Repertoire of microglial and macrophage responses after

Nature Reviews Neuroscience 12, 388-399

DOI: 10.1038/nrn3053

Citation Report

#	Article	IF	CITATIONS
1	Macrophages in Injured Skeletal Muscle: A Perpetuum Mobile Causing and Limiting Fibrosis, Prompting or Restricting Resolution and Regeneration. Frontiers in Immunology, 2011, 2, 62.	2.2	65
2	Microglia and neuronal cell death. Neuron Glia Biology, 2011, 7, 25-40.	2.0	119
3	Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of Neuroinflammation, 2011, 8, 174.	3.1	412
4	Inflammatory Pathways in Spinal Cord Injury. International Review of Neurobiology, 2012, 106, 127-152.	0.9	84
5	Beneficial Effects of αB-Crystallin in Spinal Cord Contusion Injury. Journal of Neuroscience, 2012, 32, 14478-14488.	1.7	68
6	Toll-Like Receptor 2 Ligand Pretreatment Attenuates Retinal Microglial Inflammatory Response but Enhances Phagocytic Activity toward Staphylococcus aureus. Infection and Immunity, 2012, 80, 2076-2088.	1.0	80
7	The role of mTOR signaling pathway in spinal cord injury. Cell Cycle, 2012, 11, 3175-3179.	1.3	92
8	Substance P induces M2-type macrophages after spinal cord injury. NeuroReport, 2012, 23, 786-792.	0.6	102
9	Differential Detection and Distribution of Microglial and Hematogenous Macrophage Populations in the Injured Spinal Cord of <i>lys</i> -EGFP- <i>ki</i> Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2012, 71, 180-197.	0.9	53
10	Regulation of Postnatal Forebrain Amoeboid Microglial Cell Proliferation and Development by the Transcription Factor Runx1. Journal of Neuroscience, 2012, 32, 11285-11298.	1.7	129
11	Vibrational Spectroscopic Imaging and Multiphoton Microscopy of Spinal Cord Injury. Analytical Chemistry, 2012, 84, 8707-8714.	3.2	47
12	Mast cell–glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3312-3325.	1.8	95
13	Transplanted Mesoangioblasts Require Macrophage IL-10 for Survival in a Mouse Model of Muscle Injury. Journal of Immunology, 2012, 188, 6267-6277.	0.4	44
14	Improved regeneration after spinal cord injury in mice lacking functional T- and B-lymphocytes. Experimental Neurology, 2012, 237, 274-285.	2.0	63
15	Theophylline regulates inflammatory and neurotrophic factor signals in functional recovery after C2-hemisection in adult rats. Experimental Neurology, 2012, 238, 79-88.	2.0	14
16	Progenitor Cells: Therapeutic Targets after Traumatic Brain Injury. Translational Stroke Research, 2012, 3, 318-323.	2.3	7
17	Adoptive transfer of Th1-conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal cord injury. Cell Death and Disease, 2012, 3, e363-e363.	2.7	42
18	A CD11d Monoclonal Antibody Treatment Reduces Tissue Injury and Improves Neurological Outcome after Fluid Percussion Brain Injury in Rats. Journal of Neurotrauma, 2012, 29, 2375-2392.	1.7	77

#	Article	IF	CITATIONS
19	Emerging roles of microglial activation and non-motor symptoms in Parkinson's disease. Progress in Neurobiology, 2012, 98, 222-238.	2.8	84
20	The role of pro- and anti-inflammatory cytokines in the pathogenesis of spontaneous canine CNS diseases. Veterinary Immunology and Immunopathology, 2012, 147, 6-24.	0.5	46
21	Long-Range Ca2+ Waves Transmit Brain-Damage Signals to Microglia. Developmental Cell, 2012, 22, 1138-1148.	3.1	192
22	SDF-1/CXCL12: Its role in spinal cord injury. International Journal of Biochemistry and Cell Biology, 2012, 44, 452-456.	1.2	32
23	Functional crosstalk in culture between macrophages and trigeminal sensory neurons of a mouse genetic model of migraine. BMC Neuroscience, 2012, 13, 143.	0.8	31
24	GLP-1 secretion by microglial cells and decreased CNS expression in obesity. Journal of Neuroinflammation, 2012, 9, 276.	3.1	82
25	Differential Uptake of Chemically Modified Cowpea Mosaic Virus Nanoparticles in Macrophage Subpopulations Present in Inflammatory and Tumor Microenvironments. Biomacromolecules, 2012, 13, 3320-3326.	2.6	19
26	Heterogeneity of macrophages in injured trigeminal nerves: Cytokine/chemokine expressing vs. phagocytic macrophages. Brain, Behavior, and Immunity, 2012, 26, 891-903.	2.0	42
27	Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials, 2012, 33, 8793-8801.	5.7	273
28	α7 Nicotinic acetylcholine receptor agonist attenuates neuropathological changes associated with intracerebral hemorrhage in mice. Neuroscience, 2012, 222, 10-19.	1.1	41
29	p53 Regulates the Neuronal Intrinsic and Extrinsic Responses Affecting the Recovery of Motor Function following Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 13956-13970.	1.7	47
30	Exposure to 1-bromopropane induces microglial changes and oxidative stress in the rat cerebellum. Toxicology, 2012, 302, 18-24.	2.0	25
31	The challenges of long-distance axon regeneration in the injured CNS. Progress in Brain Research, 2012, 201, 253-294.	0.9	39
32	Spatio-Temporal Expression Pattern of Frizzled Receptors after Contusive Spinal Cord Injury in Adult Rats. PLoS ONE, 2012, 7, e50793.	1.1	22
33	Depletion of Resident Macrophages Does Not Alter Sensory Regeneration in the Avian Cochlea. PLoS ONE, 2012, 7, e51574.	1.1	41
34	Do <i>β</i> -Defensins and Other Antimicrobial Peptides Play a Role in Neuroimmune Function and Neurodegeneration?. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	37
35	Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB Journal, 2012, 26, 3103-3117.	0.2	221
36	Microglial microvesicle secretion and intercellular signaling. Frontiers in Physiology, 2012, 3, 149.	1.3	149

#	Article	IF	CITATIONS
37	Chemokines in CNS injury and repair. Cell and Tissue Research, 2012, 349, 229-248.	1.5	132
38	Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell and Tissue Research, 2012, 349, 249-267.	1.5	27
39	Glial activation in the spinal ventral horn caudal to cervical injury. Respiratory Physiology and Neurobiology, 2012, 180, 61-68.	0.7	17
40	Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. Journal of Neuroinflammation, 2012, 9, 40.	3.1	171
41	Role of cell cycleâ€associated proteins in microglial proliferation in the axotomized rat facial nucleus. Glia, 2012, 60, 570-581.	2.5	23
42	Substance P as a Mediator of Neurogenic Inflammation after Balloon Compression Induced Spinal Cord Injury. Journal of Neurotrauma, 2013, 30, 1812-1823.	1.7	21
43	Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Research and Therapy, 2013, 4, 57.	2.4	78
44	Phenotype and Secretory Responses to Oxidative Stress in Microglia. Developmental Neuroscience, 2013, 35, 241-254.	1.0	14
45	Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain, Behavior, and Immunity, 2013, 31, 54-68.	2.0	297
46	The effect of Lycium barbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats. BMC Complementary and Alternative Medicine, 2013, 13, 67.	3.7	22
47	Glia and Mast Cells as Targets for Palmitoylethanolamide, an Anti-inflammatory and Neuroprotective Lipid Mediator. Molecular Neurobiology, 2013, 48, 340-352.	1.9	110
48	Polarization of macrophages and microglia in inflammatory demyelination. Neuroscience Bulletin, 2013, 29, 189-198.	1.5	73
49	Microglia/Macrophage Polarization Dynamics in White Matter after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1864-1874.	2.4	387
50	Brain and retinal microglia in health and disease: An unrecognized target of the renin–angiotensin system. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 571-579.	0.9	32
51	Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain, Behavior, and Immunity, 2013, 32, 70-85.	2.0	529
52	Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7820-7825.	3.3	765
53	An increase in voltageâ€gated sodium channel current elicits microglial activation followed inflammatory responses <i>in vitro</i> and <i>in vivo</i> after spinal cord injury. Glia, 2013, 61, 1807-1821.	2.5	19
54	Selective Nanovector Mediated Treatment of Activated Proinflammatory Microglia/Macrophages in Spinal Cord Injury. ACS Nano, 2013, 7, 9881-9895.	7.3	136

	CHATION	ILPORT	
#	Article	IF	CITATIONS
55	Epigenetics of Neural Repair Following Spinal Cord Injury. Neurotherapeutics, 2013, 10, 757-770.	2.1	31
56	Insights into TREM2 biology by network analysis of human brain gene expression data. Neurobiology of Aging, 2013, 34, 2699-2714.	1.5	145
57	Interplay between human microglia and neural stem/progenitor cells in an allogeneic coâ€culture model. Journal of Cellular and Molecular Medicine, 2013, 17, 1434-1443.	1.6	39
58	Effects of LPS on P2X3 receptors of trigeminal sensory neurons and macrophages from mice expressing the R192Q Cacna1a gene mutation of familial hemiplegic migraine-1. Purinergic Signalling, 2013, 9, 7-13.	1.1	20
59	Intervertebral Disk Degeneration in Dogs: Consequences, Diagnosis, Treatment, and Future Directions. Journal of Veterinary Internal Medicine, 2013, 27, 1318-1333.	0.6	117
60	Pirfenidone inhibits macrophage infiltration in 5/6 nephrectomized rats. American Journal of Physiology - Renal Physiology, 2013, 304, F676-F685.	1.3	50
61	CNS sterile injury: just another wound healing?. Trends in Molecular Medicine, 2013, 19, 135-143.	3.5	119
62	Oral Administration of a Small Molecule Targeted to Block proNGF Binding to p75 Promotes Myelin Sparing and Functional Recovery after Spinal Cord Injury. Journal of Neuroscience, 2013, 33, 397-410.	1.7	80
63	Secreted protein lipocalinâ€⊋ promotes microglial M1 polarization. FASEB Journal, 2013, 27, 1176-1190.	0.2	159
64	Harnessing monocyteâ€derived macrophages to control central nervous system pathologies: no longer â€ĩif' but â€ĩhow'. Journal of Pathology, 2013, 229, 332-346.	2.1	180
65	Cellular Neuroinflammation in a Lateral Forceps Compression Model of Spinal Cord Injury. Anatomical Record, 2013, 296, 1229-1246.	0.8	10
66	Pesticides, Microglial NOX2, and Parkinson's Disease. Journal of Biochemical and Molecular Toxicology, 2013, 27, 137-149.	1.4	50
67	Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience, 2013, 238, 1-10.	1.1	59
68	The activation of P2Y6 receptor in cultured spinal microglia induces the production of CCL2 through the MAP kinases-NF- $\hat{I}^{e}B$ pathway. Neuropharmacology, 2013, 75, 116-125.	2.0	41
69	Immunomagnetic enrichment and flow cytometric characterization of mouse microglia. Journal of Neuroscience Methods, 2013, 219, 176-182.	1.3	46
70	Temporal changes in monocyte and macrophage subsets and microglial macrophages following spinal cord injury in the lys-egfp-ki mouse model. Journal of Neuroimmunology, 2013, 261, 7-20.	1.1	54
71	Haematopoietic cells produce BDNF and regulate appetite upon migration to the hypothalamus. Nature Communications, 2013, 4, 1526.	5.8	32
72	Minocycline selectively inhibits M1 polarization of microglia. Cell Death and Disease, 2013, 4, e525-e525.	2.7	575

#	Article	IF	CITATIONS
73	Serum-Starved Adipose-Derived Stromal Cells Ameliorate Crescentic GN by Promoting Immunoregulatory Macrophages. Journal of the American Society of Nephrology: JASN, 2013, 24, 587-603.	3.0	50
74	The p38α MAPK Regulates Microglial Responsiveness to Diffuse Traumatic Brain Injury. Journal of Neuroscience, 2013, 33, 6143-6153.	1.7	112
75	Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Molecular and Cellular Neurosciences, 2013, 53, 34-41.	1.0	156
76	CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia, 2013, 61, 827-842.	2.5	155
77	Reciprocal Modulation Between Microglia and Astrocyte in Reactive Gliosis Following the CNS Injury. Molecular Neurobiology, 2013, 48, 690-701.	1.9	97
78	Tenascins and inflammation in disorders of the nervous system. Amino Acids, 2013, 44, 1115-1127.	1.2	51
79	Mobilisation of the splenic monocyte reservoir and peripheral CX3CR1 deficiency adversely affects recovery from spinal cord injury. Experimental Neurology, 2013, 247, 226-240.	2.0	82
80	Study of Macrophages in BCG Granulomas in Different Compartments of the Mononuclear Phagocyte System. Bulletin of Experimental Biology and Medicine, 2013, 154, 467-470.	0.3	5
81	From Pathophysiology to Novel Antidepressant Drugs: Glial Contributions to the Pathology and Treatment of Mood Disorders. Biological Psychiatry, 2013, 73, 1172-1179.	0.7	201
82	Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. Journal of Immunology, 2013, 191, 5204-5219.	0.4	170
83	The promotion of mandibular defect healing by the targeting of S1P receptors and the recruitment of alternatively activated macrophages. Biomaterials, 2013, 34, 9853-9862.	5.7	80
84	PPAR Agonists as Therapeutics for CNS Trauma and Neurological Diseases. ASN Neuro, 2013, 5, AN20130030.	1.5	73
85	Melanocortins As Innovative Drugs for Ischemic Diseases and Neurodegenerative Disorders: Established Data and Perspectives. Current Medicinal Chemistry, 2013, 20, 735-750.	1.2	7
86	Neuroprotection for Ischemic Stroke: Moving Past Shortcomings and Identifying Promising Directions. International Journal of Molecular Sciences, 2013, 14, 1890-1917.	1.8	33
87	Biomarker-Based Predictive Models for Prognosis in Amyotrophic Lateral Sclerosis. JAMA Neurology, 2013, 70, 1505-11.	4.5	51
88	Functional diversity of microglia – how heterogeneous are they to begin with?. Frontiers in Cellular Neuroscience, 2013, 7, 65.	1.8	174
89	Endometriosis, a disease of the macrophage. Frontiers in Immunology, 2013, 4, 9.	2.2	218
90	Molecular triggers of neuroinflammation in mouse models of demyelinating diseases. Biological Chemistry, 2013, 394, 1571-1581.	1.2	15

#	Article	IF	CITATIONS
91	Microglia and macrophages differentially modulate cell death after brain injury caused by oxygenâ€glucose deprivation in organotypic brain slices. Glia, 2013, 61, 813-824.	2.5	143
92	Minocycline reduces remyelination by suppressing ciliary neurotrophic factor expression after cuprizoneâ€induced demyelination. Journal of Neurochemistry, 2013, 127, 259-270.	2.1	56
93	Spinal cord regeneration: Lessons for mammals from nonâ€mammalian vertebrates. Genesis, 2013, 51, 529-544.	0.8	83
94	The Ryk Receptor Is Expressed in Glial and Fibronectin-Expressing Cells after Spinal Cord Injury. Journal of Neurotrauma, 2013, 30, 806-817.	1.7	18
95	HMGB1 Protein Does Not Mediate the Inflammatory Response in Spontaneous Spinal Cord Regeneration. Journal of Biological Chemistry, 2013, 288, 18204-18218.	1.6	35
96	ifn-Î ³ -dependent secretion of IL-10 from Th1 cells and microglia/macrophages contributes to functional recovery after spinal cord injury. Cell Death and Disease, 2013, 4, e710-e710.	2.7	53
97	ADAM17 is a survival factor for microglial cells in vitro and in vivo after spinal cord injury in mice. Cell Death and Disease, 2013, 4, e954-e954.	2.7	25
98	Novel Role of Neuropeptide Y in the Modulation of Microglia Activity. Advances in Neuroimmune Biology, 2013, 4, 167-176.	0.7	1
99	Macrophages: Past, Present and Future. Journal of Innate Immunity, 2013, 5, 657-658.	1.8	8
100	Ablation of Keratan Sulfate Accelerates Early Phase Pathogenesis of ALS. PLoS ONE, 2013, 8, e66969.	1.1	41
101	Neuronal Synapse Formation Induced by Microglia and Interleukin 10. PLoS ONE, 2013, 8, e81218.	1.1	166
102	The Leech Nervous System: A Valuable Model to Study the Microglia Involvement in Regenerative Processes. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	20
103	Managing Inflammation after Spinal Cord Injury through Manipulation of Macrophage Function. Neural Plasticity, 2013, 2013, 1-9.	1.0	92
104	The Benefits and Detriments of Macrophages/Microglia in Models of Multiple Sclerosis. Clinical and Developmental Immunology, 2013, 2013, 1-13.	3.3	186
105	Interleukin-6 Secretion by Astrocytes Is Dynamically Regulated by PI3K-mTOR-Calcium Signaling. PLoS ONE, 2014, 9, e92649.	1.1	31
106	Direct Angiotensin AT2 Receptor Stimulation Using a Novel AT2 Receptor Agonist, Compound 21, Evokes Neuroprotection in Conscious Hypertensive Rats. PLoS ONE, 2014, 9, e95762.	1.1	72
107	A perspective on the role of class III semaphorin signaling in central nervous system trauma. Frontiers in Cellular Neuroscience, 2014, 8, 328.	1.8	63
108	Contributions of the immune system to the pathophysiology of traumatic brain injury ââ,¬â€œ evidence by intravital microscopy. Frontiers in Cellular Neuroscience, 2014, 8, 358.	1.8	30

		CITATION REPORT		
#	Article		IF	Citations
109	Neuroinflammation after intracerebral hemorrhage. Frontiers in Cellular Neuroscience,	2014, 8, 388.	1.8	259
110	Low-Dose Curcumin Stimulates Proliferation, Migration and Phagocytic Activity of Olfa Ensheathing Cells. PLoS ONE, 2014, 9, e111787.	actory	1.1	56
111	Ocular Surface Injury Induces Inflammation in the Brain: In Vivo and Ex Vivo Evidence o Corneal–Trigeminal Axis. , 2014, 55, 6289.	of a		44
112	Mast Cells and Neuroinflammation. Medical Science Monitor Basic Research, 2014, 20), 200-206.	2.6	108
113	Multifaceted Neuro-Regenerative Activities of Human Dental Pulp Stem Cells for Funct after Spinal Cord Injury. , 0, , .	ional Recovery		0
114	Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene The Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Con Journal of Neuroscience, 2014, 34, 4822-4836.		1.7	200
115	Ninjurin1 Deficiency Attenuates Susceptibility of Experimental Autoimmune Encephalo Journal of Biological Chemistry, 2014, 289, 3328-3338.	omyelitis in Mice.	1.6	41
116	Regulation of IL-10 by Chondroitinase ABC Promotes a Distinct Immune Response follo Cord Injury. Journal of Neuroscience, 2014, 34, 16424-16432.	owing Spinal	1.7	80
117	Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs. J Leukocyte Biology, 2013, 95, 817-825.	ournal of	1.5	76
118	Reshaping the chromatin landscape after spinal cord injury. Frontiers in Biology, 2014,	9, 356-366.	0.7	13
119	New Aspects of the Pathogenesis of Canine Distemper Leukoencephalitis. Viruses, 201	14, 6, 2571-2601.	1.5	75
120	Function of microglia and macrophages in secondary damage after spinal cord injury. I Regeneration Research, 2014, 9, 1787.	Neural	1.6	212
121	Spatial and Cellular Characterization of mTORC 1 Activation after Spinal Cord Injury Re Increase Mainly Attributed to Microglia/Macrophages. Brain Pathology, 2014, 24, 557	eveals Biphasic 567.	2.1	5
122	Cellular magnetic resonance with iron oxide nanoparticles: long-term persistence of SI the CNS after transplanted cell death. Nanomedicine, 2014, 9, 1457-1474.	PIO signal in	1.7	22
123	Proteome of brain glia: The molecular basis of diverse glial phenotypes. Proteomics, 20)14, 14, 378-398.	1.3	16
124	Manganese and Neuroinflammation. Issues in Toxicology, 2014, , 297-321.		0.2	0
125	Lipopolysaccharide preconditioning facilitates M2 activation of resident microglia afte injury. Journal of Neuroscience Research, 2014, 92, 1647-1658.	r spinal cord	1.3	64
126	CaMKKβ-Dependent Activation of AMP-Activated Protein Kinase Is Critical to Suppress Hydrogen Sulfide on Neuroinflammation. Antioxidants and Redox Signaling, 2014, 21,	sive Effects of 1741-1758.	2.5	116

