Silane modification of carbon nanotubes and its effects carbon/CNT/epoxy three-phase composites

Composites Part A: Applied Science and Manufacturing 42, 478-483

DOI: 10.1016/j.compositesa.2011.01.004

Citation Report

#	Article	IF	CITATIONS
1	Smart Materials and Structures Based on Carbon Nanotube Composites. , 2011, , .		21
2	Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Separation and Purification Technology, 2011, 80, 20-31.	3.9	139
3	Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1357-1364.	3.8	35
4	Surface modification of carbon fiber and the mechanical properties of the silicone rubber/carbon fiber composites. Journal of Applied Polymer Science, 2012, 126, E410.	1.3	30
5	Synergistic effects of oxidized CNTs and reactive oligomer on the fracture toughness and mechanical properties of epoxy. Composites Part A: Applied Science and Manufacturing, 2013, 49, 58-67.	3.8	33
6	Structure and electric heating performance of graphene/epoxy composite films. European Polymer Journal, 2013, 49, 1322-1330.	2.6	104
7	Recent Advances in Carbon-Nanotube-Based Epoxy Composites. Carbon Letters, 2013, 14, 1-13.	3.3	51
8	Comparison on the Properties of Glass Fiber/MWCNT/Epoxy and Carbon Fiber/MWCNT/Epoxy Composites. Advanced Materials Research, 2013, 858, 32-39.	0.3	2
9	Influence of selected submicron inorganic particles on mechanical and thermo-mechanical properties of unsaturated polyester/glass composites. Journal of Reinforced Plastics and Composites, 2014, 33, 935-941.	1.6	8
10	Preparation and properties of silanized vapor-grown carbon nanofibers/epoxy shape memory nanocomposites. Polymer Composites, 2014, 35, 412-417.	2.3	20
11	Role of functionalized multiwalled carbon nanotubes on mechanical properties of epoxy-based composites at cryogenic temperature. High Performance Polymers, 2014, 26, 922-934.	0.8	14
12	Unique Li0.3Ti0.02Ni0.68O-carbon nanotube hybrids: Synthesis and their epoxy resin composites with remarkably higher dielectric constant and lower dielectric loss. Journal of Alloys and Compounds, 2014, 602, 16-25.	2.8	17
13	Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Composites Part A: Applied Science and Manufacturing, 2014, 66, 109-116.	3.8	62
14	Surface functionalized carbon nanotubes and its effects on the mechanical properties of epoxy based composites at cryogenic temperature. Polymer Bulletin, 2014, 71, 2465-2485.	1.7	16
15	Noncovalently assembled nanotubular porous layers for delaying of heating surface failure. Scientific Reports, 2014, 4, 6817.	1.6	7
16	Mechanical Properties of Silane Treated Glass Nanofiber-Epoxy Resin Interphase Using Molecular Dynamics Simulation. , 2015, , .		0
17	Fabrication of Modified MMT/Glass/Vinylester Multiscale Composites and Their Mechanical Properties. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	10
18	Current-Voltage Characteristics of the Composites Based on Epoxy Resin and Carbon Nanotubes. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	7

