Ribosome Profiling of Mouse Embryonic Stem Cells Rev Mammalian Proteomes

Cell

147, 789-802

DOI: 10.1016/j.cell.2011.10.002

Citation Report

#	Article	IF	CITATIONS
3	SQM2007–International Conference on Strangeness in Quark Matter. Journal of Physics G: Nuclear and Particle Physics, 2008, 35, 040301.	1.4	0
4	THE CANADA-FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT. Astronomical Journal, 2009, 137, 4917-4935.	1.9	78
5	Influence of Oxygen Vacancy on Transport Property in Perovskite Oxide Heterostructures. Chinese Physics Letters, 2009, 26, 027301.	1.3	6
6	The deepest differences. Nature, 2011, 480, 133-137.	13.7	75
8	Translation Goes Global. Science, 2011, 334, 1509-1510.	6.0	14
9	Vertical tracks on the sidewall of a silicon die using 3D holographic photolithography. Journal of Micromechanics and Microengineering, 2011, 21, 085034.	1.5	6
11	Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency. PLoS Genetics, 2012, 8, e1002603.	1.5	263
12	Determinants of Translation Elongation Speed and Ribosomal Profiling Biases in Mouse Embryonic Stem Cells. PLoS Computational Biology, 2012, 8, e1002755.	1.5	106
13	Polysome Profiling in Liver Identifies Dynamic Regulation of Endoplasmic Reticulum Translatome by Obesity and Fasting. PLoS Genetics, 2012, 8, e1002902.	1.5	50
14	A Proteogenomic Survey of the Medicago truncatula Genome. Molecular and Cellular Proteomics, 2012, 11, 933-944.	2.5	27
15	New Technologies for 21st Century Plant Science. Plant Cell, 2012, 24, 374-394.	3.1	58
16	Pinstripe: a suite of programs for integrating transcriptomic and proteomic datasets identifies novel proteins and improves differentiation of protein-coding and non-coding genes. Bioinformatics, 2012, 28, 3042-3050.	1.8	70
17	The synthesis–diffusion–degradation model explains Bicoid gradient formation in unfertilized eggs. Physical Biology, 2012, 9, 055004.	0.8	26
18	Effects of surface forces and non-uniform out-of-plane illumination on the accuracy of nPIV velocimetry. Measurement Science and Technology, 2012, 23, 055303.	1.4	7
19	Found in translation of mTOR signaling. Cell Research, 2012, 22, 1315-1318.	5.7	12
20	Long noncoding RNAs in <i>C. elegans</i> . Genome Research, 2012, 22, 2529-2540.	2.4	191
21	Weak 5′-mRNA Secondary Structures in Short Eukaryotic Genes. Genome Biology and Evolution, 2012, 4, 1046-1053.	1.1	20
22	Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Research, 2012, 22, 2219-2229.	2.4	169

#	ARTICLE	IF	CITATIONS
23	FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Research, 2012, 40, e83-e83.	6.5	39
24	TEMPLATE-DIRECTED BIOPOLYMERIZATION: TAPE-COPYING TURING MACHINES. Biophysical Reviews and Letters, 2012, 07, 135-175.	0.9	11
26	Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2424-32.	3. 3	534
27	The Role of Translation Initiation Regulation in Haematopoiesis. Comparative and Functional Genomics, 2012, 2012, 1-10.	2.0	10
28	HAltORF: a database of predicted out-of-frame alternative open reading frames in human. Database: the Journal of Biological Databases and Curation, 2012, 2012, bas025-bas025.	1.4	43
29	Decoding Human Cytomegalovirus. Science, 2012, 338, 1088-1093.	6.0	546
30	Small RNAs in development – insights from plants. Current Opinion in Genetics and Development, 2012, 22, 361-367.	1.5	193
31	Protein Folding Drives Disulfide Formation. Cell, 2012, 151, 794-806.	13.5	158
32	Primary Role for Endoplasmic Reticulum-bound Ribosomes in Cellular Translation Identified by Ribosome Profiling. Journal of Biological Chemistry, 2012, 287, 5518-5527.	1.6	164
33	Regulation of mammalian cell differentiation by long nonâ€coding RNAs. EMBO Reports, 2012, 13, 971-983.	2.0	292
34	Amino Termini of Many Yeast Proteins Map to Downstream Start Codons. Journal of Proteome Research, 2012, 11, 5712-5719.	1.8	27
35	Flow models for efficient simulation and engineering of transcription and translation elongation. , 2012, , .		0
36	Extensive Translatome Remodeling during ER Stress Response in Mammalian Cells. PLoS ONE, 2012, 7, e35915.	1.1	32
37	Novel 3' ends that support translation. Genes and Development, 2012, 26, 2457-2460.	2.7	3
38	Principles of Translational Control: An Overview. Cold Spring Harbor Perspectives in Biology, 2012, 4, a011528-a011528.	2.3	310
39	Protein-Folding Homeostasis in the Endoplasmic Reticulum and Nutritional Regulation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013177-a013177.	2.3	95
40	Introns in UTRs: Why we should stop ignoring them. BioEssays, 2012, 34, 1025-1034.	1.2	119
41	Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins. Cell, 2012, 150, 710-724.	13.5	425

#	Article	IF	Citations
42	c-Myc Is a Universal Amplifier of Expressed Genes in Lymphocytes and Embryonic Stem Cells. Cell, 2012, 151, 68-79.	13.5	907
43	Long noncoding RNAs are rarely translated in two human cell lines. Genome Research, 2012, 22, 1646-1657.	2.4	346
44	GENCODE: The reference human genome annotation for The ENCODE Project. Genome Research, 2012, 22, 1760-1774.	2.4	4,217
45	Ptdlns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. Journal of Cell Biology, 2012, 199, 1003-1016.	2.3	246
46	Visualization of Endoplasmic Reticulum Localized mRNAs in Mammalian Cells. Journal of Visualized Experiments, 2012, , e50066.	0.2	7
47	Viewing folding of nascent polypeptide chains from ribosomes. Expert Review of Proteomics, 2012, 9, 579-581.	1.3	2
48	On the Steady-State Distribution in the Homogeneous Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9, 1724-1736.	1.9	26
49	Exploring long non-coding RNAs through sequencing. Seminars in Cell and Developmental Biology, 2012, 23, 200-205.	2.3	108
50	Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Research, 2012, 22, 2208-2218.	2.4	198
51	The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols, 2012, 7, 1534-1550.	5.5	1,045
52	Translation drives mRNA quality control. Nature Structural and Molecular Biology, 2012, 19, 594-601.	3.6	334
53	High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling. Science, 2012, 335, 552-557.	6.0	496
54	Regulation of lymphocyte development and function by RNA-binding proteins. Current Opinion in Immunology, 2012, 24, 160-165.	2.4	18
55	A triple helix stabilizes the $3\hat{a}\in^2$ ends of long noncoding RNAs that lack poly(A) tails. Genes and Development, 2012, 26, 2392-2407.	2.7	375
56	LIN28A Is a Suppressor of ER-Associated Translation in Embryonic Stem Cells. Cell, 2012, 151, 765-777.	13.5	208
57	New genes expressed in human brains: Implications for annotating evolving genomes. BioEssays, 2012, 34, 982-991.	1.2	54
58	Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nature Reviews Molecular Cell Biology, 2012, 13, 355-369.	16.1	577
59	Transcriptome sequencing in Sézary syndrome identifies Sézary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood, 2012, 120, 3288-3297.	0.6	85

#	Article	IF	Citations
60	The Long Non-Coding RNAs: A New (P)layer in the "Dark Matter― Frontiers in Genetics, 2011, 2, 107.	1.1	113
61	Developments in quantitative mass spectrometry for the analysis of proteome dynamics. Trends in Biotechnology, 2012, 30, 668-676.	4.9	20
62	Alternative splicing in plants – coming of age. Trends in Plant Science, 2012, 17, 616-623.	4.3	464
63	A New Start for Protein Synthesis. Science, 2012, 336, 1645-1646.	6.0	8
64	Gene Expression Profiles of the NCI-60 Human Tumor Cell Lines Define Molecular Interaction Networks Governing Cell Migration Processes. PLoS ONE, 2012, 7, e35716.	1.1	28
65	The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis. ELife, 2012, 1, e00048.	2.8	118
66	Dark Matter RNA: Existence, Function, and Controversy. Frontiers in Genetics, 2012, 3, 60.	1.1	75
67	On programmed ribosomal frameshifting: the alternative proteomes. Frontiers in Genetics, 2012, 3, 242.	1.1	58
68	CRNDE: A Long Non-Coding RNA Involved in CanceR, Neurobiology, and DEvelopment. Frontiers in Genetics, 2012, 3, 270.	1.1	199
69	Genome-Wide Approaches to Dissect the Roles of RNA Binding Proteins in Translational Control: Implications for Neurological Diseases. Frontiers in Neuroscience, 2012, 6, 144.	1.4	47
70	Noncoding RNA localisation mechanisms in chromatin regulation. Silence: A Journal of RNA Regulation, 2012, 3, 2.	8.0	7
71	Protein–RNA footprinting: an evolving tool. Wiley Interdisciplinary Reviews RNA, 2012, 3, 557-566.	3.2	14
72	Computational approaches to discovering noncoding RNA. Wiley Interdisciplinary Reviews RNA, 2012, 3, 567-579.	3.2	17
73	Mechanisms and implications of programmed translational frameshifting. Wiley Interdisciplinary Reviews RNA, 2012, 3, 661-673.	3.2	178
74	Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Research, 2012, 40, 6391-6400.	6.5	583
75	Emerging Therapeutics Targeting mRNA Translation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012377-a012377.	2.3	51
76	The anti-Shine–Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature, 2012, 484, 538-541.	13.7	566
77	Monitoring cotranslational protein folding in mammalian cells at codon resolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12467-12472.	3.3	59

#	Article	IF	CITATIONS
78	Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482, 339-346.	13.7	2,036
79	Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Reviews Genetics, 2012, 13, 227-232.	7.7	3,228
80	Genome Regulation by Long Noncoding RNAs. Annual Review of Biochemistry, 2012, 81, 145-166.	5.0	3,665
81	Non-canonical translation in RNA viruses. Journal of General Virology, 2012, 93, 1385-1409.	1.3	410
82	Leucine-tRNA Initiates at CUG Start Codons for Protein Synthesis and Presentation by MHC Class I. Science, 2012, 336, 1719-1723.	6.0	201
83	From Cis-Regulatory Elements to Complex RNPs and Back. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012245-a012245.	2.3	80
84	Alternative splicing: decoding an expansive regulatory layer. Current Opinion in Cell Biology, 2012, 24, 323-332.	2.6	151
85	Analysis of F9 point mutations and their correlation to severity of haemophilia B disease. Haemophilia, 2012, 18, 933-940.	1.0	12
86	The abundance of Rad51 protein in mouse embryonic stem cells is regulated at multiple levels. Stem Cell Research, 2012, 9, 124-134.	0.3	22
87	Examples of sequence conservation analyses capture a subset of mouse long non-coding RNAs sharing homology with fish conserved genomic elements. BMC Bioinformatics, 2013, 14, S14.	1.2	16
88	Minireview: Long Noncoding RNAs: New "Links―Between Gene Expression and Cellular Outcomes in Endocrinology. Molecular Endocrinology, 2013, 27, 1390-1402.	3.7	66
89	A Long Noncoding RNA Mediates Both Activation and Repression of Immune Response Genes. Science, 2013, 341, 789-792.	6.0	925
90	Effect of ribosome shielding on mRNA stability. Physical Biology, 2013, 10, 046008.	0.8	52
91	Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nature Communications, 2013, 4, 2171.	5.8	90
92	Adaptive Translation as a Mechanism of Stress Response and Adaptation. Annual Review of Genetics, 2013, 47, 121-137.	3.2	102
93	The Myc Gene. Methods in Molecular Biology, 2013, , .	0.4	1
94	Rare Codons Regulate KRas Oncogenesis. Current Biology, 2013, 23, 70-75.	1.8	132
95	Conserved Regulation of Cardiac Calcium Uptake by Peptides Encoded in Small Open Reading Frames. Science, 2013, 341, 1116-1120.	6.0	311

#	Article	IF	CITATIONS
96	Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics, 2013, 45, 933-936.	9.4	436
97	Translation of pre-spliced RNAs in the nuclear compartment generates peptides for the MHC class I pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17951-17956.	3.3	95
98	Nuclear translation for immunosurveillance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17612-17613.	3.3	10
99	Reviving nuclear translation. Nature Chemical Biology, 2013, 9, 759-760.	3.9	0
100	Translational Landscape of Photomorphogenic <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3699-3710.	3.1	168
101	Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11226-11231.	3.3	193
102	Organizing Principles of Mammalian Nonsense-Mediated mRNA Decay. Annual Review of Genetics, 2013, 47, 139-165.	3.2	369
103	Chemoproteomic Discovery of Cysteine-Containing Human Short Open Reading Frames. Journal of the American Chemical Society, 2013, 135, 16750-16753.	6.6	34
104	Methods for studying IRES-mediated translation of positive-strand RNA viruses. Methods, 2013, 59, 167-179.	1.9	18
105	Less is more: improving proteostasis by translation slow down. Trends in Biochemical Sciences, 2013, 38, 585-591.	3.7	78
106	p53 and Translation Attenuation Regulate Distinct Cell Cycle Checkpoints during Endoplasmic Reticulum (ER) Stress. Journal of Biological Chemistry, 2013, 288, 7606-7617.	1.6	35
107	Combining in silico prediction and ribosome profiling in a genome-wide search for novel putatively coding sORFs. BMC Genomics, 2013, 14, 648.	1.2	79
108	Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Research, 2013, 23, 1636-1650.	2.4	217
109	Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum. Genome Biology, 2013, 14, R128.	13.9	131
110	Long noncoding RNAs as metazoan developmental regulators. Chromosome Research, 2013, 21, 673-684.	1.0	5
111	Improving the Identification Rate of Endogenous Peptides Using Electron Transfer Dissociation and Collision-Induced Dissociation. Journal of Proteome Research, 2013, 12, 5410-5421.	1.8	22
112	mRNA–mRNA duplexes that autoelicit Staufen1-mediated mRNA decay. Nature Structural and Molecular Biology, 2013, 20, 1214-1220.	3.6	58
113	New gene expression pipelines gush IncRNAs. Genome Biology, 2013, 14, 117.	13.9	12

#	Article	IF	CITATIONS
114	Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biology, 2013, 14, 215.	13.9	204
115	Molecular Insights into Intracellular RNA Localization. International Review of Cell and Molecular Biology, 2013, 302, 1-39.	1.6	52
116	Posttranscriptional Gene Regulation by Long Noncoding RNA. Journal of Molecular Biology, 2013, 425, 3723-3730.	2.0	517
117	Cotranslational Response to Proteotoxic Stress by Elongation Pausing of Ribosomes. Molecular Cell, 2013, 49, 453-463.	4.5	230
118	Mouse TU tagging: a chemical/genetic intersectional method for purifying cell type-specific nascent RNA. Genes and Development, 2013, 27, 98-115.	2.7	108
119	Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 594-599.	3.3	103
120	Toward a Genome-Wide Landscape of Translational Control. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012302-a012302.	2.3	50
121	Peptidomic discovery of short open reading frame–encoded peptides in human cells. Nature Chemical Biology, 2013, 9, 59-64.	3.9	529
122	The lgf2as Transcript is Exported into Cytoplasm and Associated with Polysomes. Biochemical Genetics, 2013, 51, 119-130.	0.8	15
123	Widespread Regulation of Translation by Elongation Pausing in Heat Shock. Molecular Cell, 2013, 49, 439-452.	4.5	293
124	Long nonâ€coding RNAs in stem cell pluripotency. Wiley Interdisciplinary Reviews RNA, 2013, 4, 121-128.	3.2	29
125	Autoregulation of Connexin43 Gap Junction Formation by Internally Translated Isoforms. Cell Reports, 2013, 5, 611-618.	2.9	127
126	Assessing gene-level translational control from ribosome profiling. Bioinformatics, 2013, 29, 2995-3002.	1.8	79
127	Translational control by 3'-UTR-binding proteins. Briefings in Functional Genomics, 2013, 12, 58-65.	1.3	157
128	Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins. Genomics, 2013, 102, 419-429.	1.3	9
129	Nascent peptides that block protein synthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E878-87.	3.3	137
130	Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell, 2013, 152, 1298-1307.	13.5	2,279
131	Temporal and spatial characterization of nonsense-mediated mRNA decay. Genes and Development, 2013, 27, 541-551.	2.7	116

#	Article	IF	CITATIONS
132	Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment. Cell, 2013, 152, 570-583.	13.5	839
133	Long Noncoding RNAs: Past, Present, and Future. Genetics, 2013, 193, 651-669.	1.2	1,641
134	Panning for Long Noncoding RNAs. Biomolecules, 2013, 3, 226-241.	1.8	13
135	CLIPing the brain: Studies of protein–RNA interactions important for neurodegenerative disorders. Molecular and Cellular Neurosciences, 2013, 56, 429-435.	1.0	30
136	Multi-disciplinary methods to define RNA–protein interactions and regulatory networks. Current Opinion in Genetics and Development, 2013, 23, 20-28.	1.5	49
137	Predicting long non-coding RNAs using RNA sequencing. Methods, 2013, 63, 50-59.	1.9	117
138	A perspective on mammalian upstream open reading frame function. International Journal of Biochemistry and Cell Biology, 2013, 45, 1690-1700.	1.2	170
139	An update on recent methods applied for deciphering the diversity of the noncoding RNA genome structure and function. Methods, 2013, 63, 3-17.	1.9	11
140	The Vast, Conserved Mammalian lincRNome. PLoS Computational Biology, 2013, 9, e1002917.	1.5	62
141	Listerin-Dependent Nascent Protein Ubiquitination Relies on Ribosome Subunit Dissociation. Molecular Cell, 2013, 50, 637-648.	4.5	184
142	Ribosome profiling: a Hiâ€Def monitor for protein synthesis at the genomeâ€wide scale. Wiley Interdisciplinary Reviews RNA, 2013, 4, 473-490.	3.2	72
143	Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist's perspective. Physics Reports, 2013, 529, 1-197.	10.3	192
144	Ribosome profiling reveals resemblance between long non-coding RNAs and 5′ leaders of coding RNAs. Development (Cambridge), 2013, 140, 2828-2834.	1.2	237
145	Genomeâ€Wide Annotation and Quantitation of Translation by Ribosome Profiling. Current Protocols in Molecular Biology, 2013, 103, Unit 4.18.	2.9	55
146	Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins. Cell, 2013, 154, 240-251.	13.5	678
147	lincRNAs: Genomics, Evolution, and Mechanisms. Cell, 2013, 154, 26-46.	13.5	2,337
148	Reinitiation and Other Unconventional Posttermination Events during Eukaryotic Translation. Molecular Cell, 2013, 51, 249-264.	4.5	133
149	CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome. Neuron, 2013, 78, 440-455.	3.8	422

#	ARTICLE	IF	CITATIONS
150	Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural and Molecular Biology, 2013, 20, 300-307.	3.6	1,325
151	Arrest Peptides: <i>Cis</i> -Acting Modulators of Translation. Annual Review of Biochemistry, 2013, 82, 171-202.	5.0	231
152	Translation regulation gets its â€~omics' moment. Wiley Interdisciplinary Reviews RNA, 2013, 4, 617-630.	3.2	44
153	Investigating Myc-Dependent Translational Regulation in Normal and Cancer Cells. Methods in Molecular Biology, 2013, 1012, 201-212.	0.4	5
154	Eukaryotic Release Factor 3 Is Required for Multiple Turnovers of Peptide Release Catalysis by Eukaryotic Release Factor 1. Journal of Biological Chemistry, 2013, 288, 29530-29538.	1.6	31
155	Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes. Nature Protocols, 2013, 8, 2212-2239.	5.5	112
156	Explicit Expression for the Steady-State Translation Rate in the Infinite-Dimensional Homogeneous Ribosome Flow Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 1322-1328.	1.9	28
157	Proteolytic Post-translational Modification of Proteins: Proteomic Tools and Methodology. Molecular and Cellular Proteomics, 2013, 12, 3532-3542.	2.5	127
158	<i>P</i> -value-based regulatory motif discovery using positional weight matrices. Genome Research, 2013, 23, 181-194.	2.4	64
159	Hidden coding potential of eukaryotic genomes: nonAUG started ORFs. Journal of Biomolecular Structure and Dynamics, 2013, 31, 103-114.	2.0	25
160	Translational Regulation of Cytoplasmic mRNAs. The Arabidopsis Book, 2013, 11, e0165.	0.5	61
161	Functional transcriptomics in the post-ENCODE era. Genome Research, 2013, 23, 1961-1973.	2.4	58
162	The long non-coding RNA <i><i>Fendrr</i></i> links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biology, 2013, 10, 1579-1585.	1.5	158
163	Nutrient Signaling in Protein Homeostasis: An Increase in Quantity at the Expense of Quality. Science Signaling, 2013, 6, ra24.	1.6	61
164	Repeat-associated non-ATG (RAN) translation in neurological disease. Human Molecular Genetics, 2013, 22, R45-R51.	1.4	136
165	Loss of a Conserved tRNA Anticodon Modification Perturbs Cellular Signaling. PLoS Genetics, 2013, 9, e1003675.	1.5	181
166	Pervasive Transcription of the Human Genome Produces Thousands of Previously Unidentified Long Intergenic Noncoding RNAs. PLoS Genetics, 2013, 9, e1003569.	1.5	655
167	New Universal Rules of Eukaryotic Translation Initiation Fidelity. PLoS Computational Biology, 2013, 9, e1003136.	1.5	89

#	ARTICLE	IF	CITATIONS
168	Strong Purifying Selection at Synonymous Sites in D. melanogaster. PLoS Genetics, 2013, 9, e1003527.	1.5	187
169	rRNA:mRNA pairing alters the length and the symmetry of mRNA-protected fragments in ribosome profiling experiments. Bioinformatics, 2013, 29, 1488-1491.	1.8	50
170	Noncoding RNAs of the <i>Ultrabithorax</i> Domain of the <i>Drosophila</i> Bithorax Complex. Genetics, 2013, 195, 1253-1264.	1.2	38
171	Positively Charged Residues Are the Major Determinants of Ribosomal Velocity. PLoS Biology, 2013, 11, e1001508.	2.6	250
172	Long Non-Coding RNAs in Haematological Malignancies. International Journal of Molecular Sciences, 2013, 14, 15386-15422.	1.8	40
173	A Rapid Ribosome Profiling Method Elucidates Chloroplast Ribosome Behavior in Vivo Â. Plant Cell, 2013, 25, 2265-2275.	3.1	122
174	Ribosome flow model with positive feedback. Journal of the Royal Society Interface, 2013, 10, 20130267.	1.5	47
175	Distinct XPPX sequence motifs induce ribosome stalling, which is rescued by the translation elongation factor EF-P. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15265-15270.	3.3	167
176	Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4316-24.	3.3	66
177	Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. Rna, 2013, 19, 1208-1217.	1.6	100
178	Strain Distributions in Non-Polar a-Plane In x Ga $1\hat{a}^{2}$ x N Epitaxial Layers on r-Plane Sapphire Extracted from X-Ray Diffraction. Chinese Physics Letters, 2013, 30, 098102.	1.3	2
179	SCALING OF THE ELECTRON DISSIPATION RANGE OF SOLAR WIND TURBULENCE. Astrophysical Journal, 2013, 777, 15.	1.6	134
180	Deep Proteome Coverage Based on Ribosome Profiling Aids Mass Spectrometry-based Protein and Peptide Discovery and Provides Evidence of Alternative Translation Products and Near-cognate Translation Initiation Events*. Molecular and Cellular Proteomics, 2013, 12, 1780-1790.	2.5	154
181	Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9818-9823.	3.3	56
182	There is a world beyond protein mutations: the role of nonâ€coding <scp>RNA</scp> s in melanomagenesis. Experimental Dermatology, 2013, 22, 303-306.	1.4	4
183	Reactivation of stalled polyribosomes in synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16205-16210.	3.3	149
184	<i>linc-HOXA1</i> is a noncoding RNA that represses <i>Hoxa1</i> transcription in <i>cis</i> . Genes and Development, 2013, 27, 1260-1271.	2.7	120
185	The Stringency of Start Codon Selection in the Filamentous Fungus Neurospora crassa. Journal of Biological Chemistry, 2013, 288, 9549-9562.	1.6	45

#	Article	IF	CITATIONS
186	Translational Redefinition of UGA Codons Is Regulated by Selenium Availability. Journal of Biological Chemistry, 2013, 288, 19401-19413.	1.6	90
187	Interaction between 25S rRNA A Loop and Eukaryotic Translation Initiation Factor 5B Promotes Subunit Joining and Ensures Stringent AUG Selection. Molecular and Cellular Biology, 2013, 33, 3540-3548.	1.1	10
188	Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques. Current Protocols in Cell Biology, 2013, 60, Unit 21.7	2.3	15
189	Cleavage of Fibrinogen by Proteinases Elicits Allergic Responses Through Toll-Like Receptor 4. Science, 2013, 341, 792-796.	6.0	194
190	VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Research, 2013, 41, 7997-8010.	6.5	190
191	Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Research, 2013, 41, 4573-4586.	6.5	49
192	Interrogating translational efficiency and lineage-specific transcriptomes using ribosome affinity purification. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15395-15400.	3.3	116
194	Re-annotation of the Saccharopolyspora erythraea genome using a systems biology approach. BMC Genomics, 2013, 14, 699.	1.2	21
195	The global translation profile in a ribosomal protein mutant resembles that of an eIF3 mutant. BMC Biology, 2013, 11, 123.	1.7	22
196	Direct Detection of Alternative Open Reading Frames Translation Products in Human Significantly Expands the Proteome. PLoS ONE, 2013, 8, e70698.	1.1	192
197	Identification and Characterization of Long Non-Coding RNAs Related to Mouse Embryonic Brain Development from Available Transcriptomic Data. PLoS ONE, 2013, 8, e71152.	1.1	55
199	Alternative Forms of Y-Box Binding Protein 1 and YB-1 mRNA. PLoS ONE, 2014, 9, e104513.	1.1	6
200	Unraveling Patterns of Site-to-Site Synonymous Rates Variation and Associated Gene Properties of Protein Domains and Families. PLoS ONE, 2014, 9, e95034.	1.1	17
201	Most Human Proteins Made in Both Nucleus and Cytoplasm Turn Over within Minutes. PLoS ONE, 2014, 9, e99346.	1.1	23
202	The Long Non-Coding RNA GAS5 Cooperates with the Eukaryotic Translation Initiation Factor 4E to Regulate c-Myc Translation. PLoS ONE, 2014, 9, e107016.	1.1	102
203	Extensive translation of small Open Reading Frames revealed by Poly-Ribo-Seq. ELife, 2014, 3, e03528.	2.8	286
204	Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. ELife, 2014, 3, e01257.	2.8	272
206	Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes. Cell Reports, 2014, 8, 1365-1379.	2.9	591

