct Immune Phenotypes in Kidney Cancer. Cancer Immunology Research, 2022, 10, 403-419.	1.6	22
1773	Coordinated Regulation of Myeloid-Derived Suppressor Cells by Cytokines and Chemokines. Cancers, 2022, 14, 1236.	1.7	11
1774	Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. Journal of Hematology and Oncology, 2022, 15, 17.	6.9	46
1775	Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells. BMB Reports, 2022, 55, 81-86.	1.1	6
1776	Endothelial Cells Potentially Participate in the Metastasis of Triple-Negative Breast Cancer. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	4
1777	Effect of Early-Stage Human Breast Carcinoma on Monocyte Programming. Frontiers in Oncology, 2021, 11, 800235.	1.3	17
1778	Cytokine and Chemokine Receptor Patterns of Human Malignant Melanoma Cell Lines. International Journal of Molecular Sciences, 2022, 23, 2644.	1.8	3
1779	CMTM Family Genes Affect Prognosis and Modulate Immunocytes Infiltration in Grade II/III Glioma Patients by Influencing the Tumor Immune Landscape and Activating Associated Immunosuppressing Pathways. Frontiers in Cell and Developmental Biology, 2022, 10, 740822.	1.8	3
1780	Harnessing antiâ€tumor and tumorâ€tropism functions of macrophages via nanotechnology for tumor immunotherapy. Exploration, 2022, 2, .	5.4	64
1781	Comprehensive Assessment of Selected Immune Cell Subpopulations Changes in Chemotherapy-NaÃ-ve Germ Cell Tumor Patients. Frontiers in Oncology, 2022, 12, 858797.	1.3	4
1782	Key Players of the Immunosuppressive Tumor Microenvironment and Emerging Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 2022, 10, 830208.	1.8	13
1783	An In Vivo Inflammatory Loop Potentiates KRAS Blockade. Biomedicines, 2022, 10, 592.	1.4	4
1784	Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nature Immunology, 2022, 23, 568-580.	7.0	18
1785	Host liver-derived extracellular vesicles deliver miR-142a-3p induces neutrophil extracellular traps via targeting WASL to block the development of Schistosoma japonicum. Molecular Therapy, 2022, 30, 2092-2107.	3.7	14
1786	Integration of chemokine signaling with non-coding RNAs in tumor microenvironment and heterogeneity in different cancers. Seminars in Cancer Biology, 2022, 86, 720-736.	4.3	14

#	Article	IF	CITATIONS
1787	Upregulation of MTA1 in Colon Cancer Drives A CD8+ T Cell-Rich But Classical Macrophage-Lacking Immunosuppressive Tumor Microenvironment. Frontiers in Oncology, 2022, 12, 825783.	1.3	4
1788	Clinical significance of FBXW7 loss of function in human cancers. Molecular Cancer, 2022, 21, 87.	7.9	47
1789	Pyroptosis-Related IncRNAs for Predicting the Prognosis and Identifying Immune Microenvironment Infiltration in Breast Cancer Lung Metastasis. Frontiers in Cell and Developmental Biology, 2022, 10, 821727.	1.8	1
1790	Tissue-resident FOLR2+ macrophages associate with CD8+ TÂcell infiltration in human breast cancer. Cell, 2022, 185, 1189-1207.e25.	13.5	166
1791	QPCTL regulates macrophage and monocyte abundance and inflammatory signatures in the tumor microenvironment. Oncolmmunology, 2022, 11, 2049486.	2.1	9
1792	Clinical relevance of tumour-associated macrophages. Nature Reviews Clinical Oncology, 2022, 19, 402-421.	12.5	250
1794	Identification of N6-Methyladenosine-Related IncRNAs as a Prognostic Signature in Glioma. Frontiers in Oncology, 2022, 12, 789283.	1.3	8
1795	Tumor-Mediated Neutrophil Polarization and Therapeutic Implications. International Journal of Molecular Sciences, 2022, 23, 3218.	1.8	20
1796	The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules, 2022, 27, 2041.	1.7	7
1797	Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Research, 2022, 15, 5295-5304.	5.8	11
1798	Hotspots and Frontiers in Inflammatory Tumor Microenvironment Research: A Scientometric and Visualization Analysis. Frontiers in Pharmacology, 2022, 13, 862585.	1.6	7
1799	Ferroptosis-related gene SLC1A5 is a novel prognostic biomarker and correlates with immune infiltrates in stomach adenocarcinoma. Cancer Cell International, 2022, 22, 124.	1.8	13
1801	Carbonic anhydrase XII mediates the survival and prometastatic functions of macrophages in human hepatocellular carcinoma. Journal of Clinical Investigation, 2022, 132, .	3.9	30
1802	Identification and Validation of Immune Cells and Hub Genes in Gastric Cancer Microenvironment. Disease Markers, 2022, 2022, 1-18.	0.6	5
1803	Specific targeting of cancer stem cells by immunotherapy: A possible stratagem to restrain cancer recurrence and metastasis. Biochemical Pharmacology, 2022, 198, 114955.	2.0	12
1804	Inflammation targeted nanomedicines: Patents and applications in cancer therapy. Seminars in Cancer Biology, 2022, 86, 645-663.	4.3	4
1805	Poloâ€like kinase 4 inhibitor CFIâ€400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity. Hepatology, 2023, 77, 729-744.	3.6	16
1806	CXCL10 conditions alveolar macrophages within the premetastatic niche to promote metastasis. Cancer Letters, 2022, 537, 215667.	3.2	16

