Catalytic routes for the conversion of biomass into liqui fuels

Energy and Environmental Science 4, 83-99 DOI: 10.1039/c0ee00436g

Citation Report

#	Article	IF	CITATIONS
2	From biomass to bio-gasoline by FCC co-processing: effect of feed composition and catalyst structure on product quality. Energy and Environmental Science, 2011, 4, 5068.	15.6	158
3	Understanding and Controlling Reactivity of Unsaturated Oxygenates and Polyols on Metal Catalysts. ACS Catalysis, 2011, 1, 1284-1297.	5.5	101
4	Advances in C–O Bond Transformations in Lignin-Derived Compounds for Biofuels Production. Journal of Physical Chemistry Letters, 2011, 2, 2280-2287.	2.1	107
5	Effect of La on Ni–W–B Amorphous Catalysts in Hydrodeoxygenation of Phenol. Industrial & Engineering Chemistry Research, 2011, 50, 10936-10942.	1.8	68
6	Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 2011, 1, 1566-1580.	5.5	349
7	Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy and Environmental Science, 2011, 4, 2297.	15.6	439
8	Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s. Energy and Environmental Science, 2011, 4, 3601.	15.6	208
9	Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. Journal of Molecular Catalysis A, 2011, 351, 217-227.	4.8	130
10	What is vital (and not vital) to advance economically-competitive biofuels production. Process Biochemistry, 2011, 46, 2091-2110.	1.8	99
11	Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresource Technology, 2011, 102, 9000-9006.	4.8	98
13	Beyond Petrochemicals: The Renewable Chemicals Industry. Angewandte Chemie - International Edition, 2011, 50, 10502-10509.	7.2	464
14	Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals. Challenges, 2012, 3, 114-132.	0.9	40
15	6 Conversion of cellulose and hemicellulose into platform molecules: chemical routes. , 2012, , 123-140.		5
16	A Heterogeneous Nickel Catalyst for the Hydrogenolysis of Aryl Ethers without Arene Hydrogenation. Journal of the American Chemical Society, 2012, 134, 20226-20229.	6.6	293
17	Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes. RSC Advances, 2012, 2, 11184.	1.7	329
18	Upgrading of Fischer–Tropsch synthesis bio-waxes via catalytic cracking: Effect of acidity, porosity and metal modification of zeolitic and mesoporous aluminosilicate catalysts. Catalysis Today, 2012, 196, 42-55.	2.2	48
19	Mechanistic Insights into the Kinetic and Regiochemical Control of the Thiol-Promoted Catalytic Synthesis of Diphenolic Acid. ACS Catalysis, 2012, 2, 2700-2704.	5.5	38
20	In Situ X-ray Absorption Fine Structure Studies on the Effect of pH on Pt Electronic Density during Aqueous Phase Reforming of Glycerol. ACS Catalysis, 2012, 2, 2387-2394.	5.5	47

#	Article	IF	CITATIONS
21	Catalytic transformations of biomass-derived acids into advanced biofuels. Catalysis Today, 2012, 195, 162-168.	2.2	108
22	Selective deoxygenation of stearic acid via an anhydride pathway. RSC Advances, 2012, 2, 9387.	1.7	35
23	Sn-Beta catalysed conversion of hemicellulosic sugars. Green Chemistry, 2012, 14, 702.	4.6	216
24	Etheric C–O Bond Hydrogenolysis Using a Tandem Lanthanide Triflate/Supported Palladium Nanoparticle Catalyst System. Journal of the American Chemical Society, 2012, 134, 14682-14685.	6.6	90
25	From biodiesel and bioethanol to liquid hydrocarbonfuels: new hydrotreating and advanced microbial technologies. Energy and Environmental Science, 2012, 5, 5638-5652.	15.6	88
26	Mediating acid-catalyzed conversion of levoglucosan into platform chemicals with various solvents. Green Chemistry, 2012, 14, 3087.	4.6	74
27	A sulfuric acid management strategy for the production of liquid hydrocarbon fuels via catalytic conversion of biomass-derived levulinic acid. Energy and Environmental Science, 2012, 5, 9690.	15.6	72
28	Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations. RSC Advances, 2012, 2, 9727.	1.7	50
29	Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts. Applied Energy, 2012, 97, 509-513.	5.1	77
30	Process synthesis for addressing the sustainable energy systems and environmental issues. AICHE Journal, 2012, 58, 3370-3389.	1.8	49
31	Electrocatalytic Reduction of Acetone in a Protonâ€Exchangeâ€Membrane Reactor: A Model Reaction for the Electrocatalytic Reduction of Biomass. ChemSusChem, 2012, 5, 2410-2420.	3.6	48
32	Acid-catalyzed conversion of furfuryl alcohol to ethyl levulinate in liquid ethanol. Energy and Environmental Science, 2012, 5, 8990.	15.6	146
33	Ligand and Ensemble Effects in Bimetallic NiFe Phosphide Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran. Topics in Catalysis, 2012, 55, 969-980.	1.3	44
34	Electrochemistry for biofuel generation: Electrochemical conversion of levulinic acid to octane. Energy and Environmental Science, 2012, 5, 5231-5235.	15.6	108
35	The fate of bio-carbon in FCC co-processing products. Green Chemistry, 2012, 14, 1367.	4.6	71
37	CHAPTER 7. Biofuels and High Value Added Chemicals from Biomass Using Sustainably Prepared Metallic and Bimetallic Nanoparticles. RSC Green Chemistry, 2012, , 157-189.	0.0	0
38	Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran. Green Chemistry, 2012, 14, 935.	4.6	199
39	Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, 5-methylfurfural and aromatic aldehyde. RSC Advances, 2012, 2, 11211.	1.7	68

IF # ARTICLE CITATIONS Exploring the ruthenium catalysed synthesis of Î³-valerolactone in alcohols and utilisation of mild 40 4.6 243 solvent-free reaction conditions. Green Chemistry, 2012, 14, 1260. Upgrading of Bio-oil over Bifunctional Catalysts in Supercritical Monoalcohols. Energy & amp; Fuels, 2012, 26, 2990-2995. 2.5 Liquid hydrocarbonfuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and 42 4.6 51 formic acid salt mixtures. Green Chemistry, 2012, 14, 85-89. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts. Green Chemistry, 2012, 14, 758. Thiol-promoted catalytic synthesis of diphenolic acid with sulfonated hyperbranched poly(arylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 $^{64}_{64}$ 10 Tf 50

CITATION REPORT

47	Catalytic Technologies for Biodiesel Fuel Production and Utilization of Glycerol: A Review. Catalysts, 2012, 2, 191-222.	1.6	185
48	Toxicological and ecotoxicological potencies of biofuels used for the transport sector—a literature review. Energy and Environmental Science, 2012, 5, 7381.	15.6	55
49	Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energy and Environmental Science, 2012, 5, 7393.	15.6	393
50	Heterogeneous Bifunctional Metal/Acid Catalysts for Selective Chemical Processes. European Journal of Inorganic Chemistry, 2012, 2012, 3807-3823.	1.0	65
51	Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy and Environmental Science, 2012, 5, 6328.	15.6	225
52	Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chemical Society Reviews, 2012, 41, 8075.	18.7	1,167
53	Highly Selective Sorbitol Hydrogenolysis to Liquid Alkanes over Ni/HZSMâ€5 Catalysts Modified with Pure Silica MCMâ€41. ChemCatChem, 2012, 4, 1084-1087.	1.8	52
54	Electrochemical Synthesis of Adiponitrile from the Renewable Raw Material Glutamic Acid. ChemSusChem, 2012, 5, 617-620.	3.6	56
55	Tuning the Acid/Metal Balance of Carbon Nanofiberâ€Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2012, 5, 1549-1558.	3.6	131
56	Highly selective and efficient catalytic conversion of ethyl stearate into liquid hydrocarbons over a Ru/TiO2 catalyst under mild conditions. Catalysis Science and Technology, 2012, 2, 1328.	2.1	20
57	Aqueous-phase hydrodeoxygenation of propanoic acid over the Ru/ZrO2 and Ru–Mo/ZrO2 catalysts. Applied Catalysis A: General, 2012, 411-412, 95-104.	2.2	129
58	Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms. Applied Energy, 2012, 93, 229-236.	5.1	63
59	From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis. Bioresource Technology, 2012, 108, 280-284.	4.8	175

#	Article	IF	CITATIONS
60	Analytical techniques tailored for biomass transformation to biofuels. Environmental Progress and Sustainable Energy, 2013, 32, 377-383.	1.3	15
61	Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals. Energy and Environmental Science, 2013, 6, 2925.	15.6	210
62	Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinetics and Catalysis, 2013, 54, 344-352.	0.3	11
63	Hydrodeoxygenation of cyclopentanone over Ni–W–B amorphous catalyst: effect of Cr and Ce. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 537-549.	0.8	6
64	Oriented synthesis of target products in liquid-phase tandem reaction over a tripartite zeolite capsule catalyst. Chemical Science, 2013, 4, 3958.	3.7	25
65	Carbon-supported bimetallic Pd–Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol. Journal of Catalysis, 2013, 306, 47-57.	3.1	384
66	Carbon nanofibers supported molybdenum carbide catalysts for hydrodeoxygenation of vegetable oils. RSC Advances, 2013, 3, 17485.	1.7	54
67	Tomorrow's Biofuels. , 2013, , 321-349.		2
68	Green Carbon Science: Scientific Basis for Integrating Carbon Resource Processing, Utilization, and Recycling. Angewandte Chemie - International Edition, 2013, 52, 9620-9633.	7.2	750
69	Trends and Challenges in Catalytic Biomass Conversion. , 2013, , 73-89.		3
70	Path lumping kinetic model for aqueous phase reforming of sorbitol. Applied Catalysis A: General, 2013, 466, 240-255.	2.2	27
71	Deoxydehydration of Glycols Catalyzed by Carbon‣upported Perrhenate. ChemCatChem, 2013, 5, 3567-3570.	1.8	77
72	Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts. Green Chemistry, 2013, 15, 2967.	4.6	123
73	Effect of support for alcohol-hydrocarbon synthesis from syngas in Cu-based catalyst. Korean Journal of Chemical Engineering, 2013, 30, 864-870.	1.2	7
75	Selective Reductive Cleavage of Inert Aryl CO Bonds by an Iron Catalyst. Angewandte Chemie - International Edition, 2013, 52, 12674-12678.	7.2	114
76	Conversion of furfuryl alcohol to ethyl levulinate using porous aluminosilicate acid catalysts. Catalysis Today, 2013, 218-219, 76-84.	2.2	111
77	Hydrodeoxygenation of p-cresol on unsupported Ni–P catalysts prepared by thermal decomposition method. Catalysis Communications, 2013, 41, 41-46.	1.6	38
78	Copper-based catalysts for the efficient conversion of carbohydrate biomass into γ-valerolactone in the absence of externally added hydrogen. Energy and Environmental Science, 2013, 6, 3308.	15.6	167

	CITATION		
#	Article	IF	Citations
79	Using Bio-oil Produced by Biomass Pyrolysis as Diesel Fuel. Energy & Fuels, 2013, 27, 6831-6838.	2.5	18
80	Di- and triheteroarylalkanes via self-condensation and intramolecular Friedel–Crafts type reaction of heteroaryl alcohols. Organic and Biomolecular Chemistry, 2013, 11, 8030.	1.5	31
81	Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AICHE Journal, 2013, 59, 2096-2104.	1.8	61
82	Dehydration of Different Ketoses and Aldoses to 5â€Hydroxymethylfurfural. ChemSusChem, 2013, 6, 1681-1687.	3.6	90
83	Scale-up and kinetic modeling for bioethanol production. Bioresource Technology, 2013, 144, 311-320.	4.8	40
85	One-Pot Synthesis of Levulinic Acid/Ester from C5 Carbohydrates in a Methanol Medium. ACS Sustainable Chemistry and Engineering, 2013, 1, 1593-1599.	3.2	100
86	Identification of "hot spots―of the science of catalysis: bibliometric and thematic analysis of nowaday reviews and monographs. Russian Chemical Bulletin, 2013, 62, 2266-2278.	0.4	6
87	Catalytic Fast Pyrolysis: A Review. Energies, 2013, 6, 514-538.	1.6	370
88	Bio-oil hydrodeoxygenation: Adsorption of phenolic compounds on sulfided (Co)Mo catalysts. Journal of Catalysis, 2013, 297, 176-186.	3.1	107
89	Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: an experimental and theoretical study. Catalysis Science and Technology, 2013, 3, 106-115.	2.1	51
90	Pretreatment of microcrystalline cellulose by ultrasounds: effect of particle size in the heterogeneously-catalyzed hydrolysis of cellulose to glucose. Green Chemistry, 2013, 15, 963.	4.6	88
91	Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2013, 4, 653-668.	2.1	32
92	New generation biofuels: Î ³ -valerolactone into valeric esters in one pot. RSC Advances, 2013, 3, 1302-1306.	1.7	92
93	Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 2013, 6, 383-388.	3.6	41
94	Promoting effect of SnO _x on selective conversion of cellulose to polyols over bimetallic Pt–SnO _x /Al ₂ O ₃ catalysts. Green Chemistry, 2013, 15, 116-124.	4.6	90
95	One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catalysis Communications, 2013, 34, 58-63.	1.6	130
96	High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system. Green Chemistry, 2013, 15, 1967.	4.6	213
99	The Role of Catalytic Pretreatment in Biomass Valorization Toward Fuels and Chemicals. , 2013, , 217-260.		6

