The Neural Circuits and Synaptic Mechanisms Underlyi

Cell 147, 922-933 DOI: 10.1016/j.cell.2011.08.053

Citation Report

#	Article	IF	CITATIONS
1	DBL-1, a TGF-Î ² , is essential for <i>Caenorhabditis elegans</i> aversive olfactory learning. Proceedings of the United States of America, 2012, 109, 17081-17086.	3.3	53
2	Model Organism Databases in Behavioral Neuroscience. International Review of Neurobiology, 2012, 104, 25-46.	0.9	0
3	Photo-inducible cell ablation in <i>Caenorhabditis elegans</i> using the genetically encoded singlet oxygen generating protein miniSOG. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7499-7504.	3.3	186
4	Neuronal microcircuits for decision making in C. elegans. Current Opinion in Neurobiology, 2012, 22, 580-591.	2.0	64
5	Beyond the connectome: How neuromodulators shape neural circuits. BioEssays, 2012, 34, 458-465.	1.2	406
6	Calcium imaging of multiple neurons in freely behaving C. elegans. Journal of Neuroscience Methods, 2012, 206, 78-82.	1.3	22
7	Biological modeling of complex chemotaxis behaviors for C. elegans under speed regulation—a dynamic neural networks approach. Journal of Computational Neuroscience, 2013, 35, 19-37.	0.6	16
8	Genetic dissection of memory for associative andÂnonâ€associative learning in <i>Caenorhabditis elegans</i> . Genes, Brain and Behavior, 2013, 12, 210-223.	1.1	40
9	Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nature Methods, 2013, 10, 1013-1020.	9.0	293
10	When a TRP goes bad: Transient receptor potential channels in addiction. Life Sciences, 2013, 92, 410-414.	2.0	13
11	The Caenorhabditis elegans interneuron ALA is (also) a high-threshold mechanosensor. BMC Neuroscience, 2013, 14, 156.	0.8	30
12	Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nature Communications, 2013, 4, 2210.	5.8	104
13	Odorant-induced membrane potential depolarization of AIY interneuron in Caenorhabditis elegans. Neuroscience Letters, 2013, 541, 199-203.	1.0	7
14	Cornichons Control ER Export of AMPA Receptors to Regulate Synaptic Excitability. Neuron, 2013, 80, 129-142.	3.8	46
15	Optogenetic manipulation of neural activity in <i>C. elegans</i> : From synapse to circuits and behaviour. Biology of the Cell, 2013, 105, 235-250.	0.7	80
16	Feedback regulation of microscopes by image processing. Development Growth and Differentiation, 2013, 55, 550-562.	0.6	7
17	The Rich Club of the <i>C. elegans</i> Neuronal Connectome. Journal of Neuroscience, 2013, 33, 6380-6387.	1.7	265
18	High-throughput imaging of neuronal activity in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America. 2013. 110. E4266-73.	3.3	164

#	Article	IF	CITATIONS
19	Decision making in <i>C. elegans</i> chemotaxis to alkaline pH. Communicative and Integrative Biology, 2013, 6, e26633.	0.6	7
20	Discriminating External and Internal Causes for Heading Changes in Freely Flying Drosophila. PLoS Computational Biology, 2013, 9, e1002891.	1.5	52
21	Cytochrome P450 Drives a HIF-Regulated Behavioral Response to Reoxygenation by <i>C. elegans</i> . Science, 2013, 341, 554-558.	6.0	32
22	Neuropeptides Amplify and Focus the Monoaminergic Inhibition of Nociception in Caenorhabditis elegans. Journal of Neuroscience, 2013, 33, 14107-14116.	1.7	34
23	The Microarchitecture of <i>C. elegans</i> Behavior during Lethargus: Homeostatic Bout Dynamics, a Typical Body Posture, and Regulation by a Central Neuron. Sleep, 2013, 36, 385-395.	0.6	75
24	Track-A-Worm, An Open-Source System for Quantitative Assessment of C. elegans Locomotory and Bending Behavior. PLoS ONE, 2013, 8, e69653.	1.1	41
25	Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. Frontiers in Computational Neuroscience, 2013, 7, 128.	1.2	36
26	Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans. Frontiers in Neural Circuits, 2014, 8, 28.	1.4	59
27	Inducible and titratable silencing of <i>Caenorhabditis elegans</i> neurons in vivo with histamine-gated chloride channels. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2770-2775.	3.3	226
28	CYP-13A12 of the nematode <i>Caenorhabditis elegans</i> is a PUFA-epoxygenase involved in behavioural response to reoxygenation. Biochemical Journal, 2014, 464, 61-71.	1.7	10
29	VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans. Nature Communications, 2014, 5, 5579.	5.8	29
30	Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?. BioScience, 2014, 64, 476-486.	2.2	96
31	The Michael Jackson Fly. Science, 2014, 344, 48-49.	6.0	0
32	Brain Development. Methods in Molecular Biology, 2014, , .	0.4	1
33	Multilevel Modulation of a Sensory Motor Circuit during C.Âelegans Sleep and Arousal. Cell, 2014, 156, 249-260.	13.5	82
34	A 3D undulatory locomotion model inspired by C. elegans through DNN approach. Neurocomputing, 2014, 131, 248-264.	3.5	13
35	Encoding of Both Analog- and Digital-like Behavioral Outputs by One C.Âelegans Interneuron. Cell, 2014, 159, 751-765.	13.5	110
36	High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17236-17241.	3.3	15