#	Article	IF	CITATIONS
127	Modulating Inflammatory Cell Responses to Spinal Cord Injury: All in Good Time. Journal of Neurotrauma, 2014, 31, 1753-1766.	1.7	70
128	Transduction efficiency of neurons and glial cells by AAV-1, -5, -9, -rh10 and -hu11 serotypes in rat spinal cord following contusion injury. Gene Therapy, 2014, 21, 991-1000.	2.3	39
129	The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. Journal of Neuroinflammation, 2014, 11, 175.	3.1	8
130	Microglia centered pathogenesis in ALS: insights in cell interconnectivity. Frontiers in Cellular Neuroscience, 2014, 8, 117.	1.8	174
131	Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injury. Neural Regeneration Research, 2014, 9, 1520.	1.6	10
132	Role of Microglial M1/M2 Polarization in Relapse and Remission of Psychiatric Disorders and Diseases. Pharmaceuticals, 2014, 7, 1028-1048.	1.7	152
133	Mast cells, glia and neuroinflammation: partners in crime?. Immunology, 2014, 141, 314-327.	2.0	200
134	Potential role of microRNA: Identification and functional analysis of microRNA in corticospinal tract after unilateral lesions of the medullary pyramid. Neuroscience Letters, 2014, 564, 37-42.	1.0	1
135	Multifaceted neuro-regenerative activities of human dental pulp stem cells for functional recovery after spinal cord injury. Neuroscience Research, 2014, 78, 16-20.	1.0	71
136	Neuroprotective ferulic acid (FA)–glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials, 2014, 35, 2355-2364.	5.7	105
137	Neuroprotection and Regeneration of the Spinal Cord. , 2014, , .		2
138	Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nature Reviews Neuroscience, 2014, 15, 300-312.	4.9	1,069
139	Immunological Mechanisms and Therapies in Brain Injuries and Stroke. , 2014, , .		4
140	Microglial modulation as a mechanism behind the promotion of central nervous system wellâ€being by physical exercise. Clinical and Experimental Neuroimmunology, 2014, 5, 188-201.	0.5	11
141	Long-lasting significant functional improvement in chronic severe spinal cord injury following scar resection and polyethylene glycol implantation. Neurobiology of Disease, 2014, 67, 165-179.	2.1	71
142	High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury. Experimental Neurology, 2014, 254, 109-120.	2.0	170
143	Differences in the Phagocytic Response of Microglia and Peripheral Macrophages after Spinal Cord Injury and Its Effects on Cell Death. Journal of Neuroscience, 2014, 34, 6316-6322.	1.7	228
144	Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?. Progress in Neurobiology, 2014, 115, 189-209.	2.8	98

ARTICLE IF CITATIONS # Mechanisms of remyelination: recent insight from experimental models. Biomolecular Concepts, 2014, 145 1.0 26 5,289-298. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. 146 Lancet Neurology, The, 2014, 13, 1241-1256. Regulatory T Cells in Central Nervous System Injury: A Double-Edged Sword. Journal of Immunology, 147 0.4 74 2014, 193, 5013-5022. Alterations in Immune Cells and Mediators in the Brain: It's Not Always Neuroinflammation!. Brain 148 Pathology, 2014, 24, 623-630. Heme oxygenase-1 and anti-inflammatory M2 macrophages. Archives of Biochemistry and Biophysics, 149 1.4 292 2014, 564, 83-88. Myeloid Kruppel-like factor 2 deficiency exacerbates neurological dysfunction and neuroinflammation in a murine model of multiple sclerosis. Journal of Neuroimmunology, 2014, 274, 1.1 234-239. TNF and Increased Intracellular Iron Alter Macrophage Polarization to a Detrimental M1 Phenotype in 151 3.8 504 the Injured Spinal Cord. Neuron, 2014, 83, 1098-1116. IL-4 Signaling Drives a Unique Arginase+/ $IL-1\hat{A}$ + Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4RA after Traumatic Spinal Cord Injury. 1.7 Journal of Néuroscience, 2014, 34, 8904-8917. A close look at brain dynamics: Cells and vessels seen by in vivo two-photon microscopy. Progress in 153 2.8 18 Neurobiology, 2014, 121, 36-54. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury. 154 Brain, 2014, 137, 707-723. Is neuroinflammation in the injured spinal cord different than in the brain? Examining intrinsic 155 2.0 71 differences between the brain and spinal cord. Experimental Neurology, 2014, 258, 112-120. Non-mammalian model systems for studying neuro-immune interactions after spinal cord injury. Experimental Neurology, 2014, 258, 130-140. Cytokine pathways regulating glial and leukocyte function after spinal cord and peripheral nerve 157 2.0 97 injury. Experimental Neurology, 2014, 258, 62-77. Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and 0.8 16 Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, 2014, , . Sensory hair cell regeneration in the zebrafish lateral line. Developmental Dynamics, 2014, 243, 159 0.8 98 1187-1202. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration. Experimental Neurology, 2014, 261, 451-461. Keratan sulfate expression is associated with activation of a subpopulation of microglia/macrophages 161 1.0 9 in Wallerian degeneration. Neuroscience Letters, 2014, 579, 80-85. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. Journal of 3.1 1,285 Neuroinflammation, 2014, 11, 98.

		CITATION REPORT		
#	Article		IF	CITATIONS
163	Neutrophil contribution to spinal cord injury and repair. Journal of Neuroinflammation,	2014, 11, 150.	3.1	117
164	Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial g a rat model of depression. Brain, Behavior, and Immunity, 2014, 42, 147-156.	ene expression in	2.0	137
165	Ontogeny and Functions of Central Nervous System Macrophages. Journal of Immuno 2615-2621.	logy, 2014, 193,	0.4	113
166	Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat 2014, 20, 1147-1156.	ure Medicine,	15.2	380
167	Nanovectorâ€mediated drug delivery for spinal cord injury treatment. Wiley Interdisciµ Nanomedicine and Nanobiotechnology, 2014, 6, 506-515.	plinary Reviews:	3.3	24
168	Astrocytic and microglial response in experimentally induced diabetic rat brain. Metabe Disease, 2014, 29, 747-761.	olic Brain	1.4	94
169	Pain and Cognition in Multiple Sclerosis. Current Topics in Behavioral Neurosciences, 2	2014, 20, 201-215.	0.8	23
170	Ventral tegmental area/substantia nigra and prefrontal cortex rodent organotypic brai integrated model to study the cellular changes induced by oxygen/glucose deprivation reperfusion: Effect of neuroprotective agents. Neurochemistry International, 2014, 66	i and	1.9	4
171	Bone Marrow Mesenchymal Stromal Cells Drive Protective M2 Microglia Polarization A Trauma. Neurotherapeutics, 2014, 11, 679-695.	fter Brain	2.1	140
172	Upregulation of EHD2 after Intracerebral Hemorrhage in Adult Rats. Journal of Molecul Neuroscience, 2014, 54, 171-180.	ar	1.1	14
173	Programmed Death 1 Deficiency Induces the Polarization of Macrophages/Microglia to Phenotype After Spinal Cord Injury in Mice. Neurotherapeutics, 2014, 11, 636-650.) the M1	2.1	105
174	CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage i ischemic stroke. Journal of Neuroinflammation, 2014, 11, 26.	n experimental	3.1	169
175	Genome-wide expression profile of the response to spinal cord injury in Xenopus laevis extensive differences between regenerative and non-regenerative stages. Neural Devel 12.		1.1	61
176	Microglia in Health and Disease. , 2014, , .			19
177	Decreased GFAP Expression and Improved Functional Recovery in Contused Spinal Cor Following Valproic Acid Therapy. Neurochemical Research, 2014, 39, 2319-2333.	d of Rats	1.6	17
178	Polymeric nanoparticle system to target activated microglia/macrophages in spinal con Journal of Controlled Release, 2014, 174, 15-26.	rd injury.	4.8	100
179	Immune Activation Promotes Depression 1 Month After Diffuse Brain Injury: A Role for Microglia. Biological Psychiatry, 2014, 76, 575-584.	Primed	0.7	209
180	A novel technique for morphometric quantification of subarachnoid hemorrhage-induc activation. Journal of Neuroscience Methods, 2014, 229, 44-52.	ed microglia	1.3	18

#	Article	IF	CITATIONS
181	Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateralÂsclerosis. Cytotherapy, 2014, 16, 1059-1072.	0.3	79
182	Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain, Behavior, and Immunity, 2014, 40, 131-142.	2.0	234
183	Effector molecules released by Th1 but not Th17 cells drive an M1 response in microglia. Brain, Behavior, and Immunity, 2014, 37, 248-259.	2.0	65
184	Alterations of protein composition along the rostro-caudal axis after spinal cord injury: proteomic, in vitro and in vivo analyses. Frontiers in Cellular Neuroscience, 2014, 8, 105.	1.8	29
185	Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Research and Therapy, 2015, 6, 211.	2.4	49
189	The role of microglia and myeloid immune cells in acute cerebral ischemia. Frontiers in Cellular Neuroscience, 2014, 8, 461.	1.8	203
190	Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Scientific Reports, 2015, 5, 16795.	1.6	63
191	GATA2 â^'/â^' human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regeneration, 2015, 4, 4:4.	1.1	28
192	Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. Journal of Neuroinflammation, 2015, 12, 218.	3.1	76
193	Bridging the lesion—engineering a permissive substrate for nerve regeneration. International Journal of Energy Production and Management, 2015, 2, 203-214.	1.9	24
194	CD300f immunoreceptor contributes to peripheral nerve regeneration by the modulation of macrophage inflammatory phenotype. Journal of Neuroinflammation, 2015, 12, 145.	3.1	38
195	The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2015, 12, 198.	3.1	40
196	Brca1 is expressed in human microglia and is dysregulated in human and animal model of ALS. Molecular Neurodegeneration, 2015, 10, 34.	4.4	32
197	Temporal kinetics of macrophage polarization in the injured rat spinal cord. Journal of Neuroscience Research, 2015, 93, 1526-1533.	1.3	40
198	5-Aminolevulinic acid-induced protoporphyrin IX with multi-dose ionizing irradiation enhances host antitumor response and strongly inhibits tumor growth in experimental glioma in vivo. Molecular Medicine Reports, 2015, 11, 1813-1819.	1.1	32
199	A DAP12â€Dependent signal promotes proâ€inflammatory polarization in microglia following nerve injury and exacerbates degeneration of injured neurons. Clia, 2015, 63, 1073-1082.	2.5	35
200	Endogenous neural stem cell responses to stroke and spinal cord injury. Glia, 2015, 63, 1469-1482.	2.5	126
201	Dual polarization of microglia isolated from mixed glial cell cultures. Journal of Neuroscience Research, 2015, 93, 1345-1352.	1.3	9

#	Article	IF	CITATIONS
202	From demyelination to remyelination : The road toward therapies for spinal cord injury. Glia, 2015, 63, 1101-1125.	2.5	76
204	Brain region-specific gene expression profiles in freshly isolated rat microglia. Frontiers in Cellular Neuroscience, 2015, 9, 84.	1.8	85
205	The Ischemic Environment Drives Microglia and Macrophage Function. Frontiers in Neurology, 2015, 6, 81.	1.1	217
206	Trypsin, Tryptase, and Thrombin Polarize Macrophages towards a Pro-Fibrotic M2a Phenotype. PLoS ONE, 2015, 10, e0138748.	1.1	29
207	Protumoral TSP50 Regulates Macrophage Activities and Polarization via Production of TNF-α and IL-1β, and Activation of the NF-κB Signaling Pathway. PLoS ONE, 2015, 10, e0145095.	1.1	15
208	N-3 polyunsaturated fatty acid and neuroinflammation in aging and Alzheimer's disease. Nutrition and Aging (Amsterdam, Netherlands), 2015, 3, 33-47.	0.3	13
209	Downregulation of Spinal G Protein-Coupled Kinase 2 Abolished the Antiallodynic Effect of Electroacupuncture. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.	0.5	3
210	Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition. Mediators of Inflammation, 2015, 2015, 1-17.	1.4	68
211	Neurotrauma and Inflammation: CNS and PNS Responses. Mediators of Inflammation, 2015, 2015, 1-14.	1.4	133
212	Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord. BioMed Research International, 2015, 2015, 1-9.	0.9	15
213	The Interplay between Cyclic AMP, MAPK, and NF- <i>ΰ</i> B Pathways in Response to Proinflammatory Signals in Microglia. BioMed Research International, 2015, 2015, 1-18.	0.9	45
214	Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators of Inflammation, 2015, 2015, 1-15.	1.4	196
215	Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy. Neural Plasticity, 2015, 2015, 1-15.	1.0	80
216	Delayed Imatinib Treatment for Acute Spinal Cord Injury: Functional Recovery and Serum Biomarkers. Journal of Neurotrauma, 2015, 32, 1645-1657.	1.7	16
218	Bidirectional communication between the innate immune and nervous systems for homeostatic neurogenesis in the adult hippocampus. Neurogenesis (Austin, Tex), 2015, 2, e1081714.	1.5	0
219	Role of IL-10 in Resolution of Inflammation and Functional Recovery after Peripheral Nerve Injury. Journal of Neuroscience, 2015, 35, 16431-16442.	1.7	108
220	Loss of MyD88 alters neuroinflammatory response and attenuates early Purkinje cell loss in a spinocerebellar ataxia type 6 mouse model. Human Molecular Genetics, 2015, 24, 4780-4791.	1.4	29
221	Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury. ASN Neuro, 2015, 7, 175909141561896.	1.5	79

#	Article	IF	CITATIONS
222	Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. Journal of Neuroinflammation, 2015, 12, 109.	3.1	54
223	Associated occurrence of p75 neurotrophin receptor expressing aldynoglia and microglia/macrophages in long term organotypic murine brain slice cultures. Brain Research, 2015, 1595, 29-42.	1.1	6
224	PET and MR imaging of neuroinflammation in hepatic encephalopathy. Metabolic Brain Disease, 2015, 30, 31-45.	1.4	17
225	Nanocarrier-Mediated Inhibition of Macrophage Migration Inhibitory Factor Attenuates Secondary Injury after Spinal Cord Injury. ACS Nano, 2015, 9, 1492-1505.	7.3	75
226	Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Promote Recovery after Rat Spinal Cord Injury by Altering Macrophage Polarity. Journal of Neuroscience, 2015, 35, 2452-2464.	1.7	124
227	The role of the surface on microglia function: implications for central nervous system tissue engineering. Journal of the Royal Society Interface, 2015, 12, 20141224.	1.5	28
228	Dynamic Changes of Microglia/Macrophage <scp>M</scp> 1 and <scp>M</scp> 2 Polarization in <scp>T</scp> heiler's Murine Encephalomyelitis. Brain Pathology, 2015, 25, 712-723.	2.1	41
229	Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 2015, 1619, 1-11.	1.1	562
230	Microglia: Multitasking Specialists of the Brain. Developmental Cell, 2015, 32, 469-477.	3.1	164
231	Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination. Journal of Neuroscience, 2015, 35, 1136-1148.	1.7	76
232	Inflammation and Secondary Damage after Spinal Cord Injury. , 2015, , 245-261.		4
233	Minocycline Does Not Decrease Intensity of Neuropathic Pain, but Improves Its Affective Dimension. Journal of Pain and Palliative Care Pharmacotherapy, 2016, 30, 1-6.	0.5	25
234	Immune Quiescence of the Brain Is Set by Astroglial Connexin 43. Journal of Neuroscience, 2015, 35, 4427-4439.	1.7	55
235	Shape descriptors of the "never resting―microglia in three different acute brain injury models in mice. Intensive Care Medicine Experimental, 2015, 3, 39.	0.9	117
236	Myeloid-Specific Blockade of Notch Signaling by RBP-J Knockout Attenuates Spinal Cord Injury Accompanied by Compromised Inflammation Response in Mice. Molecular Neurobiology, 2015, 52, 1378-1390.	1.9	21
237	X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury. Journal of Synchrotron Radiation, 2015, 22, 136-142.	1.0	21
238	Analgetic effect of docosahexaenoic acid is mediated by modulating the microglia activity in the dorsal root ganglia in a rat model of neuropathic pain. Acta Histochemica, 2015, 117, 659-666.	0.9	20
239	Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer's disease. Behavioural Brain Research, 2015, 293, 189-197.	1.2	127

#	Article	IF	CITATIONS
240	Microglia recapitulate a hematopoietic master regulator network inÂthe aging human frontal cortex. Neurobiology of Aging, 2015, 36, 2443.e9-2443.e20.	1.5	46
241	Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Experimental Neurology, 2015, 271, 390-400.	2.0	31
242	Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain, Behavior, and Immunity, 2015, 50, 298-313.	2.0	121
243	Recombinant tissue plasminogen activator promotes, and progesterone attenuates, microglia/macrophage M1 polarization and recruitment of microglia after MCAO stroke in rats. Brain, Behavior, and Immunity, 2015, 49, 267-279.	2.0	59
244	Alternatively activated microglia and macrophages in the central nervous system. Progress in Neurobiology, 2015, 131, 65-86.	2.8	561
245	Grafted Bone Marrow Stromal Cells. Neuroscientist, 2015, 21, 277-289.	2.6	17
246	Respiratory function after selective respiratory motor neuron death from intrapleural CTB–saporin injections. Experimental Neurology, 2015, 267, 18-29.	2.0	25
247	Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation. Brain, Behavior, and Immunity, 2015, 48, 287-300.	2.0	33
248	The effects of hyperbaric oxygen on macrophage polarization after rat spinal cord injury. Brain Research, 2015, 1606, 68-76.	1.1	31
249	Intercellular cross-talk in intracerebral hemorrhage. Brain Research, 2015, 1623, 97-109.	1.1	35
250	Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Progress in Brain Research, 2015, 218, 15-54.	0.9	125
251	Anti-inflammatory Mechanism of Bone Marrow Mesenchymal Stem Cell Transplantation in Rat Model of Spinal Cord Injury. Cell Biochemistry and Biophysics, 2015, 71, 1341-1347.	0.9	61
252	CX3CL1/CX3CR1-Mediated Microglia Activation Plays a Detrimental Role in Ischemic Mice Brain via p38MAPK/PKC Pathway. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1623-1631.	2.4	77
253	Role of leukemia inhibitory factor in the nervous system and its pathology. Reviews in the Neurosciences, 2015, 26, 443-59.	1.4	11
254	Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes. ACS Nano, 2015, 9, 4465-4474.	7.3	246
255	CNS Injury: IL-33 Sounds the Alarm. Immunity, 2015, 42, 403-405.	6.6	19
256	A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. European Journal of Pharmacology, 2015, 760, 129-135.	1.7	18
257	Activation Status of Human Microglia Is Dependent on Lesion Formation Stage and Remyelination in Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2015, 74, 48-63.	0.9	157