#	Article	IF	CITATIONS
1807	Role of macrophages in tumor progression and therapy (Review). International Journal of Oncology, 2022, 60, .	1.4	24
1808	CCR4+ monocytic myeloid-derived suppressor cells are associated with the increased epithelial-mesenchymal transition in pancreatic adenocarcinoma patients. Immunobiology, 2022, 227, 152210.	0.8	6
1809	Immune cell mediated cabozantinib resistance for patients with renal cell carcinoma. Integrative Biology (United Kingdom), 2021, 13, 259-268.	0.6	4
1810	Identification of prognostic and therapeutic value of CC chemokines in Urothelial bladder cancer: evidence from comprehensive bioinformatic analysis. BMC Urology, 2021, 21, 173.	0.6	9
1811	Modeling human yolk sac hematopoiesis with pluripotent stem cells. Journal of Experimental Medicine, 2022, 219, .	4.2	25
1812	The dual role of neutrophils in cancer. Seminars in Immunology, 2021, 57, 101582.	2.7	26
1813	Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. Medical Review, 2021, 1, 222-243.	0.3	4
1815	Multifaceted Roles of Chemokines and Chemokine Receptors in Tumor Immunity. Cancers, 2021, 13, 6132.	1.7	29
1816	Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers, 2021, 13, 6231.	1.7	13
1818	Myeloid Immune Cells CARrying a New Weapon Against Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 784421.	1.8	4
1819	Targeted Therapy Modulates the Secretome of Cancer-Associated Fibroblasts to Induce Resistance in HER2-Positive Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 13297.	1.8	8
1820	Core Needle Biopsy Enhances the Activity of the CCL2/CCR2 Pathway in the Microenvironment of Invasive Breast Cancer. Onco, 2022, 2, 1-18.	0.2	1
1821	Chemokines in the Landscape of Cancer Immunotherapy: How They and Their Receptors Can Be Used to Turn Cold Tumors into Hot Ones?. Cancers, 2021, 13, 6317.	1.7	17
1822	Nuclear pore protein NUP210 depletion suppresses metastasis through heterochromatin-mediated disruption of tumor cell mechanical response. Nature Communications, 2021, 12, 7216.	5.8	19
1823	The role of cancer stromal fibroblasts in mediating the effects of tobacco-induced cancer cell growth. Cancer Cell International, 2021, 21, 707.	1.8	2
1824	Cell migration. , 2022, , 67-82.		0
1825	Breast cancer microenvironment and obesity: challenges for therapy. Cancer and Metastasis Reviews, 2022, 41, 627-647.	2.7	13
1826	Extracellular vesicles from triple negative breast cancer promote pro-inflammatory macrophages associated with better clinical outcome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2107394119.	3.3	39

#	Article	IF	CITATIONS
1827	A phase 1b study of <scp>OXIRI</scp> in pancreatic adenocarcinoma patients and its immunomodulatory effects. International Journal of Cancer, 2022, , .	2.3	0
1828	Preoperative combination score of neutrophils, monocytes, and lymphocytes as a predictor for locally advanced rectal cancer. International Journal of Colorectal Disease, 2022, 37, 1097.	1.0	0
1829	Macrophage-Secreted S100A4 Supports Breast Cancer Metastasis by Remodeling the Extracellular Matrix in the Premetastatic Niche. BioMed Research International, 2022, 2022, 1-14.	0.9	3
1830	Vitamin D Reduces Thyroid Cancer Cells Migration Independently From the Modulation of CCL2 and CXCL8 Chemokines Secretion. Frontiers in Endocrinology, 2022, 13, 876397.	1.5	4
1831	CCR2/CCR5 inhibitor permits the radiation-induced effector T cell infiltration in pancreatic adenocarcinoma. Journal of Experimental Medicine, 2022, 219, .	4.2	22
1832	A common framework of monocyte-derived macrophage activation. Science Immunology, 2022, 7, eabl7482.	5 . 6	58
1833	Erythro-myeloid progenitor origin of Hofbauer cells in the early mouse placenta. Development (Cambridge), 2022, 149, .	1,2	7
1834	CXCL13 as a Novel Immune Checkpoint for Regulatory B Cells and Its Role in Tumor Metastasis. Journal of Immunology, 2022, 208, 2425-2435.	0.4	9
1877	Molecular mechanisms linking stress and insulin resistance EXCLI Journal, 2022, 21, 317-334.	0.5	1
1878	Anti-tumor necrosis factor alpha reduces the proangiogenic effects of activated macrophages derived from patients with age-related macular degeneration Molecular Vision, 2021, 27, 622-631.	1.1	1
1879	Targeting tumor-associated macrophages for cancer immunotherapy. International Review of Cell and Molecular Biology, 2022, , 61-108.	1.6	13
1880	Nanostructured particles assembled from natural building blocks for advanced therapies. Chemical Society Reviews, 2022, 51, 4287-4336.	18.7	64
1881	Role of immune system in TNBC. , 2022, , 121-148.		8
1882	Paclitaxel Combined with Ticagrelor Inhibits B16F10 and Lewis Lung Carcinoma Cell Metastasis. Oncologie, 2022, 24, 283-294.	0.2	0
1883	Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Frontiers in Immunology, 2022, 13, .	2.2	4
1884	Transcriptional profiling of macrophages in situ in metastatic melanoma reveals localization-dependent phenotypes and function. Cell Reports Medicine, 2022, 3, 100621.	3.3	15
1885	Utilizing chemokines in cancer immunotherapy. Trends in Cancer, 2022, 8, 670-682.	3.8	50
1886	Feedâ€forward loops between metastatic cancer cells and their microenvironmentâ€"the stage of escalation. EMBO Molecular Medicine, 2022, 14, e14283.	3.3	27

