Understanding the roles of crustal growth and preserva

Earth and Planetary Science Letters 305, 405-412 DOI: 10.1016/j.epsl.2011.03.022

Citation Report

		REDORT	
#	Article	IF	CITATIONS
1	Where does India end and Eurasia begin?. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	3
2	A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 2012, 335, 1334-1336.	6.0	707
3	Increased loss of continental crust during supercontinent amalgamation. Gondwana Research, 2012, 21, 994-1000.	3.0	91
4	Metamorphic zircon: tracking fluid pathways and the implications for the preservation of detrital zircon. Journal of the Geological Society, 2013, 170, 631-639.	0.9	6
5	Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes. Geoscience Frontiers, 2013, 4, 667-680.	4.3	75
6	Zircon U–Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China. Chemical Geology, 2013, 360-361, 186-203.	1.4	92
7	Nature of magmatism and sedimentation at a Columbia active margin: Insights from combined U–Pb and Lu–Hf isotope data of detrital zircons from NW India. Gondwana Research, 2013, 23, 1040-1052.	3.0	100
8	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	1.6	136
9	Continental growth and the crustal record. Tectonophysics, 2013, 609, 651-660.	0.9	135
10	The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Research, 2013, 229, 177-188.	1.2	63
11	Detrital zircon geochronology of Ediacaran to Cambrian deep-water strata of the Franklinian basin, northern Ellesmere Island, Nunavut: implications for regional stratigraphic correlations. Canadian Journal of Earth Sciences, 2013, 50, 1007-1018.	0.6	24
12	Age, Hf isotope and trace element signatures of detrital zircons in the Mesoproterozoic Eriksfjord sandstone, southern Greenland: are detrital zircons reliable guides to sedimentary provenance and timing of deposition?. Geological Magazine, 2013, 150, 426-440.	0.9	31
13	Triassic sedimentation and postaccretionary crustal evolution along the Solonker suture zone in Inner Mongolia, China. Tectonics, 2014, 33, 960-981.	1.3	84
14	U–Th–Pb Geochronology. , 2014, , 341-378.		134
15	Early Paleoproterozoic (2.45–2.20Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton. Precambrian Research, 2014, 255, 627-640.	1.2	143
16	Growth and Differentiation of the Continental Crust from Isotope Studies of Accessory Minerals. , 2014, , 379-421.		18
17	The detrital zircon record: Supercontinents, parallel evolution—Or coincidence?. Precambrian Research, 2014, 244, 279-287.	1.2	37
18	Ferropicrite-driven reworking of the Ungava craton and the genesis of Neoarchean pyroxene-granitoids. Earth and Planetary Science Letters, 2014, 386, 138-148.	1.8	6

