Identification of 67 Histone Marks and Histone Lysine O Histone Modification

Cell 146, 1016-1028 DOI: 10.1016/j.cell.2011.08.008

Citation Report

#	Article	IF	CITATIONS
2	A haul of new histone modifications. Nature Reviews Genetics, 2011, 12, 744-744.	7.7	4
3	Chondrocytes and cartilage biology: Meeting report from the 33rd annual meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2011, 8, 473-478.	0.1	0
4	Combined proteomic and <i>in silico</i> approaches to decipher post-meiotic male genome reprogramming in mice. Systems Biology in Reproductive Medicine, 2012, 58, 191-196.	1.0	16
5	Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO Journal, 2012, 31, 3809-3820.	3.5	216
6	Interactions between epigenetics and metabolism in cancers. Frontiers in Oncology, 2012, 2, 163.	1.3	67
7	Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis. Acta Biochimica Et Biophysica Sinica, 2012, 44, 80-91.	0.9	27
8	Fundamental concepts of epigenetics for consideration in anesthesiology. Current Opinion in Anaesthesiology, 2012, 25, 434-443.	0.9	14
9	Epigenetics and stroke risk – beyond the static DNA code. Advances in Genomics and Genetics, 2012, , 67.	0.8	2
10	New marks on the block. Nucleus, 2012, 3, 335-339.	0.6	11
12	The Chromatin Fingerprint of Gene Enhancer Elements. Journal of Biological Chemistry, 2012, 287, 30888-30896.	1.6	77
13	Many keys to push: diversifying the 'readership' of plant homeodomain fingers. Acta Biochimica Et Biophysica Sinica, 2012, 44, 28-39.	0.9	55
14	Insights into Role of Bromodomain, Testis-specific (Brdt) in Acetylated Histone H4-dependent Chromatin Remodeling in Mammalian Spermiogenesis. Journal of Biological Chemistry, 2012, 287, 6387-6405.	1.6	59
15	Systems Biology in Aging: Linking the Old and the Young. Current Genomics, 2012, 13, 558-565.	0.7	22
16	Lysine acetylation: enzymes, bromodomains and links to different diseases. Essays in Biochemistry, 2012, 52, 1-12.	2.1	34
17	Epigenomics of cancer – emerging new concepts. Biochimie, 2012, 94, 2219-2230.	1.3	70
18	The adjustable nucleosome: an epigenetic signaling module. Trends in Genetics, 2012, 28, 436-444.	2.9	63
19	Histone Monoubiquitylation Position Determines Specificity and Direction of Enzymatic Cross-talk with Histone Methyltransferases Dot1L and PRC2. Journal of Biological Chemistry, 2012, 287, 23718-23725.	1.6	32
20	RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes and Development, 2012, 26, 2737-2748.	2.7	108

#	Article	IF	CITATIONS
21	One, two, three: how histone methylation is read. Epigenomics, 2012, 4, 641-653.	1.0	13
22	Rhythmic Oscillation of Histone Acetylation and Methylation at the Arabidopsis Central Clock Loci. Molecules and Cells, 2012, 34, 279-288.	1.0	50
23	Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Molecular BioSystems, 2012, 8, 2964.	2.9	68
24	Protein Lysine Acylation and Cysteine Succination by Intermediates of Energy Metabolism. ACS Chemical Biology, 2012, 7, 947-960.	1.6	201
25	Enhancers: emerging roles in cell fate specification. EMBO Reports, 2012, 13, 423-430.	2.0	124
26	Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme. Journal of Medicinal Chemistry, 2012, 55, 5582-5590.	2.9	66
27	Noncoding Transcription at Enhancers: General Principles and Functional Models. Annual Review of Genetics, 2012, 46, 1-19.	3.2	348
28	Modeling gene expression using chromatin features in various cellular contexts. Genome Biology, 2012, 13, R53.	13.9	231
29	Role of mass spectrometry-based proteomics in the study of cellular reprogramming and induced pluripotent stem cells. Expert Review of Proteomics, 2012, 9, 379-399.	1.3	11
30	Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nature Structural and Molecular Biology, 2012, 19, 1155-1160.	3.6	313
31	Cell signaling, post-translational protein modifications and NMR spectroscopy. Journal of Biomolecular NMR, 2012, 54, 217-236.	1.6	153
32	Ascending the nucleosome face: Recognition and function of structured domains in the histone H2A–H2B dimer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 892-901.	0.9	20
33	The bromodomain interaction module. FEBS Letters, 2012, 586, 2692-2704.	1.3	325
34	Comparative Epigenomic Annotation of Regulatory DNA. Cell, 2012, 149, 1381-1392.	13.5	188
35	Cancer Epigenetics: From Mechanism to Therapy. Cell, 2012, 150, 12-27.	13.5	2,521
36	Epigenetic mechanisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resistance Updates, 2012, 15, 21-38.	6.5	261
37	Combinatorial complexity in chromatin structure and function: revisiting the histone code. Current Opinion in Genetics and Development, 2012, 22, 148-155.	1.5	245
38	Regulation of gene transcription by the oncoprotein MYC. Gene, 2012, 494, 145-160.	1.0	118

#	ARTICLE Preparation and characterization of DNA aptamer based spin column for enrichment and separation of	IF	CITATIONS
39	histones. Chemical Communications, 2012, 48, 6684.	2.2	17
40	Targeting Epigenetic Readers in Cancer. New England Journal of Medicine, 2012, 367, 647-657.	13.9	363
42	Profiling of Substrates for Zincâ€dependent Lysine Deacylase Enzymes: HDAC3 Exhibits Decrotonylase Activity Inâ€Vitro. Angewandte Chemie - International Edition, 2012, 51, 9083-9087.	7.2	90
43	Epigenetic landscape and miRNA involvement during neural crest development. Developmental Dynamics, 2012, 241, 1849-1856.	0.8	28
44	Transcription regulation by distal enhancers. Transcription, 2012, 3, 181-186.	1.7	39
45	Sirtuin Catalysis and Regulation. Journal of Biological Chemistry, 2012, 287, 42419-42427.	1.6	193
46	Antibody-Free Reading of the Histone Code Using a Simple Chemical Sensor Array. Journal of the American Chemical Society, 2012, 134, 11674-11680.	6.6	102
47	Chromatin modifications as therapeutic targets in MLL-rearranged leukemia. Trends in Immunology, 2012, 33, 563-570.	2.9	52
48	A pipeline for the identification and characterization of chromatin modifications derived from ChIP-Seq datasets. Biochimie, 2012, 94, 2353-2359.	1.3	6
49	The consequences of enhanced cell-autonomous glucose metabolism. Trends in Endocrinology and Metabolism, 2012, 23, 545-551.	3.1	17
50	Histone Recognition by Human Malignant Brain Tumor Domains. Journal of Molecular Biology, 2012, 423, 702-718.	2.0	58
52	Identification of Combinatorial Patterns of Post-Translational Modifications on Individual Histones in the Mouse Brain. PLoS ONE, 2012, 7, e36980.	1.1	136
53	Epigenetics and the Developmental Origins of Inflammatory Bowel Diseases. Canadian Journal of Gastroenterology & Hepatology, 2012, 26, 909-915.	1.8	60
54	Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Frontiers in Genetics, 2012, 3, 195.	1.1	40
56	DNA Methylation in Mammalian and Non-Mammalian Organisms. , 0, , .		2
58	Highâ€ŧhroughput analysis of peptideâ€binding modules. Proteomics, 2012, 12, 1527-1546.	1.3	41
59	SIRT1 Negatively Regulates the Activities, Functions, and Protein Levels of hMOF and TIP60. Molecular and Cellular Biology, 2012, 32, 2823-2836.	1.1	81
60	Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses. Nature Structural and Molecular Biology, 2012, 19, 361-363.	3.6	49

ARTICLE IF CITATIONS # Molecular mechanisms and potential functions of histone demethylases. Nature Reviews Molecular 16.1 708 61 Cell Biology, 2012, 13, 297-311. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012, 1,728 13, 343-357. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. 63 16.1 573 Nature Reviews Molecular Cell Biology, 2012, 13, 436-447. Epigenetics: Concepts and relevance to IBD pathogenesis. Inflammatory Bowel Diseases, 2012, 18, 64 0.9 1982-1996. Epigenetic mechanisms in neurological disease. Nature Medicine, 2012, 18, 1194-1204. 65 15.2 394 Histone modification in Drosophila. Briefings in Functional Genomics, 2012, 11, 319-331. 1.3 Expansion of the Lysine Acylation Landscape. Angewandte Chemie - International Edition, 2012, 51, 70 7.2 80 3755-3756. Siteâ€Specific Incorporation of <i>ε</i>â€<i>N</i>â€Crotonyllysine into Histones. Angewandte Chemie -7.2 International Edition, 2012, 51, 7246-7249. Genetic recombination is directed away from functional genomic elements in mice. Nature, 2012, 485, 72 13.7 372 642-645. Epigenetic memories: structural marks or active circuits?. Cellular and Molecular Life Sciences, 2012, 2.4 69, 2189-2203. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways. 74 2.4 88 Cellular and Molecular Life Sciences, 2012, 69, 2559-2572. Establishment of epigenetic patterns in development. Chromosoma, 2012, 121, 251-262. Parental epigenetic control of embryogenesis: a balance between inheritance and reprogramming?. 76 2.6 34 Current Opinion in Cell Biology, 2012, 24, 387-396. The enigmatic role of H2Bub1 in cancer. FEBS Letters, 2012, 586, 1592-1601. 1.3 Emerging topics in epigenetics: ants, brains, and noncoding RNAs. Annals of the New York Academy of 78 1.8 32 Sciences, 2012, 1260, 14-23. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends in Parasitology, 2012, 28, 202-213. Overcoming the nucleosome barrier during transcript elongation. Trends in Genetics, 2012, 28, 80 2.9 150 285-294. Histone crotonylation specifically marks the haploid male germ cell gene expression program. 1.2 99 BioEssays, 2012, 34, 187-193.

			_
#	ARTICLE	IF	CITATIONS
82	Conversion of Cysteine into Dehydroalanine Enables Access to Synthetic Histones Bearing Diverse Postâ€Translational Modifications. Angewandte Chemie - International Edition, 2012, 51, 1835-1839.	7.2	172
83	Histone Regulation in the CNS: Basic Principles of Epigenetic Plasticity. Neuropsychopharmacology, 2013, 38, 3-22.	2.8	118
84	Epigenetics in the Human Brain. Neuropsychopharmacology, 2013, 38, 183-197.	2.8	65
85	A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics and Chromatin, 2013, 6, 20.	1.8	128
86	Short-term memory of danger signals and environmental stimuli in immune cells. Nature Immunology, 2013, 14, 777-784.	7.0	77
87	Chromatin computation: Epigenetic inheritance as a pattern reconstruction problem. Journal of Theoretical Biology, 2013, 336, 61-74.	0.8	11
88	The Mind and its Nucleosomes – Chromatin (dys)Regulation in Major Psychiatric Disease. , 2013, , 197-222.		0
89	Epigenetic Mechanisms and Non-coding RNAs in Osteoarthritis. Current Rheumatology Reports, 2013, 15, 353.	2.1	49
90	The AID-Induced DNA Damage Response in Chromatin. Molecular Cell, 2013, 50, 309-321.	4.5	69
91	Nuclear reprogramming of sperm and somatic nuclei in eggs and oocytes. Reproductive Medicine and Biology, 2013, 12, 133-149.	1.0	31
92	Combining genomic and proteomic approaches for epigenetics research. Epigenomics, 2013, 5, 439-452.	1.0	31
93	Understanding the chromatin remodeling code. Plant Science, 2013, 211, 137-145.	1.7	9
94	Lysine Succinylation Is a Frequently Occurring Modification in Prokaryotes and Eukaryotes and Extensively Overlaps with Acetylation. Cell Reports, 2013, 4, 842-851.	2.9	619
95	Interactome Mapping: Using Protein Microarray Technology to Reconstruct Diverse Protein Networks. Genomics, Proteomics and Bioinformatics, 2013, 11, 18-28.	3.0	23
96	The Histone Code of Toxoplasma gondii Comprises Conserved and Unique Posttranslational Modifications. MBio, 2013, 4, e00922-13.	1.8	85
97	Systematic analysis of histone modification readout. Molecular BioSystems, 2013, 9, 182-194.	2.9	15
98	Activation of the Protein Deacetylase SIRT6 by Long-chain Fatty Acids and Widespread Deacylation by Mammalian Sirtuins. Journal of Biological Chemistry, 2013, 288, 31350-31356.	1.6	545
99	Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Research, 2013, 21, 535-554.	1.0	53

		CITATION REPOR	RT	
#	Article	IF		CITATIONS
100	How mammals pack their sperm: a variant matter. Genes and Development, 2013, 27, 1635-16	39. 2.7	7	19
101	Chromatin dynamics at the replication fork: there's more to life than histones. Current Opinion Genetics and Development, 2013, 23, 140-146.	in 1.5	5	25
102	Recombinant antibodies to histone post-translational modifications. Nature Methods, 2013, 10), 992-995. 9.(D	58
103	Epigenetics and Complex Traits. , 2013, , .			1
104	Histone Modifications in the Nervous System and Neuropsychiatric Disorders. , 2013, , 35-67.			4
105	Proteomic characterization of novel histone post-translational modifications. Epigenetics and Chromatin, 2013, 6, 24.	1.8	3	121
106	Environmental Epigenomics in Health and Disease. Epigenetics and Human Health, 2013, , .	0.2	2	3
107	An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential th Neuropharmacology, 2013, 68, 2-82.	erapy. 2.0)	190
108	Mapping Human Epigenomes. Cell, 2013, 155, 39-55.	13.	.5	481
109	Initial characterization of histone H3 serine 10 O-acetylation. Epigenetics, 2013, 8, 1101-1113.	1.3	3	27
110	Synthesis of ε-N-propionyl-, ε-N-butyryl-, and ε-N-crotonyl-lysine containing histone H3 using 1 pyrrolysine system. Chemical Communications, 2013, 49, 379-381.	the 2,2	2	79
111	H3R42me2a is a histone modification with positive transcriptional effects. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14894-14899.	3.5	3	115
112	Proteomics in epigenetics: new perspectives for cancer research. Briefings in Functional Genom 2013, 12, 205-218.	iics, 1.3	3	29
113	Epigenetic inheritance mediated by histone lysine methylation: maintaining transcriptional stat without the precise restoration of marks?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110332.	es 1.8	3	55
114	Methods for Cancer Epigenome Analysis. Advances in Experimental Medicine and Biology, 2013 313-338.	3, 754, 0.8	8	22
115	Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under droug stress. Plant Molecular Biology, 2013, 81, 175-188.	ght 2.0)	164
116	Regulation of Transcription through Acetylation of H3K122 on the Lateral Surface of the Histor Octamer. Cell, 2013, 152, 859-872.	ne 13.	.5	209
117	Contribution of histone Nâ€ŧerminal tails to the structure and stability of nucleosomes. FEBS C 2013, 3, 363-369.	pen Bio, 1.0)	105

# 118	ARTICLE SIR–nucleosome interactions: Structure–function relationships in yeast silent chromatin. Gene, 2013, 527, 10-25.	IF 1.0	Citations 35
120	Mitochondrial SIRT4-type proteins in Caenorhabditis elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-dependent carboxylases. Mitochondrion, 2013, 13, 705-720.	1.6	18
121	Mechanisms of thyroid hormone receptor action during development: Lessons from amphibian studies. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3882-3892.	1.1	88
122	Quantification of histone modifications using 15N metabolic labeling. Methods, 2013, 61, 236-243.	1.9	10
123	MS/MS of Synthetic Peptide Is Not Sufficient to Confirm New Types of Protein Modifications. Journal of Proteome Research, 2013, 12, 1007-1013.	1.8	12
124	Histone modification mapping in human brain reveals aberrant expression of histone H3 lysine 79 dimethylation in neural tube defects. Neurobiology of Disease, 2013, 54, 404-413.	2.1	44
125	"Seq-ing―Insights into the Epigenetics of Neuronal Gene Regulation. Neuron, 2013, 77, 606-623.	3.8	73
126	Protein lysine acetylation analysis: current MS-based proteomic technologies. Analyst, The, 2013, 138, 1628.	1.7	34
127	Regulation of nucleosome dynamics by histone modifications. Nature Structural and Molecular Biology, 2013, 20, 259-266.	3.6	770
128	Epigenetic disorders and male subfertility. Fertility and Sterility, 2013, 99, 624-631.	0.5	108
129	Interplay between the Cancer Genome and Epigenome. Cell, 2013, 153, 38-55.	13.5	733
130	Altered Histone Modifications in Cancer. Advances in Experimental Medicine and Biology, 2013, 754, 81-107.	0.8	36
131	Epigenetic Regulation of Vascular Smooth Muscle Cell Function in Atherosclerosis. Current Atherosclerosis Reports, 2013, 15, 319.	2.0	34
132	Epigenomics and the regulation of aging. Epigenomics, 2013, 5, 205-227.	1.0	52
133	Modification of Enhancer Chromatin: What, How, and Why?. Molecular Cell, 2013, 49, 825-837.	4.5	1,200
134	Mechanisms of Epigenetic Regulation of Leukemia Onset and Progression. Advances in Immunology, 2013, 117, 1-38.	1.1	27
135	Epigenetic dysregulation in schizophrenia: molecular and clinical aspects of histone deacetylase inhibitors. European Archives of Psychiatry and Clinical Neuroscience, 2013, 263, 273-284.	1.8	44
136	Epigenetic Determinants of Healthy and Diseased Brain Aging and Cognition. JAMA Neurology, 2013, 70, 711.	4.5	72

#	Article	IF	Citations
137	Epigenetic Control of Cytokine Gene Expression. Advances in Immunology, 2013, 118, 37-128.	1.1	60
138	The Androgen Receptor in Health and Disease. Annual Review of Physiology, 2013, 75, 201-224.	5.6	206
139	SIRT5-Mediated Lysine Desuccinylation Impacts Diverse Metabolic Pathways. Molecular Cell, 2013, 50, 919-930.	4.5	786
140	Regulatory Roles of Metabolites in Cell Signaling Networks. Journal of Genetics and Genomics, 2013, 40, 367-374.	1.7	21
141	Chromatin Modifications as Determinants of Muscle Stem Cell Quiescence and Chronological Aging. Cell Reports, 2013, 4, 189-204.	2.9	463
142	On your histone mark, SET, methylate!. Epigenetics, 2013, 8, 457-463.	1.3	68
143	Bridging epigenomics and complex disease: the basics. Cellular and Molecular Life Sciences, 2013, 70, 1609-1621.	2.4	31
144	Epigenetic Regulation of Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 307-328.	0.8	19
145	Scratching the (lateral) surface of chromatin regulation by histone modifications. Nature Structural and Molecular Biology, 2013, 20, 657-661.	3.6	78
146	Metabolic reprogramming by class I and II histone deacetylases. Trends in Endocrinology and Metabolism, 2013, 24, 48-57.	3.1	81
147	Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry. Molecular and Cellular Proteomics, 2013, 12, 3444-3452.	2.5	491
148	Lysine-specific histone demethylase LSD1 and the dynamic control of chromatin. Biological Chemistry, 2013, 394, 1019-1028.	1.2	50
149	The great escape. Epigenetics, 2013, 8, 887-892.	1.3	27
150	Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Research, 2013, 41, 7185-7199.	6.5	96
151	The Chromatin Landscape of Kaposi's Sarcoma-Associated Herpesvirus. Viruses, 2013, 5, 1346-1373.	1.5	60
152	Identification and interrogation of combinatorial histone modifications. Frontiers in Genetics, 2013, 4, 264.	1.1	62
153	The links between chromatin spatial organization and biological function. Biochemical Society Transactions, 2013, 41, 1634-1639.	1.6	6
154	Identification of Methyllysine Peptides Binding to Chromobox Protein Homolog 6 Chromodomain in the Human Proteome. Molecular and Cellular Proteomics, 2013, 12, 2750-2760.	2.5	4

#	Article	IF	CITATIONS
155	A new horizon for epigenetic medicine?. Cell Research, 2013, 23, 326-328.	5.7	11
156	Structural basis for the site-specific chemical modification of proteins. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s325-s326.	0.3	0
157	Beyond the histone tail. Nucleus, 2013, 4, 343-348.	0.6	10
158	Epigenetics. Current Opinion in Gastroenterology, 2013, 29, 370-377.	1.0	24
159	Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes and Development, 2013, 27, 1288-1298.	2.7	155
160	Epigenome-Wide Association Studies: Potential Insights into Human Disease. , 2013, , 287-317.		3
161	Epigenetics in Friedreich's Ataxia: Challenges and Opportunities for Therapy. Genetics Research International, 2013, 2013, 1-12.	2.0	26
162	Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes and Development, 2013, 27, 1680-1692.	2.7	186
163	Mitochondrial Dysfunction in Cancer. Frontiers in Oncology, 2013, 3, 292.	1.3	382
164	Epigenetic regulation of inducible gene expression in the immune system. Immunology, 2013, 139, 285-293.	2.0	52
165	A multi-parametric flow cytometric assay to analyze DNA–protein interactions. Nucleic Acids Research, 2013, 41, e38-e38.	6.5	3
166	A Common Histone Modification Code on C4 Genes in Maize and Its Conservation in Sorghum and <i>Setaria italica</i> Â Â Â. Plant Physiology, 2013, 162, 456-469.	2.3	39
167	A quantitative analysis of histone methylation and acetylation isoforms from their deuteroacetylated derivatives: application to a series of knockout mutants. Journal of Mass Spectrometry, 2013, 48, 608-615.	0.7	5
168	ls JmjC Oxygenase Catalysis Limited to Demethylation?. Angewandte Chemie - International Edition, 2013, 52, 7709-7713.	7.2	32
170	Cytokine-induced Chromatin Modifications of the Type I Collagen Alpha 2 Gene during Intestinal Endothelial-to-Mesenchymal Transition. Inflammatory Bowel Diseases, 2013, 19, 1354-1364.	0.9	33
171	A Look to the Future. , 2013, , 117-131.		0
172	Protein Complex Interactor Analysis and Differential Activity of KDM3 Subfamily Members Towards H3K9 Methylation. PLoS ONE, 2013, 8, e60549.	1.1	58
173	Locus-Specific Biochemical Epigenetics/Chromatin Biochemistry by Insertional Chromatin Immunoprecipitation. , 2013, 2013, 1-8.		20