#	Article	IF	Citations
1887	ST2825, a Small Molecule Inhibitor of MyD88, Suppresses NF-κB Activation and the ROS/NLRP3/Cleaved Caspase-1 Signaling Pathway to Attenuate Lipopolysaccharide-Stimulated Neuroinflammation. Molecules, 2022, 27, 2990.	1.7	6
1889	Neutrophils and polymorphonuclear myeloid-derived suppressor cells: an emerging battleground in cancer therapy. Oncogenesis, 2022, 11, 22.	2.1	16
1890	Cancer Stem Cells (CSCs), Circulating Tumor Cells (CTCs) and Their Interplay with Cancer Associated Fibroblasts (CAFs): A New World of Targets and Treatments. Cancers, 2022, 14, 2408.	1.7	15
1891	Loss of CD11b Accelerates Lupus Nephritis in Lyn-Deficient Mice Without Disrupting Glomerular Leukocyte Trafficking. Frontiers in Immunology, 2022, 13, .	2.2	2
1892	Deconvolution of malignant pleural effusions immune landscape unravels a novel macrophage signature associated with worse clinical outcome in lung adenocarcinoma patients. , 2022, 10 , e004239.		6
1893	Enabling CAR-T cells for solid tumors: Rage against the suppressive tumor microenvironment. International Review of Cell and Molecular Biology, 2022, , 123-147.	1.6	8
1894	Role of Biological Mediators of Tumor-Associated Macrophages in Breast Cancer Progression. Current Medicinal Chemistry, 2022, 29, 5420-5440.	1.2	6
1895	Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Frontiers in Oncology, 2022, 12, .	1.3	11
1896	Occurrences and Functions of Ly6Chi and Ly6Clo Macrophages in Health and Disease. Frontiers in Immunology, $0,13,.$	2.2	15
1897	Role of anti-angiogenic factors in the pathogenesis of breast cancer: A review of therapeutic potential. Pathology Research and Practice, 2022, 236, 153956.	1.0	7
1898	A Novel IncRNA Panel for Risk Stratification and Immune Landscape in Breast Cancer Patients. International Journal of General Medicine, 0, Volume 15, 5253-5272.	0.8	0
1899	Stress Keratin 17 Expression in Head and Neck Cancer Contributes to Immune Evasion and Resistance to Immune-Checkpoint Blockade. Clinical Cancer Research, 2022, 28, 2953-2968.	3.2	12
1900	Platinum nanoparticles promote breast cancer cell metastasis by disrupting endothelial barrier and inducing intravasation and extravasation. Nano Research, 2022, 15, 7366-7377.	5.8	7
1901	Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer. Frontiers in Oncology, 0, 12, .	1.3	3
1902	Prognostic value of systemic inflammatory response markers in cervical cancer. Journal of Obstetrics and Gynaecology, 2022, 42, 2411-2419.	0.4	2
1903	Identification and Validation of the Diagnostic Characteristic Genes of Ovarian Cancer by Bioinformatics and Machine Learning. Frontiers in Genetics, $0,13,.$	1.1	4
1904	Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 6271.	1.8	9
1906	Microenvironmental regulation of tumor initiation and development. Scientia Sinica Vitae, 2022, 52, 1377-1390.	0.1	1

#	ARTICLE	IF	CITATIONS
1907	Macrophage Fate Mapping. Current Protocols, 2022, 2, .	1.3	4
1909	Macrophage-Specific Connexin 43 Knockout Protects Mice from Obesity-Induced Inflammation and Metabolic Dysfunction. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	2
1910	Tumor-Derived C-C Motif Ligand 2 Induces the Recruitment and Polarization of Tumor-Associated Macrophages and Increases the Metastatic Potential of Bladder Cancer Cells in the Postirradiated Microenvironment. International Journal of Radiation Oncology Biology Physics, 2022, 114, 321-333.	0.4	12
1911	Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules, 2022, 12, 850.	1.8	17
1912	Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. International Journal of Molecular Sciences, 2022, 23, 6806.	1.8	74
1913	Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines, 2022, 10, 1493.	1.4	14
1914	Tumor-associated macrophages promote epithelial $\hat{a} \in \text{``mesenchymal transition'}$ and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/ \hat{l}^2 -catenin signaling. Cell Communication and Signaling, 2022, 20, .	2.7	32
1915	Macrophage diversity in cancer revisited in the era of single-cell omics. Trends in Immunology, 2022, 43, 546-563.	2.9	154
1916	The overall process of metastasis: From initiation to a new tumor. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188750.	3.3	8
1917	Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Letters, 2022, 543, 215766.	3.2	26
1918	Development of an Anti-human CCR2 Monoclonal Antibody (C ₂ Mab-9) by N-Terminal Peptide Immunization. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2022, 41, 188-193.	0.8	6
1919	LYVE-1 ⁺ Macrophages Form a Collaborative CCR5-Dependent Perivascular Niche That Influences Chemotherapy Responses in Cancer. SSRN Electronic Journal, 0, , .	0.4	0
1922	The Role of Platelets in the Tumor Microenvironment. , 2022, , 267-281.		0
1923	Human IL-17 and TNF- $\hat{l}\pm$ Additively or Synergistically Regulate the Expression of Proinflammatory Genes, Coagulation-Related Genes, and Tight Junction Genes in Porcine Aortic Endothelial Cells. Frontiers in Immunology, 0, 13, .	2.2	1
1924	The Prognostic and Clinical Value of Tumor-Associated Macrophages in Patients With Breast Cancer: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 0, 12, .	1.3	7
1925	CD40×HER2 bispecific antibody overcomes the CCL2-induced trastuzumab resistance in HER2-positive gastric cancer., 2022, 10, e005063.		4
1926	Ionizing Radiation-Induced Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment. International Journal of Radiation Oncology Biology Physics, 2022, 114, 502-515.	0.4	8
1927	Neutrophils Promote Glioblastoma Tumor Cell Migration after Biopsy. Cells, 2022, 11, 2196.	1.8	6