ARTICLE IF CITATIONS # Intraspinal Delivery of Polyethylene Glycol-coated Gold Nanoparticles Promotes Functional Recovery 258 3.7 68 After Spinal Cord Ínjury. Molecular Thérapy, 2015, 23, 993-1002. Honokiol Downregulates Kruppel-Like Factor 4 Expression, Attenuates Inflammation, and Reduces 259 1.0 Histopathology After Spinal Cord Injury in Rats. Spine, 2015, 40, 363-368. Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after 260 1.1 83 spinal cord injury. Neuroscience, 2015, 311, 362-373. Neurodegenerative Disorders as Systemic Diseases., 2015,,. IL-1Â Gene Deletion Protects Oligodendrocytes after Spinal Cord Injury through Upregulation of the 262 1.7 53 Survival Factor Tox3. Journal of Neuroscience, 2015, 35, 10715-10730. Temporal profile of M1 and M2 responses in the hippocampus following early 24 h of neurotrauma. Journal of the Neurological Sciences, 2015, 357, 41-49. 0.3 Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in 264 2.0 92 spinal cord injury. Experimental Neurology, 2015, 273, 83-91. Paving the way for adequate myelination: The contribution of galectinâ€3, transferrin and iron. FEBS 1.3 24 Letters, 2015, 589, 3388-3395. 266 Computational modeling of cytokine signaling in microglia. Molecular BioSystems, 2015, 11, 3332-3346. 2.9 20 Macrophage and microglial plasticity in the injured spinal cord. Neuroscience, 2015, 307, 311-318. 1.1 108 Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. Journal 268 4.8 164 of Controlled Release, 2015, 219, 141-154. Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord. Molécular 29 Therapy, 2015, 23, 1077-1091. Untargeted Plasma Metabolomics Identifies Endogenous Metabolite with Drug-like Properties in 270 1.6 76 Chronic Animal Model of Multiple Sclerosis. Journal of Biological Chemistry, 2015, 290, 30697-30712. Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Clia, 2015, 63, 635-651. 271 2.5 209 Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia. 272 2.3258 Cold Spring Harbor Perspectives in Biology, 2015, 7, a020602. Cellular Therapy for Stroke and CNS Injuries., 2015,,. Interferon regulatory factor 7 participates in the <scp>M</scp>1â€like microglial polarization switch. 274 2.572 Glia, 2015, 63, 595-610. Methylene Blue Attenuates Traumatic Brain Injury-Associated Neuroinflammation and Acute 275 Depressive-Like Behavior in Mice. Journal of Neurotrauma, 2015, 32, 127-138.

#	Article	IF	CITATIONS
276	Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology, 2015, 11, 56-64.	4.9	1,093
277	Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain, Behavior, and Immunity, 2015, 44, 68-81.	2.0	105
278	Stem Cells in Canine Spinal Cord Injury – Promise for Regenerative Therapy in a Large Animal Model of Human Disease. Stem Cell Reviews and Reports, 2015, 11, 180-193.	5.6	47
279	Recent advances in the pharmacologic treatment of spinal cord injury. Metabolic Brain Disease, 2015, 30, 473-482.	1.4	45
280	Role of JAK-STAT Signalling on Motor Function Recovery after Spinal Cord Injury. , 0, , .		1
281	A Coral-Derived Compound Improves Functional Recovery after Spinal Cord Injury through Its Antiapoptotic and Anti-Inflammatory Effects. Marine Drugs, 2016, 14, 160.	2.2	26
282	The Potential of Curcumin in Treatment of Spinal Cord Injury. Neurology Research International, 2016, 2016, 1-11.	0.5	29
283	miRNAs Participate in MS Pathological Processes and Its Therapeutic Response. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	26
284	TLR3 Agonist Poly-IC Induces IL-33 and Promotes Myelin Repair. PLoS ONE, 2016, 11, e0152163.	1.1	48
285	Protective Role of the Immune System in Spinal Cord Injury: Immunomodulation with Altered Peptide Ligands. , 0, , .		2
286	Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury. Journal of Physiology, 2016, 594, 3539-3552.	1.3	71
287	Recruitment of mesenchymal stem cells and macrophages by dual release of stromal cellâ€derived factorâ€1 and a macrophage recruitment agent enhances wound closure. Journal of Biomedical Materials Research - Part A, 2016, 104, 942-956.	2.1	47
288	Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. Journal of Neuroinflammation, 2016, 13, 127.	3.1	148
289	Microglia activation states and cannabinoid system: Therapeutic implications. , 2016, 166, 40-55.		127
290	Tollâ€Interleukin 1 Receptor domainâ€containing adaptor protein positively regulates <scp>BV</scp> 2 cell M1 polarization. European Journal of Neuroscience, 2016, 43, 1674-1682.	1.2	23
291	Tollip, an early regulator of the acute inflammatory response in the substantia nigra. Journal of Neuroinflammation, 2016, 13, 303.	3.1	26
292	Red LED photobiomodulation reduces pain hypersensitivity and improves sensorimotor function following mild T10 hemicontusion spinal cord injury. Journal of Neuroinflammation, 2016, 13, 200.	3.1	27
293	Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiological Genomics, 2016, 48, 336-344.	1.0	26

#	Article	IF	CITATIONS
294	Lipopolysaccharide Preconditioning Induces an Anti-inflammatory Phenotype in BV2 Microglia. Cellular and Molecular Neurobiology, 2016, 36, 1269-1277.	1.7	23
295	A silver lining of neuroinflammation: Beneficial effects on myelination. Experimental Neurology, 2016, 283, 550-559.	2.0	38
296	Arginase-1 is expressed exclusively by infiltrating myeloid cells in CNS injury and disease. Brain, Behavior, and Immunity, 2016, 56, 61-67.	2.0	53
297	Hematoma Changes During Clot Resolution After Experimental Intracerebral Hemorrhage. Stroke, 2016, 47, 1626-1631.	1.0	96
298	An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiology of Aging, 2016, 45, 1-9.	1.5	62
299	Methionine enkephalin regulates microglia polarization and function. International Immunopharmacology, 2016, 40, 90-97.	1.7	11
300	2′-5′ oligoadenylate synthetase-like 1 (OASL1) deficiency suppresses central nervous system damage in a murine MOG-induced multiple sclerosis model. Neuroscience Letters, 2016, 628, 78-84.	1.0	6
301	Astrocyte-Derived CCL2 is Associated with M1 Activation and Recruitment of Cultured Microglial Cells. Cellular Physiology and Biochemistry, 2016, 38, 859-870.	1.1	59
302	Interleukin-13 immune gene therapy prevents CNS inflammation and demyelination via alternative activation of microglia and macrophages. Glia, 2016, 64, 2181-2200.	2.5	53
303	Role of adenosine A2b receptor overexpression in tumor progression. Life Sciences, 2016, 166, 92-99.	2.0	40
304	Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. Journal of Neuroinflammation, 2016, 13, 264.	3.1	235
305	Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiology of Disease, 2016, 96, 284-293.	2.1	82
306	The Role of Galectin-3: From Oligodendroglial Differentiation and Myelination to Demyelination and Remyelination Processes in a Cuprizone-Induced Demyelination Model. Advances in Experimental Medicine and Biology, 2016, 949, 311-332.	0.8	16
307	Clial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, 2016, , .	0.8	9
308	Nanoparticle-Delivered IRF5 siRNA Facilitates M1 to M2 Transition, Reduces Demyelination and Neurofilament Loss, and Promotes Functional Recovery After Spinal Cord Injury in Mice. Inflammation, 2016, 39, 1704-1717.	1.7	42
309	Microglia and Monocyte-Derived Macrophages in Stroke. Neurotherapeutics, 2016, 13, 702-718.	2.1	105
310	Is Immunomodulation a Principal Mechanism Underlying How Cell-Based Therapies Enhance Stroke Recovery?. Neurotherapeutics, 2016, 13, 775-782.	2.1	23
311	Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Progress in Neurobiology, 2016, 144, 158-172.	2.8	107

#	Article	IF	CITATIONS
312	miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. Journal of Neuroscience, 2016, 36, 8516-8532.	1.7	77
313	Impaired regeneration in aged nerves: Clearing out the old to make way for the new. Experimental Neurology, 2016, 284, 79-83.	2.0	17
314	IL-4 drives microglia and macrophages toward a phenotype conducive for tissue repair and functional recovery after spinal cord injury. Glia, 2016, 64, 2079-2092.	2.5	156
315	Activation of the niacin receptor HCA2 reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. European Journal of Pharmacology, 2016, 791, 124-136.	1.7	13
316	The Polarization of M2b Monocytes in Cultures of Burn Patient Peripheral CD14+ Cells Treated with a Selected Human CCL1 Antisense Oligodeoxynucleotide. Nucleic Acid Therapeutics, 2016, 26, 269-276.	2.0	12
317	TLR2 controls random motility, while TLR7 regulates chemotaxis of microglial cells via distinct pathways. Brain, Behavior, and Immunity, 2016, 58, 338-347.	2.0	27
318	Age increases reactive oxygen species production in macrophages and potentiates oxidative damage after spinal cord injury. Neurobiology of Aging, 2016, 47, 157-167.	1.5	70
319	mTOR regulates neuroprotective effect of immunized CD4+Foxp3+ T cells in optic nerve ischemia. Scientific Reports, 2016, 6, 37805.	1.6	12
320	Microglial phospholipase D4 deficiency influences myelination during brain development. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2016, 92, 237-254.	1.6	5
321	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	2.5	81
322	Monocyte-Derived Macrophages Modulate Inflammation and Promote Long-Term Functional Recovery in a Mouse Model of Ischemia. Journal of Neuroscience, 2016, 36, 9757-9759.	1.7	4
323	IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain, 2016, 139, 1939-1957.	3.7	87
324	Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice. Experimental and Molecular Medicine, 2016, 48, e244-e244.	3.2	24
325	Dynamic impact of brief electrical nerve stimulation on the neural immune axis—polarization of macrophages toward a proâ€repair phenotype in demyelinated peripheral nerve. Glia, 2016, 64, 1546-1561.	2.5	35
326	The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARI ³ -mediated alteration of microglial activation phenotypes. Journal of Neuroinflammation, 2016, 13, 259.	3.1	103
327	Improved recovery from spinal cord injury in rats with chronic parvovirus serotype-1a infection. Spinal Cord, 2016, 54, 517-520.	0.9	9
328	Neuroinflammation: the devil is in the details. Journal of Neurochemistry, 2016, 139, 136-153.	2.1	915
329	Dynamic changes in the relationship of microglia to cardiovascular neurons in response to increases and decreases in blood pressure. Neuroscience, 2016, 329, 12-29.	1.1	21

#	Article	IF	CITATIONS
330	Cannabinoid receptor-2 stimulation suppresses neuroinflammation by regulating microglial M1/M2 polarization through the cAMP/PKA pathway in an experimental GMH rat model. Brain, Behavior, and Immunity, 2016, 58, 118-129.	2.0	77
331	Soluble antigen derived from IV larva of Angiostrongylus cantonensis promotes chitinase-like protein 3 (Chil3) expression induced by interleukin-13. Parasitology Research, 2016, 115, 3737-3746.	0.6	4
332	Microglial number is related to the number of tyrosine hydroxylase neurons in SHR and normotensive rats. Autonomic Neuroscience: Basic and Clinical, 2016, 198, 10-18.	1.4	8
333	Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Journal of Neuroinflammation, 2016, 13, 9.	3.1	134
334	Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury. Molecular Neurodegeneration, 2016, 11, 14.	4.4	165
335	Promoting CNS repair. Science, 2016, 353, 30-31.	6.0	6
336	Aldose Reductase Regulates Microglia/Macrophages Polarization Through the cAMP Response Element-Binding Protein After Spinal Cord Injury in Mice. Molecular Neurobiology, 2016, 53, 662-676.	1.9	53
337	IRG1 induced by heme oxygenase-1/carbon monoxide inhibits LPS-mediated sepsis and pro-inflammatory cytokine production. Cellular and Molecular Immunology, 2016, 13, 170-179.	4.8	102
338	The Role of Activated Microglia and Resident Macrophages in the Neurovascular Unit during Cerebral Ischemia: Is the Jury Still Out?. Medical Principles and Practice, 2016, 25, 3-14.	1.1	45
339	Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochemical Pharmacology, 2016, 103, 1-16.	2.0	207
340	Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. Journal of Neurotrauma, 2016, 33, 1060-1072.	1.7	75
341	Immunoregulation at the gliovascular unit in the healthy brain: A focus on Connexin 43. Brain, Behavior, and Immunity, 2016, 56, 1-9.	2.0	33
342	CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 781-793.	2.4	35
343	Microglia in central nervous system repair after injury. Journal of Biochemistry, 2016, 159, 491-496.	0.9	136
344	Dendritic cells as therapeutic targets in neuroinflammation. Cellular and Molecular Life Sciences, 2016, 73, 2425-2450.	2.4	26
345	Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1141-1148.	0.6	12
346	ACAID as a potential therapeutic approach to modulate inflammation in neurodegenerative diseases. Medical Hypotheses, 2016, 88, 38-45.	0.8	9
347	Defining the Microglia Response during the Time Course of Chronic Neurodegeneration. Journal of Virology, 2016, 90, 3003-3017.	1.5	71

#	Article	IF	CITATIONS
348	Muscle wound healing in rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 2016, 48, 273-284.	1.6	38
349	Alerted microglia and the sympathetic nervous system: A novel form of microglia in the development of hypertension. Respiratory Physiology and Neurobiology, 2016, 226, 51-62.	0.7	29
350	Modulators of microglia: a patent review. Expert Opinion on Therapeutic Patents, 2016, 26, 427-437.	2.4	23
351	Prenatal and Postnatal Determinants of Development. Neuromethods, 2016, , .	0.2	2
352	TRAM1 Promotes Microglia M1 Polarization. Journal of Molecular Neuroscience, 2016, 58, 287-296.	1.1	28
353	Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1732-1750.	1.7	248
354	Microglia in the TBI brain: The good, the bad, and the dysregulated. Experimental Neurology, 2016, 275, 316-327.	2.0	519
355	Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials, 2016, 75, 13-24.	5.7	110
356	Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 310-322.	1.8	43
357	Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia, 2016, 30, 951-954.	3.3	53
358	The reactions and role of NG2 glia in spinal cord injury. Brain Research, 2016, 1638, 199-208.	1.1	63
359	Progressive inflammationâ€mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 2016, 173, 681-691.	2.7	217
360	Glia–neuron interactions in neurological diseases: Testing non-cell autonomy in a dish. Brain Research, 2017, 1656, 27-39.	1.1	30
361	Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Molecular Neurobiology, 2017, 54, 997-1007.	1.9	63
362	Matrix Metalloproteinases During Axonal Regeneration, a Multifactorial Role from Start to Finish. Molecular Neurobiology, 2017, 54, 2114-2125.	1.9	20
363	A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1285-1297.	1.3	23
364	The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 2017, 157, 247-272.	2.8	529
365	CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Experimental Neurology, 2017, 287, 409-422.	2.0	24

#	Article	IF	CITATIONS
366	Analysis of the Role of CX3CL1 (Fractalkine) and Its Receptor CX3CR1 in Traumatic Brain and Spinal Cord Injury: Insight into Recent Advances in Actions of Neurochemokine Agents. Molecular Neurobiology, 2017, 54, 2167-2188.	1.9	80
367	Polarization of microglia and its role in bacterial sepsis. Journal of Neuroimmunology, 2017, 303, 90-98.	1.1	43
368	Electroacupuncture Alleviates the Inflammatory Response via Effects on M1 and M2 Macrophages after Spinal Cord Injury. Acupuncture in Medicine, 2017, 35, 224-230.	0.4	35
369	Αâ€synuclein induces microglial cell migration through stimulating HIFâ€1α accumulation. Journal of Neuroscience Research, 2017, 95, 1809-1817.	1.3	19
370	Periostin Promotes Scar Formation through the Interaction between Pericytes and Infiltrating Monocytes/Macrophages after Spinal Cord Injury. American Journal of Pathology, 2017, 187, 639-653.	1.9	61
371	An Agonist of the Protective Factor SIRT1 Improves Functional Recovery and Promotes Neuronal Survival by Attenuating Inflammation after Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 2916-2930.	1.7	55
372	Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. Journal of Neuroinflammation, 2017, 14, 36.	3.1	38
373	Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. Journal of Translational Medicine, 2017, 15, 36.	1.8	253
374	SMN1 functions as a novel inhibitor for TRAF6-mediated NF-κB signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 760-770.	1.9	17
375	Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice. Journal of Neuroscience, 2017, 37, 3568-3587.	1.7	66
376	Influence of extracellular zinc on M1 microglial activation. Scientific Reports, 2017, 7, 43778.	1.6	43
377	Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia?. Neuroscience and Biobehavioral Reviews, 2017, 77, 148-164.	2.9	101
378	The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews Neurology, 2017, 13, 171-191.	4.9	687
379	MAFB prevents excess inflammation after ischemic stroke by accelerating clearance of damage signals through MSR1. Nature Medicine, 2017, 23, 723-732.	15.2	159
381	Hypoxic-Ischaemic Encephalopathy and the Blood-Brain Barrier in Neonates. Developmental Neuroscience, 2017, 39, 49-58.	1.0	49
382	The role of microglia in the pathobiology of neuropathic pain development: what do we know?. British Journal of Anaesthesia, 2017, 118, 504-516.	1.5	145
383	Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain, Behavior, and Immunity, 2017, 64, 124-139.	2.0	33
384	Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Scientific Reports, 2017, 7, 620.	1.6	61