# 174	ARTICLE Chromatin Remodelling During Host-Bacterial Pathogen Interaction. , 2013, , .	IF	CITATIONS
175	Post-Translational Modification of Proteins in Toxicological Research: Focus on Lysine Acylation. Toxicological Research, 2013, 29, 81-86.	1.1	37
176	Structural Basis for the Site-Specific Incorporation of Lysine Derivatives into Proteins. PLoS ONE, 2014, 9, e96198.	1.1	15
177	Genetic code expansion as a tool to study regulatory processes of transcription. Frontiers in Chemistry, 2014, 2, 7.	1.8	13
178	Identification of â€~erasers' for lysine crotonylated histone marks using a chemical proteomics approach. ELife, 2014, 3, .	2.8	237
179	New and emerging HDAC inhibitors for cancer treatment. Journal of Clinical Investigation, 2014, 124, 30-39.	3.9	1,137
180	Epigenetic regulation and heart failure. Expert Review of Cardiovascular Therapy, 2014, 12, 1087-1098.	0.6	8
181	Biological and biochemical modulation of DNA methylation. Epigenomics, 2014, 6, 593-602.	1.0	19
182	Epigenetics and chemoresistance in childhood acute lymphoblastic leukemia. International Journal of Hematologic Oncology, 2014, 3, 19-30.	0.7	2
183	Epigenetics of Cardiovascular Disease: A New †Beat' in Coronary Artery Disease. Medical Epigenetics, 2014, 2, 37-52.	262.3	36
184	Proteogenomic analysis and global discovery of posttranslational modifications in prokaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5633-42.	3.3	55
185	Human germline and pan-cancer variomes and their distinct functional profiles. Nucleic Acids Research, 2014, 42, 11570-11588.	6.5	22
186	Epigenetics and Cardiovascular Disease. , 2014, , 747-782.		0
187	Relationships between DNA and Histone Modifications. , 2014, , .		0
188	Uncovering Enhancer Functions Using the α-Globin Locus. PLoS Genetics, 2014, 10, e1004668.	1.5	32
189	Epigenetic Regulation of Neural Crest Cells. , 2014, , 89-100.		1
190	Metabolism leaves its mark on the powerhouse: recent progress in post-translational modifications of lysine in mitochondria. Frontiers in Physiology, 2014, 5, 301.	1.3	71
191	JMJD6 Promotes Colon Carcinogenesis through Negative Regulation of p53 by Hydroxylation. PLoS Biology, 2014, 12, e1001819.	2.6	111

#	Article	IF	CITATIONS
192	Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2. Protein Science, 2014, 23, 1686-1697.	3.1	17
193	Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: <scp>IUPHAR</scp> Review 11. British Journal of Pharmacology, 2014, 171, 4981-5010.	2.7	23
194	Histone methylases as novel drug targets: developing inhibitors of EZH2. Future Medicinal Chemistry, 2014, 6, 1943-1965.	1.1	11
195	CRL4B interacts and coordinates with SIN3A/HDAC complex to repress <i>CDKN1A</i> in driving cell cycle progression. Journal of Cell Science, 2014, 127, 4679-91.	1.2	28
196	Application of histone modification-specific interaction domains as an alternative to antibodies. Genome Research, 2014, 24, 1842-1853.	2.4	52
197	The topâ€down, middleâ€down, and bottomâ€up mass spectrometry approaches for characterization of histone variants and their postâ€translational modifications. Proteomics, 2014, 14, 489-497.	1.3	122
198	Methyl Effect in Azumamides Provides Insight Into Histone Deacetylase Inhibition by Macrocycles. Journal of Medicinal Chemistry, 2014, 57, 9644-9657.	2.9	20
199	Epigenetic regulation in neural crest development. Developmental Biology, 2014, 396, 159-168.	0.9	73
200	Epigenomics of macrophages. Immunological Reviews, 2014, 262, 96-112.	2.8	56
202	An Update on Lysine Deacylases Targeting the Expanding "Acylome― ChemMedChem, 2014, 9, 434-437.	1.6	22
203	A specific <scp>CBP</scp> /p300â€dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis. Andrology, 2014, 2, 351-359.	1.9	27
204	Mapping Post-translational Modifications of Mammalian Testicular Specific Histone Variant TH2B in Tetraploid and Haploid Germ Cells and Their Implications on the Dynamics of Nucleosome Structure. Journal of Proteome Research, 2014, 13, 5603-5617.	1.8	20
206	The Future of Neuroepigenetics in the Human Brain. Progress in Molecular Biology and Translational Science, 2014, 128, 199-228.	0.9	14
207	Reading Histone Modifications. , 2014, , 355-373.		0
209	Mass spectrometry analysis of histone post translational modifications. Drug Discovery Today: Disease Models, 2014, 12, 41-48.	1.2	6
211	Quantitative ChIP-Seq Normalization Reveals Global Modulation of the Epigenome. Cell Reports, 2014, 9, 1163-1170.	2.9	442
212	Nucleosomal packaging of eukaryotic DNA and regulation of transcription. Biopolymers and Cell, 2014, 30, 413-425.	0.1	1
213	Distinct and Predictive Histone Lysine Acetylation Patterns at Promoters, Enhancers, and Gene Bodies. G3: Genes, Genomes, Genetics, 2014, 4, 2051-2063.	0.8	39

	CITATION	Report	
#	Article	IF	CITATIONS
214	Systems Analysis of Chromatin-Related Protein Complexes in Cancer. , 2014, , .		0
215	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	7.2	647
216	A network of players in H3 histone variant deposition and maintenance at centromeres. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 241-250.	0.9	46
217	Chromatin-bound RNA and the neurobiology of psychiatric disease. Neuroscience, 2014, 264, 131-141.	1.1	8
218	The promise and failures of epigenetic therapies for cancer treatment. Cancer Treatment Reviews, 2014, 40, 153-169.	3.4	76
219	Histone H2A.Z deregulation in prostate cancer. Cause or effect?. Cancer and Metastasis Reviews, 2014, 33, 429-439.	2.7	24
220	Readers of histone methylarginine marks. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 702-710.	0.9	126
221	A Novel Microscopy-Based High-Throughput Screening Method to Identify Proteins That Regulate Global Histone Modification Levels. Journal of Biomolecular Screening, 2014, 19, 287-296.	2.6	5
222	Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics and Chromatin, 2014, 7, 2.	1.8	149
223	Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology, 2014, 10, 365-370.	3.9	368
224	Interpreting the language of histone and DNA modifications. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 627-643.	0.9	596
225	Acetaldehyde and the genome: Beyond nuclear DNA adducts and carcinogenesis. Environmental and Molecular Mutagenesis, 2014, 55, 77-91.	0.9	113
226	The Role of Chromatin Modifications in Progression through Mouse Meiotic Prophase. Journal of Genetics and Genomics, 2014, 41, 97-106.	1.7	40
227	Biochemical systems approaches for the analysis of histone modification readout. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 657-668.	0.9	17
228	The functional diversity of protein lysine methylation. Molecular Systems Biology, 2014, 10, 724.	3.2	202
229	Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Research, 2014, 42, 701-713.	6.5	201
230	Crafting the Brain – Role of Histone Acetyltransferases in Neural Development and Disease. Cell and Tissue Research, 2014, 356, 553-573.	1.5	47
231	Histone target selection within chromatin: an exemplary case of teamwork. Genes and Development, 2014, 28, 1029-1041.	2.7	70

#	Article	IF	CITATIONS
232	Engineering chromatin states: Chemical and synthetic biology approaches to investigate histone modification function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 644-656.	0.9	17
233	Cracking the survival code. Autophagy, 2014, 10, 556-561.	4.3	53
234	Chromatin modifiers and remodellers: regulators of cellular differentiation. Nature Reviews Genetics, 2014, 15, 93-106.	7.7	566
235	Targeting Chromatin Modifying Enzymes in Anticancer Drug Discovery. , 2014, , 239-256.		0
236	The genetics of cognitive epigenetics. Neuropharmacology, 2014, 80, 83-94.	2.0	78
237	Nucleosome signalling; An evolving concept. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 623-626.	0.9	29
238	The Effect of Various Zinc Binding Groups on Inhibition of Histone Deacetylases 1–11. ChemMedChem, 2014, 9, 614-626.	1.6	52
239	Chromatin dynamics during spermiogenesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 155-168.	0.9	411
240	Protein Deimination in Human Health and Disease. , 2014, , .		10
241	Analytical tools and current challenges in the modern era of neuroepigenomics. Nature Neuroscience, 2014, 17, 1476-1490.	7.1	100
242	Lysine Propionylation Is a Prevalent Post-translational Modification in Thermus thermophilus. Molecular and Cellular Proteomics, 2014, 13, 2382-2398.	2.5	49
243	Decoding neural transcriptomes and epigenomes via high-throughput sequencing. Nature Neuroscience, 2014, 17, 1463-1475.	7.1	49
244	DNA atalyzed Lysine Side Chain Modification. Angewandte Chemie - International Edition, 2014, 53, 9045-9050.	7.2	18
245	Expanded Genetic Code Technologies for Incorporating Modified Lysine at Multiple Sites. ChemBioChem, 2014, 15, 2181-2187.	1.3	29
246	CPLM: a database of protein lysine modifications. Nucleic Acids Research, 2014, 42, D531-D536.	6.5	155
248	SAHA Regulates Histone Acetylation, Butyrylation, and Protein Expression in Neuroblastoma. Journal of Proteome Research, 2014, 13, 4211-4219.	1.8	48
249	Epigenetic Changes in the Paternal Germline. , 2014, , 43-55.		2
250	Human Proteins with Target Sites of Multiple Post-Translational Modification Types Are More Prone to Be Involved in Disease, Journal of Proteome Research, 2014, 13, 2735-2748.	1.8	31

#	Article	IF	CITATIONS
251	Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130514.	1.8	113
252	Neuroepigenetics of stress. Neuroscience, 2014, 275, 420-435.	1.1	83
253	The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology, 2014, 15, 536-550.	16.1	1,153
254	Middleâ€down hybrid chromatography/tandem mass spectrometry workflow for characterization of combinatorial postâ€translational modifications in histones. Proteomics, 2014, 14, 2200-2211.	1.3	76
255	Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development (Cambridge), 2014, 141, 3483-3494.	1.2	97
256	Posttranslational modifications of human histone H3: An update. Proteomics, 2014, 14, 2047-2060.	1.3	63
257	Improved bottomâ€up strategy to efficiently separate hypermodified histone peptides through ultraâ€HPLC separation on a bench top Orbitrap instrument. Proteomics, 2014, 14, 2212-2225.	1.3	28
258	Common features of chromatin in aging and cancer: cause or coincidence?. Trends in Cell Biology, 2014, 24, 686-694.	3.6	62
259	The role of chromatin dynamics in immune cell development. Immunological Reviews, 2014, 261, 9-22.	2.8	57
260	Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology, 2014, 15, 703-708.	16.1	775
261	Genomic data integration for ecological and evolutionary traits in non-model organisms. BMC Genomics, 2014, 15, 490.	1.2	36
262	Histone H3 lysine 27 acetylation is altered in colon cancer. Clinical Proteomics, 2014, 11, 24.	1.1	72
263	Diverse Epigenetic Mechanisms of Human Disease. Annual Review of Genetics, 2014, 48, 237-268.	3.2	107
264	Chemical Probing of the Human Sirtuin 5 Active Site Reveals Its Substrate Acyl Specificity and Peptideâ€Based Inhibitors. Angewandte Chemie - International Edition, 2014, 53, 10728-10732.	7.2	60
265	A Mitochondrial Expatriate: Nuclear Pyruvate Dehydrogenase. Cell, 2014, 158, 9-10.	13.5	30
266	SnapShot: Histone Modifications. Cell, 2014, 159, 458-458.e1.	13.5	362
267	The Molecular Basis of Normal Erythroid/Megakaryocyte Development and Mechanisms of Epigenetic/Transcriptional Deregulation Leading to Erythroleukemia and Thalassaemia. Epigenetics and Human Health, 2014, , 247-266.	0.2	1
268	Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harbor Perspectives in Biology, 2014, 6, a018713-a018713.	2.3	1,346

#	Article	IF	CITATIONS
269	Melanoma epigenetics: novel mechanisms, markers, and medicines. Laboratory Investigation, 2014, 94, 822-838.	1.7	69
270	Epigenetic Dysregulation in the Schizophrenic Brain. Current Behavioral Neuroscience Reports, 2014, 1, 86-93.	0.6	3
271	The Roles of Retinoic Acid and Retinoic Acid Receptors in Inducing Epigenetic Changes. Sub-Cellular Biochemistry, 2014, 70, 129-149.	1.0	39
272	Mass Spectrometric Analysis of Histone Proteoforms. Annual Review of Analytical Chemistry, 2014, 7, 113-128.	2.8	55
273	Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6661-6714.	23.0	391
274	Absence of a simple code: how transcription factors read the genome. Trends in Biochemical Sciences, 2014, 39, 381-399.	3.7	447
275	Role of somatic cancer mutations in human protein lysine methyltransferases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 366-379.	3.3	34
276	Natural compounds in epigenetics: A current view. Food and Chemical Toxicology, 2014, 73, 71-83.	1.8	35
277	Can changes in histone acetylation contribute to memory formation?. Trends in Genetics, 2014, 30, 529-539.	2.9	68
278	Dynamic expression of combinatorial replication-dependent histone variant genes during mouse spermatogenesis. Gene Expression Patterns, 2014, 14, 30-41.	0.3	8
279	Hitting the â€~mark': Interpreting lysine methylation in the context of active transcription. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1353-1361.	0.9	74
280	Writing and reading H2B monoubiquitylation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 694-701.	0.9	115
281	Genome-Scale Acetylation-Dependent Histone Eviction during Spermatogenesis. Journal of Molecular Biology, 2014, 426, 3342-3349.	2.0	78
282	The bromodomain: From epigenome reader to druggable target. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 676-685.	0.9	157
283	Repressive histone methylation: A case study in deterministic versus stochastic gene regulation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 1373-1384.	0.9	18
284	Phosphorylationâ€dependent regulation of plant chromatin and chromatinâ€associated proteins. Proteomics, 2014, 14, 2127-2140.	1.3	26
285	The epigenome of Trypanosoma brucei: A regulatory interface to an unconventional transcriptional machine. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 743-750.	0.9	29
286	Protein lysine acetylation guards metabolic homeostasis to fight against cancer. Oncogene, 2014, 33, 2279-2285.	2.6	35

#	Article	IF	CITATIONS
287	Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS Journal, 2015, 282, 1658-1674.	2.2	62
289	Methylation of histone H4 at aspartate 24 by Protein L-isoaspartate O-methyltransferase (PCMT1) links histone modifications with protein homeostasis. Scientific Reports, 2014, 4, 6674.	1.6	22
290	An integrative analysis of post-translational histone modifications in the marine diatom Phaeodactylum tricornutum. Genome Biology, 2015, 16, 102.	3.8	107
291	The rate of glycolysisÂquantitatively mediates specific histone acetylation sites. Cancer & Metabolism, 2015, 3, 10.	2.4	121
292	Epigenetic States of Nephron Progenitors and Epithelial Differentiation. Journal of Cellular Biochemistry, 2015, 116, 893-902.	1.2	15
293	Growth-Phase-Specific Modulation of Cell Morphology and Gene Expression by an Archaeal Histone Protein. MBio, 2015, 6, e00649-15.	1.8	22
294	Partners in crime: The role of tandem modules in gene transcription. Protein Science, 2015, 24, 1347-1359.	3.1	11
296	Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment?. World Journal of Biological Chemistry, 2015, 6, 333.	1.7	92
297	Epigenetic crosstalk a molecular language in human metabolic disorders. Frontiers in Bioscience - Scholar, 2015, 7, 46-57.	0.8	13
298	SPOTing Acetyl-Lysine Dependent Interactions. Microarrays (Basel, Switzerland), 2015, 4, 370-388.	1.4	13
299	Epigenetic marks: regulators of livestock phenotypes and conceivable sources of missing variation in livestock improvement programs. Frontiers in Genetics, 2015, 6, 302.	1.1	125
300	Epigenetic Codes Programing Class Switch Recombination. Frontiers in Immunology, 2015, 6, 405.	2.2	14
301	Post-Translational Modifications of Histones in Vertebrate Neurogenesis. Frontiers in Neuroscience, 2015, 9, 483.	1.4	19
302	Repeated vapor ethanol exposure induces transient histone modifications in the brain that are modified by genotype and brain region. Frontiers in Molecular Neuroscience, 2015, 8, 39.	1.4	34
303	Identification of let-7a-2-3p or/and miR-188-5p as Prognostic Biomarkers in Cytogenetically Normal Acute Myeloid Leukemia. PLoS ONE, 2015, 10, e0118099.	1.1	49
304	Retention of the Native Epigenome in Purified Mammalian Chromatin. PLoS ONE, 2015, 10, e0133246.	1.1	7
305	New insights into the epigenetic control of satellite cells. World Journal of Stem Cells, 2015, 7, 945.	1.3	26
307	Epigenetic dynamics during preimplantation development. Reproduction, 2015, 150, R109-R120.	1.1	102

#	Article	IF	CITATIONS
308	Histone Recognition. , 2015, , .		2
309	Application of Mass Spectrometry in Translational Epigenetics. , 2015, , 55-78.		2
310	Peptide Microarrays for Profiling of Epigenetic Targets. , 2015, , 169-186.		2
311	Chemical and Genetic Approaches to Study Histone Modifications. , 2015, , 149-168.		2
312	Genome-Wide Profiling of Molecular Recognition of Histone PTMs. , 2015, , 173-183.		1
313	High-Resolution Metabolomics with Acyl-CoA Profiling Reveals Widespread Remodeling in Response to Diet*. Molecular and Cellular Proteomics, 2015, 14, 1489-1500.	2.5	95
314	Genetic encoding of the post-translational modification 2-hydroxyisobutyryl-lysine. Organic and Biomolecular Chemistry, 2015, 13, 6479-6481.	1.5	13
316	Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Annual Review of Genetics, 2015, 49, 439-459.	3.2	58
317	Multimerization of Drosophila sperm protein Mst77F causes a unique condensed chromatin structure. Nucleic Acids Research, 2015, 43, 3033-3045.	6.5	13
318	HAT3-mediated acetylation of PCNA precedes PCNA monoubiquitination following exposure to UV radiation in Leishmania donovani. Nucleic Acids Research, 2015, 43, 5423-5441.	6.5	22
319	Natural variability of minimotifs in 1092 people indicates that minimotifs are targets of evolution. Nucleic Acids Research, 2015, 43, 6399-6412.	6.5	6
320	Epigenetic Modifications and Accumulation of DNA Double-Strand Breaks in Oral Lichen Planus Lesions Presenting Poor Response to Therapy. Medicine (United States), 2015, 94, e997.	0.4	24
321	The Epigenetic Basis of Diffuse Large B-Cell Lymphoma. Seminars in Hematology, 2015, 52, 86-96.	1.8	47
322	Targeting histone lysine methylation in cancer. , 2015, 150, 1-22.		164
323	Lysine Malonylation Is Elevated in Type 2 Diabetic Mouse Models and Enriched in Metabolic Associated Proteins. Molecular and Cellular Proteomics, 2015, 14, 227-236.	2.5	101
324	Chromatin regulation at the frontier of synthetic biology. Nature Reviews Genetics, 2015, 16, 159-171.	7.7	89
325	Epigenetic-Mediated Reprogramming of Pancreatic Endocrine Cells. Antioxidants and Redox Signaling, 2015, 22, 1483-1495.	2.5	2
326	Resistance to Targeted ABC Transporters in Cancer. Resistance To Targeted Anti-cancer Therapeutics, 2015, , .	0.1	3

# 327	ARTICLE Sirtuins in Epigenetic Regulation. Chemical Reviews, 2015, 115, 2350-2375.	IF 23.0	CITATIONS 205
328	Succinylome Analysis Reveals the Involvement of Lysine Succinylation in Metabolism in Pathogenic Mycobacterium tuberculosis*. Molecular and Cellular Proteomics, 2015, 14, 796-811.	2.5	117
329	Targeting chromatin to improve radiation response. British Journal of Radiology, 2015, 88, 20140649.	1.0	7
330	Loss-of-function variants of SETD5 cause intellectual disability and the core phenotype of microdeletion 3p25.3 syndrome. European Journal of Human Genetics, 2015, 23, 753-760.	1.4	73
331	Metabolic Regulation of Histone Post-Translational Modifications. ACS Chemical Biology, 2015, 10, 95-108.	1.6	259
332	Clobal and Specific Responses of the Histone Acetylome to Systematic Perturbation. Molecular Cell, 2015, 57, 559-571.	4.5	119
333	Mitochondrial Sirtuins and Their Relationships with Metabolic Disease and Cancer. Antioxidants and Redox Signaling, 2015, 22, 1060-1077.	2.5	121
334	Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunology and Cell Biology, 2015, 93, 233-244.	1.0	60
335	Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cellular and Molecular Life Sciences, 2015, 72, 1261-1273.	2.4	83
336	Malignant Transformation and Epigenetics. , 2015, , 113-135.		0
337	A Comprehensive View of the Epigenetic Landscape. Part II: Histone Post-translational Modification, Nucleosome Level, and Chromatin Regulation by ncRNAs. Neurotoxicity Research, 2015, 27, 172-197.	1.3	155
338	The epigenetics of aging and neurodegeneration. Progress in Neurobiology, 2015, 131, 21-64.	2.8	334
339	Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnology Advances, 2015, 33, 856-872.	6.0	34
340	Phogly–PseAAC: Prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity. Journal of Theoretical Biology, 2015, 379, 10-15.	0.8	20
341	Histone profiles in cancer. , 2015, 154, 87-109.		6
342	Point mutations in an epigenetic factor lead to multiple types of bone tumors: role of H3.3 histone variant in bone development and disease. BoneKEy Reports, 2015, 4, 715.	2.7	6
343	Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Seminars in Cell and Developmental Biology, 2015, 43, 85-95.	2.3	78
344	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	0.6	97