#	Article	IF	CITATIONS
1928	The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sciences, 2022, 12, 893.	1.1	3
1929	CC chemokine receptor 2 (CCR2) expression promotes diffuse large B-Cell lymphoma survival and invasion. Laboratory Investigation, 0, , .	1.7	4
1930	Cold Plasma Irradiation Attenuates Atopic Dermatitis via Enhancing HIF- $1\hat{l}\pm$ -Induced MANF Transcription Expression. Frontiers in Immunology, 0, 13, .	2.2	2
1931	Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Frontiers in Immunology, 0, 13 , .	2.2	3
1932	Total glucosides of paeony inhibit breast cancer growth by inhibiting TAMs infiltration through NF-κB/CCL2 signaling. Phytomedicine, 2022, 104, 154307.	2.3	10
1933	Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis. Bioactive Materials, 2023, 20, 449-462.	8.6	29
1934	Cell–Cell Interactions Drive Metastasis of Circulating Tumor Microemboli. Cancer Research, 2022, 82, 2661-2671.	0.4	11
1935	Tumor cell–released <scp>LC3</scp> â€positive <scp>EVs</scp> promote lung metastasis of breast cancer through enhancing premetastatic niche formation. Cancer Science, 2022, 113, 3405-3416.	1.7	9
1936	Role of Nitric Oxide in Breast Cancer. , 2022, , 109-128.		0
1937	The cellular and molecular mediators of metastasis to the lung. Growth Factors, 2022, 40, 119-152.	0.5	5
1938	The complex role of tumor-infiltrating macrophages. Nature Immunology, 2022, 23, 1148-1156.	7.0	194
1939	Tumor-associated microglia and macrophages in glioblastoma: From basic insights to the rapeutic opportunities. Frontiers in Immunology, 0, 13 , .	2.2	31
1940	The origins of resident macrophages in mammary gland influence the tumorigenesis of breast cancer. International Immunopharmacology, 2022, 110, 109047.	1.7	8
1941	CC chemokine receptor 7 promotes macrophage recruitment and induces M2-polarization through CC chemokine ligand 19&21 in oral squamous cell carcinoma. Discover Oncology, 2022, 13, .	0.8	7
1942	Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 8329.	1.8	8
1943	Gata6+ resident peritoneal macrophages promote the growth of liver metastasis. Nature Communications, 2022, 13, .	5.8	8
1944	Dynamic changes in peripheral blood monocytes early after anti-PD-1 therapy predict clinical outcomes in hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2023, 72, 371-384.	2.0	7
1945	Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Frontiers in Oncology, 0, 12 , .	1.3	10

#	Article	IF	CITATIONS
1946	Cancer-associated fibroblasts: Vital suppressors of the immune response in the tumor microenvironment. Cytokine and Growth Factor Reviews, 2022, 67, 35-48.	3.2	28
1947	Donor Macrophages Modulate Rejection After Heart Transplantation. Circulation, 2022, 146, 623-638.	1.6	17
1948	Synergistic effects of radiotherapy and targeted immunotherapy in improving tumor treatment efficacy: a review. Clinical and Translational Oncology, 2022, 24, 2255-2271.	1.2	6
1949	Tumor-polarized GPX3 ⁺ AT2 lung epithelial cells promote premetastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
1950	Andrographolide suppresses breast cancer progression by modulating tumorâ€associated macrophage polarization through the Wnt/ <i>β</i> βê€catenin pathway. Phytotherapy Research, 2022, 36, 4587-4603.	2.8	7
1951	Metabolic reprogramming and crosstalk of cancer-related fibroblasts and immune cells in the tumor microenvironment. Frontiers in Endocrinology, $0,13,.$	1.5	27
1952	Peritoneal resident macrophages in tumor metastasis and immunotherapy. Frontiers in Cell and Developmental Biology, 0 , 10 , .	1.8	3
1953	Circulating inflammatory cells in patients with metastatic breast cancer: Implications for treatment. Frontiers in Oncology, 0, 12 , .	1.3	12
1954	WD repeat domain 6 as a novelty prognostic biomarker correlates with immune infiltration in lung cancer: A preliminary study. Immunity, Inflammation and Disease, 2022, 10, .	1.3	4
1955	The potential effects and mechanisms of breast inflammatory lesions on the occurrence and development of breast cancer. Frontiers in Oncology, 0, 12 , .	1.3	0
1957	Detection of circulating tumor cells: opportunities and challenges. Biomarker Research, 2022, 10, .	2.8	37
1958	Enzymeâ€Activatable Chemokine Conjugates for In Vivo Targeting of Tumorâ€Associated Macrophages. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1959	Enzymeâ€Activatable Chemokine Conjugates for In Vivo Targeting of Tumorâ€Associated Macrophages. Angewandte Chemie, 0, , .	1.6	2
1960	M2 macrophages with inflammation tropism facilitate cementoblast mineralization. Journal of Periodontology, 2023, 94, 290-300.	1.7	5
1961	AIF1+CSF1R+ MSCs, induced by TNFâ€Î±, act to generate an inflammatory microenvironment and promote hepatocarcinogenesis. Hepatology, 2023, 78, 434-451.	3.6	11
1962	Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity, 2022, 55, 1483-1500.e9.	6.6	61
1963	Construction and validation of a gene signature related to bladder urothelial carcinoma based on immune gene analysis. BMC Cancer, 2022, 22, .	1.1	2
1964	PLXND1/SEMA3E Promotes Epithelial–Mesenchymal Transition Partly via the PI3K/AKT-Signaling Pathway and Induces Heterogenity in Colorectal Cancer. Annals of Surgical Oncology, 0, , .	0.7	4