#	Article	IF	CITATIONS
385	High-Throughput Sequencing and Co-Expression Network Analysis of IncRNAs and mRNAs in Early Brain Injury Following Experimental Subarachnoid Haemorrhage. Scientific Reports, 2017, 7, 46577.	1.6	42
386	Minocycline Prevents Muscular Pain Hypersensitivity and Cutaneous Allodynia Produced by Repeated Intramuscular Injections of Hypertonic Saline in Healthy Human Participants. Journal of Pain, 2017, 18, 994-1005.	0.7	12
387	Targeted siRNA delivery reduces nitric oxide mediated cell death after spinal cord injury. Journal of Nanobiotechnology, 2017, 15, 38.	4.2	28
388	Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. Journal of Neuroinflammation, 2017, 14, 99.	3.1	231
389	Human Neural Stem Cell Therapy for Chronic Ischemic Stroke: Charting Progress from Laboratory to Patients. Stem Cells and Development, 2017, 26, 933-947.	1.1	67
390	Insights into the Dual Role of Inflammation after Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 4658-4660.	1.7	69
391	The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury. Experimental Neurology, 2017, 294, 1-11.	2.0	28
392	Amelioration of amyloid-β-induced deficits by DcR3 in an Alzheimer's disease model. Molecular Neurodegeneration, 2017, 12, 30.	4.4	18
393	Neuregulinâ€1 positively modulates glial response and improves neurological recovery following traumatic spinal cord injury. Glia, 2017, 65, 1152-1175.	2.5	54
394	Modulators of microglial activation and polarization after intracerebral haemorrhage. Nature Reviews Neurology, 2017, 13, 420-433.	4.9	552
395	Microglia support ATF3-positive neurons following hypoglossal nerve axotomy. Neurochemistry International, 2017, 108, 332-342.	1.9	10
396	Astrocytic expression of the RNA regulator HuR accentuates spinal cord injury in the acute phase. Neuroscience Letters, 2017, 651, 140-145.	1.0	11
397	Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol, 2017, 62, 29-40.	0.8	83
398	Mechanisms of axon regeneration: The significance of proteoglycans. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2435-2441.	1.1	13
399	Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials, 2017, 138, 91-107.	5.7	144
400	Immunoengineering nerve repair. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5077-E5084.	3.3	65
401	Targeting tumor associated macrophages (TAMs) via nanocarriers. Journal of Controlled Release, 2017, 254, 92-106.	4.8	98
402	Compression Decreases Anatomical and Functional Recovery and Alters Inflammation after Contusive Spinal Cord Injury. Journal of Neurotrauma, 2017, 34, 2342-2352.	1.7	25

#	Article	IF	CITATIONS
403	IL-1β-induces NF-κB and upregulates microRNA-372 to inhibit spinal cord injury recovery. Journal of Neurophysiology, 2017, 117, 2282-2291.	0.9	29
404	Neuroprotector effect of stem cells from human exfoliated deciduous teeth transplanted after traumatic spinal cord injury involves inhibition of early neuronal apoptosis. Brain Research, 2017, 1663, 95-105.	1.1	61
405	HuR promotes the molecular signature and phenotype of activated microglia: Implications for amyotrophic lateral sclerosis and other neurodegenerative diseases. Glia, 2017, 65, 945-963.	2.5	31
406	STZ causes depletion of immune cells in sciatic nerve and dorsal root ganglion in experimental diabetes. Journal of Neuroimmunology, 2017, 306, 76-82.	1.1	12
407	TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Antiâ€Inflammatory Effects in Microglial Cells. Journal of Cellular Physiology, 2017, 232, 2231-2245.	2.0	132
408	Autocrine Interleukin-10 Mediates Clucagon-Like Peptide-1 Receptor-Induced Spinal Microglial β-Endorphin Expression. Journal of Neuroscience, 2017, 37, 11701-11714.	1.7	57
409	Salamander spinal cord regeneration: The ultimate positive control in vertebrate spinal cord regeneration. Developmental Biology, 2017, 432, 63-71.	0.9	75
410	Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiology of Disease, 2017, 108, 73-82.	2.1	48
411	Systemic Neutrophil Depletion Modulates the Migration and Fate of Transplanted Human Neural Stem Cells to Rescue Functional Repair. Journal of Neuroscience, 2017, 37, 9269-9287.	1.7	32
412	Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells. Neurobiology of Aging, 2017, 60, 173-182.	1.5	34
413	Inflammatory Activation of Microglia and Astrocytes in Manganese Neurotoxicity. Advances in Neurobiology, 2017, 18, 159-181.	1.3	92
414	HDAC3 inhibition ameliorates spinal cord injury by immunomodulation. Scientific Reports, 2017, 7, 8641.	1.6	49
415	IRF2BP2-deficient microglia block the anxiolytic effect of enhanced postnatal care. Scientific Reports, 2017, 7, 9836.	1.6	14
416	The cystathionine β-synthase/hydrogen sulfide pathway contributes to microglia-mediated neuroinflammation following cerebral ischemia. Brain, Behavior, and Immunity, 2017, 66, 332-346.	2.0	67
417	Spine-on-a-chip: Human annulus fibrosus degeneration model for simulating the severity of intervertebral disc degeneration. Biomicrofluidics, 2017, 11, 064107.	1.2	14
418	Diverging mRNA and Protein Networks in Activated Microglia Reveal SRSF3 Suppresses Translation of Highly Upregulated Innate Immune Transcripts. Cell Reports, 2017, 21, 3220-3233.	2.9	70
419	Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation. Journal of Cellular and Molecular Medicine, 2018, 22, 1148-1166.	1.6	125
420	Extremely low frequency magnetic field protects injured spinal cord from the microglia- and iron-induced tissue damage. Electromagnetic Biology and Medicine, 2017, 36, 330-340.	0.7	15

#	Article	IF	CITATIONS
421	Erythropoietin ameliorates early brain injury after subarachnoid haemorrhage by modulating microglia polarization via the EPOR/JAK2-STAT3 pathway. Experimental Cell Research, 2017, 361, 342-352.	1.2	62
422	Maresin 1 Promotes Inflammatory Resolution, Neuroprotection, and Functional Neurological Recovery After Spinal Cord Injury. Journal of Neuroscience, 2017, 37, 11731-11743.	1.7	130
423	Design and optimization of PLGA microparticles for controlled and local delivery of Neuregulin-1 in traumatic spinal cord injury. Journal of Controlled Release, 2017, 261, 147-162.	4.8	33
424	Neuro-microglial interactions in the spinal centers of pain modulation in the neuropathic pain syndrome. Neurochemical Journal, 2017, 11, 161-167.	0.2	2
425	Exercise attenuates neurological deficits by stimulating a critical HSP70/NF-κB/IL-6/synapsin I axis in traumatic brain injury rats. Journal of Neuroinflammation, 2017, 14, 90.	3.1	43
426	Transcriptomic evidence of a para-inflammatory state in the middle aged lumbar spinal cord. Immunity and Ageing, 2017, 14, 9.	1.8	8
427	An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain, Behavior, and Immunity, 2017, 66, 201-209.	2.0	50
428	Systemic Administration of Exosomes Released from Mesenchymal Stromal Cells Attenuates Apoptosis, Inflammation, and Promotes Angiogenesis after Spinal Cord Injury in Rats. Journal of Neurotrauma, 2017, 34, 3388-3396.	1.7	200
429	Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Molecular Neurobiology, 2017, 54, 7567-7584.	1.9	198
430	RNA Binding Protein Human Antigen R Is Translocated in Astrocytes following Spinal Cord Injury and Promotes the Inflammatory Response. Journal of Neurotrauma, 2017, 34, 1249-1259.	1.7	22
431	Spinal Cord Transcriptomic and Metabolomic Analysis after Excitotoxic Injection Injury Model of Syringomyelia. Journal of Neurotrauma, 2017, 34, 720-733.	1.7	18
432	Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 2017, 113, 18-30.	5.7	73
433	Uptake of parasiteâ€derived vesicles by astrocytes and microglial phagocytosis of infected erythrocytes may drive neuroinflammation in cerebral malaria. Glia, 2017, 65, 75-92.	2.5	44
434	Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury?. Brain, Behavior, and Immunity, 2017, 60, 369-382.	2.0	66
435	Synchrotron radiation micro-CT as a novel tool to evaluate the effect of agomir-210 in a rat spinal cord injury model. Brain Research, 2017, 1655, 55-65.	1.1	18
436	Differential Neuroprotective Effects of Interleukin-1 Receptor Antagonist on Spinal Cord Neurons after Excitotoxic Injury. NeuroImmunoModulation, 2017, 24, 220-230.	0.9	3
437	Changes in neocortical and hippocampal microglial cells during hibernation. Brain Structure and Function, 2017, 223, 1881-1895.	1.2	8
438	Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.	0.8	2

	CITATION	CITATION REPORT	
# 439	ARTICLE Epothilone B impairs functional recovery after spinal cord injury by increasing secretion of macrophage colony-stimulating factor. Cell Death and Disease, 2017, 8, e3162-e3162.	IF 2.7	CITATIONS
440	The Role of NO/cGMP Signaling on Neuroinflammation: A New Therapeutic Opportunity. , 2017, , .		6
441	Hyperbaric oxygen therapy of spinal cord injury. Medical Gas Research, 2017, 7, 133.	1.2	35
442	Delayed decompression exacerbates ischemia-reperfusion injury in cervical compressive myelopathy. JCI Insight, 2017, 2, .	2.3	67
443	Levo-Corydalmine Alleviates Neuropathic Cancer Pain Induced by Tumor Compression via the CCL2/CCR2 Pathway. Molecules, 2017, 22, 937.	1.7	19
444	NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Frontiers in Cellular Neuroscience, 2017, 11, 63.	1.8	352
445	Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit. Frontiers in Cellular and Infection Microbiology, 2017, 7, 276.	1.8	112
446	Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Frontiers in Aging Neuroscience, 2017, 9, 227.	1.7	70
447	Mild Inflammatory Profile without Gliosis in the c-Rel Deficient Mouse Modeling a Late-Onset Parkinsonism. Frontiers in Aging Neuroscience, 2017, 9, 229.	1.7	12
448	A Combination of Ex vivo Diffusion MRI and Multiphoton to Study Microglia/Monocytes Alterations after Spinal Cord Injury. Frontiers in Aging Neuroscience, 2017, 9, 230.	1.7	24
449	Differences in the Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats Highlights the Potential Significance of the Inflammatory Response. Frontiers in Cellular Neuroscience, 2017, 10, 310.	1.8	25
450	TIR-Domain-Containing Adapter-Inducing Interferon-β (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Frontiers in Cellular Neuroscience, 2017, 11, 35.	1.8	5
451	Alterations in CD200-CD200R1 System during EAE Already Manifest at Presymptomatic Stages. Frontiers in Cellular Neuroscience, 2017, 11, 129.	1.8	24
452	Effect of VEGF on Inflammatory Regulation, Neural Survival, and Functional Improvement in Rats following a Complete Spinal Cord Transection. Frontiers in Cellular Neuroscience, 2017, 11, 381.	1.8	37
453	RNA-Seq Analysis of Microglia Reveals Time-Dependent Activation of Specific Genetic Programs following Spinal Cord Injury. Frontiers in Molecular Neuroscience, 2017, 10, 90.	1.4	76
454	The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Frontiers in Molecular Neuroscience, 2017, 10, 191.	1.4	188
455	Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System. Mediators of Inflammation, 2017, 2017, 1-14.	1.4	110
456	Effects of Exercise-Altered Immune Functions on Neuroplasticity. , 2017, , 209-217.		0

#	Article	IF	CITATIONS
457	Selective suppression of the JNK-MMP2/9 signal pathway by tetramethylpyrazine attenuates neuropathic pain in rats. Journal of Neuroinflammation, 2017, 14, 174.	3.1	47
458	The CC chemokine ligand (CCL) 1, upregulated by the viral transactivator Tax, can be downregulated by minocycline: possible implications for long-term treatment of HTLV-1-associated myelopathy/tropical spastic paraparesis. Virology Journal, 2017, 14, 234.	1.4	9
459	Effects of Erythropoietin on Gliogenesis during Cerebral Ischemic/Reperfusion Recovery in Adult Mice. , 2017, 8, 410.		43
460	Different Roles of Microglia/Macrophage in Ischemic Stroke and Alzheimer's Disease. , 2017, 7, .		0
461	Anti-inflammatory effect of stem cells against spinal cord injury via regulating macrophage polarization. Journal of Neurorestoratology, 0, Volume 5, 31-38.	1.1	11
462	Emerging targets for reprograming the immune response to promote repair and recovery of function after spinal cord injury. Current Opinion in Neurology, 2018, 31, 334-344.	1.8	51
463	Phototherapy suppresses inflammation in human nucleus pulposus cells for intervertebral disc degeneration. Lasers in Medical Science, 2018, 33, 1055-1064.	1.0	8
464	Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Experimental and Molecular Medicine, 2018, 50, 1-18.	3.2	38
465	Mesenchymal stem cells encapsulated into biomimetic hydrogel scaffold gradually release CCL2 chemokine in situ preserving cytoarchitecture and promoting functional recovery in spinal cord injury. Journal of Controlled Release, 2018, 278, 49-56.	4.8	80
466	FasL incapacitation alleviates CD4+ T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. Journal of Neuroimmunology, 2018, 318, 36-44.	1.1	19
467	Plasma Hemopexin ameliorates murine spinal cord injury by switching microglia from the M1 state to the M2 state. Cell Death and Disease, 2018, 9, 181.	2.7	30
468	Trajectory of inflammatory and microglial activation markers in the postnatal rabbit brain following intrauterine endotoxin exposure. Neurobiology of Disease, 2018, 111, 153-162.	2.1	32
469	Î ³ δT cells provide the early source of IFN-Î ³ to aggravate lesions in spinal cord injury. Journal of Experimental Medicine, 2018, 215, 521-535.	4.2	91
470	Both classic Gs-cAMP/PKA/CREB and alternative Gs-cAMP/PKA/p38β/CREB signal pathways mediate exenatide-stimulated expression of M2 microglial markers. Journal of Neuroimmunology, 2018, 316, 17-22.	1.1	40
471	Intranasal Stem Cell Treatment as a Novel Therapy for Subarachnoid Hemorrhage. Stem Cells and Development, 2018, 27, 313-325.	1.1	45
472	Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Research Bulletin, 2018, 140, 154-161.	1.4	115
473	Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Molecular Therapy, 2018, 26, 1756-1770.	3.7	56
474	Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics, 2018, 15, 541-553.	2.1	363

#	Article	IF	CITATIONS
475	Liposome-encapsulated clodronate specifically depletes spinal microglia and reduces initial neuropathic pain. Biochemical and Biophysical Research Communications, 2018, 499, 499-505.	1.0	31
476	Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerveâ€guided collagen scaffold through increasing alternatively activated macrophage polarization. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1725-e1736.	1.3	41
477	Nanotechnology: A Promising New Paradigm for the Control of Pain. Pain Medicine, 2018, 19, 232-243.	0.9	23
478	MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist, 2018, 24, 221-245.	2.6	184
479	Blockade of Interleukin-7 Receptor Shapes Macrophage Alternative Activation and Promotes Functional Recovery After Spinal Cord Injury. Neuroscience, 2018, 371, 518-527.	1.1	26
480	Retracing your footsteps: developmental insights to spinal network plasticity following injury. Journal of Neurophysiology, 2018, 119, 521-536.	0.9	13
481	Unconventional Myosin ID is Involved in Remyelination After Cuprizone-Induced Demyelination. Neurochemical Research, 2018, 43, 195-204.	1.6	9
482	The effect of an acute systemic inflammatory insult on the chronic effects of a single mild traumatic brain injury. Behavioural Brain Research, 2018, 336, 22-31.	1.2	37
483	Electronic and Ionic Materials for Neurointerfaces. Advanced Functional Materials, 2018, 28, 1704335.	7.8	63
484	Gene expression profiles of M1 and M2 microglia characterized by comparative analysis of public datasets. Clinical and Experimental Neuroimmunology, 2018, 9, 124-138.	0.5	13
485	Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Research Reviews, 2018, 42, 28-39.	5.0	52
486	Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomedical Materials (Bristol), 2018, 13, 024105.	1.7	33
487	Galectin-3: mediator of microglia responses in injured brain. Drug Discovery Today, 2018, 23, 375-381.	3.2	67
488	Detection of local and remote cellular damage caused by spinal cord and peripheral nerve injury using a heat shock signaling reporter system. IBRO Reports, 2018, 5, 91-98.	0.3	9
489	HDAC3 Inhibition Promotes Alternative Activation of Macrophages but Does Not Affect Functional Recovery after Spinal Cord Injury. Experimental Neurobiology, 2018, 27, 437-452.	0.7	25
490	Spinal Cord Injuries in Dogs Part I: A Review of Basic Knowledge. Folia Veterinaria, 2018, 62, 35-44.	0.2	2
491	Counteracting neuroinflammation in experimental Parkinson's disease favors recovery of function: effects of Er-NPCs administration. Journal of Neuroinflammation, 2018, 15, 333.	3.1	16
492	miRNA-544a Regulates the Inflammation of Spinal Cord Injury by Inhibiting the Expression of NEUROD4. Cellular Physiology and Biochemistry, 2018, 51, 1921-1931.	1.1	33

#	Article	IF	CITATIONS
493	CSF1R Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2018, 12, 368.	1.8	79
494	Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. Journal of Controlled Release, 2018, 290, 88-101.	4.8	49
495	Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials, 2018, 185, 284-300.	5.7	26
496	The microglial activation profile and associated factors after experimental spinal cord injury in rats. Neuropsychiatric Disease and Treatment, 2018, Volume 14, 2401-2413.	1.0	18
497	Mannose-Binding Lectin Drives Platelet Inflammatory Phenotype and Vascular Damage After Cerebral Ischemia in Mice via IL (Interleukin)-1α. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2678-2690.	1.1	34
498	Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARÎ ³ pathway. Biochemical Pharmacology, 2018, 156, 385-395.	2.0	56
499	Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Molecular Immunology, 2018, 101, 550-563.	1.0	30
500	Macrophage migration inhibitory factor facilitates production of CCL5 in astrocytes following rat spinal cord injury. Journal of Neuroinflammation, 2018, 15, 253.	3.1	47
501	Local Delivery of β-Elemene Improves Locomotor Functional Recovery by Alleviating Endoplasmic Reticulum Stress and Reducing Neuronal Apoptosis in Rats with Spinal Cord Injury. Cellular Physiology and Biochemistry, 2018, 49, 595-609.	1.1	21
502	Traditional Mongolian medicine Eerdun Wurile improves stroke recovery through regulation of gene expression in rat brain. Journal of Ethnopharmacology, 2018, 222, 249-260.	2.0	29
503	Decellularized peripheral nerve supports Schwann cell transplants and axon growth following spinal cord injury. Biomaterials, 2018, 177, 176-185.	5.7	78
504	Encephalopathy of Prematurity. , 2018, , 405-424.e8.		8
505	Oxidized phospholipid signaling in traumatic brain injury. Free Radical Biology and Medicine, 2018, 124, 493-503.	1.3	63
506	Galectin-3 in M2 Macrophages Plays a Protective Role in Resolution of Neuropathology in Brain Parasitic Infection by Regulating Neutrophil Turnover. Journal of Neuroscience, 2018, 38, 6737-6750.	1.7	36
507	Potential Neuroprotective Strategies for Experimental Spinal Cord Injury. , 2018, , 197-238.		0
508	The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins, 2018, 10, 303.	1.5	61
509	Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain, 2018, 141, 2362-2381.	3.7	87
510	FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 2018, 19, 200.	1.8	14