#	Article	IF	CITATIONS
207	Human nonsense-mediated RNA decay initiates widely by endonucleolysis and targets snoRNA host genes. Genes and Development, 2014, 28, 2498-2517.	2.7	163
208	"Dark matter―worlds of unstable RNA and protein. Nucleus, 2014, 5, 281-286.	0.6	24
209	Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors. Journal of Neuroscience, 2014, 34, 10924-10936.	1.7	109
210	Identification of a Mg2+-sensitive ORF in the 5′-leader of TRPM7 magnesium channel mRNA. Nucleic Acids Research, 2014, 42, 12779-12788.	6.5	16
211	AP2 controls clathrin polymerization with a membrane-activated switch. Science, 2014, 345, 459-463.	6.0	185
212	Genome-wide identification of coding small open reading frames: The unknown transcriptome. Journal of Shanghai Jiaotong University (Science), 2014, 19, 663-668.	0.5	0
213	Computational approach for calculating the probability of eukaryotic translation initiation from ribo-seq data that takes into account leaky scanning. BMC Bioinformatics, 2014, 15, 380.	1.2	59
214	Reselection of a Genomic Upstream Open Reading Frame in Mouse Hepatitis Coronavirus 5′-Untranslated-Region Mutants. Journal of Virology, 2014, 88, 846-858.	1.5	36
215	Importance of extended protease substrate recognition motifs in steering BNIP-2 cleavage by human and mouse granzymes B. BMC Biochemistry, 2014, 15, 21.	4.4	5
216	Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics, 2014, 15, 911.	1.2	121
217	Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biology, 2014, 15, 476.	3.8	159
218	Translational dynamics revealed by genome-wide profiling of ribosome footprints in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E203-12.	3.3	367
219	Why is start codon selection so precise in eukaryotes?. Translation, 2014, 2, e28387.	2.9	56
220	Pri peptides are mediators of ecdysone for the temporal control of development. Nature Cell Biology, 2014, 16, 1035-1044.	4.6	88
221	Decoding the noncoding: Prospective of IncRNA-mediated innate immune regulation. RNA Biology, 2014, 11, 979-985.	1.5	40
222	Maximizing Protein Translation Rate in the Ribosome Flow Model: The Homogeneous Case. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11, 1184-1195.	1.9	12
223	Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics, 2014, 9, 13-20.	1.3	124
224	Causal signals between codon bias, <scp>mRNA</scp> structure, and the efficiency of translation and elongation. Molecular Systems Biology, 2014, 10, 770.	3.2	231

#	Article	IF	CITATIONS
225	Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective. PLoS Computational Biology, 2014, 10, e1003294.	1.5	21
226	The Coding and Noncoding Architecture of the Caulobacter crescentus Genome. PLoS Genetics, 2014, 10, e1004463.	1.5	136
227	Long Non-Coding RNA and Epigenetic Gene Regulation of KSHV. Viruses, 2014, 6, 4165-4177.	1.5	29
228	Codon-by-Codon Modulation of Translational Speed and Accuracy Via mRNA Folding. PLoS Biology, 2014, 12, e1001910.	2.6	101
229	The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Research, 2014, 42, 9171-9181.	6.5	222
230	The Pathogenic Mechanism of the Mycobacterium ulcerans Virulence Factor, Mycolactone, Depends on Blockade of Protein Translocation into the ER. PLoS Pathogens, 2014, 10, e1004061.	2.1	129
231	Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biology, 2014, 12, e1001840.	2.6	109
232	Selective mRNA translation during eIF2 phosphorylation induces expression of $\langle i \rangle$ IBTKα $\langle i \rangle$. Molecular Biology of the Cell, 2014, 25, 1686-1697.	0.9	107
233	KSHV 2.0: A Comprehensive Annotation of the Kaposi's Sarcoma-Associated Herpesvirus Genome Using Next-Generation Sequencing Reveals Novel Genomic and Functional Features. PLoS Pathogens, 2014, 10, e1003847.	2.1	264
234	Long ncRNAs expressed during human cytomegalovirus infections. Future Virology, 2014, 9, 587-594.	0.9	1
235	Detecting translational regulation by change point analysis of ribosome profiling data sets. Rna, 2014, 20, 1507-1518.	1.6	36
236	Biological Significance of Nascent Polypeptides That Stall the Ribosome. , 2014, , 3-20.		2
237	Systems cell biology. Journal of Cell Biology, 2014, 206, 695-706.	2.3	39
238	TISdb: a database for alternative translation initiation in mammalian cells. Nucleic Acids Research, 2014, 42, D845-D850.	6.5	84
239	Ribosomes in a Stacked Array. Journal of Biological Chemistry, 2014, 289, 12693-12704.	1.6	14
240	The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli. Nucleic Acids Research, 2014, 42, 13370-13383.	6.5	63
241	Properties and determinants of codon decoding time distributions. BMC Genomics, 2014, 15, S13.	1.2	20
242	Maximizing protein translation rate in the non-homogeneous ribosome flow model: a convex optimization approach. Journal of the Royal Society Interface, 2014, 11, 20140713.	1.5	45

#	Article	IF	CITATIONS
243	Translational control by heme-regulated elF2 \hat{l}_{\pm} kinase during erythropoiesis. Current Opinion in Hematology, 2014, 21, 172-178.	1.2	75
244	GWIPS-viz: development of a ribo-seq genome browser. Nucleic Acids Research, 2014, 42, D859-D864.	6.5	223
245	The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. Genes and Development, 2014, 28, 463-478.	2.7	63
246	Ribosome-associated ncRNAs: An emerging class of translation regulators. RNA Biology, 2014, 11, 1335-1339.	1.5	56
248	Novel RNA Markers in Prostate Cancer: Functional Considerations and Clinical Translation. BioMed Research International, 2014, 2014, 1-12.	0.9	12
249	Cell cycle, oncogenic and tumor suppressor pathways regulate numerous long and macro non-protein-coding RNAs. Genome Biology, 2014, 15, R48.	13.9	37
250	Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Research, 2014, 42, 14070-14082.	6.5	18
251	Translation inhibitors cause abnormalities in ribosome profiling experiments. Nucleic Acids Research, 2014, 42, e134-e134.	6.5	251
252	Ribosome profiling reveals post-transcriptional buffering of divergent gene expression in yeast. Genome Research, 2014, 24, 422-430.	2.4	195
253	Regulation of plant translation by upstream open reading frames. Plant Science, 2014, 214, 1-12.	1.7	179
254	Long non-coding RNAs: modulators of nuclear structure and function. Current Opinion in Cell Biology, 2014, 26, 10-18.	2.6	219
255	A Bicistronic MAVS Transcript Highlights a Class of Truncated Variants in Antiviral Immunity. Cell, 2014, 156, 800-811.	13.5	125
256	miniMAVS, You Complete Me!. Cell, 2014, 156, 629-630.	13.5	3
257	Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes. Genome Biology, 2014, 15, R6.	13.9	305
258	Discovery of Human sORF-Encoded Polypeptides (SEPs) in Cell Lines and Tissue. Journal of Proteome Research, 2014, 13, 1757-1765.	1.8	149
259	Emerging evidence for functional peptides encoded by short open reading frames. Nature Reviews Genetics, 2014, 15, 193-204.	7.7	496
260	Crystal structure of the eukaryotic translation initiation factor 2A from Schizosaccharomyces pombe. Journal of Structural and Functional Genomics, 2014, 15, 125-130.	1.2	8
261	uPEPperoni: An online tool for upstream open reading frame location and analysis of transcript conservation. BMC Bioinformatics, 2014, 15, 36.	1.2	32

#	Article	IF	CITATIONS
262	The RBPome: where the brains meet the brawn. Genome Biology, 2014, 15, 402.	13.9	4
263	Dom34 Rescues Ribosomes in 3′ Untranslated Regions. Cell, 2014, 156, 950-962.	13.5	342
264	Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation. EMBO Journal, 2014, 33, 981-993.	3.5	587
265	Differential Scales of Protein Quality Control. Cell, 2014, 157, 52-64.	13.5	207
266	Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO Journal, 2014, 33, 21-34.	3.5	174
267	Elements and machinery of nonâ€coding <scp>RNA</scp> s: toward their taxonomy. EMBO Reports, 2014, 15, 489-507.	2.0	84
268	Protein kinase A regulates gene-specific translational adaptation in differentiating yeast. Rna, 2014, 20, 912-922.	1.6	25
269	Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources. Cell, 2014, 157, 624-635.	13.5	1,137
270	The emerging role of triple helices in <scp>RNA</scp> biology. Wiley Interdisciplinary Reviews RNA, 2014, 5, 15-29.	3.2	70
271	Mod-seq: high-throughput sequencing for chemical probing of RNA structure. Rna, 2014, 20, 713-720.	1.6	167
272	Toddler: An Embryonic Signal That Promotes Cell Movement via Apelin Receptors. Science, 2014, 343, 1248636.	6.0	498
273	Comparative ribosome profiling reveals extensive translational complexity in different <i>Trypanosoma brucei</i> life cycle stages. Nucleic Acids Research, 2014, 42, 3623-3637.	6.5	154
274	A Human Short Open Reading Frame (sORF)-encoded Polypeptide That Stimulates DNA End Joining. Journal of Biological Chemistry, 2014, 289, 10950-10957.	1.6	128
275	Translational control of immune responses: from transcripts to translatomes. Nature Immunology, 2014, 15, 503-511.	7.0	193
276	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	0.7	57
277	Challenges and obstacles related to solving the codon bias riddles. Biochemical Society Transactions, 2014, 42, 155-159.	1.6	13
278	Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. Journal of Leukocyte Biology, 2014, 95, 551-562.	1.5	127
279	Translational reprogramming in cellular stress response. Wiley Interdisciplinary Reviews RNA, 2014, 5, 301-305.	3.2	193

#	Article	IF	CITATIONS
280	Alternative Splicing of MBD2 Supports Self-Renewal in Human Pluripotent Stem Cells. Cell Stem Cell, 2014, 15, 92-101.	5.2	93
281	Long noncoding RNAs in innate and adaptive immunity. Current Opinion in Immunology, 2014, 26, 140-146.	2.4	193
282	Mass-spectrometry-based draft of the human proteome. Nature, 2014, 509, 582-587.	13.7	1,697
283	Positive Charge Loading at Protein Termini Is Due to Membrane Protein Topology, Not a Translational Ramp. Molecular Biology and Evolution, 2014, 31, 70-84.	3.5	26
284	Evolution at two levels of gene expression in yeast. Genome Research, 2014, 24, 411-421.	2.4	124
285	Ribosome profiling: new views of translation, from single codons to genome scale. Nature Reviews Genetics, 2014, 15, 205-213.	7.7	543
286	Non-canonical translation start sites in the TMEM16A chloride channel. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 89-97.	1.4	24
287	HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nature Methods, 2014, 11, 59-62.	9.0	222
288	tRanslatome: an R/Bioconductor package to portray translational control. Bioinformatics, 2014, 30, 289-291.	1.8	20
289	Translatome profiling: methods for genome-scale analysis of mRNA translation. Briefings in Functional Genomics, 2016, 15, 22-31.	1.3	88
290	PAR-CLIP analysis uncovers AUF1 impact on target RNA fate and genome integrity. Nature Communications, 2014, 5, 5248.	5.8	156
291	Quantitative profiling of peptides from RNAs classified as noncoding. Nature Communications, 2014, 5, 5429.	5.8	55
292	Repeat-Associated Non-AUG Translation and Its Impact in Neurodegenerative Disease. Neurotherapeutics, 2014, 11, 721-731.	2.1	42
293	Quantitative analysis of mammalian translation initiation sites by <scp>FACS</scp> â€seq. Molecular Systems Biology, 2014, 10, 748.	3.2	158
294	Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nature Neuroscience, 2014, 17, 1491-1499.	7.1	59
295	Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nature Neuroscience, 2014, 17, 1463-1475.	7.1	49
296	Mixed messages: Re-initiation factors regulate translation of animal mRNAs. Cell Research, 2014, 24, 1383-1384.	5.7	2
297	Synonymous codons, ribosome speed, and eukaryotic gene expression regulation. Cellular and Molecular Life Sciences, 2014, 71, 4195-4206.	2.4	35

#	ARTICLE	IF	CITATIONS
298	The RNA Polymerase Flow Model of Gene Transcription. IEEE Transactions on Biomedical Circuits and Systems, 2014, 8, 54-64.	2.7	18
299	N-terminal Proteomics and Ribosome Profiling Provide a Comprehensive View of the Alternative Translation Initiation Landscape in Mice and Men. Molecular and Cellular Proteomics, 2014, 13, 1245-1261.	2.5	123
300	The translational landscape of fission-yeast meiosis and sporulation. Nature Structural and Molecular Biology, 2014, 21, 641-647.	3.6	79
301	The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016089-a016089.	2.3	10
302	Short Stories on Zebrafish Long Noncoding RNAs. Zebrafish, 2014, 11, 499-508.	0.5	22
303	The Role of Mammalian MAPK Signaling in Regulation of Cytokine mRNA Stability and Translation. Journal of Interferon and Cytokine Research, 2014, 34, 220-232.	0.5	69
304	The proteome under translational control. Proteomics, 2014, 14, 2647-2662.	1.3	38
305	Regulatory Nascent Polypeptides. , 2014, , .		9
306	A critical analysis of codon optimization in human therapeutics. Trends in Molecular Medicine, 2014, 20, 604-613.	3.5	214
307	m6A RNA Modification Controls Cell Fate Transition in Mammalian Embryonic Stem Cells. Cell Stem Cell, 2014, 15, 707-719.	5.2	990
308	Toward understanding driving forces in membrane protein folding. Archives of Biochemistry and Biophysics, 2014, 564, 297-313.	1.4	52
309	A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation. Cell, 2014, 158, 1281-1292.	13.5	414
310	The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130507.	1.8	164
311	Translation of Small Open Reading Frames within Unannotated RNA Transcripts in Saccharomyces cerevisiae. Cell Reports, 2014, 7, 1858-1866.	2.9	150
312	Exposing synonymous mutations. Trends in Genetics, 2014, 30, 308-321.	2.9	272
313	Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science, 2014, 345, 455-459.	6.0	378
314	Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis. Developmental Cell, 2014, 30, 166-176.	3.1	311
315	A Long Noncoding RNA Transcriptional Regulatory Circuit Drives Thermogenic Adipocyte Differentiation. Molecular Cell, 2014, 55, 372-382.	4.5	224

#	Article	IF	CITATIONS
316	Structural basis for the inhibition of the eukaryotic ribosome. Nature, 2014, 513, 517-522.	13.7	434
317	Cellular Differences in Protein Synthesis Regulate Tissue Homeostasis. Cell, 2014, 159, 242-251.	13.5	177
318	Accounting for biases in riboprofiling data indicates a major role for proline in stalling translation. Genome Research, 2014, 24, 2011-2021.	2.4	142
319	Co-occurrence of transcription and translation gene regulatory features underlies coordinated mRNA and protein synthesis. BMC Genomics, 2014, 15, 688.	1.2	13
320	Regulation of Transcription by Long Noncoding RNAs. Annual Review of Genetics, 2014, 48, 433-455.	3.2	373
321	Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4315-22.	3.3	34
322	The emergence of proteome-wide technologies: systematic analysis of proteins comes of age. Nature Reviews Molecular Cell Biology, 2014, 15, 453-464.	16.1	80
323	A long non-coding RNA transcribed from conserved non-coding sequences contributes to the mouse prolyl oligopeptidase gene activation. Journal of Biochemistry, 2014, 155, 243-256.	0.9	17
324	The regulatory potential of upstream open reading frames in eukaryotic gene expression. Wiley Interdisciplinary Reviews RNA, 2014, 5, 765-768.	3.2	152
325	Comparative genetics of longevity and cancer: insights from long-lived rodents. Nature Reviews Genetics, 2014, 15, 531-540.	7.7	169
326	Regulation of the Mammalian Elongation Cycle by Subunit Rolling: A Eukaryotic-Specific Ribosome Rearrangement. Cell, 2014, 158, 121-131.	13.5	125
327	Modelling the Efficiency of Codon–tRNA Interactions Based on Codon Usage Bias. DNA Research, 2014, 21, 511-526.	1.5	94
328	DENR–MCT-1 promotes translation re-initiation downstream of uORFs to control tissue growth. Nature, 2014, 512, 208-212.	13.7	148
329	A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites. Proteomics, 2014, 14, 2688-2698.	1.3	66
330	Long non-coding RNAs in the regulation of the immune response. Trends in Immunology, 2014, 35, 408-419.	2.9	389
331	Volatile evolution of long noncoding RNA repertoires: mechanisms and biological implications. Trends in Genetics, 2014, 30, 439-452.	2.9	235
332	Long non-coding RNAs and control of gene expression in the immune system. Trends in Molecular Medicine, 2014, 20, 623-631.	3.5	229
333	RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes. Methods, 2014, 65, 320-332.	1.9	68

#	Article	IF	CITATIONS
334	Little things make big things happen: A summary of micropeptide encoding genes. EuPA Open Proteomics, 2014, 3, 128-137.	2.5	29
335	Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell and Developmental Biology, 2014, 34, 9-14.	2.3	561
336	Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo. BioEssays, 2014, 36, 741-745.	1.2	10
337	Trafficking Highways to the Intercalated Disc: New Insights Unlocking the Specificity of Connexin 43 Localization. Cell Communication and Adhesion, 2014, 21, 43-54.	1.0	20
338	Translation factors and ribosomal proteins control tumor onset and progression: how?. Oncogene, 2014, 33, 2145-2156.	2.6	72
339	Keeping abreast with long non-coding RNAs in mammary gland development and breast cancer. Frontiers in Genetics, 2014, 5, 379.	1.1	76
340	Antimelanoma CTL recognizes peptides derived from an ORF transcribed from the antisense strand of the $3\hat{a} \in \mathbb{Z}$ untranslated region of TRIT1. Molecular Therapy - Oncolytics, 2014, 1, 14009.	2.0	2
341	Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant Journal, 2015, 84, 1206-1218.	2.8	162
342	Ribosomal profiling adds new coding sequences to the proteome. Biochemical Society Transactions, 2015, 43, 1271-1276.	1.6	35
343	Selective mRNA translation in erythropoiesis. Biochemical Society Transactions, 2015, 43, 343-347.	1.6	3
344	Ribosomopathies and the paradox of cellular hypo- to hyperproliferation. Blood, 2015, 125, 1377-1382.	0.6	83
345	FNDC5/Irisin – Their Role in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. Brain Plasticity, 2015, 1, 55-61.	1.9	98
346	The <scp>tRNA</scp> methyltransferase Dnmt2 is required forÂaccurate polypeptide synthesis duringÂhaematopoiesis. EMBO Journal, 2015, 34, 2350-2362.	3.5	154
347	A comparative genomics study on the effect of individual amino acids on ribosome stalling. BMC Genomics, 2015, 16, S5.	1.2	58
348	Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin. Scientific Reports, 2015, 5, 17059.	1.6	27
349	Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6579-88.	3.3	199
350	Long noncoding RNAs: from identification to functions and mechanisms. Advances in Genomics and Genetics, 0, , 257.	0.8	7
351	Translate to divide: Ñontrol of the cell cycle by protein synthesis. Microbial Cell, 2015, 2, 94-104.	1.4	88

#	Article	IF	Citations
352	The small molecule ISRIB reverses the effects of eIF2 $\hat{l}\pm$ phosphorylation on translation and stress granule assembly. ELife, 2015, 4, .	2.8	464
353	The epitranscriptome in modulating spatiotemporal RNA translation in neuronal post-synaptic function. Frontiers in Cellular Neuroscience, 2015, 9, 420.	1.8	50
354	Nascent SecM Chain Outside the Ribosome Reinforces Translation Arrest. PLoS ONE, 2015, 10, e0122017.	1.1	8
355	Unbiased Quantitative Models of Protein Translation Derived from Ribosome Profiling Data. PLoS Computational Biology, 2015, 11, e1004336.	1.5	31
356	Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma. PLoS Genetics, 2015, 11, e1005395.	1.5	35
357	Partial Hepatectomy Induced Long Noncoding RNA Inhibits Hepatocyte Proliferation during Liver Regeneration. PLoS ONE, 2015, 10, e0132798.	1.1	21
358	Protein Synthesis in E. coli: Dependence of Codon-Specific Elongation on tRNA Concentration and Codon Usage. PLoS ONE, 2015, 10, e0134994.	1.1	41
359	Embryonic Stem Cell Growth Factors Regulate elF2α Phosphorylation. PLoS ONE, 2015, 10, e0139076.	1.1	26
360	Long Noncoding RNA in Hematopoiesis and Immunity. Immunity, 2015, 42, 792-804.	6.6	161
362	Not4â€dependent translational repression is important for cellular protein homeostasis in yeast. EMBO Journal, 2015, 34, 1905-1924.	3.5	49
363	Non-coding RNA: what is functional and what is junk?. Frontiers in Genetics, 2015, 6, 2.	1.1	602
364	Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell, 2015, 161, 1606-1618.	13.5	427
365	GWIPSâ€viz as a tool for exploring ribosome profiling evidence supporting the synthesis of alternative proteoforms. Proteomics, 2015, 15, 2410-2416.	1.3	19
366	Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell, 2015, 161, 1400-1412.	13.5	246
367	Dynamic and Widespread IncRNA Expression in a Sponge and the Origin of Animal Complexity. Molecular Biology and Evolution, 2015, 32, 2367-2382.	3.5	66
368	The emerging role of the peptidome in biomarker discovery and degradome profiling. Biological Chemistry, 2015, 396, 185-192.	1.2	43
369	RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Nucleic Acids Research, 2015, 43, e153-e153.	6.5	8
370	Identification and expression patterns of novel long non-coding RNAs in neural progenitors of the developing mammalian cortex. Neurogenesis (Austin, Tex), 2015, 2, e995524.	1.5	15

#	Article	IF	CITATIONS
371	The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis. Rna, 2015, 21, 1731-1745.	1.6	117
372	Gene Model Annotations for <i>Drosophila melanogaster</i> : Impact of High-Throughput Data. G3: Genes, Genomes, Genetics, 2015, 5, 1721-1736.	0.8	50
373	Ribosome A and P sites revealed by length analysis of ribosome profiling data. Nucleic Acids Research, 2015, 43, 3680-3687.	6.5	43
374	Identification of protein coding regions in RNA transcripts. Nucleic Acids Research, 2015, 43, e78-e78.	6.5	281
375	Chromosome-Based Proteomic Study for Identifying Novel Protein Variants from Human Hippocampal Tissue Using Customized neXtProt and GENCODE Databases. Journal of Proteome Research, 2015, 14, 5028-5037.	1.8	4
376	A Regression-Based Analysis of Ribosome-Profiling Data Reveals a Conserved Complexity to Mammalian Translation. Molecular Cell, 2015, 60, 816-827.	4.5	200
377	High-Precision Analysis of Translational Pausing by Ribosome Profiling in Bacteria Lacking EFP. Cell Reports, 2015, 11, 13-21.	2.9	219
378	Ribosome Flow Model on a Ring. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12, 1429-1439.	1.9	34
379	m ⁶ A mRNA methylation facilitates resolution of na \tilde{A} ve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.	6.0	1,288
380	Long non-coding RNAs as regulators of the endocrine system. Nature Reviews Endocrinology, 2015, 11, 151-160.	4.3	183
381	Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation. Biochemical Journal, 2015, 465, 227-238.	1.7	39
382	Dynamic profiling of the protein life cycle in response to pathogens. Science, 2015, 347, 1259038.	6.0	408
383	Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3′ untranslated regions. Nucleic Acids Research, 2015, 43, 1019-1034.	6.5	69
384	How do bacteria tune translation efficiency?. Current Opinion in Microbiology, 2015, 24, 66-71.	2.3	70
385	Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics, 2015, 31, 128-139.	2.9	283
386	Abiotic Stress Biology in Horticultural Plants. , 2015, , .		17
387	Quantitative studies of mRNA recruitment to the eukaryotic ribosome. Biochimie, 2015, 114, 58-71.	1.3	28
388	Ubiquitination of newly synthesized proteins at the ribosome. Biochimie, 2015, 114, 127-133.	1.3	40