#	Article	IF	CITATIONS
1965	Macrophage phenotype-switching in cancer. European Journal of Pharmacology, 2022, 931, 175229.	1.7	17
1966	Novel insights into RB1 mutation. Cancer Letters, 2022, 547, 215870.	3.2	13
1968	Interleukin 4 Controls the Pro-Tumoral Role of Macrophages in Mammary Cancer Pulmonary Metastasis in Mice. Cancers, 2022, 14, 4336.	1.7	11
1969	Role of tumor-associated macrophages in the breast tumor microenvironment. , 2022, , 137-169.		6
1970	New opportunities for immunomodulation of the tumour microenvironment using chemical tools. Chemical Society Reviews, 2022, 51, 7944-7970.	18.7	15
1971	Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Frontiers in Pharmacology, 0, 13, .	1.6	7
1972	RNA-seq analysis reveals differentially expressed inflammatory chemokines in a rat retinal degeneration model induced by sodium iodate. Journal of International Medical Research, 2022, 50, 030006052211193.	0.4	2
1973	CC Chemokine Ligand-2: A Promising Target for Overcoming Anticancer Drug Resistance. Cancers, 2022, 14, 4251.	1.7	4
1974	Regulation of CCL2 by EZH2 affects tumor-associated macrophages polarization and infiltration in breast cancer. Cell Death and Disease, 2022, 13, .	2.7	12
1975	Implication of gut microbiome in immunotherapy for colorectal cancer. World Journal of Gastrointestinal Oncology, 2022, 14, 1665-1674.	0.8	2
1976	ZIM3 activation of CCL25 expression in pulmonary metastatic nodules of osteosarcoma recruits M2 macrophages to promote metastatic growth. Cancer Immunology, Immunotherapy, 0, , .	2.0	1
1977	Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Seminars in Immunopathology, 2023, 45, 163-186.	2.8	14
1978	Contribution of immune cells to bone metastasis pathogenesis. Frontiers in Endocrinology, 0, 13, .	1.5	1
1979	The effects of radiation therapy on the macrophage response in cancer. Frontiers in Oncology, 0, 12, .	1.3	12
1980	The impact of macrophages on endothelial cells is potentiated by cycling hypoxia: Enhanced tumor inflammation and metastasis. Frontiers in Oncology, 0 , 12 , .	1.3	2
1981	A novel LUAD prognosis prediction model based on immune checkpoint-related lncRNAs. Frontiers in Genetics, $0,13,\ldots$	1.1	1
1982	LncRNA MRF drives the regulatory function on monocyte recruitment and polarization through HNRNPD-MCP1 axis in mesenchymal stem cells. Journal of Biomedical Science, 2022, 29, .	2.6	3
1983	Mild dyslipidemia accelerates tumorigenesis through expansion of Ly6Chi monocytes and differentiation to pro-angiogenic myeloid cells. Nature Communications, 2022, 13, .	5.8	4

#	Article	IF	CITATIONS
1984	Clinical relevance and therapeutic aspects of professional antigen-presenting cells in lung cancer. , 2022, 39, .		1
1985	miR-aculous new avenues for cancer immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	0
1986	A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs. Frontiers in Oncology, 0, 12 , .	1.3	8
1987	The pleiotropic mode and molecular mechanism of macrophages in promoting tumor progression and metastasis. Clinical and Translational Oncology, 0, , .	1.2	1
1988	The Notch Signaling Pathway Contributes to Angiogenesis and Tumor Immunity in Breast Cancer. Breast Cancer: Targets and Therapy, 0, Volume 14, 291-309.	1.0	4
1989	The pro-tumorigenic responses in metastatic niches: an immunological perspective. Clinical and Translational Oncology, 2023, 25, 333-344.	1.2	3
1990	NOX4 has the potential to be a biomarker associated with colon cancer ferroptosis and immune infiltration based on bioinformatics analysis. Frontiers in Oncology, 0, 12, .	1.3	4
1991	The new progress in cancer immunotherapy. Clinical and Experimental Medicine, 2023, 23, 553-567.	1.9	6
1994	Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis, 0, , .	3.7	2
1996	Origin, productionÂand molecular determinants of macrophages for their therapeutic targeting. Cell Biology International, 2023, 47, 15-29.	1.4	1
1997	Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	9
1998	Evaluation of platelet activation marker expression and its correlation with tumorigenesis and tumor progression in patients with gastric cancer. Journal of Surgical Oncology, 2022, 126, 125-131.	0.8	5
1999	Development and Function of Macrophages. , 2022, , .		0
2000	Transcriptome-based network analysis related to M2-like tumor-associated macrophage infiltration identified VARS1 as a potential target for improving melanoma immunotherapy efficacy. Journal of Translational Medicine, 2022, 20, .	1.8	6
2001	Dissecting the genetic and microenvironmental factors of gastric tumorigenesis in mice. Cell Reports, 2022, 41, 111482.	2.9	2
2002	Engineered nanomaterials trigger abscopal effect in immunotherapy of metastatic cancers. Frontiers in Bioengineering and Biotechnology, $0,10,10$	2.0	3
2003	Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival. Cells, 2022, 11, 3289.	1.8	2
2004	The GBM Tumor Microenvironment as a Modulator of Therapy Response: ADAM8 Causes Tumor Infiltration of Tams through HB-EGF/EGFR-Mediated CCL2 Expression and Overcomes TMZ Chemosensitization in Glioblastoma. Cancers, 2022, 14, 4910.	1.7	5

#	ARTICLE	IF	CITATIONS
2005	Basement-Membrane-Related Gene Signature Predicts Prognosis in WHO Grade II/III Gliomas. Genes, 2022, 13, 1810.	1.0	4
2006	Evolving polarisation of infiltrating and alveolar macrophages in the lung during metastatic progression of melanoma suggests CCR1 as a therapeutic target. Oncogene, 2022, 41, 5032-5045.	2.6	5
2008	Eucommia ulmoides Oliver's Multitarget Mechanism for Treatment of Ankylosing Spondylitis: A Study Based on Network Pharmacology and Molecular Docking. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-16.	0.5	0
2009	Tumor-promoting myeloid cells in the pathogenesis of human oncoviruses: potential targets for immunotherapy. Cancer Cell International, 2022, 22, .	1.8	1
2010	Monocyte programming by cancer therapy. Frontiers in Immunology, 0, 13, .	2.2	22
2012	Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discovery, 2023, 13, 194-215.	7.7	5
2013	Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Frontiers in Endocrinology, 0, 13, .	1.5	4
2014	The Innate Immune Microenvironment in Metastatic Breast Cancer. Journal of Clinical Medicine, 2022, 11, 5986.	1.0	3
2015	Migratory Engineering of T Cells for Cancer Therapy. Vaccines, 2022, 10, 1845.	2.1	8
2016	NK cells and solid tumors: therapeutic potential and persisting obstacles. Molecular Cancer, 2022, 21, .	7.9	42
2017	Celastrol acts as a new histone deacetylase inhibitor to inhibit colorectal cancer cell growth via regulating macrophage polarity. Cell Biology International, 2023, 47, 492-501.	1.4	2
2018	MCP-1 facilitates VEGF production by removing miR-374b-5p blocking of VEGF mRNA translation. Biochemical Pharmacology, 2022, 206, 115334.	2.0	2
2019	Role of chemokines in HPV-induced cancers. Seminars in Cancer Biology, 2022, 87, 170-183.	4.3	6
2020	Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer. Nature Communications, 2022, 13, .	5.8	4
2021	Autophagy in Cancer Metastasis. Pancreatic Islet Biology, 2023, , 259-285.	0.1	0
2023	Role of CC-chemokine ligand 2 in gynecological cancer. Cancer Cell International, 2022, 22, .	1.8	5
2025	Myeloid cell heterogeneity in the tumor microenvironment and therapeutic implications for childhood central nervous system (CNS) tumors. Journal of Neuroimmunology, 2023, 374, 578009.	1.1	0
2026	Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics, 2022, 12, 7821-7852.	4.6	12