#	Article	IF	CITATIONS
37	Nematodes feel a craving - Using Caenorhabditis elegans as a model to study alcohol addiction. Neuroscience Bulletin, 2014, 30, 595-600.	1.5	11
38	Nematode Tango Milonguero – The C. elegans male's search for the hermaphrodite vulva. Seminars in Cell and Developmental Biology, 2014, 33, 34-41.	2.3	14
39	Some details of signal propagation in the nervous system of C. elegans. Russian Journal of Genetics: Applied Research, 2015, 5, 642-649.	0.4	2
42	Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods in Molecular Biology, 2015, 1327, 87-103.	0.4	14
43	Kynurenic Acid Is a Nutritional Cue that Enables Behavioral Plasticity. Cell, 2015, 160, 119-131.	13.5	57
44	Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nature Communications, 2015, 6, 5655.	5.8	63
45	RNAi Interrogation of Dietary Modulation of Development, Metabolism, Behavior, and Aging in C.Âelegans. Cell Reports, 2015, 11, 1123-1133.	2.9	91
46	Mechanosensation circuitry in Caenorhabditis elegans: A focus on gentle touch. Peptides, 2015, 68, 164-174.	1.2	9
47	Glial Expression of the Caenorhabditis elegans Gene swip-10 Supports Glutamate Dependent Control of Extrasynaptic Dopamine Signaling. Journal of Neuroscience, 2015, 35, 9409-9423.	1.7	39
48	Multiple Sensory Inputs Are Extensively Integrated to Modulate Nociception in C. elegans. Journal of Neuroscience, 2015, 35, 10331-10342.	1.7	32
50	Heterologous Expression in Remodeled C. elegans: A Platform for Monoaminergic Agonist Identification and Anthelmintic Screening. PLoS Pathogens, 2015, 11, e1004794.	2.1	21
51	Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit. Cell, 2015, 161, 215-227.	13.5	204
52	C. elegans locomotion: small circuits, complex functions. Current Opinion in Neurobiology, 2015, 33, 117-126.	2.0	158
53	Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish. Neuroscience, 2015, 296, 26-38.	1.1	53
54	Serotonin differentially modulates Ca ²⁺ transients and depolarization in a <i>C. elegans</i> nociceptor. Journal of Neurophysiology, 2015, 113, 1041-1050.	0.9	25
55	Parallel encoding of sensory history and behavioral preference during Caenorhabditis elegans olfactory learning. ELife, 2016, 5, .	2.8	57
56	NPR-9, a Galanin-Like G-Protein Coupled Receptor, and GLR-1 Regulate Interneuronal Circuitry Underlying Multisensory Integration of Environmental Cues in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006050.	1.5	14
57	An Elegant Circuit for Balancing Risk and Reward. Neuron, 2016, 92, 933-935.	3.8	0