#	Article	IF	CITATIONS
389	Multiple roles of the coding sequence $5\hat{a} \in \mathbb{R}^2$ end in gene expression regulation. Nucleic Acids Research, 2015, 43, 13-28.	6.5	165
390	An update on LNCipedia: a database for annotated human IncRNA sequences. Nucleic Acids Research, 2015, 43, D174-D180.	6.5	298
391	Roles for Synonymous Codon Usage in Protein Biogenesis. Annual Review of Biophysics, 2015, 44, 143-166.	4.5	257
392	Statistics requantitates the central dogma. Science, 2015, 347, 1066-1067.	6.0	155
393	Ribosome Profiling: A Tool for Quantitative Evaluation of Dynamics in mRNA Translation. Methods in Molecular Biology, 2015, 1284, 139-173.	0.4	24
394	Evolution of Gene Regulation during Transcription and Translation. Genome Biology and Evolution, 2015, 7, 1155-1167.	1.1	52
395	Creating reference gene annotation for the mouse C57BL6/J genome assembly. Mammalian Genome, 2015, 26, 366-378.	1.0	182
396	A vlincRNA participates in senescence maintenance by relieving H2AZ-mediated repression at the INK4 locus. Nature Communications, 2015, 6, 5971.	5.8	56
397	Determinants of the Rate of mRNA Translocation in Bacterial Protein Synthesis. Journal of Molecular Biology, 2015, 427, 1835-1847.	2.0	47
398	Comparative analysis reveals loss of the appetite-regulating peptide hormone ghrelin in falcons. General and Comparative Endocrinology, 2015, 216, 98-102.	0.8	6
399	Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement. PLoS Pathogens, 2015, 11, e1004868.	2.1	147
400	Codon Bias as a Means to Fine-Tune Gene Expression. Molecular Cell, 2015, 59, 149-161.	4.5	554
401	Simple and inexpensive ribosome profiling analysis of mRNA translation. Methods, 2015, 91, 69-74.	1.9	45
402	Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling. Methods, 2015, 85, 75-89.	1.9	35
403	ABC50 mutants modify translation start codon selection. Biochemical Journal, 2015, 467, 217-229.	1.7	24
404	The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors. Frontiers in Genetics, 2015, 6, 72.	1.1	44
405	Deciphering Poxvirus Gene Expression by RNA Sequencing and Ribosome Profiling. Journal of Virology, 2015, 89, 6874-6886.	1.5	62
406	Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature, 2015, 522, 221-225.	13.7	507

#	Article	IF	CITATIONS
407	Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible. Molecular Biology and Evolution, 2015, 32, 1072-1079.	3.5	143
408	Decoding Viral Infection by Ribosome Profiling. Journal of Virology, 2015, 89, 6164-6166.	1.5	19
409	The translation factor eIF5A and human cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 836-844.	0.9	137
410	Found in translation: functions and evolution of a recently discovered alternative proteome. Current Opinion in Structural Biology, 2015, 32, 74-80.	2.6	51
411	Long noncoding RNA turnover. Biochimie, 2015, 117, 15-21.	1.3	55
412	Structural imprints in vivo decode RNA regulatory mechanisms. Nature, 2015, 519, 486-490.	13.7	639
413	PROTEOFORMER: deep proteome coverage through ribosome profiling and MS integration. Nucleic Acids Research, 2015, 43, e29-e29.	6.5	132
414	mRNA Translational Enhancers as a Tool for Plant Gene Engineering. , 2015, , 187-196.		2
415	An Apela RNA-Containing Negative Feedback Loop Regulates p53-Mediated Apoptosis in Embryonic Stem Cells. Cell Stem Cell, 2015, 16, 669-683.	5.2	78
416	Nonsenseâ€mediated RNA decay – a switch and dial for regulating gene expression. BioEssays, 2015, 37, 612-623.	1.2	47
417	Computational approaches towards understanding human long non-coding RNA biology. Bioinformatics, 2015, 31, 2241-2251.	1.8	71
418	RiboTools: a Galaxy toolbox for qualitative ribosome profiling analysis. Bioinformatics, 2015, 31, 2586-2588.	1.8	39
419	Mean of the Typical Decoding Rates: A New Translation Efficiency Index Based on the Analysis of Ribosome Profiling Data. G3: Genes, Genomes, Genetics, 2015, 5, 73-80.	0.8	54
420	LncRNAs in vertebrates: Advances and challenges. Biochimie, 2015, 117, 3-14.	1.3	38
421	hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 2015, 519, 491-494.	13.7	248
422	Decoding mechanisms by which silent codon changes influence protein biogenesis and function. International Journal of Biochemistry and Cell Biology, 2015, 64, 58-74.	1.2	115
423	The Landscape of long noncoding RNA classification. Trends in Genetics, 2015, 31, 239-251.	2.9	942
424	IncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Research, 2015, 43, D168-D173.	6.5	474

#	Article	IF	CITATIONS
425	Identification and characterization of sORF-encoded polypeptides. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 134-141.	2.3	68
426	miRNA-encoded peptides (miPEPs): A new tool to analyze the roles of miRNAs in plant biology. RNA Biology, 2015, 12, 1178-1180.	1.5	48
427	Multiple repressive mechanisms in the hippocampus during memory formation. Science, 2015, 350, 82-87.	6.0	117
428	Synthesis at the Speed of Codons. Trends in Biochemical Sciences, 2015, 40, 717-718.	3.7	14
429	Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics, 2015, 16, 443.	1.2	121
430	Extensive identification and analysis of conserved small ORFs in animals. Genome Biology, 2015, 16, 179.	3.8	180
431	Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Research, 2015, 25, 1610-1621.	2.4	157
432	Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Molecular Cell, 2015, 60, 475-486.	4.5	56
433	Assessing the translational landscape of myogenic differentiation by ribosome profiling. Nucleic Acids Research, 2015, 43, 4408-4428.	6.5	43
434	Primate-Specific ORFO Contributes to Retrotransposon-Mediated Diversity. Cell, 2015, 163, 583-593.	13.5	177
435	Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames. Genome Research, 2015, 25, 1848-1859.	2.4	151
436	Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3′UTRs InÂVivo. Cell, 2015, 162, 872-884.	13.5	184
437	Next-generation analysis of gene expression regulation – comparing the roles of synthesis and degradation. Molecular BioSystems, 2015, 11, 2680-2689.	2.9	82
438	Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry. Cell Metabolism, 2015, 22, 734-740.	7.2	414
439	The functional relevance of somatic synonymous mutations in melanoma and other cancers. Pigment Cell and Melanoma Research, 2015, 28, 673-684.	1.5	47
440	Role of the small subunit processome in the maintenance of pluripotent stem cells. Genes and Development, 2015, 29, 2004-2009.	2.7	73
441	Translating the Genome in Time and Space: Specialized Ribosomes, RNA Regulons, and RNA-Binding Proteins. Annual Review of Cell and Developmental Biology, 2015, 31, 31-54.	4.0	170
442	Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annual Review of Genetics, 2015, 49, 339-366.	3.2	239

#	Article	IF	Citations
443	Ribosome profiling reveals the what, when, where and how of protein synthesis. Nature Reviews Molecular Cell Biology, 2015, 16, 651-664.	16.1	389
444	Analysis of mRNA Translation Rate in Mouse Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1341, 143-155.	0.4	2
445	LncRNA-ID: Long non-coding RNA IDentification using balanced random forests. Bioinformatics, 2015, 31, 3897-3905.	1.8	85
446	Integrated tRNA, transcript, and protein profiles in response to steroid hormone signaling. Rna, 2015, 21, 1807-1817.	1.6	7
447	Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Molecular Cell, 2015, 59, 744-754.	4.5	476
448	Ribosome Profiling as a Tool to Decipher Viral Complexity. Annual Review of Virology, 2015, 2, 335-349.	3.0	26
449	Rationally designed, heterologous <i>S. cerevisiae </i> transcripts expose novel expression determinants. RNA Biology, 2015, 12, 972-984.	1.5	39
450	Gene Model Annotations for <i>Drosophila melanogaster</i> : The Rule-Benders. G3: Genes, Genomes, Genetics, 2015, 5, 1737-1749.	0.8	23
451	The impact of the phosphomimetic eIF2αS/D on global translation, reinitiation and the integrated stress response is attenuated in N2a cells. Nucleic Acids Research, 2015, 43, 8392-8404.	6.5	5
452	<i>Cis</i> -regulatory RNA elements that regulate specialized ribosome activity. RNA Biology, 2015, 12, 1083-1087.	1.5	18
453	Elaborate uORF/IRES features control expression and localization of human glycyl-tRNA synthetase. RNA Biology, 2015, 12, 1301-1313.	1.5	20
454	Ribosome profiling reveals an important role for translational control in circadian gene expression. Genome Research, 2015, 25, 1836-1847.	2.4	99
455	Entropic Contribution of Elongation Factor P to Proline Positioning at the Catalytic Center of the Ribosome. Journal of the American Chemical Society, 2015, 137, 12997-13006.	6.6	88
456	The generation of knock-in mice expressing fluorescently tagged galanin receptors 1 and 2. Molecular and Cellular Neurosciences, 2015, 68, 258-271.	1.0	13
457	Discovery and characterization of smORF-encoded bioactive polypeptides. Nature Chemical Biology, 2015, 11, 909-916.	3.9	218
458	Computational challenges, tools, and resources for analyzing co―and postâ€transcriptional events in high throughput. Wiley Interdisciplinary Reviews RNA, 2015, 6, 291-310.	3.2	16
459	From Discovery to Function: The Expanding Roles of Long NonCoding RNAs in Physiology and Disease. Endocrine Reviews, 2015, 36, 25-64.	8.9	351
460	Quantitative profiling of initiating ribosomes in vivo. Nature Methods, 2015, 12, 147-153.	9.0	222

#	Article	IF	Citations
461	Identifying (nonâ€)coding RNAs and small peptides: Challenges and opportunities. BioEssays, 2015, 37, 103-112.	1.2	96
462	The many faces of long noncoding <scp>RNA</scp> s. FEBS Journal, 2015, 282, 1647-1657.	2.2	51
463	RNA regulatory networks in animals and plants: a long noncoding RNA perspective. Briefings in Functional Genomics, 2015, 14, 91-101.	1.3	74
464	<i>Pwp1</i> Is Required for the Differentiation Potential of Mouse Embryonic Stem Cells Through Regulating <i>Stat3</i> Signaling. Stem Cells, 2015, 33, 661-673.	1.4	14
465	RNA-binding protein research with transcriptome-wide technologies in neural development. Cell and Tissue Research, 2015, 359, 135-144.	1.5	21
467	Discovering Elusive Small Genes. Journal of Phylogenetics & Evolutionary Biology, 2016, 04, .	0.2	1
468	Temporal Regulation of Distinct Internal Ribosome Entry Sites of the Dicistroviridae Cricket Paralysis Virus. Viruses, 2016, 8, 25.	1.5	25
469	Role of IncRNAs in Cellular Aging. Frontiers in Endocrinology, 2016, 7, 151.	1.5	35
470	What Is the Impact of mRNA $5\hat{a} \in \mathbb{Z}$ TL Heterogeneity on Translational Start Site Selection and the Mammalian Cellular Phenotype?. Frontiers in Genetics, 2016, 7, 156.	1.1	12
471	Time-Dependent Decay of mRNA and Ribosomal RNA during Platelet Aging and Its Correlation with Translation Activity. PLoS ONE, 2016, 11, e0148064.	1.1	75
472	PreTIS: A Tool to Predict Non-canonical 5' UTR Translational Initiation Sites in Human and Mouse. PLoS Computational Biology, 2016, 12, e1005170.	1.5	41
473	Dynamics of Chloroplast Translation during Chloroplast Differentiation in Maize. PLoS Genetics, 2016, 12, e1006106.	1.5	121
474	Functional Translational Readthrough: A Systems Biology Perspective. PLoS Genetics, 2016, 12, e1006196.	1.5	82
475	Tracking translation one mRNA at a time. Nature Biotechnology, 2016, 34, 723-724.	9.4	0
476	Methods to Study Long Noncoding RNA Biology in Cancer. Advances in Experimental Medicine and Biology, 2016, 927, 69-107.	0.8	13
477	Upstream <scp>ORF</scp> s are prevalent translational repressors in vertebrates. EMBO Journal, 2016, 35, 706-723.	3.5	288
478	Physiological Expression and Accumulation of the Products of Two Upstream Open Reading Frames mrtl and MycHex1 Along With p64 and p67 Myc From the Human câ€∢i>myc⟨li> Locus. Journal of Cellular Biochemistry, 2016, 117, 1407-1418.	1.2	2
479	In Vivo Interrogation of the Hypoxic Transcriptome of Solid Tumors: Optimizing Hypoxic Probe Labeling with Laser Capture Microdissection for Isolation of High-Quality RNA for Deep Sequencing Analysis. Advances in Experimental Medicine and Biology, 2016, 899, 41-58.	0.8	1

#	Article	IF	CITATIONS
480	The Long and Short Non-coding RNAs in Cancer Biology. Advances in Experimental Medicine and Biology, $2016, , .$	0.8	4
481	SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Molecular Oncology, 2016, 10, 1266-1282.	2.1	151
482	The molecular choreography of protein synthesis: translational control, regulation, and pathways. Quarterly Reviews of Biophysics, 2016, 49, e11.	2.4	14
483	Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunological Reviews, 2016, 272, 8-16.	2.8	52
484	Codon usage is less optimized in eukaryotic gene segments encoding intrinsically disordered regions than in those encoding structural domains. Nucleic Acids Research, 2016, 44, gkw899.	6.5	10
485	Positional proteomics reveals differences in Nâ€ŧerminal proteoform stability. Molecular Systems Biology, 2016, 12, 858.	3.2	79
486	Systematic analysis of the <i>PTEN</i> 5′ leader identifies a major AUU initiated proteoform. Open Biology, 2016, 6, 150203.	1.5	39
487	Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data. BMC Genomics, 2016, 17, 958.	1.2	136
488	Serum stress responsive gene EhslncRNA of Entamoeba histolytica is a novel long noncoding RNA. Scientific Reports, 2016, 6, 27476.	1.6	18
489	Pervasive isoformâ€specific translational regulation via alternative transcription start sites in mammals. Molecular Systems Biology, 2016, 12, 875.	3.2	83
490	Beyond the Triplet Code: Context Cues Transform Translation. Cell, 2016, 167, 1681-1692.	13.5	57
491	Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nature Communications, 2016, 7, 10238.	5.8	210
492	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	1.4	42
493	"Matreshka―genes with alternative reading frames. Russian Journal of Genetics, 2016, 52, 125-140.	0.2	0
494	CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins. Molecular Cell, 2016, 62, 314-322.	4.5	152
495	Translation Regulation of the Glutamyl-prolyl-tRNA Synthetase Gene EPRS through Bypass of Upstream Open Reading Frames with Noncanonical Initiation Codons. Journal of Biological Chemistry, 2016, 291, 10824-10835.	1.6	33
496	Functional diversity of long non-coding RNAs in immune regulation. Genes and Diseases, 2016, 3, 72-81.	1.5	77
497	Comprehensive identification of translation start sites by tetracycline-inhibited ribosome profiling. DNA Research, 2016, 23, 193-201.	1.5	83

#	Article	IF	CITATIONS
498	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2016, , .	1.0	3
499	Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors. RNA Biology, 2016, 13, 561-568.	1.5	45
500	RAN translationâ€"What makes it run?. Brain Research, 2016, 1647, 30-42.	1.1	89
501	Cytoplasmic long noncoding RNAs are frequently bound to and degraded at ribosomes in human cells. Rna, 2016, 22, 867-882.	1.6	194
502	Illuminating Parasite Protein Production by Ribosome Profiling. Trends in Parasitology, 2016, 32, 446-457.	1.5	14
503	Evidence for two protein coding transcripts at the Igf2as locus. Gene Reports, 2016, 4, 60-66.	0.4	1
504	Dynamics of Translation of Single mRNA Molecules InÂVivo. Cell, 2016, 165, 976-989.	13.5	397
505	Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell, 2016, 165, 990-1001.	13.5	305
506	Real-time quantification of single RNA translation dynamics in living cells. Science, 2016, 352, 1425-1429.	6.0	317
507	Translation dynamics of single mRNAs in live cells and neurons. Science, 2016, 352, 1430-1435.	6.0	412
508	New frontiers in translational control of the cancer genome. Nature Reviews Cancer, 2016, 16, 288-304.	12.8	282
509	Assessment of translational importance of mammalian mRNA sequence features based on Ribo-Seq and mRNA-Seq data. Journal of Bioinformatics and Computational Biology, 2016, 14, 1641006.	0.3	4
510	Long Non-coding RNAs in the Cytoplasm. Genomics, Proteomics and Bioinformatics, 2016, 14, 73-80.	3.0	300
511	Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. Journal of Cell Biology, 2016, 214, 769-781.	2.3	158
512	Predictive biophysical modeling and understanding of the dynamics of mRNA translation and its evolution. Nucleic Acids Research, 2016, 44, gkw764.	6.5	70
513	Ligation-free ribosome profiling of cell type-specific translation in the brain. Genome Biology, 2016, 17, 149.	3.8	54
514	Genomic analysis of the molecular neuropathology of tuberous sclerosis using a human stem cell model. Genome Medicine, 2016, 8, 94.	3.6	37
515	Dynamic Regulation of a Ribosome Rescue Pathway in Erythroid Cells and Platelets. Cell Reports, 2016, 17, 1-10.	2.9	117

#	ARTICLE	IF	CITATIONS
517	Identification of Small Novel Coding Sequences, a Proteogenomics Endeavor. Advances in Experimental Medicine and Biology, 2016, 926, 49-64.	0.8	14
518	Genome-Wide Mapping of Uncapped and Cleaved Transcripts Reveals a Role for the Nuclear mRNA Cap-Binding Complex in Cotranslational RNA Decay in Arabidopsis. Plant Cell, 2016, 28, 2385-2397.	3.1	79
519	Cotranslational signal-independent SRP preloading during membrane targeting. Nature, 2016, 536, 224-228.	13.7	148
520	Catch me if you can: trapping scanning ribosomes in their footsteps. Nature Structural and Molecular Biology, 2016, 23, 703-704.	3.6	3
521	Comparative analysis of contextual bias around the translation initiation sites in plant genomes. Journal of Theoretical Biology, 2016, 404, 303-311.	0.8	28
522	Decoding sORF translation – from small proteins to gene regulation. RNA Biology, 2016, 13, 1051-1059.	1.5	54
523	Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiological Reviews, 2016, 96, 1297-1325.	13.1	1,426
524	N-Terminal Peptide Detection with Optimized Peptide-Spectrum Matching and Streamlined Sequence Libraries. Journal of Proteome Research, 2016, 15, 2891-2899.	1.8	9
525	Axonemal Dynein Arms. Cold Spring Harbor Perspectives in Biology, 2016, 8, a028100.	2.3	109
526	Rpl22 Loss Selectively Impairs $\hat{l}\pm\hat{l}^2$ T Cell Development by Dysregulating Endoplasmic Reticulum Stress Signaling. Journal of Immunology, 2016, 197, 2280-2289.	0.4	30
527	Proteome complexity and the forces that drive proteome imbalance. Nature, 2016, 537, 328-338.	13.7	195
528	The DEAD-Box Protein Dhh1p Couples mRNA Decay and Translation by Monitoring Codon Optimality. Cell, 2016, 167, 122-132.e9.	13.5	232
529	Eyes on Translation. Molecular Cell, 2016, 63, 918-925.	4.5	24
531	Autonomous translational pausing is required for <i>XBP1u</i> mRNA recruitment to the ER via the SRP pathway. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5886-E5895.	3.3	53
532	Translational plasticity facilitates the accumulation of nonsense genetic variants in the human population. Genome Research, 2016, 26, 1639-1650.	2.4	31
533	The complexity of the translation ability of circRNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1245-1251.	0.9	163
534	Toward a systematic understanding of translational regulatory elements in human and viruses. RNA Biology, 2016, 13, 927-933.	1.5	8
535	Global Analysis of Truncated RNA Ends Reveals New Insights into Ribosome Stalling in Plants. Plant Cell, 2016, 28, 2398-2416.	3.1	102

#	Article	IF	Citations
536	Genome-wide assessment of differential translations with ribosome profiling data. Nature Communications, 2016, 7, 11194.	5.8	179
537	Conservation of uORF repressiveness and sequence features in mouse, human and zebrafish. Nature Communications, 2016, 7, 11663.	5.8	158
538	The Tetraodon nigroviridis reference transcriptome: developmental transition, length retention and microsynteny of long non-coding RNAs in a compact vertebrate genome. Scientific Reports, 2016, 6, 33210.	1.6	14
539	Codon Usage and Translational Selection. , 2016, , 293-298.		6
540	Global and cell-type specific properties of lincRNAs with ribosome occupancy. Nucleic Acids Research, 2017, 45, gkw909.	6.5	38
541	The ribosome-engaged landscape of alternative splicing. Nature Structural and Molecular Biology, 2016, 23, 1117-1123.	3.6	115
542	Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling. Scientific Reports, 2016, 6, 21635.	1.6	25
543	Comparative survey of the relative impact of mRNA features on local ribosome profiling read density. Nature Communications, 2016, 7, 12915.	5.8	96
544	Super-resolution ribosome profiling reveals unannotated translation events in <i>Arabidopsis</i> Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7126-E7135.	3.3	222
545	Single-cell pluripotency regulatory networks. Proteomics, 2016, 16, 2303-2312.	1.3	8
546	Computational Identification of Novel Genes: Current and Future Perspectives. Bioinformatics and Biology Insights, 2016, 10, BBI.S39950.	1.0	32
547	Importins promote high-frequency NF-κB oscillations increasing information channel capacity. Biology Direct, 2016, 11, 61.	1.9	15
548	Experimental and Computational Considerations in the Study of RNA-Binding Protein-RNA Interactions. Advances in Experimental Medicine and Biology, 2016, 907, 1-28.	0.8	15
549	Pateamine A-sensitive ribosome profiling reveals the scope of translation in mouse embryonic stem cells. BMC Genomics, 2016, 17, 52.	1.2	31
550	Estimation of ribosome profiling performance and reproducibility at various levels of resolution. Biology Direct, 2016, 11, 24.	1.9	67
551	Selection for reduced translation costs at the intronic 5′ end in fungi. DNA Research, 2016, 23, 377-394.	1.5	9
552	Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing. , 2016, , .		6
553	Analysis of Long Noncoding RNAs in RNA-Seq Data. , 2016, , 143-174.		0

#	Article	IF	CITATIONS
554	RNA-binding proteins in mouse male germline stem cells: a mammalian perspective. Cell Regeneration, 2016, 5, 5:1.	1.1	5
555	IncRNA in the liver: Prospects for fundamental research and therapy by RNA interference. Biochimie, 2016, 131, 159-172.	1.3	33
556	Computational Tools for Stem Cell Biology. Trends in Biotechnology, 2016, 34, 993-1009.	4.9	36
557	Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2016, , .	0.8	3
558	Prediction of ribosome footprint profile shapes from transcript sequences. Bioinformatics, 2016, 32, i183-i191.	1.8	19
559	Dynamic Axonal Translation in Developing and Mature Visual Circuits. Cell, 2016, 166, 181-192.	13.5	385
560	Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation. Cell Reports, 2016, 14, 1787-1799.	2.9	330
561	New Peptides Under the s(ORF)ace of the Genome. Trends in Biochemical Sciences, 2016, 41, 665-678.	3.7	82
562	Connections Underlying Translation and mRNA Stability. Journal of Molecular Biology, 2016, 428, 3558-3564.	2.0	97
563	Environmental Health and Long Non-coding RNAs. Current Environmental Health Reports, 2016, 3, 178-187.	3.2	82
564	Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biology, 2016, 17, 19.	3.8	141
565	Seeing translation. Science, 2016, 352, 1391-1392.	6.0	19
566	A Ribosomal Perspective on Proteostasis and Aging. Cell Metabolism, 2016, 23, 1004-1012.	7.2	116
567	Stem cell function and stress response are controlled by protein synthesis. Nature, 2016, 534, 335-340.	13.7	345
568	Modeling and gene knockdown to assess the contribution of nonsense-mediated decay, premature termination, and selenocysteine insertion to the selenoprotein hierarchy. Rna, 2016, 22, 1076-1084.	1.6	11
569	Genome-wide quantification of $5\hat{a}\in^2$ -phosphorylated mRNA degradation intermediates for analysis of ribosome dynamics. Nature Protocols, 2016, 11, 359-376.	5.5	45
570	Translation from the 5′ untranslated region shapes the integrated stress response. Science, 2016, 351, aad3867.	6.0	305
571	Differential regulation of translation and endocytosis of alternatively spliced forms of the type II bone morphogenetic protein (BMP) receptor. Molecular Biology of the Cell, 2016, 27, 716-730.	0.9	17

#	Article	IF	CITATIONS
572	Characterizing inactive ribosomes in translational profiling. Translation, 2016, 4, e1138018.	2.9	28
573	Oligoadenylation of 3′ decay intermediates promotes cytoplasmic mRNA degradation in <i>Drosophila</i> cells. Rna, 2016, 22, 428-442.	1.6	12
574	Comparative Biology of Aging. , 2016, , 305-324.		2
575	The Emerging World of Small ORFs. Trends in Plant Science, 2016, 21, 317-328.	4.3	99
576	Unique features of long non-coding RNA biogenesis and function. Nature Reviews Genetics, 2016, 17, 47-62.	7.7	2,891
577	Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. Rna, 2016, 22, 61-74.	1.6	44
578	Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell, 2016, 18, 276-290.	5.2	199
579	Long noncoding RNAs in T lymphocytes. Journal of Leukocyte Biology, 2016, 99, 31-44.	1.5	31
580	Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences, 2016, 73, 2491-2509.	2.4	831
581	Ribosome Footprint Profiling of Translation throughout the Genome. Cell, 2016, 165, 22-33.	13.5	348
582	Improved Identification and Analysis of Small Open Reading Frame Encoded Polypeptides. Analytical Chemistry, 2016, 88, 3967-3975.	3.2	119
583	Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. Journal of Immunology, 2016, 196, 3608-3617.	0.4	25
584	Ribosome Elongation Stall Directs Gene-specific Translation in the Integrated Stress Response. Journal of Biological Chemistry, 2016, 291, 6546-6558.	1.6	57
585	Hydroxylation and translational adaptation to stress: some answers lie beyond the STOP codon. Cellular and Molecular Life Sciences, 2016, 73, 1881-1893.	2.4	9
586	Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer. Genomics, Proteomics and Bioinformatics, 2016, 14, 42-54.	3.0	789
587	Genome-Wide Search for Translated Upstream Open Reading Frames in Arabidopsis Thaliana. IEEE Transactions on Nanobioscience, 2016, 15, 148-157.	2.2	16
588	Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature, 2016, 530, 490-494.	13.7	202
589	Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding. Nature Communications, 2016, 7, 10341.	5.8	45