#	Article	IF	CITATIONS
511	Animal Toxins as Therapeutic Tools to Treat Neurodegenerative Diseases. Frontiers in Pharmacology, 2018, 9, 145.	1.6	53
512	Oral Administration of α-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury. Frontiers in Pharmacology, 2018, 9, 445.	1.6	16
513	BHDPC Is a Novel Neuroprotectant That Provides Anti-neuroinflammatory and Neuroprotective Effects by Inactivating NF-κB and Activating PKA/CREB. Frontiers in Pharmacology, 2018, 9, 614.	1.6	19
514	Long noncoding RNA MALAT1 contributes to inflammatory response of microglia following spinal cord injury via the modulation of a miR-199b/IKKβ/NF-ήB signaling pathway. American Journal of Physiology - Cell Physiology, 2018, 315, C52-C61.	2.1	92
515	The Biology of Regeneration Failure and Success After Spinal Cord Injury. Physiological Reviews, 2018, 98, 881-917.	13.1	540
516	Transplantation of rat-derived microglial cells promotes functional recovery in a rat model of spinal cord injury. Brazilian Journal of Medical and Biological Research, 2018, 51, e7076.	0.7	11
517	Macrophages in the Human Cochlea: Saviors or Predators—A Study Using Super-Resolution Immunohistochemistry. Frontiers in Immunology, 2018, 9, 223.	2.2	75
518	C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2018, 12, 173.	1.8	25
519	Transplantation of Neural Precursor Cells Attenuates Chronic Immune Environment in Cervical Spinal Cord Injury. Frontiers in Neurology, 2018, 9, 428.	1.1	26
520	Inhibitory Effects of Betulinic Acid on LPS-Induced Neuroinflammation Involve M2 Microglial Polarization via CaMKKβ-Dependent AMPK Activation. Frontiers in Molecular Neuroscience, 2018, 11, 98.	1.4	57
521	Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sciences, 2018, 8, 30.	1.1	39
522	Effects of Dietary Vitamin E Supplementation in Bladder Function and Spasticity during Spinal Cord Injury. Brain Sciences, 2018, 8, 38.	1.1	14
523	Neuroinflammatory responses in experimental and human stroke lesions. Journal of Neuroimmunology, 2018, 323, 10-18.	1.1	52
524	Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma. Journal of Neuroinflammation, 2018, 15, 201.	3.1	27
525	Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes. Frontiers in Bioengineering and Biotechnology, 2018, 6, 26.	2.0	22
526	Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair. Neurotherapeutics, 2018, 15, 578-587.	2.1	34
527	Perturbing chondroitin sulfate proteoglycan signaling through LAR and PTP i_f receptors promotes a beneficial inflammatory response following spinal cord injury. Journal of Neuroinflammation, 2018, 15, 90.	3.1	73
528	Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opinion on Therapeutic Targets, 2018, 22, 765-781.	1.5	47

#	Article	IF	CITATIONS
529	Evaluation of in situ gelling chitosan-PEG copolymer for use in the spinal cord. Journal of Biomaterials Applications, 2018, 33, 435-446.	1.2	15
530	The Kaleidoscope of Microglial Phenotypes. Frontiers in Immunology, 2018, 9, 1753.	2.2	221
531	Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages. Physiological Genomics, 2018, 50, 299-312.	1.0	16
532	Myeloid cells as therapeutic targets in neuroinflammation after stroke: Specific roles of neutrophils and neutrophil–platelet interactions. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2150-2164.	2.4	83
533	Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 206.	1.8	186
534	Microenvironment Imbalance of Spinal Cord Injury. Cell Transplantation, 2018, 27, 853-866.	1.2	281
535	Adeno-Associated Virus Vector Mediated Gene Delivery to Neurons and Glial Cells in Damaged Spinal Cord. , 2018, , 287-298.		0
536	Treatment targets for M2 microglia polarization in ischemic stroke. Biomedicine and Pharmacotherapy, 2018, 105, 518-525.	2.5	150
537	Dehydrocorydaline attenuates bone cancer pain by shifting microglial M1/M2 polarization toward the M2 phenotype. Molecular Pain, 2018, 14, 174480691878173.	1.0	53
538	Myeloid cell responses after spinal cord injury. Journal of Neuroimmunology, 2018, 321, 97-108.	1.1	63
539	Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 937-949.	1.7	22
540	Effects of SC99 on cerebral ischemia-perfusion injury in rats: Selective modulation of microglia polarization to M2 phenotype via inhibiting JAK2-STAT3 pathway. Neuroscience Research, 2019, 142, 58-68.	1.0	22
541	Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice. Biochemical and Biophysical Research Communications, 2019, 517, 741-748.	1.0	25
542	A Therapeutic Strategy for Alzheimer's Disease Focused on Immune-inflammatory Modulation. Dementia and Neurocognitive Disorders, 2019, 18, 33.	0.4	20
543	TMEM16F inhibition limits pain-associated behavior and improves motor function by promoting microglia M2 polarization in mice. Biochemical and Biophysical Research Communications, 2019, 517, 603-610.	1.0	11
544	Isosteviol Sodium Protects against Ischemic Stroke by Modulating Microglia/Macrophage Polarization via Disruption of GAS5/miR-146a-5p sponge. Scientific Reports, 2019, 9, 12221.	1.6	40
545	Characterization of Inflammation in Delayed Cortical Transplantation. Frontiers in Molecular Neuroscience, 2019, 12, 160.	1.4	9
546	Long non-coding RNA Mirt2 relieves lipopolysaccharide-induced injury in PC12 cells by suppressing miR-429. Journal of Physiology and Biochemistry, 2019, 75, 403-413.	1.3	19

#	Article	IF	CITATIONS
547	Effect of M2 macrophage adoptive transfer on transcriptome profile of injured spinal cords in rats. Experimental Biology and Medicine, 2019, 244, 880-892.	1.1	7
548	Intravascular innate immune cells reprogrammed via intravenous nanoparticles to promote functional recovery after spinal cord injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14947-14954.	3.3	83
549	Role of microglia in spinal cord injury. Neuroscience Letters, 2019, 709, 134370.	1.0	69
550	Human Inner Ear Immune Activity: A Super-Resolution Immunohistochemistry Study. Frontiers in Neurology, 2019, 10, 728.	1.1	14
551	Combined Genetic Deletion of IL (Interleukin)-4, IL-5, IL-9, and IL-13 Does Not Affect Ischemic Brain Injury in Mice. Stroke, 2019, 50, 2207-2215.	1.0	14
552	Altered Expression of Heat Shock Protein-27 and Monocyte Chemoattractant Protein-1 after Acute Spinal Cord Injury: A Pilot Study. Journal of Neurosciences in Rural Practice, 2019, 10, 452-458.	0.3	0
553	Bisperoxovanadium induces M2-type macrophages and promotes functional recovery after spinal cord injury. Molecular Immunology, 2019, 116, 56-62.	1.0	11
554	Minocycline Ameliorates Depressive-Like Behavior and Demyelination Induced by Transient Global Cerebral Ischemia by Inhibiting Microglial Activation. Frontiers in Pharmacology, 2019, 10, 1247.	1.6	28
555	Emerging Evidence of Macrophage Contribution to Hyperinnervation and Nociceptor Sensitization in Vulvodynia. Frontiers in Molecular Neuroscience, 2019, 12, 186.	1.4	13
556	Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury. Frontiers in Systems Neuroscience, 2019, 13, 37.	1.2	70
557	Enhanced Expression of PD-L1 on Microglia After Surgical Brain Injury Exerts Self-Protection from Inflammation and Promotes Neurological Repair. Neurochemical Research, 2019, 44, 2470-2481.	1.6	21
558	Microglial response patterns following damage to the zebrafish olfactory bulb. IBRO Reports, 2019, 7, 70-79.	0.3	5
559	Fabrication and Characterization of a Protein Composite Conduit for Neural Regeneration. ACS Applied Bio Materials, 2019, 2, 4213-4221.	2.3	3
560	Targeting MAPK Pathways by Naringenin Modulates Microglia M1/M2 Polarization in Lipopolysaccharide-Stimulated Cultures. Frontiers in Cellular Neuroscience, 2018, 12, 531.	1.8	90
561	Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnology, 2019, 19, 10.	1.7	30
562	Inhibitory Effects of the Two Novel TSPO Ligands 2-Cl-MGV-1 and MGV-1 on LPS-induced Microglial Activation. Cells, 2019, 8, 486.	1.8	27
563	The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Scientific Reports, 2019, 9, 7660.	1.6	17
564	Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation. Brain Research, 2019, 1720, 146293.	1.1	11

#	Article	IF	CITATIONS
565	BET protein inhibition regulates cytokine production and promotes neuroprotection after spinal cord injury. Journal of Neuroinflammation, 2019, 16, 124.	3.1	45
566	Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Progress in Neurobiology, 2019, 180, 101643.	2.8	74
567	Tracking the evolution of CNS remyelinating lesion in mice with neutral red dye. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14290-14299.	3.3	22
568	MicroRNAs in Microglia: How do MicroRNAs Affect Activation, Inflammation, Polarization of Microglia and Mediate the Interaction Between Microglia and Glioma?. Frontiers in Molecular Neuroscience, 2019, 12, 125.	1.4	112
569	Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation. Brain Sciences, 2019, 9, 124.	1.1	5
570	Danshen extract (Salvia miltiorrhiza Bunge) attenuate spinal cord injury in a rat model: A metabolomic approach for the mechanism study. Phytomedicine, 2019, 62, 152966.	2.3	11
571	Macrophage centripetal migration drives spontaneous healing process after spinal cord injury. Science Advances, 2019, 5, eaav5086.	4.7	60
572	NPY Receptor 2 Mediates NPY Antidepressant Effect in the mPFC of LPS Rat by Suppressing NLRP3 Signaling Pathway. Mediators of Inflammation, 2019, 2019, 1-12.	1.4	15
573	System xcâ^' in microglia is a novel therapeutic target for post-septic neurological and psychiatric illness. Scientific Reports, 2019, 9, 7562.	1.6	15
574	Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. Journal of Neuroscience Research, 2019, 97, 733-743.	1.3	35
575	Temporal evolution of microglia and α-synuclein accumulation following foetal grafting in Parkinson's disease. Brain, 2019, 142, 1690-1700.	3.7	75
576	Inhibition of MALT1 paracaspase activity improves lesion recovery following spinal cord injury. Science Bulletin, 2019, 64, 1179-1194.	4.3	5
577	Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. Journal of Colloid and Interface Science, 2019, 549, 50-62.	5.0	48
578	Phagocytosis in the Brain: Homeostasis and Disease. Frontiers in Immunology, 2019, 10, 790.	2.2	206
579	Prior Exposure to Immunosuppressors Sensitizes Retinal Microglia and Accelerates Optic Nerve Regeneration in Zebrafish. Mediators of Inflammation, 2019, 2019, 1-16.	1.4	15
580	IMM-H004 protects against oxygen-glucose deprivation/reperfusion injury to BV2 microglia partly by modulating CKLF1 involved in microglia polarization. International Immunopharmacology, 2019, 70, 69-79.	1.7	15
581	Neuroprotective Effects of BHDPC, a Novel Neuroprotectant, on Experimental Stroke by Modulating Microglia Polarization. ACS Chemical Neuroscience, 2019, 10, 2434-2449.	1.7	26
582	Exosomes from LPS-stimulated macrophages induce neuroprotection and functional improvement after ischemic stroke by modulating microglial polarization. Biomaterials Science, 2019, 7, 2037-2049.	2.6	142

#	Article	IF	CITATIONS
583	Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Progress in Neurobiology, 2019, 178, 101610.	2.8	185
584	Senescence in aging and disorders of the central nervous system. Translational Medicine of Aging, 2019, 3, 17-25.	0.6	17
585	Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy, 2019, 21, 393-415.	0.3	23
586	Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Frontiers in Neurology, 2019, 10, 282.	1.1	698
587	Huoluo Yinao decoction mitigates cognitive impairments after chronic cerebral hypoperfusion in rats. Journal of Ethnopharmacology, 2019, 238, 111846.	2.0	2
588	Docosahexaenoic acid reduces microglia phagocytic activity via miR-124 and induces neuroprotection in rodent models of spinal cord contusion injury. Human Molecular Genetics, 2019, 28, 2427-2448.	1.4	27
589	CKLF1 Aggravates Focal Cerebral Ischemia Injury at Early Stage Partly by Modulating Microglia/Macrophage Toward M1 Polarization Through CCR4. Cellular and Molecular Neurobiology, 2019, 39, 651-669.	1.7	38
590	Delayed Astrogliosis Associated with Reduced M1 Microglia Activation in Matrix Metalloproteinase 12 Knockout Mice during Theiler's Murine Encephalomyelitis. International Journal of Molecular Sciences, 2019, 20, 1702.	1.8	11
591	Interferon-Stimulated Genes—Mediators of the Innate Immune Response during Canine Distemper Virus Infection. International Journal of Molecular Sciences, 2019, 20, 1620.	1.8	13
592	Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis. Frontiers in Pharmacology, 2019, 10, 286.	1.6	98
593	Conditional ablation of reactive astrocytes to dissect their roles in spinal cord injury and repair. Brain, Behavior, and Immunity, 2019, 80, 394-405.	2.0	47
594	Identification of critical genes associated with spinal cord injury based on the gene expression profile of spinal cord tissues from trkB.T1 knockout mice. Molecular Medicine Reports, 2019, 19, 2013-2020.	1.1	3
595	Inhibition of NOX2 signaling limits pain-related behavior and improves motor function in male mice after spinal cord injury: Participation of IL-10/miR-155 pathways. Brain, Behavior, and Immunity, 2019, 80, 73-87.	2.0	48
596	BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. Journal of Cellular and Molecular Medicine, 2019, 23, 3214-3223.	1.6	51
597	Modulation of macrophage phenotype via phagocytosis of drugâ€loaded microparticles. Journal of Biomedical Materials Research - Part A, 2019, 107, 1213-1224.	2.1	22
598	Nanovector-Mediated Drug Delivery in Spinal Cord Injury: A Multitarget Approach. ACS Chemical Neuroscience, 2019, 10, 1173-1182.	1.7	20
599	Transplantation or Transference of Cultured Cells as a Treatment for Spinal Cord Injury. , 2019, , .		0
600	Physiopathology of Spinal Cord Injury. , 0, , .		0

#	Article	IF	CITATIONS
601	Isovitexin-Mediated Regulation of Microglial Polarization in Lipopolysaccharide-Induced Neuroinflammation via Activation of the CaMKKβ/AMPK-PGC-1α Signaling Axis. Frontiers in Immunology, 2019, 10, 2650.	2.2	43
602	A FRET-based two-photon probe for in vivo tracking of pH during a traumatic brain injury process. New Journal of Chemistry, 2019, 43, 17018-17022.	1.4	5
603	Brainstem-Evoked Transcription of Defensive Genes After Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2019, 13, 510.	1.8	4
604	Relationship of Inflammatory Cytokines From M1-Type Microglia/Macrophages at the Injured Site and Lumbar Enlargement With Neuropathic Pain After Spinal Cord Injury in the CCL21 Knockout (plt) Mouse. Frontiers in Cellular Neuroscience, 2019, 13, 525.	1.8	46
605	Identification and characterization of microglia/macrophages in the granuloma microenvironment of encephalic schistosomiasis japonicum. BMC Infectious Diseases, 2019, 19, 1088.	1.3	9
606	Exercise-Induced Changes to the Macrophage Response in the Dorsal Root Ganglia Prevent Neuropathic Pain after Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 877-890.	1.7	59
607	Cathepsin C modulates myelin oligodendrocyte glycoproteinâ€induced experimental autoimmune encephalomyelitis. Journal of Neurochemistry, 2019, 148, 413-425.	2.1	9
608	Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Frontiers of Medicine, 2019, 13, 131-137.	1.5	14
609	Protective and therapeutic role of Bilobalide in cuprizone-induced demyelination. International Immunopharmacology, 2019, 66, 69-81.	1.7	27
610	Ischaemic and hypoxic conditioning: potential for protection of vital organs. Experimental Physiology, 2019, 104, 278-294.	0.9	56
611	LAR and PTPÏ <i>f</i> receptors are negative regulators of oligodendrogenesis and oligodendrocyte integrity in spinal cord injury. Glia, 2019, 67, 125-145.	2.5	44
612	Neuroprotective Effects on the Morphology of Somatic Motoneurons Following the Death of Neighboring Motoneurons: A Role for Microglia?. Developmental Neurobiology, 2019, 79, 131-154.	1.5	2
613	Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sciences, 2019, 217, 119-127.	2.0	95
614	Developmental differences in microglia morphology and gene expression during normal brain development and in response to hypoxia-ischemia. Neurochemistry International, 2019, 127, 137-147.	1.9	30
615	Progesterone effects on oligodendrocyte differentiation in injured spinal cord. Brain Research, 2019, 1708, 36-46.	1.1	14
616	Peripheral Inflammation Accelerates the Onset of Mechanical Hypersensitivity after Spinal Cord Injury and Engages Tumor Necrosis Factor α Signaling Mechanisms. Journal of Neurotrauma, 2019, 36, 2000-2010.	1.7	10
617	Functional and Histological Gender Comparison of Age-Matched Rats after Moderate Thoracic Contusive Spinal Cord Injury. Journal of Neurotrauma, 2019, 36, 1974-1984.	1.7	33
618	Adult Bone Marrow-Derived Stem Cells: Immunomodulation in the Context ofÂDisease and Injury. , 2019, , 406-413.		1

	CITATION REPORT		
Article		IF	Citations
Mechanism of Neuroprotection Against Experimental Spinal Cord Injury by Riluzole or Methylprednisolone. Neurochemical Research, 2019, 44, 200-213.		1.6	38
Bioactive components of ethnomedicine Eerdun Wurile regulate the transcription of pro-inflammatory cytokines in microglia. Journal of Ethnopharmacology, 2020, 246, 11	12241.	2.0	16
Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Cellular and Molecular Players?. Current Eye Research, 2020, 45, 397-409.	gUnderlying	0.7	10
Decellularization techniques and their applications for the repair and regeneration of t system. Methods, 2020, 171, 41-61.	he nervous	1.9	37
Photobiomodulation Therapy Inhibit the Activation and Secretory of Astrocytes by Alte Macrophage Polarization. Cellular and Molecular Neurobiology, 2020, 40, 141-152.	ering	1.7	16
Lowâ€level laser therapy 810â€nm upâ€regulates macrophage secretion of neurotrop and promotes neuronal axon regeneration in vitro. Journal of Cellular and Molecular M 24, 476-487.		1.6	27
Dual regulation of microglia and neurons by Astragaloside IVâ€mediated mTORC1 sup functional recovery after acute spinal cord injury. Journal of Cellular and Molecular Me 24, 671-685.	pression promotes dicine, 2020,	1.6	36
Decellularized brain matrix enhances macrophage polarization and functional improve spinal cord injury. Acta Biomaterialia, 2020, 101, 357-371.	ments in rat	4.1	64
Photobiomodulation therapy for repeated closed head injury in rats. Journal of Biophot 13, e201960117.	tonics, 2020,	1.1	14
Safe range of shortening the middle thoracic spine, an experimental study in canine. E Journal, 2020, 29, 616-627.	uropean Spine	1.0	3
Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured s Cellular and Molecular Life Sciences, 2020, 77, 4631-4662.	spinal cord.	2.4	9
Macelignan inhibits the inflammatory response of microglia and regulates neuronal su of Neuroimmunology, 2020, 339, 577123.	rvival. Journal	1.1	6
Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflam Zebrafish, 2020, 17, 73-82.	mation.	0.5	13