#	ARTICLE The provenance of northern Kalahari Basin sediments and growth history of the southern Congo Craton reconstructed by U–Pb ages of zircons from recent river sands. International Journal of	IF 0.9	CITATIONS
20	Earth Sciences, 2014, 103, 579-595. Magmatism, orogeny and the origin of high-heat-producing granites in Australian Proterozoic terranes. Journal of the Geological Society, 2014, 171, 149-152.	0.9	15
21	Metallogeny associated with the Palaeo-Mesoproterozoic Columbia supercontinent cycle: A synthesis of major metallic deposits. Ore Geology Reviews, 2014, 56, 415-422.	1.1	26
22	Sedimentary provenance, age and possible correlation of the Iona Group SW Scotland. Scottish Journal of Geology, 2014, 50, 143-158.	0.1	11
23	The supercontinent cycle: A retrospective essay. Gondwana Research, 2014, 25, 4-29.	3.0	549
24	Geophysical and geochemical nature of relaminated arcâ€derived lower crust underneath oceanic domain in southern Mongolia. Tectonics, 2015, 34, 1030-1053.	1.3	25
25	Contrasting crustal evolution processes in the Dharwar craton: Insights from detrital zircon U–Pb and Hf isotopes. Gondwana Research, 2015, 28, 1361-1372.	3.0	88
26	Generation and preservation of continental crust in the Grenville Orogeny. Geoscience Frontiers, 2015, 6, 357-372.	4.3	117
27	The zircon archive of continent formation through time. Geological Society Special Publication, 2015, 389, 197-225.	0.8	161
28	The Eoarchaean foundation of the North Atlantic Craton. Geological Society Special Publication, 2015, 389, 261-279.	0.8	8
29	The Juvenile Hafnium Isotope Signal as a Record of Supercontinent Cycles. Scientific Reports, 2016, 6, 38503.	1.6	53
30	Post-collisional magmatism: Crustal growth not identified by zircon Hf–O isotopes. Earth and Planetary Science Letters, 2016, 456, 182-195.	1.8	161
31	Clarifying the zircon Hf isotope record of crust–mantle evolution. Chemical Geology, 2016, 425, 65-75.	1.4	242
32	Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. Lithosphere, 2016, 8, 29-37.	0.6	54
33	Detrital zircon U–Pb, Lu–Hf, and O isotopes of the Wufoshan Group: Implications for episodic crustal growth and reworking of the southern North China craton. Precambrian Research, 2016, 273, 112-128.	1.2	31
34	What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 2017, 274-275, 304-327.	0.6	78
35	There were no large volumes of felsic continental crust in the early Earth. , 2017, 13, 235-246.		28
36	Singularity analysis of global zircon U-Pb age series and implication of continental crust evolution.	3.0	29

CITATION REPORT

3

#	Article	IF	CITATIONS
37	3â€Ð Characterization of Detrital Zircon Grains and its Implications for Fluvial Transport, Mixing, and Preservation Bias. Geochemistry, Geophysics, Geosystems, 2017, 18, 4655-4673.	1.0	21
38	The delimitation between the mature and juvenile crustal provinces in SE Asia: Insights from detrital zircon U-Pb and Hf isotopic data for the Salween drainage, Myanmar. Journal of Asian Earth Sciences, 2017, 145, 641-651.	1.0	9
39	Interrogating the provenance of large river systems: multi-proxy <i>in situ</i> analyses in the Millstone Grit, Yorkshire. Journal of the Geological Society, 2017, 174, 75-87.	0.9	27
40	Metal source and tectonic setting of iron oxide-copper-gold (IOCG) deposits: Evidence from an in situ Nd isotope study of titanite from Norrbotten, Sweden. Ore Geology Reviews, 2017, 81, 1287-1302.	1.1	26
41	Widespread Neoarchean (~ 2.7–2.6 Ga) magmatism of the Yangtze craton, South China, as revealed by modern river detrital zircons. Gondwana Research, 2017, 42, 1-12.	3.0	36
43	The use of detrital zircon data in terrane analysis: A nonunique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides. Lithosphere, 2017, 9, 1002-1011.	0.6	22
44	Detrital zircon age, oxygen and hafnium isotope systematics record rigid continents after 2.5â€ [–] Ga. Gondwana Research, 2018, 57, 90-118.	3.0	15
45	Neoproterozoic amalgamation between Yangtze and Cathaysia blocks: The magmatism in various tectonic settings and continent-arc-continent collision. Precambrian Research, 2018, 309, 56-87.	1.2	123
46	Cambrian–Ordovician magmatism of the Ikh-Mongol Arc System exemplified by the Khantaishir Magmatic Complex (Lake Zone, south–central Mongolia). Gondwana Research, 2018, 54, 122-149.	3.0	58
47	Supercontinents: myths, mysteries, and milestones. Geological Society Special Publication, 2019, 470, 39-64.	0.8	34
48	Zircon grain shape holds provenance information: A case study from southwestern Australia. Geological Journal, 2019, 54, 1279-1293.	0.6	16
49	Cryptic regional magmatism in the southern Saharan Metacraton at 580â€ [−] Ma. Precambrian Research, 2019, 332, 105398.	1.2	20
50	From Breakup of Nuna to Assembly of Rodinia: A Link Between the Chinese Central Tianshan Block and Fennoscandia. Tectonics, 2019, 38, 4378-4398.	1.3	30
51	Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region. Geoscience Frontiers, 2019, 10, 417-424.	4.3	33
52	Building up the first continents: Mesoarchean to Paleoproterozoic crustal evolution in West Troms, Norway, inferred from granitoid petrology, geochemistry and zircon U-Pb/Lu-Hf isotopes. Precambrian Research, 2019, 321, 303-327.	1.2	25
53	The evolution of the Arabian-Nubian Shield and survival of its zircon U-Pb-Hf-O isotopic signature: A tale from the Um Had Conglomerate, central Eastern Desert, Egypt. Precambrian Research, 2019, 320, 46-62.	1.2	26
54	Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science (Wuhan, China), 2020, 31, 1142-1169.	1.1	11
55	Significance of age periodicity in the continental crust record: The São Francisco Craton and adjacent Neoproterozoic orogens as a case study. Gondwana Research, 2020, 86, 144-163.	3.0	7