#	Article	IF	CITATIONS
590	Clarifying the Translational Pausing Landscape in Bacteria by Ribosome Profiling. Cell Reports, 2016, 14, 686-694.	2.9	161
591	Translation regulation via nascent polypeptide-mediated ribosome stalling. Current Opinion in Structural Biology, 2016, 37, 123-133.	2.6	137
592	The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature, 2016, 530, 441-446.	13.7	765
593	Long noncoding RNAs as regulators of Toll-like receptor signaling and innate immunity. Journal of Leukocyte Biology, 2016, 99, 839-850.	1.5	53
594	Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1362-71.	3.3	102
596	Mechanisms of Post-transcriptional Gene Regulation. , 2016, , 1-36.		0
597	Post-transcriptional Regulation of VEGF-A., 2016, , 157-180.		2
598	Probabilistic Boolean Network Modelling and Analysis Framework for mRNA Translation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2016, 13, 754-766.	1.9	11
599	mTOR Inhibition for Cancer Therapy: Past, Present and Future. , 2016, , .		3
600	Reconciling proteomics with next generation sequencing. Current Opinion in Chemical Biology, 2016, 30, 14-20.	2.8	17
602	mTOR, Aging, and Cancer: A Dangerous Link., 2016,, 277-292.		1
603	Death of a dogma: eukaryotic mRNAs can code for more than one protein. Nucleic Acids Research, 2016, 44, 14-23.	6.5	98
604	Mahogunin Ring Finger-1 (MGRN1), a Multifaceted Ubiquitin Ligase: Recent Unraveling of Neurobiological Mechanisms. Molecular Neurobiology, 2016, 53, 4484-4496.	1.9	21
605	Genomic variability and protein species — Improving sequence coverage for proteogenomics. Journal of Proteomics, 2016, 134, 25-36.	1.2	10
606	Eukaryotic elongation factor 2 kinase regulates theÂsynthesis of microtubuleâ€related proteins in neurons. Journal of Neurochemistry, 2016, 136, 276-284.	2.1	42
607	Translation Analysis at the Genome Scale by Ribosome Profiling. Methods in Molecular Biology, 2016, 1361, 105-124.	0.4	13
608	Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 3-15.	0.9	178
609	<i>Drosophila</i> X-Linked Genes Have Lower Translation Rates than Autosomal Genes. Molecular Biology and Evolution, 2016, 33, 413-428.	3.5	13

#	Article	IF	CITATIONS
610	Mapping the non-standardized biases of ribosome profiling. Biological Chemistry, 2016, 397, 23-35.	1.2	50
611	Genome-Wide Profiling of Alternative Translation Initiation Sites. Methods in Molecular Biology, 2016, 1358, 303-316.	0.4	6
612	Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling. Methods in Molecular Biology, 2016, 1358, 71-97.	0.4	9
613	RPFdb: a database for genome wide information of translated mRNA generated from ribosome profiling. Nucleic Acids Research, 2016, 44, D254-D258.	6.5	46
614	Post-Transcriptional Gene Regulation. Methods in Molecular Biology, 2016, 1358, v-viii.	0.4	3
615	Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 31-40.	0.9	82
616	Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 128-138.	0.9	182
617	Advances in long noncoding RNAs: identification, structure prediction and function annotation. Briefings in Functional Genomics, 2016, 15, 38-46.	1.3	111
618	Long non-coding RNAs in innate and adaptive immunity. Virus Research, 2016, 212, 146-160.	1.1	79
619	LncRNAs, lost in translation or licence to regulate?. Current Genetics, 2017, 63, 29-33.	0.8	33
620	Proteogenomics from a bioinformatics angle: A growing field. Mass Spectrometry Reviews, 2017, 36, 584-599.	2.8	65
621	Cotranslational folding of spectrin domains via partially structured states. Nature Structural and Molecular Biology, 2017, 24, 221-225.	3.6	97
622	Translation from unconventional 5′ start sites drives tumour initiation. Nature, 2017, 541, 494-499.	13.7	282
623	Flavivirus Infection Uncouples Translation Suppression from Cellular Stress Responses. MBio, 2017, 8,	1.8	81
624	Intragenic DNA methylation prevents spurious transcription initiation. Nature, 2017, 543, 72-77.	13.7	581
625	Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome. Neuron, 2017, 93, 331-347.	3.8	194
626	Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. Rna, 2017, 23, 798-810.	1.6	113
627	Slowed decay of mRNAs enhances platelet specific translation. Blood, 2017, 129, e38-e48.	0.6	68

#	Article	IF	CITATIONS
628	Translational Repression of a Splice Variant of Cynomolgus MacaqueCXCL1Lby Its C-Terminal Sequence. Journal of Interferon and Cytokine Research, 2017, 37, 129-138.	0.5	0
629	A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish. DMM Disease Models and Mechanisms, 2017, 10, 811-822.	1.2	48
630	Translation complex profile sequencing to study the in vivo dynamics of mRNA–ribosome interactions during translation initiation, elongation and termination. Nature Protocols, 2017, 12, 697-731.	5. 5	43
631	Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160183.	1.8	149
633	IncRNAs are associated with polysomes during adipose-derived stem cell differentiation. Gene, 2017, 610, 103-111.	1.0	16
634	Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq – ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics, 2017, 18, 216.	1.2	43
635	N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nature Microbiology, 2017, 2, 17005.	5.9	70
636	Pervasive translational regulation of the cell signalling circuitry underlies mammalian development. Nature Communications, 2017, 8, 14443.	5.8	56
637	N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Research, 2017, 45, 6023-6036.	6.5	173
638	N-terminal Proteomics Assisted Profiling of the Unexplored Translation Initiation Landscape in Arabidopsis thaliana. Molecular and Cellular Proteomics, 2017, 16, 1064-1080.	2.5	54
639	SmProt: a database of small proteins encoded by annotated coding and non-coding RNA loci. Briefings in Bioinformatics, 2018, 19, bbx005.	3.2	85
640	When mRNA translation meets decay. Biochemical Society Transactions, 2017, 45, 339-351.	1.6	41
641	Visualizing the life of mRNA in T cells. Biochemical Society Transactions, 2017, 45, 563-570.	1.6	5
642	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	2.8	156
643	elF4E phosphorylation by MST1 reduces translation of a subset of mRNAs, but increases lncRNA translation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2017, 1860, 761-772.	0.9	27
644	Translational effects and coding potential of an upstream open reading frame associated with DOPA Responsive Dystonia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1171-1182.	1.8	7
645	FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biology, 2017, 14, 137-145.	1.5	10
646	A human microprotein that interacts with the mRNA decapping complex. Nature Chemical Biology, 2017, 13, 174-180.	3.9	212

#	Article	IF	CITATIONS
647	Long noncoding RNAs: lincs between human health and disease. Biochemical Society Transactions, 2017, 45, 805-812.	1.6	121
648	Conformational Dynamics of mRNA in Gene Expression as New Pharmaceutical Target. Chemical Record, 2017, 17, 817-832.	2.9	13
649	Mining for Micropeptides. Trends in Cell Biology, 2017, 27, 685-696.	3.6	191
650	mRNA transport & amp; local translation in neurons. Current Opinion in Neurobiology, 2017, 45, 169-177.	2.0	182
651	Translational control and the cancer cell response to stress. Current Opinion in Cell Biology, 2017, 45, 102-109.	2.6	58
652	Transcriptome-wide measurement of translation by ribosome profiling. Methods, 2017, 126, 112-129.	1.9	361
653	proBAMconvert: A Conversion Tool for proBAM/proBed. Journal of Proteome Research, 2017, 16, 2639-2644.	1.8	8
654	Protein-directed ribosomal frameshifting temporally regulates gene expression. Nature Communications, 2017, 8, 15582.	5.8	79
655	Noncoding after All: Biases in Proteomics Data Do Not Explain Observed Absence of IncRNA Translation Products. Journal of Proteome Research, 2017, 16, 2508-2515.	1.8	44
656	elF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs. Nucleic Acids Research, 2017, 45, 7997-8013.	6.5	51
657	The Growing Toolbox for Protein Synthesis Studies. Trends in Biochemical Sciences, 2017, 42, 612-624.	3.7	104
658	The Mammalian Ribo-interactome Reveals Ribosome Functional Diversity and Heterogeneity. Cell, 2017, 169, 1051-1065.e18.	13.5	314
659	Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Systems, 2017, 4, 636-644.e9.	2.9	62
660	DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats. Nature Genetics, 2017, 49, 1052-1060.	9.4	235
661	New developments in RAN translation: insights from multiple diseases. Current Opinion in Genetics and Development, 2017, 44, 125-134.	1.5	81
662	Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in <i>Saccharomyces cerevisiae</i> . Rna, 2017, 23, 983-994.	1.6	29
663	The alternative life of <scp>RNA</scp> â€"sequencing meets single molecule approaches. FEBS Letters, 2017, 591, 1455-1470.	1.3	8
664	elF5A Functions Globally in Translation Elongation and Termination. Molecular Cell, 2017, 66, 194-205.e5.	4.5	352

#	Article	IF	CITATIONS
665	Meiosis. Methods in Molecular Biology, 2017, , .	0.4	0
666	Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Research, 2017, 45, 3615-3626.	6.5	165
667	Identification of long non-coding transcripts with feature selection: a comparative study. BMC Bioinformatics, $2017, 18, 187$.	1.2	21
668	Ribosome profiling and dynamic regulation of translation in mammals. Current Opinion in Genetics and Development, 2017, 43, 120-127.	1.5	45
669	Ribosome Profiling for the Analysis of Translation During Yeast Meiosis. Methods in Molecular Biology, 2017, 1471, 99-122.	0.4	4
670	Imaging Translational and Post-Translational Gene Regulatory Dynamics in Living Cells with Antibody-Based Probes. Trends in Genetics, 2017, 33, 322-335.	2.9	30
671	Ageing: Lessons from C. elegans. Healthy Ageing and Longevity, 2017, , .	0.2	14
672	Ribosome Profiling Reveals Translational Upregulation of Cellular Oxidative Phosphorylation mRNAs during Vaccinia Virus-Induced Host Shutoff. Journal of Virology, 2017, 91, .	1.5	45
673	mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature, 2017, 541, 228-232.	13.7	503
674	Translational Control of Longevity. Healthy Ageing and Longevity, 2017, , 285-305.	0.2	2
675	Insights into the mechanisms of eukaryotic translation gained with ribosome profiling. Nucleic Acids Research, 2017, 45, 513-526.	6.5	124
676	Non-AUG translation: a new start for protein synthesis in eukaryotes. Genes and Development, 2017, 31, 1717-1731.	2.7	322
677	Translation of noncoding RNAs: Focus on IncRNAs, pri-miRNAs, and circRNAs. Experimental Cell Research, 2017, 361, 1-8.	1.2	97
678	Ribosome Profiling Reveals Genome-wide Cellular Translational Regulation upon Heat Stress in Escherichia coli. Genomics, Proteomics and Bioinformatics, 2017, 15, 324-330.	3.0	26
679	Methods for monitoring and measurement of protein translation in time and space. Molecular BioSystems, 2017, 13, 2477-2488.	2.9	28
680	Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Research, 2017, 45, 11941-11953.	6.5	63
681	Codon-Resolution Analysis Reveals a Direct and Context-Dependent Impact of Individual Synonymous Mutations on mRNA Level. Molecular Biology and Evolution, 2017, 34, 2944-2958.	3.5	54
682	Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, 2017, , .	0.8	18

#	Article	IF	CITATIONS
683	Noncoding RNAs in neurodegeneration. Nature Reviews Neuroscience, 2017, 18, 627-640.	4.9	121
684	Involvement of posttranscriptional regulation of <i>Clock</i> in the emergence of circadian clock oscillation during mouse development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7479-E7488.	3.3	58
685	Mettl3-/Mettl14-mediated mRNA N6-methyladenosine modulates murine spermatogenesis. Cell Research, 2017, 27, 1216-1230.	5.7	298
686	The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine, 2017, 23, 1369-1376.	15.2	971
687	Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in <i>E. coli</i> Journal of Proteome Research, 2017, 16, 3722-3731.	1.8	23
688	Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. Trends in Genetics, 2017, 33, 728-744.	2.9	101
689	Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe. Scientific Reports, 2017, 7, 10331.	1.6	47
690	Ribosomal Stalling During Translation: Providing Substrates for Ribosome-Associated Protein Quality Control. Annual Review of Cell and Developmental Biology, 2017, 33, 343-368.	4.0	171
691	IncRNAs in development and disease: from functions to mechanisms. Open Biology, 2017, 7, 170121.	1.5	126
692	Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. Nature Structural and Molecular Biology, 2017, 24, 700-707.	3. 6	118
693	In Search of Lost Small Peptides. Annual Review of Cell and Developmental Biology, 2017, 33, 391-416.	4.0	97
694	Non-AUG start codons responsible for ABO weak blood group alleles on initiation mutant backgrounds. Scientific Reports, 2017, 7, 41720.	1.6	11
695	Codon usage bias in 5′ terminal coding sequences reveals distinct enrichment of gene functions. Genomics, 2017, 109, 506-513.	1.3	11
696	Technological Developments in IncRNA Biology. Advances in Experimental Medicine and Biology, 2017, 1008, 283-323.	0.8	296
697	Global mRNA polarization regulates translation efficiency in the intestinal epithelium. Science, 2017, 357, 1299-1303.	6.0	140
698	RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nature Communications, 2017, 8, 2005.	5.8	172
699	Genome-wide identification and differential analysis of translational initiation. Nature Communications, 2017, 8, 1749.	5.8	100
700	Rethinking Unconventional Translation in Neurodegeneration. Cell, 2017, 171, 994-1000.	13.5	56

#	Article	IF	Citations
701	Widespread Translational Remodeling during Human Neuronal Differentiation. Cell Reports, 2017, 21, 2005-2016.	2.9	128
702	Downregulation of the protein synthesis machinery is a major regulatory event during early adipogenic differentiation of human adipose-derived stromal cells. Stem Cell Research, 2017, 25, 191-201.	0.3	24
703	InÂVivo Translatome Profiling in Spinal Muscular Atrophy Reveals a Role for SMN Protein in Ribosome Biology. Cell Reports, 2017, 21, 953-965.	2.9	89
704	Near-Cognate Codons Contribute Complexity to Translation Regulation. MBio, 2017, 8, .	1.8	1
705	Going against the Tide: Selective Cellular Protein Synthesis during Virally Induced Host Shutoff. Journal of Virology, 2017, 91, .	1.5	18
706	<i>EIF1AX</i> and <i>NRAS</i> Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Research, 2017, 77, 4268-4278.	0.4	56
707	Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity. MBio, 2017, 8, .	1.8	25
708	Classification and function of small open reading frames. Nature Reviews Molecular Cell Biology, 2017, 18, 575-589.	16.1	247
709	Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends in Biochemical Sciences, 2017, 42, 655-668.	3.7	69
710	m ⁶ A RNA Modification Determines Cell Fate by Regulating mRNA Degradation. Cellular Reprogramming, 2017, 19, 225-231.	0.5	31
711	Increasing evidence for the presence of alternative proteins in human tissues and cell lines. Applied Cancer Research, 2017, 37, .	1.0	1
712	Synthesis facilitates an understanding of the structural basis for translation inhibition by the lissoclimides. Nature Chemistry, 2017, 9, 1140-1149.	6.6	36
713	Control of gene expression through the nonsense-mediated RNA decay pathway. Cell and Bioscience, 2017, 7, 26.	2.1	147
714	Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Research, 2017, 45, 8484-8492.	6.5	95
715	Transcriptome-wide identification of NMD-targeted human mRNAs reveals extensive redundancy between SMG6- and SMG7-mediated degradation pathways. Rna, 2017, 23, 189-201.	1.6	158
716	LncVar: a database of genetic variation associated with long non-coding genes. Bioinformatics, 2017, 33, 112-118.	1.8	33
717	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Journal of Computational Biology, 2017, 24, 486-500.	0.8	22
718	RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics, 2017, 33, 139-141.	1.8	134

#	ARTICLE	IF	CITATIONS
719	Ribonuclease selection for ribosome profiling. Nucleic Acids Research, 2017, 45, e6-e6.	6.5	134
720	Biologically active peptides encoded by small open reading frames. Russian Journal of Bioorganic Chemistry, 2017, 43, 617-624.	0.3	2
721	Comparative ribosome profiling uncovers a dominant role for translational control in Toxoplasma gondii. BMC Genomics, 2017, 18, 961.	1.2	23
723	REPARATION: ribosome profiling assisted (re-)annotation of bacterial genomes. Nucleic Acids Research, 2017, 45, e168-e168.	6.5	52
724	Insights on the HLA-Binding Peptidome in Cancer. The Enzymes, 2017, 42, 81-103.	0.7	0
725	What Is New in the miRNA World Regarding Osteosarcoma and Chondrosarcoma?. Molecules, 2017, 22, 417.	1.7	57
726	The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections?. Toxins, 2017, 9, 357.	1.5	9
727	The Dark Side of the Epitranscriptome: Chemical Modifications in Long Non-Coding RNAs. International Journal of Molecular Sciences, 2017, 18, 2387.	1.8	101
728	Ribosome profiling reveals translational regulation of mammalian cells in response to hypoxic stress. BMC Genomics, 2017, 18, 638.	1.2	21
729	The More the Merrier—Complexity in Long Non-Coding RNA Loci. Frontiers in Endocrinology, 2017, 8, 90.	1.5	43
730	Proteomic and Metabolomic Analyses of Vanishing White Matter Mouse Astrocytes Reveal Deregulation of ER Functions. Frontiers in Cellular Neuroscience, 2017, 11, 411.	1.8	13
731	Translational Dysregulation in Cancer: Molecular Insights and Potential Clinical Applications in Biomarker Development. Frontiers in Oncology, 2017, 7, 158.	1.3	57
732	Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins. ELife, 2017, 6, .	2.8	93
733	Proteomics in non-human primates: utilizing RNA-Seq data to improve protein identification by mass spectrometry in vervet monkeys. BMC Genomics, 2017, 18, 877.	1.2	17
734	Bioinformatics and Drug Discovery. Current Topics in Medicinal Chemistry, 2017, 17, 1709-1726.	1.0	128
735	Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain. PLoS Biology, 2017, 15, e2001882.	2.6	104
736	Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration. PLoS Computational Biology, 2017, 13, e1005427.	1.5	22
737	A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genetics, 2017, 13, e1006899.	1.5	61

#	Article	IF	CITATIONS
738	Development of a tissue-specific ribosome profiling approach in Drosophila enables genome-wide evaluation of translational adaptations. PLoS Genetics, 2017, 13, e1007117.	1.5	56
739	Ribosome signatures aid bacterial translation initiation site identification. BMC Biology, 2017, 15, 76.	1.7	26
740	riboviz: analysis and visualization of ribosome profiling datasets. BMC Bioinformatics, 2017, 18, 461.	1.2	37
741	ARSDA: A New Approach for Storing, Transmitting and Analyzing Transcriptomic Data. G3: Genes, Genomes, Genetics, 2017, 7, 3839-3848.	0.8	16
742	Neural Stem Cell Activation and the Role of Protein Synthesis. Brain Plasticity, 2017, 3, 27-41.	1.9	30
743	Quantitative Nucleotide Level Analysis of Regulation of Translation in Response to Depolarization of Cultured Neural Cells. Frontiers in Molecular Neuroscience, 2017, 10, 9.	1.4	12
744	Ribosomal selection of mRNAs with degenerate initiation triplets. Nucleic Acids Research, 2017, 45, 7309-7325.	6.5	4
745	Difficulty in obtaining the complete mRNA coding sequence at $5a \in 2$ region ($5a \in 2$ end mRNA artifact): Causes, consequences in biology and medicine and possible solutions for obtaining the actual amino acid sequence of proteins (Review). International Journal of Molecular Medicine, 2017, 39, 1063-1071.	1.8	18
746	Transposable elements shape the human proteome landscape via formation of ⟨i⟩cis⟨ i⟩â€acting upstream open reading frames. Genes To Cells, 2018, 23, 274-284.	0.5	12
747	Understanding biopharmaceutical production at single nucleotide resolution using ribosome footprint profiling. Current Opinion in Biotechnology, 2018, 53, 182-190.	3.3	3
748	Determinants of translation speed are randomly distributed across transcripts resulting in a universal scaling of protein synthesis times. Physical Review E, 2018, 97, 022409.	0.8	21
749	Insights into the ubiquitin-proteasome system of human embryonic stem cells. Scientific Reports, 2018, 8, 4092.	1.6	44
750	Altered translation initiation of <i>Gja1</i> limits gap junction formation during epithelial–mesenchymal transition. Molecular Biology of the Cell, 2018, 29, 797-808.	0.9	37
751	A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Research, 2018, 46, 4256-4270.	6.5	20
752	Cytoplasmic functions of long noncoding RNAs. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1471.	3.2	327
7 53	TERIUS: accurate prediction of IncRNA via high-throughput sequencing data representing RNA-binding protein association. BMC Bioinformatics, 2018, 19, 41.	1.2	8
754	Long noncoding RNAs in cancer cells. Cancer Letters, 2018, 419, 152-166.	3.2	142
755	Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nature Structural and Molecular Biology, 2018, 25, 302-310.	3.6	63

#	Article	IF	CITATIONS
756	Seq-ing answers: uncovering the unexpected in global gene regulation. Current Genetics, 2018, 64, 1183-1188.	0.8	11
757	The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis, 2018, 7, 34.	2.1	82
758	Polyamine Control of Translation Elongation Regulates Start Site Selection on Antizyme Inhibitor mRNA via Ribosome Queuing. Molecular Cell, 2018, 70, 254-264.e6.	4.5	112
759	Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell, 2018, 173, 1204-1216.e26.	13.5	332
760	Recognition of the polycistronic nature of human genes is critical to understanding the genotype-phenotype relationship. Genome Research, 2018, 28, 609-624.	2.4	54
761	An evolutionarily conserved ribosome-rescue pathway maintains epidermal homeostasis. Nature, 2018, 556, 376-380.	13.7	47
762	Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in Fragile X Tremor Ataxia Syndrome. Brain Research, 2018, 1693, 43-54.	1.1	63
763	Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs. Nucleic Acids Research, 2018, 46, 293-313.	6.5	15
764	Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs, 2018, 32, 69-81.	2.2	69
765	The peroxisome biogenesis factors posttranslationally target reticulon homology domain-containing proteins to the endoplasmic reticulum membrane. Scientific Reports, 2018, 8, 2322.	1.6	24
766	Amyloids of multiple species: are they helpful in survival?. Biological Reviews, 2018, 93, 1363-1386.	4.7	11
767	Discovering Putative Peptides Encoded from Noncoding RNAs in Ribosome Profiling Data of <i>Arabidopsis thaliana</i> . ACS Synthetic Biology, 2018, 7, 655-663.	1.9	6
768	Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cellular and Molecular Life Sciences, 2018, 75, 1827-1837.	2.4	73
769	<i>Trans</i> å€acting translational regulatory RNA binding proteins. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1465.	3.2	79
770	N6-Methyladenosine Guides mRNA Alternative Translation during Integrated Stress Response. Molecular Cell, 2018, 69, 636-647.e7.	4.5	215
771	A biosensor-based framework to measure latent proteostasis capacity. Nature Communications, 2018, 9, 287.	5.8	43
772	An exact test for comparing a fixed quantitative property between gene sets. Bioinformatics, 2018, 34, 971-977.	1.8	5
773	AK098656, a Novel Vascular Smooth Muscle Cell–Dominant Long Noncoding RNA, Promotes Hypertension. Hypertension, 2018, 71, 262-272.	1.3	80

#	ARTICLE	IF	CITATIONS
774	Conserved non-AUG uORFs revealed by a novel regression analysis of ribosome profiling data. Genome Research, 2018, 28, 214-222.	2.4	93
775	An update on sORFs.org: a repository of small ORFs identified by ribosome profiling. Nucleic Acids Research, 2018, 46, D497-D502.	6.5	135
776	Eukaryotic translational termination efficiency is influenced by the $3\hat{a} \in \mathbb{Z}^2$ nucleotides within the ribosomal mRNA channel. Nucleic Acids Research, 2018, 46, 1927-1944.	6.5	82
777	CUG initiation and frameshifting enable production of dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. Nature Communications, 2018, 9, 152.	5.8	123
778	Using the Ribodeblur pipeline to recover A-sites from yeast ribosome profiling data. Methods, 2018, 137, 67-70.	1.9	3
779	Complete motif analysis of sequence requirements for translation initiation at non-AUG start codons. Nucleic Acids Research, 2018, 46, 985-994.	6.5	68
780	Determining mRNA half-lives on a transcriptome-wide scale. Methods, 2018, 137, 90-98.	1.9	55
781	Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation. Physical Review E, 2018, 97, 012106.	0.8	18
782	AMD1 mRNA employs ribosome stalling as a mechanism for molecular memory formation. Nature, 2018, 553, 356-360.	13.7	63
783	Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiology Reviews, 2018, 42, 165-192.	3.9	85
784	Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nature Reviews Genetics, 2018, 19, 431-452.	7.7	181
785	Translation initiation by capâ€dependent ribosome recruitment: Recent insights and open questions. Wiley Interdisciplinary Reviews RNA, 2018, 9, e1473.	3.2	113
786	Comprehensive Peptide Analysis of Mouse Brain Striatum Identifies Novel sORFâ€Encoded Polypeptides. Proteomics, 2018, 18, e1700218.	1.3	30
787	Transmembrane Domain Recognition during Membrane Protein Biogenesis and Quality Control. Current Biology, 2018, 28, R498-R511.	1.8	90
788	Identification of small ORF-encoded peptides in mouse serum. Biophysics Reports, 2018, 4, 39-49.	0.2	11
789	De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Research, 2018, 46, e61-e61.	6.5	104
790	A comprehensive catalog of predicted functional upstream open reading frames in humans. Nucleic Acids Research, 2018, 46, 3326-3338.	6.5	76
791	Translation of neutrally evolving peptides provides a basis for de novo gene evolution. Nature Ecology and Evolution, 2018, 2, 890-896.	3.4	112