#	Article	IF	CITATIONS
2027	Regulation of epithelial-mesenchymal transition by tumor microenvironmental signals and its implication in cancer therapeutics. Seminars in Cancer Biology, 2023, 88, 46-66.	4.3	23
2028	Interplay Between Cancer, Platelets, and Megakaryocytes During Metastasis., 2022,, 1-28.		0
2029	Tumor Microenvironment Complexity: A Pathological Milieu that Innately Modulates Cancer Progression., 2022, , 1-28.		0
2030	Depletion of tumorâ€associated macrophages inhibits lung cancer growth and enhances the antitumor effect of cisplatin. Cancer Science, 2023, 114, 750-763.	1.7	10
2031	Myeloid cell reprogramming alleviates immunosuppression and promotes clearance of metastatic lesions. Frontiers in Oncology, 0, 12, .	1.3	1
2033	O papel dos macrófagos de perfil M2 no processo de metástase tumoral associado à inflamação crônica. Brazilian Journal of Health Review, 2022, 5, 23407-23422.	0.0	O
2034	BG34-200 Immunotherapy of Advanced Melanoma. Cancers, 2022, 14, 5911.	1.7	1
2035	PET/MR imaging of inflammation in atherosclerosis. Nature Biomedical Engineering, 2023, 7, 202-220.	11.6	10
2036	Mechanistic target of rapamycin complex 1 orchestrates the interplay between hepatocytes and Kupffer cells to determine the outcome of immune-mediated hepatitis. Cell Death and Disease, 2022, 13 , .	2.7	1
2037	Tumor-Derived Small Extracellular Vesicles Involved in Breast Cancer Progression and Drug Resistance. International Journal of Molecular Sciences, 2022, 23, 15236.	1.8	2
2038	<scp>DNA</scp> methylation landscape of tumorâ€essociated macrophages reveals pathways, transcription factors and prognostic value relevant to tripleâ€negative breast cancer patients. International Journal of Cancer, 2023, 152, 1226-1242.	2.3	7
2039	The Lymphatic Endothelium in the Context of Radioimmuno-Oncology. Cancers, 2023, 15, 21.	1.7	O
2040	What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors?. Biomedicines, 2022, 10, 3292.	1.4	5
2043	Boolean modeling reveals that cyclic attractors in macrophage polarization serve as reservoirs of states to balance external perturbations from the tumor microenvironment. Frontiers in Immunology, $0,13,\ldots$	2.2	3
2044	Extracellular vesicles derived from macrophages: Current applications and prospects in tumors. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
2046	Nanoparticle accumulation in liver may induce resistance to immune checkpoint blockade therapy. Nano Research, 2023, 16, 5237-5246.	5. 8	2
2047	The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sciences, 2023, 316, 121399.	2.0	2
2048	Adoptive Cell Transfer for Solid Tumors. , 2023, , .		1

#	ARTICLE	IF	CITATIONS
2049	Circulating Monocytes Serve as Novel Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma Patients. Cancers, 2023, 15, 363.	1.7	1
2050	Immune evasion in esophageal squamous cell cancer: From the perspective of tumor microenvironment. Frontiers in Oncology, 0, 12 , .	1.3	6
2052	The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nature Aging, 2023, 3, 64-81.	5.3	13
2053	The Metabolism of Cancer Cells During Metastasis. , 2023, , 1-21.		O
2055	Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction. Cancer Research Communications, 2023, 3, 223-234.	0.7	1
2056	PTBP2-Mediated Alternative Splicing of IRF9 Controls Tumor-Associated Monocyte/Macrophage Chemotaxis and Repolarization in Neuroblastoma Progression. Research, 2023, 6, .	2.8	2
2057	Pro- vs. Anti-Inflammatory Features of Monocyte Subsets in Glioma Patients. International Journal of Molecular Sciences, 2023, 24, 1879.	1.8	3
2058	SARS-CoV-2 Z-RNA activates the ZBP1-RIPK3 pathway to promote virus-induced inflammatory responses. Cell Research, 2023, 33, 201-214.	5.7	22
2059	Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity, 2023, 56, 125-142.e12.	6.6	18
2060	Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. International Review of Cell and Molecular Biology, 2023, , 33-92.	1.6	2
2061	Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers, 2023, 15, 272.	1.7	13
2062	Targeting Notch-Driven Cytokine Secretion: Novel Therapies for Triple Negative Breast Cancer. DNA and Cell Biology, 2023, 42, 73-81.	0.9	2
2063	Nanotherapy: New Approach for Impeding Hepatic Cancer Microenvironment via Targeting Multiple Molecular Pathways. Asian Pacific Journal of Cancer Prevention, 2022, 23, 4261-4274.	0.5	0
2064	Peculiarities of amino acid profile in monocytes in breast cancer. Bulletin of Russian State Medical University, 2022, , .	0.3	0
2065	An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come?. Veterinary Sciences, 2023, 10, 19.	0.6	4
2066	Repurposing Drugs in Small Animal Oncology. Animals, 2023, 13, 139.	1.0	1
2067	Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. International Journal of Molecular Sciences, 2023, 24, 2122.	1.8	2
2068	Adipose tissue macrophages and their role in obesity-associated insulin resistance: an overview of the complex dynamics at play. Bioscience Reports, 2023, 43, .	1.1	13