#	Article	IF	CITATIONS
58	Levodopa-Induced Motor and Dopamine Receptor Changes in <i>Caenorhabditis elegans</i> Overexpressing Human Alpha-Synuclein. Neurodegenerative Diseases, 2016, 16, 179-183.	0.8	11
59	The Neuropeptides FLP-2 and PDF-1 Act in Concert To Arouse <i>Caenorhabditis elegans</i> Locomotion. Genetics, 2016, 204, 1151-1159.	1.2	96
60	A map of terminal regulators of neuronal identity in <i>Caenorhabditis elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 474-498.	5.9	88
61	Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a <i>C. elegans</i> polymodal nociceptor. Learning and Memory, 2016, 23, 495-503.	0.5	44
62	Neural Architecture of Hunger-Dependent Multisensory Decision Making in C.Âelegans. Neuron, 2016, 92, 1049-1062.	3.8	101
63	Promotion of behavior and neuronal function by reactive oxygen species in C. elegans. Nature Communications, 2016, 7, 13234.	5.8	40
64	TMC-1 Mediates Alkaline Sensation in C.Âelegans through Nociceptive Neurons. Neuron, 2016, 91, 146-154.	3.8	64
65	The Role of Neurosensory Systems in the Modulation of Aging. , 2016, , 161-178.		0
66	Whole-brain calcium imaging with cellular resolution in freely behaving <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1074-81.	3.3	305
67	Pan-neuronal imaging in roaming <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1082-8.	3.3	188
68	Control of Movement Initiation Underlies the Development of Balance. Current Biology, 2017, 27, 334-344.	1.8	69
69	A Gustatory Neural Circuit of <i>Caenorhabditis elegans</i> Generates Memory-Dependent Behaviors in Na ⁺ Chemotaxis. Journal of Neuroscience, 2017, 37, 2097-2111.	1.7	36
70	Trends in high-throughput and functional neuroimaging inCaenorhabditis elegans. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1376.	6.6	14
71	Multisensory integration in C. elegans. Current Opinion in Neurobiology, 2017, 43, 110-118.	2.0	39
72	Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays. Nature Nanotechnology, 2017, 12, 684-691.	15.6	31
73	A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. Journal of Neuroscience Methods, 2017, 286, 56-68.	1.3	12
74	Visualizing Calcium Flux in Freely Moving Nematode Embryos. Biophysical Journal, 2017, 112, 1975-1983.	0.2	31
75	From Connectome to Function: Using Optogenetics to Shed Light on the Caenorhabditis elegans Nervous System. , 0, , 37-54.		0

#	Article	IF	CITATIONS
76	Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans. Lab on A Chip, 2017, 17, 2609-2618.	3.1	49
77	Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene, 2017, 619, 50-60.	1.0	26
78	A Descending Neuron Correlated with the Rapid Steering Maneuvers of Flying Drosophila. Current Biology, 2017, 27, 1200-1205.	1.8	68
79	Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nature Communications, 2017, 8, 14818.	5.8	74
80	Early Pheromone Experience Modifies a Synaptic Activity to Influence Adult Pheromone Responses of C.Âelegans. Current Biology, 2017, 27, 3168-3177.e3.	1.8	35
81	Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila. Neuron, 2017, 96, 1373-1387.e6.	3.8	78
82	Reflective imaging improves spatiotemporal resolution and collection efficiency in light sheet microscopy. Nature Communications, 2017, 8, 1452.	5.8	41
83	MicroRNA Regulation of nAChR Expression and Nicotine-Dependent Behavior in C.Âelegans. Cell Reports, 2017, 21, 1434-1441.	2.9	15
84	Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica. BMC Evolutionary Biology, 2017, 17, 11.	3.2	23
85	A multi-animal tracker for studying complex behaviors. BMC Biology, 2017, 15, 29.	1.7	35
86	Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. Journal of Biophotonics, 2017, 10, 338-352.	1.1	52
87	Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition. PLoS ONE, 2017, 12, e0181469.	1.1	5
88	Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis Elegans . Journal of Visualized Experiments, 2018, , .	0.2	16
89	Worms on the spectrum - C. elegans models in autism research. Experimental Neurology, 2018, 299, 199-206.	2.0	17
90	Automated Tracking System for Time Lapse Observation of C. elegans. , 2018, , .		4
91	Dissecting Molecular and Circuit Mechanisms for Inhibition and Delayed Response of ASI Neurons during Nociceptive Stimulus. Cell Reports, 2018, 25, 1885-1897.e9.	2.9	6
92	Sensorimotor integration in <i>Caenorhabditis elegans</i> : a reappraisal towards dynamic and distributed computations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170371.	1.8	29
93	Decoding the intensity of sensory input by two glutamate receptors in one C. elegans interneuron. Nature Communications, 2018, 9, 4311.	5.8	39