#	Article	IF	Citations
100	Investigation of deactivation mechanisms of a solid acid catalyst during esterification of the bio-oils from mallee biomass. Applied Energy, 2013, 111, 94-103.	5.1	51
101	Design of Heterogeneous Catalysts for Fuels and Chemicals Processing: An Overview. ACS Symposium Series, 2013, , 3-68.	0.5	36
102	Hydrothermal Carbons from Hemicelluloseâ€Đerived Aqueous Hydrolysis Products as Electrode Materials for Supercapacitors. ChemSusChem, 2013, 6, 374-382.	3.6	169
103	The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor. Green Chemistry, 2013, 15, 1869.	4.6	115
104	The Role of Heterogeneous Catalysis in the Biorefinery of the Future. , 2013, , 557-576.		7
106	Recent Advances in Hydrotreating of Pyrolysis Bio-Oil and Its Oxygen-Containing Model Compounds. ACS Catalysis, 2013, 3, 1047-1070.	5.5	585
107	One-pot reduction of olefin and ketone moieties by a copper–phosphine catalyst enabled by polar aprotic solvents. Catalysis Science and Technology, 2013, 3, 1240.	2.1	8
108	Conversion of Carbohydrate Biomass to γâ€Valerolactone by using Waterâ€Soluble and Reusable Iridium Complexes in Acidic Aqueous Media. ChemSusChem, 2013, 6, 1163-1167.	3.6	115
109	Domino Reaction Catalyzed by Zeolites with BrĄ̃,nsted and Lewis Acid Sites for the Production of γâ€Valerolactone from Furfural. Angewandte Chemie - International Edition, 2013, 52, 8022-8025.	7.2	366
110	Conversion of glucose into levulinic acid with solid metal(IV) phosphate catalysts. Journal of Catalysis, 2013, 304, 123-134.	3.1	189
111	Selective Production of 4-Vinylphenol by Fast Pyrolysis of Herbaceous Biomass. Industrial & Engineering Chemistry Research, 2013, 52, 12771-12776.	1.8	47
112	Linked strategy for the production of fuels via formose reaction. Scientific Reports, 2013, 3, 1244.	1.6	28
114	Analysis of critical process optimization in the black liquor gasification system. Journal of Renewable and Sustainable Energy, 2013, 5, 063102.	0.8	2
117	Advanced Biofuels from Lignocellulosic Biomass. Journal of Advanced Chemical Engineering, 2014, 04, ·	0.1	3
118	Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Frontiers in Microbiology, 2014, 5, 247.	1.5	33
119	Liquid Fuel Production by Aqueous Phase Catalytic Transformation of Biomass for Aviation. Energy Procedia, 2014, 61, 432-435.	1.8	5
120	A Nanospherical Ordered Mesoporous Lewis Acid Polymer for the Direct Glycosylation of Unprotected and Unactivated Sugars in Water. Angewandte Chemie - International Edition, 2014, 53, 8498-8502.	7.2	27
121	Hydrodeoxygenation of p-cresol on MoS2: the effect of adding hexadecyl trimethyl ammonium bromide during the catalyst synthesis. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 417-429.	0.8	5

#	Article	IF	CITATIONS
122	Integrated, Cascading Enzymeâ€∤Chemocatalytic Cellulose Conversion using Catalysts based on Mesoporous Silica Nanoparticles. ChemSusChem, 2014, 7, 3241-3246.	3.6	106
123	Aerobic Oxidation of Hydroxymethylfurfural and Furfural by Using Heterogeneous Co _{<i>x</i>} O _{<i>y</i>} –N@C Catalysts. ChemSusChem, 2014, 7, 3334-3340.	3.6	104
124	Low-temperature, solvent-free dehydration of cineoles with heterogeneous acid catalysts for the production of high-density biofuels. Journal of Chemical Technology and Biotechnology, 2014, 89, 957-962.	1.6	28
125	The Ptâ€Enriched PtNi Alloy Surface and its Excellent Catalytic Performance in Hydrolytic Hydrogenation of Cellulose. ChemSusChem, 2014, 7, 1415-1421.	3.6	61
126	Efficient Conversion of Levulinic Acid into γ-Valerolactone over Raney Ni Catalyst Prepared from Melt-quenching Alloy. Catalysis Letters, 2014, 144, 1766-1771.	1.4	25
127	Synthesis of Highly Active Co–Mo–S Unsupported Catalysts by a One-Step Hydrothermal Method for <i>p</i> -Cresol Hydrodeoxygenation. Industrial & Engineering Chemistry Research, 2014, 53, 19001-19009.	1.8	51
128	Regenerability of Hydrotalciteâ€Derived Nickel–Iron Alloy Nanoparticles for Syngas Production from Biomass Tar. ChemSusChem, 2014, 7, 510-522.	3.6	159
130	Bio(chemo)technological strategies for biomass conversion into bioethanol and key carboxylic acids. Green Chemistry, 2014, 16, 2386.	4.6	62
131	Energy, society and science: The fifty-year scenario. Futures, 2014, 58, 53-65.	1.4	76
132	Production of renewable diesel via catalytic deoxygenation of natural triglycerides: Comprehensive understanding of reaction intermediates and hydrocarbons. Applied Energy, 2014, 116, 199-205.	5.1	110
133	Hydrodeoxygenation of the Angelica Lactone Dimer, a Celluloseâ€Based Feedstock: Simple, Highâ€Yield Synthesis of Branched C ₇ –C ₁₀ Gasolineâ€like Hydrocarbons. Angewandte Chemie - International Edition, 2014, 53, 1854-1857.	7.2	179
134	Hydrolysis of sugarcane bagasse in subcritical water. Journal of Supercritical Fluids, 2014, 86, 15-22.	1.6	61
135	Selective Catalysis for Cellulose Conversion to Lactic Acid and Other α-Hydroxy Acids. Topics in Current Chemistry, 2014, 353, 85-125.	4.0	54
136	Top Chemical Opportunities from Carbohydrate Biomass: A Chemist's View of the Biorefinery. Topics in Current Chemistry, 2014, 353, 1-40.	4.0	125
137	One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization. Chinese Journal of Catalysis, 2014, 35, 602-613.	6.9	72
138	Enhanced Conversion of Carbohydrates to the Platform Chemical 5â€Hydroxymethylfurfural Using Designer Ionic Liquids. ChemSusChem, 2014, 7, 1647-1654.	3.6	65
139	Production of liquid alkanes by controlling reactivity of sorbitol hydrogenation with a Ni/HZSM-5 catalyst in water. Energy Conversion and Management, 2014, 77, 262-268.	4.4	46
140	Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts. RSC Advances, 2014, 4, 4978.	1.7	21

\sim	T A T I	0.11	Repo	DT
			REDU	
	/		ILLI U	- C - L

#	Article	IF	CITATIONS
141	Organocatalysis in biorefining for biomass conversion and upgrading. Green Chemistry, 2014, 16, 964-981.	4.6	92
142	Porous solid acid with high Surface area derived from emulsion templating and hypercrosslinking for efficient one-pot conversion of cellulose to 5-hydroxymethylfurfural. RSC Advances, 2014, 4, 59175-59184.	1.7	14
143	One-pot transformation of polysaccharides via multi-catalytic processes. Catalysis Science and Technology, 2014, 4, 4138-4168.	2.1	68
144	Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction. RSC Advances, 2014, 4, 13481-13489.	1.7	167
145	Electrochemical Cleavage of Aryl Ethers Promoted by Sodium Borohydride. Journal of Organic Chemistry, 2014, 79, 10189-10195.	1.7	49
146	Theoretical investigation of the hydrodeoxygenation of methyl propionate over Pd (111) model surfaces. Catalysis Science and Technology, 2014, 4, 3981-3992.	2.1	18
147	Kinetic and FTIR studies of 2-methyltetrahydrofuran hydrodeoxygenation on Ni2P/SiO2. Journal of Catalysis, 2014, 318, 151-161.	3.1	61
148	Catalytic transformations of acids, aldehydes, and phenols in bio-oil to alcohols and esters. Fuel, 2014, 135, 55-62.	3.4	28
149	A Continuous Flow Strategy for the Coupled Transfer Hydrogenation and Etherification of 5â€{Hydroxymethyl)furfural using Lewis Acid Zeolites. ChemSusChem, 2014, 7, 2255-2265.	3.6	177
150	Alkylation of toluene with 1-hexene over macroreticular ion-exchange resins. Applied Catalysis A: General, 2014, 485, 143-148.	2.2	7
151	Carbonâ€ S upported Molybdenumâ€Based Catalysts for the Hydrodeoxygenation of Maize Oil. ChemCatChem, 2014, 6, 2698-2705.	1.8	36
152	Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.	4.6	68
153	Promotion of Activity and Selectivity by Alkanethiol Monolayers for Pd-Catalyzed Benzyl Alcohol Hydrodeoxygenation. Journal of Physical Chemistry C, 2014, 118, 23783-23789.	1.5	46
154	Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review. Renewable and Sustainable Energy Reviews, 2014, 40, 1108-1125.	8.2	119
155	Additives initiate selective production of chemicals from biomass pyrolysis. Bioresource Technology, 2014, 156, 376-379.	4.8	7
156	Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 2014, 53, 9969-9978.	1.8	128
157	Solvent effects on the hydrodeoxygenation of propanoic acid over Pd(111) model surfaces. Green Chemistry, 2014, 16, 605-616.	4.6	51
158	Lowâ€ŧemperature, Selective Catalytic Deoxygenation of Vegetable Oil in Supercritical Fluid Media. ChemSusChem, 2014, 7, 492-500.	3.6	20

#	Article	IF	CITATIONS
160	A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustainable Chemistry and Engineering, 2014, 2, 472-485.	3.2	317
161	New extraction procedure for protonated polyoxometalates prepared in aqueous-organic solution and characterisation of their catalytic ability. Applied Catalysis A: General, 2014, 485, 181-187.	2.2	14
162	Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions. Journal of Catalysis, 2014, 319, 27-35.	3.1	53
163	Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review. Applied Catalysis A: General, 2014, 469, 490-511.	2.2	334
164	Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts. Chinese Journal of Catalysis, 2014, 35, 656-662.	6.9	76
166	Sulfonated Porous Polymeric Nanofibers as an Efficient Solid Acid Catalyst for the Production of 5â€Hydroxymethylfurfural from Biomass. ChemCatChem, 2015, 7, 3570-3578.	1.8	96
167	Chemical Conversions of Biomassâ€Derived Platform Chemicals over Copper–Silica Nanocomposite Catalysts. ChemSusChem, 2015, 8, 2345-2357.	3.6	35
168	Oneâ€Pot 2â€Methyltetrahydrofuran Production from Levulinic Acid in Green Solvents Using Ni u/Al ₂ O ₃ Catalysts. ChemSusChem, 2015, 8, 3483-3488.	3.6	81
169	Analysis of Structural Units and Their Influence on Thermal Degradation of Alkali Lignins. BioResources, 2015, 11, .	0.5	22
170	On the remarkable resistance to coke formation of nanometer-sized and hierarchical MFI zeolites during ethanol to hydrocarbons transformation. Journal of Catalysis, 2015, 328, 165-172.	3.1	76
171	Origin of catalyst deactivation in atmospheric hydrogenolysis of m-cresol over Fe/HBeta. RSC Advances, 2015, 5, 51278-51285.	1.7	5
172	Polyethylene Glycol-400-Functionalized Dicationic Acidic Ionic Liquids for Highly Efficient Conversion of Fructose into 5-Hydroxymethylfurfural. Catalysis Letters, 2015, 145, 1080-1088.	1.4	15
173	A tunable process: catalytic transformation of renewable furfural with aliphatic alcohols in the presence of molecular oxygen. Chemical Communications, 2015, 51, 3674-3677.	2.2	53
174	The Efficient and Sustainable Pyrolysis and Gasification of Biomass by Catalytic Processes. ChemBioEng Reviews, 2015, 2, 157-174.	2.6	17
175	Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis Today, 2015, 246, 35-45.	2.2	47
176	Thermochemical Biorefinery. , 2015, , 157-174.		6
177	Rational design of Ni-based catalysts derived from hydrotalcite for selective hydrogenation of 5-hydroxymethylfurfural. Green Chemistry, 2015, 17, 2504-2514.	4.6	173
178	Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: a review. RSC Advances, 2015, 5, 22234-22255.	1.7	106

#	Article	IF	Citations
179	Synthesis of biomass-derived methylcyclopentane as a gasoline additive via aldol condensation/hydrodeoxygenation of 2,5-hexanedione. Green Chemistry, 2015, 17, 2393-2397.	4.6	64
180	Gas-phase dehydration of vicinal diols to epoxides: Dehydrative epoxidation over a Cs/SiO2 catalyst. Journal of Catalysis, 2015, 323, 85-99.	3.1	31
181	Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis. Energy Conversion and Management, 2015, 101, 481-488.	4.4	66
182	A Novel Group Contribution Method for the Prediction of the Derived Cetane Number of Oxygenated Hydrocarbons. Energy & Fuels, 2015, 29, 5781-5801.	2.5	86
183	Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas. Applied Catalysis A: General, 2015, 503, 51-61.	2.2	63
184	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	6.6	41
185	Catalysis for the Production of Sustainable Chemicals and Fuels from Biomass. , 2015, , 99-123.		5
186	Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM-5 zeolites. Fuel Processing Technology, 2015, 138, 430-434.	3.7	52
187	Highly selective self-condensation of cyclic ketones using MOF-encapsulating phosphotungstic acid for renewable high-density fuel. Green Chemistry, 2015, 17, 4473-4481.	4.6	144
188	Mechanistic Investigation of Isopropanol Conversion on Alumina Catalysts: Location of Active Sites for Alkene/Ether Production. ACS Catalysis, 2015, 5, 4423-4437.	5.5	92
189	Bi-functional hydrotalcite-derived NiO–CaO–Al2O3 catalysts for steam reforming of biomass and/or tar model compound at low steam-to-carbon conditions. Applied Catalysis B: Environmental, 2015, 172-173, 116-128.	10.8	174
190	Reaction Pathways of Biomassâ€Đerived Oxygenates over Metals and Carbides: From Model Surfaces to Supported Catalysts. ChemCatChem, 2015, 7, 1402-1421.	1.8	50
191	Pyrolysis of Red Eucalyptus, Camelina Straw, and Wheat Straw in an Ablative Reactor. Energy & Fuels, 2015, 29, 1766-1775.	2.5	37
192	Decarbonisation of olefin processes using biomass pyrolysis oil. Applied Energy, 2015, 149, 404-414.	5.1	18
193	Nanoscale tuning of enzyme localization for enhanced reactor performance in a novel magnetic-responsive biocatalytic membrane reactor. Journal of Membrane Science, 2015, 487, 209-220.	4.1	33
194	Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: A case study with spent coffee ground. Bioresource Technology, 2015, 189, 1-6.	4.8	81
195	An integrated process for biomass pyrolysis oil upgrading: A synergistic approach. Biomass and Bioenergy, 2015, 76, 108-117.	2.9	40
196	Catalytic Hydrodeoxygenation of Guaiacol as Lignin Model Component Using Ni-Mo/TiO2 and Ni-V/TiO2 Catalysts. Catalysis Letters, 2015, 145, 1351-1363.	1.4	32