ιτλτιώνι Ρερώ

		CITATION REPORT		
#	Article		IF	Citations
19	Surface Modification of Carbon Nanotubes for High-Performance Polymer Composites	.,2015,,13-59.		5
20	The influence of silanisation on the mechanical and degradation behaviour of PLGA/HA Materials Science and Engineering C, 2015, 48, 642-650.	composites.	3.8	20
21	Effects of oxidative functionalization and aminosilanization of carbon nanotubes on th and thermal properties of polyamide 6 nanocomposites. Journal of Thermoplastic Com Materials, 2015, 28, 1321-1333.		2.6	5
22	Study on the phase change thermal storage performance of palmitic acid/carbon nano composites. Composites Part A: Applied Science and Manufacturing, 2015, 77, 50-55.	tubes	3.8	32
23	Investigation of seawater effects on the mechanical properties of untreated and treated glass fiber/vinylester composites. Ocean Engineering, 2015, 108, 393-401.	ed MMT-based	1.9	37
24	Enhanced mechanical properties of carbon fiber/epoxy composites by incorporating XI nanotube. Journal of Composite Materials, 2015, 49, 2251-2263.	D-grade carbon	1.2	31
25	Morphology and thermal properties of environmental friendly nanocomposites using b poly(amide–imide) based on N-trimellitylimido-S-valine matrix reinforced by fructose multi-walled carbon nanotubes. Colloid and Polymer Science, 2015, 293, 545-553.		1.0	4
26	Influence of biosafe amino acid-functionalized multiwalled carbon nanotubes on the m thermal properties of the poly(amide–imide) nanocomposites containing <i>N</i> , <i>N</i> â€ ² -(pyromellitoyl)-bis- <i>S</i> -valine segments. High Performance F 371-378.		0.8	2
27	Thermal and mechanical properties of epoxy composite filled with binary particle syste aluminum oxide and boron nitride platelets. Journal of Materials Science, 2016, 51, 74	m of polygonal 15-7426.	1.7	51
28	Mechanical properties of hybrid structural composites reinforced with nanosilica. Poly Composites, 2016, 37, 1216-1222.	mer	2.3	15
29	Effect of Silane Treated Electrospun SiO ₂ Nanofibers Interleaving on Moc Toughness of Glass Epoxy Composites. , 2016, , .	le I Fracture		0
30	Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated te environments emphasizing the role of CNT content. Composites Part A: Applied Science Manufacturing, 2016, 84, 364-376.		3.8	146
31	Interfacial and mechanical properties of epoxy composites containing carbon nanotub alkyl chains of different length. Composites Part A: Applied Science and Manufacturing 190-197.		3.8	17
32	Size effect of graphene nanoplatelets on the morphology and mechanical behavior of g fiber/epoxy composites. Journal of Materials Science, 2016, 51, 3337-3348.	glass	1.7	80
33	Enhanced interfacial interaction for effective reinforcement of chitosan nanocomposit different loading of modified multiwalled carbon nanotubes with vitamin C. Journal of and Plastics, 2016, 48, 600-613.		0.7	7
34	Resin modification on interlaminar shear property of carbon fiber/epoxy/nano-CaCO <s 2017,="" 2035-2042.<="" 38,="" composites,="" composites.="" hybrid="" polymer="" td=""><td>ub>3</td><td>2.3</td><td>20</td></s>	ub>3	2.3	20
35	Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed mathematic by in-situ polymerization for CO 2 separation. Separation and Purification Technology, 327-336.		3.9	80
36	Corrosion protection of AA2024-T3 by sol-gel film modified with graphene oxide. Journ Compounds, 2017, 725, 84-95.	al of Alloys and	2.8	49