#	Article	IF	CITATIONS
345	Arginine methylation of HSP70 regulates retinoid acid-mediated <i>RARβ2</i> gene activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3327-36.	3.3	57
346	Dietary control of chromatin. Current Opinion in Cell Biology, 2015, 34, 69-74.	2.6	17
347	Epigenetics and its Role in Male Infertility. , 2015, , 411-422.		3
348	A sensitive protein-based sensor for quantifying histone acetylation levels. Talanta, 2015, 140, 212-218.	2.9	7
349	Greetings from the Planet Croton. Molecular Cell, 2015, 58, 195-196.	4.5	2
350	Epigenetics of the failing heart. Heart Failure Reviews, 2015, 20, 435-459.	1.7	16
351	Chemical "Diversity―of Chromatin Through Histone Variants and Histone Modifications. Current Molecular Biology Reports, 2015, 1, 39-59.	0.8	6
352	Epigenetics and locust life phase transitions. Journal of Experimental Biology, 2015, 218, 88-99.	0.8	68
353	Drinking beyond a lifetime: New and emerging insights into paternal alcohol exposure on subsequent generations. Alcohol, 2015, 49, 461-470.	0.8	89
354	Intracellular Crotonyl-CoA Stimulates Transcription through p300-Catalyzed Histone Crotonylation. Molecular Cell, 2015, 58, 203-215.	4.5	434
355	Chemical and Biological Tools for the Preparation of Modified Histone Proteins. Topics in Current Chemistry, 2015, 363, 193-226.	4.0	11
356	Chemical Biology of Protein Arginine Modifications in Epigenetic Regulation. Chemical Reviews, 2015, 115, 5413-5461.	23.0	224
358	Application of the Protein Semisynthesis Strategy to the Generation of Modified Chromatin. Annual Review of Biochemistry, 2015, 84, 265-290.	5.0	60
359	Apelin protects against acute renal injury by inhibiting TGF-β1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1278-1287.	1.8	72
360	Quantitative characterization of histone post-translational modifications using a stable isotope dimethyl-labeling strategy. Analytical Methods, 2015, 7, 3779-3785.	1.3	4
361	Epigenetic regulation by histone demethylases in hypoxia. Epigenomics, 2015, 7, 791-811.	1.0	124
362	Nucleosome-specific, Time-dependent Changes in Histone Modifications during Activation of the Early Growth Response 1 (Egr1) Gene. Journal of Biological Chemistry, 2015, 290, 197-208.	1.6	21
363	Mass Spectrometric Quantification of Histone Post-translational Modifications by a Hybrid Chemical Labeling Method. Molecular and Cellular Proteomics, 2015, 14, 1148-1158.	2.5	82

#	Article	IF	CITATIONS
364	Chemical tagging and customizing of cellular chromatin states using ultrafast trans-splicing inteins. Nature Chemistry, 2015, 7, 394-402.	6.6	133
365	Chromatin proteomic profiling reveals novel proteins associated with histone-marked genomic regions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3841-3846.	3.3	123
366	Moving Toward the Ground State. Cell Stem Cell, 2015, 17, 375-376.	5.2	4
367	Epigenomics and the structure of the living genome. Genome Research, 2015, 25, 1482-1490.	2.4	48
368	Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Review of Proteomics, 2015, 12, 499-517.	1.3	51
369	Successful strategies in the discovery of small-molecule epigenetic modulators with anticancer potential. Future Medicinal Chemistry, 2015, 7, 2243-2261.	1.1	11
370	H3K23me2 is a new heterochromatic mark in <i>Caenorhabditis elegans</i> . Nucleic Acids Research, 2015, 43, gkv1063.	6.5	37
371	A mini-review on Sirtuin activity assays. Biochemical and Biophysical Research Communications, 2015, 467, 459-466.	1.0	25
372	Poised chromatin and bivalent domains facilitate the mitosis-to-meiosis transition in the male germline. BMC Biology, 2015, 13, 53.	1.7	64
373	Highâ€wire act: the poised genome and cellular memory. FEBS Journal, 2015, 282, 1675-1691.	2.2	19
374	Analytical strategies used to identify the readers of histone modifications: A review. Analytica Chimica Acta, 2015, 891, 32-42.	2.6	11
375	Deregulation of histone-modifying enzymes and chromatin structure modifiers contributes to glioma development. Future Oncology, 2015, 11, 2587-2601.	1.1	21
376	Identification of a functional hotspot on ubiquitin required for stimulation of methyltransferase activity on chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10365-10370.	3.3	44
377	A Novel Continuous Assay for the Deacylase Sirtuin 5 and Other Deacetylases. Journal of Medicinal Chemistry, 2015, 58, 7217-7223.	2.9	41
378	Methylarginine Recognition by Tudor Domains. , 2015, , 125-147.		3
379	Global Analysis of Protein Lysine Succinylation Profiles and Their Overlap with Lysine Acetylation in the Marine Bacterium <i>Vibrio parahemolyticus</i> . Journal of Proteome Research, 2015, 14, 4309-4318.	1.8	86
380	Proteomic and Biochemical Studies of Lysine Malonylation Suggest Its Malonic Aciduria-associated Regulatory Role in Mitochondrial Function and Fatty Acid Oxidation. Molecular and Cellular Proteomics, 2015, 14, 3056-3071.	2.5	143
381	Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harbor Perspectives in Biology, 2015, 7, a025064.	2.3	320

#	Article	IF	CITATIONS
382	A Subset of Human Bromodomains Recognizes Butyryllysine and Crotonyllysine Histone Peptide Modifications. Structure, 2015, 23, 1801-1814.	1.6	165
383	Deciphering H3K4me3 broad domains associated with gene-regulatory networks and conserved epigenomic landscapes in the human brain. Translational Psychiatry, 2015, 5, e679-e679.	2.4	57
384	Mapping of post-translational modifications of spermatid-specific linker histone H1-like protein, HILS1. Journal of Proteomics, 2015, 128, 218-230.	1.2	20
385	The Genetics of Epigenetic Inheritance: Modes, Molecules, and Mechanisms. Quarterly Review of Biology, 2015, 90, 381-415.	0.0	51
386	Histone modificationsâ€"models and mechanisms. , 2015, , 21-42.		5
387	Affinity reagents for studying histone modifications & guidelines for their quality control. Epigenomics, 2015, 7, 1185-1196.	1.0	12
388	Epigenetic Reprogramming in Cancer. Epigenetics and Human Health, 2015, , 193-223.	0.2	4
389	Functional Crosstalk Between Lysine Methyltransferases on Histone Substrates: The Case of G9A/GLP and Polycomb Repressive Complex 2. Antioxidants and Redox Signaling, 2015, 22, 1365-1381.	2.5	26
390	Epigenetic Mechanisms in Cellular Reprogramming. Epigenetics and Human Health, 2015, , .	0.2	2
391	Activity and specificity of the human SUV39H2 protein lysine methyltransferase. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 55-63.	0.9	45
392	Histone proteolysis: A proposal for categorization into â€~clipping' and â€~degradation'. BioEssays, 2015, 70-79.	37. 1.2	58
393	Software eyes for protein postâ€ŧranslational modifications. Mass Spectrometry Reviews, 2015, 34, 133-147.	2.8	49
394	Epigenetic regulation of persistent pain. Translational Research, 2015, 165, 177-199.	2.2	59
395	Epigenetics and cancer metabolism. Cancer Letters, 2015, 356, 309-314.	3.2	90
396	Driver and Passenger Mutations in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 25-50.	9.6	291
397	Chemical proteomics approaches to examine novel histone posttranslational modifications. Current Opinion in Chemical Biology, 2015, 24, 80-90.	2.8	22
398	Histones: At the Crossroads of Peptide and Protein Chemistry. Chemical Reviews, 2015, 115, 2296-2349.	23.0	188
399	Single molecule and single cell epigenomics. Methods, 2015, 72, 41-50.	1.9	35

#	Article	IF	CITATIONS
400	Epigenetic therapy as a novel approach in hepatocellular carcinoma. , 2015, 145, 103-119.		59
401	Comparative analysis of histone H3 and H4 post-translational modifications of esophageal squamous cell carcinoma with different invasive capabilities. Journal of Proteomics, 2015, 112, 180-189.	1.2	33
402	How the Father Might Epigenetically Program the Risk for Developmental Origins of Health and Disease Effects in His Offspring. , 2016, , 361-375.		5
403	Metaboloepigenetics: The Emerging Network in Stem Cell Homeostasis Regulation. Current Stem Cell Research and Therapy, 2016, 11, 352-369.	0.6	10
404	Epigenetic Approaches to Define the Molecular and Genetic Risk Architectures of Schizophrenia. , 2016, , 61-82.		1
405	The interplay of post-translational modification and gene therapy. Drug Design, Development and Therapy, 2016, 10, 861.	2.0	5
406	Immune System Disorders and Epigenetics. , 2016, , 199-219.		2
407	Crosstalk Between Histone Modifications Integrates Various Signaling Inputs to Fine-Tune Transcriptional Output. , 2016, , 217-239.		1
408	Use of Chromatin Changes as Biomarkers. , 2016, , 403-421.		0
409	Compartmentation of Metabolites in Regulating Epigenomes of Cancer. Molecular Medicine, 2016, 22, 349-360.	1.9	16
410	Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells International, 2016, 2016, 1-14.	1.2	33
411	Toxicology and Epigenetics. , 2016, , 555-583.		0
412	Histone Posttranslational Modifications of CD4+ T Cell in Autoimmune Diseases. International Journal of Molecular Sciences, 2016, 17, 1547.	1.8	21
413	The Evolution of New Technologies and Methods in Clinical Epigenetics Research. , 2016, , 67-89.		1
414	Impacts of Histone Lysine Methylation onÂChromatin. , 2016, , 25-53.		0
415	SET domain–mediated lysine methylation in lower organisms regulates growth and transcription in hosts. Annals of the New York Academy of Sciences, 2016, 1376, 18-28.	1.8	8
416	An optimized guanidination method for largeâ€scale proteomic studies. Proteomics, 2016, 16, 1837-1846.	1.3	5
417	Computational strategies to address chromatin structure problems. Physical Biology, 2016, 13, 035006.	0.8	14

ARTICLE IF CITATIONS Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations 1.2 5 418 and free energy calculations. Biopolymers, 2016, 105, 779-786. An epigenetic resolution of the lek paradox. BioEssays, 2016, 38, 355-366. 1.2 The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin. 420 3.117 Cell Discovery, 2016, 2, 16004. Multivalent Histone and DNA Engagement by a PHD/BRD/PWWP Triple Reader Cassette Recruits ZMYND8 421 2.9 to K14ac-Rich Chromatin. Cell Reports, 2016, 17, 2724-2737. Reading and Interpreting the Histone Acylation Code. Genomics, Proteomics and Bioinformatics, 2016, 422 3.0 2 14, 329-332. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. 1.8 Epigenetics and Chromatin, 2016, 9, 47. Histone Modifications and Cancer. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019521. 424 2.3626 Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 3.3 263 2016, 113, 4320-4325. Analysis of histone post translational modifications in primary monocyte derived macrophages using 426 reverse phaseA—reverse phase chromatography in conjunction with porous graphitic carbon stationary 1.8 6 phase. Journal of Chromatography A, 2016, 1453, 43-53. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochimica Et Biophysica Sinica, 2016, 48, 603-616. Fatty acylation of proteins: The long and the short of it. Progress in Lipid Research, 2016, 63, 120-131. 428 5.3218 Global Profiling of Protein Lysine Malonylation in <i>Escherichia coli</i> Reveals Its Role in Energy 429 1.8 Metabolism. Journal of Proteome Research, 2016, 15, 2060-2071. 430 Epigenetic Advancements in Cancer., 2016, , . 1 DNA Methylation and Cancer., 2016, , 103-134. 432 The Taf14 YEATS domain is a reader of histone crotonylation. Nature Chemical Biology, 2016, 12, 396-398. 195 3.9 Inhibition of Lysine-Specific Demethylase-1 (LSD1/KDM1A) Promotes the Adipogenic Differentiation of hESCs Through H3K4 Methylation. Stem Cell Reviews and Reports, 2016, 12, 298-304. <i>De novo</i> deciphering three-dimensional chromatin interaction and topological domains by 434 6.5 33 wavelet transformation of epigenetic profiles. Nucleic Acids Research, 2016, 44, e106-e106. Histone lysine-crotonylation in acute kidney injury. DMM Disease Models and Mechanisms, 2016, 9, 1.2 94 633-45

#	Article	IF	CITATIONS
436	Lysine Malonylome May Affect the Central Metabolism and Erythromycin Biosynthesis Pathway in <i>Saccharopolyspora erythraea</i> . Journal of Proteome Research, 2016, 15, 1685-1701.	1.8	38
437	YEATS2 is a selective histone crotonylation reader. Cell Research, 2016, 26, 629-632.	5.7	162
438	The Substrate Specificity of Sirtuins. Annual Review of Biochemistry, 2016, 85, 405-429.	5.0	208
439	Molecular Coupling of Histone Crotonylation and Active Transcription by AF9 YEATS Domain. Molecular Cell, 2016, 62, 181-193.	4.5	271
440	Metabolic Regulation of Gene Expression by Histone Lysine Î ² -Hydroxybutyrylation. Molecular Cell, 2016, 62, 194-206.	4.5	406
441	Sirtuin activation as a therapeutic approach against inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2016, 39, 565-572.	1.7	11
442	Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX. Current Opinion in Genetics and Development, 2016, 36, 59-67.	1.5	77
443	Current Proteomic Methods to Investigate the Dynamics of Histone Turnover in the Central Nervous System. Methods in Enzymology, 2016, 574, 331-354.	0.4	4
444	Stem Cell Proteomics. , 2016, , 123-153.		0
445	Treatment of prostate cancer cells with S -adenosylmethionine leads to genome-wide alterations in transcription profiles. Gene, 2016, 595, 161-167.	1.0	22
446	Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology, 2016, 12, 998-1000.	3.9	189
447	Emerging concepts of epigenetic dysregulation in hematological malignancies. Nature Immunology, 2016, 17, 1016-1024.	7.0	77
448	Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics, 2016, 8, 1151-1167.	1.0	8
449	ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 1419-1432.	1.5	46
450	HDAC8 Catalyzes the Hydrolysis of Long Chain Fatty Acyl Lysine. ACS Chemical Biology, 2016, 11, 2685-2692.	1.6	84
451	Nitric oxide, the new architect of epigenetic landscapes. Nitric Oxide - Biology and Chemistry, 2016, 59, 54-62.	1.2	48
452	Structural Insights into Histone Crotonyl-Lysine Recognition by the AF9 YEATS Domain. Structure, 2016, 24, 1606-1612.	1.6	77
453	Diverse Activities of Histone Acylations Connect Metabolism to Chromatin Function. Molecular Cell, 2016, 63, 547-552.	4.5	73

#	Article	IF	Citations
454	Insights into newly discovered marks and readers of epigenetic information. Nature Chemical Biology, 2016, 12, 662-668.	3.9	132
455	Undercover: gene control by metabolites and metabolic enzymes. Genes and Development, 2016, 30, 2345-2369.	2.7	192
456	Differences in global DNA methylation of testicular seminoma are not associated with changes in histone modifications, clinical prognosis, BRAF mutations or gene expression. Cancer Genetics, 2016, 209, 506-514.	0.2	8
458	Manual of Cardiovascular Proteomics. , 2016, , .		4
459	Touch, act and go: landing and operating on nucleosomes. EMBO Journal, 2016, 35, 376-388.	3.5	22
460	Post-translational Modifications in the Cardiovascular Proteome. , 2016, , 293-320.		0
461	The therapeutic hope for HDAC6 inhibitors in malignancy and chronic disease. Clinical Science, 2016, 130, 987-1003.	1.8	72
462	Specificity and Function of IRF Family Transcription Factors: Insights from Genomics. Journal of Interferon and Cytokine Research, 2016, 36, 462-469.	0.5	31
463	The Molecular Landscape of the Developing Human Central Nervous System. , 2016, , 203-220.		1
464	Investigating Histone Acetylation Stoichiometry and Turnover Rate. Methods in Enzymology, 2016, 574, 125-148.	0.4	12
465	Effects of histone deacetylase inhibitor sodium butyrate on heroin seeking behavior in the nucleus accumbens in rats. Brain Research, 2016, 1652, 151-157.	1.1	31
466	Selective recognition of histone crotonylation by double PHD fingers of MOZ and DPF2. Nature Chemical Biology, 2016, 12, 1111-1118.	3.9	144
467	Epigenetics and aging. Science Advances, 2016, 2, e1600584.	4.7	568
468	SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nature Communications, 2016, 7, 12235.	5.8	251
469	A continuous sirtuin activity assay without any coupling to enzymatic or chemical reactions. Scientific Reports, 2016, 6, 22643.	1.6	35
470	Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. Journal of the American Chemical Society, 2016, 138, 15596-15604.	6.6	67
472	<scp>SIRT</scp> 5 promotes <scp>IDH</scp> 2 desuccinylation and G6 <scp>PD</scp> deglutarylation to enhance cellular antioxidant defense. EMBO Reports, 2016, 17, 811-822.	2.0	210
473	Diversity and Divergence of Dinoflagellate Histone Proteins. G3: Genes, Genomes, Genetics, 2016, 6, 397-422.	0.8	38

ARTICLE IF CITATIONS # Comprehensive analysis of histone post-translational modifications in mouse and human male germ 474 1.8 113 cells. Epigenetics and Chromatin, 2016, 9, 24. Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene 4.5 Promoters. Molecular Cell, 2016, 62, 169-180. Specificity of the SUV4–20H1 and SUV4–20H2 protein lysine methyltransferases and methylation of 476 2.0 29 novel substrates. Journal of Molecular Biology, 2016, 428, 2344-2358. Application of recombinant TAF3 PHD domain instead of anti-H3K4me3 antibody. Epigenetics and 1.8 Chromatin, 2016, 9, 11. Epigenetics and Angiogenesis in Cancer., 2016, , 145-176. 478 1 479 Epigenetics of Breast Cancer: DNA Methylome and Global Histone Modifications., 2016, , 207-228. Dynamic and Combinatorial Landscape of Histone Modifications during the Intraerythrocytic 480 1.8 49 Developmental Cycle of the Malaria Parasite. Journal of Proteome Research, 2016, 15, 2787-2801. The Generation of a Library of ÂBromodomainâ€Containing Protein Modulators Expedited by Continuous 1.2 Flow Synthesis. European Journal of Organic Chemistry, 2016, 2016, 2000-2012. 482 Chemical and semisynthesis of modified histones. Journal of Peptide Science, 2016, 22, 252-259. 0.8 26 The growing landscape of tubulin acetylation: lysine 40 and many more. Biochemical Journal, 2016, 473, 1.7 1859-1868. Global Proteome Analyses of Lysine Acetylation and Succinylation Reveal the Widespread Involvement of both Modification in Metabolism in the Embryo of Germinating Rice Seed. Journal of Proteome 485 119 1.8 Research, 2016, 15, 879-890. Court orders on procreation. Archives of Gynecology and Obstetrics, 2016, 293, 87-99. 486 0.8 Analysis of Combinatorial Epigenomic States. ACS Chemical Biology, 2016, 11, 621-631. 487 1.6 3 Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends in Genetics, 2016, 32, 661 42-56. 489 Epigenetic Regulation. Advances in Experimental Medicine and Biology, 2016, 879, 1-25. 0.8 29 Mining Large Scale Tandem Mass Spectrometry Data for Protein Modifications Using Spectral Libraries. Journal of Proteome Research, 2016, 15, 721-731. 1.8 An Introduction to Signal Transduction., 2016, , 53-183. 491 1 Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes. Environmental Epigenetics, 2016, 2, dvv010.

			0
#	ARTICLE	IF	CITATIONS
493	SMYD3 stimulates EZR and LOXL2 transcription to enhance proliferation, migration, and invasion in esophageal squamous cell carcinoma. Human Pathology, 2016, 52, 153-163.	1.1	48
494	Altered acetylation and succinylation profiles in <i>Corynebacterium glutamicum</i> in response to conditions inducing glutamate overproduction. MicrobiologyOpen, 2016, 5, 152-173.	1.2	50
495	Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Journal of Biological Chemistry, 2016, 291, 7128-7141.	1.6	91
496	Epigenetic regulation of cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2016, 92, 206-213.	0.9	47
497	Quantitative succinylome analysis in the liver of non-alcoholic fatty liver disease rat model. Proteome Science, 2016, 14, 3.	0.7	32
498	Site-Specific Identification of Lysine Acetylation Stoichiometries in Mammalian Cells. Journal of Proteome Research, 2016, 15, 1103-1113.	1.8	41
499	Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells. Methods in Molecular Biology, 2016, 1410, 23-37.	0.4	12
500	Male Factors in Recurrent Pregnancy Loss. , 2016, , 109-129.		0
501	Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction, 2016, 151, R55-R70.	1.1	204
502	Histone modifications in DNA damage response. Science China Life Sciences, 2016, 59, 257-270.	2.3	39
503	Streamlined discovery of cross-linked chromatin complexes and associated histone modifications by mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1784-1789.	3.3	17
504	Mechanisms and Dynamics of Protein Acetylation in Mitochondria. Trends in Biochemical Sciences, 2016, 41, 231-244.	3.7	236
505	Multiplexed Detection of Epigenetic Markers Using Quantum Dot (QD)-Encoded Hydrogel Microparticles. Analytical Chemistry, 2016, 88, 4259-4268.	3.2	20
506	Histone Modifications in Ageing and Lifespan Regulation. Current Molecular Biology Reports, 2016, 2, 26-35.	0.8	30
507	Profiling post-translational modifications of histones in neural differentiation of embryonic stem cells using liquid chromatography–mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1017-1018, 36-44.	1.2	5
508	Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters. Genome Research, 2016, 26, 612-623.	2.4	29
509	Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122. Biochemical and Biophysical Research Communications, 2016, 469, 483-489.	1.0	17
510	Reading the Combinatorial Histone Language. ACS Chemical Biology, 2016, 11, 564-574.	1.6	55

#	Article	IF	CITATIONS
511	Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae. Journal of Proteomics, 2016, 136, 183-192.	1.2	4
512	The L3MBTL3 Methyl-Lysine Reader Domain Functions As a Dimer. ACS Chemical Biology, 2016, 11, 722-728.	1.6	8
513	The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 486-495.	0.9	94
514	The complexity of epigenetic diseases. Journal of Pathology, 2016, 238, 333-344.	2.1	24
515	Quantitative analysis of histone H3 and H4 postâ€translational modifications in doxorubicinâ€resistant leukemia cells. Biomedical Chromatography, 2016, 30, 638-644.	0.8	7
516	Why always lysine? The ongoing tale of one of the most modified amino acids. Advances in Biological Regulation, 2016, 60, 144-150.	1.4	67
517	Proteomics of post-translational modifications of mammalian spermatozoa. Cell and Tissue Research, 2016, 363, 279-287.	1.5	55
518	Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Biological Psychiatry, 2017, 81, 162-170.	0.7	48
519	Probe the function of histone lysine 36 methylation using histone H3 lysine 36 to methionine mutant transgene in mammalian cells. Cell Cycle, 2017, 16, 1781-1789.	1.3	7
520	Role of thyroid hormone in hepatic gene regulation, chromatin remodeling, and autophagy. Molecular and Cellular Endocrinology, 2017, 458, 160-168.	1.6	26
521	Engineering Recombinant Protein Sensors for Quantifying Histone Acetylation. ACS Sensors, 2017, 2, 426-435.	4.0	25
522	Metabolic Inputs into the Epigenome. Cell Metabolism, 2017, 25, 544-558.	7.2	156
523	Identify and analysis crotonylation sites in histone by using support vector machines. Artificial Intelligence in Medicine, 2017, 83, 75-81.	3.8	52
524	Large-Scale Identification of Protein Crotonylation Reveals Its Role in Multiple Cellular Functions. Journal of Proteome Research, 2017, 16, 1743-1752.	1.8	114
525	Somatic cancer mutations in the <scp>MLL</scp> 1 histone methyltransferase modulate its enzymatic activity and dependence on the <scp>WDR</scp> 5/ <scp>RBBP</scp> 5/ <scp>ASH</scp> 2L complex. Molecular Oncology, 2017, 11, 373-387.	2.1	16
526	The role of global histone post-translational modifications during mammalian hibernation. Cryobiology, 2017, 75, 28-36.	0.3	22
527	H3K23me1 is an evolutionarily conserved histone modification associated with <scp>CG DNA</scp> methylation in Arabidopsis. Plant Journal, 2017, 90, 293-303.	2.8	19
528	MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nature Methods, 2017, 14, 513-520.	9.0	1,099