#	Article	IF	CITATIONS
197	Production of Phenol and Cresol from Guaiacol on Nickel Phosphide Catalysts Supported on Acidic Supports. Topics in Catalysis, 2015, 58, 201-210.	1.3	56
198	Active Sites in Ni2P/USY Catalysts for the Hydrodeoxygenation of 2-Methyltetrahydrofuran. Topics in Catalysis, 2015, 58, 219-231.	1.3	20
199	Biochemical composite synthesized by stepwise crosslinking: An efficient platform for one-pot biomass conversion. Journal of Catalysis, 2015, 327, 78-85.	3.1	10
200	Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renewable and Sustainable Energy Reviews, 2015, 47, 151-161.	8.2	49
201	New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renewable and Sustainable Energy Reviews, 2015, 47, 117-132.	8.2	93
202	Mixed alcohols synthesis from syngas over activated palygorskite supported Cu–Fe–Co based catalysts. Applied Clay Science, 2015, 111, 83-89.	2.6	40
203	Biomass to Furanics: Renewable Routes to Chemicals and Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 2591-2605.	3.2	207
204	Recent advances in optimal design of thermochemical conversion of biomass to chemicals and liquid fuels. Current Opinion in Chemical Engineering, 2015, 10, 70-76.	3.8	14
205	Catalytic Upgrading of Biomass-Derived Compounds via C–C Coupling Reactions: Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5. Journal of Physical Chemistry C, 2015, 119, 24025-24035.	1.5	19
206	Liquid transportation fuels from biomass-derived oxygenates: Gas-phase 2-hexanol upgrading on Cu-based mixed oxides. Applied Catalysis A: General, 2015, 504, 256-265.	2.2	10
207	Liquid fuel production by aqueous phase catalytic transformation of biomass for aviation. Applied Energy, 2015, 160, 329-335.	5.1	27
208	Hierarchically structured catalysts for cascade and selective steam reforming/hydrodeoxygenation reactions. Chemical Communications, 2015, 51, 16617-16620.	2.2	8
209	Production of gasoline fraction from bio-oil under atmospheric conditions by an integrated catalytic transformation process. Energy, 2015, 90, 1922-1930.	4.5	30
210	Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: effects of pore structure and acidity. RSC Advances, 2015, 5, 65408-65414.	1.7	54
211	Highly efficient conversion of biomass-derived levulinic acid into Î ³ -valerolactone over Ni/MgO catalyst. RSC Advances, 2015, 5, 72037-72045.	1.7	39
212	Ni Nanoparticles Inlaid Nickel Phyllosilicate as a Metal–Acid Bifunctional Catalyst for Low-Temperature Hydrogenolysis Reactions. ACS Catalysis, 2015, 5, 5914-5920.	5.5	157
213	Opportunities, recent trends and challenges of integrated biorefinery: Part I. Renewable and Sustainable Energy Reviews, 2015, 43, 1427-1445.	8.2	338
214	Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chemistry, 2015, 17, 1194-1203.	4.6	44

#	Article	IF	CITATIONS
215	Preparation of Ni–W–P–B amorphous catalyst for the hydrodeoxygenation of p-cresol. Catalysis Communications, 2015, 60, 50-54.	1.6	20
216	Computational Modeling of Biomass Thermochemical Conversion in Fluidized Beds: Particle Density Variation and Size Distribution. Industrial & Engineering Chemistry Research, 2015, 54, 4084-4094.	1.8	34
217	The Alpha–Bet(a) of Salty Glucose Pyrolysis: Computational Investigations Reveal Carbohydrate Pyrolysis Catalytic Action by Sodium Ions. ACS Catalysis, 2015, 5, 192-202.	5.5	56
218	Subcritical and supercritical technology for the production of second generation bioethanol. Critical Reviews in Biotechnology, 2015, 35, 302-312.	5.1	29
219	Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes. Green Chemistry, 2015, 17, 601-609.	4.6	101
220	Steam reforming of biomass tar model compound at relatively low steam-to-carbon condition over CaO-doped nickel–iron alloy supported over iron–alumina catalysts. Applied Catalysis A: General, 2015, 490, 24-35.	2.2	83
221	Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresource Technology, 2015, 178, 108-118.	4.8	285
222	Adding value to agri-food residues by means of supercritical technology. Journal of Supercritical Fluids, 2015, 96, 217-227.	1.6	50
223	A Review on Fuel Ethanol Production From Lignocellulosic Biomass. International Journal of Green Energy, 2015, 12, 949-960.	2.1	87
224	Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy and Environmental Science, 2015, 8, 230-240.	15.6	202
225	Opportunities, recent trends and challenges of integrated biorefinery: Part II. Renewable and Sustainable Energy Reviews, 2015, 43, 1446-1466.	8.2	134
226	New Frontiers in the Catalytic Synthesis of Levulinic Acid: From Sugars to Raw and Waste Biomass as Starting Feedstock. Catalysts, 2016, 6, 196.	1.6	180
227	Energy Opportunities from Lignocellulosic Biomass for a Biorefinery Case Study. Energies, 2016, 9, 748.	1.6	7
228	Preparation of Bio-hydrogen and Bio-fuels from Lignocellulosic Biomass Pyrolysis-Oil. Chinese Journal of Chemical Physics, 2016, 29, 635-643.	0.6	10
229	Preparation of core-shell structured Ni2P/Al2O3@TiO2 and its hydrodeoxygenation performance for benzofuran. Catalysis Communications, 2016, 85, 1-4.	1.6	24
230	Organic Solvent Effects in Biomass Conversion Reactions. ChemSusChem, 2016, 9, 133-155.	3.6	320
231	Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ^'O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie, 2016, 128, 1496-1500.	1.6	34
232	Structural characterization and pyrolysis behavior of holocellulose obtained from lignin-first biorefinery. Journal of Analytical and Applied Pyrolysis, 2016, 120, 416-422.	2.6	4

ARTICLE IF CITATIONS Reactivity of [WCl6] with Ethers: A Joint Computational, Spectroscopic and Crystallographic Study. 233 1.0 12 European Journal of Inorganic Chemistry, 2016, 2016, 3169-3177. Aqueous phase reforming and hydrodeoxygenation of ethylene glycol on Pt/SiO2–Al2O3: effects of surface acidity on product distribution. RSC Advances, 2016, 6, 68433-68444. 234 1.7 Chemo―and Regioselective Hydrogenolysis of Diaryl Ether Câ[^]O Bonds by a Robust Heterogeneous Ni/C Catalyst: Applications to the Cleavage of Complex Ligninâ€Related Fragments. Angewandte Chemie -International Edition, 2016, 55, 1474-1478. 235 7.2 129 Effective conversion of biomass-derived ethyl levulinate into \hat{I}^3 -valerolactone over commercial zeolite supported Pt catalysts. RSC Advances, 2016, 6, 112477-112485. Synthesis of Acetoneâ€Derived C₆, C₉, and C₁₂ Carbon Scaffolds 237 3.6 16 for Chemical and Fuel Applications. ChemSusChem, 2016, 9, 3382-3386. High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catalysis Science and Technology, 2016, 6, 2.1 6257-6266. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chemistry, 239 4.6 362 2016, 18, 4145-4169. Nanomaterials for the Production of Biofuels. Nanoscience and Technology, 2016, , 559-582. 240 1.5 Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in 241 15.8 234 Energy and Combustion Science, 2016, 55, 98-194. Anisotropic growth of PtFe nanoclusters induced by lattice-mismatch: Efficient catalysts for 242 3.1 oxidation of biopolyols to carboxylic acid derivatives. Journal of Catalysis, 2016, 337, 272-283. Selective conversion of small bio-oxygenates into high quality gasoline precursors over deactivated 243 7 3.7 ZSM-5 in MTG reaction. Fuel Processing Technology, 2016, 149, 1-6. Mechanistic Insight to C–C Bond Formation and Predictive Models for Cascade Reactions among 5.5 Alcohols on Ca- and Sr-Hydroxyapatites. ACS Catalysis, 2016, 6, 4170-4183. A Review on Biofuel and Bioresources for Environmental Applications. , 2016, , 205-225. 245 13 The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production 246 3.2 from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2016, 4, 3196-3211. Selective etherification of hydroxymethylfurfural to biofuel additives over Cs containing 247 2.2 64 silicotungstic acid catalysts. Applied Catalysis A: General, 2016, 520, 105-113. Extraction, characterization, purification and catalytic upgrading of algae lipids to fuel-like 248 hydrocarbons. Fuel, 2016, 180, 668-678. Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave 249 5.154 reactor. Applied Energy, 2016, 183, 995-1004. Conversion of Clycerol to Hydrocarbon Fuels via Bifunctional Catalysts. ACS Energy Letters, 2016, 1, 8.8 963-968.

	ITATION REPORT	
ARTICLE The controlled synthesis of metal-acid bifunctional catalysts: The effect of metal:acid ratio and metal-acid proximity in Pt silica-alumina catalysts for n-heptane isomerization. Journal of Catalysis, 2016, 342, 203-212.	IF 3.1	CITATIONS
Heterogeneously Catalyzed Hydrothermal Processing of C ₅ –C ₆ Sugars. Chemical Reviews, 2016, 116, 12328-12368.	23.0	253
Furfural: A Promising Platform Compound for Sustainable Production of C ₄ and C ₅ Chemicals. ACS Catalysis, 2016, 6, 7621-7640.	5.5	607
Catalytic aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran overÁVO ²⁺ and Cu ²⁺ immobilized on amino-functionalized core–shell m Fe ₃ O ₄ @SiO ₂ . RSC Advances, 2016, 6, 94976-94988.	agnetic 1.7	21
Characterization of depolymerized lignin and renewable phenolic compounds from liquefied waste biomass. RSC Advances, 2016, 6, 95698-95707.	1.7	31
Thermal & chemical analyses of hydrothermally derived carbon materials from corn starch. Fuel Processing Technology, 2016, 153, 43-49.	3.7	29
The Role of the Hydrogen Source on the Selective Production of γâ€Valerolactone and 2â€Methyltetrahydrofuran from Levulinic Acid. ChemSusChem, 2016, 9, 2488-2495.	3.6	56
A funnel plot to assess energy yield and oil quality for pyrolysis-based processes. Biomass and Bioenergy, 2016, 93, 254-258.	2.9	3
Methyl-ligated tin silsesquioxane catalyzed reactions of glucose. Journal of Catalysis, 2016, 341, 62-	71. 3.1	15
Not Just Lumber—Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels. Jom, 20 68, 2395-2404.	016, 0.9	40
Conversion of Solid Waste to Diesel via Catalytic Pressureless Depolymerization: Pilot Scale Production and Detailed Compositional Characterization. Energy & Fuels, 2016, 30, 8292-8303	2.5	12
Hydrodeoxygenation of guaiacol over Ni@Pd and Ni@Pt bimetallic overlayer catalysts. Applied Catalysis A: General, 2016, 528, 1-13.	2.2	63
Fragmentation of Lignin Samples with Commercial Pd/C under Ambient Pressure of Hydrogen. ACS Catalysis, 2016, 6, 7385-7392.	5.5	86
Compositional and structural feedstock requirements of a liquid phase cellulose-to-naphtha process in a carbon- and hydrogen-neutral biorefinery context. Green Chemistry, 2016, 18, 5594-5606.	4.6	23
Catalyst and Process Design for the Continuous Manufacture of Rare Sugar Alcohols by Epimerization–Hydrogenation of Aldoses. ChemSusChem, 2016, 9, 3407-3418.	3.6	23
Molecular Origin for the Difficulty in Separation of 5-Hydroxymethylfurfural from Imidazolium Based Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2016, 4, 6712-6721.	3.2	38
Catalytic conversion of aqueous fraction of bio-oil to alcohols over CNT-supported catalysts. Fuel, 2016, 180, 749-758.	3.4	13

#

²⁶⁹ Single Pot Transfer Hydrogenation and Aldolization of Furfural Over Metal Oxide Catalysts. Catalysis 1.4 42 Letters, 2016, 146, 1611-1619.

#	Article	IF	CITATIONS
270	Formic acid-mediated liquefaction of chitin. Green Chemistry, 2016, 18, 5050-5058.	4.6	71
271	Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, 2016, 9, 562-582.	3.6	520
272	Solvation Effects in the Hydrodeoxygenation of Propanoic Acid over a Model Pd(211) Catalyst. Journal of Physical Chemistry C, 2016, 120, 2724-2736.	1.5	40
273	Model-Based Design of Tailor-Made Biofuels. Energy & Fuels, 2016, 30, 1109-1134.	2.5	70
274	Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5. Fuel, 2016, 168, 68-75.	3.4	23
275	Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: Recent advances and opportunities. Process Biochemistry, 2016, 51, 1866-1875.	1.8	42
276	Upgrading of pyrolysis bio-oil using nickel phosphide catalysts. Journal of Catalysis, 2016, 333, 115-126.	3.1	147
277	Perovskite type oxide-supported Ni catalysts for the production of 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural. Green Chemistry, 2016, 18, 3858-3866.	4.6	79
278	Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector – prospects and challenges. RSC Advances, 2016, 6, 32140-32170.	1.7	62
279	Catalytic conversion of biomass-derived sorbitol to aromatic compounds. International Journal of Green Energy, 2016, 13, 767-773.	2.1	4
280	Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol–Water Solutions. ChemSusChem, 2016, 9, 36-41.	3.6	38
281	Influence of adsorption strength in aqueous phase glycerol hydrodeoxygenation over Ni@Pt and Co@Pt overlayer catalysts. Catalysis Science and Technology, 2016, 6, 4632-4643.	2.1	7
282	Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energy & Fuels, 2016, 30, 2216-2226.	2.5	100
283	Effect of Cu and Sn promotion on the catalytic deoxygenation of model and algal lipids to fuel-like hydrocarbons over supported Ni catalysts. Applied Catalysis B: Environmental, 2016, 191, 147-156.	10.8	102
284	Production of biofuel additives by esterification and acetalization of bioglycerol. Comptes Rendus Chimie, 2016, 19, 1194-1202.	0.2	29
285	Reed straw derived active carbon/graphene hybrids as sustainable high-performance electrodes for advanced supercapacitors. Journal of Solid State Electrochemistry, 2016, 20, 449-457.	1.2	36
286	Synergistic Effects of Bimetallic PtPd/TiO ₂ Nanocatalysts in Oxidation of Glucose to Glucaric Acid: Structure Dependent Activity and Selectivity. Industrial & Engineering Chemistry Research, 2016, 55, 2932-2945.	1.8	73
287	One-pot conversion of biomass-derived carbohydrates into 5-[(formyloxy)methyl]furfural: A novel alternative platform chemical. Industrial Crops and Products, 2016, 83, 408-413.	2.5	29