#	Article	IF	Citations
792	Improved Ribo-seq enables identification of cryptic translation events. Nature Methods, 2018, 15, 363-366.	9.0	153
793	Translational profiling of B cells infected with the Epstein-Barr virus reveals 5′ leader ribosome recruitment through upstream open reading frames. Nucleic Acids Research, 2018, 46, 2802-2819.	6.5	29
794	Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response. Nucleic Acids Research, 2018, 46, 5250-5268.	6.5	93
795	Small Proteins Encoded by Unannotated ORFs are Rising Stars of the Proteome, Confirming Shortcomings in Genome Annotations and Current Vision of an mRNA. Proteomics, 2018, 18, e1700058.	1.3	59
796	Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cellular and Molecular Life Sciences, 2018, 75, 275-290.	2.4	37
797	Cytokines and Long Noncoding RNAs. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028589.	2.3	58
798	Comparative Membrane Proteomics Reveals a Nonannotated <i>E. coli</i> Heat Shock Protein. Biochemistry, 2018, 57, 56-60.	1.2	25
799	CeFra-seq reveals broad asymmetric mRNA and noncoding RNA distribution profiles in <i>Drosophila</i>	1.6	75
800	Sbp1 modulates the translation of Pab1 mRNA in a poly(A)- and RGG-dependent manner. Rna, 2018, 24, 43-55.	1.6	18
801	Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cellular and Molecular Life Sciences, 2018, 75, 607-621.	2.4	53
802	Studying Selenoprotein mRNA Translation Using RNA-Seq and Ribosome Profiling. Methods in Molecular Biology, 2018, 1661, 103-123.	0.4	7
803	Translation efficiency is maintained at elevated temperature in Escherichia coli. Journal of Biological Chemistry, 2018, 293, 777-793.	1.6	24
804	Mining for Small Translated ORFs. Journal of Proteome Research, 2018, 17, 1-11.	1.8	54
805	Potential pathogenic mechanisms underlying Fragile X Tremor Ataxia Syndrome: RAN translation and/or RNA gain-of-function?. European Journal of Medical Genetics, 2018, 61, 674-679.	0.7	24
806	Noncoding RNAs in the Regulation of Pluripotency and Reprogramming. Stem Cell Reviews and Reports, 2018, 14, 58-70.	5.6	28
807	Viral Short ORFs and Their Possible Functions. Proteomics, 2018, 18, e1700255.	1.3	17
808	Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini. Genome Research, 2018, 28, 25-36.	2.4	75
809	Decoding hidden messages in neurons: insights from epitranscriptome-controlled and specialized ribosome-controlled translation. Current Opinion in Neurobiology, 2018, 48, 64-70.	2.0	13

#	Article	IF	Citations
810	Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants. Proteomics, 2018, 18, e1700038.	1.3	63
811	Hypothesis on the Origin of Viruses from Transposons. Molecular Genetics, Microbiology and Virology, 2018, 33, 223-232.	0.0	6
812	Identification of novel circadian transcripts in the zebrafish retina. Journal of Experimental Biology, 2019, 222, .	0.8	3
813	The Exon Junction Complex Undergoes a Compositional Switch that Alters mRNP Structure and Nonsense-Mediated mRNA Decay Activity. Cell Reports, 2018, 25, 2431-2446.e7.	2.9	59
814	Quantifying Single mRNA Translation Kinetics in Living Cells. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032078.	2.3	37
815	Identifying sequence features that drive ribosomal association for IncRNA. BMC Genomics, 2018, 19, 906.	1.2	22
816	Small, but mighty? Searching for human microproteins and their potential for understanding health and disease. Expert Review of Proteomics, 2018, 15, 963-965.	1.3	13
817	Content Is King: Databases Preserve the Collective Information of Science. Journal of Biomolecular Techniques, 2018, 29, 1-3.	0.8	0
818	Ribosome Profiling Reveals HSP90 Inhibitor Effects on Stage-Specific Protein Synthesis in <i>Leishmania donovani</i>). MSystems, 2018, 3, .	1.7	20
819	The translation of non-canonical open reading frames controls mucosal immunity. Nature, 2018, 564, 434-438.	13.7	159
820	HRPDviewer: human ribosome profiling data viewer. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	8
821	Long Noncoding RNAs. Advances in Clinical Chemistry, 2018, 87, 1-36.	1.8	58
822	Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, 2018, , .	0.4	3
823	Considerations in the Use of Codon Optimization for Recombinant Protein Expression. Methods in Molecular Biology, 2018, 1850, 275-288.	0.4	16
824	NMD-degradome sequencing reveals ribosome-bound intermediates with 3′-end non-templated nucleotides. Nature Structural and Molecular Biology, 2018, 25, 940-950.	3.6	32
825	ZNF598 Is a Quality Control Sensor of Collided Ribosomes. Molecular Cell, 2018, 72, 469-481.e7.	4.5	294
826	Ribosome profiling uncovers selective mRNA translation associated with eIF2 phosphorylation in erythroid progenitors. PLoS ONE, 2018, 13, e0193790.	1.1	12
827	Genome-Scale Analysis of Perturbations in Translation Elongation Based on a Computational Model. Scientific Reports, 2018, 8, 16191.	1.6	4

#	Article	IF	CITATIONS
828	Multiple Localization by Functional Translational Readthrough. Sub-Cellular Biochemistry, 2018, 89, 201-219.	1.0	3
829	Active Ribosome Profiling with RiboLace. Cell Reports, 2018, 25, 1097-1108.e5.	2.9	51
830	Exploring the Role of AUG Triplets in Human Cap-Independent Translation Enhancing Elements. Biochemistry, 2018, 57, 6308-6318.	1.2	7
831	MIEF1 Microprotein Regulates Mitochondrial Translation. Biochemistry, 2018, 57, 5564-5575.	1.2	70
832	Repeat-associated non-ATG (RAN) translation. Journal of Biological Chemistry, 2018, 293, 16127-16141.	1.6	81
833	Translation acrobatics: how cancer cells exploit alternate modes of translational initiation. EMBO Reports, 2018, 19, .	2.0	73
834	Encoding activities of non-coding RNAs. Theranostics, 2018, 8, 2496-2507.	4.6	42
836	Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9325-E9332.	3.3	28
837	Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 2018, 20, 28-50.	2.2	140
838	RibORF: Identifying Genomeâ€Wide Translated Open Reading Frames Using Ribosome Profiling. Current Protocols in Molecular Biology, 2018, 124, e67.	2.9	33
839	Novel Insights of the Gene Translational Dynamic and Complex Revealed by Ribosome Profiling. RNA Technologies, 2018, , 239-256.	0.2	1
840	Shedding Light on the Dark Cancer Genomes: Long Noncoding RNAs as Novel Biomarkers and Potential Therapeutic Targets for Cancer. Molecular Cancer Therapeutics, 2018, 17, 1816-1823.	1.9	30
841	Long noncoding <scp>RNA</scp> s: A new player in the prevention and treatment of diabetic cardiomyopathy?. Diabetes/Metabolism Research and Reviews, 2018, 34, e3056.	1.7	17
842	Genes within Genes in Bacterial Genomes. , 2018, , 133-154.		4
843	Towards a complete map of the human long non-coding RNA transcriptome. Nature Reviews Genetics, 2018, 19, 535-548.	7.7	451
844	The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology, 2018, 19, 143-157.	16.1	968
845	The exon–intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Research, 2018, 46, 4575-4591.	6. 5	23
846	Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5487-E5496.	3.3	21

#	Article	IF	Citations
847	Roadblocks and resolutions in eukaryotic translation. Nature Reviews Molecular Cell Biology, 2018, 19, 526-541.	16.1	177
848	The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37, 4750-4768.	2.6	111
849	Following Ribosome Footprints to Understand Translation at a Genome Wide Level. Computational and Structural Biotechnology Journal, 2018, 16, 167-176.	1.9	26
850	TASEP modelling provides a parsimonious explanation for the ability of a single uORF to derepress translation during the integrated stress response. ELife, 2018, 7, .	2.8	28
851	Computational analysis of the oscillatory behavior at the translation level induced by mRNA levels oscillations due to finite intracellular resources. PLoS Computational Biology, 2018, 14, e1006055.	1.5	12
852	Translational control of ERK signaling through miRNA/4EHP-directed silencing. ELife, 2018, 7, .	2.8	41
853	Post-translational buffering leads to convergent protein expression levels between primates. Genome Biology, 2018, 19, 83.	3.8	33
854	Impact of Noncoding Part of the Genome on the Proteome Plasticity of the Eukaryotic Cell. Russian Journal of Bioorganic Chemistry, 2018, 44, 397-402.	0.3	2
855	PausePred and Rfeet: webtools for inferring ribosome pauses and visualizing footprint density from ribosome profiling data. Rna, 2018, 24, 1297-1304.	1.6	23
856	RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Frontiers in Physiology, 2018, 9, 910.	1.3	42
857	Disruption of <i>TWIST1 </i> translation by 5′ UTR variants in Saethre-Chotzen syndrome. Human Mutation, 2018, 39, 1360-1365.	1.1	10
858	Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation. Molecular and Cellular Biology, 2018, 38, .	1.1	12
859	Longâ€noncoding RNA Atrolncâ€1 promotes muscle wasting in mice with chronic kidney disease. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 962-974.	2.9	47
860	Identification and analysis of ribosome-associated IncRNAs using ribosome profiling data. BMC Genomics, 2018, 19, 414.	1.2	56
861	FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions. Frontiers in Genetics, 2018, 9, 96.	1.1	17
862	Coding and Non-coding RNAs, the Frontier Has Never Been So Blurred. Frontiers in Genetics, 2018, 9, 140.	1.1	43
863	Micropeptides Encoded in Transcripts Previously Identified as Long Noncoding RNAs: A New Chapter in Transcriptomics and Proteomics. Frontiers in Genetics, 2018, 9, 144.	1.1	83
864	Folding up and Moving onâ€"Nascent Protein Folding on the Ribosome. Journal of Molecular Biology, 2018, 430, 4580-4591.	2.0	38

#	Article	IF	CITATIONS
865	Nucleotide Substitution Models and Evolutionary Distances. , 2018, , 269-314.		3
866	String Mathematics, BLAST, and FASTA. , 2018, , 1-31.		0
867	Distance-Based Phylogenetic Methods. , 2018, , 343-379.		3
868	Bioinformatics and Translation Initiation. , 2018, , 173-195.		O
869	Bioinformatics and Translation Elongation. , 2018, , 197-238.		1
870	Specialized ribosomes and the control of translation. Biochemical Society Transactions, 2018, 46, 855-869.	1.6	71
871	Protein Isoelectric Point and Helicobacter pylori., 2018,, 397-412.		0
872	Fundamentals of Proteomics. , 2018, , 421-436.		0
873	Translational Control through Differential Ribosome Pausing during Amino Acid Limitation in Mammalian Cells. Molecular Cell, 2018, 71, 229-243.e11.	4.5	123
874	Genes within Genes in Bacterial Genomes. Microbiology Spectrum, 2018, 6, .	1.2	30
875	Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biology, 2018, 16, e2003903.	2.6	77
876	Deciphering the roles of lncRNAs in breast development and disease. Oncotarget, 2018, 9, 20179-20212.	0.8	42
877	Measuring Endoplasmic Reticulum Signal Sequences Translocation Efficiency Using the Xbp1 Arrest Peptide. Cell Chemical Biology, 2018, 25, 880-890.e3.	2.5	21
878	Comparative analysis of protein-coding and long non-coding transcripts based on RNA sequence features. Journal of Bioinformatics and Computational Biology, 2018, 16, 1840013.	0.3	2
879	Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harbor Perspectives in Biology, 2018, 10, a032656.	2.3	132
880	Queuosineâ€modified tRNAs confer nutritional control of protein translation. EMBO Journal, 2018, 37, .	3.5	134
881	A Plant Biologist's Toolbox to Study Translation. Frontiers in Plant Science, 2018, 9, 873.	1.7	26
883	N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Molecular and Cellular Proteomics, 2018, 17, 2309-2323.	2.5	25

#	Article	IF	CITATIONS
884	Isoform-Level Interpretation of High-Throughput Proteomics Data Enabled by Deep Integration with RNA-seq. Journal of Proteome Research, 2018, 17, 3431-3444.	1.8	23
885	Influence of multiplicative stochastic variation on translational elongation rates. PLoS ONE, 2018, 13, e0191152.	1.1	7
886	The influence of transcript assembly on the proteogenomics discovery of microproteins. PLoS ONE, 2018, 13, e0194518.	1.1	19
887	The impact of ribosomal interference, codon usage, and exit tunnel interactions on translation elongation rate variation. PLoS Genetics, 2018, 14, e1007166.	1.5	77
888	The extent of ribosome queuing in budding yeast. PLoS Computational Biology, 2018, 14, e1005951.	1.5	55
889	Orchestrating a biomarker panel with IncRNAs and mRNAs for predicting survival in pancreatic ductal adenocarcinoma. Journal of Cellular Biochemistry, 2018, 119, 7696-7706.	1.2	17
890	Translational Control in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 2019, 11, a033001.	2.3	128
891	Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms. Molecular Neurobiology, 2019, 56, 2855-2869.	1.9	20
892	LncFinder: an integrated platform for long non-coding RNA identification utilizing sequence intrinsic composition, structural information and physicochemical property. Briefings in Bioinformatics, 2019, 20, 2009-2027.	3.2	98
893	Roles of Long Noncoding RNAs and Circular RNAs in Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032680.	2.3	38
894	Ribosome Profiling: Global Views of Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032698.	2.3	205
895	Toward a Kinetic Understanding of Eukaryotic Translation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032706.	2.3	41
896	Translational Control during Developmental Transitions. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032987.	2.3	60
897	The small peptide world in long noncoding RNAs. Briefings in Bioinformatics, 2019, 20, 1853-1864.	3.2	183
898	MAP: model-based analysis of proteomic data to detect proteins with significant abundance changes. Cell Discovery, 2019, 5, 40.	3.1	11
899	Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15023-15032.	3.3	150
900	Distinct types of short open reading frames are translated in plant cells. Genome Research, 2019, 29, 1464-1477.	2.4	43
901	The importance of long non-coding RNAs in neuropsychiatric disorders. Molecular Aspects of Medicine, 2019, 70, 127-140.	2.7	53

#	Article	IF	CITATIONS
902	Conserved regions in long non-coding RNAs contain abundant translation and protein–RNA interaction signatures. NAR Genomics and Bioinformatics, 2019, 1, e2-e2.	1.5	32
903	Translational regulation contributes to the secretory response of chondrocytic cells following exposure to interleukin- $\hat{\Pi}^2$. Journal of Biological Chemistry, 2019, 294, 13027-13039.	1.6	10
904	Expanding the Vocabulary of Peptide Signals in Streptococcus mutans. Frontiers in Cellular and Infection Microbiology, 2019, 9, 194.	1.8	16
905	Survey of the translation shifts in hepatocellular carcinoma with ribosome profiling. Theranostics, 2019, 9, 4141-4155.	4.6	33
906	Monitoring Cell-Type–Specific Gene Expression Using Ribosome Profiling In Vivo During Cardiac Hemodynamic Stress. Circulation Research, 2019, 125, 431-448.	2.0	56
907	Proteomic Techniques to Examine Neuronal Translational Dynamics. International Journal of Molecular Sciences, 2019, 20, 3524.	1.8	11
908	A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5′–3′ messenger RNA decay. Nucleic Acids Research, 2019, 47, 9282-9295.	6.5	26
909	Translational Regulation by Upstream Open Reading Frames and Human Diseases. Advances in Experimental Medicine and Biology, 2019, 1157, 99-116.	0.8	32
910	Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Research, 2019, 111, 1308-1319.	0.8	14
911	Comparative Analysis of Gene Expression in Virulent and Attenuated Strains of Infectious Bronchitis Virus at Subcodon Resolution. Journal of Virology, 2019, 93, .	1.5	26
912	Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis. Nature Communications, 2019, 10, 2835.	5.8	49
913	Deciphering the rules of mRNA structure differentiation in <i>Saccharomyces cerevisiae in vivo</i> and <i>in vitro</i> with deep neural networks. RNA Biology, 2019, 16, 1044-1054.	1.5	8
914	Protein Kinases at the Intersection of Translation and Virulence. Frontiers in Cellular and Infection Microbiology, 2019, 9, 318.	1.8	12
915	Global analysis of protein synthesis in Flavobacterium johnsoniae reveals the use of Kozak-like sequences in diverse bacteria. Nucleic Acids Research, 2019, 47, 10477-10488.	6.5	23
916	Codon bias confers stability to human <scp>mRNA</scp> s. EMBO Reports, 2019, 20, e48220.	2.0	100
917	Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control. Biomolecules, 2019, 9, 665.	1.8	13
918	Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Scientific Reports, 2019, 9, 15449.	1.6	38
919	The in vivo endothelial cell translatome is highly heterogeneous across vascular beds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23618-23624.	3.3	89

#	Article	IF	CITATIONS
920	Not lost in host translation: The new roles of long noncoding RNAs in infectious diseases. Cellular Microbiology, 2019, 21, e13119.	1.1	3
921	Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities. ACS Synthetic Biology, 2019, 8, 2585-2592.	1.9	12
922	Translated Long Non-Coding Ribonucleic Acid ZFAS1 Promotes Cancer Cell Migration by Elevating Reactive Oxygen Species Production in Hepatocellular Carcinoma. Frontiers in Genetics, 2019, 10, 1111.	1.1	26
923	Translatomics: The Global View of Translation. International Journal of Molecular Sciences, 2019, 20, 212.	1.8	62
924	Harnessing the tissue and plasma lncRNA-peptidome to discover peptide-based cancer biomarkers. Scientific Reports, 2019, 9, 12322.	1.6	26
925	Coding regions affect mRNA stability in human cells. Rna, 2019, 25, 1751-1764.	1.6	68
926	CircCode: A Powerful Tool for Identifying circRNA Coding Ability. Frontiers in Genetics, 2019, 10, 981.	1.1	55
927	The Growth-Arrest-Specific (GAS)-5 Long Non-Coding RNA: A Fascinating IncRNA Widely Expressed in Cancers. Non-coding RNA, 2019, 5, 46.	1.3	54
928	Ribosomal Proteins Regulate MHC Class I Peptide Generation for Immunosurveillance. Molecular Cell, 2019, 73, 1162-1173.e5.	4. 5	81
929	High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress. Molecular Cell, 2019, 73, 959-970.e5.	4.5	234
930	Comprehensive profiling of translation initiation in influenza virus infected cells. PLoS Pathogens, 2019, 15, e1007518.	2.1	22
931	Translational Control in Stem Cells. Frontiers in Genetics, 2018, 9, 709.	1.1	65
932	A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data. PLoS Computational Biology, 2019, 15, e1007070.	1.5	50
933	CCR5AS IncRNA variation differentially regulates CCR5, influencing HIV disease outcome. Nature Immunology, 2019, 20, 824-834.	7.0	87
934	Cellâ€Cycleâ€Dependent Regulation of Translation: New Interpretations of Old Observations in Light of New Approaches. BioEssays, 2019, 41, e1900022.	1.2	6
935	Nanoparticle-based local translation reveals mRNA as a translation-coupled scaffold with anchoring function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13346-13351.	3.3	4
936	The Organizing Principles of Eukaryotic Ribosome Recruitment. Annual Review of Biochemistry, 2019, 88, 307-335.	5.0	196
937	Non-canonical translation initiation in yeast generates a cryptic pool of mitochondrial proteins. Nucleic Acids Research, 2019, 47, 5777-5791.	6.5	56

#	Article	IF	Citations
938	Vaccinia Virus. Methods in Molecular Biology, 2019, , .	0.4	0
939	Ribosome Profiling of Vaccinia Virus-Infected Cells. Methods in Molecular Biology, 2019, 2023, 171-188.	0.4	1
940	Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes and Development, 2019, 33, 871-885.	2.7	60
941	Alternative Translation Initiation Generates a Functionally Distinct Isoform of the Stress-Activated Protein Kinase MK2. Cell Reports, 2019, 27, 2859-2870.e6.	2.9	22
942	Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii. MSphere, 2019, 4, .	1.3	23
943	Novel oncogene 5MP1 reprograms c-Myc translation initiation to drive malignant phenotypes in colorectal cancer. EBioMedicine, 2019, 44, 387-402.	2.7	31
944	RiboStreamR: a web application for quality control, analysis, and visualization of Ribo-seq data. BMC Genomics, 2019, 20, 422.	1.2	16
945	Codon usage optimization in pluripotent embryonic stem cells. Genome Biology, 2019, 20, 119.	3.8	43
946	Coding or Noncoding, the Converging Concepts of RNAs. Frontiers in Genetics, 2019, 10, 496.	1.1	123
947	Multi-Color Single-Molecule Imaging Uncovers Extensive Heterogeneity in mRNA Decoding. Cell, 2019, 178, 458-472.e19.	13.5	120
948	Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nature Communications, 2019, 10, 2542.	5.8	43
949	Translation of upstream open reading frames in a model of neuronal differentiation. BMC Genomics, 2019, 20, 391.	1.2	30
950	Long non-coding RNAs in genitourinary malignancies: a whole new world. Nature Reviews Urology, 2019, 16, 484-504.	1.9	80
951	The Plant Translatome Surveyed by Ribosome Profiling. Plant and Cell Physiology, 2019, 60, 1917-1926.	1.5	19
952	Functional genomics in sand fly–derived Leishmania promastigotes. PLoS Neglected Tropical Diseases, 2019, 13, e0007288.	1.3	17
953	Long Non-Coding RNAs and the Innate Immune Response. Non-coding RNA, 2019, 5, 34.	1.3	75
954	Identifying A- and P-site locations on ribosome-protected mRNA fragments using Integer Programming. Scientific Reports, 2019, 9, 6256.	1.6	18
955	Heterogeneous translational landscape of the endoplasmic reticulum revealed by ribosome proximity labeling and transcriptome analysis. Journal of Biological Chemistry, 2019, 294, 8942-8958.	1.6	25

#	Article	IF	CITATIONS
956	Cellular functions of long noncoding RNAs. Nature Cell Biology, 2019, 21, 542-551.	4.6	1,037
957	SNP and indel frequencies at transcription start sites and at canonical and alternative translation initiation sites in the human genome. PLoS ONE, 2019, 14, e0214816.	1.1	24
958	Function and Evolution of Upstream ORFs in Eukaryotes. Trends in Biochemical Sciences, 2019, 44, 782-794.	3.7	101
959	Complementary Activity of ETV5, RBPJ, and TCF3 Drives Formative Transition from Naive Pluripotency. Cell Stem Cell, 2019, 24, 785-801.e7.	5.2	85
960	RNA structure maps across mammalian cellular compartments. Nature Structural and Molecular Biology, 2019, 26, 322-330.	3.6	183
961	Cardiomyogenic differentiation is fine-tuned by differential mRNA association with polysomes. BMC Genomics, 2019, 20, 219.	1.2	27
962	Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome. Molecular Cell, 2019, 74, 481-493.e6.	4.5	140
963	Down-Regulation of m6A mRNA Methylation Is Involved in Dopaminergic Neuronal Death. ACS Chemical Neuroscience, 2019, 10, 2355-2363.	1.7	143
964	Global Positioning System: Understanding Long Noncoding RNAs through Subcellular Localization. Molecular Cell, 2019, 73, 869-883.	4.5	214
965	A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Progress in Cardiovascular Diseases, 2019, 62, 172-178.	1.6	82
966	Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10, 990.	5.8	168
967	A TRIM71 binding long noncoding RNA Trincr1 represses FGF/ERK signaling in embryonic stem cells. Nature Communications, 2019, 10, 1368.	5.8	53
968	Dynamics of protein synthesis and degradation through the cell cycle. Cell Cycle, 2019, 18, 784-794.	1.3	33
969	Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes. MBio, 2019, 10, .	1.8	146
970	Local translation in neuronal processes. Current Opinion in Neurobiology, 2019, 57, 141-148.	2.0	96
971	Cellular response to small molecules that selectively stall protein synthesis by the ribosome. PLoS Genetics, 2019, 15, e1008057.	1.5	31
972	Magnetic Tracking of Protein Synthesis in Microfluidic Environmentsâ€"Challenges and Perspectives. Nanomaterials, 2019, 9, 585.	1.9	6
973	Gene Expression. , 2019, , 19-30.		0