	C	CITATION REPORT	
#	Article	IF	CITATIONS
529	Global profiling of crotonylation on non-histone proteins. Cell Research, 2017, 27, 946-949.	5.7	142
530	Using Chromatin Immunoprecipitation in Toxicology: A Stepâ€byâ€Step Guide to Increasing Efficienc Reducing Variability, and Expanding Applications. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2017, 72, 3.14.1-3.14.28.	cy, 1.1	10
531	Class I histone deacetylases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Research, 2017, 27, 898-915.	5.7	216
532	DNA Methylation: Basic Biology and Application to Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 2379-2388.	1.7	20
533	Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumors. Oncogenesis, 2017, 6, e332-e332.	2.1	37
534	PLMD: An updated data resource of protein lysine modifications. Journal of Genetics and Genomics, 2017, 44, 243-250.	1.7	198
535	SMYD2-Mediated Histone Methylation Contributes to HIV-1 Latency. Cell Host and Microbe, 2017, 2 569-579.e6.	l, 5.1	78
536	Comparison of the Deacylase and Deacetylase Activity of Zinc-Dependent HDACs. ACS Chemical Biol 2017, 12, 1644-1655.	ogy, 1.6	43
537	Protein Acetylation and Its Role in Bacterial Virulence. Trends in Microbiology, 2017, 25, 768-779.	3.5	118
538	Systematic Epigenomic Analysis Reveals Chromatin States Associated with Melanoma Progression. C Reports, 2017, 19, 875-889.	ell 2.9	78
539	The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (DIO) Mouse Model. Molecular and Cellular Proteomics, 2017, 16, 1324-1334.	2.5	79
540	The emerging field of epigenetics in neurodegeneration and neuroprotection. Nature Reviews Neuroscience, 2017, 18, 347-361.	4.9	255
542	Altered gene expression of epigenetic modifying enzymes in response to dietary supplementation wit linseed oil. Journal of Dairy Research, 2017, 84, 119-123.	th 0.7	7
543	Aflatoxin B1-induced epigenetic alterations: An overview. Food and Chemical Toxicology, 2017, 109, 683-689.	1.8	114
544	MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyltransferase-competent CBP/p300. Cell Discovery, 2023, 17016.	17, 3.1	91
545	Molecular structures guide the engineering of chromatin. Nucleic Acids Research, 2017, 45, 7555-75	70. 6.5	17
547	Androgen Receptor in Health and Disease. , 2017, , 21-73.		2
548	In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Research, 2017, 27, 580-590.	2.4	67

#	Article	IF	CITATIONS
549	Twoâ€īer Screening Platform for Directed Evolution of Aminoacyl–tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency. ChemBioChem, 2017, 18, 1109-1116.	1.3	25
550	YEATS Domain—A Histone Acylation Reader in Health and Disease. Journal of Molecular Biology, 2017, 429, 1994-2002.	2.0	82
551	BTBD18 Regulates a Subset of piRNA-Generating Loci through Transcription Elongation in Mice. Developmental Cell, 2017, 40, 453-466.e5.	3.1	30
552	Metabolic regulation of gene expression through histone acylations. Nature Reviews Molecular Cell Biology, 2017, 18, 90-101.	16.1	713
553	Partially Assembled Nucleosome Structures atÂAtomic Detail. Biophysical Journal, 2017, 112, 460-472.	0.2	50
554	A Versatile Approach for Site‧pecific Lysine Acylation in Proteins. Angewandte Chemie, 2017, 129, 1665-1669.	1.6	10
555	A Versatile Approach for Siteâ€5pecific Lysine Acylation in Proteins. Angewandte Chemie - International Edition, 2017, 56, 1643-1647.	7.2	61
556	Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle?. European Journal of Pharmacology, 2017, 795, 36-42.	1.7	45
557	Histone Adduction and Its Functional Impact on Epigenetics. Chemical Research in Toxicology, 2017, 30, 376-387.	1.7	20
558	Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nature Reviews Molecular Cell Biology, 2017, 18, 246-262.	16.1	444
559	Quantitative Analysis and Discovery of Lysine and Arginine Modifications. Analytical Chemistry, 2017, 89, 1299-1306.	3.2	17
560	Proteome-wide identification of lysine propionylation in thermophilic and mesophilic bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus. Extremophiles, 2017, 21, 283-296.	0.9	18
561	Proteome-wide identification of lysine succinylation in thermophilic and mesophilic bacteria. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 232-242.	1.1	40
562	Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, 2017, , .	0.8	3
563	Involvement of the Vitamin D Receptor in Energy Metabolism Revealed by Profiling of Lysine Succinylome of White Adipose Tissue. Scientific Reports, 2017, 7, 14132.	1.6	7
565	Metabolically Derived Lysine Acylations and Neighboring Modifications Tune the Binding of the BET Bromodomains to Histone H4. Biochemistry, 2017, 56, 5485-5495.	1.2	21
566	Cardiac Fibrosis: The Beneficial Effects of Exercise in Cardiac Fibrosis. Advances in Experimental Medicine and Biology, 2017, 999, 257-268.	0.8	16
567	Dissecting Nucleosome Function with a Comprehensive Histone H2A and H2B Mutant Library. G3: Genes, Genomes, Genetics, 2017, 7, 3857-3866.	0.8	7

#	Article	IF	CITATIONS
568	YEATS2 links histone acetylation to tumorigenesis of non-small cell lung cancer. Nature Communications, 2017, 8, 1088.	5.8	102
569	The impact of cellular metabolism on chromatin dynamics and epigenetics. Nature Cell Biology, 2017, 19, 1298-1306.	4.6	369
570	Histone propionylation is a mark of active chromatin. Nature Structural and Molecular Biology, 2017, 24, 1048-1056.	3.6	148
571	Prediction of lysine crotonylation sites by incorporating the composition of k -spaced amino acid pairs into Chou's general PseAAC. Journal of Molecular Graphics and Modelling, 2017, 77, 200-204.	1.3	77
572	The Impact of Post-Translational Regulation of Histone on Cancer Metastasis and Cancer Chernel Chemoresistance. Current Pharmacology Reports, 2017, 3, 253-267.	1.5	1
574	Ultradeep Lysine Crotonylome Reveals the Crotonylation Enhancement on Both Histones and Nonhistone Proteins by SAHA Treatment. Journal of Proteome Research, 2017, 16, 3664-3671.	1.8	73
575	Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer. Molecular and Cellular Biology, 2017, 37, .	1.1	42
576	Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research, 2017, 189, 30-50.	2.2	34
578	The epigenomics of schizophrenia, in the mouse. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 631-640.	1.1	12
579	ISWI chromatin remodellers sense nucleosome modifications to determine substrate preference. Nature, 2017, 548, 607-611.	13.7	148
580	2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8782-8787.	3.3	74
581	Chromodomain Protein CDYL Acts as a Crotonyl-CoA Hydratase to Regulate Histone Crotonylation and Spermatogenesis. Molecular Cell, 2017, 67, 853-866.e5.	4.5	169
582	Kinetic and high-throughput profiling of epigenetic interactions by 3D-carbene chip-based surface plasmon resonance imaging technology. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7245-E7254.	3.3	47
583	Asymmetric breathing motions of nucleosomal DNA and the role of histone tails. Journal of Chemical Physics, 2017, 147, 065101.	1.2	14
584	Drug Design: Principles and Applications. , 2017, , .		5
585	Pharmacogenetics and Personalized Medicine. , 2017, , 149-168.		1
586	Proteome-wide Analysis of Lysine 2-hydroxyisobutyrylation in Developing Rice (Oryza sativa) Seeds. Scientific Reports, 2017, 7, 17486.	1.6	56
587	Investigating <scp>d</scp> -lysine stereochemistry for epigenetic methylation, demethylation and recognition. Chemical Communications, 2017, 53, 13264-13267.	2.2	29

#	Article	IF	CITATIONS
588	Histone Marks in the â€~Driver's Seat': Functional Roles in Steering the Transcription Cycle. Trends in Biochemical Sciences, 2017, 42, 977-989.	3.7	132
589	Characterization of histone acylations links chromatin modifications with metabolism. Nature Communications, 2017, 8, 1141.	5.8	145
590	Histone Post-Translational Modifications and Nucleosome Organisation in Transcriptional Regulation: Some Open Questions. Advances in Experimental Medicine and Biology, 2017, 966, 65-92.	0.8	33
591	Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4. Biochemistry, 2017, 56, 3539-3548.	1.2	23
592	HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging. Molecular Biology of the Cell, 2017, 28, 2290-2302.	0.9	20
593	Activation of gene expression by histone deubiquitinase OTLD1. Epigenetics, 2017, 12, 584-590.	1.3	14
594	The Role of Epigenetic Regulation in Transcriptional Memory in the Immune System. Advances in Protein Chemistry and Structural Biology, 2017, 106, 43-69.	1.0	14
595	Air pollution and the epigenome: A model relationship for the exploration of toxicoepigenetics. Current Opinion in Toxicology, 2017, 6, 18-25.	2.6	8
596	MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics and Chromatin, 2017, 10, 2.	1.8	40
597	Identification of epigenetic signature associated with alpha thalassemia/mental retardation X-linked syndrome. Epigenetics and Chromatin, 2017, 10, 10.	1.8	60
598	Translating cancer epigenomics into the clinic: focus on lung cancer. Translational Research, 2017, 189, 76-92.	2.2	40
599	First comprehensive proteome analysis of lysine crotonylation in seedling leaves of Nicotiana tabacum. Scientific Reports, 2017, 7, 3013.	1.6	69
600	Top-down protein identification using isotopic envelope fingerprinting. Journal of Proteomics, 2017, 152, 41-47.	1.2	21
602	SILAC-Based Quantitative Strategies for Accurate Histone Posttranslational Modification Profiling Across Multiple Biological Samples. Methods in Molecular Biology, 2017, 1528, 97-119.	0.4	6
603	From profiles to function in epigenomics. Nature Reviews Genetics, 2017, 18, 51-66.	7.7	233
604	Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. ChemBioChem, 2017, 18, 5-49.	1.3	37
605	Recent insights on the genetics and epigenetics of endometriosis. Clinical Genetics, 2017, 91, 254-264.	1.0	106
606	Purification and Analysis of Male Germ Cells from Adult Mouse Testis. Methods in Molecular Biology, 2017, 1510, 159-168.	0.4	12

#	Article	IF	Citations
	MOZ and BMI1 act synergistically to maintain hematopoietic stem cells. Experimental Hematology, 2017,		
607	47, 83-97.e8.	0.2	15
608	Consensus paper of the WFSBP Task Force on Biological Markers: Criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World Journal of Biological Psychiatry, 2017, 18, 330-356.	1.3	33
609	Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate. Journal of Molecular Biology, 2017, 429, 1946-1957.	2.0	22
610	E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain. Protein and Cell, 2017, 8, 202-218.	4.8	13
611	Structure of p300 in complex with acyl-CoA variants. Nature Chemical Biology, 2017, 13, 21-29.	3.9	116
612	YEATS domain: Linking histone crotonylation to gene regulation. Transcription, 2017, 8, 9-14.	1.7	35
613	KATapulting toward Pluripotency and Cancer. Journal of Molecular Biology, 2017, 429, 1958-1977.	2.0	18
614	Linking the Epigenome with Exposure Effects and Susceptibility: The Epigenetic Seed and Soil Model. Toxicological Sciences, 2017, 155, 302-314.	1.4	31
615	Metabolic interactions with cancer epigenetics. Molecular Aspects of Medicine, 2017, 54, 50-57.	2.7	40
616	Methylation modification in gastric cancer and approaches to targeted epigenetic therapy (Review). International Journal of Oncology, 2017, 50, 1921-1933.	1.4	30
617	Heritable sperm chromatin epigenetics: a break to rememberâ€. Biology of Reproduction, 2017, 97, 784-797.	1.2	23
618	A Super-SILAC Strategy for the Accurate and Multiplexed Profiling of Histone Posttranslational Modifications. Methods in Enzymology, 2017, 586, 311-332.	0.4	18
619	Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer. Cancers, 2017, 9, 5.	1.7	99
620	Post-Translational Modification of Human Histone by Wide Tolerance of Acetylation. Cells, 2017, 6, 34.	1.8	9
621	New Frontiers in Melanoma Epigenetics—The More We Know, the More We Don't Know. Epigenomes, 2017, 1, 3.	0.8	6
622	Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Genes, 2017, 8, 196.	1.0	67
623	Association of Smoking, Alcohol Use, and Betel Quid Chewing with Epigenetic Aberrations in Cancers. International Journal of Molecular Sciences, 2017, 18, 1210.	1.8	44
624	Epigenetics in Chronic Pain. , 2017, , 185-226.		1

#	Article	IF	CITATIONS
625	The Histone Modification Code in the Pathogenesis of Autoimmune Diseases. Mediators of Inflammation, 2017, 2017, 1-12.	1.4	70
626	Application of dual reading domains as novel reagents in chromatin biology reveals a new H3K9me3 and H3K36me2/3 bivalent chromatin state. Epigenetics and Chromatin, 2017, 10, 45.	1.8	27
627	Histone code and long non-coding RNAs (IncRNAs) aberrations in lung cancer: implications in the therapy response. Clinical Epigenetics, 2017, 9, 98.	1.8	25
628	Chemical and structural biology of protein lysine deacetylases. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 297-321.	1.6	66
629	Interaction Between Cellular Metabolic States and Chromatin Dynamics. , 2017, , 373-398.		1
630	Chromatin dynamics at the core of kidney fibrosis. Matrix Biology, 2018, 68-69, 194-229.	1.5	6
631	Integrating Proteomics and Targeted Metabolomics to Understand Global Changes in Histone Modifications. Proteomics, 2018, 18, e1700309.	1.3	18
632	First profiling of lysine crotonylation of myofilament proteins and ribosomal proteins in zebrafish embryos. Scientific Reports, 2018, 8, 3652.	1.6	55
633	Studies of biochemical crosstalk in chromatin with semisynthetic histones. Current Opinion in Chemical Biology, 2018, 45, 27-34.	2.8	11
634	Protein Acylation Affects the Artificial Biosynthetic Pathway for Pinosylvin Production in Engineered <i>E. coli</i> . ACS Chemical Biology, 2018, 13, 1200-1208.	1.6	18
635	An Integrated Platform for Genome-wide Mapping of Chromatin States Using High-throughput ChIP-sequencing in Tumor Tissues. Journal of Visualized Experiments, 2018, , .	0.2	24
636	Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection. Analytical Biochemistry, 2018, 550, 1-7.	1.1	32
637	Proteomic approaches beyond expression profiling and PTM analysis. Analytical and Bioanalytical Chemistry, 2018, 410, 4051-4060.	1.9	9
638	Metabolic intermediates – Cellular messengers talking to chromatin modifiers. Molecular Metabolism, 2018, 14, 39-52.	3.0	37
639	Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chemical Reviews, 2018, 118, 1216-1252.	23.0	236
640	Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on) Tj ETQq1 1	0.784314	rgBT /Over
641	The role of IL‑16 gene polymorphisms in endometriosis. International Journal of Molecular Medicine, 2018, 41, 1469-1476.	1.8	15
642	Epigenetics, microbiota, and intraocular inflammation: New paradigms of immune regulation in the eye. Progress in Retinal and Eye Research, 2018, 64, 84-95.	7.3	46

#	Article	IF	CITATIONS
643	Site-Specific Installation of Succinyl Lysine Analog into Histones Reveals the Effect of H2BK34 Succinylation on Nucleosome Dynamics. Cell Chemical Biology, 2018, 25, 166-174.e7.	2.5	42
644	Epigenetics of breast cancer: Biology and clinical implication in the era of precision medicine. Seminars in Cancer Biology, 2018, 51, 22-35.	4.3	115
646	Analysis of Histone Modifications in Acute Myeloid Leukaemia Using Chromatin Immunoprecipitation. Methods in Molecular Biology, 2018, 1725, 177-184.	0.4	1
647	Systematic Identification of Lysine 2-hydroxyisobutyrylated Proteins in Proteus mirabilis. Molecular and Cellular Proteomics, 2018, 17, 482-494.	2.5	43
648	Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications, 2018, 9, 105.	5.8	326
649	Along the Central Dogma—Controlling Gene Expression with Small Molecules. Annual Review of Biochemistry, 2018, 87, 391-420.	5.0	33
650	A Chemical Probe for Protein Crotonylation. Journal of the American Chemical Society, 2018, 140, 4757-4760.	6.6	44
651	Protein Acetylation and Butyrylation Regulate the Phenotype and Metabolic Shifts of the Endospore-forming Clostridium acetobutylicum. Molecular and Cellular Proteomics, 2018, 17, 1156-1169.	2.5	38
652	Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrology Dialysis Transplantation, 2018, 33, 1875-1886.	0.4	83
653	Postâ€ŧranslational modifications as key regulators of apicomplexan biology: insights from proteomeâ€wide studies. Molecular Microbiology, 2018, 107, 1-23.	1.2	54
654	Charting the dynamic epigenome during B-cell development. Seminars in Cancer Biology, 2018, 51, 139-148.	4.3	22
655	Chemical biology approaches for studying posttranslational modifications. RNA Biology, 2018, 15, 427-440.	1.5	25
656	iKcr-PseEns: Identify lysine crotonylation sites in histone proteins with pseudo components and ensemble classifier. Genomics, 2018, 110, 239-246.	1.3	127
657	Peptideâ€Based Fluorescent Probes for Deacetylase and Decrotonylase Activity: Toward a General Platform for Realâ€Time Detection of Lysine Deacylation. ChemBioChem, 2018, 19, 496-504.	1.3	10
658	Chromatinâ€level regulation of the fragmented dothistromin gene cluster in the forest pathogen <i>Dothistroma septosporum</i> . Molecular Microbiology, 2018, 107, 508-522.	1.2	13
659	Landscape of the regulatory elements for lysine 2-hydroxyisobutyrylation pathway. Cell Research, 2018, 28, 111-125.	5.7	89
660	Evidence for the implication of the histone code in building the genome structure. BioSystems, 2018, 164, 49-59.	0.9	52
661	Assessment of Quantification Precision of Histone Post-Translational Modifications by Using an Ion Trap and down To 50†000 Cells as Starting Material. Journal of Proteome Research, 2018, 17, 234-242.	1.8	10

#	Article	IF	CITATIONS
662	Application of mixed peptide arrays to study combinatorial readout of chromatin modifications. Biochimie, 2018, 146, 14-19.	1.3	6
663	PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids. Scientific Reports, 2018, 8, 17923.	1.6	31
664	Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture. F1000Research, 2018, 7, 1713.	0.8	20
665	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	17
666	Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines. Nutrients, 2018, 10, 1784.	1.7	73
667	Chemical and Physiological Features of Mitochondrial Acylation. Molecular Cell, 2018, 72, 610-624.	4.5	34
668	Beyond histone acetylation—writing and erasing histone acylations. Current Opinion in Structural Biology, 2018, 53, 169-177.	2.6	134
669	Metabolite sensing and signaling in cell metabolism. Signal Transduction and Targeted Therapy, 2018, 3, 30.	7.1	123
670	Epigenetic Modification Mechanisms Involved in Inflammation and Fibrosis in Renal Pathology. Mediators of Inflammation, 2018, 2018, 1-14.	1.4	49
671	Selective Sensing of Phosphorylated Peptides and Monitoring Kinase and Phosphatase Activity with a Supramolecular Tandem Assay. Journal of the American Chemical Society, 2018, 140, 13869-13877.	6.6	39
672	Histone deacetylases as targets for antitrypanosomal drugs. Future Science OA, 2018, 4, FSO325.	0.9	19
673	Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Scientific Reports, 2018, 8, 14690.	1.6	84
674	Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence. Genome Biology, 2018, 19, 144.	3.8	89
675	Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Reports, 2018, 24, 3488-3502.e5.	2.9	76
676	Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nature Communications, 2018, 9, 4574.	5.8	45
677	Comprehensive analysis of lysine crotonylation in proteome of maintenance hemodialysis patients. Medicine (United States), 2018, 97, e12035.	0.4	24
678	Bioinformatics: Sequences, Structures, Phylogeny. , 2018, , .		0
679	Epigenetics and Chromatin Remodeling. , 2018, , 557-591.		0

#	Article	IF	CITATIONS
680	Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nature Reviews Molecular Cell Biology, 2018, 19, 563-578.	16.1	297
681	Computational Epigenomics and Its Application in Regulatory Genomics. , 2018, , 115-139.		0
682	Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Current Genomics, 2018, 19, 522-602.	0.7	65
683	An Efficient Approach for Selective Enrichment of Histone Modification Readers Using Self-Assembled Multivalent Photoaffinity Peptide Probes. Analytical Chemistry, 2018, 90, 11385-11392.	3.2	12
684	The biological significance of histone modifiers in multiple myeloma: clinical applications. Blood Cancer Journal, 2018, 8, 83.	2.8	30
685	Reconstitution of Mammalian Enzymatic Deacylation Reactions in Live Bacteria Using Native Acylated Substrates. ACS Synthetic Biology, 2018, 7, 2348-2354.	1.9	10
686	Nejire/dCBP-mediated histone H3 acetylation during spermatogenesis is essential for male fertility in Drosophila melanogaster. PLoS ONE, 2018, 13, e0203622.	1.1	17
687	The Response of Rhodotorula mucilaginosa to Patulin Based on Lysine Crotonylation. Frontiers in Microbiology, 2018, 9, 2025.	1.5	34
688	Targeting EZH2 in Multiple Myeloma—Multifaceted Anti-Tumor Activity. Epigenomes, 2018, 2, 16.	0.8	18
689	Down-regulation of PvTRX1h increases nodule number and affects auxin, starch, and metabolic fingerprints in the common bean (Phaseolus vulgaris L.). Plant Science, 2018, 274, 45-58.	1.7	16
690	Peptide-based approaches to identify and characterize proteins that recognize histone post-translational modifications. Chinese Chemical Letters, 2018, 29, 1051-1057.	4.8	11
691	Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins. Scientific Reports, 2018, 8, 7671.	1.6	24
692	Targeting Sirtuins: Substrate Specificity and Inhibitor Design. Progress in Molecular Biology and Translational Science, 2018, 154, 25-69.	0.9	32
693	A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Scientific Reports, 2018, 8, 8230.	1.6	58
694	ProteomeTools: Systematic Characterization of 21 Post-translational Protein Modifications by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Using Synthetic Peptides. Molecular and Cellular Proteomics, 2018, 17, 1850-1863.	2.5	78
695	Chromatin Succinylation Correlates with Active Gene Expression and Is Perturbed by Defective TCA Cycle Metabolism. IScience, 2018, 2, 63-75.	1.9	98
696	RNF8 and SCML2 cooperate to regulate ubiquitination and H3K27 acetylation for escape gene activation on the sex chromosomes. PLoS Genetics, 2018, 14, e1007233.	1.5	45
697	Epigenetics of T cell aging. Journal of Leukocyte Biology, 2018, 104, 691-699.	1.5	46