ARTICLE IF CITATIONS Coprocessing of Catalytic-Pyrolysis-Derived Bio-Oil with VGO in a Pilot-Scale FCC Riser. Industrial 288 1.8 67 & Engineering Chemistry Research, 2016, 55, 3525-3534. Oxidation of benzyl alcohol catalyzed by gold nanoparticles under alkaline conditions: weak vs. 289 1.7 59 strong bases. RSC Advances, 2016, 6, 25279-25285. Design of highly ordered mesoporous Nb 2 O 5 -based hybrid catalysts bifunctionalized by the Keggin-type heteropoly acid and phenyl-bridged organosilica moieties for the synthesis of methyl 290 2.2 20 levulinate. Microporous and Mesoporous Materials, 2016, 226, 396-405. Insights into the selective hydrogenation of levulinic acid to \hat{j}^3 -valerolactone using supported mono-4.8 and bimetallic catalysts. Journal of Molecular Catalysis A, 2016, 417, 145-152. Upgrading of biomass-derived 2-hexanol to liquid transportation fuels on Cu–Mg–Al mixed oxides. 292 3.4 16 Effect of Cu content. Fuel, 2016, 177, 28-38. Screening Pathways for the Production of Next Generation Biofuels. Energy & amp; Fuels, 2016, 30, 293 2.5 445-456. A catalytic biofuel production strategy involving separate conversion of hemicellulose and cellulose using 2-sec-butylphenol (SBP) and lignin-derived (LD) alkylphenol solvents. Bioresource Technology, 294 4.8 20 2016, 204, 1-8. Au-catalyzed oxidative condensation of renewable furfural and ethanol to produce furan-2-acrolein 295 34 in the presence of molecular oxygen. Applied Catalysis A: General, 2016, 510, 196-203. Biomass to Liquid Transportation Fuels via Biological and Thermochemical Conversion: Process 296 Synthesis and Clobal Optimization Strategies. Industrial & amp; Engineering Chemistry Research, 2016, 29 1.8 55, 3203-3225. Metal catalyzed defunctionalization reactions. Organic and Biomolecular Chemistry, 2016, 14, 21-35. 1.5 Advances in the Conversion of Short-Chain Carbohydrates: A Mechanistic Insight. Green Chemistry 298 2 0.4 and Sustainable Technology, 2016, , 27-55. Conversion of Biomass-Derived 2-Hexanol to Liquid Transportation Fuels: Study of the Reaction 299 1.3 Mechanism on Cu–Mg–Al Mixed Oxides. Topics in Catalysis, 2016, 59, 196-206. Pilot-plant study of upgrading of medium and low-temperature coal tar to clean liquid fuels. Fuel 300 3.7 22 Processing Technology, 2017, 155, 153-159. Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites. Applied Catalysis B: Environmental, 2017, 200, 182-191. 10.8 124 Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor. AIP Conference 302 0.34 Proceedings, 2017, , . Electrocatalytic upgrading of itaconic acid to methylsuccinic acid using fermentation broth as a 46 substrate solution. Green Chemistry, 2017, 19, 2390-2397. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal 304 Wastes, Food Industry Wastes, and Biomass Grown on Waste. ACS Sustainable Chemistry and 3.288 Engineering, 2017, 5, 2205-2214. Synergy of Lewis and BrA,nsted acids on catalytic hydrothermal decomposition of carbohydrates and 1.6 corncob acid hydrolysis residues to 5-hydroxymethylfurfural. Scientific Reports, 2017, 7, 40908.

#	Article	IF	CITATIONS
306	Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74, 230-257.	8.2	308
307	Selective production of pyrroles via catalytic fast pyrolysis of cellulose under ammonia atmosphere at low temperature. Journal of Analytical and Applied Pyrolysis, 2017, 124, 409-414.	2.6	31
308	Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustainable Energy and Fuels, 2017, 1, 258-266.	2.5	70
309	Effects of <i>p</i> -Toluenesulfonic Acid in the Conversion of Glucose for Levulinic Acid and Sulfonated Carbon Production. Energy & amp; Fuels, 2017, 31, 2847-2854.	2.5	33
310	Alkali promotion of alumina-supported ruthenium catalysts for hydrogenation of levulinic acid to γ-valerolactone. Journal of Catalysis, 2017, 347, 72-78.	3.1	48
311	Thermochemistry analyses for transformation of C6 glucose compound into C9, C12 and C15 alkanes using density functional theory. Molecular Physics, 2017, 115, 413-423.	0.8	5
312	Algae pyrolytic poly-generation: Influence of component difference and temperature on products characteristics. Energy, 2017, 131, 1-12.	4.5	103
313	Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis. Environmental Science & Technology, 2017, 51, 6570-6579.	4.6	272
314	Selective hydrogenolysis of α O 4, β O 4, 4 O 5 C O bonds of lignin-model compounds and lignin-containing stillage derived from cellulosic bioethanol processing. Applied Catalysis A: General, 2017, 541, 60-76.	2.2	43
315	Inâ€Situ Formation of Metal Carbide Catalysts. ChemCatChem, 2017, 9, 3090-3101.	1.8	18
316	Synthesis of high-density biofuel with excellent low-temperature properties from lignocellulose-derived feedstock. Fuel Processing Technology, 2017, 163, 45-50.	3.7	45
317	Hydrogenation of biomass-derived ethyl levulinate into Î ³ -valerolactone by activated carbon supported bimetallic Ni and Fe catalysts. Fuel, 2017, 203, 23-31.	3.4	84
318	Aqueous Phase Conversion of Hexoses into 5-Hydroxymethylfurfural and Levulinic Acid in the Presence of Hydrochloric Acid: Mechanism and Kinetics. Industrial & Engineering Chemistry Research, 2017, 56, 5221-5230.	1.8	58
319	Anatase TiO ₂ Activated by Gold Nanoparticles for Selective Hydrodeoxygenation of Guaiacol to Phenolics. ACS Catalysis, 2017, 7, 695-705.	5.5	80
320	Co-Pyrolysis of torrefied biomass and methane over molybdenum modified bimetallic HZSM-5 catalyst for hydrocarbons production. Green Chemistry, 2017, 19, 757-768.	4.6	35
321	Role of ionâ€exchange resins as catalyst in the reactionâ€network of transformation of biomass into biofuels. Journal of Chemical Technology and Biotechnology, 2017, 92, 2775-2786.	1.6	34
322	Competition and Cooperation of Hydrogenation and Deoxygenation Reactions during Hydrodeoxygenation of Phenol on Pt(111). Journal of Physical Chemistry C, 2017, 121, 12249-12260.	1.5	57
323	The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan. Green Chemistry, 2017, 19, 3549-3557.	4.6	72

#	Article	IF	CITATIONS
324	Green Synthesis of Veratraldehyde Using Potassium Promoted Lanthanum–Magnesium Mixed Oxide Catalyst. Organic Process Research and Development, 2017, 21, 1012-1020.	1.3	13
325	Efficient and selective transformation of biomass-derived furfural with aliphatic alcohols catalyzed by a binary Cu-Ce oxide. Catalysis Today, 2017, 298, 175-180.	2.2	17
326	Highly Selective Hydrogenation of Levulinic Acid to γ-Valerolactone Over Ru/ZrO2 Catalysts. Catalysis Letters, 2017, 147, 1744-1753.	1.4	44
327	A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis. Reaction Chemistry and Engineering, 2017, 2, 397-405.	1.9	38
328	Direct conversion of cellulose to high-yield methyl lactate over Ga-doped Zn/H-nanozeolite Y catalysts in supercritical methanol. Green Chemistry, 2017, 19, 1969-1982.	4.6	62
329	Sustainable oil palm industry: The possibilities. Renewable and Sustainable Energy Reviews, 2017, 76, 608-619.	8.2	149
330	Effects of Extraction Methods on Structure and Valorization of Corn Stover Lignin by a Pd/C Catalyst. ChemCatChem, 2017, 9, 1135-1143.	1.8	36
331	Acidic mesostructured silica-carbon nanocomposite catalysts for biofuels and chemicals synthesis from sugars in alcoholic solutions. Applied Catalysis B: Environmental, 2017, 206, 74-88.	10.8	42
332	One-Pot Conversion of Carbohydrates in Biomass to Isobutyroin-Rich Branched Oxygenates: Carbohydrate Depolymerization and Methyl Introduction in Supercritical Methanol. Energy & Fuels, 2017, 31, 688-692.	2.5	0
333	One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways. Physical Chemistry Chemical Physics, 2017, 19, 2961-2973.	1.3	30
334	Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu–Ni Bimetallic Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 1322-1331.	3.2	115
335	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
336	Perrhenate-Catalyzed Deoxydehydration of a Vicinal Diol: A Comparative Density Functional Theory Study. Journal of Physical Chemistry A, 2017, 121, 8688-8696.	1.1	11
337	Conversion of levulinic acid and alkyl levulinates into biofuels and high-value chemicals. Green Chemistry, 2017, 19, 5527-5547.	4.6	185
338	Simple and green route for preparation of tin phosphate catalysts by solid-state grinding for dehydration of glucose to 5-hydroxymethylfurfural (HMF). RSC Advances, 2017, 7, 48501-48511.	1.7	47
339	Regioselective hydrogenolysis of aryl ether C–O bonds by tungsten carbides with controlled phase compositions. Chemical Communications, 2017, 53, 10295-10298.	2.2	17
340	Integrated catalytic sequences for catalytic upgrading of bio-derived carboxylic acids to fuels, lubricants and chemical feedstocks. Sustainable Energy and Fuels, 2017, 1, 1805-1809.	2.5	20
341	Carbon Chain Length Increase Reactions of Platform Molecules Derived from C5 and C6 Sugars. Industrial & Engineering Chemistry Research, 2017, 56, 13356-13366.	1.8	11

#	Article	IF	CITATIONS
342	Novel Strategies for the Production of Fuels, Lubricants, and Chemicals from Biomass. Accounts of Chemical Research, 2017, 50, 2589-2597.	7.6	159
343	Performance evaluation of gasoline alternatives using a thermodynamic spark-ignition engine model. Sustainable Energy and Fuels, 2017, 1, 1991-2005.	2.5	7
345	Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones. ChemSusChem, 2017, 10, 4150-4154.	3.6	66
346	New trends in sustainable nanocatalysis: Emerging use of earth abundant metals. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 39-45.	3.2	26
347	An overview of a novel concept in biomass pyrolysis: microwave irradiation. Sustainable Energy and Fuels, 2017, 1, 1664-1699.	2.5	107
348	Effect of BrÃ,nsted/Lewis Acid Ratio on Conversion of Sugars to 5â€Hydroxymethylfurfural over Mesoporous Nb and Nbâ€W Oxides. Chinese Journal of Chemistry, 2017, 35, 1529-1539.	2.6	26
349	Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Science and Technology, 2017, 51, 1189-1208.	1.4	9
350	The selective hydrogenolysis of C–O bonds in lignin model compounds by Pd–Ni bimetallic nanoparticles in ionic liquids. Dalton Transactions, 2017, 46, 11884-11889.	1.6	19
351	Kinetics of glycerol conversion to hydrocarbon fuels over Pd/Hâ€ZSMâ€5 catalyst. AICHE Journal, 2017, 63, 5445-5451.	1.8	7
352	Effects of indium on Ni/SiO2 catalytic performance in hydrodeoxygenation of anisole as model bio-oil compound: Suppression of benzene ring hydrogenation and C–C bond hydrogenolysis. Chinese Journal of Catalysis, 2017, 38, 1818-1830.	6.9	37
354	Catalytic Upgrading of Glycerol, Conversion of Biomass Derived Carbohydrates to Fuels and Catalysis in Depolymerization of Lignin. Green Energy and Technology, 2017, , 113-139.	0.4	0
355	Thermal fractionation and catalytic upgrading of lignocellulosic biomass to biofuels: Process synthesis and analysis. Renewable Energy, 2017, 114, 357-366.	4.3	41
356	Light olefins/bio-gasoline production from biomass. , 2017, , 87-148.		15
357	Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 2017, 328, 246-273.	6.6	196
358	Catalytic hydroprocessing of lignin β-O-4 ether bond model compound phenethyl phenyl ether over ruthenium catalysts. Biomass Conversion and Biorefinery, 2017, 7, 385-398.	2.9	17
359	Coproducing Value-Added Chemicals and Hydrogen with Electrocatalytic Glycerol Oxidation Technology: Experimental and Techno-Economic Investigations. ACS Sustainable Chemistry and Engineering, 2017, 5, 6626-6634.	3.2	68
360	Sodium Carboxymethylcellulose Derived Oxygenâ€Rich Porous Carbon Anodes for Highâ€Performance Lithium/Sodiumâ€ion Batteries. ChemElectroChem, 2017, 4, 500-507.	1.7	19
361	Product tunable behavior of carbon nanotubes-supported Ni–Fe catalysts for guaiacol hydrodeoxygenation. Applied Catalysis A: General, 2017, 529, 20-31.	2.2	153

#	Article	IF	CITATIONS
362	Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General, 2017, 531, 106-118.	2.2	38
363	Selective Oneâ€Pot Production of Highâ€Grade Dieselâ€Range Alkanes from Furfural and 2â€Methylfuran over Pd/NbOPO ₄ . ChemSusChem, 2017, 10, 747-753.	3.6	56
364	Advances in Upgrading Lignin Pyrolysis Vapors by Exâ€Situ Catalytic Fast Pyrolysis. Energy Technology, 2017, 5, 30-51.	1.8	29
365	Tuning component enrichment in amino acid functionalized (organo)silicas. Catalysis Communications, 2017, 88, 85-89.	1.6	10
366	An experimental and theoretical study of glycerol oxidation to 1,3â€dihydroxyacetone over bimetallic Ptâ€Bi catalysts. AICHE Journal, 2017, 63, 705-715.	1.8	60
367	Biomass to Liquid (BTL) Fuels. Springer Handbooks, 2017, , 1117-1132.	0.3	1
368	Origin of Algae and Their Plastids. , 2017, , 77-113.		2
369	Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers. Journal of Physical Chemistry C, 2018, 122, 6637-6647.	1.5	22
370	Analysis of the Long Time Behavior of Enzymatic Cellulose Hydrolysis Kinetics. International Journal of Chemical Reactor Engineering, 2018, 16, .	0.6	0
371	Versatile design and synthesis of mesoporous sulfonic acid catalysts. Science Bulletin, 2018, 63, 252-266.	4.3	16
372	Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor. Journal of Analytical and Applied Pyrolysis, 2018, 133, 147-153.	2.6	34
373	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8058-8062.	7.2	51
374	One-pot tandem conversion of monosaccharides and disaccharides to 2,5-diformylfuran using a Ru nanoparticle-supported H-beta catalyst. Catalysis Science and Technology, 2018, 8, 2870-2882.	2.1	26
375	Regioselective hydrogenolysis of alga-derived squalane over silica-supported ruthenium‑vanadium catalyst. Fuel Processing Technology, 2018, 176, 249-257.	3.7	31
376	An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chemistry, 2018, 20, 879-885.	4.6	54
377	Subcritical water hydrolysis of sugar beet pulp towards production of monosaccharide fraction. Industrial Crops and Products, 2018, 115, 32-39.	2.5	16
378	Impact of Hydrophobic Organohybrid Silicas on the Stability of Ni ₂ P Catalyst Phase in the Hydrodeoxygenation of Biophenols. ChemCatChem, 2018, 10, 2219-2231.	1.8	12
379	Evolution of CO2 capture technology between 2007 and 2017 through the study of patent activity. Applied Energy, 2018, 211, 1282-1296.	5.1	95