631	Application of the Zebrafish Traumatic Brain Injury Model in Assessing Cerebral Inflammation. Zebrafish, 2020, 17, 73-82.	0.5	13
632	The role of the immune system during regeneration of the central nervous system. Journal of Immunology and Regenerative Medicine, 2020, 7, 100023.	0.2	4
633	Invasion of microglia/macrophages and granulocytes into the Mauthner axon myelin sheath following spinal cord injury of the adult goldfish, Carassius auratus. Journal of Morphology, 2020, 281, 135-152.	0.6	4
634	NLRP3 Deficiency Attenuates Secondary Degeneration of Visual Cortical Neurons Following Optic Nerve Injury. Neuroscience Bulletin, 2020, 36, 277-288.	1.5	11
635	Acute Inflammation in Traumatic Brain Injury and Polytrauma Patients Using Network Analysis. Shock, 2020, 53, 24-34.	1.0	20
636	Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 590549.	2.0	17

#

619

621

623

624

625

627

629

ARTICLE IF CITATIONS # Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF- 19 B 637 2.0 79 and STAT 1/3 signaling pathway. Cell Death Discovery, 2020, 6, 97. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells and 1.1 Development, 2020, 29, 1467-1478. Microglia as therapeutic target in central nervous system disorders. Journal of Pharmacological 639 19 1.1 Sciences, 2020, 144, 102-118. Cell Calcium Imaging as a Reliable Method to Study Neuron–Glial Circuits. Frontiers in Neuroscience, 640 2020, 14, 569361. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and 641 neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 4.6 88 10, 11376-11403. Bexarotene promotes microglia/macrophages - Specific brain - Derived Neurotrophic factor expression and axon sprouting after traumatic brain injury. Experimental Neurology, 2020, 334, 113462. <p>The Interaction Between Spinal PDGFRÎ² and μ Opioid Receptor in the Activation of Microglia in 643 0.8 5 Morphine-Tolerant Rats</p>. Journal of Pain Research, 2020, Volume 13, 1803-1810. Translocator Protein 18 kDa (TSPO) Deficiency Inhibits Microglial Activation and Impairs 644 1.6 Mitochondrial Function. Frontiers in Pharmacology, 2020, 11, 986. Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in 645 2.7 75 mice. Cell Death and Disease, 2020, 11, 528. The blood brain barrier in cerebral ischemic injury $\hat{a} \in \hat{}$ Disruption and repair. Brain Hemorrhages, 2020, 646 0.4 1, 34-53. Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain, Behavior, and Immunity, 2020, 87, 647 2.0 44 531-542. Traumatic brain injury in mice induces changes in the expression of the XCL1/XCR1 and XCL1/ITGA9 axes. 1.5 Pharmacological Řeports, 2020, 72, 1579-1592. CCL3 contributes to secondary damage after spinal cord injury. Journal of Neuroinflammation, 2020, 649 3.1 45 17, 362. Perforin affects regeneration in a mouse spinal cord injury model. International Journal of 0.8 Neuroscience, 2020, , 1-12. RNA interference in glial cells for nerve injury treatment. Journal of Tissue Engineering, 2020, 11, 651 2.38 204173142093922. Orofacial skin inflammation increases the number of macrophages in the maxillary subregion of the rat trigeminal ganglion in a corticosteroid-reversible manner. Cell and Tissue Research, 2020, 382, 551-561. Interaction of Microglia and Astrocytes in the Neurovascular Unit. Frontiers in Immunology, 2020, 11, 653 2.2265 1024. Neuroimmune System as a Driving Force for Plasticity Following CNS Injury. Frontiers in Cellular 654 1.8 Neuroscience, 2020, 14, 187.

#	Article	IF	CITATIONS
655	TMEM119 as a specific marker of microglia reaction in traumatic brain injury in postmortem examination. International Journal of Legal Medicine, 2020, 134, 2167-2176.	1.2	30
656	Neuroinflammation after SCI: Current Insights and Therapeutic Potential of Intravenous Immunoglobulin. Journal of Neurotrauma, 2020, , .	1.7	9
657	Neuron-derived exosomes-transmitted miR-124-3p protect traumatically injured spinal cord by suppressing the activation of neurotoxic microglia and astrocytes. Journal of Nanobiotechnology, 2020, 18, 105.	4.2	122
658	Cerebrospinal Fluid Cytokines in Patients with Neurosyphilis: The Significance of Interleukin-10 for the Disease. BioMed Research International, 2020, 2020, 1-8.	0.9	7
659	3D brain tissue physiological model with co-cultured primary neurons and glial cells in hydrogels. Journal of Tissue Engineering, 2020, 11, 204173142096398.	2.3	14
660	Communications Between Peripheral and the Brain-Resident Immune System in Neuronal Regeneration After Stroke. Frontiers in Immunology, 2020, 11, 1931.	2.2	18
661	Repetitive transcranial magnetic stimulation activates glial cells and inhibits neurogenesis after pneumococcal meningitis. PLoS ONE, 2020, 15, e0232863.	1.1	10
662	Traumatic Injury Reduces Amyloid Plaque Burden in the Transgenic 5xFAD Alzheimer's Mouse Spinal Cord. Journal of Alzheimer's Disease, 2020, 77, 1315-1330.	1.2	1
663	Hippocampal interleukin-33 mediates neuroinflammation-induced cognitive impairments. Journal of Neuroinflammation, 2020, 17, 268.	3.1	26
664	Effective Modulation of CNS Inhibitory Microenvironment using Bioinspired Hybridâ€Nanoscaffoldâ€Based Therapeutic Interventions. Advanced Materials, 2020, 32, e2002578.	11.1	40
665	Microglia-targeting nanotherapeutics for neurodegenerative diseases. APL Bioengineering, 2020, 4, 030902.	3.3	49
666	Hsp70 and NF-kB Mediated Control of Innate Inflammatory Responses in a Canine Macrophage Cell Line. International Journal of Molecular Sciences, 2020, 21, 6464.	1.8	25
667	Microenvironment-responsive immunoregulatory electrospun fibers for promoting nerve function recovery. Nature Communications, 2020, 11, 4504.	5.8	127
668	MicroRNA-195 prevents hippocampal microglial/macrophage polarization towards the M1 phenotype induced by chronic brain hypoperfusion through regulating CX3CL1/CX3CR1 signaling. Journal of Neuroinflammation, 2020, 17, 244.	3.1	43
669	Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. Journal of Neuroinflammation, 2020, 17, 329.	3.1	52
670	Targeting Cannabinoid Receptor 2 on Peripheral Leukocytes to Attenuate Inflammatory Mechanisms Implicated in HIV-Associated Neurocognitive Disorder. Journal of NeuroImmune Pharmacology, 2020, 15, 780-793.	2.1	26
671	TGFβ1 alleviates axonal injury by regulating microglia/macrophages alternative activation in traumatic brain injury. Brain Research Bulletin, 2020, 161, 21-32.	1.4	7
672	Galectin-3: Roles in Neurodevelopment, Neuroinflammation, and Behavior. Biomolecules, 2020, 10, 798.	1.8	33

#	Article	IF	CITATIONS
673	Zinc-aggravated M1 microglia regulate astrocytic engulfment via P2×7 receptors. Journal of Trace Elements in Medicine and Biology, 2020, 61, 126518.	1.5	4
674	Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury. Neuroscience Letters, 2020, 737, 135152.	1.0	25
675	Modulation of inflammatory factors predicts the outcome following spinal cord injury. Journal of Orthopaedic Surgery and Research, 2020, 15, 199.	0.9	4
676	Radiation Triggers a Dynamic Sequence of Transient Microglial Alterations in Juvenile Brain. Cell Reports, 2020, 31, 107699.	2.9	23
677	Amelioration of clinical course and demyelination in the cuprizone mouse model in relation to ketogenic diet. Food and Function, 2020, 11, 5647-5663.	2.1	26
678	Asiaticoside Inhibits Neuronal Apoptosis and Promotes Functional Recovery After Spinal Cord Injury in Rats. Journal of Molecular Neuroscience, 2020, 70, 1988-1996.	1.1	13
679	Anti-neuroinflammatory effect of 3,4-dihydroxybenzaldehyde in ischemic stroke. International Immunopharmacology, 2020, 82, 106353.	1.7	25
680	Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-ήB signaling pathway and pyroptosis after secondary spinal cord injury. Journal of Neuroinflammation, 2020, 17, 90.	3.1	169
681	Protective Microglial Subset in Development, Aging, and Disease: Lessons From Transcriptomic Studies. Frontiers in Immunology, 2020, 11, 430.	2.2	77
682	Abnormalities in spinal cord ultrastructure in a rat model of post-traumatic syringomyelia. Fluids and Barriers of the CNS, 2020, 17, 11.	2.4	16
683	Endocannabinoid Modulation of Microglial Phenotypes in Neuropathology. Frontiers in Neurology, 2020, 11, 87.	1.1	86
684	Neuroprotection in the injured spinal cord. , 2020, , 125-145.		0
685	Role of Macrophages and Microglia in Zebrafish Regeneration. International Journal of Molecular Sciences, 2020, 21, 4768.	1.8	31
686	HDAC8 Inhibition Reduces Lesional Iba-1+ Cell Infiltration after Spinal Cord Injury without Effects on Functional Recovery. International Journal of Molecular Sciences, 2020, 21, 4539.	1.8	8
687	Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. Journal of Neuroinflammation, 2020, 17, 47.	3.1	292
688	Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson's Animal Model. Molecular Imaging and Biology, 2020, 22, 1031-1042.	1.3	26
689	Attenuation of the inflammatory response and polarization of macrophages by photobiomodulation. Lasers in Medical Science, 2020, 35, 1509-1518.	1.0	22
690	Increased Neuroprotective Microglia and Photoreceptor Survival in the Retina from a Peptide Inhibitor of Myeloid Differentiation Factor 88 (MyD88). Journal of Molecular Neuroscience, 2020, 70, 968-980	1.1	20

#	Article	IF	CITATIONS
691	Progress toward finding the perfect match: hydrogels for treatment of central nervous system injury. Materials Today Advances, 2020, 6, 100039.	2.5	22
692	Macrophage MSR1 promotes the formation of foamy macrophage and neuronal apoptosis after spinal cord injury. Journal of Neuroinflammation, 2020, 17, 62.	3.1	46
693	Immune cell regulation of glia during CNS injury and disease. Nature Reviews Neuroscience, 2020, 21, 139-152.	4.9	230
694	Degenerative cervical myelopathy — update and future directions. Nature Reviews Neurology, 2020, 16, 108-124.	4.9	264
695	Microglia response following acute demyelination is heterogeneous and limits infiltrating macrophage dispersion. Science Advances, 2020, 6, eaay6324.	4.7	130
696	A novel hydrogel-based treatment for complete transection spinal cord injury repair is driven by microglia/macrophages repopulation. Biomaterials, 2020, 237, 119830.	5.7	77
697	ChABC-loaded PLGA nanoparticles: A comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. International Journal of Pharmaceutics, 2020, 577, 119037.	2.6	25
698	LncRNA CCAT1 Protects Astrocytes Against OGD/R-Induced Damage by Targeting the miR-218/NFAT5-Signaling Axis. Cellular and Molecular Neurobiology, 2020, 40, 1383-1393.	1.7	14
699	Chaperone-Mediated Autophagy after Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 1687-1695.	1.7	11
700	Dissecting the Dual Role of the Glial Scar and Scar-Forming Astrocytes in Spinal Cord Injury. Frontiers in Cellular Neuroscience, 2020, 14, 78.	1.8	118
701	Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Molecular Brain, 2020, 13, 63.	1.3	41
702	Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNAâ€130bâ€5p/TLR4/NFâ€₽B axis. Journal of Cellular Physiology, 2021, 236, 2144-2155.	2.0	21
703	The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). , 2021, 218, 107684.		23
704	<i>Utx</i> Regulates the NF-l [®] B Signaling Pathway of Natural Stem Cells to Modulate Macrophage Migration during Spinal Cord Injury. Journal of Neurotrauma, 2021, 38, 353-364.	1.7	11
705	CNS and peripheral immunity in cerebral ischemia: partition and interaction. Experimental Neurology, 2021, 335, 113508.	2.0	21
706	Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury. Brain, 2021, 144, 144-161.	3.7	95
707	Microglia Phenotypes Following the Induction of Alcohol Dependence in Adolescent Rats. Alcoholism: Clinical and Experimental Research, 2021, 45, 105-116.	1.4	23
708	Chemokine Receptors CC Chemokine Receptor 5 and C-X-C Motif Chemokine Receptor 4 Are New Therapeutic Targets for Brain Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2003-2017.	1.7	14

#	Article	IF	CITATIONS
709	Macrophagic and microglial complexity after neuronal injury. Progress in Neurobiology, 2021, 200, 101970.	2.8	52
710	LncRNA SOX2OT Knockdown Alleviates Lipopolysaccharide-Induced Damage of PC12 Cells by Regulating miR-331-3p/Neurod1 Axis. World Neurosurgery, 2021, 147, e293-e305.	0.7	8
711	Ketone Metabolite β-Hydroxybutyrate Ameliorates Inflammation After Spinal Cord Injury by Inhibiting the NLRP3 Inflammasome. Neurochemical Research, 2021, 46, 213-229.	1.6	24
712	Resolvin D3 Promotes Inflammatory Resolution, Neuroprotection, and Functional Recovery After Spinal Cord Injury. Molecular Neurobiology, 2021, 58, 424-438.	1.9	12
713	Galectin-9 Promotes Neuronal Restoration via Binding TLR-4 in a Rat Intracerebral Hemorrhage Model. NeuroMolecular Medicine, 2021, 23, 267-284.	1.8	15
714	Application of developmental principles for spinal cord repair after injury. International Journal of Developmental Biology, 2021, , .	0.3	Ο
715	Inhibiting microglia proliferation after spinal cord injury improves recovery in mice and nonhuman primates. Theranostics, 2021, 11, 8640-8659.	4.6	33
716	Macrophage-Engineered Vesicles for Therapeutic Delivery and Bidirectional Reprogramming of Immune Cell Polarization. ACS Omega, 2021, 6, 3847-3857.	1.6	21
717	High mobility group box 1 mediates inflammatory response of astrocytes via cyclooxygenase 2/prostaglandin E2 signaling following spinal cord injury. Neural Regeneration Research, 2021, 16, 1848.	1.6	13
718	Dendrimer–tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. Nanoscale, 2021, 13, 939-952.	2.8	20
719	Photobiomodulation Promotes Neuronal Axon Regeneration After Oxidative Stress and Induces a Change in Polarization from M1 to M2 in Macrophages via Stimulation of CCL2 in Neurons: Relevance to Spinal Cord Injury. Journal of Molecular Neuroscience, 2021, 71, 1290-1300.	1.1	16
720	Combined treatment with enteric neural stem cells and chondroitinase ABC reduces spinal cord lesion pathology. Stem Cell Research and Therapy, 2021, 12, 10.	2.4	15
721	Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered?. Neural Regeneration Research, 2021, 16, 405.	1.6	30
722	Müller glia–myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia, 2021, 69, 1444-1463.	2.5	19
723	Current updates on various treatment approaches in the early management of acute spinal cord injury. Reviews in the Neurosciences, 2021, 32, 513-530.	1.4	6
724	MiR-132-3p Modulates MEKK3-Dependent NF-κB and p38/JNK Signaling Pathways to Alleviate Spinal Cord Ischemia-Reperfusion Injury by Hindering M1 Polarization of Macrophages. Frontiers in Cell and Developmental Biology, 2021, 9, 570451.	1.8	12
725	Keratin Biomaterials Improve Functional Recovery in a Rat Spinal Cord Injury Model. Spine, 2021, 46, 1055-1062.	1.0	1
726	Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. Journal of Molecular Histology, 2021, 52, 301-311	1.0	34

#	Article	IF	CITATIONS
727	Mesenchymal stem cell-derived exosomes: therapeutic opportunities and challenges for spinal cord injury. Stem Cell Research and Therapy, 2021, 12, 102.	2.4	95
728	Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomaterialia, 2021, 123, 1-30.	4.1	72
729	Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacological Research, 2021, 165, 105431.	3.1	26
730	Degenerative Cervical Myelopathy: Insights into Its Pathobiology and Molecular Mechanisms. Journal of Clinical Medicine, 2021, 10, 1214.	1.0	31
731	More attention on glial cells to have better recovery after spinal cord injury. Biochemistry and Biophysics Reports, 2021, 25, 100905.	0.7	17
733	siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Current Neuropharmacology, 2021, 19, 1896-1911.	1.4	10
734	Macrophage membrane-mediated targeted drug delivery for treatment of spinal cord injury regardless of the macrophage polarization states. Asian Journal of Pharmaceutical Sciences, 2021, 16, 459-470.	4.3	24
735	Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. Npj Regenerative Medicine, 2021, 6, 22.	2.5	14
736	M2 Macrophages Promote PDGFRÎ ² + Pericytes Migration After Spinal Cord Injury in Mice via PDGFB/PDGFRI ² Pathway. Frontiers in Pharmacology, 2021, 12, 670813.	1.6	14
737	Impact of Depletion of Microglia/Macrophages on Regeneration after Spinal Cord Injury. Neuroscience, 2021, 459, 129-141.	1.1	12
738	Locomotor deficits induced by lumbar muscle inflammation involve spinal microglia and are independent of KCC2 expression in a mouse model of complete spinal transection. Experimental Neurology, 2021, 338, 113592.	2.0	1
739	Validation of Induced Microglia-Like Cells (iMG Cells) for Future Studies of Brain Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 629279.	1.8	26
740	Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behavioural Brain Research, 2021, 405, 113207.	1.2	24
741	Bone marrow mesenchymal stem cell-derived exosomal microRNA-125a promotes M2 macrophage polarization in spinal cord injury by downregulating IRF5. Brain Research Bulletin, 2021, 170, 199-210.	1.4	43
742	Microglia Stimulation by Protein Extract of Injured Rat Spinal Cord. A Novel In vitro Model for Studying Activated Microglia. Frontiers in Molecular Neuroscience, 2021, 14, 582497.	1.4	4
743	The emerging role of FTY720 as a sphingosine 1â€phosphate analog for the treatment of ischemic stroke: The cellular and molecular mechanisms. Brain and Behavior, 2021, 11, e02179.	1.0	11
744	Silencing TAK1 reduces MAPKs-MMP2/9 expression to reduce inflammation-driven neurohistological disruption post spinal cord injury. Cell Death Discovery, 2021, 7, 96.	2.0	11
745	Rationally Designed, Selfâ€Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Advanced Healthcare Materials, 2021, 10, e2100242.	3.9	22