#	Article	IF	CITATIONS
698	Single-cell epigenetics – Chromatin modification atlas unveiled by mass cytometry. Clinical Immunology, 2018, 196, 40-48.	1.4	29
699	The Enzymatic Activities of Sirtuins. , 2018, , 45-62.		2
700	Quantitative Crotonylome Analysis Expands the Roles of p300 in the Regulation of Lysine Crotonylation Pathway. Proteomics, 2018, 18, e1700230.	1.3	63
701	Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Frontiers in Genetics, 2018, 9, 254.	1.1	39
703	Epigenetic Features of Animal Biotechnologies. , 2018, , 37-60.		0
704	Modify the Histone to Win the Battle: Chromatin Dynamics in Plant–Pathogen Interactions. Frontiers in Plant Science, 2018, 9, 355.	1.7	106
705	Global Involvement of Lysine Crotonylation in Protein Modification and Transcription Regulation in Rice. Molecular and Cellular Proteomics, 2018, 17, 1922-1936.	2.5	62
706	Dietary Modulation of the Epigenome. Physiological Reviews, 2018, 98, 667-695.	13.1	67
707	Modifying Chromatin by Histone Tail Clipping. Journal of Molecular Biology, 2018, 430, 3051-3067.	2.0	33
708	Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules, 2018, 23, 1662.	1.7	33
710	Characterization of Post-Meiotic Male Germ Cell Genome Organizational States. Methods in Molecular Biology, 2018, 1832, 293-307.	0.4	0
711	Abnormal Epigenetic Regulation of Immune System during Aging. Frontiers in Immunology, 2018, 9, 197.	2.2	65
712	Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers, 2018, 10, 59.	1.7	70
713	Proteomic Analysis of Histone Variants and Their PTMs: Strategies and Pitfalls. Proteomes, 2018, 6, 29.	1.7	36
714	Mass spectrometry and DigiWest technology emphasize protein acetylation profile from Quisinostat-treated HuT78 CTCL cell line. Journal of Proteomics, 2018, 187, 126-143.	1.2	6
715	Histone deacetylase function in CD4+ T cells. Nature Reviews Immunology, 2018, 18, 617-634.	10.6	106
716	A Decade of Exploring the Mammalian Sperm Epigenome: Paternal Epigenetic and Transgenerational Inheritance. Frontiers in Cell and Developmental Biology, 2018, 6, 50.	1.8	134
717	Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core. Epigenetics and Chromatin, 2018, 11, 11.	1.8	73

#	Article	IF	CITATIONS
718	Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics and Chromatin, 2018, 11, 2.	1.8	17
719	Loss of histone acetylation and H3K4 methylation promotes melanocytic malignant transformation. Molecular and Cellular Oncology, 2018, 5, e1359229.	0.3	5
720	The Causes and Consequences of Nonenzymatic Protein Acylation. Trends in Biochemical Sciences, 2018, 43, 921-932.	3.7	31
721	Elevated H3K79 homocysteinylation causes abnormal gene expression during neural development and subsequent neural tube defects. Nature Communications, 2018, 9, 3436.	5.8	56
722	Global Analysis of Lysine 2-Hydroxyisobutyrylome upon SAHA Treatment and Its Relationship with Acetylation and Crotonylation. Journal of Proteome Research, 2018, 17, 3176-3183.	1.8	24
723	Supramolecular assembly of KAT2A with succinyl-CoA for histone succinylation. Cell Discovery, 2018, 4, 47.	3.1	23
724	An NAD ⁺ -Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium <i>Lactobacillus acidophilus</i> NCFM. Biochemistry, 2018, 57, 3903-3915.	1.2	12
725	Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 70-87.	2.3	45
726	Cell Lysate Microarray for Mapping the Network of Genetic Regulators for Histone Marks. Molecular and Cellular Proteomics, 2018, 17, 1720-1736.	2.5	1
727	Neuroepigenetics of Schizophrenia. Progress in Molecular Biology and Translational Science, 2018, 158, 195-226.	0.9	20
728	Quantitative Global Proteome and Lysine Succinylome Analyses Reveal the Effects of Energy Metabolism in Renal Cell Carcinoma. Proteomics, 2018, 18, e1800001.	1.3	25
729	The mimics of N Îμ -acyl-lysine derived from cysteine as sirtuin inhibitors. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2375-2378.	1.0	6
730	Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression. Developmental Cell, 2018, 45, 769-784.e6.	3.1	50
731	Epigenetics of Endometriosis. , 2019, , 506-512.		0
732	Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers, 2019, 11, 1193.	1.7	11
733	50+ years of eukaryotic transcription: an expanding universe of factors and mechanisms. Nature Structural and Molecular Biology, 2019, 26, 783-791.	3.6	143
734	The NIH Common Fund/Roadmap Epigenomics Program: Successes of a comprehensive consortium. Science Advances, 2019, 5, eaaw6507.	4.7	34
735	The paternal diet regulates the offspring epigenome and health. , 2019, , 191-200.		0

#	Article	IF	Citations
736	Short chain fatty acids as epigenetic and metabolic regulators of neurocognitive health and disease. , 2019, , 381-397.		6
737	Role of FN1 and GREB1 gene polymorphisms in endometriosis. Molecular Medicine Reports, 2019, 20, 111-116.	1.1	14
738	Post-translational Protein Acetylation: An Elegant Mechanism for Bacteria to Dynamically Regulate Metabolic Functions. Frontiers in Microbiology, 2019, 10, 1604.	1.5	122
739	iLys-Khib: Identify lysine 2-Hydroxyisobutyrylation sites using mRMR feature selection and fuzzy SVM algorithm. Chemometrics and Intelligent Laboratory Systems, 2019, 191, 96-102.	1.8	15
740	Genetic Factors Affecting Sperm Chromatin Structure. Advances in Experimental Medicine and Biology, 2019, 1166, 1-28.	0.8	7
741	Bone Remodeling: Histone Modifications as Fate Determinants of Bone Cell Differentiation. International Journal of Molecular Sciences, 2019, 20, 3147.	1.8	41
742	Molecular basis for hierarchical histone de-β-hydroxybutyrylation by SIRT3. Cell Discovery, 2019, 5, 35.	3.1	76
743	Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete?. FEMS Microbiology Reviews, 2019, 43, 591-607.	3.9	56
744	ScCobB2-mediated Lysine Desuccinylation Regulates Protein Biosynthesis and Carbon Metabolism in Streptomyces coelicolor*[S]. Molecular and Cellular Proteomics, 2019, 18, 2003-2017.	2.5	16
745	Growth inhibitor of human hepatic carcinoma HepG2 cells by evodiamine is associated with downregulation of PRAME. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 1551-1560.	1.4	5
746	Elevated lysine crotonylation and succinylation in the brains of BTBR mice. International Journal of Developmental Neuroscience, 2019, 76, 61-64.	0.7	7
747	Profiling histone modifications in the normal mouse kidney and after unilateral ureteric obstruction. American Journal of Physiology - Renal Physiology, 2019, 317, F606-F615.	1.3	2
748	Chemical Probes Reveal Sirt2's New Function as a Robust "Eraser―of Lysine Lipoylation. Journal of the American Chemical Society, 2019, 141, 18428-18436.	6.6	37
749	Functions and mechanisms of lysine crotonylation. Journal of Cellular and Molecular Medicine, 2019, 23, 7163-7169.	1.6	80
750	GLP-catalyzed H4K16me1 promotes 53BP1 recruitment to permit DNA damage repair and cell survival. Nucleic Acids Research, 2019, 47, 10977-10993.	6.5	29
751	Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. Journal of Biological Chemistry, 2019, 294, 20122-20134.	1.6	66
752	One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry, 2019, 58, 4777-4789.	1.2	23
753	Recognition of Histone Crotonylation by Taf14 Links Metabolic State to Gene Expression. Molecular Cell, 2019, 76, 909-921.e3.	4.5	83

#	Article	IF	CITATIONS
754	Essential Role of Histone Replacement and Modifications in Male Fertility. Frontiers in Genetics, 2019, 10, 962.	1.1	84
755	Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Toxoplasma gondii Parasites. Molecular and Cellular Proteomics, 2019, 18, 2207-2224.	2.5	37
756	Epigenetic changes in the mammalian paternal germ line. , 2019, , 43-72.		0
757	Quantitation of Reactive Acyl-CoA Species Mediated Protein Acylation by HPLC–MS/MS. Analytical Chemistry, 2019, 91, 12336-12343.	3.2	16
758	Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. Frontiers in Plant Science, 2019, 10, 1236.	1.7	76
759	Histone lysine methyltransferases in biology and disease. Nature Structural and Molecular Biology, 2019, 26, 880-889.	3.6	262
760	Bromodomain biology and drug discovery. Nature Structural and Molecular Biology, 2019, 26, 870-879.	3.6	159
761	Clutarylation of Histone H4 Lysine 91 Regulates Chromatin Dynamics. Molecular Cell, 2019, 76, 660-675.e9.	4.5	112
762	Histone Deacetylase Inhibitors in Cancer Prevention and Therapy. , 2019, , 75-105.		3
763	LasB and CbpD Virulence Factors of <i>Pseudomonas aeruginosa</i> Carry Multiple Post-Translational Modifications on Their Lysine Residues. Journal of Proteome Research, 2019, 18, 923-933.	1.8	25
764	Measurement of methylated metabolites using liquid chromatography-mass spectrometry and its biological application. Analytical Methods, 2019, 11, 49-57.	1.3	10
765	Precision Medicine in Cancer Therapy. Cancer Treatment and Research, 2019, , .	0.2	4
766	Homozygous lossâ€ofâ€function variants of <i>TASP1</i> , a gene encoding an activator of the histone methyltransferases KMT2A and KMT2D, cause a syndrome of developmental delay, happy demeanor, distinctive facial features, and congenital anomalies. Human Mutation, 2019, 40, 1985-1992.	1.1	10
767	Human Microbiota and Personalized Cancer Treatments: Role of Commensal Microbes in Treatment Outcomes for Cancer Patients. Cancer Treatment and Research, 2019, 178, 253-264.	0.2	21
768	Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Research, 2019, 47, 4911-4926.	6.5	64
769	One minute analysis of 200 histone posttranslational modifications by direct injection mass spectrometry. Genome Research, 2019, 29, 978-987.	2.4	37
770	Histone-mediated transgenerational epigenetics. , 2019, , 157-183.		3
771	EvolStruct-Phogly: incorporating structural properties and evolutionary information from profile bigrams for the phosphoglycerylation prediction. BMC Genomics, 2019, 19, 984.	1.2	17

#	Article	IF	CITATIONS
772	The nonâ€ s pecific lethal (<scp>NSL</scp>) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Reports, 2019, 20, e47630.	2.0	63
773	The carboxy-terminus, a key regulator of protein function. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 85-102.	2.3	42
774	Cellular consequences of arginine methylation. Cellular and Molecular Life Sciences, 2019, 76, 2933-2956.	2.4	99
775	A Novel Citrullinated Modification of Histone 3 and Its Regulatory Mechanisms Related to IPO-38 Antibody-Labeled Protein. Frontiers in Oncology, 2019, 9, 304.	1.3	8
777	DNMT and HDAC inhibitors modulate MMP-9-dependent H3ÂN-terminal tail proteolysis and osteoclastogenesis. Epigenetics and Chromatin, 2019, 12, 25.	1.8	14
778	NEAT1 regulates neuroglial cell mediating AÎ ² clearance via the epigenetic regulation of endocytosis-related genes expression. Cellular and Molecular Life Sciences, 2019, 76, 3005-3018.	2.4	78
779	Genetically encoded fragment-based discovery. Current Opinion in Chemical Biology, 2019, 50, 128-137.	2.8	15
780	Histone Crotonylation Makes Its Mark in Depression Research. Biological Psychiatry, 2019, 85, 616-618.	0.7	7
781	(De)Toxifying the Epigenetic Code. Chemical Research in Toxicology, 2019, 32, 796-807.	1.7	26
782	Epigenetic changes during aging and their reprogramming potential. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 61-83.	2.3	176
783	Mito-Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-Vitamins. Frontiers in Physiology, 2019, 10, 78.	1.3	38
784	Lysine crotonylation is involved in hepatocellular carcinoma progression. Biomedicine and Pharmacotherapy, 2019, 111, 976-982.	2.5	62
785	The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism. Journal of Bone Metabolism, 2019, 26, 3.	0.5	10
786	p53 β-hydroxybutyrylation attenuates p53 activity. Cell Death and Disease, 2019, 10, 243.	2.7	76
787	Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. BMC Bioinformatics, 2019, 19, 384.	1.2	23
788	Isolation and identification of phosphorylated lysine peptides by retention time difference combining dimethyl labeling strategy. Science China Chemistry, 2019, 62, 708-712.	4.2	6
789	HDAC-dependent decrease in histone crotonylation during DNA damage. Journal of Molecular Cell Biology, 2019, 11, 804-806.	1.5	31
790	Epigenetics as a New Frontier in Orthopedic Regenerative Medicine and Oncology. Journal of Orthopaedic Research, 2019, 37, 1465-1474.	1.2	49

#	Article	IF	CITATIONS
791	Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays in Biochemistry, 2019, 63, 97-107.	2.1	160
792	Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Seminars in Cancer Biology, 2019, 59, 112-124.	4.3	113
793	MiR-155-5p modulates HSV-1 replication via the epigenetic regulation of SRSF2 gene expression. Epigenetics, 2019, 14, 494-503.	1.3	21
794	Evolution and meiotic organization of heteromorphic sex chromosomes. Current Topics in Developmental Biology, 2019, 134, 1-48.	1.0	10
795	SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS ONE, 2019, 14, e0211796.	1.1	40
797	Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Medicine, 2019, 11, 11.	3.6	127
798	Advances of Proteomics in Novel PTM Discovery: Applications in Cancer Therapy. Small Methods, 2019, 3, 1900041.	4.6	30
799	Computational Analysis of Epigenetic Modifications in Melanoma. , 2019, , 327-342.		1
800	Succinylation Is a Gain-of-Function Modification in Human Lens αB-Crystallin. Biochemistry, 2019, 58, 1260-1274.	1.2	14
801	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	2.3	21
802	A review of epigenetics in human consciousness. Cogent Psychology, 2019, 6, .	0.6	3
803	Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega, 2019, 4, 19895-19904.	1.6	23
804	High-Throughput Quantitative Top-Down Proteomics: Histone H4. Journal of the American Society for Mass Spectrometry, 2019, 30, 2548-2560.	1.2	26
805	Sensing of citrulline modifications in histone peptides by deep cavitand hosts. Chemical Communications, 2019, 55, 13259-13262.	2.2	8
806	Epigenetic modifications of histones in cancer. Genome Biology, 2019, 20, 245.	3.8	322
807	Bigram-PGK: phosphoglycerylation prediction using the technique of bigram probabilities of position specific scoring matrix. BMC Molecular and Cell Biology, 2019, 20, 57.	1.0	11
808	HIPP1 stabilizes the interaction between CP190 and Su(Hw) in the Drosophila insulator complex. Scientific Reports, 2019, 9, 19102.	1.6	11
809	Cell-Wide Survey of Amide-Bonded Lysine Modifications by Using Deacetylase CobB. Biological Procedures Online, 2019, 21, 23.	1.4	2

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
810	Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574, 575-	580.	13.7	1,308
811	The Prognostic Significance Of JMJD3 In Primary Sarcomatoid Carcinoma Of The Lun Subtype Of Lung Cancer. OncoTargets and Therapy, 2019, Volume 12, 9385-9393.	g, A Rare	1.0	12
812	Epigenetics Regulates Reproductive Development in Plants. Plants, 2019, 8, 564.		1.6	18
813	DNA demethylation facilitates the specific transcription of the mouse X-linked Tsga8 ger spermatidsâ€. Biology of Reproduction, 2019, 100, 994-1007.	ne in round	1.2	2
814	Regulation of Hepatic Long Noncoding RNAs by Pregnane X Receptor and Constitutive A Receptor Agonists in Mouse Liver. Drug Metabolism and Disposition, 2019, 47, 329-339		1.7	19
815	Probing the Function of Metazoan Histones with a Systematic Library of H3 and H4 Mut Developmental Cell, 2019, 48, 406-419.e5.	ants.	3.1	27
816	Recent advances in histone modification and histone modifying enzyme assays. Expert R Molecular Diagnostics, 2019, 19, 27-36.	eview of	1.5	15
817	Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox Biology and Medicine, 2019, 131, 282-298.	. Free Radical	1.3	36
818	<scp>CPT</scp> 1Aâ€mediated succinylation of S100A10 increases human gastric cance of Cellular and Molecular Medicine, 2019, 23, 293-305.	er invasion. Journal	1.6	76
819	The Role of Histone Methylation and Methyltransferases in Gene Regulation. , 2019, , 31	-84.		3
820	Characterization of H3 methylation in regulating oocyte development in cyprinid fish. Sc Life Sciences, 2019, 62, 829-837.	ience China	2.3	15
821	Chromatin Immunoprecipitation: An Introduction, Overview, and Protocol. , 2019, , 313-	346.		1
822	Crosstalk of Genetic Variants, Allele-Specific DNA Methylation, and Environmental Factor Complex Disease Risk. Frontiers in Genetics, 2018, 9, 695.	rs for	1.1	63
823	The many lives of KATs $\hat{a} \in$ " detectors, integrators and modulators of the cellular environ Reviews Genetics, 2019, 20, 7-23.	ment. Nature	7.7	129
824	Extensive alleleâ€level remodeling of histone methylation modification in reciprocal F <su hybrids of rice subspecies. Plant Journal, 2019, 97, 571-586.</su 	ıb>1	2.8	12
825	Preclinical Studies Support Combined Inhibition of BET Family Proteins and Histone Dead Epigenetic Therapy for Cutaneous T-Cell Lymphoma. Neoplasia, 2019, 21, 82-92.	tetylases as	2.3	40
826	Chromodomain Y-like Protein–Mediated Histone Crotonylation Regulates Stress-Induc Behaviors. Biological Psychiatry, 2019, 85, 635-649.	ed Depressive	0.7	67
827	Proteomic approaches for cancer epigenetics research. Expert Review of Proteomics, 202	19, 16, 33-47.	1.3	5

#	Article	IF	CITATIONS
828	Linking Lipid Metabolism to Chromatin Regulation in Aging. Trends in Cell Biology, 2019, 29, 97-116.	3.6	96
829	Effects of Aging on Sperm Chromatin. , 2019, , 85-103.		1
830	KAT2A succinyltransferase activity-mediated 14-3-3ζ upregulation promotes β-catenin stabilization-dependent glycolysis and proliferation of pancreatic carcinoma cells. Cancer Letters, 2020, 469, 1-10.	3.2	50
831	Lead-mediated inhibition of lysine acetylation and succinylation causes reproductive injury of the mouse testis during development. Toxicology Letters, 2020, 318, 30-43.	0.4	19
832	Regulation of DNA damage-induced ATM activation by histone modifications. Genome Instability & Disease, 2020, 1, 20-33.	0.5	4
833	Total chemical synthesis of bivalently modified H3 by improved three-segment native chemical ligation. Chinese Chemical Letters, 2020, 31, 1267-1270.	4.8	6
834	Chitosan mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. International Journal of Biological Macromolecules, 2020, 146, 560-568.	3.6	34
835	Photo Crossâ€Linking Probes Containing ϵâ€ <i>N</i> â€Thioacyllysine and ϵâ€ <i>N</i> â€Acylâ€(δâ€aza)lysine R Chemistry - A European Journal, 2020, 26, 3862-3869.	Residues.	14
836	Histone Lactylation: A New Role for Glucose Metabolism. Trends in Biochemical Sciences, 2020, 45, 179-182.	3.7	62
837	Comprehensive Analysis of Protein N-Terminome by Guanidination of Terminal Amines. Analytical Chemistry, 2020, 92, 567-572.	3.2	11
838	Outer Membrane Protease OmpT-Based Strategy for Simplified Analysis of Histone Post-Translational Modifications by Mass Spectrometry. Analytical Chemistry, 2020, 92, 732-739.	3.2	2
839	Identification of dual histone modification-binding protein interaction by combining mass spectrometry and isothermal titration calorimetric analysis. Journal of Advanced Research, 2020, 22, 35-46.	4.4	10
840	Using affinity purification coupled with stable isotope labeling by amino acids in cell culture quantitative mass spectrometry to identify novel interactors/substrates of protein arginine methyltransferases. Methods, 2020, 175, 44-52.	1.9	3
841	Dynamic postâ€translational modifications in obesity. Journal of Cellular and Molecular Medicine, 2020, 24, 2384-2387.	1.6	9
842	Muscle Lipid Droplets: Cellular Signaling to Exercise Physiology and Beyond. Trends in Endocrinology and Metabolism, 2020, 31, 928-938.	3.1	15
843	Systematic genetic and proteomic screens during gametogenesis identify H2BK34 methylation as an evolutionary conserved meiotic mark. Epigenetics and Chromatin, 2020, 13, 35.	1.8	6
844	Histone Variants and Histone Modifications in Neurogenesis. Trends in Cell Biology, 2020, 30, 869-880.	3.6	23
845	Profiling of post-translational modifications by chemical and computational proteomics. Chemical Communications, 2020, 56, 13506-13519.	2.2	15