#	Article	IF	CITATIONS
380	Effect of Temperature and Transport on the Yield and Composition of Pyrolysis-Derived Bio-Oil from Glucose. Energy & Fuels, 2018, 32, 6008-6021.	2.5	25
381	Ash Deposition in Air-Blown Casification of Peat and Woody Biomass in a Fluidized-Bed Casifier. Energy & Fuels, 2018, 32, 6788-6796.	2.5	0
382	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie, 2018, 130, 8190-8194.	1.6	11
383	Optimization of Multiproduct Biorefinery Processes under Consideration of Biomass Supply Chain Management and Market Developments. Industrial & Engineering Chemistry Research, 2018, 57, 6980-6991.	1.8	33
384	Efficient Catalytic Hydrogenation of Butyl Levulinate to γ-Valerolactone over a Stable and Magnetic CuNiCoB Amorphous Alloy Catalyst. Energy & Fuels, 2018, 32, 5527-5535.	2.5	20
385	A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks. Green Chemistry, 2018, 20, 2018-2026.	4.6	44
386	Fast pyrolysis oil stabilization kinetics over a Ni-Cu catalyst using propionic acid as a model compound. Applied Catalysis B: Environmental, 2018, 233, 46-57.	10.8	14
387	Nanocatalyst for Biofuel Production: A Review. Biofuel and Biorefinery Technologies, 2018, , 39-62.	0.1	11
388	Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chemistry, 2018, 20, 2027-2037.	4.6	99
389	Biomass high energy density fuel transformed from α-pinene catalyzed by Brönsted-Lewis acidic heteropoly inorganic-organic salt. Renewable Energy, 2018, 123, 218-226.	4.3	14
390	Renewable fuel production from hydropyrolysis of residual biomass using molybdenum carbide-based catalysts: An analytical Py-GC/MS investigation. Catalysis Today, 2018, 302, 161-168.	2.2	23
391	MgFe hydrotalcites-derived layered structure iron molybdenum sulfide catalysts for eugenol hydrodeoxygenation to produce phenolic chemicals. Journal of Energy Chemistry, 2018, 27, 600-610.	7.1	24
392	Fuels from Pyrolysis. , 2018, , 575-605.		0
393	Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catalysis Reviews - Science and Engineering, 2018, 60, 1-70.	5.7	145
394	Catalytic Tandem Reaction for the Production of Jet and Diesel Fuel Range Alkanes. Energy Technology, 2018, 6, 1060-1066.	1.8	11
395	Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chemical Engineering Journal, 2018, 335, 120-132.	6.6	79
396	Fermentation, thermochemical and catalytic processes in the transformation of biomass through efficient biorefineries. Catalysis Today, 2018, 302, 61-72.	2.2	58
397	Life cycle analysis of a combined CO2 capture and conversion membrane reactor. Journal of Membrane Science, 2018, 549, 142-150.	4.1	20

#	ARTICLE	IF	CITATIONS
398	Active site structure of a lithium phosphate catalyst for the isomerization of 2,3-epoxybutane to 3-buten-2-ol. Molecular Catalysis, 2018, 445, 133-141.	1.0	0
399	Hydrodeoxygenation of fatty acid methyl ester in gas oil blend–NiMoS/alumina catalyst. Green Processing and Synthesis, 2018, 7, 260-267.	1.3	7
400	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catalysis, 2018, 8, 148-187.	5.5	267
401	Selective hydrogenation of levulinic acid into γ-valerolactone over Cu/Ni hydrotalcite-derived catalyst. Catalysis Today, 2018, 309, 189-194.	2.2	63
402	Design and Synthesis of Powerful Capsule Catalysts Aimed at Applications in C1 Chemistry and Biomass Conversion. Chemical Record, 2018, 18, 4-19.	2.9	20
403	Bifunctional role of Pd/MMT-K 10 catalyst in direct transformation of furfural to 1,2-pentanediol. Catalysis Today, 2018, 309, 195-201.	2.2	40
404	Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH. ChemistrySelect, 2018, 3, 11680-11686.	0.7	11
405	Aqueousâ€Phase Transformation of Glucose into Hydroxymethylfurfural and Levulinic Acid by Combining Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2019, 12, 924-934.	3.6	51
406	Bioadvantaged Nylon from Renewable Muconic Acid: Synthesis, Characterization, and Properties. ACS Symposium Series, 2018, , 355-367.	0.5	6
407	Profiling the short-lived cationic species generated during catalytic dehydration of short-chain alcohols. Communications Chemistry, 2018, 1, .	2.0	2
408	Enhanced Transfer Hydrogenation Activity of Zrâ€Doped Mesoporous Silica through Solâ€Gel Method for the Reduction of Biomassâ€Derived Unsaturated Carbonâ€Oxygen Bonds. ChemistrySelect, 2018, 3, 11071-11080.	0.7	8
409	Prediction of catalytic hydro conversion of normal heptane over catalysts using multi-layer perceptron artificial neural network (ANN-MLP). Petroleum Science and Technology, 2018, 36, 1875-1882.	0.7	6
410	Selective Capture of Phenol from Biofuel Using Protonated Faujasite Zeolites with Different Si/Al Ratios. Journal of Physical Chemistry C, 2018, 122, 26419-26429.	1.5	41
411	Hydroprocessing of low-temperature coal tar to produce jet fuel. RSC Advances, 2018, 8, 23663-23670.	1.7	12
412	Technological Aspects of Lignocellulose Conversion into Biofuels: Key Challenges and Practical Solutions. , 2018, , 117-154.		1
413	From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47, 8263-8306.	18.7	230
414	Efficient visible-light-driven depolymerization of oxidized lignin to aromatics catalyzed by an iridium complex immobilized on mesocellular silica foams. Applied Catalysis B: Environmental, 2018, 237, 366-372.	10.8	47
415	Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation. Chemical Communications, 2018, 54, 6140-6143.	2.2	77

#	Article	IF	CITATIONS
416	Friedel–Crafts Alkylation over Zr-Mont Catalyst for the Production of Diesel Fuel Precursors. ACS Omega, 2018, 3, 5491-5501.	1.6	16
417	Low-temperature and solvent-free production of biomass-derived diesel-range C17 precursor via one-pot cascade acylation–alkylation over Sn4+-montmorillonite. Journal of Industrial and Engineering Chemistry, 2018, 66, 325-332.	2.9	12
418	Hydrodeoxygenation of biomass-derived oxygenates over metal carbides: from model surfaces to powder catalysts. Green Chemistry, 2018, 20, 2679-2696.	4.6	80
419	Promoting Effect of ZSM-5 Catalyst on Carbonization via Hydrothermal Conversion of Sewage Sludge. ACS Sustainable Chemistry and Engineering, 2018, 6, 9461-9469.	3.2	20
420	Highly Efficient Transfer Hydrogenation of Levulinate Esters to γ-Valerolactone over Basic Zirconium Carbonate. Industrial & Engineering Chemistry Research, 2018, 57, 10126-10136.	1.8	31
421	Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Science and Technology, 2018, 52, 1377-1394.	1.4	17
422	Porous Zrâ€Bibenzyldiphosphonate Nanohybrid with Extra Hydroxy Species for Enhancive Upgrading of Biomassâ€Based Levulinates. ChemistrySelect, 2018, 3, 4252-4261.	0.7	3
423	Conversion of ethyl levulinate to γâ€valerolactone catalyzed by the new Zrâ€containing organic–inorganic hybrid catalysts. Journal of the Chinese Chemical Society, 2018, 65, 1398-1406.	0.8	3
424	Fructose Transformations in Ethanol using Carbon Supported Polyoxometalate Acidic Solids for 5â€Ethoxymethylfurfural Production. ChemCatChem, 2018, 10, 3746-3753.	1.8	10
425	Vapor-Phase Hydrogenation of Levulinic Acid to Î ³ -Valerolactone Over Bi-Functional Ni/HZSM-5 Catalyst. Frontiers in Chemistry, 2018, 6, 285.	1.8	30
426	Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts. Catalysts, 2018, 8, 59.	1.6	16
427	An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technologies and Environmental Policy, 2018, 20, 1615-1630.	2.1	336
428	Macroporous–mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry, 2018, 20, 3634-3642.	4.6	19
429	Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Industrial & Engineering Chemistry Research, 2018, 57, 10754-10785.	1.8	71
430	Single-Pot Reductive Rearrangement of Furfural to Cyclopentanone over Silica-Supported Pd Catalysts. ACS Omega, 2018, 3, 9860-9871.	1.6	35
431	Integrated diesel production from lignocellulosic sugars <i>via</i> oleaginous yeast. Green Chemistry, 2018, 20, 4349-4365.	4.6	48
432	Driving towards cost-competitive biofuels through catalytic fast pyrolysis by rethinking catalyst selection and reactor configuration. Energy and Environmental Science, 2018, 11, 2904-2918.	15.6	95
433	Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A. Fuel Processing Technology, 2018, 177, 345-352.	3.7	19

#	Article	IF	CITATIONS
434	One-pot catalytic hydrolysis/hydrogenation of cellobiose into hexitols over Ru/Al-MCM-48. Microporous and Mesoporous Materials, 2018, 271, 186-195.	2.2	4
435	Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron. Renewable Energy, 2019, 130, 305-318.	4.3	34
436	In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean Journal of Chemical Engineering, 2019, 36, 1235-1242.	1.2	20
437	Formic acid as a hydrogen source for the iridium-catalyzed reductive amination of levulinic acid and 2-formylbenzoic acid. Catalysis Science and Technology, 2019, 9, 4077-4082.	2.1	21
438	Molybdenum Oxide-Modified Iridium Catalysts for Selective Production of Renewable Oils for Jet and Diesel Fuels and Lubricants. ACS Catalysis, 2019, 9, 7679-7689.	5.5	39
439	Synergistic effects and kinetic evidence of a transition metal-tin modified Beta zeolite on conversion of Miscanthus to lactic acid. Applied Catalysis A: General, 2019, 583, 117126.	2.2	21
440	Insights on the Oneâ€Pot Formation of 1,5â€Pentanediol from Furfural with Coâ~'Al Spinelâ€based Nanoparticles as an Alternative to Noble Metal Catalysts. ChemCatChem, 2019, 11, 4944-4953.	1.8	33
441	One-pot sol–gel synthesis of a phosphated TiO ₂ catalyst for conversion of monosaccharide, disaccharides, and polysaccharides to 5-hydroxymethylfurfural. New Journal of Chemistry, 2019, 43, 12483-12493.	1.4	25
442	Branched Bio‣ubricant Base Oil Production through Aldol Condensation. ChemSusChem, 2019, 12, 4780-4785.	3.6	26
443	The dissociation mechanism of processive cellulases. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23061-23067.	3.3	40
444	Reaction Kinetics of Vanillin Hydrodeoxygenation in Acidic and Nonacidic Environments Using Bimetallic PdRh/Al ₂ O ₃ Catalyst. Energy & Fuels, 2019, 33, 11712-11723.	2.5	7
445	Molecular Modelling of Co-processing Biomass Pyrolysis Oil with Vacuum Gasoil in an Oil Refinery Fluid Catalytic Cracking Unit. Computer Aided Chemical Engineering, 2019, 46, 991-996.	0.3	1
446	Formation of Five-Membered Carbocycles from <scp>d</scp> -Glucose: A Concise Synthesis of 4-Hydroxy-2-(hydroxymethyl)cyclopentenone. Bulletin of the Chemical Society of Japan, 2019, 92, 1324-1328.	2.0	4
447	Tailoring diesel bioblendstock from integrated catalytic upgrading of carboxylic acids: a "fuel property first―approach. Green Chemistry, 2019, 21, 5813-5827.	4.6	25
448	Contribution of Fourier transform mass spectrometry to bio-oil study. , 2019, , 679-733.		7
449	Critical catalytic routes: from the conventional bioethanol production model toward the integrated biorefinery concept. Current Opinion in Green and Sustainable Chemistry, 2019, 20, 33-38.	3.2	4
450	Effect of Re content and support in the liquid phase conversion of furfural to furfuryl alcohol and 2-methyl furan over ReOx catalysts. Fuel, 2019, 242, 532-544.	3.4	32
451	Selective hydrodecarboxylation of fatty acids into long-chain hydrocarbons catalyzed by Pd/Al-SBA-15. Microporous and Mesoporous Materials, 2019, 280, 88-96.	2.2	20