#	Article	IF	CITATIONS
974	Cycloheximide can distort measurements of mRNA levels and translation efficiency. Nucleic Acids Research, 2019, 47, 4974-4985.	6.5	62
975	Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature, 2019, 566, 270-274.	13.7	681
976	Queuine links translational control in eukaryotes to a micronutrient from bacteria. Nucleic Acids Research, 2019, 47, 3711-3727.	6.5	53
977	Evidence for an Integrated Gene Repression Mechanism Based on mRNA Isoform Toggling in Human Cells. G3: Genes, Genomes, Genetics, 2019, 9, 1045-1053.	0.8	25
978	Targeted Proteomics Comes to the Benchside and the Bedside: Is it Ready for Us?. BioEssays, 2019, 41, e1800042.	1.2	20
979	A Hidden ORF Reveals an Immune Protector. Biochemistry, 2019, 58, 1022-1023.	1.2	1
980	Small open reading frames and cellular stress responses. Molecular Omics, 2019, 15, 108-116.	1.4	54
981	Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. Journal of Leukocyte Biology, 2019, 106, 83-93.	1.5	15
982	Alternative Translation Initiation at a UUG Codon Gives Rise to Two Functional Variants of the Mitochondrial Protein Kgd4. Journal of Molecular Biology, 2019, 431, 1460-1467.	2.0	8
983	CPPred: coding potential prediction based on the global description of RNA sequence. Nucleic Acids Research, 2019, 47, e43-e43.	6.5	84
984	Metazoan tsRNAs: Biogenesis, Evolution and Regulatory Functions. Non-coding RNA, 2019, 5, 18.	1.3	21
985	DeepRibo: a neural network for precise gene annotation of prokaryotes by combining ribosome profiling signal and binding site patterns. Nucleic Acids Research, 2019, 47, e36-e36.	6.5	58
986	Parsing the synonymous mutations in the maize genome: isoaccepting mutations are more advantageous in regions with codon co-occurrence bias. BMC Plant Biology, 2019, 19, 422.	1.6	14
987	Translational reprogramming marks adaptation to asparagine restriction in cancer. Nature Cell Biology, 2019, 21, 1590-1603.	4.6	61
988	Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS loci. Genome Research, 2019, 29, 2073-2087.	2.4	52
989	A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution. ELife, 2019, 8, .	2.8	161
990	Proteomic Detection and Validation of Translated Small Open Reading Frames. Current Protocols in Chemical Biology, 2019, 11, e77.	1.7	26
991	Peptidomics-based study reveals that GAPEP1, a novel small peptide derived from pathogenesis-related (PR) protein of cotton, enhances fungal disease resistance. Molecular Breeding, 2019, 39, 1.	1.0	2

#	Article	IF	CITATIONS
992	Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 2019, 70, 817-833.	2.4	51
993	Translation of Small Open Reading Frames: Roles in Regulation and Evolutionary Innovation. Trends in Genetics, 2019, 35, 186-198.	2.9	74
994	Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice. Nucleic Acids Research, 2019, 47, e25-e25.	6.5	16
995	Single-Molecule Tracking Approaches to Protein Synthesis Kinetics in Living Cells. Biochemistry, 2019, 58, 7-14.	1.2	4
996	Dysregulated Translation in Neurodevelopmental Disorders: An Overview of Autismâ€Risk Genes Involved in Translation. Developmental Neurobiology, 2019, 79, 60-74.	1.5	36
997	Revealing IncRNA Structures and Interactions by Sequencing-Based Approaches. Trends in Biochemical Sciences, 2019, 44, 33-52.	3.7	333
998	Single event visualization of unconventional secretion of FGF2. Journal of Cell Biology, 2019, 218, 683-699.	2.3	39
999	Long noncoding RNA expression profiling in cancer: Challenges and opportunities. Genes Chromosomes and Cancer, 2019, 58, 191-199.	1.5	117
1000	Flu DRiPs in MHC Class I Immunosurveillance. Virologica Sinica, 2019, 34, 162-167.	1.2	13
1001	Ribosome Stoichiometry: From Form to Function. Trends in Biochemical Sciences, 2019, 44, 95-109.	3.7	71
1002	Ribosomal Peptides and Small Proteins on the Rise. ChemBioChem, 2019, 20, 1479-1486.	1.3	14
1003	Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Reports, 2019, 26, 594-607.e7.	2.9	61
1004	Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chemical Reviews, 2019, 119, 5537-5606.	23.0	184
1005	m6A-mediated translation regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 301-309.	0.9	39
1006	Targeted Profiling of RNA Translation. Current Protocols in Molecular Biology, 2019, 125, e71.	2.9	4
1007	Characterization of maize translational responses to sugarcane mosaic virus infection. Virus Research, 2019, 259, 97-107.	1.1	11
1008	The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrometry Reviews, 2019, 38, 253-264.	2.8	32
1009	RNA regulons are essential in intestinal homeostasis. American Journal of Physiology - Renal Physiology, 2019, 316, G197-G204.	1.6	6

#	ARTICLE	lF	CITATIONS
1010	Computational Prediction of De Novo Emerged Protein-Coding Genes. Methods in Molecular Biology, 2019, 1851, 63-81.	0.4	20
1011	Immunoribosomes: Where's there's fire, there's fire. Molecular Immunology, 2019, 113, 38-42.	1.0	23
1012	Simultaneous and systematic analysis of cellular and viral gene expression during Enterovirus 71-induced host shutoff. Protein and Cell, 2019, 10, 72-77.	4.8	1
1013	Recent advances in ribosome profiling for deciphering translational regulation. Methods, 2020, 176, 46-54.	1.9	24
1014	A methodology for discovering novel brain-relevant peptides: Combination of ribosome profiling and peptidomics. Neuroscience Research, 2020, 151, 31-37.	1.0	10
1015	Functional Modules of the Proteostasis Network. Cold Spring Harbor Perspectives in Biology, 2020, 12, a033951.	2.3	133
1016	UFMylation of RPL26 links translocation-associated quality control to endoplasmic reticulum protein homeostasis. Cell Research, 2020, 30, 5-20.	5.7	97
1017	Multimapping confounds ribosome profiling analysis: A caseâ€study of the Hsp90 molecular chaperone. Proteins: Structure, Function and Bioinformatics, 2020, 88, 57-68.	1.5	5
1018	Hallmarks and Determinants of Oncogenic Translation Revealed by Ribosome Profiling in Models of Breast Cancer. Translational Oncology, 2020, 13, 452-470.	1.7	7
1019	Designing a blueprint for nextâ€generation stem cell bioprocessing development. Biotechnology and Bioengineering, 2020, 117, 832-843.	1.7	3
1020	A Mitochondrial Micropeptide Is Required for Activation of the Nlrp3 Inflammasome. Journal of Immunology, 2020, 204, 428-437.	0.4	51
1021	mRNA regions where 80S ribosomes pause during translation elongation in vivo interact with protein uS19, a component of the decoding site. Nucleic Acids Research, 2020, 48, 912-923.	6.5	11
1022	Computational methods for ribosome profiling data analysis. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1577.	3.2	34
1023	The landscape of eukaryotic mRNPs. Rna, 2020, 26, 229-239.	1.6	61
1024	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	2.3	53
1025	Identification, characterization, and functional prediction of circular RNAs in maize. Molecular Genetics and Genomics, 2020, 295, 491-503.	1.0	20
1026	Ribosomal stress-surveillance: three pathways is a magic number. Nucleic Acids Research, 2020, 48, 10648-10661.	6.5	82
1027	Heightened protein-translation activities in mammalian cells and the disease/treatment implications. National Science Review, 2020, 7, 1851-1855.	4.6	7

#	Article	IF	Citations
1028	On the dynamical aspects of local translation at the activated synapse. BMC Bioinformatics, 2020, 21, 258.	1.2	5
1029	Prevalence of alternative AUG and non-AUG translation initiators and their regulatory effects across plants. Genome Research, 2020, 30, 1418-1433.	2.4	26
1030	Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25560-25570.	3.3	50
1031	Regulation and Roles of the Nucleolus in Embryonic Stem Cells: From Ribosome Biogenesis to Genome Organization. Stem Cell Reports, 2020, 15, 1206-1219.	2.3	37
1032	Some like it translated: small ORFs in the 5′UTR. Experimental Cell Research, 2020, 396, 112229.	1.2	31
1033	4EHP and GIGYF1/2 Mediate Translation-Coupled Messenger RNA Decay. Cell Reports, 2020, 33, 108262.	2.9	41
1034	Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics. Nature Communications, 2020, 11, 4894.	5.8	18
1035	Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nature Communications, 2020, 11, 4956.	5.8	44
1036	Genome-wide Survey of Ribosome Collision. Cell Reports, 2020, 31, 107610.	2.9	119
1037	Computational Methods and Applications for Identifying Disease-Associated IncRNAs as Potential Biomarkers and Therapeutic Targets. Molecular Therapy - Nucleic Acids, 2020, 21, 156-171.	2.3	30
1038	Translation initiation downstream from annotated start codons in human mRNAs coevolves with the Kozak context. Genome Research, 2020, 30, 974-984.	2.4	24
1039	Global translation during early development depends on the essential transcription factor PRDM10. Nature Communications, 2020, 11, 3603.	5.8	13
1040	The Small Toxic <i>Salmonella</i> Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. MBio, 2020, 11 , .	1.8	14
1041	A Quick Guide to Small-Molecule Inhibitors of Eukaryotic Protein Synthesis. Biochemistry (Moscow), 2020, 85, 1389-1421.	0.7	31
1042	Trade-off between cost and efficiency during mRNA translation is largely driven by natural selection in angiosperms. Plant Systematics and Evolution, 2020, 306, 1.	0.3	0
1043	The computational approaches of lncRNA identification based on coding potential: Status quo and challenges. Computational and Structural Biotechnology Journal, 2020, 18, 3666-3677.	1.9	29
1044	Cellâ€based analysis of pairwise interactions between the components of the multiâ€ŧRNA synthetase complex. FASEB Journal, 2020, 34, 10476-10488.	0.2	8
1045	mRNAs, proteins and the emerging principles of gene expression control. Nature Reviews Genetics, 2020, 21, 630-644.	7.7	576

#	Article	IF	CITATIONS
1046	Ddx56 maintains proliferation of mouse embryonic stem cells via ribosome assembly and interaction with the Oct4/Sox2 complex. Stem Cell Research and Therapy, 2020, 11, 314.	2.4	5
1047	METTL1-mediated m7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Research and Therapy, 2020, 11, 306.	2.4	41
1048	Translation Initiation Site Profiling Reveals Widespread Synthesis of Non-AUG-Initiated Protein Isoforms in Yeast. Cell Systems, 2020, 11, 145-160.e5.	2.9	41
1049	Selective Translation of Low Abundance and Upregulated Transcripts in Halobacterium salinarum. MSystems, 2020, 5, .	1.7	10
1050	Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in <i>Drosophila melanogaster</i> . G3: Genes, Genomes, Genetics, 2020, 10, 1575-1583.	0.8	8
1051	Decoding mRNA translatability and stability from the 5′ UTR. Nature Structural and Molecular Biology, 2020, 27, 814-821.	3.6	106
1052	Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing. Genome Research, 2020, 30, 985-999.	2.4	73
1053	TRIBE editing reveals specific mRNA targets of eIF4E-BP in <i>Drosophila</i> and in mammals. Science Advances, 2020, 6, eabb8771.	4.7	27
1054	Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. Journal of Hematology and Oncology, 2020, 13, 109.	6.9	60
1055	Molecular characterization of 60S ribosomal protein L12 of E. tenella. Experimental Parasitology, 2020, 217, 107963.	0.5	1
1056	A hidden gene in astroviruses encodes a viroporin. Nature Communications, 2020, 11, 4070.	5.8	35
1057	Non-full-length Water-Soluble CXCR4QTY and CCR5QTY Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. IScience, 2020, 23, 101670.	1.9	16
1058	AU richness within the $5\hat{a} \in \mathbb{R}^2$ coding region of the Escherichia coli heat-stable enterotoxin b mRNA affects toxin secretion. Heliyon, 2020, 6, e05330.	1.4	1
1059	Unusually efficient CUG initiation of an overlapping reading frame in <i>POLG</i> mRNA yields novel protein POLGARF. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24936-24946.	3.3	30
1060	Translation elongation factor 2 depletion by siRNA in mouse liver leads to mTOR-independent translational upregulation of ribosomal protein genes. Scientific Reports, 2020, 10, 15473.	1.6	10
1061	LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. Journal of Experimental Medicine, 2020, 217, .	4.2	136
1062	Distinct Functions of Acyl/Alkyl Dihydroxyacetonephosphate Reductase in Peroxisomes and Endoplasmic Reticulum. Frontiers in Cell and Developmental Biology, 2020, 8, 855.	1.8	16
1063	Trendbericht Biochemie: Ribosomenprofiling. Nachrichten Aus Der Chemie, 2020, 68, 52-54.	0.0	0

#	Article	IF	CITATIONS
1064	DENR promotes translation reinitiation via ribosome recycling to drive expression of oncogenes including ATF4. Nature Communications, 2020, 11, 4676.	5.8	58
1065	Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Research, 2020, 48, 10259-10279.	6.5	28
1066	SMIM30, a tiny protein with a big role in liver cancer. Journal of Hepatology, 2020, 73, 1010-1012.	1.8	3
1067	Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nature Microbiology, 2020, 5, 1490-1503.	5.9	45
1068	METTL6 is a tRNA m ³ C methyltransferase that regulates pluripotency and tumor cell growth. Science Advances, 2020, 6, eaaz4551.	4.7	51
1069	A code within the genetic code: codon usage regulates co-translational protein folding. Cell Communication and Signaling, 2020, 18, 145.	2.7	113
1070	Construction of High-Quality Rice Ribosome Footprint Library. Frontiers in Plant Science, 2020, 11, 572237.	1.7	5
1071	Human NMD ensues independently of stable ribosome stalling. Nature Communications, 2020, 11, 4134.	5.8	27
1072	Transcriptomic and Translatomic Analyses Reveal Insights into the Developmental Regulation of Secondary Metabolism in the Young Shoots of Tea Plants (<i>Camellia sinensis</i> L.). Journal of Agricultural and Food Chemistry, 2020, 68, 10750-10762.	2.4	19
1073	Comparison of Poly-A+ Selection and rRNA Depletion in Detection of lncRNA in Two Equine Tissues Using RNA-seq. Non-coding RNA, 2020, 6, 32.	1.3	6
1074	A ribosome-associated chaperone enables substrate triage in a cotranslational protein targeting complex. Nature Communications, 2020, 11, 5840.	5.8	36
1075	SARS-Cov-2 Interactome with Human Ghost Proteome: A Neglected World Encompassing a Wealth of Biological Data. Microorganisms, 2020, 8, 2036.	1.6	2
1076	RiboDiPA: a novel tool for differential pattern analysis in Ribo-seq data. Nucleic Acids Research, 2020, 48, 12016-12029.	6.5	4
1077	Algorithms for ribosome traffic engineering and their potential in improving host cells' titer and growth rate. Scientific Reports, 2020, 10, 21202.	1.6	15
1078	FMRP Control of Ribosome Translocation Promotes Chromatin Modifications and Alternative Splicing of Neuronal Genes Linked to Autism. Cell Reports, 2020, 30, 4459-4472.e6.	2.9	63
1079	When Long Noncoding Becomes Protein Coding. Molecular and Cellular Biology, 2020, 40, .	1.1	106
1080	Secretome-Based Screening in Target Discovery. SLAS Discovery, 2020, 25, 535-551.	1.4	15
1081	Progress, Challenges, and Surprises in Annotating the Human Genome. Annual Review of Genomics and Human Genetics, 2020, 21, 55-79.	2.5	20

#	Article	IF	CITATIONS
1082	Apoptotic and cell cycle response to homoharringtonine and harringtonine in wild and mutant p53 hepatocarcinoma cells. Human and Experimental Toxicology, 2020, 39, 1405-1416.	1.1	2
1083	Reconsidering proteomic diversity with functional investigation of small ORFs and alternative ORFs. Experimental Cell Research, 2020, 393, 112057.	1.2	37
1084	Bacterial riboproteogenomics: the era of N-terminal proteoform existence revealed. FEMS Microbiology Reviews, 2020, 44, 418-431.	3.9	12
1085	Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biology, 2020, 21, 128.	3.8	32
1086	Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genetics, 2020, 16, e1008836.	1.5	30
1087	Dynamics of ribosomes in mRNA translation under steady- and nonsteady-state conditions. Physical Review E, 2020, 101, 062404.	0.8	10
1088	Long Non-Coding RNA HOTAIR in Breast Cancer Therapy. Cancers, 2020, 12, 1197.	1.7	69
1089	Non-AUG Translation Initiation Generates Peroxisomal Isoforms of 6-Phosphogluconate Dehydrogenase in Fungi. Frontiers in Cell and Developmental Biology, 2020, 8, 251.	1.8	5
1090	Lighting up single-mRNA translation dynamics in living cells. Current Opinion in Genetics and Development, 2020, 61, 75-82.	1.5	12
1091	Heterogeneity in mRNA Translation. Trends in Cell Biology, 2020, 30, 606-618.	3.6	54
1092	Ribosome profiling in plants: what is not lost in translation?. Journal of Experimental Botany, 2020, 71, 5323-5332.	2.4	21
1093	Structural Enzymology of Nitrogenase Enzymes. Chemical Reviews, 2020, 120, 4969-5004.	23.0	194
1094	CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Biomolecules, 2020, 10, 911.	1.8	13
1095	Multifaceted deregulation of gene expression and protein synthesis with age. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15581-15590.	3.3	80
1096	Multiple information carried by RNAs: total eclipse or a light at the end of the tunnel?. RNA Biology, 2020, 17, 1707-1720.	1.5	5
1097	Nuclease-mediated depletion biases in ribosome footprint profiling libraries. Rna, 2020, 26, 1481-1488.	1.6	29
1098	LabxDB: versatile databases for genomic sequencing and lab management. Bioinformatics, 2020, 36, 4530-4531.	1.8	14
1099	Upstream ORFs Influence Translation Efficiency in the Parasite Trypanosoma cruzi. Frontiers in Genetics, 2020, 11, 166.	1.1	8

#	Article	IF	Citations
1100	Pervasive functional translation of noncanonical human open reading frames. Science, 2020, 367, 1140-1146.	6.0	400
1101	Evidence for a novel overlapping coding sequence in POLG initiated at a CUG start codon. BMC Genetics, 2020, 21, 25.	2.7	30
1102	Mammalian Alternative Translation Initiation Is Mostly Nonadaptive. Molecular Biology and Evolution, 2020, 37, 2015-2028.	3.5	13
1103	The ribosome-associated complex RAC serves in a relay that directs nascent chains to Ssb. Nature Communications, 2020, 11, 1504.	5.8	21
1104	Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. Cell Reports, 2020, 30, 4179-4196.e11.	2.9	46
1105	Non-AUG start codons: Expanding and regulating the small and alternative ORFeome. Experimental Cell Research, 2020, 391, 111973.	1.2	49
1106	Polysome-associated IncRNAs during cardiomyogenesis of hESCs. Molecular and Cellular Biochemistry, 2020, 468, 35-45.	1.4	4
1107	Functional Roles of Long Non-coding RNAs in Motor Neuron Development and Disease. Journal of Biomedical Science, 2020, 27, 38.	2.6	27
1108	Selective 40S Footprinting Reveals Cap-Tethered Ribosome Scanning in Human Cells. Molecular Cell, 2020, 79, 561-574.e5.	4.5	96
1109	Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. Molecular Cell, 2020, 79, 588-602.e6.	4.5	118
1110	Nutrient Control of mRNA Translation. Annual Review of Nutrition, 2020, 40, 51-75.	4.3	25
1111	Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15989-15999.	3.3	86
1112	DRiPs get molecular. Current Opinion in Immunology, 2020, 64, 130-136.	2.4	27
1113	Dynamics in protein translation sustaining T cell preparedness. Nature Immunology, 2020, 21, 927-937.	7.0	120
1114	Translation elongation factor P (EF-P). FEMS Microbiology Reviews, 2020, 44, 208-218.	3.9	21
1115	Ribosome and Translational Control in Stem Cells. Cells, 2020, 9, 497.	1.8	66
1116	Keeping the Proportions of Protein Complex Components in Check. Cell Systems, 2020, 10, 125-132.	2.9	71
1117	A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis. Nature Neuroscience, 2020, 23, 386-397.	7.1	48

#	Article	IF	CITATIONS
1118	Comprehensive Genome-Wide Approaches to Activity-Dependent Translational Control in Neurons. International Journal of Molecular Sciences, 2020, 21, 1592.	1.8	5
1119	Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation. Molecular Cell, 2020, 77, 1222-1236.e13.	4.5	78
1120	Solution of Levinthal's Paradox and a Physical Theory of Protein Folding Times. Biomolecules, 2020, 10, 250.	1.8	21
1121	Reduced autophagy upon C9ORF72 loss synergizes with dipeptide repeat protein toxicity in G4C2 repeat expansion disorders. EMBO Journal, 2020, 39, e100574.	3.5	100
1122	RiboFlow, RiboR and RiboPy: an ecosystem for analyzing ribosome profiling data at read length resolution. Bioinformatics, 2020, 36, 2929-2931.	1.8	23
1123	The hidden world of membrane microproteins. Experimental Cell Research, 2020, 388, 111853.	1.2	31
1124	Measuring mRNA translation in neuronal processes and somata by tRNA-FRET. Nucleic Acids Research, 2020, 48, e32-e32.	6.5	15
1125	Autism-Misregulated elF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Molecular Cell, 2020, 77, 1176-1192.e16.	4.5	69
1126	Monosomes actively translate synaptic mRNAs in neuronal processes. Science, 2020, 367, .	6.0	166
1127	Emerging role of tumor-related functional peptides encoded by IncRNA and circRNA. Molecular Cancer, 2020, 19, 22.	7.9	330
1128	Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell, 2020, 26, 138-159.	5.2	54
1129	Cotranslational Folding of Proteins on the Ribosome. Biomolecules, 2020, 10, 97.	1.8	71
1130	A long noncoding RNA acts as a post-transcriptional regulator of heat shock protein (HSP70) synthesis in the cold hardy Diamesa tonsa under heat shock. PLoS ONE, 2020, 15, e0227172.	1.1	14
1131	Emerging Roles of Translational Control in Circadian Timekeeping. Journal of Molecular Biology, 2020, 432, 3483-3497.	2.0	11
1132	Differentiation Drives Widespread Rewiring of the Neural Stem Cell Chaperone Network. Molecular Cell, 2020, 78, 329-345.e9.	4.5	66
1133	The translational landscape of ground state pluripotency. Nature Communications, 2020, 11, 1617.	5.8	18
1134	Ribosome profiling unveils translational regulation of metabolic enzymes in primary CD4+ Th1 cells. Developmental and Comparative Immunology, 2020, 109, 103697.	1.0	10
1135	Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Letters, 2020, 483, 59-65.	3.2	73

#	ARTICLE	IF	CITATIONS
1136	Profiling of Small Ribosomal Subunits Reveals Modes and Regulation of Translation Initiation. Cell Reports, 2020, 31, 107534.	2.9	28
1137	Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9630-9641.	3 . 3	29
1138	elF-Three to Tango: emerging functions of translation initiation factor elF3 in protein synthesis and disease. Journal of Molecular Cell Biology, 2020, 12, 403-409.	1.5	27
1139	Emerging translation strategies during virus–host interaction. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1619.	3 . 2	17
1140	Translation of noncoding RNAs and cancer. Cancer Letters, 2021, 497, 89-99.	3.2	87
1141	Uncovering memory-related gene expression in contextual fear conditioning using ribosome profiling. Progress in Neurobiology, 2021, 197, 101903.	2.8	6
1142	RNA-binding proteins balance brain function in health and disease. Physiological Reviews, 2021, 101, 1309-1370.	13.1	57
1143	TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Research, 2021, 49, D236-D242.	6.5	65
1144	Cancer Plasticity: The Role of mRNA Translation. Trends in Cancer, 2021, 7, 134-145.	3.8	42
1145	Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. Molecular and Cellular Proteomics, 2021, 20, 100016.	2.5	64
1146	Translation elongation rate varies among organs and decreases with age. Nucleic Acids Research, 2021, 49, e9-e9.	6.5	43
1147	GSK3Î ² -Mediated Expression of CUG-Translated WT1 Is Critical for Tumor Progression. Cancer Research, 2021, 81, 945-955.	0.4	3
1148	RNA N6-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m6A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology, 2021, 160, 1284-1300.e16.	0.6	161
1149	Shedding Light on the Ghost Proteome. Trends in Biochemical Sciences, 2021, 46, 239-250.	3.7	20
1150	Overlapping mechanisms of <scp>lncRNA</scp> and expanded microsatellite <scp>RNA</scp> . Wiley Interdisciplinary Reviews RNA, 2021, 12, e1634.	3.2	8
1152	The effects of codon bias and optimality on mRNA and protein regulation. Cellular and Molecular Life Sciences, 2021, 78, 1909-1928.	2.4	26
1153	Rules are made to be broken: a "simple―model organism reveals the complexity of gene regulation. Current Genetics, 2021, 67, 49-56.	0.8	2
1154	A few good peptides: MHC class I-based cancer immunosurveillance and immunoevasion. Nature Reviews Immunology, 2021, 21, 116-128.	10.6	139