	CITATION	Report	
#	Article	IF	CITATIONS
94	Clues to basis of exploratory behaviour of the <i>C. elegans</i> snout from head somatotropy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170367.	1.8	10
95	FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2018, 38, 4641-4654.	1.7	35
96	The Protein Arginine Methyltransferase PRMT-5 Regulates SER-2 Tyramine Receptor-Mediated Behaviors in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2389-2398.	0.8	8
97	OFF-responses of interneurons optimize avoidance behaviors depending on stimulus strength via electrical synapses. PLoS Genetics, 2018, 14, e1007477.	1.5	15
98	The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007303.	1.5	5
99	Noninvasive Mechanochemical Imaging in Unconstrained Caenorhabditis elegans. Materials, 2018, 11, 1034.	1.3	7
100	The THO Complex Coordinates Transcripts for Synapse Development and Dopamine Neuron Survival. Cell, 2018, 174, 1436-1449.e20.	13.5	25
101	Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans. Zoological Letters, 2018, 4, 19.	0.7	14
102	FLP-1 neuropeptides modulate sensory and motor circuits in the nematode Caenorhabditis elegans. PLoS ONE, 2018, 13, e0189320.	1.1	23
103	INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genetics, 2019, 15, e1008341.	1.5	9
104	Parallel Processing of Two Mechanosensory Modalities by a Single Neuron in C.Âelegans. Developmental Cell, 2019, 51, 617-631.e3.	3.1	62
105	A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+ dynamics. Nature Communications, 2019, 10, 4095.	5.8	39
106	Modelling the ballistic-to-diffusive transition in nematode motility reveals variation in exploratory behaviour across species. Journal of the Royal Society Interface, 2019, 16, 20190174.	1.5	7
107	Searching for collective behavior in a small brain. Physical Review E, 2019, 99, 052418.	0.8	34
108	Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. Nature Communications, 2019, 10, 1882.	5.8	54
109	Novel Technological Advances in Functional Connectomics in C. elegans. Journal of Developmental Biology, 2019, 7, 8.	0.9	16
110	Reciprocal modulation of 5-HT and octopamine regulates pumping via feedforward and feedback circuits in <i>C. elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7107-7112.	3.3	22
111	An Excitatory/Inhibitory Switch From Asymmetric Sensory Neurons Defines Postsynaptic Tuning for a Rapid Response to NaCl in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 2018, 11, 484.	1.4	15

#	Article	IF	CITATIONS
112	Differential Regulation of Innate and Learned Behavior by <i>Creb1/Crh-1</i> in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2019, 39, 7934-7946.	1.7	9
113	Whole animal modeling: piecing together nematode locomotion. Current Opinion in Systems Biology, 2019, 13, 150-160.	1.3	17
114	A compressed sensing framework for efficient dissection of neural circuits. Nature Methods, 2019, 16, 126-133.	9.0	12
115	Neuronal, mathematical, and molecular bases of perceptual decision-making in C. elegans. Neuroscience Research, 2019, 140, 3-13.	1.0	8
116	An optimized and automated approach to quantifying channelrhodopsin photocurrent kinetics. Analytical Biochemistry, 2019, 566, 160-167.	1.1	3
117	Deciphering neural circuits for Caenorhabditis elegans behavior by computations and perturbations to genome and connectome. Current Opinion in Systems Biology, 2019, 13, 44-51.	1.3	5
118	Synthetic ablations in the C. elegans nervous system. Network Neuroscience, 2020, 4, 200-216.	1.4	5
119	Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales. Neuron, 2020, 105, 562-576.e9.	3.8	95
120	Sensory Glia Detect Repulsive Odorants and Drive Olfactory Adaptation. Neuron, 2020, 108, 707-721.e8.	3.8	31
121	Two Brain Pathways Initiate Distinct Forward Walking Programs in Drosophila. Neuron, 2020, 108, 469-485.e8.	3.8	68
122	NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 2020, 11, 3467.	5.8	19
123	Simultaneous RNAi Knockdown of Three FMRFamide-Like Peptide Genes, Mi-flp1, Mi-flp12, and Mi-flp18 Provides Resistance to Root-Knot Nematode, Meloidogyne incognita. Frontiers in Microbiology, 2020, 11, 573916.	1.5	23
124	GABAergic motor neurons bias locomotor decision-making in C. elegans. Nature Communications, 2020, 11, 5076.	5.8	28
125	Combining single-cell RNA-sequencing with a molecular atlas unveils new markers for Caenorhabditis elegans neuron classes. Nucleic Acids Research, 2020, 48, 7119-7134.	6.5	27
126	Control of Locomotory Behavior of Caenorhabditis elegans by the Immunoglobulin Superfamily Protein RIG-3. Genetics, 2020, 214, 135-145.	1.2	10
127	The hourglass organization of the Caenorhabditis elegans connectome. PLoS Computational Biology, 2020, 16, e1007526.	1.5	11
128	An inexpensive programmable optogenetic platform for controlled neuronal activation regimens in <i>C. elegans</i> . APL Bioengineering, 2020, 4, 016101.	3.3	7
129	A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biology, 2020, 18, e3000361.	2.6	19