#	Article	IF	CITATIONS
452	Ironâ€Catalysed Switchable Synthesis of Pyrrolidines <i>vs</i> Pyrrolidinones by Reductive Amination of Levulinic Acid Derivatives <i>via</i> Hydrosilylation. Advanced Synthesis and Catalysis, 2019, 361, 1781-1786.	2.1	43
453	Catalytic thermolysis of oak sawdust using Fe-based catalyst and CO2. Journal of CO2 Utilization, 2019, 32, 269-275.	3.3	17
454	Production of biojet fuels from biomass. , 2019, , 127-165.		4
455	Synthesis of γ-valerolactone from different biomass-derived feedstocks: Recent advances on reaction mechanisms and catalytic systems. Renewable and Sustainable Energy Reviews, 2019, 112, 140-157.	8.2	94
456	Direct ethanol condensation to diethyl acetal in the vapour phase at atmospheric pressure over CuNP/SBA-15 catalysts. New Journal of Chemistry, 2019, 43, 10003-10011.	1.4	11
457	Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol. Catalysis Science and Technology, 2019, 9, 3525-3536.	2.1	9
458	Effect of blending ratio on coke morphology and composition in co-coking of vacuum residue and bio-tar. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104629.	2.6	11
459	Green diesel production from upgrading of cashew nut shell liquid. Renewable and Sustainable Energy Reviews, 2019, 111, 303-313.	8.2	40
460	Complete Aqueous Hydrogenation of 5-Hydroxymethylfurfural at Room Temperature over Bimetallic RuPd/Graphene Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 10670-10678.	3.2	57
461	The effect of aerosol-deposited ash components on a cobalt-based Fischer–Tropsch catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 231-240.	0.8	0
462	Mesoporous Aluminosilicate Nanofibers with a Low Si/Al Ratio as Acidic Catalyst for Hydrodeoxygenation of Phenol. ChemCatChem, 2019, 11, 4054-4063.	1.8	8
463	Biomass-derived aviation fuels: Challenges and perspective. Progress in Energy and Combustion Science, 2019, 74, 31-49.	15.8	166
464	Hydrotreating of Jatropha-derived Bio-oil over Mesoporous Sulfide Catalysts to Produce Drop-in Transportation Fuels. Catalysts, 2019, 9, 392.	1.6	11
465	Selective hydroconversion of levulinic acid to γ-valerolactone or 2-methyltetrahydrofuran over silica-supported cobalt catalysts. Catalysis Science and Technology, 2019, 9, 2291-2304.	2.1	55
466	Categorization of tars from fast pyrolysis of pure lignocellulosic compounds at high temperature. Renewable Energy, 2019, 141, 751-759.	4.3	29
467	Pyridine immobilised on magnetic silica as an efficient solid base catalyst for Knoevenagel condensation of furfural with acetyl acetone. Catalysis Communications, 2019, 124, 81-85.	1.6	17
468	Co-processing of hydrothermal liquefaction algal bio-oil and petroleum feedstock to fuel-like hydrocarbons via fluid catalytic cracking. Fuel Processing Technology, 2019, 188, 164-171.	3.7	48
469	Phosphonic acid modifiers for enhancing selective hydrodeoxygenation over Pt catalysts: The role of the catalyst support. Journal of Catalysis, 2019, 372, 311-320.	3.1	26

#	Article	IF	CITATIONS
470	Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catalysis, 2019, 9, 4054-4064.	5.5	106
471	<i>Ab initio</i> screening of cation-exchanged zeolites for biofuel purification. Molecular Systems Design and Engineering, 2019, 4, 882-892.	1.7	34
472	Hydrogen-free process to convert lipids into bio-jet fuel and green diesel over niobium phosphate catalyst in one-step. Chemical Engineering Journal, 2019, 370, 98-109.	6.6	48
473	Pilot scale recovery of lignin from black liquor and advanced characterization of the final product. Separation and Purification Technology, 2019, 221, 226-235.	3.9	28
474	Catalytic Reduction of Cyclic Ethers with Hydrosilanes. Chemistry - an Asian Journal, 2019, 14, 2048-2066.	1.7	14
475	In situ synthesis of biomass-derived Ni/C catalyst by self-reduction for the hydrogenation of levulinic acid to Î ³ -valerolactone. Journal of Energy Chemistry, 2019, 37, 204-214.	7.1	53
476	In-situ synthesis of single-atom Ir by utilizing metal-organic frameworks: An acid-resistant catalyst for hydrogenation of levulinic acid to γ-valerolactone. Journal of Catalysis, 2019, 373, 161-172.	3.1	109
477	Production of jet fuel and green diesel range biohydrocarbons by hydroprocessing of soybean oil over niobium phosphate catalyst. Fuel, 2019, 245, 458-466.	3.4	77
478	Incorporating Hierarchy into Conventional Zeolites for Catalytic Biomass Conversions: A Review. Catalysts, 2019, 9, 127.	1.6	64
479	Hydroconversion mechanism of biomass-derived γ-valerolactone. Catalysis Today, 2019, 336, 50-62.	2.2	23
480	Synergistic effect of Mo–W carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons. Catalysis Science and Technology, 2019, 9, 1387-1397.	2.1	53
481	Catalyst-free synthesis of biodiesel precursors from biomass-based furfuryl alcohols in the presence of H ₂ O and air. Green Chemistry, 2019, 21, 6326-6334.	4.6	9
482	Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts. Catalysis Science and Technology, 2019, 9, 6253-6273.	2.1	28
483	Selective hydrogenation of 5-HMF to 2,5-DMF over a magnetically recoverable non-noble metal catalyst. Green Chemistry, 2019, 21, 6390-6406.	4.6	59
484	Ketal Sugar Conversion Into Green Hydrocarbons by Faujasite Zeolite in a Typical Catalytic Cracking Process. Frontiers in Chemistry, 2019, 7, 720.	1.8	6
485	Catalytic Conversion of Biomassâ€Derived Carbohydrates into Levulinic Acid Assisted by a Cationic Surface Active Agent. ChemistrySelect, 2019, 4, 13021-13024.	0.7	1
486	Cellulose hydrolysis catalysed by mesoporous activated carbons functionalized under mild conditions. SN Applied Sciences, 2019, 1, 1.	1.5	12
487	The Effects of Dopants on the Cu–ZrO ₂ Catalyzed Hydrogenation of Levulinic Acid. Journal of Physical Chemistry C, 2019, 123, 7879-7888.	1.5	21

#	Article	IF	CITATIONS
488	Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation. Applied Catalysis A: General, 2019, 571, 118-126.	2.2	37
489	Mechanistic Investigation on Catalytic Deoxygenation of Phenol as a Model Compound of Biocrude Under Methane. ACS Sustainable Chemistry and Engineering, 2019, 7, 1512-1523.	3.2	13
490	Subcritical water hydrolysis of rice straw in a semi-continuous mode. Journal of Cleaner Production, 2019, 209, 386-397.	4.6	54
491	Blending Real World Gasoline with Biofuel in a Direct Conversion Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 249-257.	3.2	4
492	High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3â"x/C catalyst. Fuel Processing Technology, 2019, 183, 19-26.	3.7	37
493	The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Progress in Energy and Combustion Science, 2019, 71, 1-80.	15.8	316
494	Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects. Bioresource Technology, 2019, 274, 145-152.	4.8	102
495	A review of catalysts used in microwave assisted pyrolysis and gasification. Bioresource Technology, 2019, 277, 179-194.	4.8	84
496	Hydrothermal liquefaction of cellulose in ammonia/water. Bioresource Technology, 2019, 278, 311-317.	4.8	60
497	A genetically-encoded synthetic self-assembled multienzyme complex of lipase and P450 fatty acid decarboxylase for efficient bioproduction of fatty alkenes. Bioresource Technology, 2019, 272, 451-457.	4.8	19
498	Catalytic peroxide fractionation processes for the green biorefinery of wood. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 717-735.	0.8	8
499	Taskâ€5pecific Catalyst Development for Ligninâ€First Biorefinery toward Hemicellulose Retention or Feedstock Extension. ChemSusChem, 2019, 12, 944-954.	3.6	25
500	The Conversion of Jatropha Oil into Jet Fuel on NiMo/Alâ€MCMâ€41 Catalyst: Intrinsic Synergic Effects between Ni and Mo. Energy Technology, 2019, 7, 1800809.	1.8	23
501	Selective hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Co3O4 catalyst by controlled reduction. Journal of Energy Chemistry, 2019, 30, 34-41.	7.1	70
502	Controlling the growth of activated carbon supported nickel phosphide catalysts via adjustment of surface group distribution for hydrodeoxygenation of palmitic acid. Catalysis Today, 2019, 319, 182-190.	2.2	24
503	Well-distributed cobalt-based catalysts derived from layered double hydroxides for efficient selective hydrogenation of 5-hydroxymethyfurfural to 2,5-methylfuran. Catalysis Today, 2019, 319, 128-138.	2.2	39
504	Synthesis of high-density liquid fuel via Diels-Alder reaction of dicyclopentadiene and lignocellulose-derived 2-methylfuran. Catalysis Today, 2019, 319, 139-144.	2.2	23
505	Selective elimination of phenol from hydrocarbons by zeolites and silica-based adsorbents—Impact of the textural and acidic properties. Journal of Hazardous Materials, 2020, 384, 121397.	6.5	24

#	Article	IF	CITATIONS
506	Highly selective hydrogenation of furfural and levulinic acid over Ni0.09Zn/NC600 derived from ZIFW-8. Molecular Catalysis, 2020, 480, 110651.	1.0	7
507	One-Pot Hydrogenation of Furfural into Tetrahydrofurfuryl Alcohol under Ambient Conditions over PtNi Alloy Catalyst. Energy & Fuels, 2020, 34, 2178-2184.	2.5	37
508	Pentanoic acid from γ-valerolactone and formic acid using bifunctional catalysis. Green Chemistry, 2020, 22, 1171-1181.	4.6	33
509	(Non-)Kolbe electrolysis in biomass valorization – a discussion of potential applications. Green Chemistry, 2020, 22, 286-301.	4.6	58
510	One-pot direct conversion of levulinic acid into high-yield valeric acid over a highly stable bimetallic Nb-Cu/Zr-doped porous silica catalyst. Green Chemistry, 2020, 22, 766-787.	4.6	39
511	Exploration of a novel biorefinery based on sequential hydropyrolysis and anaerobic digestion of algal biofilm: a comprehensive characterization of products for energy and chemical production. Sustainable Energy and Fuels, 2020, 4, 1481-1495.	2.5	29
512	Heterogeneous (de)chlorination-enabled control of reactivity in the liquid-phase synthesis of furanic biofuel from cellulosic feedstock. Green Chemistry, 2020, 22, 637-645.	4.6	32
513	Lowering the pyrolysis temperature of lignocellulosic biomass by H2SO4 loading for enhancing the production of platform chemicals. Chemical Engineering Journal, 2020, 385, 123809.	6.6	34
514	Fuels and fuel additives from furfural derivatives via etherification and formation of methylfurans. Fuel Processing Technology, 2020, 200, 106308.	3.7	50
515	Acidic ion functionalized N-doped hollow carbon for esterification of levulinic acid. New Journal of Chemistry, 2020, 44, 1588-1593.	1.4	6
516	Hydrocarbons Extracted from Advanced Pyrolysis Bio-Oils: Characterization and Refining. Energy & Fuels, 2020, 34, 483-490.	2.5	11
517	Aqueous-Phase Hydrogenation of Levulinic Acid Using Formic Acid as a Sustainable Reducing Agent Over Pt Catalysts Supported on Mesoporous Zirconia. ACS Sustainable Chemistry and Engineering, 2020, 8, 393-402.	3.2	47
518	Synthesis of Dualâ€Responsive Materials with Reversible and Switchable Phaseâ€Transition Properties for Highâ€Performance Cellulose Enzymatic Hydrolysis. ChemSusChem, 2020, 13, 663-667.	3.6	12
519	Conversion of guaiacol as lignin model component using acid-treated, multi-walled carbon nanotubes supported Ru–MnO bimetallic catalysts. Canadian Journal of Chemistry, 2020, 98, 57-65.	0.6	9
520	Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. Chemical Research in Chinese Universities, 2020, 36, 1006-1012.	1.3	14
521	Biofuel purification: Coupling experimental and theoretical investigations for efficient separation of phenol from aromatics by zeolites. Chemical Engineering Journal, 2020, 402, 126264.	6.6	35
522	Challenges and future prospects in heterogeneous catalysis for biorefinery technologies. , 2020, , 225-250.		3
523	MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bioâ€Based Furfural: A Miniâ€Review. ChemistrySelect, 2020, 5, 13681-13689.	0.7	10

#	Article	IF	Citations
524	Thermochemical conversion routes of hydrogen production from organic biomass: processes, challenges and limitations. Biomass Conversion and Biorefinery, 2023, 13, 8509-8534.	2.9	16
525	Conversion of Glucose into 5-Hydroxymethylfurfural and Levulinic Acid Catalyzed by SO ₄ ^{2–} /ZrO ₂ in a Biphasic Solvent System. Energy & Fuels, 2020, 34, 11041-11049.	2.5	48
526	Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 2020, 209, 106528.	3.7	86
527	First-principle investigation on catalytic hydrogenation of benzaldehyde over Pt-group metals. Catalysis Today, 2022, 388-389, 208-215.	2.2	12
528	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	2.1	42
529	Ni–Fe Catalysts Supported on γ-Al ₂ O ₃ /HZSM-5 for Transformation of Palmitic Acid into Hydrocarbon Fuel. Industrial & Engineering Chemistry Research, 2020, 59, 17373-17386.	1.8	28
530	N-Aryl Pyrrole Synthesis from Biomass-Derived Furans and Arylamine over Lewis Acidic Hf-Doped Mesoporous SBA-15 Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 12161-12167.	3.2	21
531	Investigation of the reaction mechanism of the hydrodeoxygenation of propionic acid over a Rh(1 1 1) surface: A first principles study. Journal of Catalysis, 2020, 391, 98-110.	3.1	8
532	Catalytic Hydrotreatment of β-O-4 Ether in Lignin: Cleavage of the C–O Bond and Hydrodeoxygenation of Lignin-Derived Phenols in One Pot. ACS Sustainable Chemistry and Engineering, 2020, 8, 14511-14523.	3.2	37
533	<i>p</i> -Xylene from 2,5-dimethylfuran and acrylic acid using zeolite in a continuous flow system. Green Chemistry, 2020, 22, 7398-7405.	4.6	42
534	Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chemical Reviews, 2020, 120, 11370-11419.	23.0	185
535	Biomass Catalytic Pyrolysis over Zeolite Catalysts with an Emphasis on Porosity and Acidity: A State-of-the-Art Review. Energy & Fuels, 2020, 34, 11771-11790.	2.5	61
536	One-pot synthesis of pyrrolidones from levulinic acid and amines/nitroarenes/nitriles over the Ir-PVP catalyst. Green Chemistry, 2020, 22, 7760-7764.	4.6	26
537	Production of Aromatics from <i>n</i> -Butanol over HZSM-5, H-β, and γ-Al ₂ O ₃ : Role of Silica/Alumina Mole Ratio and Effect of Pressure. ACS Sustainable Chemistry and Engineering, 2020, 8, 15230-15242.	3.2	13
538	Sugar dehydration to 5-hydroxymethylfurfural in mixtures of water/[Bmim]Cl catalyzed by iron sulfate. New Journal of Chemistry, 2020, 44, 16877-16890.	1.4	8
539	Assessing the Potential of Amorphous Silica Surfaces for the Removal of Phenol from Biofuel: A Density Functional Theory Investigation. Journal of Physical Chemistry C, 2020, 124, 20262-20269.	1.5	11
540	<i>Operando</i> S/TEM Reactions of Pt/TiO ₂ Catalysts for Catalytic Fast Pyrolysis. Microscopy and Microanalysis, 2020, 26, 1696-1697.	0.2	2
541	Feasible Synthesis of a Bifuran-Based Monomer for Polymer Synthesis from a Hemicellulose-Derived Platform. Industrial & Engineering Chemistry Research, 2020, 59, 19876-19883.	1.8	12