#	Article	IF	CITATIONS
746	Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. Brain, Behavior, and Immunity, 2021, 94, 437-457.	2.0	54
747	Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs–NF–κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radical Biology and Medicine, 2021, 168, 142-154.	1.3	100
748	The Impact of Obesity on Microglial Function: Immune, Metabolic and Endocrine Perspectives. Cells, 2021, 10, 1584.	1.8	31
749	Cystine–glutamate antiporter deletion accelerates motor recovery and improves histological outcomes following spinal cord injury in mice. Scientific Reports, 2021, 11, 12227.	1.6	9
750	Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. Journal of Neuroinflammation, 2021, 18, 144.	3.1	28
751	Pectic Galactan Polysaccharideâ€Based Gene Delivery System for Targeting Neuroinflammation. Advanced Functional Materials, 2021, 31, 2100643.	7.8	4
752	JM-20 Treatment After Mild Traumatic Brain Injury Reduces Glial Cell Pro-inflammatory Signaling and Behavioral and Cognitive Deficits by Increasing Neurotrophin Expression. Molecular Neurobiology, 2021, 58, 4615-4627.	1.9	6
753	Effect of Hyperbaric Oxygen Therapy on Polarization Phenotype of Rat Microglia After Traumatic Brain Injury. Frontiers in Neurology, 2021, 12, 640816.	1.1	7
754	Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discovery Today, 2021, 26, 1642-1655.	3.2	16
755	CXCL12 inhibits inflammasome activation in LPS-stimulated BV2 cells. Brain Research, 2021, 1763, 147446.	1.1	10
755 756	CXCL12 inhibits inflammasome activation in LPS-stimulated BV2 cells. Brain Research, 2021, 1763, 147446. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704.	1.1 2.0	10 42
	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives.		
756	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells, 2021, 10,	2.0	42
756 757	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells, 2021, 10, 1943. Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and	2.0 1.8	42 44
756 757 758	 Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells, 2021, 10, 1943. Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Molecular Neurobiology, 2021, 58, 5907-5919. TNF promotes M1 polarization through mitochondrial metabolism in injured spinal cord. Free Radical 	2.0 1.8 1.9	42 44 8
756 757 758 759	 Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells, 2021, 10, 1943. Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Molecular Neurobiology, 2021, 58, 5907-5919. TNF promotes M1 polarization through mitochondrial metabolism in injured spinal cord. Free Radical Biology and Medicine, 2021, 172, 622-632. Pharmacological Inhibition of Soluble Tumor Necrosis Factor-Alpha Two Weeks after High Thoracic Spinal Cord Injury Does Not Affect Sympathetic Hyperreflexia. Journal of Neurotrauma, 2021, 38, 	2.0 1.8 1.9 1.3	42 44 8 12
756 757 758 759 761	Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Experimental Neurology, 2021, 341, 113704. Activation of Neuroprotective Microglia and Astrocytes at the Lesion Site and in the Adjacent Segments Is Crucial for Spontaneous Locomotor Recovery after Spinal Cord Injury. Cells, 2021, 10, 1943. Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Molecular Neurobiology, 2021, 58, 5907-5919. TNF promotes M1 polarization through mitochondrial metabolism in injured spinal cord. Free Radical Biology and Medicine, 2021, 172, 622-632. Pharmacological Inhibition of Soluble Tumor Necrosis Factor-Alpha Two Weeks after High Thoracic Spinal Cord Injury Does Not Affect Sympathetic Hyperreflexia. Journal of Neurotrauma, 2021, 38, 2186-2191. Spinal Cord Injury Increases Pro-inflammatory Cytokine Expression in Kidney at Acute and Sub-chronic	 2.0 1.8 1.9 1.3 1.7 	42 44 8 12 8

#	Article	IF	CITATIONS
765	Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer's disease mouse model. Light: Science and Applications, 2021, 10, 179.	7.7	46
766	A bibliometric analysis of global research on spinal cord injury: 1999–2019. Spinal Cord, 2022, 60, 281-287.	0.9	6
767	<scp>SRI</scp> â€42127, a novel small molecule inhibitor of the <scp>RNA</scp> regulator <scp>HuR</scp> , potently attenuates glial activation in a model of lipopolysaccharideâ€induced neuroinflammation. Clia, 2022, 70, 155-172.	2.5	10
768	Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 736310.	1.8	30
769	Naringin improves sepsis-induced intestinal injury by modulating macrophage polarization via PPARI ³ /miR-21 axis. Molecular Therapy - Nucleic Acids, 2021, 25, 502-514.	2.3	17
770	Quantitative evidence of suppressed TMEM119 microglial immunohistochemistry in fatal morphine intoxications. International Journal of Legal Medicine, 2021, 135, 2315-2322.	1.2	8
771	Neuron-Derived Extracellular Vesicles Modulate Microglia Activation and Function. Biology, 2021, 10, 948.	1.3	11
772	Exosomal OTULIN from M2 macrophages promotes the recovery of spinal cord injuries via stimulating Wnt/β-catenin pathway-mediated vascular regeneration. Acta Biomaterialia, 2021, 136, 519-532.	4.1	41
773	Oxidative Stress and Neurodegeneration: Interconnected Processes in PolyQ Diseases. Antioxidants, 2021, 10, 1450.	2.2	17
774	The Role of Microglia in Modulating Neuroinflammation after Spinal Cord Injury. International Journal of Molecular Sciences, 2021, 22, 9706.	1.8	48
775	Therapy of spinal cord injury by zinc modified gold nanoclusters via immune-suppressing strategies. Journal of Nanobiotechnology, 2021, 19, 281.	4.2	12
776	AIM/CD5L attenuates DAMPs in the injured brain and thereby ameliorates ischemic stroke. Cell Reports, 2021, 36, 109693.	2.9	24
777	Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Frontiers in Pharmacology, 2021, 12, 729524.	1.6	6
778	Polydopamine-Decorated Microcomposites Promote Functional Recovery of an Injured Spinal Cord by Inhibiting Neuroinflammation. ACS Applied Materials & Interfaces, 2021, 13, 47341-47353.	4.0	18
779	Disrupting RhoA activity by blocking Arhgef3 expression mitigates microglia-induced neuroinflammation post spinal cord contusion. Journal of Neuroimmunology, 2021, 359, 577688.	1.1	5
780	Pseudoginsenoside-F11 promotes functional recovery after transient cerebral ischemia by regulating the microglia/macrophage polarization in rats. International Immunopharmacology, 2021, 99, 107896.	1.7	4
781	Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regeneration Research, 2022, 17, 194.	1.6	52
782	M1-type microglia can induce astrocytes to deposit chondroitin sulfate proteoglycan after spinal cord injury. Neural Regeneration Research, 2022, 17, 1072.	1.6	18

ARTICLE IF CITATIONS Brief electrical nerve stimulation enhances intrinsic repair capacity of the focally demyelinated 783 1.6 9 central nervous system. Neural Regeneration Research, 2022, 17, 1042. Biomaterials and immunomodulation for spinal cord repair., 2021, , 119-138. 784 Microglial inflammation after chronic spinal cord injury is enhanced by reactive astrocytes via the 785 3.1 37 fibronectin/l²1 integrin pathway. Journal of Neuroinflammation, 2021, 18, 12. Biomaterial-supported MSC transplantation enhances cell–cell communication for spinal cord injury. 786 2.4 Stem Cell Research and Therapy, 2021, 12, 36. Low-dose metformin treatment in the subacute phase improves the locomotor function of a mouse 787 1.6 10 model of spinal cord injury. Neural Regeneration Research, 2021, 16, 2234. The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflammation Research, 2021, 70, 183-192. 788 1.6 M2 microglial small extracellular vesicles reduce glial scar formation <i>via</i> the miR-124/STAT3 789 4.6 90 pathway after ischemic stroke in mice. Theranostics, 2021, 11, 1232-1248. CD73 alleviates GSDMDâ€mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 790 1.7 signaling. Clinical and Translational Medicine, 2021, 11, e269. Neuroinflammation as modifier of genetically caused neurological disorders of the central nervous 791 2.5 28 system: Understanding pathogenesis and chances for treatment. Glia, 2017, 65, 1407-1422. A microglial hypothesis of globoid cell leukodystrophy pathology. Journal of Neuroscience Research, 792 1.3 24 2016, 94, 1049-1061. Inflammation as a Therapeutic Target after Subarachnoid Hemorrhage: Advances and Challenges., 793 2 2014, , 249-274. Oligodendrocytes: Cells of Origin for White Matter Injury in the Developing Brain. Neuromethods, 794 2016, <u>, 28</u>1-301. Serotonin Modulation of Macrophage Polarization: Inflammation and Beyond. Advances in 795 0.8 56 Experimental Medicine and Biology, 2014, 824, 89-115. Pathophysiology of Traumatic Spinal Cord Injury., 2017, 503-528. 796 797 The Brain–Immune Network in Spinal Cord Injury. , 2015, , 41-66. 1 Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clinical Science, 2020, 134, 798 1.8 14 Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve 799 2.035 injury-induced neuropathic pain. Pain, 2021, 162, 1500-1510. Zerumbone ameliorates behavioral impairments and neuropathology in transgenic APP/PS1 mice by 3.1 suppressing MAPK signaling. Journal of Neuroinflammation, 2020, 17, 61.

#	Article	IF	CITATIONS
801	Critical roles of sphingosine kinase 1 in the regulation of neuroinflammation and neuronal injury after spinal cord injury. Journal of Neuroinflammation, 2021, 18, 50.	3.1	24
802	TNFα Levels and Macrophages Expression Reflect an Inflammatory Potential of Trigeminal Ganglia in a Mouse Model of Familial Hemiplegic Migraine. PLoS ONE, 2013, 8, e52394.	1.1	74
803	Deficiency in p38β MAPK Fails to Inhibit Cytokine Production or Protect Neurons against Inflammatory Insult in In Vitro and In Vivo Mouse Models. PLoS ONE, 2013, 8, e56852.	1.1	16
804	The Prevalence and Phenotype of Activated Microglia/Macrophages within the Spinal Cord of the Hyperostotic Mouse (twy/twy) Changes in Response to Chronic Progressive Spinal Cord Compression: Implications for Human Cervical Compressive Myelopathy. PLoS ONE, 2013, 8, e64528.	1.1	66
805	Molecular Architecture of Spinal Cord Injury Protein Interaction Network. PLoS ONE, 2015, 10, e0135024.	1.1	6
806	In Vivo Non-Invasive Tracking of Macrophage Recruitment to Experimental Stroke. PLoS ONE, 2016, 11, e0156626.	1.1	7
807	Morphologic, phenotypic, and transcriptomic characterization of classically and alternatively activated canine blood-derived macrophages in vitro. PLoS ONE, 2017, 12, e0183572.	1.1	57
808	Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histology and Histopathology, 2020, 35, 623-636.	0.5	22
809	Early Targeting of L-Selectin on Leukocytes Promotes Recovery after Spinal Cord Injury, Implicating Novel Mechanisms of Pathogenesis. ENeuro, 2018, 5, ENEURO.0101-18.2018.	0.9	18
810	α-Synuclein in traumatic and vascular diseases of the central nervous system. Aging, 2020, 12, 22313-22334.	1.4	4
811	M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARÎ ³ signaling pathway. Oncotarget, 2017, 8, 19855-19865.	0.8	78
812	Decitabine inhibits T cell proliferation via a novel TET2-dependent mechanism and exerts potent protective effect in mouse auto- and allo-immunity models. Oncotarget, 2017, 8, 56802-56815.	0.8	29
813	Changes in transcriptome profiling during the acute/subacute phases of contusional spinal cord injury in rats. Annals of Translational Medicine, 2020, 8, 1682-1682.	0.7	19
814	Curcumin Prevents Neuroinflammation by Inducing Microglia to Transform into the M2-phenotype via CaMKKÎ2-dependent Activation of the AMP-Activated Protein Kinase Signal Pathway. Current Alzheimer Research, 2020, 17, 735-752.	0.7	15
815	Transplantation Strategies for Spinal Cord Injury Based on Microenvironment Modulation. Current Stem Cell Research and Therapy, 2020, 15, 522-530.	0.6	9
816	Xuesaitong May Protect Against Ischemic Stroke by Modulating Microglial Phenotypes and Inhibiting Neuronal Cell Apoptosis via the STAT3 Signaling Pathway. CNS and Neurological Disorders - Drug Targets, 2019, 18, 115-123.	0.8	29
817	Meningeal lymphoid structures are activated under acute and chronic spinal cord pathologies. Life Science Alliance, 2021, 4, e202000907.	1.3	14
818	Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Neurosurgical Focus, 2019, 46, E6.	1.0	28

# 819	ARTICLE Spinal cord microglia in health and disease. Acta Naturae, 2020, 12, 4-17.	IF 1.7	Citations
820	Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering, 2021, 8, 4.	1.6	26
821	Spinal cord contusion. Neural Regeneration Research, 2014, 9, 789.	1.6	24
822	Thermomineral water promotes axonal sprouting but does not reduce glial scar formation in a mouse model of spinal cord injury. Neural Regeneration Research, 2014, 9, 2174.	1.6	9
823	Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats. Neural Regeneration Research, 2017, 12, 959.	1.6	38
824	Stem cells for spinal cord injuries bearing translational potential. Neural Regeneration Research, 2018, 13, 35.	1.6	35
825	Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regeneration Research, 2018, 13, 510.	1.6	13
826	Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury. Neural Regeneration Research, 2018, 13, 684.	1.6	20
827	Early electrical field stimulation prevents the loss of spinal cord anterior horn motoneurons and muscle atrophy following spinal cord injury. Neural Regeneration Research, 2018, 13, 869.	1.6	10
828	Local inhibition of matrix metalloproteinases reduced M2 macrophage activity and impeded recovery in spinal cord transected rats after treatment with fibroblast growth factor-1 and nerve grafts. Neural Regeneration Research, 2018, 13, 1447.	1.6	5
829	Role of macrophages in peripheral nerve injury and repair. Neural Regeneration Research, 2019, 14, 1335.	1.6	148
830	The Role of Mast Cells and Neuroglia in Neuroinfectious Diseases. Journal of Neuroinfectious Diseases, 2015, 06, .	0.2	2
831	Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Theranostics, 2021, 11, 9805-9820.	4.6	21
832	The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines, 2021, 9, 1449.	1.4	18
833	The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells, 2021, 10, 2837.	1.8	8
834	Lobeglitazone Exerts Anti-Inflammatory Effect in Lipopolysaccharide-Induced Bone-Marrow Derived Macrophages. Biomedicines, 2021, 9, 1432.	1.4	5
835	LBO-EMSC Hydrogel Serves a Dual Function in Spinal Cord Injury Restoration <i>via</i> the PI3K-Akt-mTOR Pathway. ACS Applied Materials & Interfaces, 2021, 13, 48365-48377.	4.0	11
836	Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells, 2021, 10, 2783.	1.8	12

#	Article	IF	Citations
837	Translocator Protein Regulate Polarization Phenotype Transformation of Microglia after Cerebral Ischemia–reperfusion Injury. Neuroscience, 2022, 480, 203-216.	1.1	4
838	Distinct Polarization Dynamics of Microglia and Infiltrating Macrophages: A Novel Mechanism of Spinal Cord Ischemia/Reperfusion Injury. Journal of Inflammation Research, 2021, Volume 14, 5227-5239.	1.6	6
839	Pharmacologic Recruitment of Endogenous Neural Stem/Progenitor Cells for the Treatment of Spinal Cord Injury. Spine, 2021, Publish Ahead of Print, .	1.0	2
840	Factors Controlling Microglial Activation., 2013,,.		1
842	Blockade of Interleukin-6 Effects on Cytokine Profiles and Macrophage Activation After Spinal Cord Injury in Mice. , 2014, , 203-212.		1
845	Injured Spinal Cord Treatment Based on Adipose-Derived Stromal Cells. Journal of Biomaterials and Tissue Engineering, 2016, 6, 690-696.	0.0	0
846	Microglia Function in Stroke. Translational Medicine Research, 2017, , 279-295.	0.0	0
848	Human Neural Stem Cells: Translational Research for Neonatal Hypoxic-Ischemic Brain Injury. Neonatal Medicine, 2019, 26, 1-16.	0.1	0
849	Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury. The Neuroscience Journal of Shefaye Khatam, 2019, 7, 89-105.	0.4	1
850	Brief Electrical Stimulation Triggers an Effective Regeneration of Leech CNS. ENeuro, 2020, 7, ENEURO.0030-19.2020.	0.9	2
852	Taurolithocholic acid but not tauroursodeoxycholic acid rescues phagocytosis activity of bone marrowâ€derived macrophages under inflammatory stress. Journal of Cellular Physiology, 2022, 237, 1455-1470.	2.0	7
855	Remyelination in PNS and CNS: current and upcoming cellular and molecular strategies to treat disabling neuropathies. Molecular Biology Reports, 2021, 48, 8097-8110.	1.0	3
856	Perspectives in the Cell-Based Therapies of Various Aspects of the Spinal Cord Injury-Associated Pathologies: Lessons from the Animal Models. Cells, 2021, 10, 2995.	1.8	10
857	Role of Dehydrocorybulbine in Neuropathic Pain After Spinal Cord Injury Mediated by P2X4 Receptor. Molecules and Cells, 2019, 42, 143-150.	1.0	7
858	MicroRNA-23b attenuates the HO-induced injury of microglial cells via TAB3/NF-κB signaling pathway. International Journal of Clinical and Experimental Pathology, 2018, 11, 5765-5773.	0.5	4
860	mTOR pathway: A potential therapeutic target for spinal cord injury. Biomedicine and Pharmacotherapy, 2022, 145, 112430.	2.5	23
861	Inhibiting RGS1 attenuates secondary inflammation response and tissue degradation via the TLR/TRIF/NF-κB pathway in macrophage post spinal cord injury. Neuroscience Letters, 2022, 768, 136374.	1.0	6
862	Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity. Cells, 2021, 10, 3296.	1.8	28

#	Article	IF	CITATIONS
863	Distribution of Immune Cells Including Macrophages in the Human Cochlea. Frontiers in Neurology, 2021, 12, 781702.	1.1	15
864	Engineered extracellular vesicles derived from primary M2 macrophages with anti-inflammatory and neuroprotective properties for the treatment of spinal cord injury. Journal of Nanobiotechnology, 2021, 19, 373.	4.2	25
865	Dynamic Diversity of Glial Response Among Species in Spinal Cord Injury. Frontiers in Aging Neuroscience, 2021, 13, 769548.	1.7	7
866	Versatile Role of Prokineticins and Prokineticin Receptors in Neuroinflammation. Biomedicines, 2021, 9, 1648.	1.4	17
867	Pyruvate kinase M2 (PKM2) interacts with activating transcription factor 2 (ATF2) to bridge glycolysis and pyroptosis in microglia. Molecular Immunology, 2021, 140, 250-266.	1.0	20
868	Novel optimized drug delivery systems for enhancing spinal cord injury repair in rats. Drug Delivery, 2021, 28, 2548-2561.	2.5	11
869	Chitooligosaccharide-europium (III) functional micron complex with visualized inflammation monitoring, immunomodulation and pro-vascularization activities for effective wound healing of pressure ulcers injury. Applied Materials Today, 2022, 26, 101310.	2.3	4
870	Grape Seed Proanthocyanidins Attenuate LPS-Induced Neuroinflammation Through Microglia Polarization Regulation Via TLR4/MyD88/NF-κB Signaling Pathway in BV2 Cells. SSRN Electronic Journal, 0, , .	0.4	0
871	Current Knowledge of Microglia in Traumatic Spinal Cord Injury. Frontiers in Neurology, 2021, 12, 796704.	1.1	26
872	Activation of glucagon-like peptide-1 receptor in microglia attenuates neuroinflammation-induced glial scarring via rescuing Arf and Rho GAP adapter protein 3 expressions after nerve injury. International Journal of Biological Sciences, 2022, 18, 1328-1346.	2.6	18
873	Neuroprotective effect of aldose reductase knockout in a mouse model of spinal cord injury involves NF-κB pathway. Experimental Brain Research, 2022, 240, 853-859.	0.7	2
874	Research applications of induced pluripotent stem cells for treatment and modeling of spinal cord injury. , 2022, , 245-268.		Ο
875	Chronic spinal cord injury functionally repaired by direct implantation of encapsulated hair-follicle-associated pluripotent (HAP) stem cells in a mouse model: Potential for clinical regenerative medicine. PLoS ONE, 2022, 17, e0262755.	1.1	4
876	ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proceedings of the United States of America, 2022, 119, .	3.3	6
877	Ac-SDKP peptide improves functional recovery following spinal cord injury in a preclinical model. Neuropeptides, 2022, 92, 102228.	0.9	2
878	Ruxolitinib attenuates secondary injury after traumatic spinal cord injury. Neural Regeneration Research, 2022, 17, 2029.	1.6	15
879	Immune-responsive gene 1/itaconate activates nuclear factor erythroid 2-related factor 2 in microglia to protect against spinal cord injury in mice. Cell Death and Disease, 2022, 13, 140.	2.7	16
880	Depletion of iNOS-positive inflammatory cells decelerates neuronal degeneration and alleviates cerebral ischemic damage by suppressing the inflammatory response. Free Radical Biology and Medicine, 2022, 181, 209-220.	1.3	9