#	Article	IF	CITATIONS
130	Brain-wide representations of ongoing behavior: a universal principle?. Current Opinion in Neurobiology, 2020, 64, 60-69.	2.0	62
131	Context-dependent operation of neural circuits underlies a navigation behavior in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6178-6188.	3.3	32
132	A recurrent neural network model of C. elegans responses to aversive stimuli. Neurocomputing, 2021, 430, 1-13.	3.5	9
133	On the Modeling of the Three Types of Non-spiking Neurons of the Caenorhabditis elegans. International Journal of Neural Systems, 2021, 31, 2050063.	3.2	7
134	Roles of the CIC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans. ELife, 2021, 10, .	2.8	4
135	Sleep Analysis in Adult <i>C. elegans</i> Reveals State-Dependent Alteration of Neural and Behavioral Responses. Journal of Neuroscience, 2021, 41, 1892-1907.	1.7	13
136	Optogenetics in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2021, 1293, 321-334.	0.8	0
137	Calcium Imaging of Neuronal Activity under Gradually Changing Odor Stimulation in Caenorhabditis elegans. Bio-protocol, 2021, 11, e3866.	0.2	2
138	The Snail transcription factor CES-1 regulates glutamatergic behavior in C. elegans. PLoS ONE, 2021, 16, e0245587.	1.1	1
139	Multilayer network analysis of C. elegans: Looking into the locomotory circuitry. Neurocomputing, 2021, 427, 238-261.	3.5	9
140	VER/VEGF receptors regulate AMPA receptor surface levels and glutamatergic behavior. PLoS Genetics, 2021, 17, e1009375.	1.5	7
141	The Doublesex/Mab-3 domain transcription factor DMD-10 regulates ASH-dependent behavioral responses. Peerl, 2021, 9, e10892.	0.9	5
142	Olfactory perception of food abundance regulates dietary restriction-mediated longevity via a brain-to-gut signal. Nature Aging, 2021, 1, 255-268.	5.3	24
144	Micro <scp>RNA</scp> â€induced gene silencing strategy for the delivery of <scp>siRNAs</scp> targeting <i>Meloidogyne incognita</i> in a model plant <i>Nicotiana benthamiana</i> . Pest Management Science, 2021, 77, 3396-3405.	1.7	13
145	Glutamate signaling from a single sensory neuron mediates experience-dependent bidirectional behavior in Caenorhabditis elegans. Cell Reports, 2021, 35, 109177.	2.9	20
146	Decoding locomotion from population neural activity in moving C. elegans. ELife, 2021, 10, .	2.8	48
147	Fast wholeâ€body motor neuron calcium imaging of freely moving <scp> <i>Caenorhabditis elegans </i> </scp> without coverslip pressed. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1143-1157.	1.1	4
148	An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biology, 2021, 19, 170.	1.7	2

#	Article	IF	Citations
π 149	Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. Plant Cell Reports, 2021, 40, 2287-2302.	2.8	14
152	The nematode C.Âelegans senses airborne sound. Neuron, 2021, 109, 3633-3646.e7.	3.8	25
153	Investigating the molecular mechanisms of learning and memory using <i>Caenorhabditis elegans</i> . Journal of Neurochemistry, 2021, 159, 417-451.	2.1	15
154	Dynamic Neuroanatomy at Subcellular Resolution in the Zebrafish. Methods in Molecular Biology, 2014, 1082, 187-195.	0.4	4
155	Elegantly. , 2020, , 3-29.		7
156	Rhodopsin-based voltage imaging tools for use in muscles and neurons of <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17051-17060.	3.3	34
167	Neuropeptide-Driven Cross-Modal Plasticity following Sensory Loss in Caenorhabditis elegans. PLoS Biology, 2016, 14, e1002348.	2.6	26
168	The Multilayer Connectome of Caenorhabditis elegans. PLoS Computational Biology, 2016, 12, e1005283.	1.5	170
169	Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS Computational Biology, 2017, 13, e1005834.	1.5	19
170	Specific Expression of Channelrhodopsin-2 in Single Neurons of Caenorhabditis elegans. PLoS ONE, 2012, 7, e43164.	1.1	69
171	The Geometry of Locomotive Behavioral States in C. elegans. PLoS ONE, 2013, 8, e59865.	1.1	79
172	The C. elegans Male Exercises Directional Control during Mating through Cholinergic Regulation of Sex-Shared Command Interneurons. PLoS ONE, 2013, 8, e60597.	1.1	37
173	Keeping track of worm trackers. WormBook, 2013, , 1-17.	5.3	89
174	Divergent Connectivity of Homologous Command Neurons Mediates Segment-Specific Touch Responses in Drosophila. SSRN Electronic Journal, 0, , .	0.4	2
175	Caenorhabditis elegans: An Emerging Model System for Pesticide Neurotoxicity. , 2012, 01, .		6
176	A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. ELife, 2016, 5, .	2.8	83
177	AMPK acts as a molecular trigger to coordinate glutamatergic signals and adaptive behaviours during acute starvation. ELife, 2016, 5, .	2.8	26
178	Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans. ELife, 2018, 7, .	2.8	32