#	Article	IF	CITATIONS
846	Metabolism as a central regulator of βâ€cell chromatin state. FEBS Journal, 2021, 288, 3683-3693.	2.2	8
847	Diet-induced obesity is associated with altered expression of sperm motility-related genes and testicular post-translational modifications in a mouse model. Theriogenology, 2020, 158, 233-238.	0.9	8
848	Battle of the Sex Chromosomes: Competition between X and Y Chromosome-Encoded Proteins for Partner Interaction and Chromatin Occupancy Drives Multicopy Gene Expression and Evolution in Muroid Rodents. Molecular Biology and Evolution, 2020, 37, 3453-3468.	3.5	25
849	Metabolites Regulate Cell Signaling and Growth via Covalent Modification of Proteins. Developmental Cell, 2020, 54, 156-170.	3.1	77
850	Nucleotide-binding sites can enhance N-acylation of nearby protein lysine residues. Scientific Reports, 2020, 10, 20254.	1.6	8
851	PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes, 2020, 11, 1431.	1.0	6
852	Quantitative Analysis of the Proteome and the Succinylome in the Thyroid Tissue of High-Fat Diet-Induced Hypothyroxinemia in Rats. International Journal of Endocrinology, 2020, 2020, 1-15.	0.6	4
853	Dual protease type XIII/pepsin digestion offers superior resolution and overlap for the analysis of histone tails by HX-MS. Methods, 2020, 184, 135-140.	1.9	10
854	What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World?. Proteomes, 2020, 8, 17.	1.7	42
855	Identification of modified peptides using localization-aware open search. Nature Communications, 2020, 11, 4065.	5.8	129
856	Establishment and function of chromatin modification at enhancers. Open Biology, 2020, 10, 200255.	1.5	13
857	Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. Journal of Biosciences, 2020, 45, 1.	0.5	79
858	Deep-Kcr: accurate detection of lysine crotonylation sites using deep learning method. Briefings in Bioinformatics, 2021, 22, .	3.2	86
859	Global Proteomic Analysis of Lysine Crotonylation in the Plant Pathogen Botrytis cinerea. Frontiers in Microbiology, 2020, 11, 564350.	1.5	9
860	Systematic Analysis of Lysine Lactylation in the Plant Fungal Pathogen Botrytis cinerea. Frontiers in Microbiology, 2020, 11, 594743.	1.5	47
861	A new approach for cancer treatment: from specific induction of breast cancer to innovative gold-nanoparticle mediated thermal therapies. , 2020, , 269-298.		0
862	Clobal Lysine Crotonylation Profiling of Mouse Liver. Proteomics, 2020, 20, 2000049.	1.3	11
863	More Than ï€â€"ï€â€"Ĩ€ Stacking: Contribution of Amideâ^ï€ and CHâ^"ï€ Interactions to Crotonyllysine Binding by the AF9 YEATS Domain. Journal of the American Chemical Society, 2020, 142, 17048-17056.	6.6	26

TION

CITATION R	FPORT

#	Article		CITATIONS
864	Effect of lysine side chain length on histone lysine acetyltransferase catalysis. Scientific Reports, 2020, 10, 13046.	1.6	10
865	Histone H1 Post-Translational Modifications: Update and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 5941.	1.8	46
866	Dynamic pattern of histone H3 core acetylation in human early embryos. Cell Cycle, 2020, 19, 2226-2234.	1.3	4
867	Histone acylation marks respond to metabolic perturbations and enable cellular adaptation. Experimental and Molecular Medicine, 2020, 52, 2005-2019.	3.2	32
868	Characterization and identification of lysine crotonylation sites based on machine learning method on both plant and mammalian. Scientific Reports, 2020, 10, 20447.	1.6	12
869	Targeting Chromatin Complexes in Myeloid Malignancies and Beyond: From Basic Mechanisms to Clinical Innovation. Cells, 2020, 9, 2721.	1.8	13
870	RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix. Genes, 2020, 11, 1524.	1.0	5
871	Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis—Part 1: Acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Frontiers in Physiology, 2020, 11, 580167.	1.3	56
872	Protein Post-translational Modifications in Head and Neck Cancer. Frontiers in Oncology, 2020, 10, 571944.	1.3	10
873	Chromatin Remodelers in the 3D Nuclear Compartment. Frontiers in Genetics, 2020, 11, 600615.	1.1	35
874	Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cellular and Molecular Life Sciences, 2020, 77, 4223-4236.	2.4	42
875	Donepezil downâ€regulates propionylation, 2â€hydroxyisobutyrylation, butyrylation, succinylation, and crotonylation in the brain of bilateral common carotid artery occlusionâ€induced vascular dementia rats. Clinical and Experimental Pharmacology and Physiology, 2020, 47, 1731-1739.	0.9	12
876	Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. Journal of Clinical Medicine, 2020, 9, 1309.	1.0	37
877	Nothing Is Yet Set in (Hi)stone: Novel Post-Translational Modifications Regulating Chromatin Function. Trends in Biochemical Sciences, 2020, 45, 829-844.	3.7	63
878	The Histone Methyltransferase G9a Controls Axon Growth by Targeting the RhoA Signaling Pathway. Cell Reports, 2020, 31, 107639.	2.9	20
879	Prediction of 2-hydroxyisobutyrylation sites by integrating multiple sequence features with ensemble support vector machine. Computational Biology and Chemistry, 2020, 87, 107280.	1.1	4
880	The YEATS Domain Histone Crotonylation Readers Control Virulence-Related Biology of a Major Human Pathogen. Cell Reports, 2020, 31, 107528.	2.9	19
881	Novel therapeutic strategies for MLL-rearranged leukemias. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194584.	0.9	8

#	Article	IF	CITATIONS
882	Epigenetic Modifiers as Potential Therapeutic Targets in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 4113.	1.8	37
883	Chimeric design of pyrrolysyl-tRNA synthetase/tRNA pairs and canonical synthetase/tRNA pairs for genetic code expansion. Nature Communications, 2020, 11, 3154.	5.8	40
884	Mechanism of biomolecular recognition of trimethyllysine by the fluorinated aromatic cage of KDM5A PHD3 finger. Communications Chemistry, 2020, 3, .	2.0	13
885	Metabolism and the Epigenome: A Dynamic Relationship. Trends in Biochemical Sciences, 2020, 45, 731-747.	3.7	53
886	Epigenetic Molecular Mechanisms in Insects. Neotropical Entomology, 2020, 49, 615-642.	0.5	27
887	Multi-omic analysis of gametogenesis reveals a novel signature at the promoters and distal enhancers of active genes. Nucleic Acids Research, 2020, 48, 4115-4138.	6.5	24
889	Quantitative analysis of protein crotonylation identifies its association with immunoglobulin A nephropathy. Molecular Medicine Reports, 2020, 21, 1242-1250.	1.1	8
890	Endometriosis research in the -omics era. Gene, 2020, 741, 144545.	1.0	20
891	An Integrated Approach for Combinatorial Readout of Dual Histone Modifications by Epigenetic Tandem Domains. Analytical Chemistry, 2020, 92, 6218-6223.	3.2	3
892	Norfluoxetine Is the Only Metabolite of Fluoxetine in Zebrafish (<i>Danio rerio</i>) Embryos That Accumulates at Environmentally Relevant Exposure Scenarios. Environmental Science & amp; Technology, 2020, 54, 4200-4209.	4.6	31
893	Histone Post-Translational Modifications and CircRNAs in Mouse and Human Spermatozoa: Potential Epigenetic Marks to Assess Human Sperm Quality. Journal of Clinical Medicine, 2020, 9, 640.	1.0	37
894	Monitoring protein communities and their responses to therapeutics. Nature Reviews Drug Discovery, 2020, 19, 414-426.	21.5	29
895	Large-scale lysine crotonylation analysis reveals its potential role in spermiogenesis in the Chinese mitten crab Eriocheir sinensis. Journal of Proteomics, 2020, 226, 103891.	1.2	5
896	Epigenetic regulation and mechanobiology. Biophysics Reports, 2020, 6, 33-48.	0.2	13
897	Molecular Basis of the Function of Transcriptional Enhancers. Cells, 2020, 9, 1620.	1.8	9
898	Exploring the Histone Acylome through Incorporation of Î ³ -Thialysine on Histone Tails. Bioconjugate Chemistry, 2020, 31, 844-851.	1.8	11
899	Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Molecular Metabolism, 2020, 38, 100941.	3.0	146
900	Crotonylation at serine 46 impairs p53 activity. Biochemical and Biophysical Research Communications, 2020, 524, 730-735.	1.0	19

#	Article	IF	CITATIONS
901	Multiple Site-Specific One-Pot Synthesis of Two Proteins by the Bio-Orthogonal Flexizyme System. Frontiers in Bioengineering and Biotechnology, 2020, 8, 37.	2.0	3
902	Epigenetic plasticity of enhancers in cancer. Transcription, 2020, 11, 26-36.	1.7	23
903	Transcriptional Regulation at DSBs: Mechanisms and Consequences. Trends in Genetics, 2020, 36, 981-997.	2.9	42
904	Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Natural Product Reports, 2020, 37, 653-676.	5.2	43
905	Epigenomic and transcriptional determinants of microglial cell identity. Glia, 2020, 68, 1643-1654.	2.5	6
906	Modifications of histones in parasites as drug targets. Veterinary Parasitology, 2020, 278, 109029.	0.7	6
907	Metabolic choreography of gene expression: nutrient transactions with the epigenome. Journal of Biosciences, 2020, 45, 1.	0.5	2
908	Revealing eukaryotic histone-modifying mechanisms through bacterial infection. Seminars in Immunopathology, 2020, 42, 201-213.	2.8	11
909	Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics, 2020, 112, 3615-3623.	1.3	19
910	Corynebacterium glutamicum. Microbiology Monographs, 2020, , .	0.3	8
910 911		0.3	8 27
	Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal		
911	Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748.		27
911 912	 Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748. Chromatin, histones, and histone modifications in health and disease. , 2020, , 109-135. Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene, 2020, 	1.4	27 3
911 912 913	Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748. Chromatin, histones, and histone modifications in health and disease. , 2020, , 109-135. Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene, 2020, 745, 144647. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous	1.4	27 3 7
911 912 913 914	Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748. Chromatin, histones, and histone modifications in health and disease. , 2020, , 109-135. Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene, 2020, 745, 144647. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombinationâ€" mediated DNA repair. Science Advances, 2020, 6, eaay4697. Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces	1.4 1.0 4.7	27 3 7 73
911 912 913 914 915	Corynebacterium glutamicum. Microbiology Monographs, 2020, , . Missing heritability in Parkinson's disease: the emerging role of non-coding genetic variation. Journal of Neural Transmission, 2020, 127, 729-748. Chromatin, histones, and histone modifications in health and disease. , 2020, , 109-135. Starvation promotes histone lysine butyrylation in the liver of male but not female mice. Gene, 2020, 745, 144647. Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination–mediated DNA repair. Science Advances, 2020, 6, eaay4697. Crotonylation of key metabolic enzymes regulates carbon catabolite repression in Streptomyces roseosporus. Communications Biology, 2020, 3, 192. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation.	1.4 1.0 4.7 2.0	27 3 7 73 35

# 919	ARTICLE CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiological Reviews, 2021, 101, 177-211.	IF 13.1	CITATIONS
920	Increased protein propionylation contributes to mitochondrial dysfunction in liver cells and fibroblasts, but not in myotubes. Journal of Inherited Metabolic Disease, 2021, 44, 438-449.	1.7	11
921	Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology, 2021, 162, .	1.4	10
922	Accelerating the Field of Epigenetic Histone Modification Through Mass Spectrometry–Based Approaches. Molecular and Cellular Proteomics, 2021, 20, 100006.	2.5	33
923	A Directed Evolution System for Lysine Deacetylases. Methods in Molecular Biology, 2021, 2247, 319-337.	0.4	1
924	The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cellular and Molecular Life Sciences, 2021, 78, 2517-2563.	2.4	58
925	Strong interactions between Salp15 homologues from the tick I. ricinus and distinct types of the outer surface OspC protein from Borrelia. Ticks and Tick-borne Diseases, 2021, 12, 101630.	1.1	5
926	Histone benzoylation serves as an epigenetic mark for DPF and YEATS family proteins. Nucleic Acids Research, 2021, 49, 114-126.	6.5	39
927	Identification of lysine isobutyrylation as a new histone modification mark. Nucleic Acids Research, 2021, 49, 177-189.	6.5	32
928	iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier. Journal of Proteome Research, 2021, 20, 191-201.	1.8	25
929	Succinylation of H3K122 destabilizes nucleosomes and enhances transcription. EMBO Reports, 2021, 22, e51009.	2.0	36
930	Lysine Î'-Hydroxybutyrylation Improves Stability of COVID-19 Antibody. SSRN Electronic Journal, 0, , .	0.4	0
931	Metabolism and Sex Differentiation in Animals from a Starvation Perspective. Sexual Development, 2021, 15, 168-178.	1.1	7
932	Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nature Communications, 2021, 12, 73.	5.8	17
933	Epigenetic regulation of virulence and the transcription of ribosomal protein genes involves a YEATS family protein in <i>Cryptococcus deneoformans</i> . FEMS Yeast Research, 2021, 21, .	1.1	7
934	Epigenetic Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021, Volume 14, 329-344.	1.1	10
935	Regulation of splicing in cardiovascular disease. , 2021, , 163-186.		1
936	Epigenetics concepts: An overview. , 2021, , 19-40.		0

#	Article	IF	CITATIONS
937	Proteome-wide and lysine crotonylation profiling reveals the importance of crotonylation in chrysanthemum (Dendranthema grandiforum) under low-temperature. BMC Genomics, 2021, 22, 51.	1.2	14
938	CRISPR technologies for precise epigenome editing. Nature Cell Biology, 2021, 23, 11-22.	4.6	248
939	DeepKcrot: A Deep-Learning Architecture for General and Species-Specific Lysine Crotonylation Site Prediction. IEEE Access, 2021, 9, 49504-49513.	2.6	12
940	NF-κB sub-pathways and HIV cure: A revisit. EBioMedicine, 2021, 63, 103159.	2.7	25
941	Lysine crotonylation of DgTIL1 at K72 modulates cold tolerance by enhancing DgnsLTP stability in chrysanthemum. Plant Biotechnology Journal, 2021, 19, 1125-1140.	4.1	20
942	Bromodomain and BET family proteins as epigenetic targets in cancer therapy: their degradation, present drugs, and possible PROTACs. RSC Advances, 2021, 11, 612-636.	1.7	7
943	Sirtuins, healthspan, and longevity in mammals. , 2021, , 77-149.		2
944	Global Lysine Crotonylation Alterations of Host Cell Proteins Caused by Brucella Effector BspF. Frontiers in Cellular and Infection Microbiology, 2020, 10, 603457.	1.8	7
945	Research advances on epigenetics and cancer metabolism. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences, 2021, 50, 1-16.	0.1	4
946	First comprehensive proteomics analysis of lysine crotonylation in leaves of peanut (<i>Arachis) Tj ETQq1 1 0.784</i>	314 rgBT 1.3	/Overlock 10 16
947	Comprehensive identification of lysine 2â€hydroxyisobutyrylated proteins in <i>Ustilaginoidea virens</i> reveals the involvement of lysine 2â€hydroxyisobutyrylation in fungal virulence. Journal of Integrative Plant Biology, 2021, 63, 409-425.	4.1	22
948	The Histone Modifications of Neuronal Plasticity. Neural Plasticity, 2021, 2021, 1-7.	1.0	27
949	The effects of histone crotonylation and bromodomain protein 4 on prostate cancer cell lines. Translational Andrology and Urology, 2021, 10, 900-914.	0.6	20
950	Systematic Analysis of the Lysine Crotonylome and Multiple Posttranslational Modification Analysis (Acetylation, Succinylation, and Crotonylation) in Candida albicans. MSystems, 2021, 6, .	1.7	13
951	Targeting Epigenetic Mechanisms to Treat Alcohol Use Disorders (AUD). Current Pharmaceutical Design, 2021, 27, 3252-3272.	0.9	2
952	Single-step fluorescent probes to detect decrotonylation activity of HDACs through intramolecular reactions. European Journal of Medicinal Chemistry, 2021, 212, 113120.	2.6	9
953	<i>iLearnPlus:</i> a comprehensive and automated machine-learning platform for nucleic acid and protein sequence analysis, prediction and visualization. Nucleic Acids Research, 2021, 49, e60-e60.	6.5	124
954	Comprehensive Succinylome Profiling Reveals the Pivotal Role of Lysine Succinylation in Energy Metabolism and Quorum Sensing of Staphylococcus epidermidis. Frontiers in Microbiology, 2020, 11, 632367.	1.5	10

#	Article	IF	CITATIONS
955	The Role of Posttranslational Modification and Mitochondrial Quality Control in Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-15.	1.9	4
956	Histone crotonylation-centric gene regulation. Epigenetics and Chromatin, 2021, 14, 10.	1.8	35
957	The growing landscape of succinylation links metabolism and heart disease. Epigenomics, 2021, 13, 319-333.	1.0	14
958	Global Profiling of 2-hydroxyisobutyrylome in Common Wheat. Genomics, Proteomics and Bioinformatics, 2022, 20, 688-701.	3.0	8
959	The regulatory enzymes and protein substrates for the lysine β-hydroxybutyrylation pathway. Science Advances, 2021, 7, .	4.7	87
960	Capillary Zone Electrophoresis-Tandem Mass Spectrometry As an Alternative to Liquid Chromatography-Tandem Mass Spectrometry for Top-down Proteomics of Histones. Analytical Chemistry, 2021, 93, 4417-4424.	3.2	15
961	Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Frontiers in Microbiology, 2021, 12, 630694.	1.5	9
962	Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. BioMed Research International, 2021, 2021, 1-13.	0.9	21
963	Global Profiling of the Lysine Crotonylome in Different Pluripotent States. Genomics, Proteomics and Bioinformatics, 2021, 19, 80-93.	3.0	10
964	Xenogeneic silencing relies on temperature-dependent phosphorylation of the host H-NS protein in <i>Shewanella</i> . Nucleic Acids Research, 2021, 49, 3427-3440.	6.5	11
965	Lysine crotonylation is widespread on proteins of diverse functions and localizations in Toxoplasma gondii. Parasitology Research, 2021, 120, 1617-1626.	0.6	4
966	Advances in Understanding of the Role of Lipid Metabolism in Aging. Cells, 2021, 10, 880.	1.8	60
967	The Regulation and Function of Histone Crotonylation. Frontiers in Cell and Developmental Biology, 2021, 9, 624914.	1.8	41
968	Epigenetics in Necrotizing Enterocolitis. Current Pediatric Reviews, 2021, 17, 172-184.	0.4	5
969	Small Mass but Strong Information: Diagnostic Ions Provide Crucial Clues to Correctly Identify Histone Lysine Modifications. Proteomes, 2021, 9, 18.	1.7	5
970	Proteome-Wide Analysis of Protein Lysine <i>N</i> Homocysteinylation in <i>Saccharomyces cerevisiae</i> . Journal of Proteome Research, 2021, 20, 2458-2476.	1.8	4
971	<i>Tsga8</i> is required for spermatid morphogenesis and male fertility in mice. Development (Cambridge), 2021, 148, .	1.2	2
972	Dynamic Histone H3 Modifications Regulate Meiosis Initiation via Respiration. Frontiers in Cell and Developmental Biology, 2021, 9, 646214.	1.8	3

#	Article	IF	CITATIONS
973	Histone crotonylation promotes mesoendodermal commitment of human embryonic stem cells. Cell Stem Cell, 2021, 28, 748-763.e7.	5.2	59
974	Clinical Manifestations and Epigenetic Regulation of Oral Herpesvirus Infections. Viruses, 2021, 13, 681.	1.5	15
975	PRSS50 is a testis protease responsible for proper sperm tail formation and function. Development (Cambridge), 2021, 148, .	1.2	8
976	Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bulletin Du Cancer, 2021, 108, 385-398.	0.6	10
977	Pathways of Non-enzymatic Lysine Acylation. Frontiers in Cell and Developmental Biology, 2021, 9, 664553.	1.8	21
978	Natural Antisense Transcript PEBP1P3 Regulates the RNA Expression, DNA Methylation and Histone Modification of CD45 Gene. Genes, 2021, 12, 759.	1.0	2
979	Role of histone deacetylase Sirt3 in the development and regression of atherosclerosis. Life Sciences, 2021, 272, 119178.	2.0	14
981	Epigenetics and microRNAs in UGT1As. Human Genomics, 2021, 15, 30.	1.4	10
982	nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning. Briefings in Bioinformatics, 2021, 22, .	3.2	29
984	Emerging roles of non-histone protein crotonylation in biomedicine. Cell and Bioscience, 2021, 11, 101.	2.1	13
985	Epigenetic Mechanisms of HIV-1 Persistence. Vaccines, 2021, 9, 514.	2.1	11
986	Epigenetic Regulation in Hydra: Conserved and Divergent Roles. Frontiers in Cell and Developmental Biology, 2021, 9, 663208.	1.8	6
987	Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chemical Reviews, 2021, 121, 6802-6849.	23.0	42
988	Co-occurrence of Protein Crotonylation and 2-Hydroxyisobutyrylation in the Proteome of End-Stage Renal Disease. ACS Omega, 2021, 6, 15782-15793.	1.6	7
989	Functions and Mechanisms of Lysine Glutarylation in Eukaryotes. Frontiers in Cell and Developmental Biology, 2021, 9, 667684.	1.8	11
990	Epigenetic regulation of autophagy: A key modification in cancer cells and cancer stem cells. World Journal of Stem Cells, 2021, 13, 542-567.	1.3	13
991	Phytochemicals as Potential Epidrugs in Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 2021, 12, 656978.	1.5	13
992	Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annual Review of Biochemistry, 2021, 90, 245-285.	5.0	72