#	Article	IF	Citations
2069	Homeostatic, Non-Canonical Role of Macrophage Elastase in Vascular Integrity. Circulation Research, 2023, 132, 432-448.	2.0	4
2070	Tumorigenicity of EGFR- and/or HER2-Positive Breast Cancers Is Mediated by Recruitment of Tumor-Associated Macrophages. International Journal of Molecular Sciences, 2023, 24, 1443.	1.8	3
2071	Cullin-5 deficiency orchestrates the tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling. Science Advances, 2023, 9, .	4.7	3
2072	Baseline Cytokine Profile Identifies a Favorable Outcome in a Subgroup of Colorectal Cancer Patients Treated with Regorafenib. Vaccines, 2023, 11, 335.	2.1	1
2073	Mint3 as a Potential Target for Cooling Down HIF- $1\hat{l}$ ±-Mediated Inflammation and Cancer Aggressiveness. Biomedicines, 2023, 11, 549.	1.4	4
2074	Anemoside A3 Inhibits Macrophage M2-Like Polarization to Prevent Triple-Negative Breast Cancer Metastasis. Molecules, 2023, 28, 1611.	1.7	1
2075	Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers, 2023, 15, 1360.	1.7	5
2076	Involvement of protumor macrophages in breast cancer progression and characterization of macrophage phenotypes. Cancer Science, 2023, 114, 2220-2229.	1.7	10
2077	Apelin triggers macrophage polarization to M2 type in head and neck cancer. Immunobiology, 2023, 228, 152353.	0.8	0
2078	Macrophages at the interface of the co-evolving cancer ecosystem. Cell, 2023, 186, 1627-1651.	13.5	49
2079	Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. Advanced Science, 2023, 10, .	5.6	5
2080	Myeloid cells in the era of cancer immunotherapy: Top 3 unanswered questions. , 2023, 244, 108370.		2
2081	The emerging role of PPAR-alpha in breast cancer. Biomedicine and Pharmacotherapy, 2023, 161, 114420.	2.5	7
2082	Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomedicine and Pharmacotherapy, 2023, 161, 114457.	2.5	3
2083	The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomedicine and Pharmacotherapy, 2023, 161, 114504.	2.5	5
2084	Metastasis prevention: How to catch metastatic seeds. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188867.	3.3	4
2085	Cell membrane camouflaged mesoporous bioactive glass nanoparticles embedding glucose oxidase for enhancing targeted anti-tumor catalytic therapy. Applied Materials Today, 2023, 32, 101813.	2.3	1
2087	On the Biology and Therapeutic Modulation of Macrophages and Dendritic Cells in Cancer. Annual Review of Cancer Biology, 2023, 7, 291-311.	2.3	5

#	Article	IF	CITATIONS
2088	Chronic stress in solid tumor development: from mechanisms to interventions. Journal of Biomedical Science, 2023, 30, .	2.6	8
2089	Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. Gene Reports, 2023, 30, 101749.	0.4	0
2090	Environmental signals perceived by the brain abate pro-metastatic monocytes by dampening glucocorticoids receptor signaling. Cancer Cell International, 2023, 23, .	1.8	1
2091	Characterization of the microenvironment in different immune-metabolism subtypes of cervical cancer with prognostic significance. Frontiers in Genetics, $0,14,.$	1.1	3
2092	Crosstalk between autophagy and immune cell infiltration in the tumor microenvironment. Frontiers in Medicine, 0, 10 , .	1.2	1
2093	Disturbance of suprachiasmatic nucleus function improves cardiac repair after myocardial infarction by IGF2-mediated macrophage transition. Acta Pharmacologica Sinica, 2023, 44, 1612-1624.	2.8	2
2094	Locally sourced: site-specific immune barriers to metastasis. Nature Reviews Immunology, 2023, 23, 522-538.	10.6	9
2095	Mesenchymal stem cells elicits Anti-PD1 immunotherapy by targeted delivery of CX3CL1. Frontiers in Pharmacology, 0, 14, .	1.6	1
2096	Targeting tumor-associated macrophages in hepatocellular carcinoma: biology, strategy, and immunotherapy. Cell Death Discovery, 2023, 9, .	2.0	18
2097	Antitumor therapy for breast cancer: Focus on tumorâ€associated macrophages and nanosized drug delivery systems. Cancer Medicine, 2023, 12, 11049-11072.	1.3	3
2099	Spontaneous Osteoclastogenesis, a risk factor for bone metastasis in advanced luminal A-type breast cancer patients. Frontiers in Oncology, 0, 13, .	1.3	0
2100	A timeline of tumour-associated macrophage biology. Nature Reviews Cancer, 2023, 23, 238-257.	12.8	83
2101	Matrix Metalloproteinase-2-Induced Morphologic Transformation of Self-Assembled Peptide Nanocarriers Inhibits Tumor Growth and Metastasis., 2023, 5, 900-908.		11
2102	Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. , 2023, 11, e005968.		17
2103	The predictive value of lymphocyte to monocyte ratio for overall survival in cholangiocarcinoma patients with hepatic resection. Cancer Medicine, 2023, 12, 9482-9495.	1.3	4
2104	LINC00543 promotes colorectal cancer metastasis by driving EMT and inducing the M2 polarization of tumor associated macrophages. Journal of Translational Medicine, 2023, 21, .	1.8	5
2105	Mechanisms Underlying Tumor-Associated Macrophages (TAMs)-Facilitated Metastasis., 2023,, 1-54.		0
2106	Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-derived Organoid-Fibroblast Model. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1391-1419.	2.3	7