#	ARTICLE	IF	CITATIONS
179	Neural circuitry of a polycystin-mediated hydrodynamic startle response for predator avoidance. ELife, 2018, 7, .	2.8	44
180	MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. ELife, 2018, 7, .	2.8	68
181	A multilayer circuit architecture for the generation of distinct locomotor behaviors in Drosophila. ELife, 2019, 8, .	2.8	78
183	Mechanosensory Learning and Memory in Caenorhabditis elegans. Handbook of Behavioral Neuroscience, 2013, , 91-111.	0.7	0
184	Behavioral Analysis in Caenorhabditis elegans. , 2013, , 3-13.		0
202	A conserved behavioral role for a nematode interneuron neuropeptide receptor. Genetics, 2022, 220, .	1.2	4
203	Differential adhesion regulates neurite placement via a retrograde zippering mechanism. ELife, 2021, 10,	2.8	13
204	A glial ClC Clâ^ channel mediates nose touch responses in C.Âelegans. Neuron, 2022, 110, 470-485.e7.	3.8	15
205	Neuropeptides and Behaviors: How Small Peptides Regulate Nervous System Function and Behavioral Outputs. Frontiers in Molecular Neuroscience, 2021, 14, 786471.	1.4	15
206	A single chemosensory GPCR is required for a concentration-dependent behavioral switching in C.Âelegans. Current Biology, 2022, 32, 398-411.e4.	1.8	12
207	Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 2021, 14, 780396.	1.4	4
208	Escape steering by cholecystokinin peptidergic signaling. Cell Reports, 2022, 38, 110330.	2.9	11
209	Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior. Methods in Molecular Biology, 2022, 2468, 89-115.	0.4	0
218	Association of Two Opposing Responses Results in the Emergence of a Novel Conditioned Response. Frontiers in Behavioral Neuroscience, 2022, 16, 852266.	1.0	0
219	Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Nature Communications, 2022, 13, .	5.8	16
222	Reprogramming the topology of the nociceptive circuit in C.Âelegans reshapes sexual behavior. Current Biology, 2022, 32, 4372-4385.e7.	1.8	17
223	Positive interaction between ASH and ASK sensory neurons accelerates nociception and inhibits behavioral adaptation. IScience, 2022, 25, 105287.	1.9	3
224	Conditional Degradation of UNC-31/CAPS Enables Spatiotemporal Analysis of Neuropeptide Function. Journal of Neuroscience, 2022, 42, 8599-8607.	1.7	2

#	Article	IF	CITATIONS
225	Different modes of stimuli delivery elicit changes in glutamate driven, experience-dependent interneuron response in C. elegans. Neuroscience Research, 2023, 186, 33-42.	1.0	2
227	A Novel and Functionally Diverse Class of Acetylcholine-Gated Ion Channels. Journal of Neuroscience, 2023, 43, 1111-1124.	1.7	4
231	A sleep-active neuron can promote survival while sleep behavior is disturbed. PLoS Genetics, 2023, 19, e1010665.	1.5	3
232	Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	1
233	Distinct clusters of human pain gene orthologs in <i>Caenorhabditis elegans</i> regulate thermo-nociceptive sensitivity and plasticity. Genetics, 0, , .	1.2	0
234	pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	1
235	Neural engineering with photons as synaptic transmitters. Nature Methods, 2023, 20, 761-769.	9.0	5