#	Article		CITATIONS
993	Metabolo-epigenetics: the interplay of metabolism and epigenetics during early germ cells developmentâ€. Biology of Reproduction, 2021, 105, 616-624.	1.2	14
994	Histone succinylation and its function on the nucleosome. Journal of Cellular and Molecular Medicine, 2021, 25, 7101-7109.	1.6	28
995	Proteomic Analysis of Histone Crotonylation Suggests Diverse Functions in <i>Myzus persicae</i> . ACS Omega, 2021, 6, 16391-16401.	1.6	4
996	Epigenetics Identifier screens reveal regulators of chromatin acylation and limited specificity of acylation antibodies. Scientific Reports, 2021, 11, 12795.	1.6	1
997	<scp>T</scp> herapeutic targeting of chromatin: status and opportunities. FEBS Journal, 2022, 289, 1276-1301.	2.2	10
998	Role of chromatin modulation in the establishment of protozoan parasite infection for developing targeted chemotherapeutics. Nucleus (India), 0, , 1.	0.9	2
999	Differential Expression Study of Lysine Crotonylation and Proteome for Chronic Obstructive Pulmonary Disease Combined with Type II Respiratory Failure. Canadian Respiratory Journal, 2021, 2021, 1-12.	0.8	4
1000	Histone acylations and chromatin dynamics: concepts, challenges, and links to metabolism. EMBO Reports, 2021, 22, e52774.	2.0	63
1001	Cancer cell metabolism connects epigenetic modifications to transcriptional regulation. FEBS Journal, 2022, 289, 1302-1314.	2.2	23
1002	HBO1 is a versatile histone acyltransferase critical for promoter histone acylations. Nucleic Acids Research, 2021, 49, 8037-8059.	6.5	30
1003	Acylated peptide enrichment utilizing lysine deacylases for lysine acylomics. Biochemical and Biophysical Research Communications, 2021, 563, 60-65.	1.0	2
1004	Toxoplasma gondii Infection Inhibits Histone Crotonylation to Regulate Immune Response of Porcine Alveolar Macrophages. Frontiers in Immunology, 2021, 12, 696061.	2.2	10
1005	Structure, Activity and Function of the Suv39h1 and Suv39h2 Protein Lysine Methyltransferases. Life, 2021, 11, 703.	1.1	17
1006	Protein lysine crotonylation: past, present, perspective. Cell Death and Disease, 2021, 12, 703.	2.7	45
1007	Neonatal anesthesia and dysregulation of the epigenome. Biology of Reproduction, 2021, 105, 720-734.	1.2	7
1008	Functional Roles of Bromodomain Proteins in Cancer. Cancers, 2021, 13, 3606.	1.7	28
1009	Metabolically controlled histone H4K5 acylation/acetylation ratio drives BRD4 genomic distribution. Cell Reports, 2021, 36, 109460.	2.9	27
1010	Global analysis of protein lysine 2-hydroxyisobutyrylation (Khib) profiles in Chinese herb rhubarb (Dahuang). BMC Genomics, 2021, 22, 542.	1.2	7

#	Article	IF	CITATIONS
1011	The Yin and Yang of Histone Marks in Transcription. Annual Review of Genomics and Human Genetics, 2021, 22, 147-170.	2.5	41
1012	Proteome-Wide Analysis of Lysine 2-Hydroxyisobutyrylation in Aspergillus niger in Peanuts. Frontiers in Microbiology, 2021, 12, 719337.	1.5	7
1013	ZDHHC19 Is Dispensable for Spermatogenesis, but Is Essential for Sperm Functions in Mice. International Journal of Molecular Sciences, 2021, 22, 8894.	1.8	7
1014	The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cellular and Molecular Neurobiology, 2021, , 1.	1.7	3
1015	LncRNA NEAT1 induces autophagy through epigenetic regulation of autophagyâ€related geneÂexpression in neuroglial cells. Journal of Cellular Physiology, 2022, 237, 824-832.	2.0	14
1016	Protein acetylation in cardiac aging. Journal of Molecular and Cellular Cardiology, 2021, 157, 90-97.	0.9	8
1017	Histone crotonylation regulates neural stem cell fate decisions by activating bivalent promoters. EMBO Reports, 2021, 22, e52023.	2.0	21
1018	<i>Ustilaginoidea virens</i> modulates lysine 2â€hydroxyisobutyrylation in rice flowers during infection. Journal of Integrative Plant Biology, 2021, 63, 1801-1814.	4.1	22
1019	Transcription-coupled DNA double-strand break repair. DNA Repair, 2022, 109, 103211.	1.3	12
1020	Targeting Histone Modifications in Breast Cancer: A Precise Weapon on the Way. Frontiers in Cell and Developmental Biology, 2021, 9, 736935.	1.8	18
1021	Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey. Accounts of Chemical Research, 2021, 54, 3734-3747.	7.6	17
1022	CPLM 4.0: an updated database with rich annotations for protein lysine modifications. Nucleic Acids Research, 2022, 50, D451-D459.	6.5	20
1023	Protein Crotonylation Expert Review: A New Lens to Take Post-Translational Modifications and Cell Biology to New Heights. OMICS A Journal of Integrative Biology, 2021, 25, 617-625.	1.0	3
1024	Targeting the Transcriptome Through Globally Acting Components. Frontiers in Genetics, 2021, 12, 749850.	1.1	1
1025	Moonlighting functions of metabolic enzymes and metabolites in cancer. Molecular Cell, 2021, 81, 3760-3774.	4.5	65
1026	Comprehensive analysis of lysine crotonylation modification in patients with chronic renal failure. BMC Nephrology, 2021, 22, 310.	0.8	5
1028	Effects of Histone Modification in Major Depressive Disorder. Current Neuropharmacology, 2022, 20, 1261-1277.	1.4	13
1029	Isonicotinylation is a histone mark induced by the anti-tuberculosis first-line drug isoniazid. Nature Communications, 2021, 12, 5548.	5.8	16

#	Article	IF	CITATIONS
1030	Metabolic and epigenetic regulation of endoderm differentiation. Trends in Cell Biology, 2022, 32, 151-164.	3.6	4
1031	Metabolic enzymes function as epigenetic modulators: A Trojan Horse for chromatin regulation and gene expression. Pharmacological Research, 2021, 173, 105834.	3.1	1
1032	Epigenetics in toxicology and drug development. , 2021, , 529-558.		0
1033	Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. International Journal of Genomics, 2021, 2021, 1-10.	0.8	14
1034	Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiology Reviews, 2021, 45, .	3.9	12
1035	The Function and related Diseases of Protein Crotonylation. International Journal of Biological Sciences, 2021, 17, 3441-3455.	2.6	17
1036	Other omics approaches to the study of rare diseases. , 2021, , 229-262.		0
1037	Histone Methylation in Chromatin Signaling. , 2014, , 213-256.		4
1038	Community Resources and Technologies Developed Through the NIH Roadmap Epigenomics Program. Methods in Molecular Biology, 2015, 1238, 27-49.	0.4	8
1039	Beyond the Island: Epigenetic Biomarkers of Colorectal and Prostate Cancer. Methods in Molecular Biology, 2015, 1238, 103-124.	0.4	3
1040	Specificity Analysis of Histone Modification-Specific Antibodies or Reading Domains on Histone Peptide Arrays. Methods in Molecular Biology, 2015, 1348, 275-284.	0.4	7
1041	Histone Modifying Enzymes and Chromatin Modifiers in Glioma Pathobiology and Therapy Responses. Advances in Experimental Medicine and Biology, 2020, 1202, 259-279.	0.8	13
1042	Ecological Genomics of Host Behavior Manipulation by Parasites. Advances in Experimental Medicine and Biology, 2014, 781, 169-190.	0.8	8
1043	Protein Lysine Acylation: Abundance, Dynamics and Function. , 2016, , 41-69.		1
1044	Autophagy—Cell Survival and Death. Advances in Experimental Medicine and Biology, 2019, 1206, 667-696.	0.8	53
1045	SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death and Differentiation, 2017, 24, 1029-1044.	5.0	39
1046	Chromatin as a key consumer in the metabolite economy. Nature Chemical Biology, 2020, 16, 620-629.	3.9	50
1047	MANTA2, update of the Mongo database for the analysis of transcription factor binding site alterations. Scientific Data, 2018, 5, 180141.	2.4	11

		CITATION RE	PORT	
#	Article		IF	Citations
1048	Short-chain fatty acid, acylation and cardiovascular diseases. Clinical Science, 2020, 134, 6	57-676.	1.8	101
1053	Identification of Protein Lysine Crotonylation Sites by a Deep Learning Framework With Convolutional Neural Networks. IEEE Access, 2020, 8, 14244-14252.		2.6	30
1054	HIV latency is reversed by ACSS2-driven histone crotonylation. Journal of Clinical Investigat 128, 1190-1198.	ion, 2018,	3.9	109
1055	Genome-wide Profiling of Histone Lysine Butyrylation Reveals its Role in the Positive Regula Gene Transcription in Rice. Rice, 2019, 12, 86.	ition of	1.7	15
1056	Proteome-Wide Analyses Reveal the Diverse Functions of Lysine 2-Hydroxyisobutyrylation i sativa. Rice, 2020, 13, 34.	n Oryza	1.7	17
1057	DNA Methylation Profile: A Composer-, Conductor-, and Player-Orchestrated Mammalian G Consisting of Genes and Transposable Genetic Elements. Journal of Reproduction and Deve 2012, 58, 265-273.		0.5	9
1058	Histone modifications and a choice of variant: a language that helps the genome express it F1000prime Reports, 2014, 6, 76.	self.	5.9	42
1059	Epigenetics in Cancer: A Hematological Perspective. PLoS Genetics, 2016, 12, e1006193.		1.5	77
1060	Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Sour ONE, 2015, 10, e0131169.	ce. PLoS	1.1	110
1061	Histone H1 Variants in Arabidopsis Are Subject to Numerous Post-Translational Modificatic Conserved and Previously Unknown in Histones, Suggesting Complex Functions of H1 in P ONE, 2016, 11, e0147908.		1.1	36
1062	Learning causal networks using inducible transcription factors and transcriptomeâ€wide ti Molecular Systems Biology, 2020, 16, e9174.	me series.	3.2	51
1063	Deregulacja mechanizmów epigenetycznych w nowotworach Marta Maleszewska*,. Poste 2018, 64, 148-156.	epy Biochemii,	0.5	14
1064	Nutritional Influences on Epigenetics, Aging and Disease. Indonesian Biomedical Journal, 20)19, 11, 16-29.	0.2	1
1065	Probing the Function of Metazoan Histones with a Systematic Library of H3 and H4 Mutan Electronic Journal, 0, , .	ts. SSRN	0.4	2
1066	Computational Method for Identifying Malonylation Sites by Using Random Forest Algorith Combinatorial Chemistry and High Throughput Screening, 2020, 23, 304-312.	ım.	0.6	1
1067	Computational Identification of Lysine Glutarylation Sites Using Positive- Unlabeled Learnir Genomics, 2020, 21, 204-211.	ng. Current	0.7	12
1068	An Overview of Naturally Occurring Histone Deacetylase Inhibitors. Current Topics in Media Chemistry, 2015, 14, 2759-2782.	cinal	1.0	23
1069	Natural compound-derived epigenetic regulators targeting epigenetic readers, writers and Current Topics in Medicinal Chemistry, 2015, 16, 697-713.	erasers.	1.0	27

ARTICLE IF CITATIONS # Key Relevance of Epigenetic Programming of Adiponectin Gene in Pathogenesis of Metabolic Disorders. 1070 0.6 10 Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 506-517. Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology. Cell Journal, 2015, 17, 1-6. 1071 0.2 106 Epigenetics and Sphingolipid Metabolism in Health and Disease. International Journal of 1072 0.54 Biopharmaceutical Sciences, 2018, 1, . Epigenetic mechanisms in schizophrenia. Dialogues in Clinical Neuroscience, 2014, 16, 405-417. 1073 1.8 The DPF Domain As a Unique Structural Unit Participating in Transcriptional Activation, Cell 1074 1.7 10 Differentiation, and Malignant Transformation. Acta Naturae, 2020, 12, 57-65. Role of succinate dehydrogenase deficiency and oncometabolites in gastrointestinal stromal tumors. World Journal of Gastroenterology, 2020, 26, 5074-5089. 1.4 Studying epigenetic interactions using MicroScale Thermophoresis (MST). AIMS Biophysics, 2015, 2, 1076 0.3 11 370-380. Comparative epigenomics: an emerging field with breakthrough potential to understand evolution of 1.9 epigenetic regulation. AIMS Genetics, 2014, 01, 034-054. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms. 1078 1.9 18 AIMS Genetics, 2015, 02, 173-191. Histone Deacetylase 9: Its Role in the Pathogenesis of Diabetes and Other Chronic Diseases. Diabetes 1079 1.8 and Metabolism Journal, 2020, 44, 234. Histones: Controlling Tumor Signaling Circuitry. Journal of Carcinogenesis & Mutagenesis, 2013, 1, 1080 0.3 18 1-12. The bisulfite genomic sequencing protocol. Advances in Lung Cancer (Irvine), 2013, 02, 21-25. 1081 Age-related epigenetic regulation in the brain and its role in neuronal diseases. BMB Reports, 2016, 49, 1082 1.1 14 671-680. Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression. BMB Reports, 2018, 51, 211-218. 1.1 Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription. 1084 99 2.8 ELife, 2014, 3, e01632. <i>DChIPRep</i>, an R/Bioconductor package for differential enrichment analysis in chromatin studies. PeerJ, 2016, 4, e1981. Transcriptional regulation of metabolism in disease: From transcription factors to epigenetics. PeerJ, 1086 0.9 9 2018, 6, e5062. DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on 3.2 capsule network. Briefings in Bioinformatics, 2022, 23, .

#	Article	IF	CITATIONS
1088	Simultaneous single-molecule detection of the acetyltransferase and crotonyltransferase activities of histone acetylation writer p300. Chemical Communications, 2021, 57, 11709-11712.	2.2	2
1089	iRice-MS: An integrated XGBoost model for detecting multitype post-translational modification sites in rice. Briefings in Bioinformatics, 2022, 23, .	3.2	15
1090	A novel posttranslational modification of histone, H3 S-sulfhydration, is down-regulated in asthenozoospermic sperm. Journal of Assisted Reproduction and Genetics, 2021, 38, 3175-3193.	1.2	4
1091	The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Genes, 2021, 12, 1596.	1.0	42
1092	Integration of Epigenetic Mechanisms into Non-Genotoxic Carcinogenicity Hazard Assessment: Focus on DNA Methylation and Histone Modifications. International Journal of Molecular Sciences, 2021, 22, 10969.	1.8	14
1093	Crotonylation directs the spindle. Nature Chemical Biology, 2021, 17, 1217-1218.	3.9	0
1094	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	3.9	29
1095	BERT-Kcr: prediction of lysine crotonylation sites by a transfer learning method with pre-trained BERT models. Bioinformatics, 2022, 38, 648-654.	1.8	35
1096	Qualitative lysine crotonylome analysis in the ovarian tissue of Harmonia axyridis (Pallas). PLoS ONE, 2021, 16, e0258371.	1.1	0
1097	Human Cancer Epigenetics. Epigenetics and Human Health, 2013, , 269-293.	0.2	0
1098	Establishment of Tissue-Specific Epigenetic States During Development. , 2013, , 35-62.		0
1099	Proteomic Interrogation of Human Chromatin Protein States. , 2014, , 149-175.		0
1101	Drugs Affecting Epigenetic Modifications of ABC Transporters for Drug Resistance. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 273-297.	0.1	0
1102	Epigenetic Regulation in Autism. , 2015, , 67-92.		1
1103	Enzyme and Protein Families that Regulate Histone Modifications and Crosstalk. RSC Drug Discovery Series, 2015, , 20-46.	0.2	0
1104	Epigenomic Measurements in Brain Tissues. , 2015, , 1-41.		0
1105	Epigenetic Cues Emerging from Lysine Acetylation Bridge Chromatin-Mediated Transcription to Mitochondrial Functions. Journal of Investigative Genomics, 2015, 2, .	0.2	0
1107	Epigenomic Measurements in Brain Tissues. , 2016, , 2857-2897.		0

#	Article	IF	CITATIONS
1108	Mass Spectrometry for the Identification of Posttranslational Modifications in Histones and Its Application in Clinical Epigenetics. , 2016, , 195-214.		1
1109	Epigenetic and Nongenomic Roles for Histone Deacetylases in Heart Failure. Cardiac and Vascular Biology, 2016, , 209-229.	0.2	0
1110	CHAPTER 6. Identification and Localization of Post-Translational Modifications by High-Resolution Mass Spectrometry. New Developments in Mass Spectrometry, 2016, , 116-132.	0.2	0
1112	Cancer Genomics and Precision Medicine: A Way Toward Early Diagnosis and Effective Cancer Treatment. , 2017, , 31-41.		Ο
1113	The importance of epigenome research in the diagnosis and treatment of endometriosis. Journal of Medical Science, 2017, 86, 325-327.	0.2	0
1116	Molecular Basis for Hierarchical Histone De-Î'-Hydroxybutyrylation by Sirt3. SSRN Electronic Journal, 0, , .	0.4	0
1119	Aberrant Epigenomic Regulatory Networks in Multiple Myeloma and Strategies for Their Targeted Reversal. RNA Technologies, 2019, , 543-572.	0.2	0
1121	Post-Translational ModificationsÂin Corynebacterium glutamicum. Microbiology Monographs, 2020, , 149-172.	0.3	0
1124	Identification of Sirt3 as an â€~Eraser' for Histone Lysine Crotonylation Marks Using a Chemical Proteomics Approach. Springer Theses, 2020, , 97-121.	0.0	0
1125	Introduction to Protein Posttranslational Modifications (PTMs). Springer Theses, 2020, , 1-38.	0.0	0
1126	Identification of Histone Lysine Glutarylation. Springer Theses, 2020, , 59-80.	0.0	1
1127	Improving TRAIL-induced apoptosis in cancers by interfering with histone modifications. , 2020, 3, 791-803.		0
1129	Transcriptional memory and response to adverse temperatures in plants. Journal of Zhejiang University: Science B, 2021, 22, 791-804.	1.3	8
1130	Histone Modifications and their Role in Epigenetics of Cancer. Current Medicinal Chemistry, 2022, 29, 2399-2411.	1.2	21
1131	Alcohol metabolism and epigenetics changes. , 2013, 35, 6-16.		70
1133	Controlling Epithelial to Mesenchymal Transition through Acetylation of Histone H2BK5. Journal of Nature and Science, 2017, 3, .	1.1	3
1134	Screening for Colorectal Cancer Leading into a New Decade: The "Roaring â€~20s―for Epigenetic Biomarkers?. Current Oncology, 2021, 28, 4874-4893.	0.9	9
1135	Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional Recurrent Neural Networks. Journal of Proteome Research, 2022, 21, 265-273.	1.8	48

#	Article	IF	CITATIONS
1136	Extending the HSA-Cys34-Adductomics Pipeline to Modifications at Lys525. Chemical Research in Toxicology, 2021, 34, 2549-2557.	1.7	5
1137	Epigenetic Modifications and Therapy in Uveitis. Frontiers in Cell and Developmental Biology, 2021, 9, 758240.	1.8	1
1139	Ferroptosis Induction in Multiple Myeloma Cells Triggers DNA Methylation and Histone Modification Changes Associated with Cellular Senescence. International Journal of Molecular Sciences, 2021, 22, 12234.	1.8	20
1141	Sodium butyrate attenuates rotenone-induced toxicity by activation of autophagy through epigenetically regulating PGC-1 \hat{I} ± expression in PC12 cells. Brain Research, 2022, 1776, 147749.	1.1	15
1142	Epigenetic regulation by gut microbiota. Gut Microbes, 2022, 14, 2022407.	4.3	90
1143	An Expanding Repertoire of Protein Acylations. Molecular and Cellular Proteomics, 2022, 21, 100193.	2.5	32
1144	Comprehensive Profiling of Paper Mulberry (Broussonetia papyrifera) Crotonylome Reveals the Significance of Lysine Crotonylation in Young Leaves. International Journal of Molecular Sciences, 2022, 23, 1173.	1.8	2
1145	Therapies Targeting Epigenetic Alterations in Acute Kidney Injury-to-Chronic Kidney Disease Transition. Pharmaceuticals, 2022, 15, 123.	1.7	24
1146	Residue–Residue Contact Can Be a Potential Feature for the Prediction of Lysine Crotonylation Sites. Frontiers in Genetics, 2021, 12, 788467.	1.1	1
1147	Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture. Briefings in Bioinformatics, 2022, 23, .	3.2	17
1148	Lysine crotonylation: A challenging new player in the epigenetic regulation of plants. Journal of Proteomics, 2022, 255, 104488.	1.2	5
1149	Molecular and cellular functions of long non-coding RNAs in prostate and breast cancer. Advances in Clinical Chemistry, 2022, 106, 91-179.	1.8	7
1150	The hallmarks of cancer metabolism: Still emerging. Cell Metabolism, 2022, 34, 355-377.	7.2	386
1151	Biological function and regulation of histone 4 lysine 20 methylation in DNA damage response. Genome Instability & Disease, 2022, 3, 33.	0.5	2
1152	Lysine decrotonylation of glutathione peroxidase at lysine 220 site increases glutathione peroxidase activity to resist cold stress in chrysanthemum. Ecotoxicology and Environmental Safety, 2022, 232, 113295.	2.9	6
1153	Applications of Genetic Code Expansion in Studying Protein Post-translational Modification. Journal of Molecular Biology, 2022, 434, 167424.	2.0	22
1154	Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduction and Targeted Therapy, 2021, 6, 422.	7.1	57
1155	Interplay Among Metabolism, Epigenetic Modifications, and Gene Expression in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 793428.	1.8	30

#	Article	IF	CITATIONS
1156	Epigenetic regulation of vascular smooth muscle cell function in atherosclerosis. Current Atherosclerosis Reports, 2013, 15, 319.	2.0	7
1157	Metabolic choreography of gene expression: nutrient transactions with the epigenome. Journal of Biosciences, 2020, 45, .	0.5	1
1158	Role of succinylation modification in thyroid cancer and breast cancer. American Journal of Cancer Research, 2021, 11, 4683-4699.	1.4	1
1159	Cataloging Posttranslational Modifications in Plant Histones. Advances in Experimental Medicine and Biology, 2021, 1346, 131-154.	0.8	1
1160	Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biological Chemistry, 2022, 403, 819-858.	1.2	7
1161	Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients, 2022, 14, 851.	1.7	17
1162	Role of Histone Post-Translational Modifications in Inflammatory Diseases. Frontiers in Immunology, 2022, 13, 852272.	2.2	27
1163	Dynamics and Functional Interplay of Nonhistone Lysine Crotonylome and Ubiquitylome in Vascular Smooth Muscle Cell Phenotypic Remodeling. Frontiers in Cardiovascular Medicine, 2022, 9, 783739.	1.1	5
1164	Epigenetic remodelling in human hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 107.	3.5	21
1165	Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice. Cell Death and Disease, 2022, 13, 279.	2.7	12
1166	Proteome-Wide Identification and Functional Analysis of Lysine Crotonylation in Trichophyton rubrum Conidial and Mycelial Stages. Frontiers in Genetics, 2022, 13, 832668.	1.1	1
1167	Lysine Acylation Modification Landscape of Brucella abortus Proteome and its Virulent Proteins. Frontiers in Cell and Developmental Biology, 2022, 10, 839822.	1.8	1
1168	KAT7-mediated CANX (calnexin) crotonylation regulates leucine-stimulated MTORC1 activity. Autophagy, 2022, 18, 2799-2816.	4.3	5
1169	Histone post-translational modifications — cause and consequence of genome function. Nature Reviews Genetics, 2022, 23, 563-580.	7.7	253
1170	A novel strategy of gene screen based on multi-omics in Streptomyces roseosporus. Applied Microbiology and Biotechnology, 2022, 106, 3103-3112.	1.7	7
1171	Chromatin Structure and Dynamics: Focus on Neuronal Differentiation and Pathological Implication. Genes, 2022, 13, 639.	1.0	8
1172	One genome, many cell states: epigenetic control of innate immunity. Current Opinion in Immunology, 2022, 75, 102173.	2.4	7
1173	A reactive oxygen species burst causes haploid induction in maize. Molecular Plant, 2022, 15, 943-955.	3.9	39