#	Article	IF	CITATIONS
1155	CONCUR: quick and robust calculation of codon usage from ribosome profiling data. Bioinformatics, 2021, 37, 717-719.	1.8	5
1156	Control of translation by eukaryotic mRNA transcript leadersâ€"Insights from highâ€throughput assays and computational modeling. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1623.	3.2	9
1157	The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Molecular and Cellular Biochemistry, 2021, 476, 109-123.	1.4	31
1158	DeepRibSt: a multi-feature convolutional neural network for predicting ribosome stalling. Multimedia Tools and Applications, 2021, 80, 17239-17255.	2.6	1
1161	The methyltransferase PRMT1 regulates \hat{I}^3 -globin translation. Journal of Biological Chemistry, 2021, 296, 100417.	1.6	5
1162	uORF-seqr: A Machine Learning-Based Approach to the Identification of Upstream Open Reading Frames in Yeast. Methods in Molecular Biology, 2021, 2252, 313-329.	0.4	3
1163	Biogenesis and Modes of Action of miRs and Circular and Long Non-coding RNAs., 2021, , 1-19.		0
1164	Measuring Organ-Specific Translation Elongation Rate in Mice. Methods in Molecular Biology, 2021, 2252, 189-200.	0.4	1
1165	A peptide encoded within a $5\hat{a} \in \mathbb{Z}^2$ untranslated region promotes pain sensitization in mice. Pain, 2021, 162, 1864-1875.	2.0	8
1166	The role of micropeptides in biology. Cellular and Molecular Life Sciences, 2021, 78, 3285-3298.	2.4	28
1167	Identification of Translation Start Sites in Bacterial Genomes. Methods in Molecular Biology, 2021, 2252, 27-55.	0.4	7
1168	Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Briefings in Functional Genomics, 2021, 20, 28-41.	1.3	10
1169	Modification of Transfer RNA Levels Affects Cyclin Aggregation and the Correct Duplication of Yeast Cells. Frontiers in Microbiology, 2020, 11, 607693.	1.5	1
1170	LncRNAs as key players in the MYC pathways. Genome Instability & Disease, 2021, 2, 24-38.	0.5	2
1171	LNCcation: lncRNA localization and function. Journal of Cell Biology, 2021, 220, .	2.3	621
1172	Alt-RPL36 downregulates the PI3K-AKT-mTOR signaling pathway by interacting with TMEM24. Nature Communications, 2021, 12, 508.	5.8	32
1173	Cancer DElso: An integrative analysis platform for investigating differentially expressed gene-level and isoform-level human cancer markers. Computational and Structural Biotechnology Journal, 2021, 19, 5149-5159.	1.9	5
1174	Ribosome heterogeneity and specialization in development. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1644.	3.2	56

#	Article	IF	CITATIONS
1175	Inhibitors of Eukaryotic Translational Machinery as Therapeutic Agents. Journal of Medicinal Chemistry, 2021, 64, 2436-2465.	2.9	13
1176	Robust Physiological Metrics From Sparsely Sampled Networks. Frontiers in Physiology, 2021, 12, 624097.	1.3	7
1178	One-shot analysis of translated mammalian lncRNAs with AHARIBO. ELife, 2021, 10, .	2.8	15
1179	Pathogenesis and prospects for therapeutic clinical application of noncoding RNAs in glaucoma: Systematic perspectives. Journal of Cellular Physiology, 2021, 236, 7097-7116.	2.0	13
1180	A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Reports, 2021, 34, 108695.	2.9	16
1181	Specificity of mRNA Folding and Its Association with Evolutionarily Adaptive mRNA Secondary Structures. Genomics, Proteomics and Bioinformatics, 2021, 19, 882-900.	3.0	0
1182	Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS Journal, 2022, 289, 53-74.	2.2	57
1183	Determinants of genome-wide distribution and evolution of uORFs in eukaryotes. Nature Communications, 2021, 12, 1076.	5.8	37
1184	SIRT1 reduces epigenetic and non-epigenetic changes to maintain the quality of postovulatory aged oocytes in mice. Experimental Cell Research, 2021, 399, 112421.	1.2	20
1185	Ribosome-Profiling Reveals Restricted Post Transcriptional Expression of Antiviral Cytokines and Transcription Factors during SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2021, 22, 3392.	1.8	22
1189	Germline SAMD9L truncation variants trigger global translational repression. Journal of Experimental Medicine, 2021, 218, .	4.2	20
1191	PTENε suppresses tumor metastasis through regulation of filopodia formation. EMBO Journal, 2021, 40, e105806.	3.5	16
1192	The Effect of Irisin as a Metabolic Regulator and Its Therapeutic Potential for Obesity. International Journal of Endocrinology, 2021, 2021, 1-12.	0.6	23
1193	RiboA: a web application to identify ribosome A-site locations in ribosome profiling data. BMC Bioinformatics, 2021, 22, 156.	1.2	2
1194	Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nature Communications, 2021, 12, 1461.	5.8	65
1196	Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Reports, 2021, 34, 108815.	2.9	120
1197	Drosophila primary microRNA-8 encodes a microRNA-encoded peptide acting in parallel of miR-8. Genome Biology, 2021, 22, 118.	3.8	15
1199	Increased expression of peptides from non-coding genes in cancer proteomics datasets suggests potential tumor neoantigens. Communications Biology, 2021, 4, 496.	2.0	20

#	Article	IF	CITATIONS
1202	The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Molecular Genetics and Genomics, 2021, 296, 765-781.	1.0	8
1203	Deep conservation of ribosome stall sites across RNA processing genes. NAR Genomics and Bioinformatics, 2021, 3, Iqab038.	1.5	9
1206	Live-cell imaging reveals kinetic determinants of quality control triggered by ribosome stalling. Molecular Cell, 2021, 81, 1830-1840.e8.	4.5	23
1208	Impact of uORFs in mediating regulation of translation in stress conditions. BMC Molecular and Cell Biology, 2021, 22, 29.	1.0	16
1209	Microproteins: from behind the scenes to the spotlight. Genome Instability & Disease, 2021, 2, 225-239.	0.5	5
1210	Coâ€translational folding of nascent polypeptides: Multiâ€kayered mechanisms for the efficient biogenesis of functional proteins. BioEssays, 2021, 43, e2100042.	1.2	7
1211	$\langle i \rangle N \langle i \rangle 1$ -acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .	1.2	11
1212	Epigenetic Regulation of Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4956.	1.8	40
1214	Monitoring mammalian mitochondrial translation with MitoRiboSeq. Nature Protocols, 2021, 16, 2802-2825.	5.5	16
1217	The IncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nature Communications, 2021, 12, 2529.	5.8	45
1218	An Immune-Related Long Non-Coding RNA Signature to Predict the Prognosis of Ewing's Sarcoma Based on a Machine Learning Iterative Lasso Regression. Frontiers in Cell and Developmental Biology, 2021, 9, 651593.	1.8	4
1219	Minireview: Novel Micropeptide Discovery by Proteomics and Deep Sequencing Methods. Frontiers in Genetics, 2021, 12, 651485.	1.1	13
1223	Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annual Review of Biochemistry, 2021, 90, 375-401.	5.0	73
1224	smORFer: a modular algorithm to detect small ORFs in prokaryotes. Nucleic Acids Research, 2021, 49, e89-e89.	6.5	16
1226	Deciphering the Nature of Trp73 Isoforms in Mouse Embryonic Stem Cell Models: Generation of Isoform-Specific Deficient Cell Lines Using the CRISPR/Cas9 Gene Editing System. Cancers, 2021, 13, 3182.	1.7	5
1227	Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Reports, 2021, 35, 109305.	2.9	38
1228	Phosphorylation of a reinitiation supporting protein, RISP, determines its function in translation reinitiation. Nucleic Acids Research, 2021, 49, 6908-6924.	6.5	14
1230	Quantitative Modeling of Protein Synthesis Using Ribosome Profiling Data. Frontiers in Molecular Biosciences, 2021, 8, 688700.	1.6	6

#	Article	IF	Citations
1231	Nascent Folding of Proteins Across the Three Domains of Life. Frontiers in Molecular Biosciences, 2021, 8, 692230.	1.6	3
1232	Free energy landscape of RNA binding dynamics in start codon recognition by eukaryotic ribosomal pre-initiation complex. PLoS Computational Biology, 2021, 17, e1009068.	1.5	5
1234	Long RNA Sequencing and Ribosome Profiling of Inflamed \hat{l}^2 -Cells Reveal an Extensive Translatome Landscape. Diabetes, 2021, 70, 2299-2312.	0.3	10
1235	A p53-dependent translational program directs tissue-selective phenotypes in a model of ribosomopathies. Developmental Cell, 2021, 56, 2089-2102.e11.	3.1	26
1236	Profiling SARS-CoV-2 HLA-I peptidome reveals TÂcell epitopes from out-of-frame ORFs. Cell, 2021, 184, 3962-3980.e17.	13.5	98
1237	Translation of ABCE1 Is Tightly Regulated by Upstream Open Reading Frames in Human Colorectal Cells. Biomedicines, 2021, 9, 911.	1.4	6
1238	RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints. Life, 2021, 11, 701.	1,1	8
1239	Translational control of stem cell function. Nature Reviews Molecular Cell Biology, 2021, 22, 671-690.	16.1	69
1240	Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Research, 2021, 49, 7298-7317.	6.5	22
1241	Human oncoprotein 5MP suppresses general and repeat-associated non-AUG translation via eIF3 by a common mechanism. Cell Reports, 2021, 36, 109376.	2.9	16
1242	LncRNAâ€encoded microproteins: A new form of cargo in cell cultureâ€derived and circulating extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12123.	5.5	26
1244	From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Non-coding RNA, 2021, 7, 44.	1.3	12
1246	Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments. Nature Communications, 2021, 12, 5094.	5.8	21
1247	Codon usage and protein length-dependent feedback from translation elongation regulates translation initiation and elongation speed. Nucleic Acids Research, 2021, 49, 9404-9423.	6.5	22
1249	Sustainable Biological Ammonia Production towards a Carbon-Free Society. Sustainability, 2021, 13, 9496.	1.6	6
1251	Exploring Evidence of Non-coding RNA Translation With Trips-Viz and GWIPS-Viz Browsers. Frontiers in Cell and Developmental Biology, 2021, 9, 703374.	1.8	3
1253	A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome. Nature Communications, 2021, 12, 5120.	5.8	57
1254	Probing the spatiotemporal patterns of HBV multiplication reveals novel features of its subcellular processes. PLoS Pathogens, 2021, 17, e1009838.	2.1	12

#	Article	IF	CITATIONS
1255	Structured elements drive extensive circular RNA translation. Molecular Cell, 2021, 81, 4300-4318.e13.	4.5	108
1256	The plasticity of mRNA translation during cancer progression and therapy resistance. Nature Reviews Cancer, 2021, 21, 558-577.	12.8	100
1257	Know thy immune self and nonâ€self: Proteomics informs on the expanse of self and nonâ€self, and how and where they arise. Proteomics, 2021, , 2000143.	1.3	6
1260	Identifying Small Open Reading Frames in Prokaryotes with Ribosome Profiling. Journal of Bacteriology, 2022, 204, JB0029421.	1.0	26
1261	Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Reports, 2021, 36, 109646.	2.9	7
1262	Discovery of C13-Aminobenzoyl Cycloheximide Derivatives that Potently Inhibit Translation Elongation. Journal of the American Chemical Society, 2021, 143, 13473-13477.	6.6	10
1263	Widespread translational control regulates retinal development in mouse. Nucleic Acids Research, 2021, 49, 9648-9664.	6.5	7
1264	Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Scientific Reports, 2021, 11, 18435.	1.6	8
1265	Designing libraries for pooled CRISPR functional screens of long noncoding RNAs. Mammalian Genome, 2022, 33, 312-327.	1.0	2
1266	Found in Translation: Novel Insights Into Type 1 Diabetes and β-Cell Biology. Diabetes, 2021, 70, 2185-2186.	0.3	0
1267	Delayed Protein Changes During Seed Germination. Frontiers in Plant Science, 2021, 12, 735719.	1.7	2
1268	Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. Biochemistry (Moscow), 2021, 86, 1095-1106.	0.7	2
1269	Characterization of Two Variants at Met 1 of the Human LDLR Gene Encoding the Same Amino Acid but Causing Different Functional Phenotypes. Biomedicines, 2021, 9, 1219.	1.4	5
1270	Nascent Ribo-Seq measures ribosomal loading time and reveals kinetic impact on ribosome density. Nature Methods, 2021, 18, 1068-1074.	9.0	16
1271	hnRNPâ€A1 binds to the IRES of MELOEâ€1 antigen to promote MELOEâ€1 translation in stressed melanoma cells. Molecular Oncology, 2022, 16, 594-606.	2.1	9
1272	Unraveling the hidden role of a uORF-encoded peptide as a kinase inhibitor of PKCs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
1273	ĐœĐ¾ĐƊ¸Ñ"Đ¸ĐºĐ°Ñ†Đ¸Đ¸ Ñ€Đ¸Đ±Đ¾ÑĐ¾Đ¼Đ½Đ¾Đ³Đ¾ Đ¿Ñ€Đ¾Ñ"Đ°Đ¹Đ»Đ¸Đ½Đ³Đ°, Đ¿Đ¾ĐĐ²Đ¾Đ)»Ñющ	_· Đ , Φμ Đ¿Đ¾€
1274	IncRNA and breast cancer: Progress from identifying mechanisms to challenges and opportunities of clinical treatment. Molecular Therapy - Nucleic Acids, 2021, 25, 613-637.	2.3	52

#	Article	IF	CITATIONS
1275	Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. MSphere, 2021, 6, e0036621.	1.3	10
1276	SmProt: A Reliable Repository with Comprehensive Annotation of Small Proteins Identified from Ribosome Profiling. Genomics, Proteomics and Bioinformatics, 2021, 19, 602-610.	3.0	28
1277	Metastatic colorectal cancer: Perspectives on long non-coding RNAs and promising therapeutics. European Journal of Pharmacology, 2021, 908, 174367.	1.7	5
1278	Ribosomal profilingâ€"Diversity and applications. , 2021, , 255-280.		0
1279	Assessing Ribosome Distribution Along Transcripts with Polarity Scores and Regression Slope Estimates. Methods in Molecular Biology, 2021, 2252, 269-294.	0.4	1
1280	On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biology, 2021, 18, 1025-1036.	1.5	18
1281	Poly-A Tailing and Adaptor Ligation Methods for Ribo-Seq Library Construction. Methods in Molecular Biology, 2021, 2252, 221-237.	0.4	0
1283	Experimental Validation of the Noncoding Potential for IncRNAs. Methods in Molecular Biology, 2021, 2348, 221-230.	0.4	0
1284	Transitions in the Proteome and Phospho-Proteome During <i>Xenopus laevis</i> Development. SSRN Electronic Journal, 0, , .	0.4	1
1285	The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. International Journal of Molecular Sciences, 2021, 22, 632.	1.8	108
1288	Polysome Profiling and Metabolic Labeling Methods to Measure Translation in Trypanosoma brucei. Methods in Molecular Biology, 2020, 2116, 99-108.	0.4	3
1289	Regulation of Eukaryotic Cell Differentiation by Long Non-coding RNAs., 2013, , 15-67.		4
1290	A Stacking-Based Approach to Identify Translated Upstream Open Reading Frames in Arabidopsis Thaliana. Lecture Notes in Computer Science, 2015, , 138-149.	1.0	6
1291	Accurate Recovery of Ribosome Positions Reveals Slow Translation of Wobble-Pairing Codons in Yeast. Lecture Notes in Computer Science, 2016, , 37-52.	1.0	3
1292	The Role of FNDC5/Irisin in theÂNervous System and asÂa Mediator for Beneficial Effects of Exercise on theÂBrain. Research and Perspectives in Endocrine Interactions, 2017, , 93-102.	0.2	14
1293	RNAissance., 2012, , 1-18.		2
1294	Nascent Chain-Mediated Localization of mRNA on the Endoplasmic Reticulum as an Important Step of Unfolded Protein Response., 2014,, 291-310.		1
1295	Diverse Mechanisms of Translation Regulation and Their Role in Cancer. , 2014, , 39-71.		2

#	Article	IF	CITATIONS
1296	METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway. Biochemical and Biophysical Research Communications, 2020, 527, 791-798.	1.0	10
1297	Large-Scale Discovery of Non-conventional Peptides in Maize and Arabidopsis through an Integrated Peptidogenomic Pipeline. Molecular Plant, 2020, 13, 1078-1093.	3.9	58
1298	Comparative Proteomic Profiling of Unannotated Microproteins and Alternative Proteins in Human Cell Lines. Journal of Proteome Research, 2020, 19, 3418-3426.	1.8	39
1299	Dynamic landscape of the local translation at activated synapses. Molecular Psychiatry, 2018, 23, 107-114.	4.1	27
1300	A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells. Nature Communications, 2016, 7, 12209.	5.8	192
1301	Ribosomes guide pachytene piRNA formation on long intergenic piRNA precursors. Nature Cell Biology, 2020, 22, 200-212.	4.6	29
1302	Quantification of mRNA translation in live cells using single-molecule imaging. Nature Protocols, 2020, 15, 1371-1398.	5.5	11
1303	eEF2K enhances expression of PD-L1 by promoting the translation of its mRNA. Biochemical Journal, 2020, 477, 4367-4381.	1.7	25
1304	Ribosome heterogeneity in stem cells and development. Journal of Cell Biology, 2020, 219, .	2.3	61
1305	Coupling of translation quality control and mRNA targeting to stress granules. Journal of Cell Biology, 2020, 219, .	2.3	40
1306	Global translational landscape of the <i>Candida albicans</i> morphological transition. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	8
1307	Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. Nucleic Acids Research, 2021, 49, 3603-3616.	6.5	25
1308	Ribosome profiling in archaea reveals leaderless translation, novel translational initiation sites, and ribosome pausing at single codon resolution. Nucleic Acids Research, 2020, 48, 5201-5216.	6.5	57
1309	What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. Open Biology, 2020, 10, 200292.	1.5	18
1361	Slowing ribosome velocity restores folding and function of mutant CFTR. Journal of Clinical Investigation, 2019, 129, 5236-5253.	3.9	36
1362	Uncovering the role of genomic "dark matter―in human disease. Journal of Clinical Investigation, 2012, 122, 1589-1595.	3.9	70
1363	BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1. Journal of Clinical Investigation, 2016, 126, 2903-2918.	3.9	105
1364	Ribosome profiling of HEK293T cells overexpressing codon optimized coagulation factor IX. F1000Research, 2020, 9, 174.	0.8	2

#	Article	IF	Citations
1365	Advances in analyzing RNA diversity in eukaryotic transcriptomes: peering through the Omics lens. F1000Research, 2016, 5, 2668.	0.8	3
1366	Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Research, 0, 2, 116.	0.9	11
1367	Using mitoribosomal profiling to investigate human mitochondrial translation. Wellcome Open Research, 2017, 2, 116.	0.9	4
1368	Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect. PLoS Biology, 2016, 14, e1002462.	2.6	49
1369	Origins of De Novo Genes in Human and Chimpanzee. PLoS Genetics, 2015, 11, e1005721.	1.5	123
1370	Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast. PLoS Genetics, 2015, 11, e1005732.	1.5	196
1371	Genome-Wide and Experimental Resolution of Relative Translation Elongation Speed at Individual Gene Level in Human Cells. PLoS Genetics, 2016, 12, e1005901.	1.5	36
1372	Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States. PLoS Genetics, 2016, 12, e1006024.	1.5	74
1373	Transient Phenomena in Gene Expression after Induction of Transcription. PLoS ONE, 2012, 7, e35044.	1.1	10
1374	In Silico Estimation of Translation Efficiency in Human Cell Lines: Potential Evidence for Widespread Translational Control. PLoS ONE, 2013, 8, e57625.	1.1	18
1375	Combining Different mRNA Capture Methods to Analyze the Transcriptome: Analysis of the Xenopus laevis Transcriptome. PLoS ONE, 2013, 8, e77700.	1.1	23
1376	Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene Translation. PLoS ONE, 2014, 9, e96039.	1.1	65
1377	Dynamic Conformations of Nucleophosmin (NPM1) at a Key Monomer-Monomer Interface Affect Oligomer Stability and Interactions with Granzyme B. PLoS ONE, 2014, 9, e115062.	1.1	11
1378	Translational Initiation at a Non-AUG Start Codon for Human and Mouse Negative Elongation Factor-B. PLoS ONE, 2015, 10, e0127422.	1.1	3
1379	Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation. PLoS ONE, 2016, 11, e0143235.	1.1	12
1380	Chamber Specific Gene Expression Landscape of the Zebrafish Heart. PLoS ONE, 2016, 11, e0147823.	1.1	24
1381	Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle. PLoS ONE, 2016, 11, e0148311.	1.1	14
1382	Drug-Based Lead Discovery: The Novel Ablative Antiretroviral Profile of Deferiprone in HIV-1-Infected Cells and in HIV-Infected Treatment-Naive Subjects of a Double-Blind, Placebo-Controlled, Randomized Exploratory Trial. PLoS ONE, 2016, 11, e0154842.	1.1	27

#	Article	IF	CITATIONS
1383	High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling. PLoS Pathogens, 2016, 12, e1005473.	2.1	188
1384	Imaging Single-mRNA Localization and Translation in Live Neurons. Molecules and Cells, 2016, 39, 841-846.	1.0	17
1385	Translatome Regulation in Neuronal Injury and Axon Regrowth. ENeuro, 2018, 5, ENEURO.0276-17.2018.	0.9	26
1386	Translation is required for miRNAâ€dependent decay of endogenous transcripts. EMBO Journal, 2021, 40, e104569.	3.5	22
1387	<scp>SGTA</scp> associates with nascent membrane protein precursors. EMBO Reports, 2020, 21, e48835.	2.0	23
1388	Ribosome Profiling for Biomarker Discovery. Japanese Journal of Complementary and Alternative Medicine, 2013, 10, 1-7.	1.0	2
1389	IRES-dependent translation of the long non coding RNA <i>meloe </i> in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget, 2016, 7, 59704-59713.	0.8	40
1390	HER3 and LINCO0052 interplay promotes tumor growth in breast cancer. Oncotarget, 2017, 8, 6526-6539.	0.8	28
1391	Decoding poxvirus genome. Oncotarget, 2015, 6, 28513-28514.	0.8	6
1392	ROSE: A Deep Learning Based Framework for Predicting Ribosome Stalling. SSRN Electronic Journal, 0, ,	0.4	2
1393	Prediction of Long Non-Coding RNAs Based on RNA-Seq*. Progress in Biochemistry and Biophysics, 2013, 39, 1156-1166.	0.3	3
1394	Quality control mechanisms of protein biogenesis: proteostasis dies hard. AIMS Biophysics, 2016, 3, 456-478.	0.3	4
1395	Formulation of the protein synthesis rate with sequence information. Mathematical Biosciences and Engineering, 2017, 15, 507-522.	1.0	3
1396	Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. ELife, 2013, 2, e00308.	2.8	203
1397	Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. ELife, 2013, 2, e01179.	2.8	335
1398	Global cellular response to chemotherapy-induced apoptosis. ELife, 2013, 2, e01236.	2.8	59
1399	A serine sensor for multicellularity in a bacterium. ELife, 2013, 2, e01501.	2.8	73
1400	mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. ELife, 2014, 3, .	2.8	71

#	Article	IF	CITATIONS
1401	Long non-coding RNAs as a source of new peptides. ELife, 2014, 3, e03523.	2.8	451
1402	Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. ELife, 2014, 3, e03640.	2.8	155
1403	Measurement of average decoding rates of the 61 sense codons in vivo. ELife, 2014, 3, .	2.8	179
1404	Regulation of mRNA translation during mitosis. ELife, 2015, 4, .	2.8	138
1405	Many IncRNAs, 5'UTRs, and pseudogenes are translated and some are likely to express functional proteins. ELife, 2015, 4, e08890.	2.8	439
1406	Mapping translation 'hot-spots' in live cells by tracking single molecules of mRNA and ribosomes. ELife, $2016, 5, \ldots$	2.8	110
1407	Tunable protein synthesis by transcript isoforms in human cells. ELife, 2016, 5, .	2.8	238
1408	Cotranslational microRNA mediated messenger RNA destabilization. ELife, 2016, 5, .	2.8	38
1409	Thousands of novel translated open reading frames in humans inferred by ribosome footprint profiling. ELife, 2016, 5, .	2.8	122
1410	A systematic view on influenza induced host shutoff. ELife, 2016, 5, .	2.8	92
1411	Global analysis of gene expression reveals mRNA superinduction is required for the inducible immune response to a bacterial pathogen. ELife, 2017, 6, .	2.8	41
1412	Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. ELife, 2018, 7, .	2.8	83
1413	Decoupling the impact of microRNAs on translational repression versus RNA degradation in embryonic stem cells. ELife, 2018, 7, .	2.8	54
1414	New insights into the cellular temporal response to proteostatic stress. ELife, 2018, 7, .	2.8	47
1415	Translational regulation of protrusion-localized RNAs involves silencing and clustering after transport. ELife, 2019, 8, .	2.8	36
1416	Structural and mutational analysis of the ribosome-arresting human XBP1u. ELife, 2019, 8, .	2.8	51
1417	HRI coordinates translation necessary for protein homeostasis and mitochondrial function in erythropoiesis. ELife, $2019,8,.$	2.8	47
1418	Comprehensive annotations of human herpesvirus 6A and 6B genomes reveal novel and conserved genomic features. ELife, 2020, 9, .	2.8	30

#	Article	IF	Citations
1419	Stop codon context influences genome-wide stimulation of termination codon readthrough by aminoglycosides. ELife, 2020, 9 , .	2.8	122
1420	A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells. ELife, 2020, 9, .	2.8	43
1421	Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. ELife, 2020, 9 , .	2.8	73
1422	Ribosome collisions trigger cis-acting feedback inhibition of translation initiation. ELife, 2020, 9, .	2.8	107
1423	Beyond the RNA-dependent function of LncRNA genes. ELife, 2020, 9, .	2.8	137
1424	System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ, 2014, 2, e270.	0.9	255
1425	Differential bicodon usage in lowly and highly abundant proteins. PeerJ, 2017, 5, e3081.	0.9	28
1426	Detection and Characterization of Ribosome-Associated Long Noncoding RNAs. Methods in Molecular Biology, 2021, 2254, 179-194.	0.4	2
1427	Investigating molecular mechanisms of 2A-stimulated ribosomal pausing and frameshifting in <i>Theilovirus </i> . Nucleic Acids Research, 2021, 49, 11938-11958.	6.5	11
1428	Stability and bifurcation analysis of a delayed genetic oscillator model. Nonlinear Dynamics, 0, , 1.	2.7	2
1429	Canary in a coal mine: collided ribosomes as sensors of cellular conditions. Trends in Biochemical Sciences, 2022, 47, 82-97.	3.7	38
1430	Exploring Ribosome-Positioning on Translating Transcripts with Ribosome Profiling. Methods in Molecular Biology, 2022, 2404, 83-110.	0.4	5
1431	Identification of Novel Translated Small Open Reading Frames in <i>Escherichia coli</i> Complementary Ribosome Profiling Approaches. Journal of Bacteriology, 2022, 204, JB0035221.	1.0	11
1433	Adaptive translational pausing is a hallmark of the cellular response to severe environmental stress. Molecular Cell, 2021, 81, 4191-4208.e8.	4.5	18
1434	Progenitorâ€derived ribosomal RNA supports protein synthesis in <i>Drosophila</i> neurons. Natural Sciences, 2022, 2, .	1.0	0
1435	Regulation of mRNA translation in stem cells; links to brain disorders. Cellular Signalling, 2021, 88, 110166.	1.7	4
1437	Chromatin Regulation by Long Non-coding RNAs. , 2013, , 1-13.		1
1438	Dissecting apoptosis the omics way. ELife, 2013, 2, e01587.	2.8	O