#	Article	IF	CITATIONS
2107	Breast Tumor Microenvironment and CDKs. , 2023, , 149-174.		0
2108	Antitumor Therapy Targeting the Tumor Microenvironment. Journal of Oncology, 2023, 2023, 1-16.	0.6	4
2109	Spatial-Drug-Laden Protease-Activatable M1 Macrophage System Targets Lung Metastasis and Potentiates Antitumor Immunity. ACS Nano, 2023, 17, 5354-5372.	7.3	3
2110	Type 2 Dendritic Cells Orchestrate a Local Immune Circuit to Confer Antimetastatic Immunity. Journal of Immunology, 2023, 210, 1146-1155.	0.4	2
2111	Chemokines and Chemokine Receptors in Cancer: An Update. , 2023, , 1-30.		0
2112	Phenotypes and Functions of Human Dendritic Cell Subsets in the Tumor Microenvironment. Methods in Molecular Biology, 2023, , 17-35.	0.4	3
2113	Immune determinants of the pre-metastatic niche. Cancer Cell, 2023, 41, 546-572.	7.7	19
2114	Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nature Communications, 2023, 14, .	5.8	5
2115	Current Challenges and Potential Strategies for Designing a New Generation of Chimeric Antigen Receptor-T cells with High Anti-tumor Activity in Solid Tumors. Current Tissue Microenvironment Reports, 2023, 4, 1-16.	1.3	0
2116	Mesoporous nanodrug delivery system: a powerful tool for a new paradigm of remodeling of the tumor microenvironment. Journal of Nanobiotechnology, 2023, 21, .	4.2	2
2117	Role of Immune Cells in the Tumor Microenvironment. , 2023, , 1-13.		0
2119	Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers, 2023, 15, 1957.	1.7	3
2120	Mechanisms of Organ-Specific Metastasis of Breast Cancer. Cold Spring Harbor Perspectives in Medicine, 2023, 13, a041326.	2.9	4
2121	Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers, 2023, 15, 1987.	1.7	18
2122	Reactive myelopoiesis and FX-expressing macrophages triggered by chemotherapy promote cancer lung metastasis. JCI Insight, 2023, 8, .	2.3	1
2123	The progress of microenvironment-targeted therapies in brain metastases. Frontiers in Molecular Biosciences, $0,10,.$	1.6	1
2124	Development of severe colitis is associated with lung inflammation and pathology. Frontiers in Immunology, 0, 14, .	2.2	4
2125	Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections. Cancers, 2023, 15, 2092.	1.7	2

#	Article	IF	CITATIONS
2126	Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Communications, 2023, 43, 525-561.	3.7	25
2127	Effects of 3â€HAA on HCC by Regulating the Heterogeneous Macrophages—A scRNAâ€Seq Analysis. Advanced Science, 0, , .	5.6	1
2128	Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy. Frontiers in Pharmacology, $0,14,.$	1.6	2
2129	Tumor-derived Cav-1 promotes pre-metastatic niche formation and lung metastasis in breast cancer. Theranostics, 2023, 13, 1684-1697.	4.6	13
2130	Bioengineering and Bioinformatic Approaches to Study Extracellular Matrix Remodeling and Cancer–Macrophage Crosstalk in the Breast Tumor Microenvironment. Current Cancer Research, 2023, , 201-229.	0.2	0
2131	CCL2-Mediated Stromal Interactions Drive Macrophage Polarization to Increase Breast Tumorigenesis. International Journal of Molecular Sciences, 2023, 24, 7385.	1.8	3
2133	A narrative review of diagnostic and therapeutic potential of isolation of circulating tumor cells. Ukrainian Journal of Radiology and Oncology, 2023, 31, 110-123.	0.2	0
2138	The chemokine monocyte chemoattractant protein-1/CCL2 is a promoter of breast cancer metastasis. , 2023, 20, 714-738.		7
2141	Exosome-mediated crosstalk between tumor cells and innate immune cells: implications for cancer progression and therapeutic strategies. Journal of Cancer Research and Clinical Oncology, 2023, 149, 9487-9503.	1.2	4
2144	Cancer and the science of innate immunity. , 2024, , 61-90.e11.		0
2171	Roles of macrophages in tumor development: a spatiotemporal perspective. , 2023, 20, 983-992.		16
2175	Distal Onco-Sphere: Molecular Mechanisms in Metastasis. , 2023, , 307-325.		O
2186	Circulating tumor cells and host immunity: A tricky liaison. International Review of Cell and Molecular Biology, 2023, , 131-157.	1.6	0
2187	Targeting Macrophages for Tumor Therapy. AAPS Journal, 2023, 25, .	2.2	2
2198	Systemic Onco-Sphere: Host Neuronal System in Cancer. , 2023, , 511-534.		0
2199	Pre-Metastatic Niche: Communication Between Local and Distal Onco-Spheres. , 2023, , 249-266.		0
2209	Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis. Molecular Biology Reports, 0 , , .	1.0	0
2215	CCL2–CCR2 Signaling Axis in Cancer. , 2023, , 241-270.		0

#	Article	IF	CITATIONS
2216	Chemokine and Cytokine Networks in Tumor Microenvironment., 2023,, 331-352.		0
2217	Influence of chronic low-grade inflammation on the systemic inflammatory response. , 0, , .		O
2219	Normalization of the tumor microenvironment by harnessing vascular and immune modulation to achieve enhanced cancer therapy. Experimental and Molecular Medicine, 2023, 55, 2308-2319.	3.2	2
2226	Local Onco-Sphere: Tumor–Secretome Interaction. , 2023, , 101-124.		0
2228	How chemokines organize the tumour microenvironment. Nature Reviews Cancer, 2024, 24, 28-50.	12.8	0
2240	Breast cancer remotely imposes a myeloid bias on haematopoietic stem cells by reprogramming the bone marrow niche. Nature Cell Biology, 2023, 25, 1736-1745.	4.6	3
2272	Targeted nanostrategies eliminate pre-metastatic niche of cancer. Nano Research, 0, , .	5.8	O