#	Article	IF	CITATIONS
1174	Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Frontiers in Cell and Developmental Biology, 2022, 10, 861995.	1.8	9
1175	Lysine β-Hydroxybutyrylation Improves Stability of COVID-19 Antibody. Biomacromolecules, 2022, 23, 454-463.	2.6	10
1176	Preclinical Development of the Class-l–Selective Histone Deacetylase Inhibitor OKI-179 for the Treatment of Solid Tumors. Molecular Cancer Therapeutics, 2022, 21, 397-406.	1.9	8
1177	The decrotonylase FoSir5 facilitates mitochondrial metabolic state switching in conidial germination of Fusarium oxysporum. ELife, 2021, 10, .	2.8	14
1178	Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2. Cell Discovery, 2021, 7, 122.	3.1	19
1179	Physiological Ovarian Aging Is Associated with Altered Expression of Post-Translational Modifications in Mice. International Journal of Molecular Sciences, 2022, 23, 2.	1.8	6
1180	Epigenetics and Vascular Disease. , 2022, , 475-510.		1
1181	Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification. Journal of Experimental and Clinical Cancer Research, 2022, 41, 144.	3.5	25
1182	CDYL1-dependent decrease in lysine crotonylation at DNA double-strand break sites functionally uncouples transcriptional silencing and repair. Molecular Cell, 2022, 82, 1940-1955.e7.	4.5	12
1183	Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals, 2022, 12, 997.	1.0	3
1219	Qualitative Proteome-Wide Analysis Reveals the Diverse Functions of Lysine Crotonylation in Dendrobium huoshanense. Frontiers in Plant Science, 2022, 13, 822374.	1.7	7
1221	Histone post-translational modification and the DNA damage response. Genes and Diseases, 2023, 10, 1429-1444.	1.5	7
1222	Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Frontiers in Microbiology, 2022, 13, 862270.	1.5	19
1223	Exploring epigenetic reprogramming during central nervous system infection. Immunological Reviews, 2022, 311, 112-129.	2.8	7
1224	Roles of Negatively Charged Histone Lysine Acylations in Regulating Nucleosome Structure and Dynamics. Frontiers in Molecular Biosciences, 2022, 9, 899013.	1.6	4
1225	Decoding the dynamic H3K9cr landscapes during neural commitment of P19 embryonal carcinoma cells. Biochemical and Biophysical Research Communications, 2022, 613, 187-192.	1.0	1
1226	IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Critical Reviews in Food Science and Nutrition, 2023, 63, 10148-10172.	5.4	4
1227	Cross talk between acetylation and methylation regulators reveals histone modifier expression patterns posing prognostic and therapeutic implications on patients with colon cancer. Clinical Epigenetics, 2022, 14, .	1.8	5

#	Article	IF	CITATIONS
1228	Probing lysine posttranslational modifications by unnatural amino acids. Chemical Communications, 2022, 58, 7216-7231.	2.2	15
1229	Sirtuinâ€Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	4
1230	Creation of a Yeast Strain with Coâ \in translationally Acylated Nucleosomes. Angewandte Chemie, 0, , .	1.6	0
1231	Creation of a Yeast Strain with Coâ€translationally Acylated Nucleosomes. Angewandte Chemie - International Edition, 0, , .	7.2	3
1232	Sirtuinâ€Derived Covalent Binder for the Selective Recognition of Protein Crotonylation. Angewandte Chemie, 0, , .	1.6	0
1234	Histone Demethylase JMJD2D: A Novel Player in Colorectal and Hepatocellular Cancers. Cancers, 2022, 14, 2841.	1.7	2
1235	A phylogenetic and proteomic reconstruction of eukaryotic chromatin evolution. Nature Ecology and Evolution, 2022, 6, 1007-1023.	3.4	26
1236	iKcr_CNN: A novel computational tool for imbalance classification of human nonhistone crotonylation sites based on convolutional neural networks with focal loss. Computational and Structural Biotechnology Journal, 2022, 20, 3268-3279.	1.9	5
1237	A field guide to the proteomics of postâ€ŧranslational modifications in DNA repair. Proteomics, 2022, 22,	1.3	2
1238	The Art of Packaging the Sperm Genome: Molecular and Structural Basis of the Histone-To-Protamine Exchange. Frontiers in Endocrinology, 0, 13, .	1.5	19
1239	Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development (Cambridge), 2022, 149, .	1.2	30
1240	The Chromatin Landscape Channels DNA Double-Strand Breaks to Distinct Repair Pathways. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	11
1241	Distinct Histone Post-translational Modifications during <i>Plasmodium falciparum</i> Gametocyte Development. Journal of Proteome Research, 2022, 21, 1857-1867.	1.8	7
1242	Molecular Mechanisms of Epigenetic Regulation, Inflammation, and Cell Death in ADPKD. Frontiers in Molecular Biosciences, 0, 9, .	1.6	8
1243	Sorafenib Attenuates Fibrotic Hepatic Injury Through Mediating Lysine Crotonylation. Drug Design, Development and Therapy, 0, Volume 16, 2133-2144.	2.0	7
1244	Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Frontiers in Genetics, 0, 13, .	1.1	0
1245	Involvement of Histone Lysine Crotonylation in the Regulation of Nerve-Injury-Induced Neuropathic Pain. Frontiers in Immunology, 0, 13, .	2.2	6
1246	The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	63

#	Article	IF	CITATIONS
1247	Epigenetic Regulation of Stem Cells. , 2022, , .		0
1248	Deciphering the Interactome of Histone Marks in Living Cells via Genetic Code Expansion Combined with Proximity Labeling. Analytical Chemistry, 2022, 94, 10705-10714.	3.2	3
1249	Reduction of H3K27cr Modification During DNA Damage in Colon Cancer. Frontiers in Oncology, 0, 12,	1.3	5
1250	Nuclear Condensation of CDYL Links Histone Crotonylation and Cystogenesis in Autosomal Dominant Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 1708-1725.	3.0	12
1251	The Acyl-CoA Specificity of Human Lysine Acetyltransferase KAT2A. Biochemistry, 2022, 61, 1874-1882.	1.2	7
1252	Proteomics analysis of lysine crotonylation and 2-hydroxyisobutyrylation reveals significant features of systemic lupus erythematosus. Clinical Rheumatology, 2022, 41, 3851-3858.	1.0	10
1253	Modulating Lysine Crotonylation in Cardiomyocytes Improves Myocardial Outcomes. Circulation Research, 2022, 131, 456-472.	2.0	16
1254	The role and mechanism of butyrate in the prevention and treatment of diabetic kidney disease. Frontiers in Microbiology, 0, 13, .	1.5	13
1255	Decorating Histones in Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2022, 33, 1629-1630.	3.0	2
1256	MLysPRED: graph-based multi-view clustering and multi-dimensional normal distribution resampling techniques to predict multiple lysine sites. Briefings in Bioinformatics, 2022, 23, .	3.2	2
1257	Advances of Epigenetic Biomarkers and Epigenome Editing for Early Diagnosis in Breast Cancer. International Journal of Molecular Sciences, 2022, 23, 9521.	1.8	8
1258	Lactylation, an emerging hallmark of metabolic reprogramming: Current progress and open challenges. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
1259	The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-8.	0.5	6
1260	Global crotonylome reveals hypoxia-mediated lamin A crotonylation regulated by HDAC6 in liver cancer. Cell Death and Disease, 2022, 13, .	2.7	10
1261	The role of post-translational modifications in driving abnormal cardiovascular complications at high altitude. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
1262	Malonylome analysis uncovers the association of lysine malonylation with metabolism and acidic stress in pathogenic Mycobacterium tuberculosis. Microbiological Research, 2022, 265, 127209.	2.5	1
1263	Histone Modifications in Neurological Disorders. Advances in Experimental Medicine and Biology, 2022, , 95-107.	0.8	2
1264	Cancer and meiotic gene expression: Two sides of the same coin?. Current Topics in Developmental Biology, 2023, , 43-68.	1.0	5

#	Article	IF	CITATIONS
1265	Regulation of Cellular Metabolism by Protein Crotonylation Coordinates Pancreatic Cancer Progression. SSRN Electronic Journal, 0, , .	0.4	0
1266	Histone modification in podocyte injury of diabetic nephropathy. Journal of Molecular Medicine, 2022, 100, 1373-1386.	1.7	7
1267	Global-Scale Profiling of Differential Expressed Lysine-Lactylated Proteins in the Cerebral Endothelium of Cerebral Ischemia–Reperfusion Injury Rats. Cellular and Molecular Neurobiology, 2023, 43, 1989-2004.	1.7	9
1268	Function and mechanism of histone β-hydroxybutyrylation in health and disease. Frontiers in Immunology, 0, 13, .	2.2	19
1269	<i>Trypanosoma brucei</i> histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Research, 2022, 50, 9705-9723.	6.5	7
1270	Dynamic switching of crotonylation to ubiquitination of H2A at lysine 119 attenuates transcription–replication conflicts caused by replication stress. Nucleic Acids Research, 2022, 50, 9873-9892.	6.5	13
1271	Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Viruses, 2022, 14, 1980.	1.5	9
1272	qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Research, 2023, 51, D479-D487.	6.5	11
1274	Large-scale analysis of protein crotonylation reveals its diverse functions in Pinellia ternata. BMC Plant Biology, 2022, 22, .	1.6	1
1275	Crotonylation versus acetylation in petunia corollas with reduced <scp>acetyl oA</scp> due to <scp> <i>PaACL</i> </scp> silencing. Physiologia Plantarum, 0, , .	2.6	3
1276	Insights into the sperm chromatin and implications for male infertility from a protein perspective. WIREs Mechanisms of Disease, 2023, 15, .	1.5	9
1278	Identification of epigenetic histone modifications and analysis of histone lysine methyltransferases in Alexandrium pacificum. Harmful Algae, 2022, 119, 102323.	2.2	5
1279	Epigenomic Measurements in Brain Tissues. , 2022, , 3221-3261.		0
1280	Effects of Crotonylation on Reprogramming of Cashmere Goat Somatic Cells with Different Differentiation Degrees. Animals, 2022, 12, 2848.	1.0	2
1281	A General Method to Edit Histone H3 Modifications on Chromatin Via Sortaseâ€Mediated Metathesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
1282	Lysine Crotonylation: An Emerging Player in DNA Damage Response. Biomolecules, 2022, 12, 1428.	1.8	5
1283	H4K5 Butyrylation Coexist with Acetylation during Human Spermiogenesis and Are Retained in the Mature Sperm Chromatin. International Journal of Molecular Sciences, 2022, 23, 12398.	1.8	2
1284	Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning. International Journal of Molecular Sciences, 2022, 23, 12733.	1.8	5

#	Article	IF	CITATIONS
1285	A General Method to Edit Histone H3 Modifications on Chromatin Via Sortaseâ€Mediated Metathesis. Angewandte Chemie, 0, , .	1.6	1
1286	Global landscape of lysine acylomes in Bacillus subtilis. Journal of Proteomics, 2023, 271, 104767.	1.2	6
1287	The Global research of protein post-translational modifications in the cancer field: A bibliometric and visualized study. Frontiers in Oncology, 0, 12, .	1.3	0
1288	Transgenerational inheritance and its modulation by environmental cues. Current Topics in Developmental Biology, 2023, , 31-76.	1.0	5
1289	Investigating pathological epigenetic aberrations by epi-proteomics. Clinical Epigenetics, 2022, 14, .	1.8	2
1290	Post-Translational Modifications by Lipid Metabolites during the DNA Damage Response and Their Role in Cancer. Biomolecules, 2022, 12, 1655.	1.8	0
1291	Photo-Cross-Linking To Delineate Epigenetic Interactome. Journal of the American Chemical Society, 2022, 144, 20979-20997.	6.6	6
1292	Histone Modifications in Acute Kidney Injury. Kidney Diseases (Basel, Switzerland), 2022, 8, 466-477.	1.2	3
1293	Novel histone post-translational modifications in diabetes and complications of diabetes: The underlying mechanisms and implications. Biomedicine and Pharmacotherapy, 2022, 156, 113984.	2.5	5
1294	Novel post-translational modifications in the kidneys for human health and diseases. Life Sciences, 2022, 311, 121188.	2.0	2
1295	CapsNh-Kcr: Capsule network-based prediction of lysine crotonylation sites in human non-histone proteins. Computational and Structural Biotechnology Journal, 2023, 21, 120-127.	1.9	4
1296	A chemical probe for proteomic analysis and visualization of intracellular localization of lysine-succinylated proteins. Analyst, The, 2022, 148, 95-104.	1.7	0
1297	The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. Marine Life Science and Technology, 2022, 4, 584-594.	1.8	11
1298	Evaluation of acyllysine isostere interactions with the aromatic pocket of the <scp>AF9 YEATS</scp> domain. Protein Science, 2023, 32, .	3.1	4
1299	Lysine Succinylation of VBS Contributes to Sclerotia Development and Aflatoxin Biosynthesis in Aspergillus flavus. Molecular and Cellular Proteomics, 2023, 22, 100490.	2.5	3
1300	Lysine crotonylation regulates leucine-deprivation-induced autophagy by a 14-3-3ε-PPM1B axis. Cell Reports, 2022, 41, 111850.	2.9	7
1301	Discovery of High-Affinity Small-Molecule Binders of the Epigenetic Reader YEATS4. Journal of Medicinal Chemistry, 2023, 66, 460-472.	2.9	8
1302	Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via histone acetylation. Nature Communications, 2022, 13, .	5.8	29

#	Article	IF	CITATIONS
1303	Computational investigation on the effect of the lysine 2-hydroxyisobutyrylation on argininosuccinate synthetase 1 conformational dynamics in Botrytis cinerea. Journal of Molecular Modeling, 2023, 29, .	0.8	0
1304	Epigenetics in Cancer Biology. , 2022, , .		0
1305	Universal Strategy to Develop Fluorogenic Probes for Lysine Deacylase/Demethylase Activity and Application in Discriminating Demethylation States. ACS Sensors, 2023, 8, 28-39.	4.0	1
1306	Analysis of the chloroplast crotonylome of wheat seedling leaves reveals the roles of crotonylated proteins involved in salt-stress responses. Journal of Experimental Botany, 2023, 74, 2067-2082.	2.4	2
1307	The MOZ-BRPF1 acetyltransferase complex in epigenetic crosstalk linked to gene regulation, development, and human diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
1308	Protein acylation: mechanisms, biological functions and therapeutic targets. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	21
1310	Histones: coming of age in Mendelian genetic disorders. Journal of Medical Genetics, 2023, 60, 1-10.	1.5	2
1311	Beyond metabolic waste: lysine lactylation and its potential roles in cancer progression and cell fate determination. Cellular Oncology (Dordrecht), 2023, 46, 465-480.	2.1	8
1312	Epigenetic regulations in neurological disorders. , 2023, , 269-310.		1
1313	Histone modifications in germline development and maintenance. , 2023, , 47-69.		0
1313 1314	Histone modifications in germline development and maintenance. , 2023, , 47-69. Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	0
	Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine	1.4	
1314	Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	5
1314 1316	Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, . Role of histone modifications in the development of acute kidney injury. , 2023, , 447-464.		5 O
1314 1316 1318	 Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, . Role of histone modifications in the development of acute kidney injury. , 2023, , 447-464. Molecular Basis of KAT2A Selecting Acyl-CoA Cofactors for Histone Modifications. Research, 2023, 6, . Regulation of endothelial-to-mesenchymal transition by histone deacetylase 3 posttranslational 	2.8	5 0 1
1314 1316 1318 1319	 Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, . Role of histone modifications in the development of acute kidney injury. , 2023, , 447-464. Molecular Basis of KAT2A Selecting Acyl-CoA Cofactors for Histone Modifications. Research, 2023, 6, . Regulation of endothelial-to-mesenchymal transition by histone deacetylase 3 posttranslational modifications in neointimal hyperplasia. Annals of Translational Medicine, 2023, 11, 207-207. Crotonylation of GAPDH regulates human embryonic stem cell endodermal lineage differentiation and 	2.8 0.7	5 0 1 0
1314 1316 1318 1319 1320	Folate-deficiency induced acyl-CoA synthetase short-chain family member 2 increases lysine crotonylome involved in neural tube defects. Frontiers in Molecular Neuroscience, 0, 15, . Role of histone modifications in the development of acute kidney injury. , 2023, , 447-464. Molecular Basis of KAT2A Selecting Acyl-CoA Cofactors for Histone Modifications. Research, 2023, 6, . Regulation of endothelial-to-mesenchymal transition by histone deacetylase 3 posttranslational modifications in neointimal hyperplasia. Annals of Translational Medicine, 2023, 11, 207-207. Crotonylation of GAPDH regulates human embryonic stem cell endodermal lineage differentiation and metabolic switch. Stem Cell Research and Therapy, 2023, 14, . The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and	2.8 0.7 2.4	5 0 1 0 2

#	Article	IF	CITATIONS
1325	Development and Validation of a Prognostic Signature Based on the Lysine Crotonylation Regulators in Head and Neck Squamous Cell Carcinoma. BioMed Research International, 2023, 2023, 1-14.	0.9	2
1326	Implications of Transglutaminase-Mediated Protein Serotonylation in the Epigenetic Landscape, Small Cell Lung Cancer, and Beyond. Cancers, 2023, 15, 1332.	1.7	1
1327	A shared â€~vulnerability code' underpins varying sources of DNA damage throughout paternal germline transmission in mouse. Nucleic Acids Research, 2023, 51, 2319-2332.	6.5	2
1328	Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules, 2023, 13, 417.	1.8	10
1329	Protein lysine fourâ \in earbon acylations in health and disease. Journal of Cellular Physiology, O, , .	2.0	3
1330	Epigenetic Regulation of \hat{l}^2 -Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes, 2023, 14, 577.	1.0	3
1332	Linking chromatin acylation mark-defined proteome and genome in living cells. Cell, 2023, 186, 1066-1085.e36.	13.5	9
1333	Auto-Kla: a novel web server to discriminate lysine lactylation sites using automated machine learning. Briefings in Bioinformatics, 2023, 24, .	3.2	11
1334	A screen for histone mutations that affect quiescence in <i>S. cerevisiae</i> . FEBS Journal, 2023, 290, 3539-3562.	2.2	1
1335	Nucleosomes in mammalian sperm: conveying paternal epigenetic inheritance or subject to reprogramming between generations?. Current Opinion in Genetics and Development, 2023, 79, 102034.	1.5	8
1336	Functional analysis of protein postâ€ŧranslational modifications using genetic codon expansion. Protein Science, 2023, 32, .	3.1	7
1337	Epigenetic Changes Occurring in Plant Inbreeding. International Journal of Molecular Sciences, 2023, 24, 5407.	1.8	3
1338	SEPT2 crotonylation promotes metastasis and recurrence in hepatocellular carcinoma and is associated with poor survival. Cell and Bioscience, 2023, 13, .	2.1	6
1339	Diverse and dynamic forms of gene regulation by the S. cerevisiae histone methyltransferase Set1. Current Genetics, 2023, 69, 91-114.	0.8	0
1340	Identification of 113 new histone marks by CHiMA, a tailored database search strategy. Science Advances, 2023, 9, .	4.7	1
1341	Molecular Recognition of Methacryllysine and Crotonyllysine by the AF9 YEATS Domain. International Journal of Molecular Sciences, 2023, 24, 7002.	1.8	4
1342	Using ATCLSTM-Kcr to predict and generate the human lysine crotonylation database. Journal of Proteomics, 2023, 281, 104905.	1.2	3
1343	Novel insights into the recognition of acetylated histone H4 tail by the TRIM24 PHD-Bromo module. Biochemical Journal, 2023, 480, 629-647.	1.7	2

# 1344	ARTICLE Epigenetic and Genetics Factors. , 2023, , 320-366.	IF	CITATIONS
1346	Epigenetic control of heredity. Progress in Molecular Biology and Translational Science, 2023, , 25-60.	0.9	1
1355	Epigenetische Merkmale und Nutztierbiotechnologien. , 2023, , 41-67.		0
1366	Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	20
1375	Androgen Receptor in Health and Disease. , 2023, , 21-75.		0
1376	Research progress on post-translational modification of proteins and cardiovascular diseases. Cell Death Discovery, 2023, 9, .	2.0	4
1378	Epigenetic alterations and advancement of lymphoma treatment. Annals of Hematology, 0, , .	0.8	1
1381	Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	5
1384	The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nature Reviews Endocrinology, 2023, 19, 691-707.	4.3	8
1386	Biomolecular condensates in kidney physiology and disease. Nature Reviews Nephrology, 0, , .	4.1	1
1387	Context-Dependent Functions of KDM6 Lysine Demethylases in Physiology and Disease. Advances in Experimental Medicine and Biology, 2023, , 139-165.	0.8	0
1390	Profiling histone posttranslational modifications and chromatin-modifying proteins by high-throughput reverse phase protein array. , 2024, , 13-35.		0
1394	Epigenetic inhibitors and their role in cancer therapy. International Review of Cell and Molecular Biology, 2023, , 211-251.	1.6	2
1400	Lysine Demethylation in Pathogenesis. Advances in Experimental Medicine and Biology, 2023, , 1-14.	0.8	1
1402	The bromodomain acyl-lysine readers in human health and disease. , 2024, , 57-97.		0
1411	The role of epigenetics in cardiovascular disease. , 2024, , 717-759.		0
1412	Therapeutic potential of epigenetic drugs. , 2024, , 761-778.		0
1429	Ubiquitination in plant biotic and abiotic stress. Plant Growth Regulation, 0, , .	1.8	0

#	Article	IF	CITATIONS
1431	The Information Theory of Aging. Nature Aging, 2023, 3, 1486-1499.	5.3	5
1444	Applied Stem Cell Research in Sickle Cell Disease. , 2024, , .		0
1445	A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cellular and Molecular Life Sciences, 2024, 81, .	2.4	1
1446	The mechanisms, regulations, and functions of histone lysine crotonylation. Cell Death Discovery, 2024, 10, .	2.0	0