#	Article	IF	Citations
542	Furfuryl alcohol—a promising platform chemical. , 2020, , 323-353.		6
543	Ordered Mesoporous Ni–P Amorphous Alloy Nanowire Arrays: High-Efficiency Catalyst for Production of Polyol from Sugar. ACS Applied Materials & Interfaces, 2020, 12, 26101-26112.	4.0	25
544	Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons. Bioresource Technology, 2020, 310, 123473.	4.8	199
545	Selective hydrogenation of bio-based furfural over Co-based catalysts derived from zeolitic imidazolate frame materials. Molecular Catalysis, 2020, 492, 111007.	1.0	6
546	Aviation biofuel range cycloalkane from renewables: Liquid-phase catalytic conversion of menthol on niobia-supported catalysts. Fuel, 2020, 277, 118288.	3.4	4
548	Toward estimation of upgrading of n-heptane over catalysts using robust technique. Petroleum Science and Technology, 2020, 38, 486-492.	0.7	1
549	Catalytic Production of Jet Fuels from Biomass. Molecules, 2020, 25, 802.	1.7	49
550	Experimental and Computational Studies of Carbon–Carbon Bond Formation via Ketonization and Aldol Condensation over Site-Isolated Zirconium Catalysts. ACS Catalysis, 2020, 10, 4566-4579.	5.5	33
551	Hydrodeoxygenation Model Compounds γ-Heptalactone and γ-Nonalactone: Density from 293 to 473 K and H ₂ Solubility from 479 to 582 K. Journal of Chemical & Engineering Data, 2020, 65, 2764-2773.	1.0	2
552	Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil. Polymers, 2020, 12, 632.	2.0	15
553	Synthesis of Valeric Acid by Selective Electrocatalytic Hydrogenation of Biomass-Derived Levulinic Acid. Catalysts, 2020, 10, 692.	1.6	16
554	Framing in Renewable Energy Policies: A Glossary. Energies, 2020, 13, 2871.	1.6	19
555	Chemocatalytic pathways for high-efficiency production of 2,5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural. , 2020, , 377-394.		11
556	Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Topics in Catalysis, 2020, 63, 229-242.	1.3	8
557	Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 4872-4882.	6.6	48
558	Elucidating the role of solvents in acid catalyzed dehydration of biorenewable hydroxy-lactones. Reaction Chemistry and Engineering, 2020, 5, 651-662.	1.9	7
559	Value-added chemicals and materials from lignocellulosic biomass. , 2020, , 367-436.		6
560	Î ³ -Valerolactone Production from Furfural Residue with Formic Acid as the Sole Hydrogen Resource via an Integrated Strategy on Au-Ni/ZrO ₂ . Industrial & Engineering Chemistry Research, 2020, 59, 17228-17238.	1.8	15

#	Article	IF	CITATIONS
561	A hybrid pathway to biojet fuel <i>via</i> 2,3-butanediol. Sustainable Energy and Fuels, 2020, 4, 3904-3914.	2.5	22
562	Novel Micro-Mesoporous Composite ZSM-5 Catalyst for Aromatics Production by Catalytic Fast Pyrolysis of Lignin Residues. Catalysts, 2020, 10, 378.	1.6	8
563	Phosphorusâ€Modified Mesoporous Inorganic Materials for Production of Hydrocarbon Fuels and Valueâ€Added Chemicals. ChemCatChem, 2020, 12, 4224-4241.	1.8	11
564	Rational Design of Mixed Solvent Systems for Acid-Catalyzed Biomass Conversion Processes Using a Combined Experimental, Molecular Dynamics and Machine Learning Approach. Topics in Catalysis, 2020, 63, 649-663.	1.3	11
565	Continuous extraction of phenol and cresols from advanced pyrolysis oils. SN Applied Sciences, 2020, 2, 1.	1.5	6
566	Resolving challenges in biomass catalytic pyrolysis by co-optimization of process and catalyst: Removal of heavy fraction in pyrolysis vapours and application of novel zeolite catalyst with high thermal conductivity. Renewable Energy, 2020, 156, 951-963.	4.3	14
567	Lignocellulose-derived platform molecules. , 2020, , 1-31.		6
568	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	2.2	43
569	One-pot hydrodeoxygenation of biomass furan derivatives into decane under mild conditions over Pd/C combined with phosphotungstic acid. Green Chemistry, 2020, 22, 2889-2900.	4.6	27
570	Hollow ni-p amorphous alloy nanospheres: An efficient catalyst for sugars hydrogenation to polyols. Catalysis Today, 2021, 365, 282-290.	2.2	11
571	Processes of catalytic oxidation for the production of chemicals from softwood biomass. Catalysis Today, 2021, 375, 132-144.	2.2	16
572	Steam Explosion: Hydrothermal Pretreatment in the Production of an Adsorbent Material Using Coconut Husk. Bioenergy Research, 2021, 14, 153-162.	2.2	12
573	Investigation of catalytic hydrodeoxygenation of anisole as bioâ€oil model compound over <scp>Niâ€Mo</scp> /(scp>TiO ₂ and <scp>Niâ€V</scp> /(scp>TiO ₂ catalysts: Synthesis, kinetic, and reaction pathways studies. Canadian Journal of Chemical Engineering, 2021, 99, 1094-1106.	0.9	6
574	Selective hydrogenolysis of aryl ether bond over Ru-Fe bimetallic catalyst. Catalysis Today, 2021, 365, 199-205.	2.2	14
575	Role of metal support during ru-catalysed hydrodeoxygenation of biocrude oil. Applied Catalysis B: Environmental, 2021, 281, 119470.	10.8	54
576	Effect of TiO2 in supported NiWS catalysts for the hydrodeoxygenation of guaiacol. Catalysis Today, 2021, 377, 145-156.	2.2	15
577	Catalytic Hydroprocessing of White Pine Pyrolysis Bio-Oil over Cobalt-Molybdenum Carbide in a Continuous Packed-Bed Reactor. Bioenergy Research, 2021, 14, 588-597.	2.2	1
578	Zirconium and hafnium polyhedral oligosilsesquioxane complexes – green homogeneous catalysts in the formation of bio-derived ethers <i>via</i> a MPV/etherification reaction cascade. Catalysis Science and Technology, 2021, 11, 211-218.	2.1	16

#	Article	IF	CITATIONS
579	Hydrodeoxygenation of guaiacol over Pt-Ga-mesoporous catalysts. Microporous and Mesoporous Materials, 2021, 312, 110815.	2.2	9
580	Microwave-assisted condensation of bio-based hydroxymethylfurfural and acetone over recyclable hydrotalcite-related materials. Applied Catalysis B: Environmental, 2021, 282, 119599.	10.8	17
581	Simultaneous electrocatalytic hydrogenation of aldehydes and phenol over carbon-supported metals. Journal of Applied Electrochemistry, 2021, 51, 27-36.	1.5	21
582	Surface structure sensitivity of hydrodeoxygenation of biomass-derived organic acids over palladium catalysts: a microkinetic modeling approach. Catalysis Science and Technology, 2021, 11, 6163-6181.	2.1	4
583	Competitive adsorption of phenol and toluene onto silica-supported transition metal clusters for biofuel purification. Molecular Systems Design and Engineering, 2021, 6, 817-824.	1.7	7
584	Advances in nanotechnology for biofuel production. , 2021, , 533-562.		0
585	Catalytic Conversion of Alcohols into Value-Added Products. , 2021, , 505-590.		0
586	Selective catalytic synthesis of short chain oxymethylene ethers by a heteropoly acid – a reaction parameter and kinetic study. Catalysis Science and Technology, 2021, 11, 1974-1980.	2.1	4
587	Integrated conversion of cellulose to high-density aviation fuel. , 2021, , 355-382.		0
588	Synthesis of amides and esters containing furan rings under microwave-assisted conditions. Open Chemistry, 2021, 19, 265-280.	1.0	3
589	Engineering of zeolite crystals for catalytic cracking of triglycerides to renewable hydrocarbon fuels and chemicals: a review. Biomass Conversion and Biorefinery, 2023, 13, 3521-3541.	2.9	2
591	Trimetallic Cu–Ni–Zn/H-ZSM-5 Catalyst for the One-Pot Conversion of Levulinic Acid to High-Yield 1,4-Pentanediol under Mild Conditions in an Aqueous Medium. ACS Catalysis, 2021, 11, 2846-2864.	5.5	61
592	Hydrogen from Water is more than a Fuel: Hydrogenations and Hydrodeoxygenations for a Biobased Economy. Chemical Record, 2021, 21, 2277-2289.	2.9	7
593	Synergistic benefits for hydrogen production through CO2-cofeeding catalytic pyrolysis of cellulosic biomass waste. Cellulose, 2021, 28, 4781-4792.	2.4	6
594	Transformation of bioâ€derived levulinic acid to gammaâ€valerolactone by cyclopentadienone ruthenium(0) catalyst precursors bearing simple supporting ligands. Applied Organometallic Chemistry, 2021, 35, e6243.	1.7	3
595	Organic Modifiers Promote Furfuryl Alcohol Ring Hydrogenation via Surface Hydrogen-Bonding Interactions. ACS Catalysis, 2021, 11, 3730-3739.	5.5	14
596	Batch and Continuousâ€Flow Preparation of Biomassâ€Derived Furfural Acetals over a TiO ₂ Nanoparticleâ€Exfoliated Montmorillonite Composite Catalyst. ChemSusChem, 2021, 14, 2341-2351.	3.6	16
597	Efficient Conversion of Glucose to 5-Hydroxymethylfurfural over a Sn-Modified SAPO-34 Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 5838-5851.	1.8	24

#	Article	IF	CITATIONS
598	Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions. , 0, , .		4
599	Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions. European Journal of Sustainable Development Research, 2021, 5, em0154.	0.4	9
600	Characteristics and Evolution of Nitrogen in the Heavy Components of Algae Pyrolysis Bio-Oil. Environmental Science & Technology, 2021, 55, 6373-6385.	4.6	39
601	Application of 2-methylfuran and 5-methylfurfural for the synthesis of C16 fuel precursor over fibrous silica-supported heteropoly acid-functionalized ionic liquid. Korean Journal of Chemical Engineering, 2021, 38, 1170-1178.	1.2	4
602	Enhanced glucose production from cellulose and corn stover hydrolysis by molten salt hydrates pretreatment. Fuel Processing Technology, 2021, 215, 106739.	3.7	27
603	Preparation of low-nitrogen and high-quality bio-oil from microalgae catalytic pyrolysis with zeolites and activated carbon. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105182.	2.6	27
604	Biomass supply chain equipment for renewable fuels production: A review. Biomass and Bioenergy, 2021, 148, 106054.	2.9	19
605	Conversion of levulinic acid to valuable chemicals: a review. Journal of Chemical Technology and Biotechnology, 2021, 96, 3009-3024.	1.6	29
606	Modification of commercial Y zeolites by alkaline-treatment for improved performance in the isomerization of glucose to fructose. Molecular Catalysis, 2021, 510, 111686.	1.0	12
607	Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metalâ^'Liquid Interfaces. ACS Central Science, 2021, 7, 1045-1055.	5.3	30
608	One Nanometer PtIr Nanowires as High-Efficiency Bifunctional Catalysts for Electrosynthesis of Ethanol into High Value-Added Multicarbon Compound Coupled with Hydrogen Production. Journal of the American Chemical Society, 2021, 143, 10822-10827.	6.6	95
609	Synthesis of Furanic Ethers from Furfuryl Alcohol for Biofuel Production. Energy & Fuels, 2021, 35, 12725-12733.	2.5	9
610	Transition metal carbides and nitrides as catalysts for thermochemical reactions. Journal of Catalysis, 2021, 404, 929-942.	3.1	27
611	Roadmap to sustainable carbon-neutral energy and environment: can we cross the barrier of biomass productivity?. Environmental Science and Pollution Research, 2021, 28, 49327-49342.	2.7	27
612	Selective Hydrogenolysis of Lignin Model Compounds to Aromatics over a Cobalt Nanoparticle Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 11862-11871.	3.2	14
613	Computational Investigation of the Catalytic Hydrodeoxygenation of Propanoic Acid over a Cu(111) Surface. Journal of Physical Chemistry C, 2021, 125, 19276-19293.	1.5	3
614	Emerging technologies for conversion of sustainable algal biomass into value-added products: A state-of-the-art review. Science of the Total Environment, 2021, 784, 147024.	3.9	43
615	Research progress on levoglucosan production via pyrolysis of lignocellulosic biomass and its effective recovery from bio-oil. Journal of Environmental Chemical Engineering, 2021, 9, 105614.	3.3	31