CITATION REPORT

		CITATION REPORT		
#	Article	IF	Citations	
#	AKTICLE	IF	CHATIONS	
56	Detrital-zircon provenance of a Torridonian fluvial-aeolian sandstone: The 1.2ÂGa Meall Dearg Formation, Stoer Group (Scotland). Precambrian Research, 2020, 346, 105822.	1.2	2	
57	Detrital rutile ages can deduce the tectonic setting of sedimentary basins. Earth and Planetary Science Letters, 2020, 537, 116193.	1.8	23	
58	Zircon fingerprint of the Neoproterozoic North Atlantic: Perspectives from East Greenland. Precambrian Research, 2020, 342, 105653.	1.2	19	
	Grenville-age continental arc magmatism and crustal evolution in central Dronning Maud Land (East) Tj ETQq1			
59	108-127.	3.0	15	
60	Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides. Bulletin of the Geological Society of America, 2020, 132, 1987-2003.	1.6	12	
61	Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites. Geoscience Frontiers, 2021, 12, 101124.	4.3	22	
62	Zircon U–Pb–Hf snapshots on the crustal evolution of the Serbo-Macedonian massif: new insights from Ammouliani island (Northern Greece). Geological Magazine, 0, , 1-8.	0.9	0	
63	Jurassic–Cretaceous arc magmatism along the Shyok–Bangong Suture from NW Himalaya: Formation of the peri-Gondwana basement to the Ladakh Arc. Journal of the Geological Society, 0, , jgs2021-035.	0.9	1	
64	Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, 2017, 172, 87-106.	4.0	138	
65	A review of methods used to test periodicity of natural processes with a special focus on harmonic periodicities found in global U Pb detrital zircon age distributions. Earth-Science Reviews, 2022, 224, 103885.	4.0	11	
66	Reconstruction of the mid-Devonian HP-HT metamorphic event in the Bohemian Massif (European) Tj ETQq0 0 () rgBT/Over	lock 10 Tf 5	
67	Pre-collisional crustal evolution of the European Variscan periphery: Constraints from detrital zircon U–Pb ages and Hf isotopic record in the Precambrian metasedimentary basement of the Brunovistulian Domain. Precambrian Research, 2022, 372, 106606.	1.2	7	
68	Persistent mildly supra-chondritic initial Hf in the Lewisian Complex, NW Scotland: Implications for Neoarchean crust-mantle differentiation. Chemical Geology, 2022, 606, 121001.	1.4	7	

69	Mineral-whole rock isotope fidelity? A comparative study of Hf-Nd-O from high Ba-Sr granitoids. Chemical Geology, 2023, 624, 121425.	1.4	1	
70	Evolution of the preserved European continental crust, constrained by U-Pb, O and Hf isotopic	1.6	0	

analyses of river detrital zircons. Geochimica Et Cosmochimica Acta, 2023, 346, 133-148.