#	Article	IF	CITATIONS
37	Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: Experimental and Density functional theory study. Applied Surface Science, 2017, 420, 167-179.	3.1	38
38	Improved thermal and mechanical properties of aluminium oxide filled epoxy composites by reinforcing milled carbon fiber by partial replacement method. Journal of Materials Science: Materials in Electronics, 2017, 28, 13487-13495.	1.1	9
39	Tuning the interlaminar shear strength and thermo-mechanical properties of glass fiber composites by incorporation of (3-mercaptopropyl) trimethoxysilane-functionalized carbon black. Iranian Polymer Journal (English Edition), 2017, 26, 913-927.	1.3	6
40	Epoxy Nanocomposites Filled with Carbon Nanoparticles. Chemical Record, 2018, 18, 928-939.	2.9	22
41	Interfacial properties and permeability of three patterned glass fiber/epoxy composites by VARTM. Composites Part B: Engineering, 2018, 148, 61-67.	5.9	19
42	Enhanced resin zirconia adhesion with carbon nanotubes-infused silanes: A pilot study. Journal of Adhesion, 2018, 94, 167-180.	1.8	12
43	Investigation on the flexural response of multiscale anisogrid composite panels reinforced with carbon fibers and multi-walled carbon nanotubes. Journal of Composite Materials, 2018, 52, 225-233.	1.2	10
44	Enhanced thermal and mechanical properties of epoxy composites filled with hybrid filler system of aluminium nitride and boron nitride. Polymer Composites, 2018, 39, E1372.	2.3	22
45	Role of chemical funcionalization of carbon nanoparticles in epoxy matrices. Journal of Composite Materials, 2018, 52, 449-464.	1.2	19
46	Green Synthesis of Amino Acid Functionalized Multi-walled Carbon Nanotubes/Poly(amide–imide) Based on N-Trimellitylimido-S-valine Nanocomposites by Sonochemical Technique. Journal of Polymers and the Environment, 2018, 26, 1635-1641.	2.4	2
47	Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polymer International, 2018, 67, 258-268.	1.6	14
48	Acid Free Oxidation and Simple Dispersion Method of MWCNT for High-Performance CFRP. Nanomaterials, 2018, 8, 912.	1.9	29
49	A Thermoplastic Multilayered Carbon-Fabric/Polycarbonate Laminate Prepared by a Two-Step Hot-Press Technique. Polymers, 2018, 10, 720.	2.0	14
51	Influence of Oxyfluorination on Geometrical Pull-Out Behavior of Carbon-Fiber-Reinforced Epoxy Matrix Composites. Macromolecular Research, 2018, 26, 794-799.	1.0	9
52	Effect of functionalization and concentration of carbon nanotubes on mechanical, wear and fatigue behaviours of polyoxymethylene/carbon nanotube nanocomposites. Bulletin of Materials Science, 2019, 42, 1.	0.8	9
53	Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Composites Part B: Engineering, 2019, 162, 425-432.	5.9	38
54	Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon, 2019, 142, 445-460.	5.4	246
55	Submicron inorganic particles as an additional filler in hybrid epoxy matrix composites reinforced with glass fibres. Polymers and Polymer Composites, 2020, 28, 484-491.	1.0	7

#	Article	IF	CITATIONS
56	Hydrogen bonds leading nanodiamonds performing different thermal conductance enhancement in different MWCNTs epoxy-based nanocomposites. Progress in Organic Coatings, 2020, 140, 105486.	1.9	7
57	Effect of MWCNT Surface Functionalisation and Distribution on Compressive Properties of Kenaf and Hybrid Kenaf/Glass Fibres Reinforced Polymer Composites. Polymers, 2020, 12, 2522.	2.0	18
58	Epoxy-Based Hybrid Structural Composites with Nanofillers: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 12617-12631.	1.8	40
59	Carbon fiber epoxyâ€matrix composites with hydrothermalâ€carbonâ€coated halloysite nanotube filler exhibiting enhanced strength and thermal conductivity. Polymer Composites, 2020, 41, 2687-2703.	2.3	13
60	A two-step combination strategy for significantly enhancing the interfacial adhesion of CF/PPS composites: The liquid-phase oxidation followed by grafting of silane coupling agent. Composites Part B: Engineering, 2020, 191, 107966.	5.9	67
61	Mechanical and wear characteristics of glass fiber reinforced modified epoxy nano composites – A review. Materials Today: Proceedings, 2021, 37, 901-907.	0.9	4
62	The effect of 3-(triethoxy silyl) propyl amine concentration on surface modification of multiwall carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 74-82.	1.0	11
63	Abrasive Wear Behavior of CNT-Filled Unidirectional Kenaf–Epoxy Composites. Processes, 2021, 9, 128.	1.3	7
64	Comparison of Natural Fiber Types as Reinforcement Material on Composite Mechanical Properties via Carbon Nanotubes Addition. IOP Conference Series: Materials Science and Engineering, 2021, 1041, 012050.	0.3	0
65	Bonding performances of epoxy coatings reinforced by carbon nanotubes (CNTs) on mild steel substrate with different surface roughness. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106479.	3.8	21
66	Influence of Ultrasonication of Functionalized Carbon Nanotubes on the Rheology, Hydration, and Compressive Strength of Portland Cement Pastes. Materials, 2021, 14, 5248.	1.3	22
67	A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Materials and Design, 2021, 209, 109936.	3.3	75
68	Relevance of Chemically Functionalized Nano-Fillers and Modified Nanocomposite in Energy Systems. , 2021, , 1854-1909.		0
69	Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105937.	3.8	34
70	Covalent Functionalization of Multi-Walled Carbon Nanotubes for Dispersion in Cement Pastes. Journal of Testing and Evaluation, 2020, 48, 1850-1860.	0.4	2
71	Relevance of Chemically Functionalized Nano-Fillers and Modified Nanocomposite in Energy Systems. Advances in Chemical and Materials Engineering Book Series, 2019, , 10-65.	0.2	3
72	Mechanical interfacial adhesion of carbon fibers-reinforced polarized-polypropylene matrix composites: effects of silane coupling agents. Carbon Letters, 2016, 17, 79-84.	3.3	24
73	Characteristics and Preparation of multi-walled carbon nanotubes-polyvinyl alcohol nanocomposites via ionic mechanism. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 150527104639002.	1.0	0