#	Article	IF	CITATIONS
616	Reductive Amination of Biomass-Based Levulinic Acid into Pyrrolidone by Protic Ionic Liquid via Dehydrogenation of Dimethyl Amine Borane. Waste and Biomass Valorization, 2022, 13, 443-451.	1.8	5
617	Characterization of Heavy Products from Lignocellulosic Biomass Pyrolysis by Chromatography and Fourier Transform Mass Spectrometry: A Review. Energy & Fuels, 2021, 35, 17979-18007.	2.5	22
618	Optimizing the surface distribution of acid sites for cooperative catalysis in condensation reactions promoted by water. Chem Catalysis, 2021, 1, 1065-1087.	2.9	14
619	High-Strength and Low-Cost Biobased Polyurethane Foam Composites Enhanced by Poplar Wood Powder Liquefaction. Polymers, 2021, 13, 2999.	2.0	3
620	Alkylation of phenol and substituted phenols with C1–C4 alcohols/olefins as an upgrading route for bio-oil oxygenates: A review. Renewable and Sustainable Energy Reviews, 2021, 147, 111189.	8.2	7
621	Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surface Science Reports, 2021, 76, 100541.	3.8	31
622	Synthesis of bio-based 2-thiothiophenes. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200350.	1.6	0
623	Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization. Renewable and Sustainable Energy Reviews, 2021, 149, 111335.	8.2	53
624	Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. Journal of Energy Chemistry, 2021, 61, 425-435.	7.1	19
625	Controlling Diphenyl Ether Hydrogenolysis Selectivity by Tuning the Pt Support and H-Donors under Mild Conditions. ACS Catalysis, 2021, 11, 12661-12672.	5.5	20
626	Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal, 2021, 426, 131294.	6.6	34
627	Hydrodeoxygenation of guaiacol over BEA supported bimetallic Ni-Fe catalysts with varied impregnation sequence. Journal of Catalysis, 2021, 404, 1-11.	3.1	23
628	Thermo-catalytic co-pyrolysis of ironbark sawdust and plastic waste over strontium loaded hierarchical Y-zeolite. Journal of Environmental Management, 2021, 299, 113610.	3.8	8
629	Waste To Energy Feedstock Sources for the Production of Biodiesel as Fuel Energy in Diesel Engine – A Review. Advances in Science, Technology and Engineering Systems, 2021, 6, 409-446.	0.4	2
630	2-MeTHF. , 2021, , 75-98.		2
631	Catalytic transfer hydrogenation of cellulose to hydrocarbons using straight-chain aliphatic hydrocarbon as a solvent. Biomass Conversion and Biorefinery, 2021, 11, 873-884.	2.9	5
632	Valorization of poly(butylene succinate) to tetrahydrofuran <i>via</i> one-pot catalytic hydrogenolysis. Reaction Chemistry and Engineering, 2021, 6, 465-470.	1.9	4
633	Infrared spectroscopic measurements of the structure of organic thin films; furfural on Pd(111) and Au(111) surfaces. CrystEngComm, 2021, 23, 4534-4548.	1.3	8

#	Article	IF	CITATIONS
634	Liquidâ€phase Hydrodeoxygenation of 4â€Propylphenol to Propylbenzene: Reducible Supports for Pt Catalysts. ChemCatChem, 2020, 12, 4090-4104.	1.8	9
635	Response of Biomass Species to Hydrothermal Pretreatment. , 2017, , 95-140.		10
636	Choline Chloride-Derived ILs for Activation and Conversion of Biomass. Biofuels and Biorefineries, 2014, , 61-87.	0.5	3
637	Progress and prospects of produced gas utilization from biomass tar reforming. Journal of Hazardous Materials Letters, 2020, 1, 100008.	2.0	8
638	A Combined Experimental and DFT Investigation of Selective Hydrodeoxygenation of Guaiacol over Bimetallic Carbides. Energy & Fuels, 2020, 34, 16265-16273.	2.5	29
639	Highly selective hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran at low temperature over a Co–N–C/NiAl-MMO catalyst. Catalysis Science and Technology, 2020, 10, 4010-4018.	2.1	19
640	Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems. PLoS ONE, 2011, 6, e22113.	1.1	55
641	Furan-type Compounds from Carbohydrates via Heterogeneous Catalysis. Current Organic Chemistry, 2014, 18, 547-597.	0.9	49
642	Unlocking the potential of biofuels <i>via</i> reaction pathways in van Krevelen diagrams. Green Chemistry, 2021, 23, 8949-8963.	4.6	20
643	Liquid fuel production <i>via</i> supercritical water gasification of algae: a role for solar heat integration?. Sustainable Energy and Fuels, 2021, 5, 6269-6297.	2.5	6
644	Analysis of Plant Biomass Pretreatment Technology for Fuel Production. Journal of Biobased Materials and Bioenergy, 2021, 15, 435-448.	0.1	1
645	Process intensification for the biological production of the fuel precursor butyric acid from biomass. Cell Reports Physical Science, 2021, 2, 100587.	2.8	12
646	Biomass Steam Gasification for Hydrogen Production: A Systematic Review. , 2014, , 329-343.		2
647	Product Distribution in the Low Temperature Conventional Pyrolysis of Nigerian Corn Stalks International Journal for Innovation Education and Research, 2015, 3, 51-68.	0.0	0
648	Biological Feedstocks for Biofuels. , 2015, , 53-70.		0
652	Pyrolysis of waste biomass: toward sustainable development. , 2022, , 1-34.		Ο
653	Reflection absorption infrared spectroscopy of the surface chemistry of furfural on Pd(111). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, .	0.9	3
654	Conversion of cyclic xylose into xylitol on Ru, Pt, Pd, Ni, and Rh catalysts: a density functional theory study. Physical Chemistry Chemical Physics, 2021, 23, 26195-26208.	1.3	9

#	Article	IF	CITATIONS
655	Cascade Reaction of Ethanol to Butadiene over Multifunctional Silica-Supported Ag and ZrO ₂ Catalysts. ACS Sustainable Chemistry and Engineering, 2022, 10, 1020-1035.	3.2	8
656	Supported Pd–Au bimetallic nanoparticles as an efficient catalyst for the hydrodeoxygenation of vanillin with formic acid at room temperature. Green Chemistry, 2022, 24, 1096-1102.	4.6	15
657	Pyrolytic Extraction and Characterization of Oil from Waste Recharge Scratch Card Papers for Industrial Application. Traektori¢ Nauki, 2020, 6, 2026-2032.	0.1	0
658	Conversion of furfuryl alcohol to ethyl levulinate in the presence of mesoporous aluminosilicate catalyst. Open Chemistry, 2021, 19, 1294-1300.	1.0	1
659	Polyalkylglycosides: sustainable production of nonionic biosurfactants from lignocellulosic biomass. , 2022, , 373-390.		2
660	Hydro-upgrading of bio-oils derived from pyrolysis of biomass with different H/Ceff ratios in tetralin over Pt/C and Ru/C. International Journal of Hydrogen Energy, 2023, 48, 6916-6926.	3.8	4
661	The biorefinery. , 2022, , 257-292.		0
662	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chemistry, 2022, 24, 2680-2721.	4.6	18
663	Recent advances in biomass-derived platform chemicals to valeric acid synthesis. New Journal of Chemistry, 2022, 46, 5907-5921.	1.4	21
664	Ordered Mesoporous Carbon Encapsulating KF: Efficient and Stable Solid Base for Biodiesel and Fine Chemical Catalytic Synthesis. ACS Sustainable Chemistry and Engineering, 2022, 10, 3477-3487.	3.2	6
665	Recent advances in amine catalyzed aldol condensations. Catalysis Reviews - Science and Engineering, 0, , 1-83.	5.7	7
666	Supported molybdenum oxides for the aldol condensation reaction of acetaldehyde. Journal of Catalysis, 2022, 408, 216-226.	3.1	11
667	Influence of the presence of impurities and of the biomass source on the performance of Ru catalysts in the hydrolytic hydrogenation of cellulose towards γ-valerolactone. Fuel, 2022, 319, 123646.	3.4	4
668	A durable Ni/La-Y catalyst for efficient hydrogenation of Î ³ -valerolactone into pentanoic biofuels. Journal of Energy Chemistry, 2022, 70, 347-355.	7.1	18
669	Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides. Cellulose, 2022, 29, 3059-3077.	2.4	15
670	Highly selective transfer hydrogenation of furfural into furfuryl alcohol by interfacial frustrated Lewis pairs on CeO2. Journal of Catalysis, 2022, 410, 54-62.	3.1	26
672	Technoeconomic analysis of corn stover conversion by decentralized pyrolysis and electrocatalysis. Sustainable Energy and Fuels, 2022, 6, 2823-2834.	2.5	4
673	Adsorption studies on hydrophobic disperse dye using cellulose derived mesoporous activated carbon. Materials Today: Proceedings, 2022, 62, 7595-7599.	0.9	4

#	Article	IF	CITATIONS
674	Selective Reduction of Carboxylic Acids to Aldehydes with Promoted MoO ₃ Catalysts. ACS Catalysis, 2022, 12, 6313-6324.	5.5	8
675	Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Conversion and Management, 2022, 261, 115647.	4.4	102
676	Microbial food products: A sustainable solution to alleviate hunger. , 2022, , 1-27.		0
677	Surface-modified nanomaterial-based catalytic materials for the production of liquid fuels. , 2022, , 131-169.		0
678	Tandem Reactions for the Synthesis of High-Density Polycyclic Biofuels with a Double/Triple Hexane Ring. ACS Omega, 0, , .	1.6	0
679	The importance of BrÃ,nsted acid sites on C O bond rupture selectivities during hydrogenation and hydrogenolysis of esters. Journal of Catalysis, 2022, 411, 212-225.	3.1	7
680	Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions. Carbon, 2022, 196, 840-866.	5.4	32
681	A highly effective approach to enhance the performance of biomass-derived acid for fructose conversion to 5-hydroxymethylfurfural. Fuel Processing Technology, 2022, 234, 107318.	3.7	2
682	Solvent and Chloride Ion Effects on the Acid-Catalyzed Conversion of Glucose to 5-Hydroxymethylfurfural. ACS Sustainable Chemistry and Engineering, 2022, 10, 8275-8288.	3.2	8
683	Levulinic acid: a potent green chemical in sustainable agriculture. , 2022, , 179-218.		1
684	Sulfonic acid-functionalized silica with controlled hydrophobicity as an effective catalyst for esterification of levulinic acid. Materials Today Communications, 2022, 32, 103953.	0.9	3
685	Hydrogenation of lignin-derived feedstocks and bio-oil using active and stable ruthenium catalyst. Catalysis Today, 2023, 408, 139-149.	2.2	3
686	Structural and electronic effects boosting Ni-doped Mo2C catalyst toward high-efficiency C O/C C bonds cleavage. Journal of Energy Chemistry, 2022, 75, 109-116.	7.1	10
687	Progress in Selective Conversion of 5â€Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect, 2022, 7, .	0.7	0
688	Cooperative Surface Passivation and Hierarchical Structuring of Zeolite Beta Catalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
689	Cooperative Surface Passivation and Hierarchical Structuring of Zeolite Beta Catalysts. Angewandte Chemie, 0, , .	1.6	1
690	Oxygen Healing and CO ₂ /H ₂ /Anisole Dissociation on Reduced Molybdenum Oxide Surfaces Studied by Density Functional Theory. ChemPhysChem, 2022, 23, .	1.0	1
691	The characteristics and evolution of nitrogen in bio-oil from microalgae pyrolysis in molten salt. Fuel, 2023, 331, 125903.	3.4	32

	Сітатіс	CITATION REPORT	
#	Article	IF	CITATIONS
692	Cobalt nanoparticles embedded in a nitrogen-doped carbon matrix for reductive amination of biomass-derived furfural to furfurylamine. Sustainable Energy and Fuels, 2022, 6, 4692-4705.	2.5	3
693	Highly selective, energy-free, and environmentally friendly one-pot production of linear α-olefin from biomass-derived organic acid in a dual-bed catalyst system. Green Chemistry, 2022, 24, 7556-7573.	4.6	6
694	Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chemical Research in Chinese Universities, 2022, 38, 1309-1323.	1.3	9
695	Catalysis and Biomass: A Virtual Special Issue in Honor of Dr. James A. Dumesic. ACS Sustainable Chemistry and Engineering, 2022, 10, 13545-13548.	3.2	0
696	Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. Environmental Chemistry Letters, 2023, 21, 183-230.	8.3	29
697	Doping an Oxophilic Metal into a Metal Carbide: Unravelling the Synergy between the Microstructure of the Catalyst and Its Activity and Selectivity for Hydrodeoxygenation. ACS Catalysis, 2022, 12, 13980-13998.	5.5	5
698	Activityâ€Based Models to Predict Kinetics of Levulinic Acid Esterification. ChemPhysChem, 2023, 24, .	1.0	4
699	Catalytic pyrolysis of biomass over zeolites for bio-oil and chemical production: A review on their structure, porosity and acidity co-relation. Bioresource Technology, 2022, 366, 128189.	4.8	24
700	Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production. Fuel, 2023, 333, 126268.	3.4	31
701	Use of zeolites in green chemicals and bio-fuel production via HMF valorisation. Microporous and Mesoporous Materials, 2023, 358, 112330.	2.2	4
702	Gas cleaning systems for integrating biomass gasification with Fischer-Tropsch synthesis - A review of impurity removal processes and their sequences. Renewable and Sustainable Energy Reviews, 2023, 172, 113047.	8.2	10
703	Algal Butanol Production: Recent Developments. Clean Energy Production Technologies, 2023, , 81-107.	0.3	0
705	Transformation of nitrogen during solar pyrolysis of algae in molten salt. Fuel Processing Technology, 2023, 242, 107664.	3.7	5
706	Understanding hydrogen pressure control of furfural hydrogenation selectivity on a Pd(1 1 1) model catalyst. Journal of Catalysis, 2023, 421, 55-64.	3.1	6
707	Electronic and structural engineering of supported single atomic layer, low-nuclearity palladium catalysts for conversion of levulinic acid to 1,4-pentanediol. Chemical Engineering Journal, 2023, 464, 142647.	6.6	3
708	Study on the reaction mechanism of C8+ aliphatic hydrocarbons obtained directly from biomass by hydropyrolysis vapor upgrading. Chemical Engineering Journal, 2023, 464, 142639.	6.6	6
709	Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. Chemosphere, 2023, 318, 137954.	4.2	9
710	Pd nanoparticles encapsulated in MOF boosts selective hydrogenation of biomass derived compound under mild conditions. Chemical Engineering Journal, 2023, 460, 141779.	6.6	7

		CITATION R	n Report		
#	Article		IF	CITATIONS	
711	Bio-derived sustainable aviation fuelsâ \in "On the verge of powering our future. , 2023, ,	521-598.		2	
712	Conversion of Biomass-Derived Levulinic Acid into Î ³ -Valerolactone Using Methanesulfo Optimization Study Using Response Surface Methodology. Fermentation, 2023, 9, 283	onic Acid: An 3.	1.4	1	
713	Prospective electric heavy oil upgrading at ambient pressure by high energy electron b 211784.	eam. , 2023, 226,		1	
714	Some Insights into the Use of Heterogeneous Copper Catalysts in the Hydroprocessing Acid. Catalysts, 2023, 13, 697.	g of Levulinic	1.6	2	
719	Bio-jet fuel: An overview of various feedstock and production routes. AIP Conference P 2023, , .	roceedings,	0.3	2	
720	Highly electronegative PtAu alloy for simultaneous hydrogen generation and ethanol u Metals, 2023, 42, 2949-2956.	pgrading. Rare	3.6	2	

0

741 General backgrounds. , 2024, , 1-12.