#	Article	IF	CITATIONS
1439	Analyzing the Nascentome (Polypeptidyl-tRNAs), the Dynamic Hub of Translation. , 2014, , 135-148.		0
1440	Mechanism of Translation in Eukaryotes. , 2014, , 7-37.		O
1441	Ribosome Profiling Analysis of In Vivo Translation. , 2014, , 119-133.		1
1443	Posttranscriptional Control During Stem Cells Differentiation. , 2014, , 95-107.		O
1447	Fingerprints of a message: integrating positional information on the transcriptome. Frontiers in Cell and Developmental Biology, 2014, 2, 39.	1.8	1
1458	Genome-wide Analysis of Acute Inflammatory and Anti-Inflammatory Responses in RAW264 Cells Suggests cis-Elements Associated with Translational Regulation. Journal of Data Mining in Genomics & Proteomics, 2016, 07, .	0.5	0
1459	Ribosome Profiling. , 2016, , 175-195.		0
1460	Noncoding RNAs in Breast Cancer. , 2016, , 345-364.		0
1479	The hypothesis of the origin of viruses from transposons. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2018, 36, 182.	0.1	2
1480	Active Ribosome Profiling With RiboLace. SSRN Electronic Journal, 0, , .	0.4	0
1496	A Coding Sequence-Embedded Principle Governs Translational Reading Frame Fidelity. Research, 2018, 2018, 7089174.	2.8	4
1498	Biochemical and cellular consequences of the antithrombin p.Met1? mutation identified in a severe thrombophilic family. Oncotarget, 2018, 9, 33202-33214.	0.8	3
1506	Genes. Advances in Bioinformatics and Biomedical Engineering Book Series, 2019, , 186-204.	0.2	0
1507	Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome. SSRN Electronic Journal, 0, , .	0.4	0
1522	Analysis of the In Vivo Translation Process in Trypanosoma cruzi Using Ribosome Profiling. Methods in Molecular Biology, 2020, 2116, 117-123.	0.4	0
1527	The translatome of neuronal cell bodies, dendrites, and axons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	65
1528	A deterministic model for non-monotone relationship between translation of upstream and downstream open reading frames. Mathematical Medicine and Biology, 2021, 38, 490-515.	0.8	1
1532	Antibody profiling of patients with prostate cancer reveals differences in antibody signatures among disease stages., 2020, 8, e001510.		9

#	Article	IF	CITATIONS
1534	Long Non-coding RNAs Diversity in Form and Function: From Microbes to Humans. RNA Technologies, 2020, , 1-57.	0.2	0
1536	Regulation of pluripotency and reprogramming by RNA binding proteins. Current Topics in Developmental Biology, 2020, 138, 113-138.	1.0	6
1538	Ribosome profiling of HEK293T cells overexpressing codon optimized coagulation factor IX. F1000Research, 2020, 9, 174.	0.8	3
1541	A Spontaneous RAG1 Nonsense Mutation Unveils Naturally Occurring N-Terminal Truncated RAG1 Isoforms. ImmunoHorizons, 2020, 4, 119-128.	0.8	0
1547	Controlling tissue patterning by translational regulation of signaling transcripts through the core translation factor eIF3c. Developmental Cell, 2021, 56, 2928-2937.e9.	3.1	11
1548	Mosaic translation hypothesis: chimeric polypeptides produced via multiple ribosomal frameshifting as a basis for adaptability. FEBS Journal, 2023, 290, 370-378.	2.2	3
1554	Does mRNA structure contain genetic information for regulating co-translational protein folding?. Zoological Research, 2017, 38, 36-43.	0.9	8
1555	Bi-directional ribosome scanning controls the stringency of start codon selection. Nature Communications, 2021, 12, 6604.	5.8	15
1556	Optimizing Recombinant Baculovirus Vector Design for Protein Production in Insect Cells. Processes, 2021, 9, 2118.	1.3	1
1557	Ribosome profiling reveals novel regulation of <i>C9ORF72</i> GGGGCC repeat-containing RNA translation. Rna, 2022, 28, 123-138.	1.6	17
1559	Intergenic ORFs as elementary structural modules of de novo gene birth and protein evolution. Genome Research, 2021, 31, 2303-2315.	2.4	22
1560	Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57, 261-304.	2.3	7
1561	Phospho-RNA sequencing with circAID-p-seq. Nucleic Acids Research, 2021, , .	6.5	0
1562	RiboReport - benchmarking tools for ribosome profiling-based identification of open reading frames in bacteria. Briefings in Bioinformatics, 2022, 23, .	3.2	15
1563	mtIF3 is locally translated in axons and regulates mitochondrial translation for axonal growth. BMC Biology, 2022, 20, 12.	1.7	6
1564	Relationship of Peptides and Long Non-Coding RNAs with Aging. Advances in Gerontology, 2021, 11, 351-361.	0.1	0
1565	Translation initiation landscape profiling reveals hidden open-reading frames required for the pathogenesis of tomato yellow leaf curl Thailand virus. Plant Cell, 2022, 34, 1804-1821.	3.1	22
1566	Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Research, 2022, 50, 1111-1127.	6.5	21

#	Article	IF	CITATIONS
1567	To New Beginnings: Riboproteogenomics Discovery of N-Terminal Proteoforms in Arabidopsis Thaliana. Frontiers in Plant Science, 2021, 12, 778804.	1.7	8
1568	Small Open Reading Frames, How to Find Them and Determine Their Function. Frontiers in Genetics, 2021, 12, 796060.	1.1	10
1569	Genomic and functional conservation of lncRNAs: lessons from flies. Mammalian Genome, 2022, 33, 328-342.	1.0	18
1570	Virus secret revealed: Ribosome profiling uncovers unannotated translation initiation sites and hidden open reading frame in the TYLCTHV genome. Plant Cell, 2022, , .	3.1	O
1571	LncPep: A Resource of Translational Evidences for IncRNAs. Frontiers in Cell and Developmental Biology, 2022, 10, 795084.	1.8	7
1572	Translation and emerging functions of nonâ€coding RNAs in inflammation and immunity. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 2025-2037.	2.7	26
1574	mRNA translation from an antigen presentation perspective: A tribute to the works of Nilabh Shastri. Molecular Immunology, 2022, 141, 305-308.	1.0	2
1575	Ribosome exit tunnel electrostatics. Physical Review E, 2022, 105, 014409.	0.8	5
1576	Recent Advances in Our Molecular and Mechanistic Understanding of Misfolded Cellular Proteins in Alzheimer's Disease (AD) and Prion Disease (PrD). Biomolecules, 2022, 12, 166.	1.8	8
1577	Proteomic identification of proliferation and progression markers in human polycythemia vera stem and progenitor cells. Blood Advances, 2022, , .	2.5	2
1579	Ribosome slowdown triggers codonâ€mediated mRNA decay independently of ribosome quality control. EMBO Journal, 2022, 41, e109256.	3.5	25
1580	Mechanistic convergence across initiation sites for RAN translation in fragile X associated tremor ataxia syndrome. Human Molecular Genetics, 2022, 31, 2317-2332.	1.4	7
1581	Profiling and functional characterization of maternal mRNA translation during mouse maternal-to-zygotic transition. Science Advances, 2022, 8, eabj3967.	4.7	52
1582	Non-canonical initiation factors modulate repeat-associated non-AUG translation. Human Molecular Genetics, 2022, 31, 2521-2534.	1.4	19
1583	Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Advances in Clinical Chemistry, 2022, 106, 91-179.	1.8	7
1584	Bacterial Ribosome Rescue Systems. Microorganisms, 2022, 10, 372.	1.6	3
1586	Emerging roles of IncRNA in Nasopharyngeal Carcinoma and therapeutic opportunities. International Journal of Biological Sciences, 2022, 18, 2714-2728.	2.6	9
1587	Exploring the Peptide Potential of Genomes. Methods in Molecular Biology, 2022, 2405, 63-82.	0.4	1

#	Article	IF	CITATIONS
1588	LncRNAs and Cardiovascular Disease. Advances in Experimental Medicine and Biology, 2022, 1363, 71-95.	0.8	4
1589	High-Resolution Ribosome Profiling for Determining Ribosome Functional States During Translation Elongation. Methods in Molecular Biology, 2022, 2428, 173-186.	0.4	2
1590	Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. Molecular Cell, 2022, 82, 1557-1572.e7.	4.5	30
1591	Evolutionarily conserved inhibitory uORFs sensitize <i>Hox</i> mRNA translation to start codon selection stringency. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	25
1592	Micropeptides translated from putative long noncoding RNAs. Acta Biochimica Et Biophysica Sinica, 2022, 54, 292-300.	0.9	1
1593	Low-input RNase footprinting for simultaneous quantification of cytosolic and mitochondrial translation. Genome Research, 2022, 32, 545-557.	2.4	15
1594	Editorial: Emerging Proteins and Polypeptides Expressed by "Non-Coding RNAs― Frontiers in Cell and Developmental Biology, 2022, 10, 862870.	1.8	1
1595	Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins?. Frontiers in Genetics, 2022, 13, 843014.	1.1	13
1596	Ribosome Associated Protein Quality Control: Mechanism and Function. International Journal for Research in Applied Sciences and Biotechnology, 2022, 9, 118-126.	0.2	0
1597	Ribosome profiling of porcine reproductive and respiratory syndrome virus reveals novel features of viral gene expression. ELife, 2022, 11 , .	2.8	14
1598	Ribosome-Associated ncRNAs (rancRNAs) Adjust Translation and Shape Proteomes. Non-coding RNA, 2022, 8, 22.	1.3	3
1600	A peptide encoded by priâ€miRNAâ€31 represses autoimmunity by promoting T _{reg} differentiation. EMBO Reports, 2022, 23, e53475.	2.0	15
1601	Short open reading frames (sORFs) and microproteins: an update on their identification and validation measures. Journal of Biomedical Science, 2022, 29, 19.	2.6	21
1603	Protein synthesis control in cancer: selectivity and therapeutic targeting. EMBO Journal, 2022, 41, e109823.	3.5	24
1604	mRNA Translation Is Dynamically Regulated to Instruct Stem Cell Fate. Frontiers in Molecular Biosciences, 2022, 9, 863885.	1.6	10
1605	Upstream open reading frames regulate translation of cancer-associated transcripts and encode HLA-presented immunogenic tumor antigens. Cellular and Molecular Life Sciences, 2022, 79, 171.	2.4	13
1606	MHC Class I Immunopeptidome: Past, Present, and Future. Molecular and Cellular Proteomics, 2022, 21, 100230.	2.5	23
1607	Proteomicsâ€driven identification of short open reading frameâ€encoded peptides. Proteomics, 2022, 22, e2100312.	1.3	5

#	Article	IF	CITATIONS
1610	A novel isoform of hydroxyacyl-CoA dehydrogenase inhibits cell proliferation. Biochemical and Biophysical Research Communications, 2022, 606, 75-79.	1.0	1
1611	Combinations of slow-translating codon clusters can increase mRNA half-life in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	2
1615	The Small Open Reading Frameâ€Encoded Peptides: Advances in Methodologies and Functional Studies. ChemBioChem, 2022, 23, .	1.3	4
1616	Open reading frame dominance indicates proteinâ€coding potential of RNAs. EMBO Reports, 2022, 23, e54321.	2.0	7
1617	The story of rRNA expansion segments: Finding functionality amidst diversity. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1732.	3.2	7
1618	The homeostatic regulation of ribosome biogenesis. Seminars in Cell and Developmental Biology, 2023, 136, 13-26.	2.3	18
1647	A Ribo-Seq Method to Study Genome-Wide Translational Regulation in Plants. Methods in Molecular Biology, 2022, 2494, 61-98.	0.4	6
1649	Three-nucleotide periodicity of nucleotide diversity in a population enables the identification of open reading frames. Briefings in Bioinformatics, 2022, 23, .	3.2	6
1650	Purification of Ribosome-Nascent-Chain Complex for Ribosome Profiling and Selective Ribosome Profiling. Methods in Molecular Biology, 2022, 2477, 179-193.	0.4	0
1652	Non-AUG translation initiation in mammals. Genome Biology, 2022, 23, 111.	3.8	25
1653	Noise reduction by upstream open reading frames. Nature Plants, 2022, 8, 474-480.	4.7	19
1654	Human UFSP1 translated from an upstream near-cognate initiation codon functions as an active UFM1-specific protease. Journal of Biological Chemistry, 2022, 298, 102016.	1.6	10
1655	Mammalian proteome expansion by stop codon readthrough. Wiley Interdisciplinary Reviews RNA, 2023, 14, e1739.	3.2	11
1656	RNA supply drives physiological granule assembly in neurons. Nature Communications, 2022, 13, 2781.	5.8	11
1659	The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochemical Journal, 2022, 479, 1059-1082.	1.7	7
1660	Quaternary structure independent folding of voltage-gated ion channel pore domain subunits. Nature Structural and Molecular Biology, 2022, 29, 537-548.	3.6	5
1661	Are H1 and H3 haplotypes of endothelial protein C receptor (PROCR) an important factor in contracting COVIDâ \in 19?. Journal of Medical Virology, 0, , .	2.5	0
1662	Proteomic analysis of nascent polypeptide chains that potentially induce translational pausing during elongation. Bioscience, Biotechnology and Biochemistry, 0, , .	0.6	0

#	Article	IF	CITATIONS
1663	FMRP-dependent production of large dosage-sensitive proteins is highly conserved. Genetics, 2022, 221, .	1.2	8
1665	Transcriptional and Translational Dynamics of Zika and Dengue Virus Infection. Viruses, 2022, 14, 1418.	1.5	5
1666	Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood, 2022, 140, 1496-1506.	0.6	54
1667	Estrogen distinctly regulates transcription and translation of lncRNAs and pseudogenes in breast cancer cells. Genomics, 2022, 114, 110421.	1.3	5
1668	An Integrated Approach for Microprotein Identification and Sequence Analysis. Journal of Visualized Experiments, 2022, , .	0.2	1
1669	A high-resolution map of human RNA translation. Molecular Cell, 2022, 82, 2885-2899.e8.	4.5	37
1670	Limited Evidence for Protein Products of Noncoding Transcripts in the HEK293T Cellular Cytosol. Molecular and Cellular Proteomics, 2022, 21, 100264.	2.5	11
1671	Emerging biology of noncoding RNAs in malaria parasites. PLoS Pathogens, 2022, 18, e1010600.	2.1	11
1672	Standardized annotation of translated open reading frames. Nature Biotechnology, 2022, 40, 994-999.	9.4	86
1673	Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. Journal of Experimental Medicine, 2022, 219, .	4.2	6
1674	Geneticin reduces mRNA stability. PLoS ONE, 2022, 17, e0272058.	1.1	0
1675	Inhibitors of eIF4G1–eIF1 uncover its regulatory role of ER/UPR stress-response genes independent of eIF2α-phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	6
1677	Identification of unannotated coding sequences and their physiological functions. Journal of Biochemistry, 2023, 173, 237-242.	0.9	2
1678	Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS ONE, 2022, 17, e0271995.	1.1	7
1680	uORF-Mediated Translational Regulation of ATF4 Serves as an Evolutionarily Conserved Mechanism Contributing to Non-Small-Cell Lung Cancer (NSCLC) and Stress Response. Journal of Molecular Evolution, 2022, 90, 375-388.	0.8	3
1681	Identification and analysis of smORFs in Chlamydomonas reinhardtii. Genomics, 2022, 114, 110444.	1.3	3
1682	Noncoding RNAs in cataract formation: Star molecules emerge in an endless stream. Pharmacological Research, 2022, 184, 106417.	3.1	6
1683	Amino porphyrin-peptide assemblies induce ribosome damage and cancer stem cell inhibition for an enhanced photodynamic therapy. Biomaterials, 2022, 289, 121812.	5.7	9

#	Article	IF	CITATIONS
1684	Condon Optimization: Codon Optimization of Therapeutic Proteins: Suggested Criteria for Increased Efficacy and Safety., 2022, , 197-224.		0
1685	NCodR: A multi-class support vector machine classification to distinguish non-coding RNAs in Viridiplantae. Quantitative Plant Biology, 2022, 3, .	0.8	3
1693	Ribosome-Directed Therapies in Cancer. Biomedicines, 2022, 10, 2088.	1.4	9
1694	Genome-wide identification of Arabidopsis non-AUG-initiated upstream ORFs with evolutionarily conserved regulatory sequences that control protein expression levels. Plant Molecular Biology, 2023, 111, 37-55.	2.0	2
1696	A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nature Communications, 2022, 13, .	5.8	15
1698	Long Noncoding RNA <i>Lx8-SINE B2</i> Interacts with Eno1 to Regulate Self-Renewal and Metabolism of Embryonic Stem Cells. Stem Cells, 2022, 40, 1094-1106.	1.4	2
1699	Downstream Alternate Start Site Allows N-Terminal Nonsense Variants to Escape NMD and Results in Functional Recovery by Readthrough and Modulator Combination. Journal of Personalized Medicine, 2022, 12, 1448.	1.1	2
1700	Kozak Similarity Score Algorithm Identifies Alternative Translation Initiation Codons Implicated in Cancers. International Journal of Molecular Sciences, 2022, 23, 10564.	1.8	1
1701	Emerging role of oncogenic long noncoding RNA as cancer biomarkers. International Journal of Cancer, 2023, 152, 822-834.	2.3	14
1703	Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells, 2022, 11, 3017.	1.8	17
1704	Developmental dynamics of RNA translation in the human brain. Nature Neuroscience, 2022, 25, 1353-1365.	7.1	30
1705	Protein evidence of unannotated ORFs in Drosophila reveals diversity in the evolution and properties of young proteins. ELife, 0, 11 , .	2.8	10
1706	When does hepatitis B virus meet long-stranded noncoding RNAs?. Frontiers in Microbiology, 0, 13, .	1.5	2
1710	Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. Cancer Communications, 2022, 42, 1049-1082.	3.7	28
1711	Mnk $1/2$ kinases regulate memory and autism-related behaviours via Syngap 1. Brain, $0,$	3.7	6
1713	A Dynamic rRNA Ribomethylome Drives Stemness in Acute Myeloid Leukemia. Cancer Discovery, 2023, 13, 332-347.	7.7	16
1714	Translation and natural selection of micropeptides from long non-canonical RNAs. Nature Communications, 2022, 13, .	5.8	20
1715	Translational buffering by ribosome stalling in upstream open reading frames. PLoS Genetics, 2022, 18, e1010460.	1.5	3

#	Article	IF	CITATIONS
1716	Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential. Molecular Cell, 2022, 82, 3840-3855.e8.	4.5	11
1718	Dysregulated proteostasis. , 2023, , 55-103.		0
1719	Casting CRISPR-Cas13d to fish for microprotein functions in animal development. IScience, 2022, 25, 105547.	1.9	3
1720	Emerging roles of long noncoding and circular RNAs in pancreatic ductal adenocarcinoma. Frontiers in Physiology, 0, 13, .	1.3	2
1721	Engineered multiple translation initiation sites: a novel tool to enhance protein production in <i>Bacillus licheniformis </i> and other industrially relevant bacteria. Nucleic Acids Research, 2022, 50, 11979-11990.	6.5	4
1722	The alternative proteome in neurobiology. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	3
1723	Discovery of the hidden coding information in cancers: Mechanisms and biological functions. International Journal of Cancer, 2023, 153, 20-32.	2.3	3
1724	Ribo-uORF: a comprehensive data resource of upstream open reading frames (uORFs) based on ribosome profiling. Nucleic Acids Research, 2023, 51, D248-D261.	6.5	6
1725	Eukaryotic translation initiation factor <scp>elF4G2</scp> opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Proliferation, 2023, 56, .	2.4	4
1727	A critical period of translational control during brain development at codon resolution. Nature Structural and Molecular Biology, 2022, 29, 1277-1290.	3.6	17
1728	DAP5 enables main ORF translation on mRNAs with structured and uORF-containing $5\hat{a} \in \mathbb{Z}$ leaders. Nature Communications, 2022, 13, .	5.8	15
1729	Deciphering the role of RNA structure in translation efficiency. BMC Bioinformatics, 2022, 23, .	1.2	2
1730	Arginine-rich C9ORF72 ALS proteins stall ribosomes in a manner distinct from a canonical ribosome-associated quality control substrate. Journal of Biological Chemistry, 2023, 299, 102774.	1.6	7
1731	The global downregulation of protein synthesis observed during hepatogenic maturation is associated with a decrease in TOP mRNA translation. Stem Cell Reports, 2022, , .	2.3	0
1732	Discovering misannotated IncRNAs using deep learning training dynamics. Bioinformatics, 2023, 39, .	1.8	3
1735	Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metabolism, 2023, 35, 166-183.e11.	7.2	19
1736	Synonymous mutations in the phosphoglycerate kinase 1 gene induce an altered response to protein misfolding in Schizosaccharomyces pombe. Frontiers in Microbiology, 0 , 13 , .	1.5	1
1737	Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4

#	Article	IF	CITATIONS
1738	How villains are made: The translation of dipeptide repeat proteins in C9ORF72-ALS/FTD. Gene, 2023, 858, 147167.	1.0	6
1739	mRNA transport, translation, and decay in adult mammalian central nervous system axons. Neuron, 2023, 111, 650-668.e4.	3.8	16
1740	Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure, 2023, 31, 4-19.	1.6	14
1741	RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells. Nature Communications, 2023, 14 , .	5.8	4
1743	Epigenetic features, methods, and implementations associated with COVID-19., 2023, , 161-175.		0
1744	Recent Advances and Future Potential of Long Non-Coding RNAs in Insects. International Journal of Molecular Sciences, 2023, 24, 2605.	1.8	2
1745	mRNA translational specialization by RBPMS presets the competence for cardiac commitment in hESCs. Science Advances, 2023, 9, .	4.7	7
1748	A multi-omics view of neuronal subcellular protein synthesis. Current Opinion in Neurobiology, 2023, 80, 102705.	2.0	6
1749	Making sense of mRNA translational "noise― Seminars in Cell and Developmental Biology, 2024, 154, 114-122.	2.3	0
1750	METTL3-Mediated m6A Modification Controls Splicing Factor Abundance and Contributes to Aggressive CLL. Blood Cancer Discovery, 2023, 4, 228-245.	2.6	6
1751	Major histocompatibility class I antigenic peptides derived from translation of pre-mRNAs generate immune tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
1754	The cost of competency?. Cell, 2023, 186, 685-687.	13.5	0
1756	The Host Non-Coding RNA Response to Alphavirus Infection. Viruses, 2023, 15, 562.	1.5	1
1757	Not1 and Not4 inversely determine mRNA solubility that sets the dynamics of co-translational events. Genome Biology, 2023, 24, .	3.8	4
1758	A nucleolar long "non-coding―RNA encodes a novel protein that functions in response to stress. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
1760	Vasa, a regulator of localized mRNA translation on the spindle. BioEssays, 2023, 45, .	1.2	0
1761	Key Stages of Flax Bast Fiber Development Through the Prism of Transcriptomics. Compendium of Plant Genomes, 2023, , 149-198.	0.3	1
1762	Preterm birth leads to a decreased number of differentiated podocytes and accelerated podocyte differentiation. Frontiers in Cell and Developmental Biology, 0, 11 , .	1.8	0

#	Article	IF	CITATIONS
1764	Ribosome biogenesis and function in development and disease. Development (Cambridge), 2023, 150, .	1.2	6
1765	Inhibition of Nonsense-Mediated Decay Induces Nociceptive Sensitization through Activation of the Integrated Stress Response. Journal of Neuroscience, 2023, 43, 2921-2933.	1.7	2
1766	Dysregulation of ribosome-associated quality control elicits cognitive disorders via overaccumulation of TTC3. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1768	Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxidants and Redox Signaling, 2023, 39, 351-373.	2.5	8
1769	Imaging spatiotemporal translation regulation in vivo. Seminars in Cell and Developmental Biology, 2024, 154, 155-164.	2.3	3
1770	Novel enhancers conferring compensatory transcriptional regulation of Nkx2-5 in heart development. IScience, 2023, 26, 106509.	1.9	1
1771	Transcriptional-translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell, 2023, 41, 853-870.e13.	7.7	6
1772	SERPINA1 long transcripts produce non-secretory alpha1-antitrypsin isoform: In vitro translation in living cells. International Journal of Biological Macromolecules, 2023, 241, 124433.	3.6	0
1775	Role of Bioinformatics in Drug Design and Discovery. , 2023, , 1-33.		0
1785	Cancer Antigens: Sources, Generation, and Presentation. , 2023, , 1-40.		0
1825	Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovascular Drugs and Therapy, $0, , .$	1.3	0
1882	In silico approaches for the analysis of developmental fate of stem cells. , 2024, , 319-329.		0
1883	Paradigm shift in stem cell research with computational tools, techniques, and databases. , 2024, , 17-32.		0