#	Article	IF	CITATIONS
881	Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. Journal of Neuroinflammation, 2021, 18, 284.	3.1	160
882	Defining Microglial States and Nomenclature: A Roadmap to 2030. SSRN Electronic Journal, 0, , .	0.4	21
885	Photobiomodulation Attenuates Neurotoxic Polarization of Macrophages by Inhibiting the Notch1-HIF-1α/NF-κB Signalling Pathway in Mice With Spinal Cord Injury. Frontiers in Immunology, 2022, 13, 816952.	2.2	20
886	Lipopolysaccharide-Induced Strain-Specific Differences in Neuroinflammation and MHC-I Pathway Regulation in the Brains of Bl6 and 129Sv Mice. Cells, 2022, 11, 1032.	1.8	4
887	Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells, 2022, 11, 846.	1.8	26
889	Astrocytes and Microglia Exhibit Cell-Specific Ca2+ Signaling Dynamics in the Murine Spinal Cord. Frontiers in Molecular Neuroscience, 2022, 15, 840948.	1.4	7
890	Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduction and Targeted Therapy, 2022, 7, 65.	7.1	49
891	Exosomesâ€Loaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Advanced Science, 2022, 9, e2105586.	5.6	117
892	Comparing the Efficacy and Safety of Cell Transplantation for Spinal Cord Injury: A Systematic Review and Bayesian Network Meta-Analysis. Frontiers in Cellular Neuroscience, 2022, 16, 860131.	1.8	6
893	Chaperone-Mediated Autophagy in Neurodegenerative Diseases and Acute Neurological Insults in the Central Nervous System. Cells, 2022, 11, 1205.	1.8	20
894	Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Research, 2022, 10, 35.	5.4	64
895	Vagus Nerve Stimulation Reduces Neuroinflammation Through Microglia Polarization Regulation to Improve Functional Recovery After Spinal Cord Injury. Frontiers in Neuroscience, 2022, 16, 813472.	1.4	13
896	Gold nanoclusters conjugated berberine reduce inflammation and alleviate neuronal apoptosis by mediating M2 polarization for spinal cord injury repair. International Journal of Energy Production and Management, 2022, 9, rbab072.	1.9	13
898	A three-dimensional matrix system containing melatonin and neural stem cells repairs damage from traumatic brain injury in rats. Neural Regeneration Research, 2022, 17, 2512.	1.6	3
899	Maf1 mitigates sevoflurane-induced microglial inflammatory damage and attenuates microglia-mediated neurotoxicity in HT-22 cells by activating the AMPK/Nrf2 signaling. NeuroToxicology, 2022, 90, 237-245.	1.4	4
900	Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Frontiers in Cellular Neuroscience, 2022, 16, 889442.	1.8	19
927	Macrophage-based delivery of interleukin-13 improves functional and histopathological outcomes following spinal cord injury. Journal of Neuroinflammation, 2022, 19, 102.	3.1	5
928	The Glial Cells Respond to Spinal Cord Injury. Frontiers in Neurology, 2022, 13, .	1.1	7

#	Article	IF	CITATIONS
929	Tetramethylpyrazine: A review on its mechanisms and functions. Biomedicine and Pharmacotherapy, 2022, 150, 113005.	2.5	56
930	Insights into the Critical Role of Exosomes in the Brain; from Neuronal Activity to Therapeutic Effects. Molecular Neurobiology, 2022, 59, 4453-4465.	1.9	4
931	Resveratrol Glycosides Impede Microglial Apoptosis and Oxidative Stress in Rats for Spinal Cord Injury. Journal of Biomaterials and Tissue Engineering, 2022, 12, 1517-1524.	0.0	1
932	Differential Regional Vulnerability of the Brain to Mild Neuroinflammation Induced by Systemic LPS Treatment in Mice. Journal of Inflammation Research, 0, Volume 15, 3053-3063.	1.6	7
933	Chondroitin sulfate proteoglycans prevent immune cell phenotypic conversion and inflammation resolution via TLR4 in rodent models of spinal cord injury. Nature Communications, 2022, 13, .	5.8	27
934	Risk factors and predictors of depression after spinal cord injury: Emphasis on the inflammatory process. , 2022, , 447-458.		0
935	Beneficial and detrimental effects of cytokines after spinal cord injury. , 2022, , 105-117.		0
936	Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties. Biomaterials, 2022, 286, 121597.	5.7	174
937	Characterization of Ex Vivo and In Vitro Wnt Transcriptome Induced by Spinal Cord Injury in Rat Microglial Cells. Brain Sciences, 2022, 12, 708.	1.1	8
938	Predicting the Role of Preoperative Intramedullary Lesion Length and Early Decompressive Surgery in ASIA Impairment Scale Grade Improvement Following Subaxial Traumatic Cervical Spinal Cord Injury. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 0, , .	0.4	2
939	Antinociceptive effect of ethanolic extract of Bauhinia brachycarpa Benth on neuropathic pain model induced by partial sciatic nerve ligation. Journal of Ethnopharmacology, 2022, 295, 115412.	2.0	2
940	The Association between Alpha-7 Nicotinic Acetylcholine Receptor and Macrophage/Microglial Polarization in Spinal Cord Injury: Nicotine as an Alternative Therapy for Neuroinflammation. SSRN Electronic Journal, 0, , .	0.4	1
941	Emerging Roles of Microglia Depletion in the Treatment of Spinal Cord Injury. Cells, 2022, 11, 1871.	1.8	12
942	circ-Ncam2 (mmu_circ_0006413) Participates in LPS-Induced Microglia Activation and Neuronal Apoptosis via the TLR4/NF-κB Pathway. Journal of Molecular Neuroscience, 2022, 72, 1738-1748.	1.1	4
943	Quantitative iTRAQ proteomics reveal the proteome profiles of bone marrow mesenchymal stem cells after cocultures with Schwann cells in vitro. Annals of Translational Medicine, 2022, .	0.7	1
944	The <scp>PI3K</scp> / <scp>AKT</scp> signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Proliferation, 2022, 55, .	2.4	53
946	Restorative therapy using microglial depletion and repopulation for central nervous system injuries and diseases. Frontiers in Immunology, 0, 13, .	2.2	7
947	Mesenchymal Stem Cell-Derived Exosomal MiRNAs Promote M2 Macrophages Polarization: Therapeutic Opportunities for Spinal Cord Injury. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	7

#	Article	IF	CITATIONS
949	Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer's disease. International Immunopharmacology, 2022, 110, 109070.	1.7	10
950	Gardenia jasminoides J. Ellis extract GJ-4 attenuates hyperlipidemic vascular dementia in rats via regulating PPAR-Î ³ -mediated microglial polarization. Food and Nutrition Research, 0, 66, .	1.2	2
951	CNS Organoid Surpasses Cell-Laden Microgel Assembly to Promote Spinal Cord Injury Repair. Research, 2022, 2022, .	2.8	3
952	<scp>NG2</scp> â€glia crosstalk with microglia in health and disease. CNS Neuroscience and Therapeutics, 2022, 28, 1663-1674.	1.9	4
953	Grape Seed Proanthocyanidins Exert a Neuroprotective Effect by Regulating Microglial M1/M2 Polarisation in Rats with Spinal Cord Injury. Mediators of Inflammation, 2022, 2022, 1-23.	1.4	6
954	Analysis of gene expression profiles in two spinal cord injury models. European Journal of Medical Research, 2022, 27, .	0.9	1
955	The Anti-inflammation Property of Olfactory Ensheathing Cells in Neural Regeneration After Spinal Cord Injury. Molecular Neurobiology, 2022, 59, 6447-6459.	1.9	8
956	Nebivolol elicits a neuroprotective effect in the cuprizone model of multiple sclerosis in mice: emphasis on M1/M2 polarization and inhibition of NLRP3 inflammasome activation. Inflammopharmacology, 2022, 30, 2197-2209.	1.9	4
957	Is Graphene Shortening the Path toward Spinal Cord Regeneration?. ACS Nano, 2022, 16, 13430-13467.	7.3	16
958	Modulation of Neuroinflammation Via Selective Nanoparticleâ€Mediated Drug Delivery to Activated Microglia/Macrophages in Spinal Cord Injury. Advanced Therapeutics, 0, , 2200083.	1.6	0
960	The immune microenvironment and tissue engineering strategies for spinal cord regeneration. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	11
961	Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Frontiers in Pharmacology, 0, 13, .	1.6	3
962	Neuroinflammation in Multiple Sclerosis. , 2022, , .		0
963	Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells, 2022, 11, 2693.	1.8	3
964	Targeting the differentiation of astrocytes by Bilobalide in the treatment of Parkinson's disease model. International Journal of Neuroscience, 2024, 134, 274-291.	0.8	2
965	Modulating neuroinflammation through molecular, cellular and biomaterialâ€based approaches to treat spinal cord injury. Bioengineering and Translational Medicine, 2023, 8, .	3.9	6
966	Inflammatory Microenvironmentâ€Responsive Nanomaterials Promote Spinal Cord Injury Repair by Targeting IRF5. Advanced Healthcare Materials, 2022, 11, .	3.9	12
967	Effects of biological sex mismatch on neural progenitor cell transplantation for spinal cord injury in mice. Nature Communications, 2022, 13, .	5.8	10

#	Article	IF	CITATIONS
968	Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Frontiers in Immunology, 0, 13, .	2.2	6
969	Therapy of spinal cord injury by folic acid polyethylene glycol amine-modified zeolitic imidazole framework-8 nanoparticles targeted activated M/Ms. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
970	Nanofibers for the Immunoregulation in Biomedical Applications. Advanced Fiber Materials, 2022, 4, 1334-1356.	7.9	12
971	Cognition-enhancing effect of YL-IPA08, a potent ligand for the translocator protein (18 kDa) in the 5 × FAD transgenic mouse model of Alzheimer's pathology. Journal of Psychopharmacology, 2022, 1176-1187.	360	1
972	The cytokine IL-27 reduces inflammation and protects photoreceptors in a mouse model of retinal degeneration. Journal of Neuroinflammation, 2022, 19, .	3.1	3
973	Flufenamic acid improves survival and neurologic outcome after successful cardiopulmonary resuscitation in mice. Journal of Neuroinflammation, 2022, 19, .	3.1	2
974	Characterization of microglia/macrophage phenotypes in the spinal cord following intervertebral disc herniation. Frontiers in Veterinary Science, 0, 9, .	0.9	2
975	Isocitrate binds to the itaconic acid–responsive LysR-type transcriptional regulator RipR in Salmonella pathogenesis. Journal of Biological Chemistry, 2022, 298, 102562.	1.6	3
976	Analysis and identification of key anti-inflammatory molecules in Eerdun Wurile and exploration of their mechanism of action in microglia. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1211, 123458.	1.2	5
977	A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment. Materials Today Bio, 2022, 16, 100425.	2.6	9
978	The Proteostasis Network: A Global Therapeutic Target for Neuroprotection after Spinal Cord Injury. Cells, 2022, 11, 3339.	1.8	2
979	Gut microbiome and neurosurgery: Implications for treatment. Clinical and Translational Discovery, 2022, 2, .	0.2	3
980	Morphine-induced changes in the function of microglia and macrophages after acute spinal cord injury. BMC Neuroscience, 2022, 23, .	0.8	4
981	Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders. Cells, 2022, 11, 3364.	1.8	4
982	Mechanism and Regulation of Microglia Polarization in Intracerebral Hemorrhage. Molecules, 2022, 27, 7080.	1.7	8
983	Codelivery of minocycline hydrochloride and dextran sulfate via bionic liposomes for the treatment of spinal cord injury. International Journal of Pharmaceutics, 2022, 628, 122285.	2.6	4
984	Anatomical location of injected microglia in different activation states and time course of injury determines survival of retinal ganglion cells after optic nerve crush. International Journal of Neuroscience, 0, , 1-23.	0.8	1
985	CNS and CNS diseases in relation to their immune system. Frontiers in Immunology, 0, 13, .	2.2	5

#	Article	IF	CITATIONS
986	L-Type Ca2+ Channel Inhibition Rescues the LPS-Induced Neuroinflammatory Response and Impairments in Spatial Memory and Dendritic Spine Formation. International Journal of Molecular Sciences, 2022, 23, 13606.	1.8	5
987	Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. International Journal of Molecular Sciences, 2022, 23, 13833.	1.8	11
988	Single cell profiling of CD45+ spinal cord cells reveals microglial and B cell heterogeneity and crosstalk following spinal cord injury. Journal of Neuroinflammation, 2022, 19, .	3.1	3
989	Poly(ADP-ribose) polymerase family member 14 promotes functional recovery after spinal cord injury through regulating microglia M1/M2 polarization via STAT1/6 pathway. Neural Regeneration Research, 2022, .	1.6	1
990	Downregulation of High mobility group box 2 relieves spinal cord injury by inhibiting microglia-mediated neuroinflammation. Experimental Animals, 2022, , .	0.7	0
991	Advances in cell membrane-coated nanoparticles and their applications for bone therapy. , 2023, 144, 213232.		9
992	Melatonin promotes microglia toward anti-inflammatory phenotype after spinal cord injury. International Immunopharmacology, 2023, 114, 109599.	1.7	3
993	Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury. International Immunopharmacology, 2023, 114, 109616.	1.7	6
994	Inhibiting tau protein improves the recovery of spinal cord injury in rats by alleviating neuroinflammation and oxidative stress. Neural Regeneration Research, 2023, .	1.6	2
995	Spinal interneurons and cell transplantation. , 2023, , 381-422.		2
995 996	Spinal interneurons and cell transplantation. , 2023, , 381-422. Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342.	8.6	2 17
	Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal	8.6 3.2	
996	Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair.		17
996 997	Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomaterials Research, 2022, 26, . Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers	3.2	17 26
996 997 998	Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomaterials Research, 2022, 26, . Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers in Cellular Neuroscience, 0, 16, . Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for	3.2 1.8	17 26 3
9996 9997 9998 9999	Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomaterials Research, 2022, 26, . Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers in Cellular Neuroscience, 0, 16, . Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Frontiers in Immunology, 0, 13, .	3.2 1.8 2.2	17 26 3 7
996 997 998 999	 Engineered extracellular vesicles for delivery of siRNA promoting targeted repair of traumatic spinal cord injury. Bioactive Materials, 2023, 23, 328-342. Electroconductive PEDOT nanoparticle integrated scaffolds for spinal cord tissue repair. Biomaterials Research, 2022, 26, . Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Frontiers in Cellular Neuroscience, 0, 16, . Neurotrophic and immunomodulatory effects of olfactory ensheathing cells as a strategy for neuroprotection and regeneration. Frontiers in Immunology, 0, 13, . Advances in the research of the role of macrophage/microglia polarization-mediated inflammatory response in spinal cord injury. Frontiers in Immunology, 0, 13, . 	3.2 1.8 2.2 2.2	17 26 3 7 11

#	Article	IF	CITATIONS
1004	Sesamol alleviates manganese-induced neuroinflammation and cognitive impairment via regulating the microglial cGAS-STINC/NF-I°B pathway. Environmental Pollution, 2023, 319, 120988.	3.7	12
1005	Stem Cell Therapy for Acute/Subacute Ischemic Stroke with a Focus on Intraarterial Stem Cell Transplantation: From Basic Research to Clinical Trials. Bioengineering, 2023, 10, 33.	1.6	3
1006	Schwann cell-derived exosomes containing MFG-E8 modify macrophage/microglial polarization for attenuating inflammation via the SOCS3/STAT3 pathway after spinal cord injury. Cell Death and Disease, 2023, 14, .	2.7	27
1008	Eumelanin decorated poly(lactic acid) electrospun substrates as a new strategy for spinal cord injury treatment. , 2023, 146, 213312.		1
1009	HMGB1 mediates synaptic loss and cognitive impairment in an animal model of sepsis-associated encephalopathy. Journal of Neuroinflammation, 2023, 20, .	3.1	15
1010	Current Advancements in Spinal Cord Injury Research—Glial Scar Formation and Neural Regeneration. Cells, 2023, 12, 853.	1.8	23
1011	An emerging role of inflammasomes in spinal cord injury and spinal cord tumor. Frontiers in Immunology, 0, 14, .	2.2	4
1012	Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines, 2023, 11, 1067.	1.4	5
1013	Compound K - An immunomodulator of macrophages in inflammation. Life Sciences, 2023, 323, 121700.	2.0	3
1014	Biomaterials delivery strategies to repair spinal cord injury by modulating macrophage phenotypes. Journal of Tissue Engineering, 2022, 13, 204173142211430.	2.3	12
1015	Conditioned medium from bone marrow mesenchymal stem cells relieves spinal cord injury through suppression of Gal-3/NLRP3 and M1 microglia/macrophage polarization. Pathology Research and Practice, 2023, 243, 154331.	1.0	2
1017	Role of chemokine-like factor 1 as an inflammatory marker in diseases. Frontiers in Immunology, 0, 14, .	2.2	4
1018	The polarization of microglia and infiltrated macrophages in the injured mice spinal cords: a dynamic analysis. PeerJ, 0, 11, e14929.	0.9	1
1020	Role of Trichocytic Keratins in Antiâ€Neuroinflammatory Effects After Spinal Cord Injury. Advanced Functional Materials, 2023, 33, .	7.8	6
1021	Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. International Journal of Molecular Sciences, 2023, 24, 5925.	1.8	4
1022	Cannabidiol–loaded biomimetic macrophage membrane vesicles against post–traumatic stress disorder assisted by ultrasound. International Journal of Pharmaceutics, 2023, 637, 122872.	2.6	3
1023	Effects of Whole-Body Vibration and Manually Assisted Locomotor Therapy on Neurotrophin-3 Expression and Microglia/Macrophage Mobilization Following Thoracic Spinal Cord Injury in Rats. Current Issues in Molecular Biology, 2023, 45, 3238-3254.	1.0	1
1024	The Combination of R848 with Sorafenib Enhances Antitumor Effects by Reprogramming the Tumor Immune Microenvironment and Facilitating Vascular Normalization in Hepatocellular Carcinoma. Advanced Science, 2023, 10, .	5.6	5

#	Article	IF	CITATIONS
1025	Singleâ€Cell Sequencing Reveals the Optimal Time Window for Antiâ€Inflammatory Treatment in Spinal Cord Injury. Advanced Biology, 0, , .	1.4	0
1057	Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophysical Reviews, 0, , .	1.5	0
1083	Microsecond electric pulses effects in spinal cord injuries: results from RISEUP project. , 2023, , .		0
1091	Pathophysiology of degenerative cervical myelopathy. , 2023, , 49-63.		0