CITATION REPORT

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
74	Functionalization of multi-walled carbon nanotubes with 3-aminopropyltriethoxysilane for application in cementitious matrix. Construction and Building Materials, 2021, 311, 125358.	3.2	16
75	A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 2022, 434, 134605.	6.6	66
76	Effects of steel surface treatment with silanized carbon nanotubes on the bonding properties between steel and epoxy adhesive. Journal of Adhesion, 2023, 99, 297-319.	1.8	5
77	Large-area flexible MWCNT/PDMS pressure sensor for ergonomic design with aid of deep learning. Nanotechnology, 2022, 33, 345502.	1.3	4
78	Recent advancements in interface engineering of carbon fiber reinforced polymer composites and their durability studies at different service temperatures. Polymer Composites, 2022, 43, 4126-4164.	2.3	20
79	Effect of silane coating surface treatment on friction and wear properties of carbon fiber/PI composites. Materials Science-Poland, 2022, 40, 214-222.	0.4	1
80	Recent advances in carboxylated butadiene rubber nanocomposites: effect of carbon nanotube and graphene oxide. Journal of Polymer Research, 2022, 29, .	1.2	2
81	Carboxylated Carbon Nanotube/Polyimide Films with Low Thermal Expansion Coefficient and Excellent Mechanical Properties. Polymers, 2022, 14, 4565.	2.0	3
82	Fluorine-terminated functionalized liquid metal/silicon carbide binary nanoparticles for polyvinyl alcohol composite films with high in-plane thermal conductivity and ultra-low dielectric constant. Surfaces and Interfaces, 2022, 35, 102408.	1.5	1
83	Tunable Hybridized Morphologies Obtained through Flash Joule Heating of Carbon Nanotubes. ACS Nano, 2023, 17, 2506-2516.	7.3	4
84	Surface modification of carbon nanotubes by a bifunctional amine silane; effects on physical/mechanical/thermal properties of epoxy nanocomposite. Progress in Organic Coatings, 2023, 179, 107521.	1.9	6
85	Investigation on silane modification and interfacial UV aging of flax fibre reinforced with polystyrene composite. Materials Today: Proceedings, 2023, , .	0.9	4
86	High mechanical performance of 3-aminopropyl triethoxy silane/epoxy cured in a sandwich construction of 3D carbon felts foam and woven basalt fibers. Nanotechnology Reviews, 2023, 12, .	2.6	5